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Summary. P-Lingua is a programming language for membrane computing. It was first
presented in Edinburgh, during the Ninth Workshop on Membrane Computing (WMC9).
In this paper, the models, simulators and formats included in P-Lingua in version 2.0 are
explained. We focus on the stochastic model, associated simulators and updated features.
Finally, we present two new applications based on P-Lingua 2.0: a tool for describing and
simulating ecosystems and a framework (currently under development) for P systems
design.

1 Introduction

Membrane computing (or cellular computing) is a branch of Natural Computing
that was introduced by Gh. Pdun [14]. The main idea is to consider biochemical
processes taking place inside living cells from a computational point of view, in a
way that provides a new nondeterministic model of computation.

The initial definition of this computing paradigm is very flexible, and many
different models have been defined and investigated in the area: P systems with
symport/antiport rules, with active membranes, with catalysts, with promot-
ers/inhibitors, etc. There were some attempts to establish a common formalization
covering most of the existing models (see e.g. [5]), but the membrane computing
community is still using specific syntax and semantics depending on the model
they work with.

1.1 Introduction to P-Lingua

When designing software simulators for membrane computing, one has to precisely
define the P system that is to be simulated. This task is hard if we need to handle
families of P systems where the set of rules, the alphabet, the initial contents
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and even the membrane structure depend on the value assigned to some initial
parameters. Current software applications are usually focused on, and adapted
for, particular cases, making it difficult to get interoperability.

In [3] it was introduced a programming language, called P-Lingua, whose pro-
grammes define active membrane P systems with division rules in a parametric
and modular way. In this sense, it is possible to define a family of P systems with
the use of parameters. After assigning values to the initial parameters, the com-
pilation tool generates an XML document associated with the corresponding P
system from the family, and furthermore it checks possible programming errors
(both lexical /syntactical and semantical). Such documents can be integrated into
other applications, thus guaranteeing interoperability by using the same P system
definition in different software environments.

P-Lingua 2.0 is able to define P systems within different models, at this stage:
active membrane P systems with membrane division rules or membrane creation
rules, transition P systems, symport/antiport P systems, stochastic P systems and
probabilistic P systems. Each model follows semantics restrictions, which define
several constraints which rules in the model’s P systems should follow (number of
objects on each side, if membrane creation and/or membrane division are allowed,
and so on) and the way rules are applied on configurations to evolve to other ones.
Additional models can be added to the P-Lingua framework, but it is important
to say that P-Lingua 2.0 supports only P systems whose configurations have a
cell-like structure.

P-Lingua 2.0 defines several algorithms (from now on, simulators) to simulate
P system configuration computations for each supported model, so every compu-
tation on a configuration whose P system belongs to a model can be performed by
any simulator defined for the model.

P-Lingua 2.0 also supports different formats. For the purpose of this paper,
a format is a way of representing P systems on a file. P-Lingua 2.0 supported
formats range from XML and P-Lingua language to binary, and it provides a
standard mechanism to add new formats, if needed.

1.2 An input standard for simulators

Each model displays characteristic semantic constraints entailing the rules applied,
such as number of objects specified on the left-hand side, membrane creation, po-
larization, and so on. Hence, the need for simulators capable of taking into account
different scenarios when simulating P system computations comes to the fore. An
initial approach could be defining inputs for each simulator specifically, so that
it is able to carry out computations. Nevertheless, this approach involves defin-
ing new input formats for each simulator, so designing simulators would take a
great amount of effort as a new input format needs to be defined for each new
developed simulator. A second approach could be standardizing the simulator in-
put, so all simulators need to process inputs specified in the same format. These
two approaches raise up a trade-off: On the one hand, specific simulator inputs
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could be defined in a more straightforward way, as the used format is closer to
the P system features to simulate. Besides, the former point of view would spare
researchers from analyzing different models and P systems in order to extract
common patterns out of them. On the other hand, although the latter approach
involves analyzing different P systems and models to develop a standard format,
it allows to use common simulators for different P systems. In this way, there is no
need to develop a new simulator every time a new P system should be simulated,
as it is possible to specify it in the standard input format and simulate computa-
tions by using simulators able to process it. Moreover, researches would not have
to devise a new input format every time they specify a P system; they would use
the standard format instead. In addition, researchers would not need to change
the way to specify P systems which need to be simulated every time they move on
to another model, as they would keep on using the standard input format. This
second approach is the one considered on P-Lingua 2.0.

XML
. Simulator
file
P-Lingua ] Binary |::> i
=) ) ) Simulator
(cc>d) > (c»8) @ Another
Cosaman Simulator

\/
The input

Fig. 1. The standard input format
2 Models

2.1 Contemplating new models

As mentioned, P-Lingua 1.0 provided support for active membrane P systems
with division rules. However, as P-Lingua is intended to become a standard for P
systems definition, it should contemplate other models. The supported models so
far are enumerated below, but a standard mechanism for defining new models and
simulators for each model has been defined on P-Lingua 2.0, easing those tasks.
This mechanism has been used on all the existent models and simulators.

2.2 Transition P system model

The basic P systems were introduced in [14].
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A transition P system of degree ¢ > 1 is a tuple of the form
1= (F7 L7MaM1a s 7Mq7 (Rla P1)7 teey (Rqa pq)7io)

where:

I' is an alphabet whose elements are called objects.

L is a finite set of labels.

i is a membrane structure consisting of ¢ membranes with the membranes
(and hence the regions, the space between a membrane and the immediately
inner membranes, if any) injectively labeled with elements of L; as usual, we
represent the membrane structures by strings of matching labeled parentheses.

e M,; 1< i< gq, are strings which represent multisets over I" associated with
the ¢ membranes of p.

e R;,, 1 < i < gq, are finite sets of evolution rules over I', associated with the
membranes of . An evolution rule is of the form u — v, where u is a string
over I' and v = v’ or v = v'0, being v’ a string over I" x ({here,out} U {in; :
1<j<q}).
pi, 1 < i < gq, are strict partial orders over R;.
io, 1 <1, < g, is the label of an elementary membrane (the output membrane).

The objects to evolve in a step and the rules by which they evolve are chosen
in a non—deterministic manner, but in such a way that in each region we have
a maximally parallel application of rules. This means that we assign objects to
rules, non—deterministically choosing the rules and the objects assigned to each
rule, but in such a way that after this assignation no further rule can be applied
to the remaining objects.

2.3 Symport/antiport P system model

Symport/antiport rules were incorporated in the framework of P systems in [13].

A P system with symport/antiport rules of degree ¢ > 1 is a tuple of the form
I = (F’L7M7M17"'ananRl7"',Rq7iO)
where:

I' is the alphabet of objects,
L is the finite set of labels for membranes (in general, one uses natural numbers
as labels), p is the membrane structure (of degree ¢ > 1, with the membranes
labeled in a one-to-one manner with elements of L,

o M,y,..., M, are strings over I" representing the multisets of objects present in
the ¢ compartments of p in the initial configuration of the system.

e F C ['isthe set of objects supposed to appear in the environment in arbitrarily
many copies.
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o R; 1<1i< g, are finite sets of rules associated with the ¢ membranes of ;. The
rules from R can be of two types (by I'" we denote the set of all non-empty
strings over I', with A denoting the empty string):

—  Symport rules, of the form (x,in) or (x,out), where z € I'". When using
such a rule, the objects specified by x enter or exit, respectively, the mem-
brane with which the rule is associated. In this way, objects are sent to or
imported from the surrounding region — which is the environment in the
case of the skin membrane.

—  Antiport rules, of the form (z, out;y, in), where z,y € I'". When using such
a rule for a membrane i, the objects specified by x exit the membrane and
those specified by y enter from the region surrounding membrane i; this is
the environment in the case of the skin membrane.

e i, € L is the label of a membrane of y, which indicates the output region of
the system.

The rules are used in the non-deterministic maximally parallel manner, stan-
dard in membrane computing.

2.4 Active membranes P system model
2.4.1 With membrane division rules

P systems with membrane division were introduced in [15], and in this model the
number of membranes can increase exponentially in polynomial time. Next, we de-
fine P systems with active membranes using 2-division for elementary membranes,
with polarizations, but without cooperation and without priorities (and without
permitting the change of membrane labels by means of any rule).

A P system with active membranes using 2-division for elementary membranes of
degree ¢ > 1 is a tuple IT = (I, L, u, M1, ..., My, R,i,), where:

I' is an alphabet of symbol-objects.

L is a finite set of labels for membranes.

i is a membrane structure, of m membranes, labeled (not necessarily in a

one-to-one manner) with elements of L.

o My,..., M, arestrings over I', describing the initial multisets of objects placed

in the m regions of p.

e R is a finite set of rules, of the following forms:

(a) [a > w]¢ for h € Lo € {+,—,0}, a € I', w € I'*: This is an object evolu-
tion rule, associated with a membrane labeled with h and depending on the
polarization of that membrane, but not directly involving the membrane.

(b) a[ 3t — [b]y? for h € L, ar, a0 € {+,—,0}, a,b € I': An object from the
region immediately outside a membrane labeled with h is introduced in this
membrane, possibly transformed into another object, and, simultaneously,
the polarization of the membrane can be changed.
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(c) [a]ly* = b |32 forh € L, a1, a0 € {+,—,0}, a,b € I': An object is sent out
from membrane labeled with A to the region immediately outside, possibly
transformed into another object, and, simultaneously, the polarity of the
membrane can be changed.

(d) [a]y —=bforhe L, a€ {+,—,0}, a,be I'" A membrane labeled with A is
dissolved in reaction with an object. The skin is never dissolved.

(e) [alpt — [b]3? [c]?® for h € L, a1, 00,03 € {+,—,0}, a,b,c € I': An
elementary membrane can be divided into two membranes with the same
label, possibly transforming some objects and their polarities.

i, € L is the label of a membrane of p, which indicates the output region of
the system.

These rules are applied according to the following principles:

All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non-
deterministic way), but any object which can evolve by one rule of any form,
must do it.

If a membrane is dissolved, its content (multiset and internal membranes) is
left free in the surrounding region.

If at the same time a membrane labeled by A is divided by a rule of type (e)
and there are objects in this membrane which evolve by means of rules of type
(a), then we suppose that the evolution rules of type (a) are used, and before
division is produced. Of course, this process takes only one step.

The rules associated with membranes labeled by h are used for all copies of
this membrane. At one step, a membrane can be the subject of only one rule
of types (b)-(e).

2.4.2 With membrane creation rules

Membrane creation rules were first considered in [9, 10].

A P system with membrane creation of degree ¢ > 1 is a tuple of the form

I = (F7L7/J'uM17"'7Mq7R7iO)

where:

I' is the alphabet of objects.

L is a finite set of labels for membranes.

i is a membrane structure consisting of ¢ membranes labeled (not necessarily
in a one-to-one manner) with elements of L.

My, ..., Mg are strings over I', describing the initial multisets of objects placed
in the ¢ regions of pu.

R is a finite set of rules of the following forms:
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(a) [a — v]p, where h € L, a € I', and v is a string over I" describing a multiset
of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[]y, — [b]s, where h € L, a,b € I'. These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(¢) la]n — []nb where h € L, a,b € I'. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a]p, — b where h € L, a,b € I'. These are dissolution rules. In reaction
with an object, a membrane is dissolved, while the object specified in the
rule can be modified.

(e) [a = [v]ny]n, Where hy,he € L, a € I', and v is a string over I" describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an initial
multiset and a label.

i, € L is the label of a membrane of p, which indicates the output region of
the system.

Rules are applied according to the following principles:

Rules from (a) to (d) are used as usual in the framework of membrane compu-
ting, that is, in a maximally parallel way. In one step, each object in a mem-
brane can only be used for applying one rule (non-deterministically chosen
when there are several possibilities), but any object which can evolve by a rule
of any form must do it (with the restrictions below indicated).

Rules of type (e) are used also in a maximally parallel way. Each object a in a
membrane labeled with h; produces a new membrane with label hs placing in
it the multiset of objects described by the string v.

If a membrane is dissolved, its content (multiset and interior membranes) be-
comes part of the immediately external one. The skin membrane is never dis-
solved.

All the elements which are not involved in any of the operations to be applied
remain unchanged.

The rules associated with the label h are used for all membranes with this
label, independently of whether or not the membrane is an initial one or it was
obtained by creation.

Several rules can be applied to different objects in the same membrane simul-
taneously. The exception are the rules of type (d) since a membrane can be
dissolved only once.

2.5 Probabilistic P system model

A probabilistic approach in the framework of P systems was first considered by A.
Obtulowicz in [12].

A probabilistic P system of degree ¢ > 1 is a tuple
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1= (Fa M, Mh .. 7Mqa Ra {CT'}7‘€R7 io)
where:

I is the alphabet (finite and nonempty) of objects (the working alphabet).
1 is a membrane structure, consisting of ¢ membranes, labeled 1,2, ...,q. The
skin membrane is labeled by 0. We also associate electrical charges with mem-
branes from the set {0, +, —}, neutral and positive.

o My,..., M, are strings over I', describing the multisets of objects initially
placed in the ¢ regions of u.

e R is a finite set of evolution rules. An evolution rule associated with the mem-

brane labeled by i is of the form r : u[ v | "1?, where u,v,u/,v' are
a multiset over I', o, 8 € {0,+,—} and ¢, is a real number between 0 and 1
associated with the rule such that:
— for each u,v € M(I'), h € H and o € {0,+}, if ry,...,7; are the rules

whose left-hand side is u[ v |, then 22:1 e, =1

e i, € L is the label of a membrane of p, which indicates the output region of

the system.

“Sau'[ v

We assume that a global clock exists, marking the time for the whole system
(for all compartments of the system); that is, all membranes and the application
of all rules are synchronized.

The g-tuple of multisets of objects present at any moment in the g regions of
the system constitutes the configuration of the system at that moment. The tuple
(My,..., M,) is the initial configuration of the system.

We can pass from one configuration to another one by using the rules from R
as follows: at each transition step, the rules to be applied are selected according to
the probabilities assigned to them, all applicable rules are simultaneously applied,
and all occurrences of the left—hand side of the rules are consumed, as usual. Rules
with the same left—hand side and whose right—hand side has the same polarization
can be applied simultaneously.

2.6 Stochastic P system model

The original motivation of P systems was not to provide a comprehensive and accu-
rate model of the living cell, but to imitate the computational nature of operations
that take place in cell membranes. Most P system models have been proved to be
Turing complete and computationally efficient, in the sense that they can solve
computationally hard problems in polynomial time, by trading time for space.
Most research in P systems focus on complexity classes and computational power.

However, P systems have been used recently to model biological phenomena
very successfully. Models of oscillatory systems [4], signal transduction [18], gene
regulation control [16], quorum sensing [17] and metapopulations [19] have been
presented.
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We introduce in this section the specification of stochastic P systems, that
constitute the framework for modeling biological phenomena.

A stochastic P system of degree ¢ > 1 is a tuple
II = (F7La,u/7M17"' anaRllv"'ale)
where:

I' is a finite alphabet of symbols representing objects.
L = {ly,...,l;n} is a finite alphabet of symbols representing labels for the

membranes.
e 4 is a membrane structure containing ¢ > 1 membranes identified in a one to
one manner with values in {1,..., ¢} and labeled with elements from L.

o M; = (l;,w;,s;), for each 1 < i < ¢, initial configuration of the membrane i,
l; € L is the label, w; € I'* is a finite multiset of objects and s; is a finite set
of strings over I

e R, = {rllf‘, e ,rfjl }, for each 1 < ¢t < m, is a finite set of rewriting rules
t
associated with membranes of label I, € L. Rules are of one of the following
two forms:

—  Multiset rewriting rules:

ekt
réf sufw] = '),
with u, w, v, w’ € I'* some finite multisets of objects and [ a label from L. A
multiset of objects, u is represented as u = a1+ -+ + @y, With a1,...,a,, €

I'. The empty multiset will be denoted by A and we will write o™ instead

of o + - - - 4+ 0. The multiset u placed outside of the membrane labeled with
[ and the multiset w placed inside of that membrane are simultaneously
replaced with a multiset v’ and w’ respectively.

— String rewriting rules:

Lt

ré‘ Cur st up sy = [y +8) g+ 85Uyt sy ]
A string s is represented as s = (01.02.--- .0j), where 01,02,...,0; € I.
Each multiset of objects u; and string s;, 1 < j < p, are replaced by a
multiset of objects u’; and strings s’ 1,...,5;;-

A constant cé-t is associated with each rule and will be referred to as stochastic
constant and is needed to calculate the propensity of the rule according to the
current context of the membrane to which this rule corresponds.

Rules in stochastic P systems model biochemical reactions. The propensity a;
of a reaction R; is defined so that a;dt represents the probability that R; will
occur in the infinitesimal time interval [¢, ¢ + dt] [7].
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Applications of the rules and the semantics of stochastic P systems can vary,
depending on which algorithm is used to simulate the model. At the present stage,
two algorithms have been implemented and integrated as simulators within the
pLinguaCore library. They will be discussed in Section 3.2.

3 Simulators

3.1 Contemplating new simulators

In P-Lingua 1.0, only one simulator was supported, since there was only one model
to simulate. However, as new models have been included, new simulators have been
developed, providing at least one simulator for each supported model. Furthermore,
P-Lingua 2.0 provides translation and error detection services for the supported
models.

All simulators in P-Lingua 2.0 can step backwards (as well as the simulator in
P-Lingua 1.0), but this option should be set before the simulation starts.

P-Lingua 2.0 also takes into account the existence of different simulation algo-
rithms for the same model and provides a means for selecting a simulator among
the ones which are suitable to simulate the P system, by checking its model. So
far, only the stochastic P system model counts on several simulation algorithms
to choose, but P-Lingua 2.0 provides a mechanism to include new simulators for
defined models.

3.2 Simulators for stochastic P systems

In the original approach to membrane computing P systems evolve in a non-
deterministic and maximally parallel manner (that is, all the objects in every
membrane that can evolve by a rule must do it [14]). When trying to simulate
biological phenomena, like living cells, the classical non-deterministic and maxi-
mally parallel approach is not valid anymore. First, biochemical reactions, which
are modeled by rules, occur at a specific rate (determined by the propensity of
the rule), therefore they can not be selected in an arbitrary and non-deterministic
way. Second, in the classical approach all time step are equal and this does not
represent the time evolution of a real cell system.

The strategies to replace the original approach are based on Gillespie’s Theory
of Stochastic Kinetics [7]. As mentioned in Section 2.6, a constant cz‘ is associated
to each rule. This provides P systems with a stochastic extension. The constant
cé-t depends on the physical properties of the molecules involved in the reaction
modeled by the rule and other physical parameters of the system and it represents
the probability per time unit that the reaction takes place. Also, it is used to
calculate the propensity of each rule which determines the probability and time
needed to apply the rule.

Two different algorithms based on the principles stated above have been im-
plemented and integrated in pLinguaCore. The plugin-oriented architecture of P-
Lingua allows easily to encode new simulators.
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3.2.1 Multicompartmental Gillespie algorithm

The Gillespie [7] algorithm or SSA (Stochastic Simulation Algorithm) was devel-
oped for a single, well-mixed and fixed volume/compartment. P systems generally
contain several compartments or membranes. For that reason, an adaptation of
this algorithm was presented in [20] and it can be applied in the different regions
defined by the compartmentalized structure of a P system model. The next rule
to be applied in each compartment and the waiting time for this application is
computed using a local Gillespie algorithm. The Multicompartmental Gillespie
Algorithm can be broadly summarized as follows:
Repeat until a prefixed simulation time is reached:

1. Calculate for each membrane 7,1 < ¢ < m and for each rule r; € R;, the
propensity, a;, by multiplying the stochastic constant cé associated to r; by
the number of distinct possible combinations of the objects and substrings
present of the left-side of the rule with respect to the current contents of
membranes involved in the rule.

2. Compute the sum of all propensities

ag =

m

7

>
1 T ERl,i

3. Generate two random numbers r; and r9 from the uniform distribution in the
unit interval and select 7; and j; according to
1 1
Ty = — 111(*)
Qo 1
Ji
Ji = the smallest integer satisfyingz aj > roag
j=1
In this way, we choose 7; according to an exponential distribution with param-
eter ag.
4. The next rule to be applied is r;, and the waiting time for this rule is 7;. As
a result of the application of this rule, the state of one or two compartments
may be changed and has to be updated.

3.2.2 Multicompartmental Next Reaction method

The Gillespie Algorithm is an exact numerical simulation method appropriate for
systems with a small number of reactions, since it takes time proportional to the
number of reactions (i.e., the number of rules). An exact algorithm which is also
efficient is presented in [6], the Next Reaction Method. It uses only a single random
number per simulation event (instead of two) and takes time proportional to the
logarithm of the number of reactions. We have adapted this algorithm to make it
compartmental.



152 M. Garcia-Quismondo et al.

The idea of this method is to be extremely sensitive in recalculating a; and t;,
recalculate them only if they change. In order to do that, a data structure called
dependency graph [6] is introduced.

Let r : u[v]; — «/[v]; be a given rule with propensity a, and let the parent
membrane of | be labeled with I’. We define the following sets:

e DependsOn(a,) = {(b,t) | b is an object or string whose quantity affect the
value a, and t =lifbecvand t =1"if b € u}.
Generally, DependsOn(a,) = {(b,1) | b€ v} U{(b,I') | b€ u}

o Affects(r) = {(b,t) | b is an object or string whose quantity is changed when
the rule is executed and t =l ifbevvbev andt =1"ifbeuVvbeu}.
Generally, Affects(r) = {(b,]) |[beovVvbev}U{BV)|beuVvbeu}.

Definition 1. Given a set of rules R = R;, U---U Ry, , the dependency graph is
a directed graph G = (V, E), with vertex set V.= R and edge set E = {(v;,v;) |
Affects(vi) N DependsOn(a,,) # 0}.

In this way, if there exists an edge (v;,v;) € E and v; is executed, as some ob-
jects affected by this execution are involved in the calculation of a,,, this propensity
would have to be recalculated. The dependency graph depends only on the rules
of the system and is static, so it is built only once.

The times 7;, that represent the waiting time for each rule to be applied, are
stored in an indezed priority queue. This data structure, discussed in detail in [6],
has nice properties: finding the minimum element takes constant time, the number
of nodes is the number of rules |R|, because of the indexing scheme it is possible to
find any arbitrary reaction in constant time and finally, the operation of updating
a node (only when 7; is changed, which we can detect using to the dependency
graph) takes log | R| operations.

The Multicompartmental Next Reaction Method can be broadly summarized
as follows:

1. Build the dependency graph, calculate the propensity a, for every rule r € R
and generate 7; for every rule according to an exponential distribution with
parameter a,. All the values 7,. are stored in a priority queue. Set ¢ < 0 (this
is the global time of the system).

2. Get the minimum 7, from the priority queue, ¢ < ¢ + 7,. Execute the rule
7y, (this is the next rule scheduled to be executed, because its waiting time is
least).

3. For each edge (u,«) in the dependency graph recalculate and update the
propensity a, and
o if a # pu, set

To aa,old(Ta - T,u) + ™
Qo new
e if & = u, generate a random number 7, according to an exponential dis-
tribution with parameter a, and set 7, < 7, + 7
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Update the node in the indexed priority queue that holds 7.
4. Go to 2 and repeat until a prefixed simulation time is reached.

Both Multicompartmental Gillespie Algorithm and Multicompartmental Next
Reaction Method are the core of the Direct Stochastic Simulator and Efficient
Stochastic Simulator, respectively. One of them, which can be chosen in runtime,
will be executed when compiling and simulating a P-Lingua file that starts with
@model<stochastic>. See Section 4.2 for more details about the syntax.

3.3 Simulator for probabilistic P systems

Next, we describe how the simulator for probabilistic P systems implements the
applicability of the rules to a given configuration.

(a) Rules are classified into sets so that all the rules belonging to the same set have
the same left-hand side.

(b) Let {r1,...,r:} be one of the said sets of rules. Let us suppose that the com-

mon left-hand side is w [v]¢ and their respective probabilistic constants are

Cryy--.;Cr,. In order to determine how these rules are applied to a give config-

uration, we proceed as follows:

— It is computed the greatest number N so that u appears in the father
membrane of 4 and vV appears in membrane i.

— N random numbers x such that 0 < z < 1 are generated.

— Foreach k (1 < k < t)let ng be the amount of numbers generated belonging
to interval | Z;:S Cr; Z?:o ¢r;) (assuming that c., = 0).

— For each k (1 < k <t), rule 7y is applied ny times.

4 Formats

4.1 Contemplating new formats

As well as models and simulators, new formats have been included in P-Lingua
2.0. P-Lingua 1.0 provided a P-Lingua language format and an XML file format
[3]. Those formats have been upgraded to allow representation of P systems which
have cell-like structure, so any P system which corresponds to an existing model
can be expressed via XML format or the P-Lingua 2.0 language. To accept the
new models, P-Lingua’s general syntax has changed, but it also supports backwards
compatibility, so any P system accepted by P-Lingua 1.0 is recognized by P-Lingua
2.0, whether it is expressed in XML format or the P-Lingua language. A new format
has been included as well: the binary format. This format is the input format for
the incoming parallel simulator [11], so it is possible to define a P system in P-
Lingua language and compile it to binary format.
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At this point, the concepts input format and output format should be intro-
duced. An input format is a file format which, if a P system is specified in a file by
following that format, the P system specified can be processed by pLinguaCore, a
JAVA [23] library described in Section 6 of this paper. An output format is a file
format which, if a P system is specified on a file by following that format, tat file
can be generated by pLinguaCore. These concepts are similar to the source code
and object code concepts [3].

For P-Lingua 2.0, P-Lingua language format is an input format, the binary
format is an output format and, eventually, XML is both an input and an output
format. This means that P-Lingua language files can be processed by pLinguaCore,
binary files can be generated by pLinguaCore and XML files can be both processed
and generated by pLinguaCore.

4.2 P-Lingua format

In the version of P-Lingua presented in [3] only P systems with active membranes
and division rules were considered and therefore, possible to be defined in the P-
Lingua language. New models have been added and consequently the syntax has
been modified and extended, in order to support them. The syntax of the P-Lingua
2.0 language is defined as follows.

4.2.1 Valid identifiers

We say that a sequence of characters forms a valid identifier if it does not
begin with a numeric character and it is composed by characters from the following:

=~

nopgqgrstuvwixyz
0OPQR

1lm
LM STUVWIXYZ

o = p

b
B
1

N Qo
w U
N )
o1 T s
o Q0
~N P
0 H -
© e

Valid identifiers are widely used in the language: to define module names,
parameters, indexes, membrane labels, alphabet objects and strings.

The following text strings are reserved words in the language: def, call,
@mu, O@ms, Omodel, @lambda, @d, let, @inf, @debug, main, -->, # and
they cannot be used as valid identifiers.

4.2.2 Variables

Four kind of variables are permitted in P-Lingua:
e Global variables

e Local variables

e indexes

e Parameters
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Variables are used to store numeric values and their names are valid identifiers.
We use 64 bits (signed) in double precision.

Global variables definition

Global variables must be declared out of any program module and they can be
accesed from all of the program modules (see 4.2.10). The name of a global variable
global _variable name must be a valid identifier. The syntax to define a global
variable is the following:

global_variable_name = numeric_expression;

Local variables definition

Local variables can only be accessed from the module in which they were declared
and they must only be defined inside module definitions. The name of a local
variable local_variable name must be a valid identifier. The syntax to define a
local variable is the following:

let local_variable_name = numeric_expression;

Indexes and parameters can be consider local variables used in 4.2.16 and 4.2.10
respectively.

4.2.3 Identifiers for electrical charges

In P-Lingua, we can consider electrical charges by using the + and - symbols for
positive and negative charges respectively, and no one for neutral charge. It is
worth mentioning that polarizationless P systems are included.

4.2.4 Membrane labels

There are three ways of writing membrane labels in P-Lingua: the first one is just
a natural number; the second one is to denote the label as a valid identifier and
the third one is by numeric expressions that represent natural numbers between
brackets.

4.2.5 Numeric expressions

Numeric expressions can be written by using * (multiplication), / (division), %
(module), + (addition), - (subtraction) operators with integer or real numbers
and/or variables, along with the use of parentheses. It is possible to write numbers
by using exponential notation. For example, 3 * 107> is written 3e-5.
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4.2.6 Objects

The objects of the alphabet of a P system are written using valid identifiers, and
the inclusion of sub-indexes is permitted. For example, x; 2,41 and Y'es are written
as x{i,2#n+1} and Yes respectively.

The multiplicity of an object is represented by using the * operator. For ex-

ample, 27"t is written as x{i}*(2*n+1).

4.2.7 Strings

Strings are enclosed between < and > and made by concatenating valid identifiers
with the character ., that is <identifierl. ... .identifierN>. For example,
<cap.RNAP.op>.

4.2.8 Substrings

Substrings are used in string rewriting rules and the syntax is similar to strings,
but it is possible to use the character ? to represent any arbitrary sequence of
valid identifiers concatenated by .. The empty sequence is included. For example,
<cap.?.NAP.op> is a substring of the string <cap.op.op.op.NAP.op> and of the
string <cap.NAP.op>.

4.2.9 Model specification

As this programming language supports more than one model, it is necessary to
specify in the beginning of the file which is the model of the P system defined. Not
each type of rule is allowed in every model, for example, membrane creation rules
are not permitted in P systems with symport/antiport rules. The built-in compiler

of P-Lingua detects such error. Models are specified by using @model<model name>
and at this stage, the allowed models are:

Omodel<membrane_division>
Omodel<membrane_creation>
Omodel<transition_psystem>
Omodel<probabilistic_psystem>
@model<stochastic_psystem>

Omodel<symport_antiport_psystem>
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4.2.10 Modules definition

Similarities between various solutions to NP-complete numerical problems by us-
ing families of recognizing P systems are discussed in [8]. Also, a cellular program-
ming language is proposed based on libraries of subroutines. Using these ideas,
a P-Lingua program consists of a set of programming modules that can be used
more times by the same, or other, programs.

The syntax to define a module is the following.

def module_name(paraml, ..., paramN)
{

sentencel;

sentencel;

sentencelM;

}

The name of a module, module name, must be a valid and unique identifier.
The parameters must be valid identifiers and cannot appear repeated. It is possible
to define a module without parameters. Parameters have a numerical value that
is assigned at the module call (see below).

All programs written in P-Lingua must contain a main module without param-
eters. The compiler will look for it when generating the output file.

In P-Lingua there are sentences to define the membrane structure of a P system,
to specify multisets, to define rules, to define variables and to call to other modules.
Next, let us see how such sentences are written.

4.2.11 Module calls

In P-Lingua, modules are executed by using calls. The format of an sentence that
calls a module for some specific values of its parameters is given next:

call module_name(valuel, ..., valueN);

where valuei is a numeric expression or a variable.

4.2.12 Definition of the initial membrane structure of a P system

In order to define the initial membrane structure of a P system, the following
sentence must be written:

Omu = expr;

where expr is a sequence of matching square brackets representing the membrane
structure, including some identifiers that specify the label and the electrical charge
of each membrane.

Examples:
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L[99 =emu=[[1"2]"1
2. [191)7)F = emu = +[[1°b, -[1°c]’a

4.2.13 Definition of multisets

The next sentence defines the initial multiset associated to the membrane labeled
by label.

@ms (label) = list_of_objects;

where label is a membrane label and 1ist_of_objects is a comma-separated list
of objects. The character # is used to represent an empty multiset.

If a stochastic P system is being defined (that is, the file starts with
@model<stochastic>), strings are also permitted in the initial content of a mem-
brane:

@ms (label) = list_of _objects_and_strings;

list_of _objects_and_strings is a comma-separated list of objects and/or
strings.

4.2.14 Union of multisets

P-Lingua allows to define the union of two multisets (recall that the input multiset
is “added” to the initial multiset of the input membrane) by using a sentence with
the following format.

@ms (label) += list_of_objects;
For stochastic P systems, it would be

@ms (label) += list_of_objects_and strings;

4.2.15 Definition of rules

The definition of rules has been significantly extended in this version of P-Lingua.
A general rule is defined as follow (most elements are optional):

n k B Bn1B
ulpfwilyy - [walp? 1y — zlylzly, - [zl sl
where wu,v,wi,..., Wy, T, Y, 21,...,2, are multisets of objects or strings,
h,h1,...,h, are labels, o, a1,...,an,0,01,...,0n,7 are electrical charges and k

is a numerical value.

The P-Lingua syntax for such a rule is:

ua[vas [wil’hl. .. ap [wN]’hN]°h --> xB[yf1 [z1] °h1... 3, [2N]’hN]*h v[s]’h :: k
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where u, v, wl...wN, x, y, zl...zN, s are comma-separated list of objects or
strings (it is possible to use the character # in order to represent the empty mul-
tiset), h,h1,..., hN are labels, o, a1,...,an,08,51,..., 00,7 are identifiers for
electrical charges and k is a numeric expression.

As mentioned before, not each type of rule is permitted in every model. Below
we enumerate the possible types of rules, classified by the model in which they are
allowed.

@model<mebrane_division>

1. The format to define evolution rules of type [a — ]} is given next:

ala --> v]’h
B

2. The format to define send-in communication rules of type a [|7 — [b]} is given
next:
ac[]1’h -->([b]
3. The format to define send-out communication rules of type [a]} — b[]ﬁ is

given next:

alal’h --> F[Ib

4. The format to define division rules of type [a]} — [b}f[c];{ is given next:
alal’h -->B[bly[c]

5. The format to define dissolution rules of type [a]f — b is given next:
alal’h -—> b

Omodel<membrane_creation>

1. Rules 1, 2, 3 and 5 of @model<membrane division> can be defined in this
model, with the same format.

2. The format to define membrane creation rules of type [a]} — [[b]flm is given
next:

alal’h --> «[B[b]’h1]’h

Omodel<transition_psystem>

1. The format to define evolution rules of type [u[ui]n,,-.-,[uN]ay —
V[V1lnys -+ [UN]RN, Aln 1s given next:
[u [ul]l’h1l ... [uN]’hN --> v [v1]’h1, ... [vN]’hN, @d]’h

@d is a new keyword representing the containing membrane is marked to dis-
solved.

Omodel<symport_antiport_psystem>
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The format to define symmetric communication rules of type a[b]¥ — ba]{ is
given next:

aal[b]’h --> (blal’h

Omodel<probabilistic_psystem>

1.

The format to define rules of type u[v]? —= u;[v1]? is given next:

uwa[v]’h --> ulf[vi]’h::p

@model<stochastic_psystem>

1.

The format to define multiset rewriting rules of type u[v];, — wu[v1]}, is given
next:

ulv]’h --> ul[vi1]’h::c

. The format to define string rewriting rules of type [u+ s];, — [v+47]5, is given

next:
[u,s]’h -=> [v,r]’h::c

«, B and ~ are identifiers for electrical charges.

a, b and c are objects of the alphabet.

u, ul, v, vi, ..., vN are comma-separated lists of objects that represents
a multiset.

s and r are comma-separated lists of substrings.

h, h1, ..., hN are labels.

p and c are real numeric expressions. The result of evaluating p must be between
0 and 1, and the result of evaluating ¢ must be greater or equal than 0.

Some examples:

(w1 — i )4 = +[x{i,1} -—> r{i,1}¥4]>2

i[5 — [de1] = d{k} 172 --> [d{k+1}]

[dil — [9di = +[d{k}]’2 --> [Jd{k}

[de]3 — [di]3 [di]z = [d{k}1°2 -=> +[d{k}]-[d{k}]
[a; — b=-[al’2 -==> b

Yi o B8 [BF12), = v{1,j} (172 —-> [Bxk{i,12}1°2::k{i,8}

[RNAP+ < cap.w.op >|m — [< cap.w.RNAP.op >],, =
[RNAP,<cap.?.op>]’m —-—> [<cap.?.RNAP.op>]’m::c
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4.2.16 Parametric sentences

In P-Lingua, it is possible to define parametric sentences by using the following
format:

sentence : rangel, ..., rangeN;

where sentence is a sentence of the language, or a sequence of sentences in brack-
ets, and rangel, ..., rangelN is a comma-separated list of ranges with the for-
mat:

min_value <= index <= max_value

where min_value and max_value are numeric expressions, integer numbers or vari-
ables, and index is a variable that can be used in the context of the sentence. It
is possible to use the operator < instead of <=.

The sentence will be repeated for each possible values of each index.

Some examples of parametric sentences:

ld{k}1’2 --> +[d{k}]-[d{k}] : 1<= k <= n;

2. [xi; — ij-1ly 1 1<i<m,2<j<n=
+[x{i,j} -—> x{i,j-1}1’2 : 1<=i<=m,2<=j<=n;

4.2.17 Inclusion of comments

The programs in P-Lingua can be commented by writing phrases into the text
strings /* and */.

4.2.18 Inclusion of debug information

Each rule sentence can optionally include a debug message which will be presented
every time the rule is executed by the simulator. The syntax to write a debug
message associated to a rule definition is defined as follows:

rule_definition Q@debug "debug message"

5 Command-line Tools

5.1 Command-line tools changes

P-Lingua 1.0 provided command-line tools for simulating P systems and compiling
files which specify P systems [3]. In P-Lingua 2.0, the command-line tool general
syntax has changed but, as it provides backwards compatibility, all valid actions
in P-Lingua 1.0 are still valid in P-Lingua 2.0, as well.
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5.2 Compilation command-line tool

The command-line tool general syntax for compiling input files is defined as follows:

plingua [-input _format] input file [-output_format]
output_file [-v verbosity_level] [-h]

The command header plingua reports the system to compile the P system
specified on a file to a file specified on another, whereas the file input_file contains
the program that we want to be compiled, and output_file is the name of the
file that is generated [3]. Optional arguments are in square brackets:

e The option -input_format defines the format followed by input_file, which
should be an input format.
e At this stage, valid input formats are:
— P-Lingua
— XML
If no input format is set, the P-Lingua format is assumed.
The option -output_format defines the format followed by output_file, which
should be an output format.
e At this stage, valid output formats are:
— XML
— bin
If no input format is set, the XML format is assumed by default.
The option -v verbosity level is a number between 0 and 5 indicating the level
of detail of the messages shown during the compilation process [3].
e The option -h displays some help information [3].

5.3 Simulation command-line tool
The simulations are launched from the command line as follows:

plingua_sim input_file -o output_file [-v verbosity level]
[-h] [-to timeout] [-st steps] [-mode simulatorID] [-a] [-b]

The command header plingua_sim reports the system to simulate the P system
specified on a file, whereas input_xml is an XML document where a P system is
formatted on, and output file is the name of the file where the report about the
simulated computation will be saved [3]. Optional arguments are in brackets:

e The option -v verbosity level is a number between 0 and 5 indicating the level
of detail of the messages shown during the compilation process [3]. If no value
is specified, by default it is 3.
The option -h displays some help information [3].
The option -to sets a timeout for the simulation defined in timeout (in mil-
liseconds), so when the time out has elapsed the simulation is halted. If the
simulation has reached a halting configuration before the time out has elapsed
this option has no effect.
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e The option -st sets a maximum number of steps the simulation can take
(defined in steps), so when the time out has elapsed the simulation comes to
a halt. If the simulation has reached a halting configuration or the time out
has elapsed (in case the option -to is set) before the specified number of steps
have been taken this option has no effect.

e The option -mode sets the specific simulator to simulate the P system (defined
in simulatorID). This option reports an error in case the simulator defined by
simulatorID is not a valid simulator for the P system model.

e The option -a defines if the simulation can take alternative steps. This option
reports an error if the simulator does not support alternative steps.

e The option -b defines if the simulation can step backwards. As every simulator
supports stepping backwards, this option does not report errors.

6 pLinguaCore

pLinguaCore (© is a JAVA library which performs all functions supported by P-
Lingua 2.0, that is, models definition, simulators and formats. This library reports
the rules and membrane structure read from a file where a P system is defined,
detects errors in the file, reports them. And, if the P system is defined in P-Lingua
language, locates the error on the file. This library performs simulations by using
the simulators implemented as well as taking into account all options defined. It
reports the simulation process, by displaying the current configuration as text and
reporting the elapsed time. Eventually, this library translates files, which define a P
system, between formats, for instance, from P-Lingua language format to binary
format. For more information and library documentation, please browse the P-
Lingua website [25], currently under development. This library is free software
published under LGPL license [22], so everyone who is interested can change and
distribute this library respecting the license restrictions.

7 Tools for Simulating Ecosystems Based on P-Lingua

The Bearded Vulture (Gypaetus barbatus) is an endangered species in Europe
that feeds almost exclusively on bone remains of wild and domestic ungulates. In
[1], it is presented a first model of an ecosystem related to the Bearded Vulture
in the Pyrenees (NE Spain), by using probabilistic P systems where the inherent
stochasticity and uncertainty in ecosystems are captured by using probabilistic
strategies. In order to validate experimentally the designed P system (see figure 2)
the authors have developed a simulator that allows them to analyze the evolution
of the ecosystem under different initial conditions. That software application is
focused on a particular P system, specifically, the initial model of the ecosystem
presented in [1]. With the aim of improving the model, the authors are adding
ingredients to it, such as new species and a more complex behavior for the animals.
In this sense, a second version of the model is presented in [2]
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A new GPL [21] licensed JAVA application with a friendly user-interface sit-
ting on the pLinguaCore library has been developed. This application provides a
flexible way to check, validate and improve computational models of ecosystem
based on P systems instead of designing new software tools each time new ingre-
dients are added to the models. Furthermore, it is possible to change the initial
parameters of the modeled ecosystem in order to make the virtual experiments
suggested by experts (see figure 3). These experiments will provide results that
can be interpreted in terms of hypotheses. Finally, some of these hypotheses will
be selected by the experts in order to be checked in real experiments.

The current version of this application is a prototype (Figure 4), and we will
publish more information as soon as possible on the P-Lingua website.

8 Conclusions and Future Work

Creating a programming language to specify P systems is an important task in
order to facilitate the development of software applications for membrane comput-
ing.

In [3], P-Lingua was presented as a programming language to define active
membrane P systems with division rules. The present paper extends that lan-
guage to other models: transition P systems, symport/antiport P systems, active
membrane P systems with division or creation rules, probabilistic P systems and
stochastic P systems.

We have developed a JAVA library (pLinguaCore) that implements several
simulators for each mentioned model and defines different formats to encode P
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Model: /h warkspac 1 dels/zL.pl
Species | Population | Parameters * Results (Mean values) | Console |

Year | Bearded vuture | Pyrenean Chamois | Red Deer Female Red Deer Male Fallow Deer Roe Deer Sheep Bones.
o 1001 150000 15005
1 21 9539 850 306 670 1220 152008 195513
2 21 10022 972 373 713 1379 153817 186520
3 23 10562 1107 438 764 1582 155931 190944
4 23 11098 1263 506 820 1814 158272 195938
5 24 11696 1440 581 872 2108 160975 204387
6 25 12369 1642 6653 925 2468 164070 209227
7 27 13065 1875 750 986 2909 167623 219221
i 28 13829 2129 857 1055 3464 171655 229394
B 29 14701 2425 992 1126 4140 174535 234854
10 30 15597 2757 1135 1210 4967 177773 249479
11 32 16588 3134 1293 1306 5867 181211 261053
12 33 17619 3563 1470 1403 6947 184794 275120
13 35 18779 4038 1665 1502 8224 188509 288882
14 36 20017 4575 1877 1608 9769 192268 305231
0%

Fig. 4. A tool for simulating ecosystems

systems, like the P-Lingua one or a new binary format. This library can be ex-
panded to define new models, simulators and formats.

It is possible to select different algorithms to simulate a P system, for example,
there are two different algorithms for stochastic P systems. The library can be



166 M. Garcia-Quismondo et al.

used inside other software applications, in this sense, we present a tool for virtual
experimentation of ecosystems.

An internet website [25], which is currently under development, will be available
to download the applications, libraries and source-code, as well as provide infor-
mation about the P-Lingua project. In addition, this site aims to be a meeting
point for users and developers through the use of web-tools such as forums.

The syntax of P-Lingua language is standard enough for specifying several
different models of cell-like P systems. However, a new version of the language
is necessary in order to specify tissue P systems and this will be aim of a future
work.

Although P-Lingua 2.0 provides a way to simulate and compile P systems,
command-line tools are usually not user-friendly. It means it is not easy and in-
tuitive to use them. For this purpose, P-Lingua 1.0 provided an Integrated Devel-
opment Environment (IDE) [3], which eased the way people could use P-Lingua
1.0. For P-Lingua 2.0, a new IDE is being developed. This one is integrated into
the Eclipse platform [24], so it makes the most of Eclipse’s capabilities to pro-
vide a framework for translating, developing and testing P systems. It aims to be
user-friendly and useful for P system researchers.
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