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Abstract

This paper compares the performance of nine time-varying beta estimates taken from three differ-

ent methodologies never previously compared: least-square estimators including nonparametric

weights, GARCH-based estimators and Kalman filter estimators. The analysis is applied to the

Mexican stock market (2003-2009) because of the high dispersion in betas. The comparison be-

tween estimators relies on their financial applications: asset pricing and portfolio management.

Results show that Kalman filter estimators with random coefficients outperform the others in cap-

turing both the time series of market risk and their cross-sectional relation with mean returns,

while more volatile estimators are better for diversification purposes.
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1. Introduction

Precise estimates for market betas are crucial in many financial applications, including

asset pricing, corporate finance and risk management. From a pricing perspective,

the empirical failure of the unconditional Capital Asset Pricing Model (CAPM) has

led to two possible ways of relaxing restrictive assumptions under the model being

considered: the first is the use of an intertemporal framework, as in Merton (1973),

that implies multiple sources of systematic risk. The ad-hoc three-factor model of
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Fama and French (1993) and the four-factor model of Carhart (1997) are successful

examples of multifactor models. The second is to eliminate the static context in the

relationship between expected return and risk by allowing time variation in both factors

and loadings. In that sense, Jagannathan and Wang (1996), Lettau and Ludvigson (2001)

and Petkova and Zhang (2005) find that betas of assets with different characteristics

move differently over the business cycle and Campbell and Vuolteenaho (2004), Fama

and French (1997) and Ferson and Harvey (1999) show that time-variation in betas

helps to explain anomalies such as value, industry and size. However, this conditional

time-varying framework does not seem to be enough to improve the weak fit of the

CAPM, as shown by Lewellen and Nagel (2006). The main problem in beta dynamics

literature is that the investor’s set of conditioning information is unobservable and

consequently some assumptions have to be made. There are two main alternatives:

making assumptions about the dynamics of the betas and making assumptions about

the conditional covariance matrix of the returns.

For the first alternative, many different structures have been considered. There are

studies that estimate the dynamics of betas by Kalman filter assuming standard stochas-

tic processes such as random walk, autoregressive, mean reverting and switching models

driving those dynamics. Some examples can be found in Wells (1994), Moonis and Shah

(2003) and Mergner and Bulla (2008). Other studies use parametric approaches based

on Shanken (1990), in which betas are modelled as a function of state variables or firm

characteristics as in Jagannathan and Wang (1996) and in Lettau and Ludvigson (2001).

A nonparametric version of this approach can be found in Ferreira, Gil and Orbe (2011).

Betas have also been assumed as a function of time, with both linear and parabolic func-

tional forms, as in Lin, Chen and Boot (1992) and Lin and Lin (2000). Nonetheless

neither empirical estimation nor simulation results can produce a clear conclusion about

the best way to model betas. If no parametric functions are specified and no additional

conditions are assumed except that betas vary smoothly over time, then the seminal

work of Fama and MacBeth (1973) suggests the use of a rolling window ordinary least

squares (OLS) estimation of the market model. This data-driven approach has the ad-

vantage of no parameterization but requires prior selection of the window length. More

recently, other estimators from the family of rolling least squares have been considered.

In this sense, based on the nonparametric time-varying estimator proposed by Robin-

son (1989), time-varying conditional betas have been nonparametrically estimated by

Esteban and Orbe (2010), Li and Yang (2011) and Ang and Kristensen (2012) assum-

ing that betas vary smoothly over time and possibly nonlinearly. The flexibility of this

nonparametric setting avoids the problem of misspecification derived from selecting a

functional form but it also requires that window length be selected.

The second alternative, consisting of making assumptions about the conditional

covariance matrix of the returns, relies on the parametric approach of ARCH-class

models. In this context the assumptions under multivariate GARCH (MGARCH) models

make it possible to estimate time-varying betas. In fact, the transmission of volatility

between assets is captured by a time-varying conditional covariance matrix whose
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elements are used to calculate the beta as a ratio of covariance to variance. As the

conditional covariance matrix is time dependent, the beta obtained will also be time

dependent. There has been a great proliferation of multivariate models with GARCH

structures in the last few decades, see Bauwens, Laurent and Rombouts (2006) or

Silvennoinen and Teräsvirta (2009) for a survey. Some examples of the use of MGARCH

models to estimate time-varying betas can be found in Bollerslev, Engle and Wooldridge

(1988), Ng (1991), De Santis and Gérard (1998) and more recently in Choudhry (2005)

and Choudhry and Wu (2008), among others.

Given the wide variety of time-varying beta estimates, some papers compare differ-

ent approaches. The most common comparison is between GARCH-based estimators

and Kalman filter approaches. In general, results indicate that the latter class of esti-

mators performs better in terms of forecasting ability (Faff, Hillier and Hillier (2000)

and Choudhry and Wu (2008)). However, there is no agreement about the best pro-

cess assumption for beta dynamics. Moreover, when the Kalman filter is compared with

estimators in the class of least squares, as in Ebner and Neumann (2005), the latter

outperform the former.

In this paper three different methodologies for estimating time varying betas are

compared: least-squares-based estimators, including the well-known rolling window

OLS and the nonparametric time-varying estimator proposed in Esteban and Orbe

(2010), beta estimators based on GARCH processes for the conditional covariance

matrix of returns, including also asymmetric versions, and dynamic beta estimators

obtained by the Kalman filter method. The main theoretical difference between the

OLS and nonparametric estimators is that the latter have guaranteed consistency if

the bandwidth is optimally chosen. In practice, there is an advantage in using the

nonparametric estimator since there are many data-driven window selection criteria

while the OLS estimator uses the rule of the thumb. The GARCH-based beta estimator

does not rely on a smoothness assumption but has the advantage of taking into account

the potential conditional heteroscedasticity of the returns. Finally, the Kalman filter

method, unlike the other estimators, imposes assumptions about the specific functional

form of beta dynamics. To the best of our knowledge, this is the first paper to compare

these different methodologies simultaneously for the specific estimation of market risk.

Specifically, the OLS, the nonparametric estimator with both a uniform and a Gaus-

sian kernel, the bivariate BEKK (after Baba, Engle, Kraft and Kroner) and the bivari-

ate dynamic conditional correlation (DCC) structures together with their corresponding

asymmetric versions, and random walk and random coefficient structures for the dy-

namic of the betas under the Kalman filter estimation are considered. The analysis is

applied to daily returns for the Mexican stock market between 2003 and 2009. This

market is selected because of the high cross-sectional dispersion in the sensitivity of in-

dividual returns to market returns in terms of both level and variability. Thus, grouping

stocks into portfolios on the basis of trading volume provides high dispersion in time se-

ries and cross-sectionally which allows the performance of the beta estimates covering

very different patterns to be analysed. The sample period also contributes to the aim of
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the paper because it includes the recent financial and economic crisis, ensuring enough

time variation in betas potentially related, in this case, to the business cycle. Finally, the

data frequency selection seeks to exploit the benefits of using high-frequency data in

measuring systematic risk while avoiding problems of errors in variables that stem from

nonsynchronous trading effects.

A second distinctive feature of the paper is the way in which the different estimates

are compared. Instead of using only standard statistical measures based on the standard

errors of the estimates or on the fit of the simple market model, the accuracy of

the estimators is also determined by financial criteria. Specifically, the estimators

are compared in terms of their usefulness for asset pricing or portfolio management

purposes. On the one hand, the CAPM fit in both time series (pricing errors) and

cross-sectional (risk premia) frameworks is analysed. On the other hand, the power in

achieving the next period out of the sample minimum variance portfolio based on the

use of each estimate is also compared.

Interesting results are found. The time-series analysis reveals that the wide time fluc-

tuation combined with the moderate dispersion of the Kalman filter estimate assuming

a random coefficient makes this the best beta estimator for reducing the adjustment er-

rors in both the market model and the CAPM when daily frequency returns are used.

At the same time, this estimator also produces a positive and significant risk premium

in the cross-sectional estimation of the CAPM with monthly frequency data. This good

fit between betas and mean returns is also obtained when the two nonparametric beta

estimators are used. On the other hand, for the purpose of risk diversification, beta esti-

mators with high volatility are more appropriate. The Kalman filter with random walk

estimator and the GARCH-based beta estimators do a good job of estimating the com-

position of the portfolio with the minimum risk.

The rest of the paper is structured as follows. Section 2 presents the estimation

methodologies. Section 3 describes the data. Section 4 compares beta estimates descrip-

tively. Section 5 provides the empirical results for the comparison of the beta estimators

in two frameworks: asset pricing and mean-variance portfolio analysis. Section 6 con-

cludes and the Appendix contains the data information.

2. Methodology

The Capital Asset Pricing Model due to Sharpe (1964) and Lintner (1965) relates

the expected return on an asset to its systematic market risk or beta. This beta is the

sensitivity of the asset return to changes in the return on the market portfolio. That is,

the beta is the slope of the market model:

Rit = αi +βiRmt +uit , i = 1, . . . ,N, t = 1, . . . ,T, (1)
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where Rit and Rmt are the return on asset or portfolio i and on the market portfolio at

time t, respectively. Commonly, the unknown coefficients in (1) are estimated by OLS

applied to the linear regression for each portfolio.

If it is assumed that these coefficients vary with time, model (1) must be rewritten

as:

Rit = αit +βitRmt +uit , i = 1, . . . ,N, t = 1, . . . ,T (2)

2.1. Least-squares-based time-varying beta estimators

As proposed by Fama and MacBeth (1973), one simple way to obtain time series

estimates of betas is by a rolling OLS estimation of the market model. This consists

of minimising a local sum of squared residuals for each portfolio i:

min
(αit ,βit)

t−r

∑
j=t−1

(Ri j −αit −βitRm j)
2, (3)

where r indicates the amount of past observations to be considered at each estimation

point. From the first order conditions of the optimisation problem (3), the rolling OLS

estimator is obtained as:

(α̂it β̂it)
′
ROLL =

(
t−r

∑
j=t−1

X jX
′
j

)−1
t−r

∑
j=t−1

X jRi j, i = 1, . . . ,N,

where X j = (1 Rm j)
′ is the jth observation of the data matrix, the subscript ROLL

denotes the OLS rolling estimator and ′ denotes matrix and vector transpose.

In the empirical application of this estimator, a window of 120 observations for data

with daily frequency is used. The sampling frequency is selected based on the findings

of Bollerslev and Zhang (2003) and Ghysels and Jacquier (2006), who show that high-

frequency data result in a more effective measure of betas than the commonly used

monthly returns. Since, in general, stocks in the Mexican market are not continuously

traded, intraday data are discarded in order to avoid nonsynchronicity effects on beta

estimates. Regarding the window length, an alternative number of observations was also

considered but it did not alter the main conclusions of the paper.1

The nonparametric time-varying beta estimator can be considered within the family

of rolling least-squares estimators. It relies on the assumption that the unknown time-

varying coefficients, αit and βit , are smooth functions (linear or nonlinear) of the time

1. Specifically, windows of 90 and 400 days were analysed. Results are available upon request.
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index. It is derived from minimising a smoothed sum of squared residuals for a given

portfolio i and for a pre-selected smoothness degree hi:

min
(αit , βit)

t−Thi

∑
j=t−1

Khi, t j(Ri j −αit −βitRm j)
2,

where Khi, t j = h−1
i K ((t/T − j/T )/hi) is a weight function and K(·) is a symmetric

second order kernel. The shape of this kernel determines how past observations are

to be weighted. If a uniform kernel is used all past observations selected are equally

weighted but if the Epanechnikov or Gaussian kernels are used, higher weights are

given to those observations closer to the estimation time point and lower weights to

those farther away in time. The parameter hi is the bandwidth that controls the amount

of smoothness imposed on the coefficients associated with the ith portfolio. Solving the

first-order conditions, the estimator has the following expression:

(α̂it β̂it)
′
NP =

(
t−Thi

∑
j=t−1

Khi, t jX jX
′
j

)−1
t−Thi

∑
j=t−1

Khi, t jX jRi j, i = 1, . . . ,N,

where all elements are already defined and the subscript NP indicates the nonparametric

estimator.

Once the smoothness degree hi is set, the estimator obtained is consistent with the

standard rate of convergence in nonparametric settings and has a closed form. Since the

role of the bandwidth is to determine the amount of smoothness imposed on the betas

and therefore the number of relevant past observations to be taken into account when

estimating those betas, it is crucial to select it adequately in advance. If the bandwidth

is large, the sub-sample of significantly weighted observations is larger, that is, more

past observations are considered relevant in each local estimation. This results in a time

series of estimated betas with little variability due to the high degree of smoothness. But

if the bandwidth is small the estimation sub-sample is narrowed and the estimated betas

have more dispersion. Different bandwidths (hi) are allowed for the portfolios in order

to capture different possible variations and curvatures of the betas. In consequence, the

sub-sample size used at any estimation time point is the same when estimating the betas

for a given portfolio but may be different for betas from another portfolio.

In regard to the practical issues of choosing the kernel and the bandwidths, it is well

known that all kernels are asymptotically equivalent but that this is not the case for the

bandwidth value. An optimal bandwidth is such that it minimises an error criterion in

order to reach a tradeoff between the squared bias and the variance of the beta estimator.

In the context of conditional factor models Ang and Kristensen (2012) and Li and

Yang (2011) propose a bandwidth selection criterion for two-sided kernels, considering

symmetric sub-samples that take into account not only past observations but also future

observations. In this paper, only past observations are taken into account for estimating
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conditional betas and the data-driven method considered for selecting the bandwidths

simultaneously is based on the proposal of Esteban and Orbe (2010), where the sum of

squared residuals for all regressions is minimised together in order to take into account

any possible relationships between portfolios.

Finally, note that this nonparametric estimator generalises the rolling OLS estimator

since it can be derived as a particular case. If a uniform kernel that weights past

observations equally is considered and hi = r/T is imposed instead of the smoothness

degree being selected via a data-driven method, then the estimations obtained by the two

estimators match.

2.2. The time-varying beta estimator based on multivariate

GARCH models

The literature on financial econometric volatility has provided evidence of fluctuations

and high persistence in conditional variance of asset returns and conditional covari-

ance with the market return. Since market betas are ratios of estimated conditional

covariances and variances, β̂it = ĉovt(Ri,Rm)/v̂art(Rm), if these second moments are

adequately estimated by an MGARCH, then betas are also expected to be accurate esti-

mators.

The estimation procedure for MGARCH models involves maximising the following

log-likelihood function for each portfolio i:

lnL(θi) =−
1

2

T

∑
t=1

ln|Hit |−
1

2

T

∑
t=1

y′itH
−1
it yit ,

where θi is the vector of parameters to be estimated and yit = (Rit Rmt)
′ is the vector of

dependent variables in the mean equation, expressed as yit = δi+ǫit . δi = (δi1 δi2)
′ is a

bivariate vector of constants and ǫit is a bivariate vector given by ǫit = µit H
1/2
it , where

µit is a bidimensional i.i.d. normally distributed process with mean zero and identity

covariance matrix. The specification of the conditional covariance matrix (Hit) depends

on the MGARCH structure considered.

This analysis considers two different MGARCH structures widely used in financial

literature: BEKK and DCC. The former is the bivariate BEKK (1,1,1) due to Engle

and Kroner (1995), which has the advantage that the positive-definite constraint of the

conditional covariance matrix is guaranteed by construction. This matrix takes the form:

Hit = C′
iCi +A′

iǫit−1 ǫ
′
it−1Ai +B′

iHit−1Bi, (4)

where Ci is a (2 × 2) lower triangular coefficient matrix and Ai and Bi are (2 × 2)

coefficient matrices. The latter, DCC, is the bivariate dynamic conditional correlation
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specification proposed by Engle (2002), where the conditional covariance matrix is

decomposed into time-varying correlations and conditional standard deviations, ie.:

Hit = DitRitDit ,

where Dit is a (2× 2) diagonal matrix containing the conditional standard deviation of

each process ǫit , obtained from univariate GARCH(1,1) models, σ2
it = αi0 +αi1ǫ

2
it−1 +

αi2σ
2
it−1, and the conditional correlation matrix can be written as:

Rit = diag(q
−1/2

i11,t q
−1/2

i22,t )Qit diag(q
−1/2

i11,t q
−1/2

i22,t )

The (2×2) matrix Qit = (qi jk,t) is given by:

Qit = Si(1−φi1 −φi2)+φi1(µit−1µ
′
it−1)+φi2Qit−1,

where Si is the unconditional correlation matrix of µit .

The empirical evidence that negative shocks have a larger effect on the volatility of

returns than positive shocks is also taken into account in this paper by the estimation

of the asymmetric versions of the BEKK and DCC models, denoted by BEKK-A and

DCC-A, respectively. In the case of the BEKK-A, the conditional covariance matrix is

that of the BEKK model, equation (4), with the following term added:

E′
iνit−1ν

′
it−1Ei,

where νit−1 = ǫit−1⊙Iǫ−1, ⊙ denotes the Hadamard product, Ei is a (2× 2) coefficient

matrix, and Iǫ−1 is an indicator function which takes a value of one for negative

residuals, ǫt−1, and zero otherwise. In the case of the DCC-A model, the term eiǫ
2
it−1It−1,

with ei being a coefficient, is added to each of the univariate GARCH(1,1) models that

govern the variance of ǫit .

Once the conditional covariance matrix is estimated, the time-varying GARCH based

beta for portfolio i is calculated as β̂
l

it = Ĥ
l

i12t/Ĥ
l

i22t , where Ĥ
l

i12t is the estimated

conditional covariance between the ith portfolio returns and the market returns and Ĥ
l

i22t

is the estimated conditional variance of the market return for l = BEKK, DCC, BEKK-A,

DCC-A conditional covariance matrix structures.

2.3. The Kalman filter time-varying beta estimator

The state-space representation of the market model as in equation (2) enables time-

varying coefficients to be estimated through the Kalman filter. The measurement equa-

tion is the market model and the transition equations that complete the state-space repre-
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sentation determine the changes in the coefficients over time. Therefore, some assump-

tions about the stochastic behaviour of the conditional betas are needed. Two of the

most widely used characterisations of the dynamics of betas are used: the random walk

(KF-RW) and the random coefficient (KF-RC).

Under the random walk assumption, betas vary smoothly so their current value

is determined by their own previous value plus an error term: αit = αit−1 +η1it and

βit = βit−1+η2it . Large variances in the error terms indicate that there is no persistence,

so the current beta may be completely different from the previous one. As the variance

of the error term of the transition equations decreases less variability is allowed and the

betas become more stable. When the variances tend to zero constant betas are obtained.

In the random coefficient model, betas are assumed to vary randomly around a fixed

value with some variance: αit = αi +η1it and βit = βi +η2it . The smaller the variance

in the error terms of the transition equations, the lower the variations in the betas are,

and when the variances tend to zero constant betas are also obtained. As the variances

increase more jumps are permitted. In contrast to the random walk, level shifts are not

allowed.

The Kalman filter estimation method requires a distribution to be assumed for all

stochastic terms in the measurement and transition equations. All errors (uit ,η1it ,η2it)

involved in the estimation process are assumed to be normally distributed with zero

mean, to have constant variance and to be uncorrelated from one another. In order to

overcome the practical issues of selecting initial parameters, the OLS estimate for each

portfolio using the whole sample is chosen for the initial value of the coefficients. More-

over, large enough variances in the error terms in the transition equations are allowed.

3. Data

This analysis uses daily logarithms of returns on 42 stocks traded on the Mexican Stock

Exchange between January 2, 2003 and December 31, 2009. The data series have been

computed from close daily prices taking into account dividends and splits. The sample

is selected on the basis of representative criteria in terms of both market capitalisation

and trading volume. The sample basically coincides with the 35 firms included in the

reference index, “Índice de Precios y Cotizaciones” (IPC, hereafter). As the composition

of this market index is revised annually, this gives a total of 42 firms in the sample period.

The proxy for the risk-free asset is the 28-day maturity Treasury Certificate (TC) and

data for this proxy are collected from the Banco de Mexico.

To show the representativeness of the selected sample, the table in the Appendix pro-

vides the names of the firms selected, their industrial classifications and the percentage

of the total trading volume in pesos on the Mexican Stock Exchange at the end of 2009

accounted for by each stock. At that time the market comprised stocks issued by 85

firms, five of which were non domestic companies. Although the sample only contains

half of the firms extant, it accounts for 95% of the market in terms of trading volume in
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pesos in 2009, as can be seen by adding the weights in the last column of the table in the

Appendix.2 Moreover, the firms selected represent all the different industrial categories.

The individual stocks are sorted and grouped into portfolios. Since the aim of this

work is to analyse the appropriateness of alternative beta estimators, it is important

that the portfolios in the final sample produce different beta patterns. In that sense,

individual betas could be used for sorting and locating stocks in portfolios. However, this

would imply, on the one hand, selecting a beta estimation methodology first to analyse

the appropriateness of each estimator. On the other hand, in subsequent sections asset

pricing tests are used for comparing beta estimators and the results would be subject to

the concerns raised by Lewellen, Nagel and Shanken (2010). This is why stocks have

been sorted by individual money trading volume. This sorting produces sufficiently

different portfolio betas in terms of both level and volatility. The composition of the

portfolios is updated monthly by using the volume in pesos of the total trades for each

stock during the month and the return of the portfolio is computed daily as the equally

weighted average of the returns on stocks in the portfolio. Thus, Portfolio 1 contains the

least liquid stocks while the most frequently traded stocks are in Portfolio 6.3

Table 1 reports the summary statistics for the returns on the six portfolios, on the

market index and on the risk-free asset covering the whole sample period. The mean

and the standard deviation are expressed on an annual basis. The beta estimator for each

portfolio and its standard error come from the OLS estimation of the market model using

the full sample period. Finally, the last row reports the average in time and across stocks

within each portfolio of the monthly trading volume in millions of pesos. As can be

seen, major differences in trading volume are observed; Portfolio 6 concentrates a large

part of the market trading and its stocks have a trading volume 70 times greater than

those of Portfolio 1. These liquidity differences do not imply differences in portfolio

return volatilities, since standard deviation is similar for all six portfolios, but curiously

they do produce increasing mean returns ranging from 14% for Portfolio 1 to 29%

for Portfolio 6. Thus, this market seems to not show an illiquidity premium. More

importantly, betas are monotonously increasing from Portfolio 1 to Portfolio 6 and

also have different levels of standard errors. Therefore, the portfolio formation criterion

produces the desirable dispersion in portfolio betas. The distribution of the returns is

negatively skewed for the risk-free asset and all portfolios except the fifth and the market

index, for which the returns’ distributions are symmetric at the 5% significance level.

Regarding the kurtosis coefficient, there is a significant positive excess of kurtosis for

all cases except for the risk-free asset, for which the coefficient is negative.

2. The same calculation using trading volumes for other years in the sample period gives similar percentages of
representativeness.

3. The classification has also been drawn up using trading volume in terms of number of shares and the characteristics
of the resulting portfolios are very similar.
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Table 1: Summary Statistics of Returns.

Port. 1 Port. 2 Port. 3 Port. 4 Port. 5 Port. 6 IPC TC

Mean 0.1401 0.2062 0.3263 0.2053 0.2404 0.2914 0.2367 0.0498

Standard deviation 0.2634 0.2182 0.2370 0.2662 0.2579 0.2719 0.2310 0.0006

Skewness −0.5419 −0.5357 −0.1317 −1.4389 −0.0451 −0.1264 0.1024 −0.2892

Excess Kurtosis 5.2145 3.6191 7.5339 29.5636 5.6640 5.0603 5.3426 −0.4961

Beta 0.6523 0.6949 0.7958 0.9027 0.9667 1.1059

Standard error 0.0223 0.0152 0.0154 0.0171 0.0133 0.0096

Volume (millions) 119.87 298.96 497.89 817.24 1682.89 8280.50

4. Conditional beta estimates

In this section descriptive statistics regarding the nine time series beta estimates ob-

tained by the three methodologies considered are presented and compared. Rolling win-

dow OLS is obtained with subsamples of 120 previous observations for all portfolios

and denoted by ROLL. The nonparametric estimator uses two alternative kernels: the

uniform (NP-U) and the Gaussian (NP-G). The selected bandwidth is 0.1279 for Port-

folios 1, 2, 3 and 6 and 0.0896 for Portfolios 4 and 5 when the uniform kernel is used,

while for the Gaussian kernel the selected bandwidth is 0.0591 for all portfolios except

the fifth, for which is 0.0398. Therefore, although bandwidths are allowed to vary with

portfolios, the data-driven values selected indicate that betas have the same smoothness

degree for most portfolios and hence the number of relevant past observations is the

same. The alternative GARCH specifications produce time series of beta estimates that

are denoted as BEKK and DCC for the symmetric versions of the BEKK and DCC mod-

els, respectively, and BEKK-A and DCC-A for the corresponding asymmetric versions.

This estimation method does not weight the observations according to their temporal

neighbourhood but according to the conditional heteroscedasticity structure. Finally, the

Kalman filter method is applied with the assumption that the betas follow two alter-

native stochastic processes: random walk (KF-RW) and random coefficient (KF-RC).

In the GARCH and Kalman filter context the total sample information is used, so that

series of 1764 daily betas are produced. However, in order to provide a homogeneous,

comparable context, the sample of beta estimates is restricted to the period between 17th

October, 2003 and 31st December, 2009, with a total of 1564 daily beta estimates for

each estimator.

Table 2 presents the mean and the standard deviation of the time series of estimated

betas for each portfolio and for all the options considered. The general conclusion

is that all estimation methods produce conditional beta series that have very similar

mean values, smaller than the point beta estimate from the full sample (see Table 1).

If there is any point worth commenting on, it is that KF-RC produces slightly higher

mean betas for four out of the six portfolios. Differences between estimates are in
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standard deviations. The least volatile estimates are NP-U (for three portfolios) and KF-

RC (for two portfolios, including the portfolio 1) while the most volatile estimates are

KF-RW (for three portfolios) and BEKK (for two portfolios). The major difference in

the volatility pattern of the two Kalman filter beta estimates is therefore noteworthy.

Some differences are also found between the statistics of the symmetric and asymmetric

GARCH estimates. For example, BEKK-A and DCC-A estimates have slightly higher

means than the corresponding symmetric versions and BEKK-A estimates are less

volatile than BEKK estimates while DCC-A estimates are more volatile than DCC ones.

The results in Table 2 are confirmed in Figure 1, which shows the time series beta

estimates for the two extreme portfolios. Subfigures (a.1) and (a.2) compare ROLL and

the two NP estimates, Subfigures (b.1) and (b.2) compare GARCH based estimates,

and Subfigures (c.1) and (c.2) compare the beta estimates based on the Kalman filter

methodology. All betas move around the same long term mean, the NP methods produce

the smoothest betas and changes in the short term are much more pronounced in

estimates from GARCH structures and from the Kalman filter method. Subfigures (c.1)

and (c.2) show the high short term fluctuation of the estimate from the Kalman filter with

random coefficient contrasting with the random walk assumption. However, the rank of

this short term dispersion is lower for KF-RC than for KF-RW or for GARCH-based

estimates, as the standard deviations in Table 2 indicate. In addition, independently

of the estimation methodology, mean betas increase and standard deviations of betas

decrease, almost monotonously, from the portfolio containing the least liquid stocks to

the portfolio containing the most liquid stocks. Since the most liquid stocks have the

highest correlation with the market index, a beta closer to one with lower variability is

expected.

Table 2: Summary Statistics of Beta Estimates.

Portfolio Statistic ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

1 Mean 0.6431 0.6442 0.6436 0.6321 0.6386 0.6389 0.6479 0.6403 0.6486

Std. Dv. 0.2154 0.1573 0.1733 0.2910 0.2275 0.2316 0.2453 0.2615 0.1386

2 Mean 0.6979 0.6872 0.6915 0.7115 0.7332 0.7170 0.7389 0.7113 0.7095

Std. Dv. 0.1379 0.0929 0.1053 0.1566 0.1340 0.1151 0.1399 0.1716 0.0983

3 Mean 0.7543 0.7591 0.7594 0.7492 0.7837 0.7597 0.7909 0.7626 0.7792

Std. Dv. 0.1179 0.0923 0.1017 0.1366 0.1207 0.1119 0.1272 0.1549 0.0975

4 Mean 0.8273 0.8288 0.8288 0.8058 0.8489 0.8181 0.8581 0.8229 0.8635

Std. Dv. 0.1518 0.1477 0.1386 0.1643 0.1555 0.1064 0.1634 0.1711 0.1239

5 Mean 0.9180 0.9195 0.9195 0.9108 0.9299 0.9085 0.9285 0.9184 0.9544

Std. Dv. 0.1125 0.1073 0.1130 0.1438 0.1233 0.1026 0.1200 0.1361 0.0850

6 Mean 1.0742 1.0752 1.0753 1.0722 1.0749 1.0779 1.0795 1.0720 1.1002

Std. Dv. 0.0671 0.0582 0.0602 0.0688 0.0804 0.0700 0.0882 0.0865 0.0625
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Figure 1: Beta Estimates from Alternative Methodologies.

A more formal comparison between the different beta estimates is carried out using

the Kruskal-Wallis test. This is a non-parametric test based on ranked data that returns

the p-value for the null hypothesis that two or more samples are drawn from the

same population. For each portfolio, the Kruskall-Wallis test is applied to compare the

different estimates all together on the one hand, and the estimates in each group on the

other hand. The results are consistent for all six portfolios and indicate that the null is

rejected when the nine estimates are compared simultaneously. The null is also rejected

when the four GARCH based estimates are compared and when the two Kalman filter

estimates are compared separately. Only for the group of least-squares-based estimates

can the null not be rejected.4

In order to gain insight into the similarities of different time-varying beta estimates

the correlations between pairs of conditional beta estimates are computed. Table 3 re-

ports the correlations for each portfolio.5 The results indicate that the pattern is very

similar for beta estimates based on minimising some kind of least squares on the one

hand, and for beta estimates from GARCH specifications on the other. However, the

correlation between any of the estimated betas from each of these groups is much

smaller. The different structures assumed for the beta dynamics in the Kalman filter

4. Results are available from the authors upon request.

5. Port.i/Port. j indicates that correlations for portfolio j are in the upper triangular panel while those for portfolio i

are in the lower triangular panel.
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method produce a lower correlation between the estimates. Moreover, the correlation

between KF-RW beta estimates and those based on minimising least squares or GARCH

structures are high, while the lowest correlations are those between KF-RC estimates

and any other. This finding shows that the beta estimation method selected affects the

resulting estimates.6

Table 3: Correlations of Alternative Beta Estimates.

ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

Port. 2/Port. 1

ROLL 0.7980 0.9628 0.4756 0.6081 0.4256 0.5783 0.7770 0.0712

NP-U 0.8213 0.8889 0.3434 0.4207 0.3194 0.4009 0.5228 0.0373

NP-G 0.9581 0.9130 0.5214 0.6395 0.4714 0.6098 0.7867 0.0694

BEKK 0.3530 0.2060 0.3670 0.9376 0.9186 0.9146 0.8242 0.1447

DCC 0.2889 0.1999 0.3073 0.6332 0.8476 0.9742 0.9118 0.1379

BEKK-A 0.3367 0.1932 0.3461 0.7234 0.8010 0.8580 0.7270 0.1568

DCC-A 0.4624 0.3214 0.4950 0.7171 0.8235 0.9069 0.8847 0.1341

KF-RW 0.7370 0.5139 0.7460 0.6349 0.4736 0.6158 0.7302 0.2548

KF-RC 0.0862 0.0345 0.0813 0.0950 0.0883 0.1223 0.1214 0.2773

Port. 4/Port. 3

ROLL 0.8323 0.9497 0.5399 0.5816 0.4781 0.5952 0.7330 0.0886

NP-U 0.9720 0.9279 0.4262 0.5287 0.4126 0.5713 0.6181 0.0760

NP-G 0.9686 0.9783 0.5716 0.6487 0.5174 0.6769 0.7781 0.1001

BEKK 0.5317 0.5251 0.5443 0.8092 0.9155 0.8032 0.8777 0.1427

DCC 0.5057 0.4960 0.5221 0.7944 0.7481 0.9119 0.8742 0.1244

BEKK-A 0.5329 0.5202 0.5444 0.8181 0.6872 0.7870 0.7905 0.1576

DCC-A 0.4746 0.4756 0.4981 0.7481 0.9626 0.6920 0.8397 0.1372

KF-RW 0.8193 0.7959 0.8279 0.7376 0.7652 0.6704 0.7181 0.2998

KF-RC 0.1254 0.1293 0.1265 0.1871 0.2005 0.1375 0.1858 0.3030

Port. 6/Port. 5

ROLL 0.9593 0.9481 0.3763 0.5037 0.1710 0.4689 0.6926 0.1094

NP-U 0.8479 0.9220 0.3526 0.4789 0.1486 0.4551 0.6634 0.1075

NP-G 0.9549 0.9481 0.4938 0.6416 0.2481 0.6130 0.8372 0.1196

BEKK 0.6086 0.5497 0.6526 0.9068 0.7574 0.8513 0.7485 0.1487

DCC 0.6181 0.5172 0.6485 0.9583 0.6078 0.9404 0.8867 0.1463

BEKK-A 0.5880 0.5646 0.6370 0.7525 0.7144 0.6077 0.4579 0.1575

DCC-A 0.5537 0.4307 0.5736 0.8740 0.9117 0.8211 0.8480 0.1523

KF-RW 0.7236 0.5766 0.7317 0.8807 0.9212 0.7320 0.8655 0.2908

KF-RC 0.1058 0.0942 0.1091 0.1352 0.1218 0.1421 0.1368 0.3031

6. Similar results are obtained in Faff, Hillier and Hillier (2000) when comparing Kalman filter and GARCH-based
beta estimators.
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Figure 2: Differences between Alternative Beta Estimates for Portfolios 1, 3 and 6.

Figure 2 illustrates the high or low correlation between different estimates by

showing the series of the differences between alternative pairs of beta estimates for

Portfolios 1, 3 and 6.7 As mentioned above, the volatility of beta estimates decreases

and the mean increases from Portfolios 1 to 6 for all the estimation methodologies,

so the largest differences are found between beta estimates in Portfolio 1. The most

similar patterns correspond to the rolling and nonparametric estimates (Subfigure (a))

on the one hand, and to the BEKK and DCC-A (Subfigure (d)) on the other. However,

major differences arise when beta estimates are obtained using methodologies based

on different assumptions. For instance, Subfigure (f) shows that the largest difference is

found when BEKK and KF-RC estimates are compared for Portfolio 1. These results are

consistent with the correlation coefficients shown in Table 3; the higher the correlation

between two beta estimate series the smaller the difference between them.

5. Beta estimator comparison

In this section the accuracy of the different estimators is compared in terms of the utility

of time-varying beta estimates for two important financial applications: asset pricing and

portfolio management.

7. The differences have been computed and plotted for all pairs of estimates and for all six portfolios. In order to save
space, we only provide the most noteworthy cases.
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5.1. The asset pricing perspective

This subsection analyses how systematic risk may be assessed more accurately through

the use of one beta estimation methodology or another. For this purpose the simplest

asset pricing framework is considered: the CAPM. It must be pointed out that this

exercise does not set out to test the CAPM and that the analysis presented here could

easily be extended to a multi-factor asset pricing model. However, this model offers

a simple way of looking at the expected positive relationship between returns and

systematic risk that any underlying investor’s preferences would imply. In that sense,

a beta estimate is more accurate if it is able to improve this relationship.

Next, two different settings for the comparison are considered. The first is based on

time series analysis and the second on cross-section analysis.

5.1.1. Time series analysis

The first comparison between beta estimates relies on the appropriateness of the factor

model representation. That is, for each portfolio the different beta estimates are com-

pared in terms of fit for the market model. Since time-varying coefficients are estimated,

R-squared statistics are not necessarily bounded and they cannot be comparable. Instead,

unconditional variance ratios are studied as in Harvey, Solnik and Zhou (2002), among

others. Specifically, the proportion of the unconditional variance of returns fitted by the

market model, V R1 = var(R̂i)/var(Ri), is used as a measure of goodness of fit, and

the proportion of the unconditional variance of returns that the model fails to explain,

V R2 = var(ûi)/var(Ri), as a measure of the estimation error. It must be pointed out that

computing R̂it and ûit requires estimates for parameter αit and GARCH models do not

provide them. In these cases, an estimation of αit is obtained from the average of the

market model where the time variation comes from each daily beta estimate:

α̂l
it = R̄i− β̂

l
itR̄m, i = 1, . . . ,N, t = 1, . . . ,T, l = BEKK, DCC, BEKK-A, DCC-A,

where R̄i and R̄m are the mean returns on portfolio i and on the market portfolio,

respectively.

Table 4 shows the values of the V R1 and V R2 criteria for each portfolio and each

estimator. The results for the two measures are very similar when the ROLL and NP

estimators are compared, since they are both based on the use of rolling least squares.

In general, ROLL estimates show a larger fit (larger V R1) but also a larger estimation

error (larger V R2). This could be due to the bandwidth sizes selected. Since the numbers

of relevant past observations selected by the data-driven method for the nonparametric

estimator are smaller than for the rolling OLS, the smoothness degree imposed is lower

and in consequence the estimated betas have a smaller bias but a larger variance.

However, all least squares-based methods produce mostly lower values for V R1 and

similar or higher values for V R2 than the rest of estimates. In general terms, according
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to the measure of variance explained, the market model is better adjusted when beta

estimates come from GARCH structures (especially the asymmetric versions) and only

slightly lower values are obtained when using the Kalman filter method with the random

coefficient assumption. Moreover, the estimate that produces the lowest adjustment

errors is clearly the Kalman filter with random coefficient for all portfolios. Therefore,

it seems that the high daily fluctuation of the beta series from this estimation method

benefits the time series adjustment of the market model.

Table 4: Model Fit Criteria.

Portfolio Criteria ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

1 VR1 0.3531 0.3207 0.3360 0.4107 0.3982 0.4208 0.4165 0.3900 0.4113

VR2 0.6492 0.6542 0.6465 0.6380 0.6368 0.6310 0.6374 0.5456 0.4462

2 VR1 0.5616 0.5110 0.5329 0.6160 0.5832 0.6184 0.6166 0.5696 0.6068

VR2 0.4464 0.4498 0.4437 0.4630 0.4592 0.4502 0.4539 0.3657 0.2923

3 VR1 0.6085 0.5730 0.5985 0.6370 0.6413 0.6332 0.6522 0.6392 0.6584

VR2 0.3848 0.3883 0.3828 0.3725 0.3761 0.3682 0.3739 0.3163 0.2602

4 VR1 0.6383 0.6349 0.6238 0.6651 0.7241 0.6093 0.7293 0.6471 0.6592

VR2 0.3758 0.3750 0.3740 0.3552 0.3689 0.3678 0.3726 0.3103 0.2334

5 VR1 0.7817 0.7734 0.7827 0.8059 0.7966 0.7634 0.7977 0.7734 0.7796

VR2 0.2456 0.2451 0.2441 0.2401 0.2391 0.2366 0.2390 0.2060 0.1713

6 VR1 0.8850 0.8729 0.8836 0.8899 0.8947 0.8884 0.9038 0.8967 0.8995

VR2 0.1109 0.1101 0.1103 0.1096 0.1111 0.1077 0.1101 0.0939 0.0739

The second comparison within this time-series framework employs Jensen’s alpha

as a measure of the error adjustment of the model: the difference between the observed

return and the estimated return. Assuming the CAPM, the Jensen’s alpha associated with

each beta estimator is computed for each portfolio and period as:

α̂J
it = (Rit −R f t)− β̂it (Rmt −R f t) , i = 1, . . . ,N, t = 1, . . . ,T,

where R f t represents the risk-free rate.

The quadratic sum of these alphas is calculated as a measure of the model misspec-

ification, which allows a comparison to be made between different estimation methods.

A large value of the quadratic sum of alphas indicates a poor specification of the model

since the estimated returns differ greatly from the observed returns. Table 5 reports this

measure. The bottom row shows the total sum of alphas for all portfolios. As expected,

though with the exception of Portfolio 4, the quadratic sum of alphas decreases from

Portfolio 1 to Portfolio 6 whatever the method used in the estimation of betas. Compar-

ing the different estimates, the misspecification is similar for estimates based on least

squares and on GARCH assumptions. The lowest values are obtained for Kalman fil-
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ter methods and, specifically, for the case of random coefficient. The quadratic sum

of alphas is considerably lower for KF-RC than for the other estimates and for all six

portfolios. Consequently, the overall misspecification is also lower for this method.

Table 5: Quadratic Sum of Jensen’s Alphas.

Portfolio ROLL NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

1 0.2787 0.2801 0.2777 0.2740 0.2734 0.2707 0.2736 0.2478 0.1936

2 0.1381 0.1391 0.1375 0.1442 0.1428 0.1399 0.1410 0.1201 0.0920

3 0.1406 0.1415 0.1400 0.1370 0.1382 0.1354 0.1373 0.1229 0.0970

4 0.1775 0.1771 0.1774 0.1696 0.1763 0.1756 0.1779 0.1557 0.1124

5 0.1074 0.1074 0.1068 0.1063 0.1058 0.1047 0.1057 0.0957 0.0765

6 0.0542 0.0541 0.0540 0.0542 0.0549 0.0532 0.0544 0.0485 0.0369

Sum 0.8964 0.8993 0.8934 0.8854 0.8913 0.8795 0.8899 0.7907 0.6084

In order to learn whether the differences observed in Table 5 are relevant, a pairwise

comparison of Jensen’s alphas, in absolute values, associated with two beta estimators

is conducted using the Wilcoxon signed rank test. Table 6 reports the median difference

between the two series of alphas expressed on an annual basis. Each panel refers to

a different portfolio and reports the median difference between the absolute value of

alphas from the beta estimate indicated in the first column and the absolute value of

alphas from the beta estimate indicated in the first row. For example, in the comparison

of ROLL and NP-U for Portfolio 1, −0.0032 indicates that the pricing error is 0.32%

lower when the ROLL beta estimate is used. Asterisks indicate that the null that this

median difference is zero is rejected. Again, consistent with the evidence in Table 5, the

results indicate that lower Jensen’s alphas are obtained when betas are estimated by

the Kalman filter for all six portfolios. And these time series errors are still lower when

the random coefficient structure is assumed. Finally, although not for all the portfolios,

some degree of relevance of the asymmetric BEKK estimator is shown when it is

compared to the OLS or the non-parametric beta estimators.

Therefore, Tables 4, 5 and 6 provide a consistent conclusion: the lowest adjustment

errors for both the market model and the CAPM are obtained when betas are estimated

by the Kalman filter and a random coefficient model is assumed. It seems that the

variability due to the random coefficient together with the dynamics incorporated into

the estimation method are able to produce accurate beta estimates from the time series

perspective.

5.1.2. Cross-sectional analysis

In this subsection the estimators are compared in terms of the market risk premium

implied by the different estimated betas. Under rational expectations there should be a

positive relationship between expected returns and systematic risk. For this purpose, the
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Table 6: Comparison of Jensen’s Alphas in Absolute Values. Median Test.

Port. 1 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL −0.0032 −0.0001 0.0075 0.0115∗ 0.0114∗ 0.0087∗ 0.0258∗ 0.0813∗

NP-U 0.0046∗ 0.0075∗ 0.0113∗ 0.0163∗ 0.0066∗ 0.0270∗ 0.0899∗

NP-G 0.0045 0.0072∗ 0.0106 0.0054 0.0220∗ 0.0799∗

BEKK 0.0033∗ 0.0015 −0.0006 0.0181∗ 0.0634∗

DCC −0.0021 −0.0022∗ 0.0131∗ 0.0613∗

BEKK-A 0.0010 0.0146∗ 0.0623∗

DCC-A 0.0185∗ 0.0561∗

KF-RW 0.0439∗

Port. 2 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL −0.0013 0.0007 0.0055 0.0032 0.0076 0.0040 0.0202∗ 0.0578∗

NP-U 0.0023∗ 0.0074 0.0031 0.0057∗ 0.0014 0.0207∗ 0.0623∗

NP-G 0.0048 0.0037 0.0048 0.0024 0.0167∗ 0.0580∗

BEKK −0.0020 0.0015 −0.0036 0.0118∗ 0.0524∗

DCC 0.0029 −0.0009 0.0173∗ 0.0520∗

BEKK-A −0.0045 0.0113∗ 0.0522∗

DCC-A 0.0170∗ 0.0467∗

KF-RW 0.0397∗

Port. 3 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0030 0.0014∗ 0.0042∗ 0.0020 0.0055∗ 0.0025 0.0173∗ 0.0683∗

NP-U 0.0002 0.0036 0.0022 0.0055∗ 0.0008 0.0180∗ 0.0642∗

NP-G 0.0021 0.0007 0.0049∗ −0.0013 0.0157∗ 0.0598∗

BEKK 0.0005 0.0007 −0.0019 0.0121∗ 0.0541∗

DCC 0.0003 0.0000 0.0141∗ 0.0534∗

BEKK-A −0.0026 0.0077∗ 0.0627∗

DCC-A 0.0188∗ 0.0544∗

KF-RW 0.0408∗

Port. 4 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0009∗ 0.0012∗ −0.0009 −0.0016 0.0017 0.0005 0.0155∗ 0.0546∗

NP-U 0.0005 −0.0005 0.0008 0.0017 0.0007 0.0139∗ 0.0482∗

NP-G −0.0006 −0.0031 0.0011 0.0009 0.0135∗ 0.0480∗

BEKK 0.0021 0.0014 0.0008 0.0215∗ 0.0503∗

DCC 0.0006 0.0004 0.0197∗ 0.0490∗

BEKK-A −0.0022 0.0096∗ 0.0543∗

DCC-A 0.0183∗ 0.0421∗

KF-RW 0.0306∗
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Port. 5 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0003 0.0012∗ 0.0030 0.0074 0.0083∗ 0.0037 0.0179∗ 0.0591∗

NP-U 0.0002 0.0000 0.0045 0.0085∗ 0.0032 0.0165∗ 0.0574∗

NP-G 0.0000 0.0049 0.0045∗ 0.0035 0.0172∗ 0.0571∗

BEKK 0.0011 0.0031 0.0000 0.0144∗ 0.0521∗

DCC 0.0040 −0.0001 0.0132∗ 0.0524∗

BEKK-A −0.0030 0.0060∗ 0.0575∗

DCC-A 0.0101∗ 0.0534∗

KF-RW 0.0404∗

Port. 6 NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 0.0006 0.0000 −0.0037 −0.0026∗ −0.0009 −0.0031 0.0038∗ 0.0359∗

NP-U 0.0002 −0.0014 −0.0025 0.0006 −0.0010 0.0036∗ 0.0297∗

NP-G −0.0018 −0.0023∗ −0.0008 −0.0018 0.0037∗ 0.0331∗

BEKK −0.0019∗ 0.0002 −0.0005 0.0059∗ 0.0339∗

DCC 0.0021∗ 0.0005 0.0093∗ 0.0346∗

BEKK-A −0.0011∗ 0.0036∗ 0.0312∗

DCC-A 0.0086∗ 0.0318∗

KF-RW 0.0264∗

simple CAPM framework is used, which assumes only one source of systematic risk:

the market beta.

Using the Fama and MacBeth (1973) methodology, the following cross-sectional

regression is estimated for each day in the sample period:

Rit −R f t = γ0t +γ1t β̂it + eit , i = 1, . . . ,N, (5)

where the beta represents one of the nine alternative estimates. A reasonable beta

estimator should produce a positive and significant market risk premium and the more

precise the above cross-sectional relationship is, the more accurate the beta estimator

is. Additionally, since excess returns are used as dependent variable, an intercept

statistically equal to zero indicates a good model fit.

The results from the Fama-MacBeth estimation of the model are presented in

Table 7. This table reports the estimates of the intercept and the market risk premium

(×102), their t-statistics for individual significance and the corresponding Shanken

(1992) adjusted t-statistics. Asterisks indicate that the risk premium is significantly

different from zero using both t-statistics at the 5% level. The left panel of the table

shows the results when daily portfolio returns and betas are used in the estimation of (5)

and one regression is run each day. The right panel provides the results when monthly

returns and the beta estimator corresponding to the last day of the previous month are
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Table 7: Cross-Sectional Risk Premium Estimation.

Daily frequency Monthly frequency

γ0 γ1 γ0 γ1

Estimate 0.0101 0.0821 0.4088 1.6655

ROLL t-stat. 0.181 1.251 0.320 1.502

Adj. t-stat. 0.181 1.250 0.311 1.459

Estimate −0.0045 0.1012 −0.2203 2.3191∗

NP-U t-stat. −0.081 1.568 −0.181 2.210

Adj. t-stat. −0.081 1.566 −0.176 2.147

Estimate −0.0054 0.1045 −0.0950 2.2120∗

NP-G t-stat. −0.098 1.601 −0.075 1.988

Adj. t-stat. −0.098 1.599 −0.073 1.930

Estimate 0.0329 0.0566 0.9704 1.1540

BEKK t-stat. 0.615 0.891 0.847 1.196

Adj. t-stat. 0.614 0.890 0.823 1.161

Estimate 0.0462 0.0436 0.4642 1.6817

DCC t-stat. 0.852 0.671 0.410 1.682

Adj. t-stat. 0.851 0.670 0.398 1.634

Estimate −0.0495 0.1498∗ 0.9704 1.1540

BEKK-A t-stat. −0.911 2.242 0.729 1.054

Adj. t-stat. −0.910 2.239 0.708 1.024

Estimate 0.0400 0.0512 1.2932 0.6088

DCC-A t-stat. 0.735 0.788 1.101 0.564

Adj. t-stat. 0.734 0.787 1.069 0.548

Estimate 0.0283 0.0736 0.4793 1.6217

KF-RW t-stat. 0.571 1.097 0.429 1.782

Adj. t-stat. 0.570 1.096 0.417 1.730

Estimate 0.0155 0.1181 −0.2193 2.3126∗

KF-RC t-stat. 0.314 1.528 −0.155 2.000

Adj. t-stat. 0.314 1.526 −0.150 1.942

used to reduce the excessive noise that daily observations could introduce into this cross-

sectional analysis. In this case, the number of regressions is 75, which is the number of

months in the period analysed.
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The intercepts are non-statistically different from zero and market risk premia are

positive for all beta estimates and for the two data frequencies. However, differences in

the value and significance of the risk premia are observed for different beta estimators.

At daily frequency, market risk premia are not significant in general. Only for the beta

estimated from the asymmetric BEKK method is there a relevant cross-sectional rela-

tionship between returns and market betas. The results for the monthly frequency are

better and more conclusive. The risk premia associated with betas from GARCH struc-

tures are similar and not significant. The cross-sectional relationship clearly improves

when non-parametric betas or Kalman filter betas are employed. The risk premium esti-

mate and the t-statistic are very similar when the two NP beta estimators or the KF-RC

one are used. In these three cases risk premia are significant at the 5% level.

Thus, the results of this analysis indicate that the estimation of the risk premium

depends on the characteristics of the beta estimator. Specifically, the three estimators

with the lowest standard deviations are the ones that produce significant risk premia

in the relationship between betas and returns at monthly frequency. On the one hand,

comparing the standard OLS estimator with the non-parametric estimates, the results

suggest that a correct size of the window and the use of weights decaying in time

matter with a view to better capturing this cross-sectional relationship. Therefore, an

optimal mechanism for choosing the bandwidth is important. On the other hand, the

high variability that the Kalman filter produces (but with lower dispersion than GARCH-

based methods) is also a good characteristic for having betas more closely related to the

cross-section of returns.

5.2. Portfolio management analysis

An important application of betas is their use in portfolio management. Since individual

betas are part of the variance of a portfolio, the power of prediction of the different beta

estimators can be studied by analysing whether the purpose indicated in the portfolio

construction criterion is achieved in the next period.

For each of the estimation methodologies considered, betas for all six portfolios are

taken in order to obtain an estimate of the next period covariance matrix, which can then

be used to obtain the composition of the overall minimum variance portfolio. Thus, the

beta estimators are compared by analysing the variance of the resulting portfolio.

Specifically, according to the market model, for a given month s the covariance

matrix of a set of N asset returns is:

Σs = σ
2
msBsB

′
s +Ds,

where σ2
ms is the variance of the market return, Bs is an N-vector of individual betas and

Ds is an N×N matrix of the idiosyncratic variance-covariances, all of them measured in

month s. The variance of the market return is estimated using daily returns within month
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s; beta estimates on the last day of month s−1 are used as predictors of elements of Bs;

and Ds is estimated as the residual covariance matrix from the market model consistent

with these beta estimates employing daily returns within month s:

D̂s =
1

Td

Û
′

sÛs,

Table 8: Out-of-Sample Comparison for the Prediction of the Global Minimum Variance Portfolio.

x/y NP-U NP-G BEKK DCC BEKK-A DCC-A KF-RW KF-RC

ROLL 48 70.7 76 77.3 70.7 82.7 96 44

−0.963 2.166∗ 13.736∗ 12.074∗ 7.343∗ 12.968∗ 21.758∗ −1.731

NP-U 73.3 82.7 90.7 73.3 88 96 49.3

2.706∗ 18.189∗ 9.889∗ 10.984∗ 12.144∗ 20.717∗ −0.409

NP-G 78.7 78.7 70.7 82.7 97.3 37.3

10.860∗ 8.420∗ 7.666∗ 10.333∗ 19.290∗ −3.976∗

BEKK 42.7 33.3 45.3 62.7 17.3

−1.384 −4.339∗ −1.467 3.160∗ −17.213∗

DCC 44 57.3 74.7 18.7

−2.808∗ 0.342 5.541∗ −15.797∗

BEKK-A 65.3 80 17.3

3.353∗ 8.141∗ −16.040∗

DCC-A 77.3 13.3

4.362∗ −16.368∗

KF-RW 6.7

−23.543∗

where Ûs is a Td ×N matrix containing the residuals ûisd = Risd − α̂is−1 − β̂is−1Rmsd for

i = 1, . . . ,N, d = 1, . . .Td , where Td is the number of days in month s and s = 1, . . . ,S

with S being the number of months in the sample.

The portfolio formation criterion consists of investing in the minimum variance

portfolio, which implies choosing the portfolio weights (ωs) that solve the following

problem:
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Min ω′
sΣsωs

s.t. ω′
s1=1

This optimisation problem is solved for each month and each beta estimate, then the

daily return of the minimum variance portfolio is computed for all the days in the month

and its variance is recorded. The most successful beta estimator should lead to portfolios

with the lowest variance.

Table 8 provides the results for the comparisons of pairs of series of the variance

of the minimum variance portfolio conducted via the Wilcoxon median test. For each

comparison x/y, the first number is the percentage of cases in which beta estimation

method x produces higher variance than beta estimation method y. Below, the median

difference (×104) is reported and an asterisk indicates that the null of equal medians is

rejected at the 5% significance level.

The results are quite conclusive: the beta estimate that produces the lowest variance

for the next period minimum variance portfolio is the Kalman filter with the random

walk assumption. This is the case in the 96/97% of the out-of-sample predictions

when it is compared to any least-squares-based estimates and in between 62% and

80% of the predictions when it is compared to GARCH-based estimates. It is also

better than the other Kalman filter estimate in 6.7% of the predictions. Moreover, the

difference between medians is larger in the cases when the KF-RW estimates is one of

the beta estimates in the pair. By contrast, the beta estimated from the Kalman filter

with the random coefficient produces the highest variance. On the other hand, GARCH

beta estimators are superior to least-squares-based estimators for the purpose of risk

hedging in portfolio decisions. Finally, when ROLL and NP estimators are compared

the differences in the resulting variance portfolio are not so big but NP-G is significantly

better than rolling OLS with both the standard selection of the window size and the

optimal window size.

6. Conclusions

This paper compares the performances of three methodologies in estimating time-varying

market betas: dynamic estimators based on least squares, time-varying estimators com-

ing from GARCH structures for the conditional variance of the errors of the market

model, and Kalman filter estimators. These three methodologies have never previously

been compared with one another homogenously.

Specifically, three estimators in the group of least squares are selected: a rolling

window OLS and two nonparametric estimators that use uniform and Gaussian kernels,

respectively. The advantage of the nonparametric estimators is that they allow the

optimal window length to be chosen. In the group of GARCH-based estimators standard

DCC and BEKK models and their corresponding asymmetric versions are consid-
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ered. In this case the potential benefits of taking into account the returns’ conditional

heteroscedasticity are examined. Finally, the Kalman filter estimator considering two

different specifications for the transition equations is included in the comparison: one

imposing a random walk process and the other assuming a random coefficient structure

for the dynamics of the beta. Therefore, nine beta estimates are obtained for each of

the six portfolios of daily returns for the Mexican stock market in the period 2003-

2009. All the descriptive analyses indicate that the time pattern of these nine estimates

are substantially different. The distribution of the estimates shows different sample

moments for different estimates, especially regarding the standard deviation, and these

differences are corroborated by an analysis of the correlations between them and by

using the Kruskal-Wallis test.

The accuracy of the estimates is compared under two frameworks: an asset pric-

ing perspective that assumes the CAPM and the mean-variance space for returns for

portfolio management purposes. In the first case beta estimates are compared using dif-

ferent measures of the time-series fit of the model and looking at the cross-sectional

relationship between mean returns and market betas. In the mean-variance context, the

out-of-sample forecasting power of different beta estimates is obtained by comparing

the results of the minimum variance portfolio.

The time-series analysis clearly concludes that the Kalman filter estimator that as-

sumes a random coefficient is the best at reducing the adjustment errors in both the

market model and the CAPM; moreover this is true for all six portfolios analysed. This

estimate has the characteristic of presenting a very high time fluctuation, as GARCH-

based estimates do, but a low standard deviation, as the smoothed nonparametric esti-

mates do. This combination seems to be the reason for the good time series adjustment

in the daily frequency sample used here.

The Kalman filter with the random coefficient estimate also produces a good fit

for the CAPM cross-sectionally. In this case, this estimate and the two nonparametric

estimates are the ones for which the relationship between betas and returns are positive

and statistically significant. The high volatility in GARCH-based beta estimates has a

negative effect on the stability of the relationship between systematic risk and mean

returns. Consequently, in estimating the price of risk, dynamic methodologies that

produce low dispersion are more appropriate for the prior estimation of systematic risk.

However, highly volatile market betas are appropriate in terms of risk diversification.

The Kalman filter with a random walk estimate and the GARCH-based beta estimates

are both better than estimates with lower volatility for estimating the composition of the

portfolio with the minimum risk.

Given that different conclusions are obtained depending on whether betas or risk

premia are estimated, one possible improvement along these lines could be to propose a

new estimator that combines the advantages of these different estimators.
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Appendix: Individual stocks data information

Ticker Firm Name Sector Trading

Volume

(Pesos %)

AMX-L América Móvil Telecomunications/Services 23.22

TELMEX-L Teléfonos de Mexico Telecomunications/Services 3.49

TELINT-L Telmex Internacional Telecomunications/Services 2.09

TELECOM-A1 Carso Global Telecom Telecomunications/Services 1.89

AXTEL-CPO Axtel Telecomunications/Services 1.84

TLEVISA-CPO Grupo Televisa Telecomunications/Radio and Television 3.33

TVAZTCA-CPO TV Azteca Telecomunications/Radio and Television 1.07

ICH-B Industrias CH Materials/Steel 0.21

SIMEC-B Grupo Simec Materials/Steel 0.17

GMEXICO-B Grupo Mexico Materials/Metals and Mining 7.65

AUTLAND-B Compañı́a minera Autland Materials/Metals and Mining 0.12

CEMEX-CPO Cemex Materials/Construction 4.63

MEXCHEM Mexichem Materials/Chemical Products 0.93

ASUR-B Grupo Aeroportuario del Sureste Industrials/Transportation 0.87

GAP-B Grupo Aeroportuario del Pacı́fico Industrials/Transportation 0.50

OMA-B Grupo Aeroportuario del Centro Norte Industrials/Transportation 0.15

GEO-B Corporación Geo Industrials/Construction 1.73

URBI Urbi Desarrollos Urbanos Industrials/Construction 1.40

HOMEX Desarrolladora Homex Industrials/Construction 1.39

ICA Empresas ICA Industrials/Construction 1.33

IDEAL-B1 Impulsora del Desarrollo y el Empleo Industrials/Construction 1.11

ARA Consorcio Ara Industrials/Construction 1.10

SARE-B Sare Holding Industrials/Construction 0.06

ALFA-A Alfa Industrials/Capital Goods 1.43

GCARSO-A1 Grupo Carso Industrials/Capital Goods 1.02

LAB-B Genomma Lab Internacional Health/Medicine Distrib. 1.50

BOLSA-A Bolsa Mexicana de Valores Financial Services/Financial Markets 0.24

GFNORTE-O Grupo Financiero Banorte Financial Services/Financial Groups 2.04

GFINBUR-O Grupo Financiero Inbursa Financial Services/Financial Groups 1.07

COMPART-O Banco Compartamos Financial Services/Commercial Banks 0.79

WALMEX-V Wal-Mart de Mexico Consumer Staples/Hypermarkets 13.22

SORIANA-B Organización Soriana Consumer Staples/Hypermarkets 1.01

COMERCI-UBC Controladora Comercial Mexicana Consumer Staples/Hypermarkets 0.07

KIMBER-A Kimberly-Clark Mexico Consumer Staples/Household Products 1.06

BIMBO-A Grupo Bimbo Consumer Staples/Food 1.00

GRUMA-B Gruma Sab de C.V. Consumer Staples/Food 0.51

FEMSA-UBD Fomento Económico Mexicano Consumer Staples/Beverages 5.82

GMODELO-C Grupo Modelo Consumer Staples/Beverages 1.70

ARCA Embotelladoras Arcas Consumer Staples/Beverages 0.54

KOF-L Coca-cola Femsa Consumer Staples/Beverages 0.07

ELEKTRA Grupo Elektra Consumer Discret./Retails 1.28

GFAMSA-A Grupo Famsa Consumer Discret./Retails 0.50
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