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1. Introduction 

Many University subjects that we teach in engineering degrees (e.g. Control Theory, 
Operations Research, Game Theory, Physics, Fluid Dynamics, Modelling and Control of 
Queuing and Production Systems, Stochastic Processes, and Network Theory) make extensive 
use of the so-called mean-field analysis. In these subjects, the mean-field analysis often 
appears as an approximation of a discrete time stochastic process where a) the inherent 
stochasticity of the original process is replaced with determinism, and b) the time discreteness 
of the original process is replaced with time continuity. Thus, the mean-field approximation is 
presented as a continuous time differential equation that can approximate the dynamics of the 
discrete time stochastic process under investigation. In this paper we present a teaching 
methodology that we have found useful for introducing students to the mean-field analysis, 
and we provide some accompanying teaching material –in the form of computer models– that 
other academics may want to use in their own lectures. Our approach is twofolde: 

 First, we provide the intuition underlying the mean-field approximation, and we discuss        
the type of models for which the approximation can be a useful tool. For this, we use a 
purpose-built computer model that allows students to grasp the reasoning behind the 
mean-field analysis. The model, which is freely available under the GNU General 
Public License, can be run as an applet at http://luis.izqui.org/models/gardendesert/ 
using any Internet browser. 

 Then, as an illustration of the possible applications of the theory, and with the aim of 
fostering students’ comprehension, we discuss specific examples of discrete stochastic 
processes that can be usefully approximated using the mean field. These examples are 
implemented as computer models with which students can play and, in this way, see for 
themselves the conditions under which the mean-field approximation works best. 

This paper focuses on discrete stochastic processes that can be easily formulated as Markov 
chains, since this is the most common case in engineering contexts. Thus, first of all, we 
include in section 2 a brief summary of some of the basic concepts of Markov chains and, in 
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particular, of the difference between transient and asymptotic dynamics in that context. Then, 
in section 3 we describe the first stage of the methodology, i.e. we explain the intuition that 
underlies the mean-field approximation and we informally discuss the conditions under which 
the mean-field approximation can be useful to understand the transient dynamics of Markov 
models.  

We consider this part of the methodology especially important since, most often, 
comprehending the intuition behind the mean-field analysis enables students to significantly 
enhance their understanding of the original stochastic processes, without getting lost in 
technical details. The second stage of the methodology is presented in the full paper, and 
includes an illustrative example of how to analyse discrete stochastic processes combining the 
theory of Markov chains with the mean-field approximation. 

2. Markov Chains. Transient and asymptotic dynamics 

Before embarking on the explanation of the mean-field analysis, some teachers may need to 
refresh their students’ memory about Markov chains. For the sake of completeness, this 
section briefly revisits the most relevant concepts for our purposes. The main objective of this 
preliminary stage of the methodology is to set the scope of applicability of the mean-field 
approximation, namely the study of the transient behaviour of systems with large transition 
matrices (or with an infinite state space). 

Markov chains are discrete stochastic processes in which, in every time-step n, a vector of 
state variables Xn can condense all the past information of the process that is relevant for its 
future. In a way, the values of such variables depict a “complete and accurate snapshot” of the 
current situation of the system. The picture is sufficient to characterise the future 
stochastically, in the sense that it contains all the necessary information to calculate the 
probability that each possible outcome will actually take place at any given time-step in the 
future. Thus, the value of the vector of state variables Xn is often called “the state of the 
system in time-step n”. The current state of the system determines the probability distribution 
over the possible states of the system for every future time-step. Slightly more formally, given 
some initial state X0 = i, we can calculate the probability distribution of the state of the system 
after n time steps: P(Xn = · | X0 = i). 

The study of Markov processes is usually divided into transient and asymptotic behaviour. 
The transient behaviour is characterised by the probability distribution of the state vector Xn in 
a given time-step n. The asymptotic behaviour is characterised by the limit of the distribution 
of Xn as n goes to infinity, when this limit exists. 

After a sufficiently long period of time, a Markov process is likely to be evolving very closely 
to what its asymptotic behaviour (stochastically) predicts; as a result, many studies of Markov 
processes focus on their asymptotic dynamics. Techniques to characterise the asymptotic 
behaviour of Markov chains can be found in introductory textbooks. However, “a sufficiently 
long period of time” may be too long, i.e. it may be unattainable in practical terms (e.g. it may 
require years of computation) or, simply, it may be significantly longer than the time scope 
we are actually interested in.  

Thus, let us now turn to the transient behaviour. Consider a Markov chain with s possible 
states. In simple words, we are after a vector a(n) = [a1

(n), … , as
(n)] containing the probability 

of finding the process in each of the s possible states in time-step n. The ith element of a(n) is 
ai

(n) = P(Xn = i), and it denotes the probability that the system is in state i at time-step n. To 
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calculate a(n) we must first introduce the transition matrix P. Let pi,j denote the probability that 
the system moves from state i to state j in one time-step: pi,j = P(Xn+1 = j | Xn = i). The 
probabilities pi,j are called transition probabilities and they are often arranged in a matrix, 
namely the transition matrix P. This matrix P characterises the stochastic process.  

If the transition matrix P of a Markov chain is known and tractable, computing the transient 
behaviour of the system is straightforward: the probability distribution of the state of the 
system in time-step n is characterised by a(n) = a(0) · Pn. (Naturally, in general the distribution 
of the state of the system in time-step n depends on the initial conditions a(0).) 

If the state transition matrix is either unknown or intractable, the situation is not so simple. In 
some cases, given some initial conditions a(0), computer simulations can approximate the 
distribution of the state of the system in time-step n, and the statistical accuracy of these 
approximations can be assessed (Izquierdo et al., 2009). Unfortunately, the nature of the 
parameter space of many models means that obtaining good approximations for their transient 
behaviour in the general case (i.e. for any parameterisation and all initial conditions) is often 
too demanding in computational terms. When this is the case, can we still say something 
about the expected behaviour of the Markov process before it gets close to its asymptotic 
behaviour? Here we explain that we sometimes can, by using the mean-field analysis.  

3. The mean-field approximation: 

We kick off our lectures on the mean-field approximation by showing our students a purpose-
built computer model. We use this simulated example to show them –in a graphical way– the 
conditions under which the mean field can be useful to understand the behaviour of a Markov 
process. The story goes as follows: Consider one agent situated at a point in a bounded 2-
dimensional space. In each time-step this agent takes one step in one of the four cardinal 
directions. The agent’s movement is stochastic and slightly biased towards the North: a 
northward step is twice more likely than a step in any of the other three cardinal directions. 
Suppose that we place several agents like this one in the middle of a small area, such as a 
garden, and several others in the middle of a very large area, such as a desert (see Fig. 1). 

If we observe the behaviour of the agents in the garden before they leave it, it will probably 
look quite random, with the agents leaving the garden through all its different sides. In 
contrast, if we observe the behaviour of the agents in the desert, they will seem quite 
determined to advance northwards, and with high probability they will all be leaving the 
desert through its northern border. When the number of steps required to cover some distance 
is very large, the randomness of the agents’ movement averages out, and the agents will seem 
to be following their expected move northwards. This is the basic idea of the mean-field 
approximation (Benveniste et al., 1990). 
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Fig. 1. The applet shows two independent areas: a small (8x8) green garden on the left, and a 
large (200x200) yellow desert on the right. For each area, an iteration of the model implies (a) 
the creation of an agent in the middle of the area, and (b) that each agent within the area 
advances one step: upwards (with probability 0.4), leftwards (with probability 0.2), 
rightwards (with probability 0.2) or downwards (with probability 0.2). Agents that reach the 
border of their corresponding area cannot return. Applet available at 
http://luis.izqui.org/models/gardendesert/  

Loosely speaking, a requisite for the mean-field approximation to be useful is that any two 
consecutive states of the process are “very close” to each other –according to some measure 
of distance in the space of states– so the process needs to take a large number of time-steps in 
order to advance a significant distance in that space. Simply put, time proximity must imply 
space proximity. Consequently, we need to work with some measure of distance between 
different states. In most engineering applications (and in the simulated example in particular) 
this does not represent a problem, as the state variables of the stochastic process –the agents’ 
position in our example– take real values within a closed and bounded subset of d-

dimensional Euclidean space dR . Thus, we assume this is the case for the rest of the 
explanation. 

Going back to our northward-biased random walker, suppose that the length of his step is γ, 

and let the 2-dimensional vector nX   be his position vector in the grid at time n. Note that the 

law of motion of an agent with step size γ is n nX Y    , where Yn is a random vector 

which may take the value [0, 1] (northwards) with probability 0.4 or the values [1, 0], [-1, 0] 

or [0, -1] with probability 0.2 each. Note also that the expected move of nX   is 

( ) ( )n nE X E Y     = γ [0, 0.2] (i.e. northwards). The mean-field approximation relates the 

actual (stochastic) move of nX   with its (deterministic) expected move, for low values of the 

step size γ. 

The question then is: under what conditions can one legitimately expect that the original 
stochastic process will tend to move roughly in the local direction of its expected 
(deterministic) move? This question is answered in the full paper, and is also illustrated with 
an example from the field of Evolutionary Game Theory. 
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