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MAXIMAL INEQUALITIES FOR CONTINUOUS MARTINGALES

AND THEIR DIFFERENTIAL SUBORDINATES

ADAM OSȨKOWSKI

(Communicated by Richard C. Bradley)

Abstract. Let X = (Xt)t≥0, Y = (Yt)t≥0 be continuous-path martingales
such that Y is differentially subordinate to X. The paper contains the proofs
of the sharp inequalities

sup
t≥0

||Yt||p ≤
√

2

p
|| sup

t≥0
|Xt| ||p, 1 ≤ p < 2

and
sup
t≥0

||Yt||p ≤ (p− 1)|| sup
t≥0

|Xt| ||p, 2 ≤ p < ∞.

1. Introduction

Suppose that (Ω,F ,P) is a complete probability space, equipped with a filtration
(Ft), a nondecreasing right-continuous family of sub-σ-fields of F . Assume that F0

contains all the events of probability 0. Let X = (Xt)t≥0 be an adapted real-valued
right-continuous semimartingale with left limits. Let Y be the Itô integral of H
with respect to X,

Yt = H0X0 +

∫
(0,t]

HsdXs, t ≥ 0,

where H is a predictable process with values in [−1, 1]. Let ||Y ||p = supt≥0 ||Yt||p
and X∗ = supt≥0 |Xt|.

In the present paper we will be interested in comparing the moments of Y and
X∗. In [4], Burkholder described a method of proving maximal inequalities for
martingales and used it to obtain the following sharp estimate.

Theorem 1.1. If X and Y are as above, then we have

(1.1) ||Y ||1 ≤ γ||X∗||1,
where γ = 2.536 . . . is the unique solution of the equation

γ − 3 = − exp
(1− γ

2

)
.

The constant is the best possible.
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Then it was shown by the author in [6] that ifX is nonnegative, then the constant
decreases to 2 + (3e)−1 = 2.1226 . . .; furthermore, the estimate remains valid if we
assume that X runs over the class of nonnegative supermartingales.

In the paper we will study the case when the integrator X is continuous. Our
contribution is to determine the best constants in the inequalities between the p-
th moments of Y and X∗, 1 ≤ p < ∞. Our approach works for a wider class
of processes: we allow the martingales to take values in a separable Hilbert space
H (which can and will be taken to be �2) and, furthermore, we show the max-
imal estimates under the assumption of differential subordination. Suppose that
(Xt) = ((X1

t , X
2
t , . . .)), Yt = ((Y 1

t , Y
2
t , . . .)) are two �2-valued martingales and let

[X,X] =
∑∞

i=1[X
i, Xi], [Y, Y ] =

∑∞
i=1[Y

i, Y i], where [Xi, Xi] and [Y i, Y i] de-
note the quadratic variance processes of the real-valued martingales Xi and Y i,
respectively (see e.g. [5] for details). Following [8], we say that Y is differentially
subordinate to X if the process [X,X] − [Y, Y ] is nondecreasing and nonnegative.
For example, as in the beginning of this section, if Y is the Itô integral of H with
respect to X, where H is predictable and taking values in [−1, 1], then Y is differ-
entially subordinate to X. This is a consequence of

[X,X]t − [Y, Y ]t =

∫ t

0

(1− |Hs|2)d[X,X]s.

Our main result can be stated as follows.

Theorem 1.2. Suppose X, Y are H-valued continuous martingales such that Y is
differentially subordinate to X. Then the inequalities

(1.2) ||Y ||p ≤
√

2

p
||X∗||p, 1 ≤ p < 2,

and

(1.3) ||Y ||p ≤ (p− 1)||X∗||p, 2 ≤ p < ∞
hold true and the constants are the best possible. They are the best possible even
when X is assumed to take values in R and Y is the Itô integral, with respect to X,
of some predictable H taking values in {−1, 1}.

Comparing (1.1) and (1.2) for p = 1, we see that for continuous-path integrators,

the constant γ decreases to
√
2.

It is worth mentioning here the following inequality, which was originally proved
in the discrete-time setting by Burkholder [1] and extended to the continuous-time
setting by Wang [8].

Theorem 1.3. Suppose X, Y are H-valued martingales such that Y is differentially
subordinate to X. Then

(1.4) ||Y ||p ≤ (p∗ − 1)||X||p, 1 < p < ∞,

where p∗ = max{p, p/(p− 1)}. The inequality is sharp, even if X, Y are assumed
to be real-valued.

We see that if p ≥ 2, then p∗ − 1 = p − 1, so (1.4) implies (1.3); it is quite
surprising that the latter estimate is still sharp. On the other hand, we see that
the constants in (1.2) and (1.4) have completely different behavior for 1 ≤ p < 2.

A few words about the organization of the paper. In the next section we modify
Burkholder’s technique so that it provides sharp constants in the continuous-path
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setting. In particular, the method transforms the problem of proving the estimate
(1.2) to the existence of a certain special function. In Section 3 we present such a
function, and in Section 5 we describe some steps which led to its discovery. Before
that, in Section 4, we show that the constants appearing in (1.2) and (1.3) are
optimal.

2. Burkholder’s method

The technique developed by Burkholder in [4] enables us to obtain sharp maximal
estimates for general martingales. In particular, these inequalities are valid when we
restrict ourselves to the class of continuous processes; however, the constants may,
but need not, remain optimal. For example, as already mentioned, the constant γ
from (1.1) decreases to

√
2 in the continuous-path case (as will be proved below).

Therefore, to keep track of the best constants, we need to refine the method so that
it exploits the continuity of the paths. The purpose of this section is to present this
modification.

Fix a Borel function V : H × H × [0,∞) → R, which is bounded on bounded
sets. Suppose we are interested in the inequality

(2.1) EV (Xt, Yt, X
∗
t ) ≤ 0

being valid for all t ≥ 0 and in the class of all pairs (X,Y ) of continuous and bounded
H-valued martingales such that Y is differentially subordinate to X. The key tool
to study this problem is the class U = U(V ), which consists of those functions
U : H×H× (0,∞) → R of class C2, which satisfy the following conditions:

(i) For any (x, y, z) ∈ H ×H× (0,∞) such that |y| ≤ |x| ≤ z we have

U(x, y, z) ≤ 0.

(ii) For any (x, y, z) ∈ H ×H× (0,∞) such that |x| ≤ z we have

U(x, y, z) ≥ V (x, y, z).

(iii) For any x �= 0,

Uz(x, y, |x|) ≤ 0.

(iv) There is a function M : H×H× (0,∞) → (0,∞), bounded on any set of the
form {(x, y, z) : |x|, |y| ≤ L, 1/L ≤ z ≤ L} for some L > 0, such that the following
holds. For any (x, y, z) ∈ H ×H× (0,∞) and h, k ∈ H, we have

(Uxx(x, y, z)h, h) + 2(Uxy(x, y, z)h, k) + (Uyy(x, y, z)k, k) ≤ M(x, y, z)(|k|2 − |h|2).
Now we turn to the main fact in this section, relating the class U(V ) to the

inequality (2.1). Recall that X1
0 denotes the first coordinate of X0.

Theorem 2.1. Suppose U ∈ U(V ) and X, Y ∈ L∞ are H-valued and continuous-
path martingales such that Y is differentially subordinate to X and P(|X1

0 | ≥ δ) = 1
for some δ > 0. Then for any t ≥ 0,

EV (Xt, Yt, X
∗
t ) ≤ 0.

Proof. Let t ≥ 0 be fixed. Observe first that V (Xt, Yt, X
∗
t ) is integrable: this is a

consequence of local boundedness of V and the conditionX, Y ∈ L∞. Furthermore,
we have that M = sups≤t ||M(Xs, Ys, X

∗
s )||∞ is finite, which follows from X∗

s ≥
|X1

0 | ≥ δ and the boundedness property of M . By (ii), it suffices to show that

(2.2) EU(Xt, Yt, X
∗
t ) ≤ 0.
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For a fixed ε > 0, there is D = D(ε) ≥ 1 such that if d ≥ D, then

(2.3) E

∑
k>d

[Xk, Xk]t = E

∑
k>d

|Xk
t |2 < ε.

For 0 ≤ s ≤ t, let

X(d)
s = (X1

s , X
2
s , . . . , X

d
s , 0, 0, . . .),

Y (d)
s = (Y 1

s , Y
2
s , . . . , Y

d
s , 0, 0, . . .)

and

Z(d)
s = (X(d)

s , Y (d)
s , X(d)∗

s ).

Since X(d), Y (d) take values in a finite-dimensional subspace of H, Ito’s formula is
applicable, which, together with (i), gives

U(Z
(d)
t ) = U(Z

(d)
0 ) + I1 + I2 + I3 ≤ I1 + I2 + I3,(2.4)

where

I1 =

∫ t

0

Ux(Z
(d)
s )dX(d)

s +

∫ t

0

Uy(Z
(d)
s )dY (d)

s ,

I2 =

∫ t

0

Uz(Z
(d)
s )dX(d)∗

s ,

I3 =

∫ t

0

Uxx(Z
(d)
s )d[X(d), X(d)]s + 2

∫ t

0

Uxy(Z
(d)
s )d[X(d), Y (d)]s

+

∫ t

0

Uyy(Z
(d)
s )d[Y (d), Y (d)]s.

The random variable I1 has zero expectation. The term I2 is nonpositive: by (iii),

we have Uz(Z
(d)∗
s ) ≤ 0 on {s : X

(d)
s = X

(d)∗
s }. However, this set is precisely the

support of dX
(d)∗
s . It suffices to deal with I3. Let 0 ≤ s0 < s1 ≤ t. For any

j ≥ 0, let (ηji )1≤i≤ij be a sequence of nondecreasing finite stopping times with

ηj0 = s0, η
j
ij

= s1 such that limj→∞ max1≤i≤ij−1 |ηji+1 − ηji | = 0. Keeping j fixed,

we apply, for each i = 0, 1, 2, . . . , ij , the property (iv) to x = X
(d)
s0 , y = Y

(d)
s0 ,

z = X
(d)∗
s0 and h = hj

i = X
(d)

ηj
i+1

− X
(d)

ηj
i

, k = kji = Y
(d)

ηj
i+1

− Y
(d)

ηj
i

. Summing the

obtained ij + 1 inequalities and letting j → ∞ yield

d∑
m=1

d∑
n=1

[
Uxmxn

(Z(d)
s0 )[(X(d))m, (X(d))n]s1s0 + 2Uxmyn

(Z(d)
s0 )[(X(d))m, (Y (d))n]s1s0

+ Uymyn
(Z(d)

s0 )[(Y (d))m, (Y (d))n]s1s0

]

≤ M
d∑

k=1

(
[(Y (d))k, (Y (d))k]s1s0 − [(X(d))k, (X(d))k]s1s0

)
,
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where we have used the notation [S, T ]s1s0 = [S, T ]s1 − [S, T ]s0 . If we approximate
I3 by discrete sums, we see that the inequality above leads to

I3 ≤ M

d∑
k=1

(
[(Y (d))k, (Y (d))k]t0 − [(X(d))k, (X(d))k]t0

)
≤ −M

∑
k>d

(
[Y k, Y k]t0 − [Xk, Xk]t0

)
,

where the last passage is due to the differential subordination.

Now take the expectation of both sides of (2.4) and use (2.3) to obtain EU(Z
(d)
t )≤

Mε. Then let d → ∞ to get EU(Xt, Yt, X
∗
t ) ≤ Mε, by Lebesgue’s dominated con-

vergence theorem. Since ε was chosen arbitrarily, (2.2) follows. �

3. The special function corresponding to (1.2)

Now we will see how the method described in the previous section can be used
to obtain (1.2). For p ∈ [1, 2), we will write β = βp =

√
2/p. Let U, V : H ×H ×

(0,∞) → R be given by

(3.1) U(x, y, z) =
p

2
βp−2(|y|2 − |x|2 − (β2 − 1)z2)zp−2

and V (x, y, z) = |y|p − βpzp.

Lemma 3.1. The function U belongs to the class U(V ).

Proof. The property (i) is evident. To prove the majorization, observe that we may
assume that z = 1, due to the homogeneity. Now, by the mean value property of
the concave function t 	→ tp/2,

U(x, y, 1) =
p

2
βp−2(|y|2 − |x|2 − (β2 − 1)) ≥ p

2
βp−2(|y|2 − β2)

=
p

2
(β2)p/2−1(|y|2 − β2) ≥ |y|p − βp = V (x, y, 1).

To check (iii), note that

Uz(x, y, |x|) =
p(p− 2)

2
βp−2|y|2|x|p−3 ≤ 0.

Finally, observe that

(Uxx(x, y, z)h, h) + 2(Uxy(x, y, z)h, k) + (Uyy(x, y, z)k, k) = pβp−2zp−2(|k|2 − |h|2)
and the function M(x, y, z) = pβp−2zp−2 has the required boundedness property.
This completes the proof. �
Proof of (1.2). We start with some standard reductions. We may assume that
||X∗||p < ∞. For a fixed n, consider the stopping time Tn = inf{t : |Xt| ≥
n or |Yt| ≥ n}. For t ≥ 0, δ > 0, consider the martingales (X

(n,δ)
t ) and (Y

(n,δ)
t ),

taking values in the Hilbert space R×H, given by

X
(n,δ)
t =

{
(δ,XTn∧t) if Tn > 0,

(δ, 0) if Tn = 0,

with a similar definition for Y
(n,δ)
t . Since U ∈ U(V ) and X(n,δ), Y (n,δ) satisfy the

conditions of Theorem 2.1, we have, for any t ≥ 0,

E|Y (n,δ)
t |p ≤ βp

E(X
(n,δ)∗
t )p ≤ βp

E(δ2 + (X∗)2)p/2.
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Now let n → ∞ and then δ → 0 to obtain ||Yt||p ≤ β||X∗||p, by Fatou’s lemma and
Lebesgue’s dominated convergence theorem. It suffices to take the supremum over
t to get the claim. �

Remark. The function U leading to the inequality (1.2) is not unique. For example,
one can try to work with the following one. First introduce the auxiliary Φ :
[β − 1,∞) → R by

(3.2) Φ(t) = e−t

[
−p

∫ t

β−1

es(s+ 1)p−1ds+ pβp−2(1− β)eβ−1

]
,

and let u : [0, 1]× [0,∞) → R be given by

(3.3) u(x, y) =

{
(y − x+ 1)p + (1− x)Φ(y − x)− βp, if y − x ≥ β − 1,
1
2pβ

p−2(y2 − x2 − β2 + 1), if y − x < β − 1.

The special function U : Rd × R
d × (0,∞) is defined by

(3.4) U(x, y, z) = (|x| ∨ z)pu

(
|x|

|x| ∨ z
,

|y|
|y| ∨ z

)
.

This function has almost all the properties (i) – (iv) listed in the previous section.
However, it is not of class C2 on the set {(x, y, z) : |y| − |x| = (β − 1)(|x| ∨ z)} and
one needs to use smoothing arguments to overcome this difficulty. We omit the
details.

4. On optimality of the constants

One could try to show the sharpness of the estimates (1.2) and (1.3) by providing
appropriate examples. However, we will proceed in a different manner and prove, in
a certain sense, the converse to Theorem 2.1: the validity of a maximal inequality
for martingales implies the existence of a certain special function. Such an approach
is not new and has been successful in a number of papers; see e.g. [3], [6] and [7].

For any (x, y) ∈ R × R, let M(x, y) denote the class of all pairs (X,Y ) of
real-valued, bounded and continuous-path martingales such that (X0, Y0) = (x, y)
almost surely and, for some predictable process H taking values in {−1, 1}, we
have Yt = y+

∫
(0,t]

HsdXs, t ≥ 0. Here the probability space and filtration may be

different for different pairs. Observe that if (X,Y ) ∈ M(x, y), then the limits X∗
∞,

Y∞ exist and are finite with probability 1, due to the boundedness and continuity
assumptions.

Let 1 ≤ p < ∞ be fixed and suppose that κ is the best constant in the inequality

(4.1) ||Y ||p ≤ κ||X∗||p,
to be valid for all (X,Y ) ∈ M(x, y) such that y = ±x. Let κ′ > κ and consider a
function W : R× R× [0,∞) → R, given by

W (x, y, z) = sup
M(x,y)

{E|Y∞|p − (κ′)pE(X∗
∞ ∨ z)p}.

Lemma 4.1. The function W has the following properties:
(i) W (x, y, z) < ∞ for any (x, y, z) ∈ R× R× [0,∞),
(ii) For any (x, y, z) ∈ R× R× [0,∞),

(4.2) W (λx,±λy, |λ|z) = |λ|pW (x, y, z) for λ �= 0.
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(iii) For any (x, y, z) ∈ R× R× [0,∞),

(4.3) W (x, y, z) ≥ |y|p − (κ′)p(|x| ∨ z)p.

(iv) For any (x, y, z) ∈ R × R × [0,∞), |x| ≤ z, ε ∈ {−1, 1}, if α1, α2 ∈ (0, 1)
and t1, t2 ∈ (−x− z,−x+ z) satisfy α1 + α2 = 1 and α1t1 + α2t2 = 0, then

W (x, y, z) ≥ α1W (x+ t1, y + εt1, z) + α2W (x+ t2, y + εt2, z).

(v) If y ∈ R, δ > 0 and a ∈ (0, 2), then

W (1, y, 1) ≥ δ

a+ δ
W (1− a, y + a, 1 + δ) +

a

a+ δ
W (1 + δ, y − δ, 1 + δ)

≥ δ

a+ δ
[W (1− a, y + a, 1) + (κ′)p(1− (1 + δ)p)]

+
a

a+ δ
(1 + δ)pW (1,

y − δ

1 + δ
, 1).

(4.4)

Proof. (i) Let (x, y, z) ∈ R×R×[0,∞) and (X,Y ) ∈ M(x, y). Since (Y −y+x,X) ∈
M(x, x), we have, by the triangle inequality and (4.1),

||Y∞||p ≤ ||(Y − y + x)∞||p + |y − x| ≤ κ||X∗
∞||p + |y − x|

≤ ((κ′)p||X∗
∞ ∨ z||pp + C · |y − x|p)1/p,

where C depends only on κ, κ′ and p. Thus W (x, y, z) ≤ C · |y − x|p.
(ii) This is immediate: (X,Y )∈M(x, y) if and only if (λX,±λY ) ∈ M(λx,±λy).
(iii) This follows from the fact that the pair (x, y) of constant martingales belongs

to M(x, y).
(iv) We will use the continuous analogue of the so-called “splicing” argument; see

e.g. [1] for details. Let (Xi, Y i) ∈ M(x+ti, y+εti) and let Hi be the corresponding
predictable processes, i = 1, 2. Intuitively speaking, we will “glue” the two pairs
using Brownian motion and obtain a pair belonging to M(x, y). To this end, we
may and do assume that these processes are given on the same probability space
equipped with the same filtration. Suppose B is a Brownian motion starting from
x, independent of these two pairs. Let τ = inf{t : Bt ∈ {x+ t1, x+ t2}} and set

Xt =

{
Bt if t ≤ τ,

Xi
t−τ if t > τ and Bτ = x+ ti,

Ht =

{
ε if t ≤ τ,

Hi
t−τ if t > τ and Bτ = x+ ti

and Yt = y +
∫
(0,t]

HsdXs. It is easy to see that X is a martingale with respect to

the natural filtration and (X,Y ) ∈ M(x, y). Now we have, with probability 1,

(4.5) Y∞ = Y 1
∞1{Bτ=x+t1} + Y 2

∞1{Bτ=x+t2}

and, since |x+ t1|, |x+ t2| ≤ z,

(4.6) X∗
∞ ∨ z = (X1∗

∞ ∨ z)1{Bτ=x+t1} + (X2∗
∞ ∨ z)1{Bτ=x+t2}.
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Therefore

W (x, y, z) ≥ E|Y∞|p − (κ′)pE(X∗
∞ ∨ z)p

=
2∑

i=1

(E|Y i
∞|p − (κ′)pE(Xi∗

∞ ∨ z)p)P(Bτ = x+ ti)

=
2∑

i=1

αi(E|Y i
∞|p − (κ′)pE(Xi∗

∞ ∨ z)p).

(4.7)

Now take the supremum on the right-hand side over the classes M(x+ t1, y + εt1)
and M(x+ t2, y + εt2) to obtain the desired estimate.

(v) We repeat the argument from the previous part, with x = z = 1, ε = −1,
t1 = −a and t2 = δ. The equation (4.5) remains valid; however, (4.6) is no longer
true: we still have (X∗

∞ ∨ 1)1{Bτ=1+δ} = (X2∗
∞ ∨ 1)1{Bτ=1+δ}, but the equality

(X∗
∞ ∨ 1)1{Bτ=1−a} = (X1∗

∞ ∨ 1)1{Bτ=1−a} does not hold in general. Nonetheless,
we have the inequality

(4.8) X∗
∞ ∨ 1 ≤ (X1∗

∞ ∨ (1 + δ))1{Bτ=1−a} + (X2∗
∞ ∨ 1)1{Bτ=1+δ}.

But, by the very definition of W ,

(4.9) W (x, y, z1) ≤ W (x, y, z2) for z1 ≥ z2,

so arguing as in (4.7), we get the first inequality in (4.4). To deal with the second
one, we need to compare W (1 − a, y + a, 1 + δ) and W (1 − a, y + a, 1). Note that
for x, δ ≥ 0 we have (x ∨ (1 + δ))p − (x ∨ 1)p ≤ (1 + δ)p − 1. Thus, for any
(X,Y ) ∈ M(1− a, y + a),

W (1− a, y + a, 1 + δ) ≥ E|Y∞|p − (κ′)pE
(
X∗

∞ ∨ (1 + δ)
)p

≥ E|Y∞|p − (κ′)pE
(
X∗

∞ ∨ 1
)p

+ (κ′)p(1− (1 + δ)p).

Taking the supremum over all such (X,Y ) yields

W (1− a, y + a, 1 + δ) ≥ W (1− a, y + a, 1) + (κ′)p(1− (1 + δ)p).

Thus the second inequality in (4.4) follows, since, by the homogeneity of W ,

W (1 + δ, y − δ, 1 + δ) = (1 + δ)pW (1,
y − δ

1 + δ
, 1). �

Now we are ready to prove that the inequalities (1.2) and (1.3) are sharp.

Sharpness of (1.2). We keep the notation β = βp =
√
2/p. Apply (iv) with x =

β/2, y = 1 − β/2, z = 1, ε = −1, t1 = 1 − β and t2 = 1 − β/2 (α1 and α2 are
uniquely determined by t1 and t2) to get

(4.10) W

(
β

2
, 1− β

2
, 1

)
≥ 2− β

β
W

(
1− β

2
,
β

2
, 1

)
+

2β − 2

β
W (1, 0, 1).

The condition (iv) with x = 1− β/2, y = β/2, z = 1, ε = 1, t1 = β/2 and t2 = −1
implies that

(4.11) W

(
1− β

2
,
β

2
, 1

)
≥ 2

β + 2
W (1, β, 1) +

β

β + 2
W

(
−β

2
,−1 +

β

2
, 1

)
.
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By homogeneity, W
(
−β

2 ,−1 + β
2 , 1

)
= W

(
β
2 , 1−

β
2 , 1

)
. Furthermore, (iii) implies

that W (1, β, 1) ≥ βp − (κ′)p; combining this with (4.10) and (4.11) gives

(4.12)
β2

2
W

(
β

2
, 1− β

2
, 1

)
≥

(
1− β

2

)
(βp − (κ′)p) +

(
β2

2
+

β

2
− 1

)
W (1, 0, 1).

Now exploit (v), with y = 0, a = 1− β/2 and δ > 0, to obtain

W (1, 0, 1) ≥ 2δ

2− β + 2δ

[
W

(
β

2
, 1− β

2
, 1

)
+ (κ′)p

(
1− (1 + δ)p

)]

+
2− β

2− β + 2δ
(1 + δ)pW (1,−δ/(1 + δ), 1) .

(4.13)

By (ii), W (1,−δ/(1 + δ), 1) = W (1, δ/(1 + δ), 1); moreover, if we use the first

inequality in (4.4), with y, a, δ replaced by the numbers δ/(1+δ), (1− β
2 )

1+2δ
1+δ − δ

1+δ

and δ/(1 + δ), respectively, we obtain

W

(
1,

δ

1 + δ
, 1

)
≥ 2δ

(2− β)(1 + 2δ)

(
1 + 2δ

1 + δ

)p

W

(
β

2
,

(
1− β

2

)
, 1

)

+
(2− β)(1 + 2δ)− 2δ

(2− β)(1 + 2δ)

(
1 + 2δ

1 + δ

)p

W (1, 0, 1) .

Plug this into (4.13), subtract W (1, 0, 1) from both sides, divide throughout by 2δ
and let δ → 0 to obtain

0 ≥ 2W (β/2, 1− β/2, 1)

2− β
+

(
p− 2

2− β

)
W (1, 0, 1).

Combining this with (4.12) and using β =
√
2/p give

1

p
W

(
β

2
, 1− β

2
, 1

)
≥

(
1− 1√

2p

) ((
2

p

)p/2

− (κ′)p

)
+

1

p
W

(
β

2
, 1− β

2
, 1

)

or κ′ ≥
√
2/p. Since κ′ > κ was arbitrary, we conclude that the constant

√
2/p

cannot be replaced in (1.2) by a smaller one. �

Sharpness of (1.3). Apply (iv) with x = 0, y = p, z = 1, ε = −1, t1 = 1 and
t2 = −δ to get

W (0, p, 1) ≥ δ

1 + δ
W (1, p− 1, 1) +

1

1 + δ
W (−δ, p+ δ, 1)

≥ δ

1 + δ
((p− 1)p − (κ′)p) +

1

1 + δ
W (δ, p+ δ, 1),

(4.14)

where we have used the majorization (iii) and the homogeneity. By (iv) again, this
time with x = δ, y = p+ δ, z = 1, ε = −1, t1 = 1− δ and t2 = −δ, we get

W (δ, p+ δ, 1) ≥ δW (1, p+ 2δ − 1, 1) + (1− δ)W (0, p+ 2δ, 1)

≥ δW (1, p+ 2δ − 1, 1) + (1− δ)W (0, p+ 2δ, 1 + 2δ/p),
(4.15)

where in the last passage we have exploited (4.9). Now by (v), with y, a, δ re-
placed by p+ 2δ − 1, 1 and 2δ/p, respectively, together with the majorization and
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homogeneity, we may write

W (1, p+ 2δ − 1, 1) ≥ 2δ

p+ 2δ
W (0, p+ 2δ, 1 + 2δ/p)

+
p

p+ 2δ
W (1 + 2δ/p, (1 + 2δ/p)(p− 1), 1 + 2δ/p)

≥ 2δ

p+ 2δ
(1 + 2δ/p)pW (0, p, 1)

+
p

p+ 2δ
(1 + 2δ/p)p((p− 1)p − (κ′)p).

(4.16)

Now combine (4.15) with (4.16) and insert the obtained lower bound for W (δ, p+
δ, 1) into (4.14). We obtain the estimate, which, after subtracting W (0, p, 1) from
both sides, dividing throughout by δ and letting δ → 0, becomes

0 = W (0, p, 1) · lim
δ→0

[
1− 1− δ

1 + δ

(
1 +

2δ

p

)p]
≥ 2((p− 1)p − (κ′)p).

This implies that κ′ ≥ p− 1 and, consequently, that κ ≥ p− 1. �

5. Concluding remarks

5.1. On the search for the suitable majorant. We will sketch some steps which
led to the right choice of the optimal constant βp, 1 < p < 2, and the right guess
of the special function U used in the proof of (1.2).

First we will exhibit arguments which yield the function described in the Remark
at the end of Section 3. Let p ∈ [1, 2) be fixed and write down the desired inequality

||Y ||p ≤ β||X∗||p,
with the optimal β ≥ 1 to be determined; some experimentation shows that β
should be smaller than 2. Let us restrict ourselves to the real-valued martingales:
H = R. Since the function V (x, y, z) = |y|p − βpzp is homogeneous of order p, we
assume that U also has this property. Let u(x, y) = U(x, y, 1) for x ∈ [−1, 1] and
y ∈ R. In addition, assume that U is of class C1 on R× R× (0,∞).

It is natural to expect that there should be some similarities between U and
the special function used by Burkholder in [4]: both functions concern essentially
the same maximal inequality (strictly speaking, this is the case if p = 1; but for
p > 1, the conditions imposed below also lead to the right function). Burkholder’s
majorant suggests that we should search for u in the class of the functions satisfying
the assumptions (A1)–(A3):

(A1) For all x ∈ [−1, 1] and y ∈ R,

(5.1) u(x, y) = u(−x, y) = u(x,−y).

(A2) For 0 < x < 1 and x ≤ y, then

(5.2) u(x, y) = (1− x)A(−x+ y) + xB(1− x+ y),

and if 0 < y < x < 1, then

(5.3) u(x, y) =
1− x

1− x+ y
C(x− y) +

y

1− x+ y
B(1− x+ y),

where A = u(0, ·), B = u(1, ·) and C = u(·, 0).
(A3) For all y ≥ β we have u(1, y) = U(1, y, 1) = V (1, y, 1).
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Lemma 5.1. If u satisfies the above conditions, then for x ∈ [0, 1] and y ≥ x+β−1,
we have

u(x, y) = (y−x+1)p−βp+(1−x)ex−y

[
A(β − 1)eβ−1 − p

∫ −x+y

β−1

es(s+ 1)p−1ds

]
.

Proof. By (5.2), for any y ≥ β − 1 and δ ∈ (0, 1), we have

u(δ, y + δ) = (1− δ)A(y) + δB(1 + y).

Subtracting A(y) from both sides, dividing by δ and letting δ → 0 yields ux(0, y)+
uy(0, y) = −A(y) + B(1 + y). But uy(0, y) = A′(y) and, by (5.1), ux(0, y) = 0, so
we obtain

A′(y) = −A(y) + (y + 1)p − βp.

Solving this differential equation gives

A(y) = −pe−y

∫ y

β−1

es(s+ 1)p−1ds+ (y + 1)p − βp +A(β − 1)e−y+β−1,

and plugging this into (5.2) yields the claim. �

Now we will find the function u on the remaining part of the domain. It is easy
to see that the property (iv) from the definition of U(V ) implies that the function
w : s 	→ u(s, 1 − s), s ∈ [0, 1], is concave. From the lemma above, we know the
explicit form of w on the interval [0, 1 − β/2]. Some experimentation suggests the
following assumption, which is not satisfied by Burkholder’s majorant, but in our
case leads to the right function. This is the key condition.

(A4) The function w is linear on [1− β/2, 1].

Lemma 5.2. Under the assumptions (A1)–(A4), for all x, y ∈ [0, 1] such that
x+ y ≤ 1 and −x+ y ≤ β − 1, we have

(5.4) u(x, y) =
pβp−2

2
(y2 − x2 − β2 + 1).

Proof. Let

(5.5) aβ = (β − 1)A(β − 1) + pβp−1(β − 2).

Since u is of class C1, we obtain that for s ∈ [1− β/2, 1],

w(s) = u(1− β/2, β/2) + (ux(1− β/2, β/2)− uy(1− β/2, β/2))(s− 1 + β/2)

=
β

2
A(β − 1) + aβ(s− 1 + β/2).

Suppose that y ∈ [0, β − 1]. By (5.2), the function s 	→ u(s, y + s) is linear, so, for
0 < δ < (1− y)/2,

u(δ, y + δ) =
2δ

1− y
w

(
1− y

2

)
+

1− y − 2δ

1− y
A(y).

Subtract A(y) from both sides, divide throughout by δ and let δ → 0 to obtain

A′(y) = ux(0, y) + uy(0, y) = −2A(y)

1− y
+

2

1− y
w

(
1− y

2

)
.

Solving the differential equation, we get

A(y) =
β

2
A(β − 1) + aβ

(
β

2
− y

)
+

A(β − 1)− aβ
2(2− β)

(1− y)2.
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By (5.1), A′(0) = 0; this gives A(β − 1) = aβ(β − 1), so, by (5.5),

aβ = −pβp−2 and A(y) =
pβp−2

2
(y2 + 1− β2).

This enables us to obtain (5.4) for y ≥ x: it suffices to use

u(x, y) =
2x

1 + x− y
w

(
1− y

2

)
+

1− x− y

1 + x− y
A(y − x),

which follows directly from (5.2).
If y < x, we proceed similarly: by (5.3), we have, for x ∈ [0, 1) and 0 < δ <

(1− x)/2,

u(x+ δ, δ) =
1− x− 2δ

1− x
C(x) +

2δ

1− x
w

(
1 + x

2

)
.

Subtract C(x) from both sides, divide by δ and let δ → 0 to obtain a differential
equation for C. Solve it and use C ′(0) = 0 to get C(x) = pβp−2(−x2 − β2 + 1)/2.
To obtain (5.4), apply the following consequence of (5.3):

u(x, y) =
2y

1− x+ y
w

(
1 + x− y

2

)
+

1− x− y

1− x+ y
C(x− y). �

Lemma 5.3. If u satisfies (A1)–(A4), then β ≥
√
2/p.

Proof. Since U is homogeneous of order p, we have xpu(1, 0) = U(x, 0, x) for x > 0.
Differentiating at 1 and using the property (iii) from the definition of class U(V ),
we get

pC(1) = pu(1, 0) = Ux(1, 0, 1) + Uz(1, 0, 1) ≤ Ux(1, 0, 1) = C ′(1),

which is the claim. �

We impose the following condition.

(A5) We have β =
√
2/p.

To complete the description of u, it remains to guess its values on the set E =
{(x, y) : x ∈ [0, 1], 1− x < y < x+ β − 1}. Here is our final assumption.

(A6) For (x, y) ∈ E, the formula (5.4) is valid.

As one easily checks, we have thus obtained u given by (3.3). The description
of U is completed by (3.4). As already mentioned in the Remark at the end of
Section 3, this function is not sufficiently smooth, so Itô’s formula is not directly
applicable. However, in general, the majorant corresponding to a given martingale
inequality is not uniquely determined. Sometimes, when U is described by different
expressions on pairwise disjoint subsets, it is worth looking at U , given by one of
these expressions on the whole domain. Such an approach has been successful in
a number of nonmaximal estimates. For example, the inequality (1.4) in the case
1 < p < 2 can be shown using a function

up(x, y) =

{
p2−p((p− 1)|y| − |x|)(|x|+ |y|)p−1 if |x| ≥ (p− 1)|y|,
|y|p − (p− 1)−p|x|p if |x| < (p− 1)|y|,

which is optimal in the sense that it is the least in the class of all majorants leading
to (1.4). However, the function up, given by

up(x, y) = p2−p((p− 1)|y| − |x|)(|x|+ |y|)p−1
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for all x, y ∈ H, also has all the required properties and is much easier to handle
(for details, see e.g. [2], [3] and [8]).

Fortunately, a similar phenomenon occurs also in our case. The function U
defined by (3.1), much simpler and more regular than the one just obtained above,
is sufficient for our purposes.

5.2. On the case p > 2. There is a natural question about more explicit justifica-
tion of the fact that the constant p− 1 from (1.4) remains optimal in the stronger
inequality (1.3). To answer it, we follow Burkholder [1] and recall the examples
which yield the sharpness of (1.4) in the discrete-time setting. Fix x > 0 and de-
note by w the unique number larger than p, which satisfies xp + pwp−1 − wp = 0.
Set θ = 1− 1/w and

πn =

[
x

x+ (n− 1)δ

]w

,

where δ > 0. Define g = (g1, g2, . . .) on [0, 1) by

gn(s) =

{
x+ (n− 1)δ if 0 ≤ s < πn,

θxsθ−1 if πn ≤ s < 1

and let f be the transform of g by a sequence v = (1,−1, 1,−1, . . .); that is, we
have fn = g1 +

∑n
k=2(−1)k−1(gk − gk−1) for n = 1, 2, . . . . Then g is the transform

of f by v, the sequences f , g are martingales with respect to the natural filtration
and

lim
x→0

lim
δ→0

||f ||p = 1, lim
x→0

lim
δ→0

||g||p = p− 1.

In fact, a careful study of the proof yields limx→0 limδ→0 ||f∗||p = 1. See pages 669–
670 in [1] for details. Now it suffices to embed f in Brownian motion: denoting the
obtained process by X, we see that g embeds as a stochastic integral, with respect
to X, of some predictable process taking values in {−1, 1}. This yields the desired
sharpness of (1.3).

It should also be stressed that the above argumentation does not carry over to
the case p < 2. Analogous examples studied in [1] satisfy

lim
x→0

lim
δ→0

||f ||p = 1, lim
x→0

lim
δ→0

||g||p = (p− 1)−1,

but limx→0 limδ→0 ||f∗||p is strictly larger than 1.
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