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DETERMINISTIC THINNING OF FINITE POISSON PROCESSES

OMER ANGEL, ALEXANDER E. HOLROYD, AND TERRY SOO

(Communicated by Edward C. Waymire)

Abstract. Let Π and Γ be homogeneous Poisson point processes on a fixed
set of finite volume. We prove a necessary and sufficient condition on the two

intensities for the existence of a coupling of Π and Γ such that Γ is a determin-
istic function of Π, and all points of Γ are points of Π. The condition exhibits
a surprising lack of monotonicity. However, in the limit of large intensities,
the coupling exists if and only if the expected number of points is at least one
greater in Π than in Γ.

1. Introduction

Given a homogeneous Poisson point process on R
d, it is well known that selecting

each point independently with some fixed probability gives a homogeneous Poisson
process of lower intensity. This is often referred to as thinning. Ball [1] proved
the surprising fact that in d = 1, thinning can be achieved without additional
randomization: we may choose a subset of the Poisson points as a deterministic
function of the Poisson process so that the chosen points form a Poisson process of
any given lower intensity; furthermore, the function can be taken to be a translation-
equivariant factor (that is, if a translation is applied to the original process, the
chosen points are translated by the same vector). Holroyd, Lyons and Soo [7]
extended this result to all dimensions d and further strengthened it by showing
that the function can be made isometry-equivariant and that the non-chosen points
can also form a Poisson process (it cannot be independent of the process of chosen
points, however). Evans [3] proved that a Poisson process cannot be similarly
thinned in an equivariant way with respect to any group of affine measure-preserving
maps that is strictly larger than the isometry group.

Here we address questions of deterministic thinning for a Poisson process in a
finite volume. Postponing considerations of equivariance, we simply ask whether
there exists a deterministic thinning rule giving a Poisson process of lower intensity.
The answer depends on the two intensities, as follows. Let L denote Lebesgue
measure on R

d.
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Theorem 1. Fix λ > μ > 0 and a Borel set S ⊂ R
d with LS ∈ (0,∞). Let Π be a

homogeneous Poisson process of intensity λ on S. Let X and Y be Poisson random
variables with respective means λLS and μLS. The following are equivalent.

(i) There exists a measurable function f such that f(Π) is a homogeneous
Poisson process of intensity μ on S, and every point of f(Π) is a point of
Π almost surely.

(ii) There exists an integer k ≥ 0 such that

P(X = k) ≤ P(Y = k),

and P(X ≤ k + 1) ≤ P(Y ≤ k).

(iii) There is no integer k ≥ 0 such that

P(X = k + 1) > P(Y = k + 1),

and P(X ≤ k + 1) > P(Y ≤ k).
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Figure 1. The shaded (closed) region is the set of pairs of inten-
sities (λ, μ) for which a thinning exists in the case LS = 1. Also
shown are the curves P(X ≤ k + 1) = P(Y ≤ k) for k = 0, . . . , 5
(red), the curves P(X = k) = P(Y = k) for k = 1, . . . , 4 (blue),
and the line μ = λ.

Figure 1 depicts the pairs (λ, μ) for which conditions (i)–(iii) hold. If f satisfies
condition (i) of Theorem 1, we say that f is a (deterministic, Poisson) thinning
on S from λ to μ. The domain and range of f are both the set of simple point
measures on S. The equivalence of (ii) and (iii) is of course a relatively mundane
technicality, but it is useful to have both forms of the condition available.
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Remark 1. By the Borel isomorphism theorem (see e.g. [10, 3.4.24]) and the map-
ping theorem [6], Theorem 1 generalizes immediately to any standard Borel space
S with a finite non-atomic measure � in place of L. By the same token, it suffices
to prove Theorem 1 for the special case S = [0, 1].

To be precise, the above remark may be justified as follows. Observe first that
by scaling λ and μ we may assume that �(S) = 1. Let φ : S → [0, 1] be a Borel
isomorphism; that is, φ is a measurable bijection so that � ◦ φ−1(B) = L(B) for all
Borel sets B ⊂ [0, 1]. Such φ (and φ−1) act naturally on point processes by φ(Π) =
Π ◦ φ. If Π is a homogeneous Poisson point process on S, then by the mapping
theorem, φ(Π) is a homogeneous Poisson point process of the same intensity on
[0, 1]. Thus f is a thinning from λ to μ on S if and only if φ ◦ f ◦ φ−1 is a thinning
from λ to μ on [0, 1].

The corollaries below follow from Theorem 1 by an analysis of the curves in
Figure 1.

Corollary 2 (Monotonicity in λ). Suppose there is a thinning from λ to μ on [0, 1].

(i) If λ′ > λ, then there exists a thinning from λ′ to μ.
(ii) If μ′/λ′ = μ/λ and λ′ > λ, then there exists a thinning from λ′ to μ′.

Corollary 3 (Non-monotonicity in μ). There are positive real numbers λ > μ > μ′

such that there exists a thinning from λ to μ but not from λ to μ′.

Corollary 3 may come as a surprise. However, it follows from Theorem 1 by
a numerical computation or an inspection of Figure 1. In particular, an example
with LS = 1 is (λ, μ, μ′) = (1.45, 0.7, 0.6) (as may be checked by taking k = 1
in Theorem 1 (ii) and k = 0 in (iii)). Furthermore, there are examples satisfying
λ = n+ 1/2 + o(1) and μ, μ′ = n− 1/2 + o(1) as n → ∞.

For μ > 0 define

λc(μ) := inf
{
λ > μ : there is a thinning from λ to μ on [0,1]

}
.

By Theorem 1 (ii) and Corollary 2 (i), there exists a thinning from λ to μ if and
only if λ ≥ λc(μ).

The next corollary states that there exists a thinning if the average number of
points to be deleted is at least one, while the converse holds in asymptotic form.

Corollary 4 (Asymptotic threshold). We have λc(μ) ≤ μ + 1 for all μ > 0, and
λc(μ) ≥ μ+ 1− o(1) as μ → ∞

Our proof of Theorem 1 is constructive in the sense that for λ and μ satisfying
conditions (ii) or (iii) (and for S = [0, 1], say), our argument gives an explicit
thinning f satisfying condition (i). The construction relies on the following key
result, which states that given n unordered uniformly random points in an interval,
we may deterministically delete one of them in such a way that the remaining n−1
are again uniformly random. Write B{n} for the set of all subsets of B of size n.

Proposition 5 (One-point deletion). Let U1, . . . , Un be independent and identically
distributed (i.i.d.) random variables uniform on [0, 1], and define the random set
U := {U1, . . . , Un}. There exists a measurable function g : [0, 1]{n} → [0, 1]{n−1}

such that g(A) ⊂ A for all A and

g(U) d
= {U1, . . . , Un−1}.

Moreover, there exists a measurable v : [0, 1]{n} → [0, 1] such that v(U) is uniform
on [0, 1] and is independent of g(U).
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Even in the case n = 2, the first claim of Proposition 5 is far from obvious and
makes an entertaining puzzle. Of course, the claim would be trivial if we allowed g
to be a function of the ordered tuple (U1, . . . , Un) or a function of U together with
an independent roll of an n-sided die.

The function v in Proposition 5 may be thought of as extracting “spare” ran-
domness associated with the location of the deleted point U \ g(U). This will be
useful in the proof of Theorem 1, because it will make it easy to delete a random
number of further points once one point has been deleted.

Proposition 5 is somewhat reminiscent of the following fact proved in [5] (al-
though the proofs appear unrelated). Given a homogeneous Poisson process Π
on R

d, it is possible to choose a point W of Π, as a deterministic function of Π,
so that deleting W and translating the remaining points by −W yields again a
homogeneous Poisson process.

Proposition 5 motivates the search for couplings of Poisson random variables
X and Y such that either X = Y = 0 or X > Y . An important observation of
Ball [1, Lemma 3.1] is that the standard “quantile coupling” (i.e. X = F−1

X (U)

and Y = F−1
Y (U) where FX , FY are the distribution functions and U is uniform on

[0, 1]) has this property provided the mean of X is sufficiently large as a function of
the mean of Y . More generally, given a coupling of Poisson random variables X,Y
with means λ, μ such that X > Y except on an event A ∈ σ(X) on which X = Y ,
it is not difficult to show using Proposition 5 that there exists a thinning from λ to
μ. Condition (ii) of Theorem 1 implies the existence of such a coupling.

Remark 2 (Infinite volumes). In the case of infinite volumes it is easier (but still
nontrivial) to show that a Poisson thinning from λ to μ always exists when λ > μ;
see [7, Example 2]. Our results yield the following alternative construction, with
the additional property that whether or not a point is deleted is determined by the
process within a fixed finite radius. Partition R

d into cubes of volume 1/(λ − μ).
By Corollary 4 there exists a thinning on each cube from λ to μ; by applying each
simultaneously we obtain a thinning on all of Rd.

The paper is organized as follows. In Section 2 we will prove some easier parts
of Theorem 1. In Section 3 we will prove Proposition 5. In Section 4 we will
define the coupling of Poisson random variables that will be used to prove the
existence of a thinning. In Section 5 we will finish the proof of Theorem 1 and
also prove the corollaries. Finally in Section 6 we will briefly address some variant
concepts, including deterministic thinnings that are equivariant with respect to a
group of isometries, and deterministic splittings, where the points of the Poisson
point process are partitioned into two sets, each of which forms a Poisson point
process. We will also address deterministic thickening: we show that on a finite
volume, it is impossible to add points, as a deterministic function of a Poisson point
process, to obtain a Poisson point process of higher intensity.

2. Proof of Theorem 1: Easy implications

We will prove Theorem 1 by showing that for the existence of a thinning as in
(i), condition (iii) is necessary, (ii) is sufficient, and (iii) implies (ii).

Let M be the space of all simple point measures on [0, 1]. For ν ∈ M, we denote
the support of ν by

[ν] := {x ∈ [0, 1] : ν({x}) = 1} .
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Let N = {0, 1, . . .}. For each n ∈ N, let Mn := {ν ∈ M : ν([0, 1]) = n}. The
following characterization is useful. A point process Π on [0, 1] is a Poisson point
process of intensity λ if and only if the random variable Π([0, 1]) is Poisson with
mean λ, and, for each n ∈ N, conditional on Π ∈ Mn, the set [Π] has the distribution
of {U1, . . . , Un}, where U1, . . . , Un are i.i.d. random variables uniformly distributed
on [0, 1]. See [8, Theorem 1.2.1] or [6] for background.

Proof of Theorem 1: (i) =⇒ (iii). Let Π be a Poisson point process on [0, 1] with
intensity λ and let f be a thinning from λ to μ. Set X := Π([0, 1]) and Y :=
f(Π)([0, 1]) and let k ∈ N be such that

(1) P(X = k + 1) > P(Y = k + 1).

We will show that

(2) P
(
X = Y = k + 1

)
= 0.

In other words, if on the event X = k + 1 the thinning f sometimes deletes points
of Π, then it must (almost) always delete points. Since X ≥ Y , if X ≤ k + 1, then
either X ≤ k, in which case Y ≤ k, or X = k + 1, in which case (2) implies that
Y ≤ k. Thus, P(X ≤ k + 1) ≤ P(Y ≤ k) and condition (iii) holds.

It remains to show (2). Let Q be the law of {U1, . . . , Uk+1} where the Ui are i.i.d.
uniform in [0, 1]. Let J := {ν ∈ Mk+1 : f(ν) = ν}. Thus, J is a set of measures
where f does not delete any points. Let [J ] := {[ν] : ν ∈ J }, so that

P(Π ∈ J ) = P(X = k + 1) ·Q([J ])

and also

P(f(Π) ∈ J ) = P(Y = k + 1) ·Q([J ]).

Since {Π ∈ J } ⊆ {f(Π) ∈ J }, we deduce

(3) P(X = k + 1) ·Q([J ]) ≤ P(Y = k + 1) ·Q([J ]).

We see that (1) and (3) force Q([J ]) = 0. Hence P(Π ∈ J ) = 0, which implies
(2). �

Proof of Theorem 1: (iii) =⇒ (ii). Since λ > μ we have P(X = 0) < P(Y = 0),
and since

∑
i∈N

P(X = i) =
∑

i∈N
P(Y = i) = 1, there exists a minimal integer

k ≥ 0 such that

P(X = k + 1) > P(Y = k + 1).

By condition (iii) we must have that

P(X ≤ k + 1) ≤ P(Y ≤ k).

By the minimality of k we have that

P(X = k) ≤ P(Y = k). �

It remains to prove that (ii) implies (i) in Theorem 1, which we will do in
Section 5 after assembling the necessary tools. Our strategy for constructing the
thinning f will be as follows. If the number of points Π(S) is at most k, we retain
all of them; otherwise, we first delete one point using Proposition 5, then delete a
suitable random number of others.
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3. Deleting uniform random variables

We will give two proofs of Proposition 5. Our original proof is given in Section 6
and gives a function g with an additional rotation-equivariance property. The
proof below follows a suggestion of Michael Brand; a version appears on his web
page of mathematical puzzles [2, March 2009]. Both proofs rely on the following
observation.

Lemma 6. Let Q be a probability measure on an arbitrary Borel space S. Let Qm be
the law of {U1, . . . , Um}, where the Ui are i.i.d. with law Q. Let g : S{n} → S{n−1}

be a measurable function such that g(A) ⊂ A for all A, and define for B ∈ S{n−1},

R(B) =
{
w ∈ S : g(B ∪ {w}) = B

}
.

If for Qn−1-a.e. B ∈ S{n−1} we have Q(R(B)) = n−1, then Qn ◦ g−1 = Qn−1.

Proof. We prove the following stronger fact: without any assumption on Q(R(B)),
the Radon-Nykodim derivative satisfies

d(Qn ◦ g−1)

dQn−1
= nQ(R(·)), Qn−1-a.e.

Let U1, . . . , Un be i.i.d. with law Q and write Um = {U1, . . . , Um}. Let A ⊆
S{n−1} be measurable. Since the Ui are exchangeable,

Qn ◦ g−1(A) = P
(
g(Un) ∈ A

)
= nP

(
g(Un) = Un−1 ∈ A

)
.

We have the identity of events
{
g(Un) = Un−1 ∈ A

}
=

{
Un ∈ R(Un−1)

}
∩ {Un−1 ∈ A}.

Therefore, since Un−1, Un have respective laws Qn−1, Q,

Qn ◦ g−1(A) =

∫

A
nQ(R(B)) dQn−1(B). �

Proof of Proposition 5. Let S = {1, . . . , n} × [0, 1] × [0, 1]. By the Borel isomor-
phism theorem, there exists a measurable bijection φ : [0, 1] → S such that if U is
uniformly distributed in [0, 1], then φ(U) is uniformly distributed in S. Thus we
may assume that the Ui are i.i.d. uniform in S = {1, . . . , n} × [0, 1]× [0, 1] instead
of in [0, 1], and write Ui = (Xi, Yi, Zi). Let Qm be as in Lemma 6.

Let K be the {1, . . . , n}-valued random variable given by

K ≡
n∑

i=1

Xi mod n.

Let W = (X ′, Y ′, Z ′) be the element of U that has the Kth smallest Yi. Define

g(U) = U \ {W}; v(U) = Z ′.

Since the Xi’s, Yi’s and Zi’s are all independent it is clear that v(U) is uniform
on [0, 1] and independent of g(U). It remains to show that g(U) has law Qn−1.

To see this, let B = {(x1, y1, z1), . . . , (xn−1, yn−1, zn−1)}, and let k be such that
y′ ∈ [0, 1] is the kth smallest element of {y1, . . . , yn−1, y

′}. There is a unique
x′ ∈ {1, . . . , n} so that k ≡ x′ + x1 + · · · + xn−1 (mod n). It follows from the
definition of K and W that if B ∈ Sn−1, then for a.e. y′, z′ ∈ [0, 1] there is a unique
w = (x′, y′, z′) ∈ S so that g

(
B ∪ {w}

)
= B. Thus

Q1

{
w ∈ S : g

(
B ∪ {w}

)
= B

}
= n−1,
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and by Lemma 6, Qn(g
−1(·)) = Qn−1(·), as required. �

Remark 3. For a constructive proof of Proposition 5, in place of the bijection φ we
may use the map (a bijection up to null sets) x �→ (1+ �nx�, {nx}E , {nx}O), where
for x ∈ R we write �x�, {x} for the integer part and fractional part respectively,
and xE , xO for the numbers with binary expansions obtained by taking respectively
the even- and odd-indexed digits from the expansion of x.

The following corollary of Proposition 5 states how the “spare” randomness will
be utilized in the proof of Theorem 1. Write B{<n} for the set of all subsets of B
of size strictly less than n.

Corollary 7. Let U1, . . . , Un be i.i.d. random variables uniformly distributed on
[0, 1], and define the random set U := {U1, . . . , Un}. Let Z be any {0, . . . , n− 1}-
valued random variable that is independent of U . There exists a measurable function
h : [0, 1]{n} → [0, 1]{<n} such that h(A) ⊂ A for all A and

h(U) d
= {U1, . . . , UZ}.

Proof. Define the random set Un−1 := {U1, . . . , Un−1}. Let V be uniformly dis-
tributed on [0, 1] and independent of (U1, . . . , Un−1). Since Z < n, there exists a

measurable ĥ : [0, 1]{n−1}× [0, 1] → [0, 1]{<n} such that ĥ(Un−1, V )
d
= {U1, . . . , UZ}

and ĥ(Un−1, V ) ⊆ Un−1; to construct such an ĥ, use V to randomly order Un−1

and independently construct Z with the correct distribution, and then select the
first Z points in the ordering. Now let g and v be as in Proposition 5, so that

(g(U), v(U)) d
= (Un−1, V ). Define h(U) := ĥ(g(U), v(U)). �

4. Couplings of Poisson random variables

In this section we will show that condition (ii) of Theorem 1 implies the existence
of a certain coupling of Poisson random variables that will be used to construct
thinnings.

We need the following simple result which implies that each of the two families
of curves in Figure 1 is non-intersecting.

Lemma 8 (Non-intersection). Let X,Y be Poisson random variables with respective
means λ, μ, where λ > μ. For every integer k ≥ 0,

(i) P
(
X = k + 1

)
≤ P

(
Y = k + 1

)
implies P

(
X = k

)
≤ P

(
Y = k

)
;

(ii) P
(
X ≤ k + 1

)
≤ P

(
Y ≤ k

)
implies P

(
X ≤ k + 2

)
≤ P

(
Y ≤ k + 1

)
.

The following fact will be useful in the proof of Lemma 8, and elsewhere. If X
is a Poisson random variable with mean λ, then P(X ≤ n) is the probability that
the (n+ 1)st arrival in a standard Poisson process occurs after time λ, so

(4) P(X ≤ n) =
1

n!

∫ ∞

λ

e−ttndt.

Proof of Lemma 8. Let X,Y be Poisson with respective means λ, μ, where λ > μ.
Part (i) is easy to check:

P(X = k) = k+1
λ P(X = k + 1)

≤ k+1
λ P(Y = k + 1) = μ

λ P(Y = k) < P(Y = k).
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For (ii), using (4), the following inequalities are all equivalent:

P(X ≤ k + 1) ≤ P(Y ≤ k);

P(X ≤ k + 1) ≤ P(Y ≤ k + 1)− P(Y = k + 1);

1
(k+1)!

∫ ∞

λ

e−ttk+1 dt ≤ 1
(k+1)!

∫ ∞

μ

e−ttk+1 dt− 1
(k+1)!e

−μμk+1;

e−μμk+1 ≤
∫ λ

μ

e−ttk+1 dt;

1 ≤
∫ λ

μ

eμ−t
( t

μ

)k+1

dt.

But the right side of the last inequality is clearly increasing in k. �
Corollary 9 (Monotone coupling). If condition (ii) of Theorem 1 is satisfied by
Poisson random variables X and Y and an integer k, then there exists a coupling
of X and Y with the following properties:

(i) The coupling is monotone; that is X ≥ Y .
(ii) If X ≤ k, then X = Y .
(iii) If X > k, then X > Y .

Before proving Corollary 9 we recall that if W and V are real-valued random
variables, we say that W stochastically dominates V if P(W ≤ x) ≤ P(V ≤ x)
for all x ∈ R. If W stochastically dominates V , then there exists a random variable
V ′ (on a possibly larger probability space) such that W ≥ V ′ and V ′ has the
same law as V ; more specifically, such a V ′ may be defined so that W and V ′

have the same joint law as the quantile coupling of W and V as mentioned in the
introduction. See e.g. [12, Chapter 1] and [11] for background.

Proof of Corollary 9. Let X and Y be Poisson random variables that satisfy con-
dition (ii) of Theorem 1 with some integer k. Applying Lemma 8, we obtain that

(5) P(X = j) ≤ P(Y = j) for all 0 ≤ j ≤ k

and

(6) P(X ≤ j + 1) ≤ P(Y ≤ j) for all j ≥ k.

By (5), we may define a probability mass function m on N as follows:

m(j) :=

⎧
⎪⎨

⎪⎩

P(Y = 0)− P(X = 0) + P(X ≤ k) j = 0;

P(Y = j)− P(X = j) 1 ≤ j ≤ k;

P(Y = j) j > k.

Let V be a random variable with mass function m. Also let W := (X − 1)1X>k.
By (5) and (6), it is straightforward to check that W stochastically dominates V ,
so we may assume that W ≥ V . On X ≤ k we have W = 0 and therefore V = 0;
hence we have the equality V = V 1X>k. Now define a random variable

Y ′ := X1X≤k + V 1X>k.

The mass function of Y ′ is obtained by adding those of X1X≤k and V , except at 0,

and it follows that Y ′ d
= Y . Therefore we may assume that Y ′ = Y . On the other

hand we may write
X = X1X≤k + (W + 1)1X>k.
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By comparing the last two displays it is evident that the required properties (ii)
and (iii) hold, and (i) is a consequence of them. �

5. The thinning and proofs of corollaries

Proof of Theorem 1: (ii) =⇒ (i). Assuming condition (ii) we construct a thinning
f . Let k be an integer satisfying condition (ii). Let Π be a Poisson point process
on [0, 1] with intensity λ. Write X = Π([0, 1]); thus X is a Poisson random vari-
able with mean λ. Let Y be a coupled Poisson random variable with mean μ
so that X and Y satisfy the conclusion of Corollary 9. We will define f so that

f(Π)([0, 1])
d
= Y .

For each n ≥ 0, let Qn be the law of Y conditional on X = n. Let Zn be
independent of Π and have law Qn. By Corollary 9, if n > k, then Y < n a.s.
For each n > k, let hn : [0, 1]{n} → [0, 1]{<n} be the function from Corollary 7
corresponding to the random variable Zn. Let f be defined by:

[f(Π)] :=

{
[Π] if X ≤ k;

hn([Π]) if X = n > k.

By Corollary 9, we have f(Π)([0, 1])
d
= Y . In addition, from Corollary 7 we have

that for all m ≥ 0, conditional on the event that f(Π)([0, 1]) = m, the m points
of f(Π) have the distribution of m unordered i.i.d. random variables uniformly
distributed on [0, 1] (this holds even if we condition also on Π([0, 1])). Thus f(Π)
is a Poisson point process of intensity μ on [0, 1]. �

Proof of Corollary 2. Let Fλ be the distribution function of a Poisson random vari-
able with mean λ. Part (i) follows immediately from Theorem 1 condition (ii) and
the facts that Fλ(k) is decreasing in λ for all k ≥ 0 and that e−λλk/k! is unimodal
as a function of λ.

Let (λ, μ) and (λ′, μ′) satisfy the conditions of Corollary 2 part (ii). By Theo-
rem 1 condition (ii), it suffices to show that if for some fixed k ≥ 0, the pair (λ, μ)
satisfies Fλ(k + 1) ≤ Fμ(k) and e−λλk ≤ e−μμk, then the pair (λ′, μ′) satisfies the
same inequalities (with the same k). Let p := μ/λ. By a variant of the argument
in the proof of Lemma 8 (ii), we have that Fλ(k + 1) ≤ Fμ(k) if and only if

(7) e−λλk+1 ≤ (k + 1)

∫ λ

μ

e−ttkdt.

By the change of variables, t = λs, we see that (7) is equivalent to

(8) 1 ≤ (k + 1)

∫ 1

p

e(1−s)λskds.

The right side of (8) is increasing in λ. Since μ′/λ′ = p and λ′ > λ, we have
Fλ′(k + 1) ≤ Fμ′(k). Simple calculations show that e−λλk ≤ e−μμk if and only if

(9) λ ≥ −k log p

1− p
.

The left side of (9) is obviously increasing in λ. Thus we have that e−λ′
(λ′)k ≤

e−μ′
(μ′)k. �
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Proof of Corollary 4. First we show that λc(μ) ≤ μ + 1. By Corollary 2 (i), it
suffices to show that if λ = μ + 1, then there is a thinning from λ to μ. By
Theorem 1 condition (ii), we must show for some k ∈ N that Fλ(k+1) ≤ Fμ(k) and
e−λλk ≤ e−μμk. The latter condition is satisfied by choosing k = �1/ log(1+1/μ)�.
As in the proof of Lemma 8(ii), Fλ(k + 1) ≤ Fμ(k) if and only if

(10)

∫ λ

μ

eμ−t
( t

μ

)k+1

dt ≥ 1.

So by the change of variables t = μ + s and the equality λ = μ + 1, it suffices to
verify that

(11)

∫ 1

0

e−s
(
1 +

s

μ

)k+1

ds ≥ 1.

Inequality (11) is a consequence of the observation that

log(1 + s/μ)

log(1 + 1/μ)
≥ s for all s ∈ [0, 1],

which in turn follows from log(μ+ s) ≥ (1− s) logμ + s log(μ+ 1), an instance of
the concavity of log.

Next we show that λc(μ) ≥ μ + 1 − o(1). Fix δ < 1, and let λ = μ + δ. By
Theorem 1 condition (iii) it suffices to show that when μ is sufficiently large there
is an integer k so that Fλ(k + 1) > Fμ(k) and e−λλk+1 > e−μμk+1. The latter
condition is equivalent to the inequality

(12)
(
1 +

δ

μ

)k+1

> eδ,

while the former condition is equivalent to the negation of (10); moreover, by the
change of variable t = μ+ s this is equivalent to

(13)

∫ δ

0

e−s
(
1 +

s

μ

)k+1

ds < 1.

Set k = �μ+ 1�. For μ sufficiently large, (12) is satisfied with this k. Moreover,
since k+1 < μ+2 and (1+s/μ) < es/μ, we see that the left side of (13) is bounded

above by
∫ δ

0
e2s/μds, which is strictly less than 1 for μ sufficiently large. �

6. Variants and open problems

6.1. Thickening. Theorem 1 and its corollaries address deterministic thinning,
but what about deterministic thickening? Does there exist a measurable function
f such that if Π is a Poisson point process on a Borel set S, then f(Π) ≥ Π and
f(Π) is a Poisson point process on S of intensity higher than that of the original
process Π? If S has finite volume, then the answer is no.

Proposition 10. Fix λ > 0 and Borel set S ⊂ R
d with L(S) ∈ (0,∞). Let

Π be a homogeneous Poisson process of intensity λ on S. There does not exist a
measurable function f such that f(Π) is a homogeneous Poisson process of intensity
strictly larger than λ on S.

Remark 4. In Proposition 10 we do not even require that f(Π) ≥ Π.
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Proof of Proposition 10. Let f be a measurable function. Let 0 denote the zero
measure. If f(0) = 0, then P(f(Π) = 0) ≥ P(Π = 0) so that f(Π)(S) can-
not be a Poisson random variable of larger mean than Π(S). If f(0) �= 0, then
P(f(Π) = f(0)) ≥ P(Π = 0) > 0 so that f(Π) gives positive mass to a single point
measure other than 0 and hence cannot be a Poisson process. �

By the Borel isomorphism theorem, for any Borel set S of infinite volume and
any λ′ > 0, there exists a measurable function f such that if Π is a Poisson process
of positive intensity on S, then f(Π) is a Poisson point process of intensity λ′ on
S; but of course this does not guarantee f(Π) ≥ Π. It is shown in [7, Theorem 3]
that even in the case of infinite volume, deterministic thickening is impossible if
we impose an additional finitariness condition on f . Gurel-Gurevich and Peled [4]
have recently proved that deterministic thickening is possible if this condition is
dropped.

6.2. Equivariant thinning. As remarked earlier, Theorem 1 extends immediately
to any Borel space with a finite non-atomic measure. When the space has non-trivial
symmetries, new questions arise.

Consider the length measure on the circle S1 = {x ∈ R
2 : ‖x‖ = 1}. Since

this measure space is isomorphic to the interval [0, 2π] with Lebesgue measure,
Theorem 1 tells us for which pairs λ, μ there exists a thinning. However the circle is
more interesting because we can associate groups of symmetries. Given an isometry
θ of S1 and ν ∈ M(S1), let θ(ν) be the measure given by θ(ν)(A) := ν(θ−1(A)) for
measurable A ⊆ S1. We say that a measurable mapping f : M(S1) → M(S1) is
rotation-equivariant if θ(f(ν)) = f(θ(ν)) for all ν ∈ M(S1) and all rotations θ
of S1. Isometry-equivariance is defined analogously.

Theorem 11. If S is the unit circle S1, and Lebesgue measure is replaced with
uniform measure on S1, then Theorem 1 holds even with the additional requirement
that the thinning f in condition (i) be rotation-equivariant.

Proof. The proof of Theorem 1 goes through except that we need the following
rotation-equivariant version of Proposition 5. Assuming condition (ii), this allows
the thinning we construct to be rotation-equivariant. We omit the rest of the
details. �

Proposition 12 (Equivariant deletion). Let U1, . . . , Un be i.i.d. random variables
uniformly distributed on S1, and define the random set U := {U1, . . . , Un}. There
exists a measurable function g : (S1){n} → (S1){n−1} ∪ {∅}, with the follow-

ing properties: g is rotation-equivariant, g(A) ⊂ A for any set A, and g(U) d
=

{U1, . . . , Un−1}. In addition, there exists a function v : (S1){n} → [0, 1] such that
v is rotation-invariant and v(U) is uniformly distributed on [0, 1] and independent
of g(U).

Remark 5. Note that the pre-image of ∅ under the function g of Proposition 12 has
measure 0. The inclusion of ∅ in the range is a technical convenience which allows
g to be rotation-equivariant everywhere (as supposed to almost everywhere). For
example, if A consists of n equally spaced points in S1, it is impossible to choose
one in a rotation-equivariant way.
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To construct this function we rely on a classical problem involving fuel shortage;
see e.g. [13, Gasoline Crisis]. See also Spitzer’s Lemma [9, Theorem 2.1]. We repeat
the problem and its solution below.

Lemma 13. Suppose a circular road has several gas stations along its length with
just enough gas in total to drive a full circle around the road. Then it is possible
to start at one of the stations with an empty tank and complete a circuit without
running out of gas before the end.

Proof. Pretend at first we are allowed to have a negative amount of gas and still
drive. Start at any point and consider the amount of gas in the car as a function
of the location. After a full circle the tank is exactly empty again. Any point at
which the function takes its minimum is a suitable starting point. �

Proof of Proposition 12. Place n gas stations at the points of U ⊂ S1 with gas
for 1/n of the circle at each. Let z(U) be the station from which it is possible to
drive around S1 (in a counterclockwise direction); if there is more than one such
station, set z(U) = ∅ (this has probability 0 for i.i.d. uniform points). Clearly
g(U) := U \ {z(U)} is rotation-equivariant.

To see that g(U) has the claimed distribution, consider a set B ∈ (S1){n−1}, and
let F (B) ⊂ S1 be the set of x ∈ S1 so that z(B∪{x}) = x. By Lemma 6, it suffices
to show that F (B) has measure 1/n for a.e. B.

To see that F (B) has measure 1/n, consider as above the amount of gas in
the car (allowing a deficit) when 1/n gas is placed at each point of B, but now
continue driving indefinitely around the circle. The gas function h(t) is skew-
periodic: h(t+1) = h(t)− 1/n. Furthermore, it has derivative −1 except at points
t (mod 1) ∈ B where h is discontinuous. It follows that there is a set T of measure
1/n so that h attains a new minimum value at every t (mod 1) ∈ T . The set T is
exactly the set of locations where it is possible to drive a full circle starting with
1/n gas, hence these are the x where z(B ∪ {x}) = x. Note that T is a finite union
of intervals in S1.

We define v as follows. If z(U) = ∅, then set (arbitrarily) v(U) = 0; otherwise,
compute the set T corresponding to g(U). Given g(U), z(U) is uniformly distributed
on T . Take the component (interval) of T containing z(U), rescale it to the interval
[0, 1], and let v(U) be the image of z(U) under this rescaling. �

Proposition 12 gives a deletion procedure that is equivariant to rotations, but
not to other isometries of the circle (namely, reflections).

Question 1. Give necessary and sufficient conditions on λ and μ for the existence
of an isometry-equivariant thinning on the circle S1 from λ to μ.

Remark 6. It is easy to see that in the case n = 2, Proposition 12 would no
longer hold with the group of rotations replaced by the (larger) group of isometries.
Therefore, if there exists an isometry-equivariant thinning on S1, then whenever
there are exactly two points, it must either keep both of them or delete both of
them. This is not always possible; for example, consider the case where S1 is
endowed with the uniform probability measure, λ = 2, and μ = 1. If X and Y are
Poisson random variables with means 2 and 1 respectively, then

P(X = 2) > P(Y = 2) and P(X ∈ {0, 2}) > P(Y = 0).
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Hence if f is a thinning on S1 from 2 to 1, then f cannot be isometry-equivariant
because whenever there are exactly two points on S1, the first inequality implies
that f cannot always keep both of them, and the second inequality implies that
f cannot always delete both of them. However, by Theorem 11 and Corollary 4,
there exists a rotation-equivariant thinning on S1 from 2 to 1.

Thus the set of (λ, μ) for which there is an isometry-equivariant thinning on S1

from λ to μ is strictly smaller than the set for which there is a rotation-equivariant
thinning. We do not know whether Proposition 12, with the group rotations re-
placed by the group of isometries, holds in the case n ≥ 4. Ori Gurel-Gurevich has
found a construction in the case n = 3 (personal communication).

Theorem 11 can be easily generalized to some other symmetric measure spaces
by using only Proposition 12. For example: the 2-sphere S2 = {x ∈ R

3 : ‖x‖ = 1}
with the group of rotations that fix a given diameter or the torus R

2/Z2 with
translations. However, we do not know whether there exists a rotation-equivariant
thinning on the sphere or an isometry-equivariant thinning on the torus.

Question 2. Give necessary and sufficient conditions on λ and μ for the existence
of a rotation-equivariant (or isometry-equivariant) thinning from λ to μ on the
2-sphere S2.

Similar questions about thinning can be asked in a more general setting. Let G
be a group of measure-preserving bijections on a standard Borel space S and let
M(S) be the space of simple point measures on S. We say that f : M(S) → M(S)
is G-equivariant if f(γν) = γf(ν) for all ν ∈ M(S) and all γ ∈ G.

For the unit ball it is not difficult to show that an isometry-equivariant version
of Proposition 5 holds. Indeed, since isometries of the ball preserve the norm, any
selection scheme that depends only on the norms of the points will automatically be
isometry-equivariant. The function x �→ ‖x‖d maps a uniformly distributed random
variable on the unit ball to a uniformly distributed random variable on [0, 1], and
any thinning procedure on [0, 1] can be composed on this mapping. Thus for the
unit ball, Theorem 1 holds even with the additional requirement that the thinning
f in condition (i) be isometry-equivariant.

Question 3. For which spaces (S, G) is the existence of a thinning from λ to
μ equivalent to the existence of a G-equivariant thinning from λ to μ? As seen
above, this property holds for S1 with rotations (Theorem 11) and for the ball with
isometries, but not for S1 with isometries (Remark 6).

6.3. Splitting. We say that a deterministic thinning f on [0, 1] from λ to μ is a
(λ, μ)-splitting if f(Π) and Π − f(Π) are both Poisson point processes on [0, 1],
with respective intensities μ and λ − μ. The existence of a (λ, μ)-splitting implies
but is not equivalent to the existence of both a thinning from λ to μ and a thinning
from λ to λ− μ.

Question 4. Give necessary and sufficient conditions on (λ, μ) for the existence of
a (λ, μ)-splitting.
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