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INDISPENSABLE BINOMIALS IN SEMIGROUP IDEALS

IGNACIO OJEDA AND ALBERTO VIGNERON-TENORIO

(Communicated by Bernd Ulrich)

Abstract. In this paper, we deal with the problem of the uniqueness of a
minimal system of binomial generators of a semigroup ideal. Concretely, we
give different necessary and/or sufficient conditions for the uniqueness of such
a minimal system of generators. These conditions come from the study and
combinatorial description of the so-called indispensable binomials in the semi-
group ideal.

Introduction

Under suitable conditions on a finitely generated semigroup A = a1N+. . .+arN,
a binomial ideal IA of the polynomial ring in r variables over a field �, R =
�[X1, . . . , Xr], is determined: the so-called semigroup ideal of A (see Section 1 for
the details).

Semigroup ideals play a relevant role in (Computational) Commutative Algebra
and Algebraic Geometry. Moreover, they have a lot of applications in different
areas such as Statistics, Operational Research or Phylogenetic reconstruction (to
cite only three examples).

As in the case of monomial ideals, semigroup ideals have a rich combinatorial
structure coming directly from the semigroup (see, e.g., [3, 6] and [15]). However,
although reasonable conditions on A guarantee the existence of minimal systems of
binomial generators for IA, they need not be unique, in contrast with the monomial
case.

Many successful efforts have been made to compute and describe (minimal) sys-
tems of binomial generators of semigroup ideals (see, e.g., [4] or Chapter 9 in [21]
and the references therein), but only recently has the problem of the uniqueness
been explicitly treated. In fact, the interest in this problem arises first from Al-
gebraic Statistics ([23]), in which the systems of binomial generators of particular
families of semigroup ideals defining certain statistics models are called Markov
bases of the model ([7]). Subsequently, different authors have investigated this
uniqueness problem. In [1] and in [14], the notions of indispensable binomial and
monomial are introduced, respectively, and in [5] both properties are studied from
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a combinatorial point of view. It is convenient to observe that one can find in
the literature results which imply a characterization of particular families of semi-
group ideals with a unique system of binomial generators (see Corollary 3.4 in [18],
Corollary 3.11 in [16] or Proposition 1 in [20]). Furthermore, it is known that the
generic lattice ideals introduced by I. Peeva and B. Sturmfels in [18] have a unique
minimal system of binomial generators (see Lemma 3.3 and Remark 4.4.3 in [18]);
therefore, one may assume that there exist semigroup ideals with arbitrary large
systems of indispensable binomials generators (see [17]). All these facts suggest
that the uniqueness problem might be connected with other interesting problems
about semigroup ideals.

Recall that a binomial in a semigroup ideal IA is said to be indispensable if it
belongs (up to a scalar multiple) to every system of binomial generators IA (see
[13]). Thus, IA has a unique system of binomial generators if, and only if, it is
generated by indispensable binomials. On the other hand, a monomial is called
indispensable if it appears (up to a scalar multiple) in, at least, one binomial of any
system of binomial generators of IA.

Indispensable monomials were introduced by Aoki, Takemura and Yoshida in [1].
They are considered as a first approximation to the study of indispensable binomi-
als; notice that any indispensable binomial is a difference of two indispensable mono-
mials. Moreover, indispensable monomials always exist (see Proposition 3.1 in [5])
in clear contrast to the indispensable binomials (consider, e.g., IA = 〈x−y, x−z〉).

In the first part of this paper (Section 2), we give a combinatorial necessary
and sufficient condition for the existence of indispensable binomials in a semigroup
ideal (Theorem 8). Our condition depends on the knowledge of some simplicial
complexes associated to the semigroup introduced by S. Eliahou in his PhD Thesis
([9]). As a consequence, an explicit characterization of all indispensable binomials
and monomials of a semigroup ideal IA is given. In Section 3, we deal with the
problem of the existence of indispensable binomials in a semigroup ideal IA by using
only Gröbner bases techniques; concretely, we give an effective necessary and suffi-
cient condition for the existence of indispensable binomials in IA consisting of the
computation of r (the number of indeterminates of the corresponding polynomial
ring) Gröbner bases (Theorem 13). We end the paper by illustrating our results
with an example borrowed from Algebraic Statistics.

1. Preliminaries: Definitions and notation

Let A be a commutative semigroup with zero element 0 ∈ A and let G(A)
be a commutative group with a semigroup homomorphism ι : A → G(A) such
that every homomorphism from A to a group factors in a unique way through ι.
The commutative group G(A) exists and is unique up to isomorphism; it is called
the associated commutative group of A. Further, G(A) is finitely generated when
A is. The map ι is injective if, and only if, A is cancellative, that is to say, if
a + b = a + c, a,b, c ∈ A, then b = c; in this case, G(A) is the smallest group
containing A.

Throughout this paper, A will denote a finitely generated commutative can-
cellative semigroup with zero element. Moreover, we will assume always that A
is combinatorially finite; that is to say, there are only finitely many ways to write
a ∈ A \ {0} as a sum a = a1 + . . . + aq, with ai ∈ A \ {0}. Equivalently, A is
combinatorially finite if, and only if, A ∩ (−A) = {0} (see Proposition 1.1 in [4]).
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Notice that this property guarantees that b �A a ⇐⇒ a− b ∈ A is a well defined
partial order on A.

Examples of finitely generated commutative cancellative combinatorially finite
semigroups with zero element (semigroups in the following) are the subsemigroup
of Nd generated by the columns of a non-negative integer matrix A ∈ N

d×r.
Let � be a fixed arbitrary field. We write �[A] for the �-vector space

�[A] =
⊕

a∈A
� ta

endowed with a multiplication which is �-linear and such that ta ·tb := ta+b, a,b ∈
A. Thus �[A] has a natural �-algebra structure, and we will refer to it as the
semigroup algebra of A.

The choice of a system of generators a1, . . . , ar of A induces a natural A−grading
on R := �[X1, . . . , Xr], by assigning weight ai to Xi, i = 1, . . . , r; that is to say,

R =
⊕

a∈A
Ra,

where Ra is the vector subspace of R generated by all the monomials Xu :=
Xu1

1 · · ·Xur
r with

∑r
i=1 uiai = a and u = (u1, . . . , ur)

′ ∈ N
r (the prime means

transpose). Since A is combinatorially finite, the vector spaces Ra are finite di-
mensional (see Proposition 1.2 in [4]). Concretely, there are dim�Ra monomials of
A-degree a, for each a ∈ A. Let Ma denote the set of monomials in Ra.

In the following, we will assume that a1, . . . , ar is a fixed system of generators
of A.

The natural semigroup morphism π : Nr → A; u 
→
∑r

i=1 uiai defines an A-
(multi)graded surjective �-algebra morphism

ϕ0 : R = �[Nr] −→ �[A]; Xi 
−→ tai .

Thus, the ideal IA := ker(ϕ0) is an A-homogeneous ideal called the (semigroup)
ideal of A. Notice that IA is a toric ideal when G(A) is torsion free (see [22],
Chapter 4).

It is well known (see [11]) that IA is the ideal of R generated by

{
Xu −Xv :

r∑

i=1

uiai =
r∑

i=1

viai

}
,

where Xu = Xu1
1 · · ·Xur

r and Xv = Xv1
1 · · ·Xvr

r , as usual. Therefore, there exist
minimal systems of A-homogeneous generators of IA consisting of finitely many
pure difference binomials, i.e. differences of two monomials of the same A−degree
(see, e.g. [4], Section 2). In fact, one has the following:

Lemma 1. Every system of binomial generators of IA is A−graded.

Proof. By definition IA = ker(ϕ0). So, if X
u − λXv ∈ IA, then

t
∑r

i=1 uiai = λt
∑r

i=1 viai ;

that is to say,
∑r

i=1 uiai =
∑r

i=1 viai and λ = 1. �

The A−degrees of the polynomials appearing in any minimal system of A-
homogeneous generators of IA do not depend on the system of generators: it
is well known that the number of polynomials of A−degree a ∈ A in a mini-
mal system of A-homogeneous generators is dim� Tor

R
1 (�,�[A])a (see, e.g. [12],
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Section 8.3). Thus, we say that IA has minimal generators in degree a when

dim� Tor
R
1 (�,�[A])a �= 0.

Definition 2. We say that a ∈ A is a minimal A−degree of IA if IA has minimal
generators in degree a.

Note that there are finitely many minimal A−degrees of IA.

Definition 3. We say that a ∈ A is an indispensable A−degree of IA if every
(minimal) system of A-homogeneous generators of IA contains one, and only one,
polynomial of A−degree a. In this case, such a polynomial is a binomial and it is
said to be an indispensable binomial of IA.

Notice first that every indispensable A−degree is a minimal A−degree. Fur-
thermore, observe that an indispensable binomial of IA appears (up to a scalar
multiple) in every system of A-homogeneous generators of IA. Moreover, it is easy
to see that a binomial that appears (up to a scalar multiple) in every system of
A-homogeneous generators of IA is indispensable. Indeed, if S is a system of A-
homogeneous generators of IA containing two different polynomials, f and g, of
the same A−degree, by substituting f by f − g in S, we obtain a new system of
A-homogeneous generators of IA not containing f. That is to say, if f ∈ IA is not
indispensable, it does not belong to every system of A-homogeneous generators of
IA.

Summarizing, we have:

Proposition 4. The following statements are equivalent:

(a) IA has a unique (up to a scalar multiple) minimal system of A-homogeneous
generators.

(b) Every minimal system of A-homogeneous generators consists of binomials.
(c) IA has a unique minimal system of (pure difference) binomial generators.
(d) IA is generated by its indispensable binomials.

2. Combinatorial description of indispensability

In this section, we will give a necessary and sufficient condition for the existence
of indispensable binomials in IA for a given semigroup A = a1N+ . . .+ arN.

We start by introducing a combinatorial object associated to A.

Definition 5. For any a ∈ A, define the abstract simplicial complex ∇a on the
vertex set Ma = {Xu = Xu1

1 · · ·Xur |
∑r

i=1 uiai = a}

∇a = {F ⊆ Ma | gcd(F ) �= 1},

where gcd(F ) denotes the greatest common divisor of the monomials in F.

Recall that Ma has finitely many monomials because of the combinatorial finite-
ness of A. So, the simplicial complexes ∇a are finite.

The next proposition was first proved by S. Eliahou, who introduced the simpli-
cial complexes ∇a in [9]. Other proofs, in a more general context, can be found in
[15] and in [6].

Proposition 6. Let a ∈ A. a is a minimal A−degree of IA if, and only if, ∇a is
not connected.
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It is important to observe that the 1−skeleton of ∇a is a subgraph of the graph
given in [5] (Definition 2.1) with the same set of vertices and the same number of
connected components. Thus, one can use the simplicial complexes ∇a to obtain
the same results as in that paper. In fact, Theorems 2.6 and 2.7 in [5] can be
understood as a new version of Theorem 2.5 in [4] for the simplicial complexes ∇a

by taking into account that both the simplicial complexes in [4] and the simplicial
complexes ∇a have isomorphic homology �−vector spaces (see [15], Theorem 3).

An immediate consequence of Proposition 6 is the following:

Corollary 7. Let a ∈ A. Then a is an indispensable A−degree of IA if, and only

if, ∇a =
{
{Xu}, {Xv}

}
.

Proof. Let a be an indispensable A−degree of IA and let Xu − Xv ∈ IA be the
corresponding indispensable binomial. If there exists a monomial Xw ∈ Ma dif-
ferent from Xu and Xv, we could replace Xu − Xv by Xu − Xw and Xv − Xw

in a (minimal) system of generators of IA, thus obtaining a (not-necessarily min-
imal) system of generators of IA not containing Xu − Xv, which is not possible
by Definition 3. Therefore, Ma = {Xu, Xv} and, by Proposition 6, we conclude

that ∇a =
{
{Xu}, {Xv}

}
, i.e., gcd

(
Xu, Xv

)
= 1 (recall that every indispensable

A−degree is a minimal A−degree).

Conversely, if ∇a =
{
{Xu}, {Xv}

}
, by Proposition 6, a is a minimal A−degree

of IA. Moreover, since the only polynomial of A−degree (up to a scalar multiple) is
Xu −Xv, we conclude that it has to be indispensable and so a is an indispensable
A−degree of IA. �

The above result was also noticed by H. Charalambous et al. (see Theorem 4.1
in [5]).

Theorem 8. Let a ∈ A. Then b ≺A a is indispensable if, and only if, there exists
{Xu, Xv} ∈ ∇a such that

(a) gcd(Xu, Xv) �= gcd(Xu, Xv, Xw), for every 2−dimensional face {Xu, Xv,
Xw} ∈ ∇a;

(b) gcd(Xu, Xv) has A−degree a− b.

In this case,

gcd(Xu, Xv)−1
(
Xu −Xv

)

is the corresponding indispensable binomial of IA.

Proof. If b ≺A a is an indispensable A−degree of IA, then, by Corollary 7, ∇b ={
{Xu}, {Xv}

}
. Let Xz be a monomial of A−degree a−b �= 0 and consider Xu =

Xu+z and Xv = Xv+z. Notice that {Xu, Xv} ∈ ∇a because gcd(Xu, Xv) = Xz �=
1. If there exists Xw ∈ Ma \ {Xu, Xv} with gcd(Xu, Xv, Xw) = gcd(Xu, Xv),
then Xz divides Xw and so Xw/Xz ∈ ∇b.

Conversely, let {Xu, Xv} ∈ ∇a be such that gcd(Xu, Xv) has A−degree a − b
and gcd(Xu, Xv) �= gcd(Xu, Xv, Xw), for every Xw ∈ Ma \ {Xu, Xv}. Since
gcd(Xu, Xv) �= 1, the monomials Xu/ gcd(Xu, Xv) and Xv/ gcd(Xu, Xv) have
A−degree b ≺A a and b is indispensable. Otherwise, by Corollary 7, there exists
Xw ∈ ∇b which is different from the other ones, and so gcd(Xu, Xv) = gcd(Xu,
Xv, Xw), with Xw = Xw gcd(Xu, Xv). �
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Since there exists a ∈ A such that b ≺A a for every minimal A−degree, b,
of IA (see, e.g., [22], Chapter 4), in order to check the existence of indispensable
binomials, it suffices to compute one (huge) simplicial complex ∇a and then use
Theorem 8. Of course, this theoretical assertion is not very practical because these
bounds are very coarse. Nevertheless, in some particular cases, one can find tight
bounds for the minimal A−degrees of IA, which combined with the high intrinsic
symmetry of the simplicial complexes ∇a allows us to check the existence of indis-
pensable A−degrees and compute all the indispensable binomials. This combined
approach is applied in Section 4.

Similar strategies may be used to compute (all) the indispensable monomials of
IA.

Definition 9. We say that Xu ∈ Ra is an indispensable monomial of IA if every
system of binomial generators of IA contains, at least, a binomial (up to a scalar
multiple) of the form Xu −Xv. In this case, we say that a is quasi-indispensable
A-degree of IA.

Similarly to Corollary 7 we may state the following:

Corollary 10. Let a ∈ A. Then a is quasi-indispensable if, and only if, ∇a has,
at least, a 0−dimensional connected component and π−1(a) has cardinality greater
than or equal to 2.

Notice that the above corollary is nothing but a combinatorial version of Theo-
rem 3.1 in [1].

It is clear that if Xu −Xv is an indispensable binomial of IA, then Xu and Xv

are indispensable monomials of IA. Unfortunately, the converse is not true. Nev-
ertheless, in contrast to indispensable binomials, indispensable monomials always
exist (see, e.g., Proposition 3.1 in [5]).

By weakening the hypothesis in Theorem 8, we obtain the following result, which
allows us to compute all the indispensable monomials when a sufficiently large a ∈ A
is known. We omit its proof because it is quite similar to the proof of Theorem 8.

Corollary 11. Let a ∈ A. For each Xu ∈ Ma and for each maximal element
gcd(Xu, Xv) with respect to division in the set {gcd(Xu, Xw) | Xw ∈ Ma}, the
monomial gcd(Xu, Xv)−1Xu is an indispensable monomial of IA.

Notice that, unlike Proposition 3.1 in [5], our result does not require the previ-
ous computation of a system of generators of IA to compute all its indispensable
monomials.

3. Indispensability and Gröbner bases

Let A = a1N+ . . .+ arN be a semigroup such that G(A) is torsion free.
In [14] it is shown that a binomial in IA is indispensable if, and only if, it or

its negative belongs to the reduced Gröbner basis of IA for any lexicographic term
order on R. In this section, we will prove that it is enough to check this for, at
most, r Gröbner basis with respect to a degree reverse lexicographical term order
on R.

Fix positive integers d1, . . . , dr such that IA is homogeneous with respect to the
grading deg(Xi) = di and this grading is compatible with the A−grading of IA;
that is to say, if Xu and Xv have the same A−degree, then

∑r
i=1 diui =

∑r
i=1 divi.

This is always possible because A is combinatorially finite and G(A) is torsion free.
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Definition 12. A degree reverse lexicographic term order ≺ relative to the above
grading on R which has Xi as the lowest variable is any term order on R represented
by an r× r−matrix whose first row is (d1, . . . , dr) and second row is −e′i, where ei
is the i−th canonical basis vector of Zr.

For a better understanding of the proof of the next result, we recall that the
support of a monomial Xu in R is supp(Xu) = supp(u) =

{
i ∈ {1, . . . , r} | ui �= 0}.

Theorem 13. For each i ∈ {1, . . . , r}, let ≺i be a degree reverse lexicographical
term order on R which has Xi as the lowest variable. A binomial in IA is indis-
pensable if, and only if, either it or its negative belongs to the reduced Gröbner basis
Gi of IA with respect to ≺i, i ∈ {1, . . . , r}.

Proof. Suppose that Xu −Xv ∈ IA is indispensable. Since any reduced Gröbner
basis of IA consists of binomials (see, e.g., Proposition 1.1 in [8]) and Xu − Xv

appears in every system of binomial generators of IA, we may assume that Xu −
Xv ∈ Gi, i = 1, . . . r.

Conversely, suppose that Xu − Xv or Xv − Xu belongs to Gi, for each i ∈
{1, . . . , r}. First of all, we observe that gcd(Xu, Xv) = 1. Otherwise, gcd(Xu,
Xv)−1

(
Xu − Xv

)
∈ IA, and gcd(Xu, Xv)−1Xu and gcd(Xu, Xv)−1Xv properly

divide Xu and Xv, respectively. Therefore, neither Xu−Xv nor Xv−Xu belongs
to any Gi, which is impossible by hypothesis.

Now, suppose that there exists a monomial Xw with the same A−degree as
Xu −Xv. Let Xu = gcd(Xu, Xw) and Xv = gcd(Xv, Xw). So, Xw = XuXvXw

with supp(Xu) ∩ supp(Xv) = ∅, because gcd(Xu, Xv) = 1. If Xw �= 1, we
consider j ∈ supp(Xw). Then, Xw ≺j Xu and Xw ≺j Xv; that is to say,
Xu = in≺j

(Xu−Xw) and Xv = in≺j
(Xv−Xw). So, by the definition of a Gröbner

basis, there are two polynomials in Gj whose initial monomials divide Xu and Xv,
respectively. Therefore, neither Xu−Xv nor Xv −Xu could appear in Gj because
of its reducibility. So, we may assume that Xw = 1; that is to say, Xw = XuXv.
Consider j ∈ supp(Xv). We have that Xv ≺j Xu. If Xw ≺j Xv, then Xv is di-
visible by the initial monomial with respect to ≺j of some binomial of IA; thus
Xu −Xv does not belong in Gj . Then Xv ≺j X

w and Xv/Xv ≺j X
w/Xv = Xu.

In this case, there exists a binomial in IA whose initial monomial with respect to
≺j properly divides Xu = in≺j

(Xu −Xv). So we are in contradiction again.

In conclusion, ∇a =
{
{Xu}, {Xv}

}
. Then, by Corollary 7, we may assume that

Xu −Xv is an indispensable binomial of IA. �

Notice that the above theorem gives an algorithm for computing the indispens-
able binomials in IA consisting of the computation of r reduced Gröbner basis.
Other algorithms can be found or deduced from the results in [1] and [5]. In the
first case, r! reduced Gröbner basis are needed. In the second case, the indispens-
able binomials in IA are determined from one Gröbner basis provided that the set
of minimal elements with respect to ≺A in the set of minimal A−degrees of IA is
known.

As immediate consequences of the above theorem we have the following.

Corollary 14. For each i ∈ {1, . . . , r}, let ≺i denote a degree reverse lexicographical
term order on R which has Xi as the lowest variable. If a system of generators of
IA is a reduced Gröbner basis with respect to ≺i, for every i ∈ {1, . . . , r}, then IA
is generated by its indispensable binomials.
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Observe that from the above corollary and Lemma 8.4 in [19], we get a new proof
of the result by I. Peeva and B. Sturmfels in [18] which states that every generic
lattice ideal has a unique minimal set of binomial generators.

Let u+ and u− denote the positive and negative parts of u ∈ Z
r, respectively.

Given a system of generators B of ker(A) := ker
(
Z
r → G(A); ei 
→ ai

)
, we write

IB for the binomial ideal generated by G :=
{
Xu+ − Xu− | u ∈ B

}
. Recall that

IB ⊂ IA but IB �= IA.

Corollary 15. For each i ∈ {1, . . . , r}, let ≺i denote a degree reverse lexicographical
term order on R which has Xi as the lowest variable. With the above notation, if
G is a reduced Gröbner basis with respect to ≺i, for every i ∈ {1, . . . , r}, then

(a) IB = IA;
(b) the set of indispensable binomials of IA is G.

In conclusion, IA has a unique minimal system of binomial generators.

Proof. (a) By Lemma 12.2 in [22], (IB : (X1 · · ·Xr)
∞) = IA. Since G is a reduced

Gröbner basis with respect to a degree reverse lexicographical term order on R
which has Xi as the lowest variable, for each i ∈ {1, . . . , r}, by Theorem 3.1 in [2],
it follows that (IB : (X1 · · ·Xr)

∞) = IB. So, we conclude that IB = IA.
Now, part (b) is an immediate consequence of Theorem 13. �

We end this section by showing that the Lawrence ideal of A is generated by
indispensable binomials. This result was already proved by P. Pisón-Casares and
A. Vigneron-Tenorio in a different context (see Proposition 1(a) in [20]).

Recall that the Lawrence ideal of A is the ideal of �[X1, . . . , Xr, Y1, . . . , Yr]
generated by

{
XuY v −XvY u :

r∑

i=1

uiai =
r∑

i=1

viai ∈ A
}
.

Analogously, the Lawrence ideal of A is the ideal of �[X1, . . . , Xr, Y1, . . . , Yr] as-
sociated to the Lawrence lifting of A, that is to say, the ideal associated to the
the semigroup generated by (a1, e

′
1), . . . , (ar, e

′
r), (0, e

′
1), . . . , (0, e

′
r) in G(A) ⊕ Z

r,
where ei denotes the i−th canonical basis vector of Zr.

Corollary 16. The Lawrence ideal of A is generated by indispensable binomials.

Proof. By [22], Theorem 7.1, any minimal binomial generating set of the Lawrence
ideal of A forms a reduced Gröbner basis, so, by Corollary 14, our claim follows. �

Lawrence ideals play a relevant role in the theory of toric and semigroup ideals:
on the one hand, Lawrence ideals are the defining ideals toric subvarieties in a
product of projective lines P

1 × . . . × P
1. On the other hand, they are used to

compute the Graver basis of IA (see [22], Chapter 7, for more details).

4. An easy example

In this section, we will apply our results to prove that the toric ideal associated
to the binary marginal independence model A induced by the undirected graph G =
(V,E) with V =

{
{1}, {2}, {3}, {4}

}
and E =

{
{1, 2}, {2, 3}, {3, 4}, {4, 1}, {2, 4}

}

is generated by indispensable binomials.
We refer the interested reader to [10] for the details omitted here about graphical

models.
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The model A has associated matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

that, in a more condensed form, can be written as

A =

(
1′2 ⊗ I4 ⊗ I2
I4 ⊗ 1′2 ⊗ I2

)
∈ Z

16×16,

where 1′2 = (1 1), In is the n × n−identity matrix and the symbol ⊗ denotes the
Kronecker product.

Let IA ⊂ �[X1, . . . , X16] be the semigroup ideal associated to the subsemigroup
of N16 generated by the columns of A. That is to say, IA is the toric ideal of the
independence model A.

The reader may note that by performing row operations on A, it becomes a
“Lawrence lifting”-type matrix, so, by Corollary 16, we may conclude that IA is
generated by indispensable binomials and hence it has a unique minimal system of
binomial generators. Nevertheless, in order to illustrate the results in this paper,
we will proceed by assuming that we do not know this fact.

Since A is a decomposable graphical model, IA has a quadratic Gröbner basis
(see Theorem 4.3 in [10]). Therefore, any indispensable binomial (if it exists) is
homogeneous (with the usual grading) and has total degree equal to two. Moreover,
every quadratic binomial in IA consists in differences of square-free monomials,
because no sum of two (not necessarily different) columns of A is equal to the double
of another one. In conclusion, if Xu −Xv is an indispensable binomial in IA, then
ui ≤ 1 and vi ≤ 1, for all i, where u = (u1, . . . , ur)

′ and v = (v1, . . . , vr)
′ ∈ N

r, as
usual.

Thus, the A−degree a = A e, with e = (1, . . . , 1)′ ∈ Z
16, “captures” all the

indispensable binomials.
Now, let us compute the non-negative integer solutions of the system Au = a.

The general solution of the linear system of equation Au = a over Q is

u =
(
1 + a, 1 + b, 1− a, 1− b,
1 + c, 1 + d, 1− c, 1− d,
1− a, 1− b, 1 + a, 1 + b,

1− c, 1− d, 1 + c, 1 + d
)′

Thus, it is clear that the non-negative integer solutions correspond to the values of
a, b, c and d in {−1, 0, 1}.

First of all we observe that any u ∈ N
16 such that Au = a has the form

(p′
i,p

′
j ,p

′
σ(i),p

′
σ(j))

′
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with

(1)

p1 p2 p3 p4 p5 p6 p7 p8 p9

1 0 1 2 1 0 2 2 0
1 1 0 1 2 0 0 2 2
1 2 1 0 1 2 0 0 2
1 1 2 1 0 2 2 0 0

and σ = (24)(35)(68)(79).
Therefore, it follows that ∇a is a direct product of simplicial complexes. Con-

cretely, ∇a
∼= K ×K, with

K =
{
F ⊆ {Y pi | i = 1, . . . , 9} | gcd(F ) �= 1

}
.

Furthermore, given u = (p′
i,p

′
j ,p

′
σ(i),p

′
σ(j))

′ and v = (p′
k,p

′
l,p

′
σ(k),p

′
σ(l))

′, by

Corollary 7 and Theorem 8, we have that gcd(Xu, Xv)−1
(
Xu −Xv

)
is indispens-

able if, and only if,

i = k, j �= l and gcd(Y pj , Y pl) is uniquely attained

or

i �= k, j = l and gcd(Y pi , Y pk) is uniquely attained.

In fact, the indispensable binomials are

(2) gcd
(
Y piZpσ(i) , Y pjZpσ(j)

)−1
(
Y piZpσ(i) − Y pjZpσ(j)

)

with gcd(Y pi , Y pj ) uniquely attained and Yk = Xk, Zk = Xk+8, k ∈ {1, . . . , 4} or
Yk = Xk, Zk = Xk+8, k ∈ {5, . . . , 8}.

Summarizing, the indispensable binomials of IA are determined by the pair of
vertices of K, P, whose greatest common divisor is different from the greatest
common divisor of any 2−dimensional face of K containing them.

Notice that the natural action of H = 〈(1 2 3 4)〉 on {Y1, Y2, Y3, Y4} leaves K in-

variant. In fact, this action is the same as the one given by H̃ = 〈(2 3 4 5)(6 7 8 9)〉
on the set of pi’s. Thus, in order to compute P, it suffices to perform the compu-
tation modulo H. There are nine different 1−dimensional faces modulo H :

{Y p1 , Y p2}, {Y p1 , Y p6}, {Y p2 , Y p3}, {Y p2 , Y p4}, {Y p2 , Y p6}
{Y p2 , Y p7}, {Y p2 , Y p8}, {Y p2 , Y p9}, {Y p6 , Y p7},

but only three of them have greatest common divisor different from any 2−dimen-
sional face of K :

{Y p1 , Y p2}, {Y p2 , Y p6}, {Y p2 , Y p9}.
An easy computation shows that

gcd
(
Y pi , Y pj

)−1
(
Y pi − Y pj

)
=

{ ±(Y1 − Y3)

±(Y2 − Y4)

when gcd(Y pi , Y pj ) is uniquely attained.
Therefore, by (2), we conclude that there are four indispensable binomials in

IA :

X1X11 −X3X9, X2X12 −X4X10, X5X15 −X7X13 and X6X16 −X8X14.

Moreover, since these four binomials form a Gröbner basis with respect to any
term order on R (because their initial monomials have disjoint support) and their
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exponent vectors generate ker(A), by Corollary 15, we may assume that IA is
generated by its indispensable binomials; that is to say, the toric ideal associated
to the binary marginal independence model A has a unique minimal system of
binomial generators.
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