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Bayes linear spaces

Karl Gerald van den BoogaartJuan Jos Egozcug,
and Vera Pawlowsky-Glatin

Abstract

Linear spaces consisting of o-finite probability measures and infinite measures (improper priors
and likelihood functions) are defined. The commutative group operation, called perturbation, is
the updating given by Bayes theorem; the inverse operation is the Radon-Nikodym derivative.
Bayes spaces of measures are sets of classes of proportional measures. In this framework, basic
notions of mathematical statistics get a simple algebraic interpretation. For example, exponential
families appear as affine subspaces with their sufficient statistics as a basis. Bayesian statistics, in
particular some well-known properties of conjugated priors and likelihood functions, are revisited
and slightly extended.
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1. Introduction

More than two decades ago, J. Aitchison (1986) noted thatiation in theD-part
simplex, the sample space of compositional data with a fmit@ber of parts;is fa-
miliar in other areas of statistics ... as the operation ofyBa's formula to change a
prior probability assessment into a posterior probabildgsessment through the per-
turbing influence of the likelihood functiorfAitchison, 1986, p. 45). Recently, the lin-
ear space structure of the simplex has been recognisedparitirbation as the Abelian
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group operation, and its Euclidean structure has been atatp(Billheimeret al., 2001;
Pawlowsky-Glahn and Egozcue, 2001, 2002; Egozsiual, 2003) The extension of
the underlying ideas to compositions of infinitely many pastdue to Egozcuet al.
(2006). It leads to the study of probability densities wittpgort on a finite interval,
concluding with a Hilbert space structure based on the abtygneralisation of the
operations between compositions to operations betweesiteksn The space contains
both densities corresponding to finite measures, equitvadgrobability measures, and
densities corresponding to infinite measures, such ashdad functions or improper
(prior) densities. The extension to infinite support measwras suggested as an open
problem and is now presented here.

Many different algebraic structures can be defined on setsositive measures,
and particulary on probability measures. For instanceaieclasses of measures form
a semi-group with respect to the ordinary sum or to the cartiani (Bauer, 1992);
Markov processes give rise to a semi-group of transitionédsr(Markov-semigroups)
(Bauer, 1992){ P(1) can be seen as a space of densities of signed measures; random
variables with variance constitute a Hilbert space (Wittin985; Small and Leish,
1994; Berlinet and Thomas-Agnan, 2004), which is relevarstatistical modelling;
metric spaces are obtained defining distances such as gtHMatusita (Hellinger,
1909; Matusita, 1955) or those based on Fisher-informakorally, kernel reproducing
Hilbert spaces (Whaba, 1990; Berlinet and Thomas-Agna@4p@are used for mod-
elling stochastic processes, random measures and norgta@functions, as well as
linear observations of them, the inner product, reprody&irnel, and distance, being
related to the variance of the process, and the elements gptice being realisations of
stochastic processes (Whaba, 1990).

However, none of the above mentioned structures postulBdges updating as a
group operation. Bayes theorem has two important charsittsrthat make it attractive
as an operation between measures: (i) it has been cons@eeegdaradigm of informa-
tion acquisition, and (ii) it is a natural operation betweksmsities (e.g. in probability,
Bayesian updating; in system analysis, filtering in thediextcy domain).

The primary goal of the present contribution is to providenadr space structure
for sets of classes of densities associated with positivesores of any support. The
support of a density is treated as a measure itself, leadirggeneral and inclusive
framework. In particular, linear spaces whose elementslasses ofr-additive positive
measures —including probability measures, prior derssitiel likelihood functions —are
introduced. Such spaces are suitable to review many isgyaelmabilistic modelling
and statistics. We call them Bayes spaces because the Algglimip operation, or
perturbation for short, corresponds to the operation iethih Bayes theorem. Section 2
defines Bayes linear spaces and Section 3 discusses thedr aftiperties. Exponential
families of distributions are identified as affine spacesdot®n 4. In Section 5 a review
of probabilistic models involved in Bayesian statisticpiissented.
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2. Bayes linear spaces

Standard tools of measure theory (Ash, 1972; Bauer, 19922;28hao, 1999) will be
usefulin the following development. Latbe ac -finite, positive measure on an arbitrary
measurable spad®, %), whereQ is a non-empty set ané is ao-field on Q. The
symbolsA and % have been chosen deliberately to associate them with thesele-
measure and the Borelianfield, as they are a typical example forand %. Measures
with the same null-sets are called equivalent (Bauer, 1985 is a very inclusive
equivalence relation identifying e.g. the Lebesgue-measumeasuring the volume of
a space portion — with any measure with positive density erséime measurable space.
The class of measures equivalent to a reference measui®,used to constitute the
elements of the Bayes space:

Definition 1 (Equivalent measures)LetA andu beo-finite measures ofQ, ). They
are equivalent if, for all Re %, A(R) = 0 if and only if u(R) = 0. The class ot -finite
measures o(Q, %) equivalent to a given reference measains denoted by# (1) and
its elements are called-equivalent measures.

The Radon-Nikodym derivative theorem and the chain rulelémsities are stated in
the context of equivalent measures. The Radon-Nikodyrivatere is used to identify
measures with functions:

Theorem 1 (Radon-Nikodym derivative) Let A be ac-finite measure oQ, %), and
u a o-finite A-equivalent measure. Then, there exist&-almost-everywherel—a.e.,
unique positive function fQ — R, = (0, ) such that, for any R 4, [rdu= [z f dA.
The function f is then called density, or Radon-Nikodymivagive, ofu with respect to
A, and is denoted by

du

=100
Every measure in/Z (1) can be represented by a unique density defihede.. The

chain rule is closely related to addition and differencehim Bayes linear space:

Theorem 2 (Chain rule for densities) Letu, v be A-equivalent measures. Then

du du da
dv  dAdv’

The aim of the following definitions is to build a linear spawfeclasses otr-finite
measures represented either by probability measures afinjté measures. The first
step consists in identifying measures which differ only iscale factor, leading to
equivalence classes of proportional measures. As a coasegLfinite measures can be

represented by probability measures integrating to ongs. iflea has been previously
used for densities on an interval in (Egozateal, 2006) and goes back to a similar
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idea which identifies equivalence classes of positive vaatith compositions (Barcét
Vidal et al, 2001).

Definition 2 (B-equivalence) Letu andv be measures iZ (). They are B-equivalent,
u =g v, if and only if there exists a constant<0 such that, for any R %, u(R) =
c-v(R), using the convention-¢+) = +. The set of =g) equivalent classes is de-
noted as a quotient spacéB) = .Z (A)/(=s).

Theorem 3 (=g) is an equivalence relation a7 (A).

The elements oB(A) = .# (A)/(=g) are(=g)-equivalence classes of measures in
# (A). From now on, no notational difference will be made betweereasure and the
equivalence class it represents. When a reference measaréixed, a(=g)-class of
measures will be represented by a density (or Radon-Nikadignivative with respect
to A) definedA—ae. and up to a positive constant. The equivalence syrfog) will be
used foru, v € .Z(A) and for their respective densitief,andf, . Thus, ifu =g v, then
f, =g fu, which means that there existsuch thatf, (x) = cf,(x) A—ae. Summarising,
(=g) identifies a measure equivalence class with a density, @wéasures are all seen
as the same element BfA). To build a linear space oB(1), the second step consists
in introducing addition and multiplication by real scalars

Definition 3 (Perturbation and powering) Let u and v be measures in B.). For
every Re 4, the perturbation ofx by v is the measure in B) such that

wom® =[P . 1)

For a scalara € R, the powering ofx is the measure in 8) such that

@on®= [ (L) o @

Theorem 4 Perturbation and powering af-finite A-equivalent measures are-finite.

Proof: see appendix.

Perturbation and powering @f-finite A-equivalent measures are based on pertur-
bation and powering in the simplex, introduced originally b Aitchison (Aitchison,
1986) and shown later to structure the simplex as a linearesarin-Ferrandezet
al., 1999; Billheimeret al,, 2001; Pawlowsky-Glahn and Egozcue, 2001; Aitchisbn
al., 2002). The space is denotBdA) (B for Bayes) recalling that perturbation, which
plays the role of group operation, is essentially the oj@mah Bayes theorem.

The inverse operation of perturbationBiA), i.e. substraction ifB(1), is defined
asou =g (—1) ® u. The use of densities representing the corresponding mesasu
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generates alternative definitions of perturbation and piogeLet f, andf, be densities
in B(A) anda € R; then, perturbation, difference and powering are

(fv %) fu)(x) =B fv (X) fM(X) ) (3)
_ ¥
(fV @ fM)(X) —B f‘u(X) 9 (4)
(a® f)(x) =8 fv (X)* . ®)
Combining measures and densities we get equivalent expness
(fou) = [ ,(9du(x). (6)
A
dv
(vou)(x) =s du (7)

A remarkable fact is that the difference (4), (7) is actualyRadon-Nikodym
derivative due to the chain rule (Theorem 2).

When using densities representing measures, operatigendeon the reference
measurel adopted. Therefore, whenever not clear from the contextbacsipt will be
used:®;, Sa, O, =g)-

Theorem 5 With operationsd and®, B(A) is a real vector space.

Proof: see appendix.

Whatever the reference measutethe neutral element oB(A) with respect to
perturbation is a constant density, or equivalently, thesig with constant value 1.
The perturbation-opposite of a densityis B-equivalent to ¥ f,,.

Definition 4 (Bayes space)The linear spacéB(1),®,®) is called Bayes space with
reference measurg.

When the measurable space(§, #) = (R, 4(R)) with Z(R) the Borelo-field
on R, the most commonly used reference measure is the Lebesgamuradg. For
constrained measurable spaces such as the positive reaQlis R, or the 3-part
simplex,Q = .73, with the corresponding restricted Borelians, the Lebesgeasure
restricted to themj. ., respectivelyl .3, may be readily used. These contexts are usual
in probability theory and do not need further examples. Birty;, the measurable spaces
of the integers or the non-negative integérs,Z.. ), are normally used with the counting
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measure as a reference. However, different but usefuleméermeasures can be taken
in R, and in.#3. As they are seldom used, they are given as examples.

Example 1 Consider(Q, #) = (R, #(R.)), beingR the strictly positive real num-
bers. A natural reference is the relative measure, defimeahfpintervalja,b] C R, as
u+([a,b]) =Inb—Ina, whose density with respect fo. is

duy din(x) 1

di,  dx X
The reference measune; corresponds to a constant density in the spBge, ).
Moreover, inB(u. ), the density

M) | ®)

f(x) = ! exp| —
V2no? 202

represents a log-normal probability law with median €xpand logarithmic variance
o?. It has been called the normal &, (Eaton, 1983; Mateu-Figueras al, 2002)
and is accordingly denoted by, (£,0?). The positive real lineR , can be structured
as an Euclidean space taking into account thatRn :— R is a one-to-one mapping
(Pawlowsky-Glahn and Egozcue, 2001). Then,is induced by the Lebesgue measure
in R. Thus, the reference measwe corresponds to a relative scaleRn.

Example 2 The unit 3-part simplex,72 C R3, has elements which are vectors with
3 strictly positive components adding to 1. The simpl&® has been shown to be a
2-dimensional Euclidean space using perturbation and pogvéas operations of its
elements) and the Aitchison metrics (Pawlowsky-Glahn agaizEue, 2001; Billheimer
et al, 2001). Consequently, an orthonormal basis can be defirgfdtbat elements in
the simplex can be represented by the corresponding c@tedinOnce an orthonormal
basis has been selected, the mapping assigning coordimatech element of the
simplex has been called isometric log-ratio transfornmafitr) (Egozcueet al.,, 2003).
A particular case of ilr can be used to define a new referencsume in.”2 in the
following way. TakeQ = .2 and consider the one-to-one mapping il#"2 — R?
defined by

. . 1 X1 1 X1 X2
ilr (X) = (\/E Inxz, 7 In 2 ) ,

wherex = (xq, X2, X3) € .72, Define theo-field Z(.7°%) = ilr "1(%(R?)) and a reference
measurex s (ilr 1(R)) = Az2(R), for R€ (R?). The measure s is called Aitchison
measure (Egozcuet al., 2003; Mateu-Figueraat al,, 2003; Pawlowsky-Glahn, 2003).
In this context, the additive logistic normal probabilitistibution (aln) (Aitchison,
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1986) is represented by the density
f(X) = L exp| — 1(iIr(X) — )=l (%) — w) (9)
~ 273 TP\ 72 K W

where vectors of three components. i are denoted using”) and vectors inR?
are boldfaceds is a (2,2)-covariance matrix|Z| denotes its determinant, apde R?
plays the role of a mean because Hu) is actually the centre of the distribution. This
probability measure corresponds to Aitchison’s aln-philitst law or logistic-normal
distribution. However, the density (9) has been called mbim.#3 (Mateu-Figuerast
al., 2003) because of the absence of the Jacobian of the ilforamation, which is the
density of the reference measures with respect toigs.

3. Affine transformation and subsets of  B(A)

Changing the reference measureBjfA) to a B-equivalent one does not change the
space. The transformation froBiA) to B(u), beingu € .# (1), is an affine transforma-
tion and may be interpreted as a change of origin.

Theorem 6 Let u be a measure inZ (). Then,u =g A if and only if Bu) and BA)
are equal as linear spaces.

Proof: see appendix.

When changing the reference measure, or the origin, of theefj{ 1), the identifi-
cation of density and measure is broken. Next theorem ongehaforigin is formulated
in terms of measures, thus avoiding notation with densities

Theorem 7 (Change of origin) For all u € .# () the spaces 1) and B(A) have the
same elements and are equivalent as affine spaces. Condlggelgamging the reference
measure is a simple shift operation.

Proof: see appendix.

In analytic geometry the elements of a linear space can befse® two different
points of view: points in the space and vectors or arrows.fireecorresponds to affine
geometry, the second to the vector space. In the presergxtptite elements d8(1)
can be represented by measures, @, . This representation by measures corresponds
to points Alternatively, the difference. ©v =g du/dv, which is actually a density,
correspond to aector, i.e. the difference between points isvactor However, as in
analytical geometry, there is no mathematical differenetgvbenpointsandvectorsof
any kind. The only practical difference arises when shiftime origin fromA to A’. The
vector representatiati /dA € B(A) of thepointu is then shifted by subtracting the new
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origin represented asvactor. (du/dA’) = (du/dA)(dA/dA’) =g (du/dA) & (dA//dA).
Therefore, the use of the density notatign= du/dA makes sense only when the
reference measurk is clearly specified, because the density changes undegeladn
origin.

The spacd(2) containg=g)-classes of finite measures and other classes of infinite
measuresd-finite). A finite measurequ, can be represented by a probability measure
u/u(Q), being u =g u/u(Q). Infinite measures cannot be normalised in this way
because the measure of the whole sp@ces then infinite. The latte(=g)-classes
contain measures like improper priors or improper likediicfunctions appearing
regularly in Bayesian statistics. In this contextg)-equivalence achieves its full
meaning as the likelihood principle that identifies projworal proper or improper
densities (Birnbaum, 1962; Leonard and Hsu, 1999; Rob&AlR This means that
the spaceB(1) is decomposed into two well defined subsets: the set of daske
finite measuresBp(A) containing proper probability measures; aBdA) containing
classes of infinite measures. By definitiBa(A) and B;(A) constitute a partition of
B(1). The different role that proper and improper densities jiastatistics motivates
the following properties concerninge(A) andB,(1). Some properties are related to
other two important subsets Bf 1), namely the set of measures whose density is upper
boundedA—ae., B,(A), and the set of measures whose densities are double bounded,
i.e. such that iff a density inB(1), then there exist a positive constaht,such that
0<1/b< f <b< +ow (A—ae); this subset is denoted IB4(A).

Theorem 8

1. Bp(A), Bi(A) is a partition of BA).
2. Bp(A) is convex.
3. By(A) is a subspace of @).
4. B,(A) is a convex cone.
5. Be(A) @By(A) =Bp(A).
6. BI(1)©By(A) = Bi(A).
7. ueB(A) ifand only if Bo(u) = Bp(A) as sets of measures.
8. u € By(A) ifand only if By(u) = Bp(2) as sets of measures.
9. u € Bp(u) ifand only if By(u) C Bp(u).

10. u € By(u) ifand only if B,(u) C B (u).

Proof: see appendix.

4. Exponential families as affine spaces

Many commonly used distribution families, including matimial, normal, beta, gamma
and Poisson, are exponential families. A common generaiitiefi can be given as fol-
lows (Witting, 1985):
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Definition 5 (Exponential family) For A a measure on a measurable space, %),
consider a strictly positive measurable function(@@, %) — (R*, Z(R)|z+); a vector
of measurable functionB = (T, To,..., Ty) with T : (Q,8) — (R, Z(R)),i=1,....k;
and a functiond = (01,602,...,6k), where6, : A— R and A is a parameter space. A
k-parametric exponential family of distributions; Rt € A, on(Q, %) is given by

k
. ¥ = fa(x) =C(a)-g(x) ‘eXp[JZl@j(a)Tj (X)] ,

with a normalisation constant

K -1
Cl@) = ( / exp[ > 6@ <x>] 9 de)) . (10)
=

The exponential family is denot&xkp(A,g, T, 5). If k is minimal, the family is called
strictly k-parametric.

The functionk(a) = —InC(a) is called the cumulant function of the family. Clas-
sically, the parameter spadeis restricted to values ak for which C(a) exists. Fre-
quently, A is called reference measure, and is typically the Lebesgemsure orR
when the support of the random variabl&isor a counting measure when the support
is discretel (x) defines a set of statistics; aé(d&) is a mapping of the used parameters
a € Ainto the so-called natural parametefga), of the family. The normal family of
distributions is a typical casefx) is constantT (x) = (x,x?); & = (m,o'2), wheremis
the mean and-2 is the variance; an (&) = (61(@), 62(@)) = (m/o2, —1/(202)).

As mentioned, classical exponential families are defindd fom thosea for which
k(a) or C(a) in (10) exists. However, the idea of Bayes spaces permitsdp this
condition and infinite measures can be considered naturatbees of exponential
families. A definition of such extended exponential fangilie the following.

Definition 6 (Extended exponential family) Usigg the notation in definition 5, an ex-
tended exponential family, denotBapg(A, g, T, 0), contains the densities

dﬁ(x) =g fa(X) =8 g(X)-eXp[ k 6j(??t)Tj(X)] :
. 5

If k is minimal, the family is called strictly k-parametric.

Densities in the extended family may or may not correspomadbability measures.
Particularly, the elements with finite integral form the erpntial family in the ordinary
sense. Next theorems account for the properties of the @xteexponential families.
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Theorem 9 An extended exponential famiIExpB()L,g,'T',é) is a finite dimensional
affine subspace of the Bayes spa¢2 B

Proof: see appendix.

Theorem 10 Any k-dimensional affine subspace S ¢ Bis a strictly k-parametric
extended exponential family.

Proof: see appendix.

When an extended exponential family is viewed as an affineespaan be identified
as the origin of the affine space. Also, the change of origB(af) fromA tou =g A @ g,
whereg is taken as a density of @-finite measure, transforms the exponential family
into a subspace oB(u) because the constant density or neutral elementifds
now an element of the family. Another important aspect i tha natural parameters
fj(a) are the coordinates qf; expressed in the basis eleme¥i{éx). The restriction
of the parameter space of exponential families, due to ttesgyiability condition for
the existence of the normalisation constant, is not any meexed in this context.
Non integrable elements correspond to densities of infmiéasures iB;(1). When
exponential families must be used as families of probgbdistributions, improper
distributions can be just ignored and restrictions to thaumeters apply.

Example 3 ForQ =R, and using the notation of Example 1, the log-normal expenen
tial family is

dP: 1 1 (Inx—&)?

feal) = G20 = exp(——2V ) |

wherev is the logarithmic variance ard(&,v) = exp(—zivgz)/\/Zva), g(x) = 1/x,

6= (€/v,—1/(2v)) andT = (Inx, (Inx)?). However, for real values df and positive
values ofv, 6, = —1/(2v) < 0; this means that the family only spans half of the affine
space, an affine cone, B(A,). The whole affine space is spanned accepting values
v < 0; for these valuesf: y(x) is no longer a probability density but it belongs to
Bi (1) C B(A;). Additionally, changing the origin from . to u, =g 1/x the family
adopts the form

dRy p(_(lnx—§)2> 7

= ex

which is again the normal iR, (8) given in Example 1. The family can be expressed
as a subspace &(u ),

dRy 3 1 _dmRy
s =B(u+) <V®e"> S <\_/®d,u+>’
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whereas the family span is an affine subspadg(af. ),

Ry 1 (¢ 1,9R
da, %) X@(\/@é‘) © <v® dk+> '

5. Bayes theorem is summing information

The following context is inspired by Bayesian statisticgwhver it is also relevant in
likelihood function based statistics. For the observaioansider a measurable space
(2, B(Z)),with B(Z") ac-field on.Z", and a reference measure on it denoted by
Let X = (X1, %2,...,%1) € 2" be the vector of observations modelled by independent
random variables$; with values in 2" and probability law given by the measure
Py € Bp(A), distribution for short, depending on a set of parameflers(6,, 02, . . ., 6k)

with values in a measurable spa@®, #(0©)) of parameters. Denote Wior @ prior
distribution on(©, #(0)), by Pyost the posterior, by

Lx(0)= S ),

the individual likelihood functions, and byx(6) = []iLx(0) the joint likelihood
function. According to the likelihood principle (LeonarddaHsu, 1999), a likelihood
Ly and its scaled versionL, should give the same result in the analysis. This
for functions off is a natural equivalence relation for likelihood functio@®nsider a
reference measure € .# (Pyrior) ON (©,%(0)). Now, two different Bayes spaces are
relevant in this situation:

e The Bayes spadB(1) containing the family{P, : 6 € ©} of distributions for the
observations, beinB € .#Z (A1) on (2", A(Z")).

e The Bayes spacB(7) containing the distributions of the parametgor, Poost
for the reference measuteon (©, %4(0)).

Theorem 11 If the distributions of the familyP, : 6 € ©} are in B(), then L, € B(7),
P,—a.e.

Proof: see appendix.

In this context, the Bayes formula can be written

d rior
dPoost 0) — —T?T (0)MitaLx (0)
o d rior (0 ’
de Jo el iy Ly (0)d7 (6)
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The denominator is a constant not dependin@ paccordingly,

d Ppost
dr

TRt (0) []La(0)

which, using Bayes space operations, simplifies to thewatig theorem:

(0) =8

Theorem 12 (Bayes theorem in terms of Bayes spacel)Py € B(A) and the prior
Porior € B(7) then,®i; Py(x)-a.e.,

n

I:)post =B I:)prior @ @ in (11)
i=1

Bayes theorem has several well-known and interesting tdingglications. Here,
Theorem 12 is an elegant form of Bayes formula: it is a sum ineetor space
and, consequently, Bayesian updating is associative, ecaative, invertible and has
a neutral element (the non-informative experiment hereesgmted by the measuré.
Also, the addition of the prior is invertible, as the priondae subtracted and another
prior can be added. Thus, adding information in terms of Bastatistics is nothing
but summing vectors in a space of information, here repteddoyB(7). This means
that the three densitiéyior, Ly andPyost represent information: before the experiment,
provided by the experiment, and updated from the experinespectively. Furthermore,
Bayes formula as expressed in Theorem 12, admits both poopemproper priors and
improper intermediate posteriors. Also the likelihooddtion of a repeated independent
observation takes the form of a sum:

Corollary 1 In the conditions of Theorem 12,

n
Ly =g @ Ly
i—1

6. Bayes theorem and exponential families

In order to simplify the notation, the natural parametersunfexponential family will
be used instead of the dependence on general paran&(téirs then, arguments of
functions of the parameters will be expressed simply_9'asThe components of the
boldfaced vectors of parameters, statistics and obsengtare denoted with the same
text letters subscripted to indicate component.
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Theorem 13 Let%,i=1,...,n, be repeateﬁd independent observations from a strictly k
parametric exponential famillgxpg ;) (4, 9, 6.7),

~ k
Ps(x) =C(0)-9g(x)- eXp( ZleTj (X)> )

J

then, the joint likelihood J;(@), as a function off, is a k+ 1-parametric family
ExPsr) (7.9, 77,8 ), with g'(6) =1, 8 = (InC(8),8), andT*(X) = (n, 31, T (%))
The family is strictly k-parametric with k< k; < k-+ 1.

Proof: see appendix.
A remarkable fact is that the initial statisticplays the role of the vector of natural
parametersT*, in the resulting exponential family. Also, note that thestfielement

in & is the negative cumulant functiom(@) = —InC(é). Theorem 13 allows the
identification of conjugated families of priors and deresitof observations.

—

Theorem 14 In the conditions of Theorem 13, a prior densifyid?(0) in
Expg(r) (t,9°,T%, é*) generates a posterior density through the Bayes theorem

I:)post —B(7) Lx® I:)priora

which is also irExpB(T)(r,g*,T'*,é*), ie. ExpB(T)(r,g*,'T'*,é*) and
Expg) (4,9, 5,7’) are conjugated families.

Proof: see appendix.

It is well known that, for exponential families of densitie$ observations, an
exponential family of conjugated priors exists such thati$b contains the posteriors
(Leonard and Hsu, 1999). Next theorem goes a little bit frthtating that, regardless
of the prior, the possible posterior densities are in anreléd exponential family.

Theorem 15 If the likelihood function of a multiple observatior &atisfies the condi-
tions of Theorem 13, for any priofpRyr € B(7), the posterior, Bost =g(z) Lz © Pprior, is

in EXpB(T)(T,Pprior(é)af*a é*)
Proof: see appendix.

Next theorem is also a new result for exponential familiepadteriors stating the
converse of Theorem 15.

Theorem 16 Assume that the posterior density is obtained from the Bé&yasula

— — — —

Poost(6) =B(r) Lx(0) ®+ Porior (0), where Byior (0) is the prior and the likelihood func-
tion is Lx(é) =i, in(é). If Ppost(5|2) € ExpB(T)(T,h,é,é), then Lx(_é), as a func-
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tion of X, is inExpg;,(A,1,T,8), for some statisticl (x). If Expg;)(7,h,8,9) is k-
dimensional, theExpg ;) (A, 1,T, é) is k;-dimensional with k< k.

Proof: see appendix.
Corollary 2 A family of A-equivalent distributions is in an exponential family ifcan

only if, for any prior, the family of its posteriors (pertuation of prior and a member of
the family) is an extended exponential family.

Example 4 ConsiderZ., the non-negative integers, as space of observationshand t
counting measure as a reference measure on it, v€{x}) = 1 for any single point
{x} in Z, . Define the two-parametric exponential family

Exp(v,9(X), (61, 02), (T1(X), T2(X)))

with g(x) = (X)), 01 =Ing, Ty =x, T, = §(X), with §(x) = L if x=0 ands(x) = 0
otherwise. A density of this exponential family has the eggion

(X6, 02) = C(,62) -~ -exp(xind +5(62) , ¢ >0, (12)

being the normalising constant

1
exp(02) +expl¢) —1 -

The density (12) is the Bayes-perturbationBfv) of a Poisson density of parameter
¢ by a step-density exp.5(x)), the latter inB;(v). However, the whole family is in
Bp(v) according to Theorem 8, number 5. Note that, fler= 0, the family reduces
to the standard Poisson exponential family. The exporidatigily (12) may be called
zero-inflated Poissofamily (Lambert, 1992) because it can be written

C(¢,02) =

p e ?

X1 ) 92:|n [(l_p)e¢+p] 3

f(X|¢,62) = (1—p)-6(X) +p-

as a mixture of a Dirac and a Poisson distributions, althdugh the latter expression
it is difficult to deduce its exponential character. Thiscarflated Poisson family can
also be expressed as an affine subspa@&of

1
f(X|$,62) =gw) ;@ (In¢ @@)@(ez@ew)),

or, alternatively, takingt = v © (1/x!) as reference measure, the family is a subspace of
B(u)
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f(XM),QZ) —B(u) (In¢®ex)@ (92@66()()) .

In both cases, witl#, = 0, the extended Poisson family is obtained.
A natural question is which is the conjugated family of pr@nsities. Theorem 13
implies that this family is 3-parametric and the densities a

Porior (61, 62) =g €xp(toInC(e%, 6,) + 1101 +1265) ,

where the parametets, t; andt, have the following meaningjp corresponds to the
sample sizet; stands for the total sum of the observatiofis;, andt; is the number
of null observationsy 6(x;). This family of priors contains both proper and improper
priors because thg are arbitrary real numbers. The family of prior densities, a
functions of the natural parameters of the family (12),(i6&g, 62), is in B(Az2). Finally,
note that (12) may be expressed using the measure whosgydensi) ! as a reference.
In this case, the expression (12) remains the same but remtw factorial.

7. Conclusion

Classes of proportionat-finite measures, including probability measures, haverbee
structured as Bayes linear spaces. These classes can &serdpd by densities, includ-
ing probability densities, likelihood functions and impes priors. The group operation,
perturbation, is Bayes updating, thus defining a meanirafdlinterpretable structure.
The affine subspaces are identified with extended expohéatidies, which include
standard probability densities (or measures) and, addillig infinite measures. Stan-
dard theorems of Bayesian statistics are revisited andtsligxtended using this new
algebraic-geometric point of view. The idea that Bayes ttbis the paradigm of in-
formation acquisition is now interpreted as an additionhi@ formal sense, being this
possible because (proper and improper) probability diessiind likelihood functions
share the same Bayes space.

The presented framework permits a new interpretation ofstaedard probability
theory, justifies the use of improper probability densitiad opens up the study of some
subspaces which may have richer structures with a metrieeor @ Hilbert space struc-
ture. The examples presented refer to quite usual probabithodels, like normal and
log-normal distributions; other distributions, althougkll-known and useful in prac-
tice (logistic normal, zero-inflated Poisson) need a motailel mathematical develop-
ment. The presented methodology, when applied to thesepa&anillustrates the new
perspective introduced, namely how to deal with probabitibdels in the framework
of Bayes spaces. In particular, the idea that exponentiailitss constitute an advanced
mathematical tool in mathematical statistics, is hereceduo a very simple model, i.e.
in the new framework they are linear affine subspaces.
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Appendix A. Proofs of theorems

Theorem 4

Proof. Perturbation: Sincé is o-finite, there exists a family, i = 1,...,n, of sets
increasing taQ such thatA(A)) < +. Sinceu andv are in.Z (1), they haver—ae.
finite A-equivalent densitied, and f,. Choose a version of these densities being
everywhere finite and define families of sBfs={w € Q: f,(w) <i},C:={w € Q:
f,(w) < i} increasing tQ. Furthermore, consider the family of s&®s= A NB;NC;

it is also increasing t® and

(uev)(D) :B/D £,6,d2 < IZA(A)) < +oo.
Thus,u & v is o-finite.
Powering: Analogously, consider again the increasing lfarj, as well as the

familiesB; .= {w € Qi ! < f,(w) < i} andG = A NB;. Then,

(@@ u)(ANB) = / fadA < i9A(A) < +oo.

Thus,a ® u is o-finite. O
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Theorem 5

Proof. According to the definition of Radon-Nikodym derivativegpeessions ofp and
® using measures (1), (2), and using the respective dengiigg5), are equivalent.
The operations are well defined on the equivalence classes, $or real constants,
k> anda,

(ki fr D kaf2)(X) = kika(f1(X) f2(x)) =8 (f1 @ f2)(X),
(a0kf)(X) =k§f(x)* =g (a® )(X).
Linear space axioms follow from straightforward calcudas:

e The neutral element is given By=g dA/dA =g 1.
e The opposite (negative) element is given(byf,) =g (1/f,) =g dA/du. O

Theorem 6

Proof. For measures, the equivalence relatiens) does not depend on the reference
measurel; therefore, the quotient se#/ (1) /(=g) is equal to botlB(u) andB(2). In
fact, any measure € .# () is represented iB(A) andB(u) by B-equivalent densities;
i.e.u = kA, impliesdA/du =k, A—ae., and then

dv  dvdAa dv

dndrdu kﬁ (A—ae),
whereA—ae. is equivalent tau—ae. due tou € .# (). Therefore, operations and®,
expressed using densities, give proportional results velxpressed iB(u) or B(A). O

Theorem 7

Proof. Sinceu € .# (M), .# (u) = .# (A). Furthermore(=g)-equivalence classes are
the same in#(u) and in.# (1), and affine equivalence holds since there exists an
affine mapping : B(u) — B(4), given byg(v) :=g) v ©; u, which is linear. Using the
factthatc,u = dA/du, and that any € B(u) has the representatid¢dy /du)(du/dA)

in B(A), linearity is given by:

B dvi\*dvo\  [dviduda " dvyduda
swowmen =os((Gh) Gi) - (maa> dudids

g(v1) g(v2)

=g (@ ®29(v1)) ©29(v2),

where the subscripts @f and® indicate the reference measure of the space where the
operation is carried out. O
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Theorem 8
Proof.

1. u =g v is equivalent tqu(Q) = kv (Q); thereforeu, v are either finite or infinite
and therBp andB, are well defined and they constitute the whole space.

2. For any densities, g, in Bp(A) and for any value & a < 1, the statement is
equivalent to

(a@f)@((l—a)@g):/f“gl‘“dkg/fdl+/gd7c<+oo.

3. Boundedness is preserved by arbitrary powering and npation with bounded
values.

The same holds for upper boundedness as long as the expanepositive.
It follows from the inequalityfg < bf (A—ae.).

It follows from the inequalityf /g < f /b (A—ae.).

(=): v(Q) does not depend oh

(<): A andu areA-equivalent and thep € B(A).

8. If u € By(A), thenby* < du/dA < by, and ifv € By(u), thenb,* < dv/du < by;
combining both expressionéy;b,)~* < dv/dA = (dv /du)(du/dA) < bib, and
thenv € B(A).

9. (=): If v € By(u) with densityf,0< b2 < f <band /[ f du < bu(Q) < +.
(«): v € Bp(u) C B(u) implies+o > [ fdu > b~ 1u(Q), thenu(Q) < +.

10. Similar to the previous statement. O

Noo g A

Theorem 9

Proof. Let ug € ExpB(A,g,f,é) be a measure. By definitiom; is A-equivalent and
ug € B(A). Then, it can be expressed as

with V; =g exp(Tj). Therefore, the exponential family corresponds to the@aBirbspace
of B(1)

gespanVj,j=1,...,k},

where the natural paramete?g a) are the coordinates @f; with respect to the basis
elements/;. a
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Theorem 10

Proof.Letg € She adensity and;j, j = 1,2,...,k, be a basis of the subspase g. Any
elementu € Sis expﬂressed §8=pgP @'}Zl(a,- OVj), th_l:IS spanning exactl$ Then,
u € Expg(A,9,InV,1d), with InV = (InV4,...,InV) andld the identity mapping. The
parametrisation is strict, since the coordinates witheesp a basis are unique. [

Theorem 11

Proof. The statement is proven it is a T-equivalent density of ar-finite andz-
equivalent measur& (x)-a.e. Forf € ©, L, > 0 sincePy € B(A). Thus, it ist-
equivalent. It is inB(7) if it corresponds to ar-finite measure. To prove that, is a
density of ao-finite measure, consider any finite measufre Bp(7). If P(x;, 0) is the
joint probability distribution ofX; and 6 constructed front’ as marginal distribution,
then

dP(x,0)

0 doan

becausé is the conditional distribution and plays the role of a marginal distribution
for 6. Fubini theorem implies'Lydt < + (A-a.e.), or, equivalentlyPs-a.e. Then,
Ly, € B(7') and represents a finite measure (P;-a.e.). According to Theorem 7 on
shift of origin, fromB(7) to B(t'), we getly, =g(r) ux ©- 7' and thudy, € Bp(7). O

Theorem 13

Proof. The likelihood function can be written

Lx(6) =C"(6)- rl exp(ié )
=g(r)C exp(ZGJ [ ]) (13)

If C(@) is in the span of ex@), Lz(é) corresponds to k-dimensional subspace Bf )
with g*(é) 71, 6 =6 andT*=T. Otherwise, taking*(é) =1,6 = (InC(é), 5),
andT*(X) = (n Z 1T(x)), Eq. Lx(8) corresponds to &+ 1)-dimensional subspace
of B(7). In both cases, Theorem 9 implies the statement. O
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Theorem 14

Proof. The family EX[E(T)(T,Q*,f*,é*> is a subspace d(7) becausey* =g 1. Since
subsgaces are invariant under perturbation of elementseo$ubspace, the posterior
Poost(@) is in the subspace. O
Theorem 15

Proof. The IikeIihoode(_é), as a function 0B, is in the extended exponential family

ExpB(T)(T,g*,'T'*,é*) that has been identified as a subspac®(af). Application of
Bayes theorem is a perturbation, i.e. a shifting, and thelres the affine space

EXPg ) (7, Pprior(é),f*, 5*), where the origin coincides witRyior becaus®” =g 1.
O

Theorem 16

Proof. The posterior density in the extended exponential famibxigressed as

Ppost(é) =B(r h@EXp<ZS, ) .
Combining this expression with the Bayes formula, the iik@d function is
. . k
Lx(0) =B(1) (he Pprior(e))@exp ZSj(?)Qj .
=

In B(A) it can be rewritten as

n k
Lx(6) =g(») exp Ti(x)6; | ,
B(2) ;,; i(x)0
whereS;(X) = 3, Tj(x). The existence of the statisti®s comes from the multiplica-

tive form of the likelihood function and the fact that the exgsion should be valid for
any arbitraryn. Therefore,

(5) =g 1- exp(ZlTJ ) ,

where the perturbation &fterms may collapse iky < k terms for equaly’s. O






