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ONE-DIMENSIONAL CONTRACTING SINGULAR HORSESHOE

D. CARRASCO-OLIVERA, C. A. MORALES, AND B. SAN MARTÍN

(Communicated by Bryna Kra)

Abstract. In this paper we prove some kind of structural stability defined
as usual but restricted to a certain subset of one-dimensional maps coming
from first return maps associated to singular cycles for vector fields in man-
ifolds with boundary. The motivation is the stability of the Singular Horse-
shoes introduced by Labarca and Pacifico where an expanding condition on
the singularity holds. Here we obtain analogous result but under a contracting
condition.

1. Introduction

This paper is motivated by [14], where C1 structural stability for vector fields
on manifolds with boundary, called Singular Horseshoe, was proved. To do this is
necessary to prove C1 structural stability for the expanding one-dimensional maps
modeling the dynamic. Under a contracting condition on the singularity involved in
the Singular Horseshoe [25], this is not at all obvious because the one-dimensional
map presents a critical point. Let us state our results in a precise way.

Hereafter we fix two real numbers a, b such that 0 < a < b < 1.

Definition 1.1. Define A as the set of C1-maps f : dom(f) ⊂ R → R satisfying
the following properties:

(i) dom(f) = [0, a] ∪ [b, 1]. Moreover, f is increasing on [0, a] and decreasing
on [b, 1], f(0) = 0 and |Df(0)| > 1, f(1) = 0 and Df(x) = 0 if and only if
x = 1. Additionally f(a) > 1 and f(b) > 1.

(ii) There is a constant αf > 1 and a continuous positive map Hf : [b, 1] → R

with limx→1(x− 1)DHf (x) = 0 such that

f(x) = |x− 1|αfHf (x), ∀x ∈ [b, 1].

Note that any map in A can be perturbed in such a way that the new map
presents a hyperbolic sink. Indeed, consider f ∈ A and δ a small positive real
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Figure 1. A C1-perturbation of f ∈ A with a super attractor.

number. For each n consider cn close to 0 and qn close to 1 such that for all
i, 0 < i < n, f i(cn) < a, fn(cn) = qn and f(qn) = cn. Given c smaller than 1,
take pn close to 1 such that cf(pn) = f(qn) = cn. Note that pn < qn. Moreover,
if c is close enough to 1, we can take p̃n and q̃n with p̃n < pn < qn < q̃n < 1 such
that 2|pn − p̃n| = |qn − pn| = 2|p̃n − qn|. Furthermore, for n large enough, we have
that f(x) < δ and |Df(x)| < δ for all x ≥ p̃n. Take a positive bump function ρ
defined on R such that ρ(x) = 0 for x in the complement of [−2, 2] and ρ(x) = 1
for x ∈ [−1, 1]. Then, for d = qn+pn

2 we can consider ψ : R → [0, 1] given by

ψ(x) = ρ(2 x−d
qn−pn

). Then, the map g (see Figure 1) given by

g(x) =

{
cf(x)(1− ψ(x)) + cnψ(x) x ≤ d,
f(x)(1− ψ(x)) + cnψ(x) x ≥ d

is C1-close to f (namely |g(x) − f(x)| < 2δ and |Dg(x) − Df(x)| < δ(1 + 2K),
where K only depends on the map ρ) and increasing on [0, a] (because g ≡ f at
[0, a]) and Dg(x) ≤ 0 on [b, 1] by construction. Moreover, qn is a super attracting
periodic point for g of period n+ 1.

Now, adding ε(1−x)αf to g for x ∈ [b, 1] we obtain a new map f̃ ∈ A, C1-close to
f exhibiting a hyperbolic sink. The same construction can be used to obtain maps
with many finite or even infinitely many hyperbolic sinks. So, this shows that such
maps are not C1-stable. However, there is another metric for which these kinds of
perturbations are not possible.

As mentioned above, the conditions defining A are imposed so that they are
satisfied by the first return maps associated to Singular Cycles. The following
metric in A retrieves the properties inherited from the proximity of the respective
vector fields:

dA (f, g) = max{sup
x

|f(x)− g(x)|, sup
x

|Df(x)−Dg(x)|,

sup
x

|Hf (x)−Hg(x)|, sup
x

|(x− 1) · (DHf (x)−DHg(x))|,

|αf − αg| : x ∈ [0, a] ∪ [b, 1]}.
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Definition 1.2. We say that f, g ∈ A are topologically conjugated if there is a
homeomorphism h : [0, 1] → [0, 1] such that g ◦ h = h ◦ f . We say that f is A -
structurally stable if there is a neighborhood N of f in (A , dA ) such that each
g ∈ N is topologically conjugate to f .

Main Theorem. Consider f ∈ A such that (
√
|Df |)−1 is a convex map on the

intervals where it is defined. Then, f is A -structurally stable.

As already mentioned, this result is inspired by [14]. The proof there used
the injectivity of the Milnor-Thurston coordinates [21] to construct the conjugacy.
In our case, to prove such an injectivity we will need to show the nonexistence
of sinks or wandering intervals for small perturbations in A . This is not at all
obvious because of the presence of a critical point and our restricted hypothesis
about differentiability, and considering the previous examples. To the best of our
knowledge, this is not a consequence of any result in the literature. Efforts have been
made by a number of authors (see [7], [26], [22], [8], [10], [30], [15], [17], [13], [1], [2],
[18], [23], [3], [12], [16], [19] and [29]) towards proving the nonexistence of wandering
intervals because their appearance complicates the understanding of the dynamics.
They involved some smoothness and other ingredients on the considered maps.
In the present case we only require C1-smoothness perturbations, so wandering
intervals may appear (see [22], [10], [15], [3], [12], [19]: Theorem 2.3, p. 43, [6], [11],
[27] and [5]). Afterward, the structural stability will follow from the arguments in
[14] (see section 4, pp. 344–345), inspired by Guckenheimer and Williams [9] (see
section 2) and Parry [24] (see p. 377).

Finally we would like to acknowledge the referee for pointing out that the theorem

is valid under the more general hypothesis about the convexity of |Df |− 1
2 instead

of the negative Schwarzian derivative condition used in a previous version.

2. Proofs

To achieve our goal we need to recall the Minimum Principle for maps with
negative Schwarzian derivative.

Given a C3 map f ∈ A , the Schwarzian derivative of f at x ∈ dom(f) \ {1} is
defined by

Sf(x) =
D3f(x)

Df(x)
− 3

2

(D2f(x)

Df(x)

)2

.

We will say that f has negative Schwarzian derivative whenever Sf(x) < 0 for all
x �= 1. It is very well known that if a map has negative Schwarzian derivative, so
do all its iterates. Moreover, as D2(|Df(x)|− 1

2 ) = − 1
2 |Df |− 1

2Sf(x), then the strict

convexity of (
√
|Df |)−1 could be seen as a C1 version of the negative Schwarzian

condition.

Lemma 2.1 (Minimum Principle). Let f be a C3 map with negative Schwarzian
derivative and T = [a0, b0] be a closed interval contained in dom(f). If Df(x) �= 0
for all x ∈ T , then

| Df(x) |> min{| Df(a0) |, | Df(b0) |}, ∀x ∈ (a0, b0).

Of course, for maps with negative Schwarzian derivative the derivative of all its
iterates Df i satisfies the Minimum Principle.
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On the other hand, the convexity of (
√
|Df |)−1 on [a0, b0] implies that for all

x ∈ [a0, b0],

| Df(x) |> min{| Df(a0) |, | Df(b0) |}.
Using Lemma 2.1, we can prove that the iterates of f have the same property.
Indeed, Cedervall in his PhD thesis [4] gives a more complete and informative ex-
position of this topic; in particular, see Lemma 3.1 and Proposition 3.1 in Chapter 3.

Lemma 2.2 (Weak Minimum Principle). Let f ∈ A such that (
√
|Df |)−1 is a

convex map on the intervals where it is defined and T = [a0, b0] is a closed interval
contained in dom(f i). If Df i(x) �= 0 for all x ∈ T , then

| Df i(x) |≥ min{| Df i(a0) |, | Df i(b0) |}, ∀x ∈ (a0, b0).

Proof. Take f as in the lemma and fix i. We can approximate f by a C3 map g such
that (

√
|Dg|)−1 is strictly convex. So g has a negative Schwarzian derivative and

gi satisfies the Minimum Principle. Moreover g can be chosen such that gi is very
close to f i. Hence, if we assume that f i does not satisfy the Minimum Principle,
this leads to a contradiction. �

The Minimum Principle will be used to find a lower bound, not depending on i,
for the derivative |Df i(x)| for all x such that f i(x) is far from 1 and 0. A similar
constant was obtained in [20] for the considered maps (see Lemma 3, equation (8),
p. 880).

Lemma 2.3. Let us consider a map f ∈ A such that (
√
|Df |)−1 is convex and let

us consider two real numbers c and d, 0 < c < d < 1. Then there exists a constant
C0 = C0(f, c, d) > 0 such that ∀i ∈ N and x ∈ dom(f i) with f i(x) ∈ [c, d] we have
that

|Df i(x)| ≥ C0.(2.1)

Proof. Fix f ∈ A as in the lemma derivative and two numbers c and d such that
0 < c < d < 1.

Define

C0 = min{c, 1− d}.

Now, given i ∈ N and x such that f i(x) ∈ [c, d], let us consider Ix = [ξ0, ξ1],
the maximal interval containing x where f i is defined. For maximality of Ix we
have that either [0, c] ⊂ f i([ξ0, x]) and [d, 1] ⊂ f i([x, ξ1]), or [d, 1] ⊂ f i([ξ0, x]) and
[0, c] ⊂ f i([x, ξ1]).

In both cases, by the Mean Value Theorem there are ξ̃0, ξ̃1 with ξ0 < ξ̃0 < x <
ξ̃1 < ξ1 such that

| Df i(ξ̃0) | =
l(f i([ξ0, x]))

l([ξ0, x])
≥ l(f i([ξ0, x])) ≥ C0(2.2)

and

| Df i(ξ̃1) | =
l(f i([x, ξ1]))

l([x, ξ1])
≥ l(f i([x, ξ1])) ≥ C0,(2.3)

where l(J) denotes the length for the interval J .
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Using the Minimum Principle (Lemma 2.2), (2.2) and (2.3) we obtain that

|Df i(x)| ≥ min
{
|Df i(ξ̃0)|, |Df i(ξ̃1)|

}
≥ C0;

therefore the lemma follows. �

Figure 2 illustrates the situation for f i for i = 2.

Figure 2. Case f i for i = 2.

Now we will use Lemma 2.3 to obtain a similar conclusion for maps in a neigh-
borhood of f in A . Indeed, we will prove the following lemma.

Lemma 2.4. Let us consider a map f ∈ A such that (
√
|Df |)−1 is convex and

let us consider two real numbers c1 and d1, 0 < c1 < d1 < 1. Then there is
C1 = C1(f, c1, d1) > 0 such that for all N ∈ N there is a neighborhood V1 =
V1(f,N, c1, d1) of f in A such that for all integers l ≤ N , g ∈ V1 and x ∈ dom(gl)
such that gl(x) ∈ [c1, d1] we have that

|Dgl(x)| ≥ C1.(2.4)

Proof. Fix a map f ∈ A such that (
√
|Df |)−1 is convex and c1 and d1 are as in

the statement of the lemma.
Take the real numbers c and d with 0 < c < c1 and d1 < d < 1. It follows

from the definition of the topology of A that for all j ≥ 1 there is a neighborhood
V̄ (j) of f in A such that if g ∈ V̄ (j), w ∈ dom(gj) and gj(w) ∈ [c1, d1], then
w ∈ dom(f j) and

f j(w) ∈ [c, d].(2.5)

To see this, we extend the functions of A to endomorphisms at some interval as
is shown in Figure 3.

Take C0 given by Lemma 2.3 applied to f , c and d as above. It follows from the
definition of the topology of A that for all i ≥ 1 there is a neighborhood Ṽ (i) of f

in A such that if g ∈ Ṽ (i), z ∈ [0, 1], then

|Df i(z)−Dgi(z)| < C0

2
.(2.6)
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Figure 3. Extension of f ∈ A to an endomorphism at the interval.

Now fix an integer N ≥ 1. Define

Ū = Ū (f,N) =
⋂

1≤j≤N

V̄ (j)

and

Ũ = Ũ (f,N) =
⋂

1≤i≤N

Ṽ (i).

Define

V1 = Ū ∩ Ũ .

Taking C1 = C0

2 , let us prove that the neighborhood V1 works. For this we fix an

integer 1 ≤ l ≤ N , g ∈ V1 and x ∈ dom(gl) such that gl(x) ∈ [c1, d1]. In particular,
if g ∈ Ū , then (2.5) implies that f l(x) ∈ [c, d] (taking j = l). Moreover, as in

particular g ∈ Ũ , then (2.6) implies |Df l(x) − Dgl(x)| < C0

2 (taking i = l). As

f l(x) ∈ [c, d], (2.1) in Lemma 2.3 (taking i = l) implies that

|Df l(x)| ≥ C0.(2.7)

Therefore, (2.7) implies that

|Dgl(x)| = |Dgl(x)−Df l(x) +Df l(x)|
≥ |Df l(x)| − |Dgl(x)−Df l(x)|

≥ C0 −
C0

2

=
C0

2
= C1,

which completes the proof. �

Definition 2.5. Let us consider f ∈ A . An f -invariant subset K ⊂ dom(f) is
said to be a hyperbolic set for f if there are constants C > 0 and λ > 1 such that
for every x ∈ K and every n ∈ N,

|Dfk(x)| > Cλn.

We say that f is hyperbolic in K if K is a hyperbolic set for f .
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The following lemma is an easy characterization for compact invariant hyperbolic
sets (e.g., Lemma 2.1, p. 220, [19]).

Proposition 2.6. Let us consider f ∈ A and K an f -invariant compact set. Then,
K is hyperbolic for f if only if for each x ∈ K there exists an integer n = n(x) such
that |Dfn(x)| > 1.

We say that c is a critical point of f ∈ A if Df(c) = 0.

Definition 2.7. Let us consider f ∈ A and c a critical point of f . We say that
f is hyperbolic far away from c if for any δ > 0, f is hyperbolic in the maximal
f -invariant set contained in the complement of a neighborhood of size δ around c.

First of all we note that a map f ∈ A with (
√
|Df |)−1 convex is hyperbolic far

away from 1. In fact, fix a map f ∈ A with (
√
|Df |)−1 convex. For any δ > 0 let

(1− δ, 1] be a neighborhood of size δ around 1. We define

V (δ) = [0, a] ∪ [b, 1− δ],

W k
f (δ) =

{
x ∈ V (δ)|f i(x) ∈ V (δ), i = 0, ..., k − 1

}
, ∀k ≥ 1,

Λf (δ) =
⋂
k≥1

W k
f .

By definition, Λf (δ) is a forward-invariant compact set that does not contain the
critical point 1. For maps in A such that for all i, |Df i| satisfies the Weak Minimum
Principle in Lemma 2.2, Singer’s Theorem (see [19], p. 155; see also [28]) and
Misiurewicz’s Theorem (see [19], p. 231) are still valid, so we have that Λf (δ) is a
hyperbolic set. To show that this property remains valid in a neighborhood of f ,
we follow ideas from Mañe’s Hyperbolicity Theorem.

Lemma 2.8. For every map f ∈ A such that (
√
|Df |)−1 is convex, there are

δ2 = δ2(f) > 0 and a constant C2 = C2(f) > 0 satisfies the following property: for
all 0 < δ < δ2 there are λ2 = λ2(f, δ) > 1 and a neighborhood V2 = V2(f, δ) of f in
A such that if g ∈ V2 and for k ∈ N, x ∈ dom(gk) satisfies that x, g(x), ..., gk−1(x) /∈
(1− δ, 1] and gk(x) ∈ [1− δ2, 1], then

|Dgk(x)| ≥ C2λ
k
2 .(2.8)

Proof. Let us consider a map f ∈ A with (
√
|Df |)−1 convex. Choose δ2 > 0, c1, d1

with 0 < c1 < d1 < 1 and a neighborhood V̄2 of f in A in such way that if g ∈ V̄2

and x ∈ dom(g) satisfy g(x) ≥ 1− δ2, then x ∈ [c1, d1].
Let C1 be as in Lemma 2.4 applied to f , c1 and d1 chosen as above. Let us

consider C̃1 < min{|Df(x)| : x ∈ [c1, d1]}. Shrinking V̄2, we can suppose that for

all g ∈ V̄2, for all x ∈ [c1, d1] then |Dg(x)| > C̃1. Define

C2 = min{1, C1 · C̃1

2
}.

Now fix δ, 0 < δ < δ2. For such a δ we shall find V2 and λ2 as follows:
For all h ∈ A , we define the auxiliary sets

V (δ) = [0, a] ∪ [b, 1− δ],

W k
h (δ) =

{
x ∈ V (δ)|hi(x) ∈ V (δ), i = 0, ..., k − 1

}
, ∀k ≥ 1,

Λh(δ) =
⋂
k≥1

W k
h .
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As we just observed, by Singer’s and Misiurewicz’s theorems we have that Λf (δ)

is a hyperbolic set. From this it follows that there are positive constants Ĉ =

Ĉ(f, δ) > 0 and λ̂ = λ̂(f, δ) > 1 such that for all k ∈ N and x ∈ Λf (δ) one has

| Dfk(x) |≥ Ĉλ̂k.

Then, from the openness of the hyperbolicity we can find a neighborhood Ṽ =

Ṽ (f, δ) of f in A and constants C̃ = C̃(f, δ), λ̃ = λ̃(f, δ), with C̃ > 0 and λ̂ > λ̃ > 1

such that if g ∈ Ṽ and x satisfy gi(x) ∈ V (δ) for all 0 ≤ i ≤ k − 1, then

|Dgk(x)| ≥ C̃λ̃k.(2.9)

From (2.9) we can find K = K(f, δ) ∈ N and λ̂ > λ̂2 = λ̂2(f, δ) > 1 such that if

k ≥ K, g ∈ Ṽ and x satisfy gi(x) ∈ V (δ) for all 0 ≤ i ≤ k − 1, then

|Dgk(x)| ≥ λ̂k
2 .(2.10)

(Just take K = min{k : C̃λ̃k > 1} and λ̂2 such that 1 < λ̂2 < min{λ̃C̃ 1
K , λ̃}.)

Let V1 be the neighborhood of f in A given by Lemma 2.4 for this K.

Let us consider λ2 = λ2(f, δ), 1 < λ2 < λ̂2 such that

λK
2 < 2.(2.11)

We show that the lemma works with V2 = V2(f, δ) = V̄2 ∩ Ṽ ∩ V1 and λ2 as was
chosen.

Fix g ∈ V2, k ∈ N and x ∈ dom(gk) satisfying x, g(x), ..., gk−1(x) /∈ (1− δ, 1] and
gk(x) ∈ [1− δ2, 1].

If k ≥ K, then (2.10) and the definitions of λ2 and C2 imply that

|Dgk(x)| ≥ λ̂k
2 ≥ C2λ

k
2 .(2.12)

If k < K, then (2.4) of Lemma 2.4 because gk−1(x) belongs to [c1, d1], (2.11) and
the definitions of λ2 and C2 imply that

|Dgk(x)| = |Dgk−1(x)| · |Dg(gk−1(x))|
≥ C1 · C̃1

=
C1 · C̃1

2
2

>
C1 · C̃1

2
λK
2

≥ C2λ
k
2 .(2.13)

Finally, (2.12) and (2.13) imply (2.8) of Lemma 2.8. Therefore, the lemma
follows. �

The following lemma shows that points close to the critical point retrieve the
derivative in a very fast way. The arguments to prove it resemble the ones used in
Lemma 1.1, p. 249 in [25].

Lemma 2.9. For every f ∈ A and 0 < C ≤ 1 there are a neighborhood V3 =
V3(f, C) of f in A , constants δ3 = δ3(f, C) > 0, λ3 = λ3(f, C) > 1 and L ∈ N

with CλL
3 > 1 such that for all g ∈ V3, for all x ∈ (1 − δ3, 1), there is an integer

lg(x) > L such that gj(x) /∈ (1− δ3, 1], j = 1, ..., lg(x)− 1 and

(2.14) |Dglg(x)(x)| ≥ λ
lg(x)
3 .
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Proof. Fix f ∈ A and 0 < C ≤ 1. For every η > 0 we consider the neighborhood
for f of size η in A , that is,

Vη = {g ∈ A : dA (f, g) < η}.
Then

∀z ∈ [0, a] ∪ [b, 1], ∀g ∈ Vη, we have |Df(z)| − η ≤ |Dg(z)| ≤ |Df(z)|+ η.

Moreover, we take ε small enough such that

|z| ≤ ε =⇒ |Df(0)| − η ≤ |Df(z)| ≤ |Df(0)|+ η.

Then ∀g ∈ Vη and | z |≤ ε we have that

|Df(0)| − 2η ≤ |Dg(z)| ≤ |Df(0)|+ 2η.

Put

mη = |Df(0)| − 2η,

Mη = |Df(0)|+ 2η.

Because Df(0) > 1 we can choose m,M with 1 < m < Df(0) < M such that

mM
1−αf
αf > 1.

From this, shrinking η if necessary, because αg is close to αf , there is λ̂ = λ̂(f) >
1 depending only on f such that for all g ∈ Vη,

mM
1−αg
αg > λ̂ > 1.(2.15)

Moreover if η is small enough we have that

m < mη < Mη < M.(2.16)

As f(1) = 0 we can choose 0 < δ̂ = δ̂(f) < 1 such that 0 < f(x) < ε
2 for

all x ∈ (1 − δ̂, 1). Shrinking η again, we can assume that 0 < g(x) < ε for all

x ∈ (1− δ̂, 1) and for all g ∈ Vη.

For g ∈ Vη and x ∈ [1− δ̂, 1) we define

(2.17) l = lg(x) = min{j ≥ 1 : gj(g(x)) ≥ ε}.

Note that for all x ∈ (1− δ̂, 1), lg(x) ≥ lg

(
1− δ̂

)
because of the monotonicity of

g in the intervals [0, a] and [b, 1].
To choose λ3 we need to make some estimates. Let us consider g ∈ Vη and

x ∈ (1 − δ̂, 1). Denote z = g(x). By definition of l = lg(x) in (2.17) we have that
z, g(z), ..., gl−1(z) ∈ [0, ε) and

gl(z) ≥ ε.(2.18)

As gl(0) = 0, then (2.16) and the Mean Value Theorem imply that there is
ξ ∈ (0, z) such that

gl(z) = Dgl(ξ)z ≤ M lz.

Replacing this inequality in (2.18) we get

M lz ≥ ε,

that is,

z ≥ εM−l.(2.19)
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By properties of f we have that there exists a positive constant K̂f such that
1

K̂f
≤| Hf (x) |≤ K̂f . Using that |Hf (x) − Hg(x)| < η we obtain that |Hg(x)| <

K̂f + η. Moreover, as g(x) = Hg(x) | x− 1 |αg= z we have that

z ≤ (K̂f + η)|x− 1|αg .

This implies that

| x− 1 |αg−1≥
(

z

K̂f + η

)αg−1

αg

.(2.20)

Then (2.19) and (2.20) imply that

| x− 1 |αg−1 ≥
(

z

K̂f + η

)αg−1

αg

= z
αg−1

αg
1

(K̂f + η)
αg−1

αg

≥
(

ε

K̂f + η

)αg−1

αg (
M

1−αg
αg

)l

.(2.21)

As Hg(1) �= 0 and Dg(x) = |x− 1|αg−1(−αgHg(x) + |x − 1|DHg(x)), shrinking

δ̂, we can choose a positive K̃f such that

|Dg(x)| ≥ K̃f |x− 1|αg−1.(2.22)

Indeed, by hypothesis we have that |αf − αg| < η. |Hf (x)−Hg(x)| < η and

|(x− 1)(DHf (x)−DHg(x))| < η.

Moreover, we can take δ̂ such that |(x− 1)DHf (x)| < ε for all x ∈ [1− δ̂, 1). So we
get

| Dg(x) | = |x− 1|αg−1 | −αgHg(x) + |x− 1|DHg(x) |
≥ |x− 1|αg−1(αg | Hg(x) | −|x− 1| | DHg(x) |)

> |x− 1|αg−1
(( 1

K̂f

− η
)
(αf − η)− η − ε

)

= K̃f |x− 1|αg−1,

where 0 < K̃f < lim(η,ε)→(0,0)(
1

K̂f
− η)(αf − η)− η − ε =

αf

K̂f
.

From the Chain Rule, (2.22) and (2.16) we have

|Dgl(x)| = |Dgl−1(g(x))||Dg(x)| ≥ K̃f |x− 1|αg−1ml−1.(2.23)
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Moreover, the Chain Rule, (2.23) and (2.21) yield

|Dgl(x)| ≥ K̃f |x− 1|αg−1ml−1

≥ K̃f

(
ε

K̂f + η

)αg−1

αg (
M

1−αg
αg

)l

ml−1

=
K̃f

m

(
ε

K̂f + η

)αg−1

αg
(
mM

1−αg
αg

)l

.(2.24)

Using (2.15) and (2.24) we get

|Dgl(x)| ≥ K̃f

m

(
ε

K̂f + η

)αf−1+η

αf−η

λ̂l

= Cε,f · λ̂l,(2.25)

where

Cε,f =
K̃f

m

( ε

K̂f + η

)αf−1+η

αf−η

.

We claim that there exists L0 ∈ N with Cε,f λ̂
L0 > 1 such that l > L0. Indeed,

using (2.19) we obtain that for all x ∈ [1− δ̂, 1),

lg(x) ≥ lg

(
1− δ̂

)
>

ln(ε)− ln(g(1− δ̂))

ln(M)
.(2.26)

Take L0 ∈ N such that Cε,f λ̂
L0 > 1. As f(1) = 0, we can choose η and δ̂ in such

a way that for all g ∈ Vη,

ln(ε)− ln(g(1− δ̂))

ln(M)
> L0.

Then, from (2.26) for all x ∈ [1− δ̂, 1), l = lg(x) > L0, proving the claim.

Take λ3, 1 < λ3 < min{(Cε,f )
1

L0 λ̂, λ̂}. Following the same arguments as above
we obtain an integer L with CλL

3 > 1 such that l > L.
Therefore, (2.25) implies that

|Dgl(x)| ≥ Cε,f λ̂
l

= Cε,f λ̂
L0 λ̂l−L0

≥ λL0
3 λl−L0

3

= λ3
l,(2.27)

The lemma works with Vη for the chosen η and δ3 = δ̂. This ends the proof. �

The following proposition shows that for a map f ∈ A with (
√
|Df |)−1 convex,

times of return to a neighborhood of the critical point have hyperbolic behavior
and that this remains valid for all maps C1-close to f . The proposition recalls the
Quasi-hyperbolicity Theorem for Misiurewicz maps and its extension to an open
neighborhood (see [19], Theorem 6.3, p. 261 and Theorem 6.4, p. 262), but in our
case the neighborhood of f does not depend on the neighborhood of the critical
point as in the before cited theorems.
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Proposition 2.10. Let us consider a map f ∈ A with (
√
|Df |)−1 convex. Then

there are a neighborhood V4 = V4(f) of f in A and constants C4 = C4(f) > 0,
δ4 = δ4(f) > 0, λ4 = λ4(f) > 1 satisfying the following properties: If k ∈ N, g ∈ V4

and x ∈ dom(gk) are such that gk(x) ∈ (1− δ4, 1], then

|Dgk(x)| ≥ C4λ
k
4 .(2.28)

Proof. Fix a map f ∈ A with (
√
|Df |)−1 convex. Let us consider C2 > 0 and δ2

given in Lemma 2.8 applied for f .
Take C4 = min{1, C2}. Applying Lemma 2.9 for f and C = C4 we obtain a

neighborhood V3, the real numbers δ3 and λ3 and an integer L. Choose δ4 such
that 0 < δ4 < min{δ2, δ3}. By the conclusion of Lemma 2.8 applied to δ = δ4, there
are λ2 and a neighborhood V2. Let us consider V4 = V2 ∩V3 and choose λ4 in such

a way that 1 < λ4 < min{C
1
L
2 λ3, λ2}. Note that C

1
L
2 λ3 > 1 because C2 > C = C4.

Now we prove that the proposition works with V4, C4, δ4 and λ4 as chosen above.
Fix g ∈ V4, k ∈ N and x ∈ dom(gk) and such that gk(x) ∈ (1− δ4, 1].
We decompose the orbit {gi(x)}ki=0 into several blocks as follows:

{x = x1, g(x1), ..., g
k1−1(x1)}, {y1 = gk1(x1), g(y1), ..., g

l1−1(y1)},
{x2 = gl1(y1), g(x2), ..., g

k2−1(x2)}, {y2 = gk2(x2), g(y2), ..., g
l2−1(y2) = x3}, ...,

{xm = glm−1(ym−1), g(xm), ..., gkm(xm) = ym = gk(x)},

where k1 is the first integer such that gk1(x1) ∈ (1 − δ4, 1), l1 ≥ L is given by the
conclusion of Lemma 2.9 applied to y1, k2 is the first integer such that gk2(x2) ∈
(1− δ4, 1), and so on.

Notice that k1 + l1 + · · ·+ km−1 + lm−1 + km = k.
Using the Chain Rule Theorem, (2.8) of Lemma 2.8, (2.14) of Lemma 2.9, and

the definitions of C4 and λ4 we obtain

|Dgk(x)| = |Dgkm(xm)|...|Dgk2(y2)||Dgk2(x2)||Dgl1(y1)||Dgk1(x1)|
≥ (C2λ

km
2 )...λl2

3 (C2λ
k2
2 )λl1

3 (C2λ
k1
2 )

= C2λ
k1+···+km
2 (C2λ

l1
3 )...(C2λ

lm−1

3 )

≥ C2λ
k1+···+km
2 λ̂l1 ...λ̂lm−1

≥ C2λ
k
4

≥ C4λ
k
4 .

This proves (2.28) of Proposition 2.10. �

Remark 2.11. Notice that for g ∈ V4, k ≥ 1 and x ∈ (1 − δ4, 1) such that gk(x) ∈
(1− δ4, 1] the proof of Proposition 2.10 gives us:

|Dgk(x)| ≥ λk
4 .(2.29)

Corollary 2.12. Let us consider a map f ∈ A with (
√
|Df |)−1 convex. Then there

exists a neighborhood V5 = V5(f) of f in A such that each g ∈ V5 is hyperbolic far
away from the critical point 1.

Proof. Let us consider a map f ∈ A with (
√
|Df |)−1 convex. Let δ4 and neigh-

borhood V4 be as given by Proposition 2.10. As we just observed before we have
that f is hyperbolic far away from 1, so f is hyperbolic in the maximal f -invariant
set in the complement of (1 − δ4, 1]. By shrinking V4 if necessary we can assume
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that every g ∈ V4 is hyperbolic in the maximal g-invariant set in the complement
of (1 − δ4, 1] (indeed, in the proof of Proposition 2.10, it can be seen that V4 just
satisfies this property). Define V5 = V4. Now take g ∈ V5 and δ < δ4. Then,
for all x in the maximal g-invariant contained in [0, 1 − δ] we have that either
∀k0 > 1, gk0(x) /∈ (1−δ4, 1] or for some k1 > 1, gk1(x) ∈ (1−δ4, 1]. In the first case,
taking k0 big enough we have that |Dgk0(x)| > 1. In the other case, |Dgk1(x)| > 1
(see Remark 2.11). From this and Proposition 2.6 we obtain that g is hyperbolic in
the maximal g-invariant set in the complement of (1− δ, 1]. As δ is arbitrary, then
g is hyperbolic far away from the critical point 1. �

The following theorem is related with nonexistence of wandering intervals. This
old problem goes back to Poincaré’s work dealing with homeomorphisms of the
circle (see [22]). Since then efforts of a number of authors have been directed
towards proving the nonexistence of wandering intervals because their appearance
complicates the understanding of the dynamics.

Theorem 2.13. Let us consider a map f ∈ A with (
√
|Df |)−1 convex. Then there

exists a neighborhood V = V (f) of f in A such that every g ∈ V is hyperbolic
far away from the critical point 1 and the maximal g-invariant set contained in
I = [0, 1] Λg =

⋂∞
i=0 g

−i(I) has no interval.

Proof. Fix a map f ∈ A with (
√
|Df |)−1 convex. Let us consider V4, δ4 and λ4

given by Proposition 2.10. Take a neighborhood V = V5 ⊂ V4 of f in A given by
Corollary 2.12. Now fix g ∈ V . First we observe that g has no sinks. Indeed, by
Corollary 2.12, g is hyperbolic far away from the critical point 1.

Suppose that Λg =
⋂∞

i=0 g
−i(I) contains an interval J . If there are integers

m �= n such that gm(J) ∩ gn(J) has nonempty interior, then g has sinks (see [8],
Lemma A, p. 142) and so we get a contradiction. Therefore, the sequence of
intervals {gn(J)}∞n=0 are pairwise disjoint and cannot accumulate in a sink; i.e. J
is a wandering interval. From this it follows that gn(J) accumulate to 1 and

|gn(J)| → 0 as n → +∞.(2.30)

Let us consider 0 < η < δ4 and an integer n0 in such a way that ∀n ≥ n0,
|gn(J)| < δ4 − η. So, if for n ≥ n0, g

n(J) ∩ (1− η, 1) �= ∅, then gn(J) ⊂ (1− δ4, 1).
As the iterates of J accumulate to 1, there is a sequence nk such that gnk(J) ⊂

(1− δ4, 1). From the Chain Rule Theorem we have

| gnk(J) | = | gnk−n0(gn0(J)) |
= | Dgnk−n0(ξ) || gn0(J) |,

for some ξ ∈ gn0(J) ⊂ (1− δ4, 1).
Because gnk−n0(ξ) ∈ gnk(J) ⊂ [1− δ4, 1] we can apply (2.29) to obtain

| gnk(J) | ≥ λnk−n0
2 | gn0(J) | .

As nk → ∞ we have that

|gnk(J)| → ∞
and so we get a contradiction with (2.30). �

Proof of the Main Theorem. Fix a map f ∈ A with (
√
|Df |)−1 convex. Let us

consider U = V , where V is the neighborhood of f in A given by Theorem 2.13.
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From now on, we follow the classical arguments to prove that two maps on the
interval having Markov partitions are conjugates (see by example [14], Lemma 2,
p. 344]). �

Acknowledgment

The authors want to thank the Instituto Nacional de Matemática Pura e Apli-
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