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Abstract  

 

To evaluate and control the pollution in an urban area, diverse graphic representation 
techniques should be used to map the spatial patterns of the studied pollutants. This is a 
complex task, which is only feasible if a spatial correlation of the variable of interest is 
identified. Moreover, the small scale spatial distribution is unusually determined, despite it is 
fundamental to make a decision from an environmental point of view. 

In this work, the link between the Geographic Information System and Geostatistics is 
proposed to generate pollution maps in urban areas, in which the spatial distribution patterns 
have high resolution to provide the variability at small distances. 
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1. Introducción 

It is known how monitoring atmospheric pollution in urban areas involves mapping 
techniques that assist the decision-maker to describe and quantify the pollution at locations 
where no measurements were available. The preparation of pollution maps is a complex 
task, which is only feasible if a spatial correlation of the variable of interest is identified [1]. 
The existence of a spatial correlation of atmospheric pollutants is not only a condition for an 
optimum interpolation of the data in space in order to generate a map of pollution, but it also 
provides very useful insights on the structure of the air quality patterns. Some studies have 
identified a strong spatial variability of air pollutants [2], [3]. The main goal of interpolation is 
to discern the spatial patterns of atmospheric pollution concentrations by estimating values at 
unsampled locations based on measurements at sample points. Geostatistics provides an 
advanced methodology to quantify the spatial features of the studied variables and enables 
spatial interpolation, kriging [4], [5]. In addition, geographical information systems (GIS) and 
geostatistics have opened up new ways to study and analyze spatial distributions of 
regionalized variables, i.e. distributed continuously on space [6], [7]. Moreover, they have 
become useful tools for the study of hazard assessment and spatial uncertainty [8]. Without a 
GIS, analysis and management of large spatial data bases may not be possible. 

Many air pollution studies have employed distance-weighting methods, e.g. [9], but kriging is 
the only one which incorporates the spatial correlation into its estimation algorithm. Kriging 
has been used more widely [10] due to its many advantages. Although kriging requires an 
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abundance of sample points to be an accurate spatial interpolation method [11], even when 
relative small data sets and not exhaustive samplings are available it is a reliable technique 
for investigating the distribution and sources of pollutants [12. 

To inform decisions regarding, for instance, the protection of public health from elevated 
ozone levels in a urban area, high-resolution maps are necessary. Therefore, the main 
objectives of this paper were to analyze the temporal evolution and characterize the spatial 
distribution of ground ozone levels using geostatistical techniques; incorporate this 
information in a GIS to produce accurate ozone maps; assess the hazard of exceeding some 
limits with a geostatistical basis. 

2. Materials and Methods 

In this work, some results of urban ozone distribution patterns in the city of Badajoz (38º 53' 
12" N, 6º 58' 15" W, 170 meters above mean sea level), a medium-sized ancient town which 
belongs to the Autonomous Community of Extremadura, southwestern Spain, are shown. It 
is the largest (about 140.000 inhabitants) and most industrialized city in this region. 

In Badajoz, there is only one monitoring station, which is continuously measuring ozone 
levels and other pollutants, situated in the northeast of the city (Fig. 1). This station is 
operated by the Department of Environment of the Extremaduran Government. Thus, the 
information provided by this monitoring station is indicative of a ―mean‖ ozone level over the 

town. Since we are interesting in studying the spatial distribution in the town, ground-level 
ozone measurements at different locations have to be obtained. Therefore, an automatic 
portable analyzer, based on UV absorption, was used to obtain air ozone concentration, in 
parts per billion by volume (ppbV). 138 urban locations were chosen as sample points (Fig. 
1), covering the majority part of the city. 

After obtaining all ground-level ozone measurements, the spatial distribution of this pollutant 
in the city was analyzed for each month and later it was necessary to estimate the ozone 
level at other locations where direct measurements were not carried out. Since the factors 
that determine the values of environmental variables are numerous, largely unknown in 
detail, and interact with a complexity that we can not unravel, we can regard their outcomes 
as random. If a stochastic point of view is adopted, then there is not just one value for a 
property but a whole set of values at each point in space. We regard the observed value 
there as one drawn at random according to some law, from some probability distribution. 
This point of view, when the studied variable (ground-level ozone) is considered random and 
distributed continuously on the experimental area is adopted to use geostatistics as an 
estimation technique. It is widely recognized that the statistic approach, geostatistical 
methods or kriging, has several advantages over the deterministic techniques [4], [5]. 

3. Results and Discussion 

During the first phase of the study, data distribution was described using classical descriptive 
statistics (Table 1). For each sampling campaign, the mean and median are very similar 
which is indicative of data coming from a normal distribution. This is ratified by the fact that 
skewness values near zero are obtained. The skewness value is based on the size of the 
tails of a distribution and provides a measure of how likely the distribution will produce 
outliers. Thus, in this work, outliers should be scarce, if they exist, which is important to 
obtain accurate estimates. Although normality is not a prerequisite for kriging, it is a desirable 
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property. Kriging will only generate the best absolute estimate if the random function fits a 
normal distribution. 

 
 

 
 

Fig. 1. Map of Badajoz city (urban area) and sampling locations (138). 

 

Experimental variograms were determined assuming isotropy conditions because with the 
reduced number of sample points, the influence of different directions in space had supposed 
the impossibility to define acceptable directional variograms. 

When the experimental variogram was calculated, a theoretical variogram was fitted to their 
points. It is known how the choice of a particular variogram model implies a belief in a certain 
kind of spatial variability. Possibly, a variable like ground–level ozone is not evenly 
distributed in reduced distances. In these cases, exponential and spherical models are the 
most suitable [4]; the spherical ones were finally chosen. 

 

Table 1. Statistics of the ground-level ozone measurements made in 138 points of the city and all 
sampling campaigns; SD = Standard deviation) 

 May 07 June 07 July 07 August 07 August -2 07 Sept 07 Oct 07 

Mean (ppbV) 33.13 36.21 33.21 39.73 36.41 29.41 25.94 

Median (ppbV) 33.10 36.70 33.10 39.00 37.00 29.10 25.70 

SD (ppbV) 4.25 4.32 3.30 2.57 2.93 3.86 3.65 

Minimum (ppbV) 25.9 26.3 25.3 35.0 27.0 20.9 18.9 

Maximum (ppbV) 43.2 45.7 40.7 47.0 42.0 38.0 33.4 

Skewness 0.03 -0.41 -0.04 0.63 -0.67 0.25 -0.07 

Kurtosis 2.02 2.62 2.65 3.21 3.39 2.23 1.99 
 

In the present study, variograms showed a considerable nugget effect (Table 2), which 
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indicates that ground ozone level variability can occur at a scale smaller than the minimum 
lag distance (around 75 m). All characteristics of the variograms for each sampling campaign 
are shown in Table 2. The maximum distance of spatial dependence, the range, varies 
between 302 m for June, 2007, and 790 m for May and October, 2007. This means, for 
example if June is considered, that sample points 302 m or more distant from each other, are 
spatially independent. This information could be also taken into account for future studies on 
the same topic, if an optimal sampling design is desired. Furthermore, the fact that the 
nugget-sill ratio is moderately high, between 31 and 71% (Table 2), and a mean value 
around 37 %, indicates a moderate-strong spatial dependence between data, because the 
part of the variance due to the nugget effect is not very important, as well as the necessity for 
considering some close samples to properly calculate the nugget effect. 

 
 

Table 2. Theoretical spherical variograms fitted to experimental 
omnidirectional variograms for all sampling campaigns 

 Range (m) Nugget Sill Nugget/Sill (%) 

May 07 473 10,53 19,33 54,47 

June 07 302 4,55 13,86 32,83 

July 07 594 2,81 8,94 31,43 

August 07 617 2,09 6,74 31,01 

August-2 07 690 3,83 7,74 49,48 

Sept. 07 534 7,24 14,03 51,60 

Oct 07 790 9,06 12,79 70,84 
 

Estimated noise levels at unsampled locations were carried out with the ordinary point 
kriging method. The number of observations (neighbours) that were used to estimate the 
value at each location is at least the closer 15 sample points. From the estimated values, the 
distribution of ozone levels in the city of Badajoz can be mapped. Previously, the accuracy of 
estimates and the validity of the prediction errors, the uncertainty, were assessed by means 
of cross validations (Table 3). Thus: the MPE y MSPE are very low and they suggest that 
predictions are quite unbiased; for all sampling campaigns the RMSPE are less than the 
AKSE; this indicates that the variability of the predictions are overestimated, i.e., the 
predictions are, at least, as reliable as the value of the kriging variance indicates. The 
RMSSPE also suggest the same since they are less than one; in general, the kriging 
variances are fair indicators of the variability in the predictions for all cases because the 
differences between RMSPE and AKSE are very small. 

 

Fig. 2 shows some kriged ground-level ozone maps. Areas with higher ozone levels are 
usually those where traffic flow is more intense (near the main avenues, crossroads and 
access to the bridges). The highest concentrations of ozone have not to be found in those 
urban areas where the pollutants that form ozone are emitted. In Badajoz city, where 
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industrial activity is not excessively important, traffic is the main source of ozone precursors, 
so it is expected that nitrogen oxides and VOC are more abundant in areas in which traffic 
flow is more intense. But if there is an abundance of nitrogen oxide, ozone formation is 
suppressed. In consequence, ozone concentration is sometimes low in those areas. This is 
not the case in Badajoz, as it was previously stated. Maybe the fact that the avenues which 
support more traffic are wide, allowing the movement of precursors, prevents nitrogen oxide 
accumulating excessively. 

 

Tabla 3. Cross validation statistics for the estimates for all sampling campaigns using the 
ordinary kriging approach (MPE = mean prediction error; MSPE = mean standardized 
prediction error; RMSPE = root-mean-square prediction error; AKSE = average kriging 
standard error; RMSSPE = root-mean-square standardized prediction error 

 MPE MSPE RMSPE AKSE RMSSPE 

May 07 0.056 0.012 4.24 4.33 0.98 

June 07 -0.069 -0.016 3.69 3.74 0.99 

July 07 0.015 0.005 2.61 2.64 0.99 

August 07 0.064 0.019 2.14 2.27 0.96 

August-2 07 0.058 0.021 2.40 2.55 0.95 

Sept. 07 0.005 0.003 3.48 3.61 0.97 

Oct 07 -0.009 -0.001 3.41 3.47 0.98 
 

 

 
Fig. 2. Spatial distribution of ground-level ozone in Badajoz city for the indicated sampling campaigns. 

 

Although spatial variability seems to be more important during spring-summer, when ozone 
levels are higher, it is also evident during autumn-winter, with lower ground-level ozone, and 
always around the main roads. 

KSD can be mapped similarly to estimates, giving an idea of the quality of the estimates at 
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different places. However, according to Webster and Oliver [13], these maps should be used 
with caution because the reliability of kriging depends on how accurately the variation is 
represented by the chosen spatial model. Thus, if the nugget effect is overestimated, our 
estimates could be more reliable than they appear. In this work, the nugget effect was high 
(Table 2), so we can consider that predictions are, at least, as reliable as the value of the 
KSD indicates. 

Cross validation statistics also confirm the reliability of estimates as previously was 
discussed. KSD maps are similar for all sampling campaigns because the sample locations 
are always the same and the variogram structures are alike. Fig. 3 shows, for instance, the 
KSD map for the sampling campaign of August 2007 to illustrate that the periphery of the 
town, where samples are sparse, has more doubtful estimates. In general, areas with many 
sample points or areas where data were sparse but evenly distributed had the most reliable 
estimates. 

 

 
 

Fig. 3. Map of reliable (kriging standard deviation below 2.5 ppbV, light area) and unreliable (kriging 
standard deviation above 2.5 ppbV, dark area) estimates of ground-level ozone in Badajoz city. 

4. Conclusions 

The pollution in an urban environment must be studied by means of high-resolution maps, 
which are essential tools to properly diagnose and propose control measures with the aim of 
minimizing its effects. In this work, geostatistical techniques are considered to model the 
ambient air ozone distribution over the experimental area. For this task, field measurements 
have to be sufficient to characterize the small-scale variability. 

Since a strong spatial dependence between ozone data is observed, in this work spatial 
correlation is properly characterized using omnidirectional spherical variograms, the 
geostatistical algorithms, particularly the ordinary kriging, provide accurate estimates, as 
cross validation confirmed. Kriged estimates and their associated kriging standard deviations 
were incorporated in a GIS to generate ozone and uncertainty maps, which inform about the 
reliability in predictions. 

Although the real spatial complexity of ozone surfaces can not be captured, the proposed 
techniques provide some reliable surfaces at enough spatial resolution to correctly visualize 
the spatial patterns of this pollutant. Polluted areas in the city have to be delimited. Future 

232                                  



Area: Environment 

 

―Selected Proceedings from the 13th International Congress on Project Engineering‖. 
(Badajoz, July 2009) 

 

actions against ozone should be particularly aimed at reducing the high levels in these 
zones. Consequently, the pollution maps can influence decisions concerning air-quality 
policy, which, in turn, affect the attitudes and behaviors of the general public. 
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