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Application of Bayesian item selection criteria in computerized adaptive 

testing might result in improvement of bias and MSE of the ability 

estimates. The question remains how to apply Bayesian item selection 

criteria in the context of constrained adaptive testing, where large numbers 

of specifications have to be taken into account in the item selection process. 

The Shadow Test Approach is a general purpose algorithm for administering 

constrained CAT. In this paper it is shown how the approach can be slightly 

modified to handle Bayesian item selection criteria. No differences in 

performance were found between the shadow test approach and the modified 

approach. In a simulation study of the LSAT, the effects of Bayesian item 

selection criteria are illustrated. The results are compared to item selection 

based on Fisher Information. General recommendations about the use of 

Bayesian item selection criteria are provided. 

 

One of the basic ideas in CAT is to adapt item selection to the 

examinee's ability in order to measure as precise as possible. Several 

selection rules can be applied to guide this adaptive item selection process. 

The most well-known item selection criterion is maximum Fisher 

information. It is applied in almost all large-scale CAT programs. This 

criterion can be implemented straightforwardly. Moreover, it has been 

shown that the value of the Fisher Information for the whole test is 

asymptotically equal to the inverse of the variance of the ability estimator. 

 In the literature several alternatives have been described. The main 

reason for developing alternatives is that maximum Fisher information 

selects items that perform optimal at the current ability estimate. When the 

first items in the CAT procedure are presented to the examinee, the 

variability in the ability estimate is still considerable large. Therefore, 
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maximum Fisher Information might select items that perform optimally at 

the wrong ability level during the first few iterations. 

 One way to overcome this problem is to apply an interval 

information measure. In Veerkamp & Berger (1997), Fisher Information 

was integrated over a small interval around the ability estimate in order to 

correct for the uncertainty in the estimate. Chang & Ying (1996) applied 

Kullback-Leibler information instead of Fisher information to select the 

next item. The performances of both alternatives were compared to the 

performance of Maximum Fisher information criterion both for 

dichotomous and polytomous item selection and only small improvements 

in measurement precision were obtained for very short tests. For larger 

tests, no significant differences were found. 

In this paper, the focus is on Bayesian alternatives. These criteria 

generally take into account the posterior distribution of the examinee's 

ability for selecting the next item. In van der Linden (1998a), several 

Bayesian item selection criteria were introduced and promising results were 

obtained. Application of these criteria resulted in substantial improvement 

of both MSE and Bias. About the statistical properties of these criteria, it 

can be remarked that when an informative prior is used, 'inward bias' of 

estimators of the ability parameter often occurs for shorter tests. On the 

other hand, the use of an informative prior usually results in a favorable 

mean-squared error. Asymptotically, no differences between Bayesian 

criteria and maximum Fisher information exist. How the actual performance 

turns out in practice depends on many variables, for example the choice of 

prior, the test length, and the item bank. 

 The topic of this paper is how to apply Bayesian item selection 

criteria in the context of constrained adaptive testing. Therefore, several 

Bayesian item selection criteria are introduced. Application of these criteria 

in the context of constrained CAT with shadow tests is described. A 

modified shadow test approach is presented. Two simulation studies were 

carried out. General recommendations about the use of Bayesian item 

selection criteria are given. 

BAYESIA� ITEM SELECTIO� CRITERIA 

As mentioned before, Bayesian item selection criteria take the 

posterior distribution of the ability parameter into account. The posterior 

distribution can be calculated using Bayes theorem 
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where L(θ;u) is the likelihood associated with response vector u, f(θ) is a 

prior distribution for θ, and f(u) is the marginal probability of response 

vector u that serves as a normalizing constant in (1). 

 From the assumption of local independence it follows that after 

administration of (k-1) items 

 

,)()();(
1

1

1

1 ∏
−

=

−
− =

k

i

u

i

u

ik
ii QPL θθθ u  (2) 

 

where Pi(θ) is the probability of a correct response on item i, and Qi(θ) is 

the probability of an incorrect response. As a prior distribution of θ a 

normal distribution is assumed. The normalization constant in (1) can be set 

equal to  
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Substitution of (2) and (3) in (1) gives an expression for the posterior 

distribution after (k-1) items have been administered. Some of the criteria 

that are introduced below are not based on the posterior, but on a point 

estimator that takes the posterior into account. The estimator of choice is the 

expected a posteriori (EAP) estimator. After (k-1) items, this estimator is 

found as 
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The same estimator is also used to report the final scores of the 

examinees. To evaluate the use of Bayesian item selection criteria for the 

problem of constrained adaptive testing, the following item selection 

criteria were applied. 
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Owen’s criterion 

A Bayesian procedure for CAT is described in Owen (1975). Item 

selection is based on the EAP estimator of the ability parameter. The 

difficulty of the k-th item is chosen to satisfy  

 

,|ˆ| 1 δθ <− −kkb
               (5) 

 

where δ is an approximately small constant to be determined. In the 

procedure, bounds were set for the discrimination index a, and guessing 

parameter c. This criterion does not select a unique item. It might even 

happen that no item is selected at all. An approach that solves these 

problems is to minimize δ, such that the expression in Equation (5) is met. 

Bloxom & Vale (1987) generalized Owen's procedure to the case of 

multidimensional adaptive testing. 

 

Maximum Posterior-Weighted Kullback-Leibler Information 

Kullback-Leibler information can also be used for item selection. This 

information measure is based on the distance between two likelihoods over 

the same parameter space. When Kullback-Leibler information is applied in 

the context of adaptive item selection, the purpose is to select items that 

maximize the distance between the true ability θ
*
, and any other value of the 

ability parameter θ. For a single item, Kullback-Leibler information can be 

written as 
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Chang & Ying (1996) showed that for a test on n items Kullback-

Leibler information is equal to the sum of Kullback-Leibler information of 

the individual items. Because of this, the next item to be selected has to 

maximize Kullback-Leibler item information. Since the true ability θ
*
 is 

generally unknown, and the ability parameter θ is unspecified in (6), the 

item information function can not be calculated directly. Chang & Ying 

propose to use posterior-weighted item information at the current ability 

estimate. The criterion for selecting the k-th item is defined as: 
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where the index i runs over the items that have not been administered yet. 

Veldkamp & van der Linden (2002) applied the posterior-weighted 

Kullback-Leibler information criterion to several cases of constrained 

multidimensional adaptive testing. 

 

Maximum Posterior-Weighted Information 

The posterior-weighted information criterion is introduced in van der 

Linden (1998a). This criterion is based on the maximum observed 

information measure. When logistic IRT models are used, the observed 

information measure is equal to Fisher's information measure (Veerkamp, 

1996). A Bayesian criterion is formulated by taking the expectation of the 

information measure across the posterior distribution. The criterion for 

selecting the k-th item is defined as 
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where Ii(θ) denotes Fisher's information measure, that is defined as 
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and i runs over the items in the test that have not been administered yet. 

 

Minimum Posterior Variance Criterion 

For Fisher's information measure it can be shown that the reciprocal 

of this measure is asymptotically equal to the posterior variance. In small-

sample applications it might be preferable to optimize posterior variance 

instead of the posterior-weighted information in a test. When the EAP 

estimator is applied, the posterior variance or uncertainty about this 

estimator can be expressed by 
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When the posterior variance criterion is applied, selecting the k-th 

item comes down to 
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where i runs over the items that have not been administered yet, and ui is the 

expected answer on item i based on 1
ˆ
−kθ . 

 

Posterior Expected Information Measures. 

The previous item selection criteria are based on observed 

information and a posterior distribution of the ability of the examinee. An 

alternative approach would be to take the probability distribution of 

unanswered items into account. In van der Linden (1998a), the maximum 

expected information measure is introduced. After responding (k-1) items, 

the probability distribution of the answers to the next item is described by 

the following posterior predictive probability: 
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The maximum expected information criterion selects the item that 

maximizes the expected observed information in the test, after 

administering the next item. The item is answered correctly )1( =
ki

u  or 

incorrectly )0( =
ki

u , and the EAP estimates are applied to calculate the 

observed information. This item selection criterion can be denoted as 
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where )0,,...,|( 11 =− ki iku uuuI θ denotes Fisher information of a k-item test 

where the k-th item is answered incorrectly. Several other criteria that take 

future responses into account for selecting the next item are introduced in 

van der Linden (1998a), but they showed identical performance. All these 

criteria turned out to result in estimates with smaller MSE and bias, when 

they were compared with item selection based on maximum Fisher 
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Information or maximum posterior-weighted Fisher Information (van der 

Linden, 1998a). 

BAYESIA� CRITERIA A�D THE SHADOW TEST 

APPROACH 

When Bayesian item selection criteria are applied in a practical 

context, different kinds of test specifications have to be met. Three kinds of 

specifications can be distinguished (van der Linden, 1998b, 2005). Some 

specifications deal with item content, item type, answer key, gender bias, or 

ethnical bias. These specifications are generally denoted as categorical 

criteria. Other criteria deal with quantitative specifications like word count 

or time limit. These criteria can be formulated as a function of the items 

involved. Psychometric aspects can also be described as test specifications. 

In fact, they are examples of quantitative test specifications. The aspects can 

be formulated as a function of the items involved. Sometimes, constraints 

that control for inter-item dependencies are imposed. Examples of this kind 

of criteria are enemy constraints, or constraints that deal with item sets. 

 In Veldkamp (1999), it is described how to deal with multiple 

criteria test assembly problems. One strategy is to define targets for each 

criteria and to minimize the weighted deviation of these targets. This 

strategy has been applied successfully by Stocking & Swanson (1993) when 

they developed their weighted deviation model (WDM). However, this 

method allows deviations from the targets, and as a consequence, it can't be 

guaranteed that all specifications are being met. In the shadow test approach 

(STA) one criterion is optimized and bounds are defined for all the others. 

In this way, the STA guarantees that all test specifications will be met, and 

test validity is increased. The STA is a general purpose algorithm for doing 

constrained adaptive testing. Other methods for handling test specifications 

in adaptive testing procedures have been proposed: Multi-stage testing 

(Lord, 1980, Adema, 1990, van der Linden, & Adema, 1998, and Luecht, & 

Nungester, 1998); testlet-based testing (Wainer & Kiely 1987, Wainer, 

Bradlow & Du, 2000, Glas, Wainer & Bradlow, 2000); or item pool 

partitioning ( Kingsbury & Zara, 1991, Segall, Moreno, Bloxom, & Hetter, 

1997). But these procedures are either are not fully adaptive, or are only 

able to handle categorical criteria. 

 The following pseudo-algorithm describes the STA: 

1. Initialize the ability estimator. 

2. Assemble a shadow test that meets the constraints and has maximum 

information at the current ability estimate. 
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3. Administer the item in the shadow test with maximum information 

at the ability estimate. 

4. Update the ability estimate. 

5. Return all unused items to the pool. 

6. Adjust the constraints to allow for the attributes of the item 

administered. 

7. Repeat Steps 2-6 until m items have been administered. 

 

Where m denotes the test length. In Step 2 of the algorithm a shadow 

test is assembled. The assembly model optimizes the amount of information 

in the test, and bounds are set for the test specifications. 

 The STA requires the test assembly problem to be modeled as a 

linear programming model. Both the item selection criterion and the criteria 

that deal with different test attributes have be formulated as linear functions 

of the items. Standard commercial software packages for solving LP-

models can be applied to assemble shadow tests in Step 2 of the algorithm, 

and in Step 3, the best item in the shadow test is selected to be presented to 

the examinee. For an overview of how to formulate specifications as linear 

functions of the items, see van der Linden (1998b, 2005). 

 

Owen’s Criterion 

For some Bayesian item selection criteria, the requirement to be 

formulated as a linear function of the items can be easily fulfilled. Owen's 

criterion is very straightforward to apply. Instead of selecting the k-th item 

to meet the inequality in (5), all unadministered items in the shadow test 

have to meet this constraint. The LP formulation for applying Owen's 

criterion comes down to adding the next constraint to the test assembly 

model  

 

,|ˆ| 1 ikik xb ∀<− − δθ              (14) 

 

where xi is a decision variable that denotes whether item i is selected (xi =1) 

or item i is not selected (xi =0) for the test. A different implementation of 

Owen's criterion would be to minimize δ such that all items in the shadow 

test meet the inequality constraint defined in Equation (14). 
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Maximum Posterior-Weighted KL Information 

Posterior-Weighted KL-information can also be handled by the STA 

The information measure can be formulated as a linear combination of the 

information of the items (Chang & Ying, 1996, Veldkamp & van der 

Linden, 2002): 

 

∑∫
=

−− ⋅
I

i

ikki xdfK
1

11 .)|()ˆ,(max θθθθ u                   (15) 

 

Maximum Posterior Weighted Information 

For maximum posterior-weighted information, the following 

derivation shows how to formulate the criterion as a linear function of the 

items. 

 

.)|()(max

)|())((max

)|())((max

)|()(max

1

1

1

1

1

1

i

I

i

ki

k

I

i

ii

k

testi

i

k

xdfI

dfxI

dfI

dfI

⋅

⇔

⇔

⇔

∑∫

∫ ∑

∫ ∑
∫

=
−

−
=

−
∈

−

θθθ

θθθ

θθθ

θθθ

u

u

u

u

                 (16) 

 

From this derivation it can be concluded that, although calculating the 

integral in the last equation for all items might take some computation time, 

the maximum posterior-weighted information criterion can also be 

implemented in the STA for constrained adaptive testing. 

 

Posterior Expected Information Measures and Posterior Variance 

Application of other Bayesian item selection criteria that either 

incorporate the posterior variance or expectations of future answers is more 

complicated. When posterior expected information measures were described 

(13), only one future answer was taken into account. When an optimal 

shadow test is assembled in Step 2 of the STA, contributions of all 

remaining items have to be added. As a consequence, all possible answer 

patterns to the remaining items and their probabilities have to incorporated 

in the item selection process. When the maximum expected information 
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criterion is applied, the objective function of the LP model for selecting all 

remaining (n-k) items can be formulated as 
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This function could be rewritten into a linear function of the items. 

But after administering k items, the number of possible answer patterns for 

the remaining items is 2
n-k
. Especially during the first few stages of adaptive 

testing, the resulting objective function becomes very complex, hard to 

manage, and time consuming to calculate. Since the time for selecting the 

next item is restricted, assembly of a shadow test in this way does not seem 

to be a suitable approach. 

An additional problem occurs when the minimum posterior variance 

criterion is applied. Because of the square in the equation, this criterion 

results in an information measure that is a non-linear function of the items. 

Therefore, Linear-Programming techniques can not be applied to assemble 

shadow tests that perform optimally with respect to the information 

measure. Since assembly of an optimal shadow test is essential in the STA, 

application of the approach becomes problematic. A rather straightforward 

way to overcome this problem would be to linearize the objective function. 

However, linear approximations of the objective function only provide good 

results, when the first order Taylor approximation is close to the function, 

which is not the case for this criterion. In Veldkamp (2002), it is illustrated 

what happens when the approximation oversimplifies the problem. 

A strategy to prevent these problems is to adapt the STA in order to 

handle non-linear and complicated objective functions. 

STA FOR HA�DLI�G COMPLICATED �O�-LI�EAR 

OBJECTIVES 

A modification of the STA would be to select a single item in every 

iteration of the CAT algorithm that performs optimal with respect to the 

information measure, and to make sure that for this item a feasible shadow 

test exists that meets the constraints. Instead of assembling an optimal 

shadow test, the modified approach only selects the optimal next item. An 

heuristical algorithm for this approach is to select the item that provides 

most information, and to make an attempt to assemble a shadow test. When 
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the attempt succeeds, the item will be administered. When the attempt fails, 

the item that performs next best is selected, and the procedure is repeated 

until an item is found for which a feasible shadow test exists. Items that 

have been rejected, have to be temporarily removed from the item pool, just 

to make sure that they won't be in the list again for selection subsequent 

items. After the candidate completed the test, the rejected items can be 

returned to the pool. 

 A pseudo algorithm for this Modified version of the Shadow Test 

Approach (MSTA) is 

1. Initialize the ability estimator. 

2. Order the unadministered items with respect to their contribution to 

the Bayesian criterion at the current ability estimate. 

3. Iteratively 

a. Select the subsequent item in the list. 

b. Try to assemble a shadow test that contains this item. 

c. When a feasible shadow test is found, proceed to Step 4. 

d. Else remove the item temporarily from the item pool and 

return to Step 3(a). 

4. Administer the selected item. 

5. Update the ability estimate. 

6. Adjust the constraints. 

7. Repeat Steps 2 - 6 until n items have been administered. 

 

The purpose of constrained CAT is to assemble an adaptive test that 

meets all the constraints and performs optimal with respect to the 

information measure at the true ability level of the examinee. The check in 

Step 3(b) guarantees that items are selected that meet the constraints. With 

respect to optimal measurement precision at the true ability level, the 

MSTA differs slightly from the STA. For the STA, optimal assembly of a 

full length shadow test in every iteration can be proven to converge to the 

optimal value for the information measure (van der Linden, 2000). The 

MSTA heuristic only performs optimal for selecting the next item at the 

given ability estimate.  

 

Technical implementation 

When the pseudo algorithm for the MSTA is implemented, the steps 

that need special consideration are Step 2 and Step 3(b). In Step 2 of the 
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pseudo-algorithm, the items are ordered with respect to their contribution to 

the information measure. When items are selected based on a Bayesian 

information measure, calculation is required of posterior distributions or of 

EAP estimates. Evaluation is needed of integrals for which no expression in 

closed form is available. In this paper, the prior distribution of the ability 

parameters is chosen to follow a normal distribution, so the method of 

Gauss-Hermite Quadrature could be applied. 

In step 3(b) of the algorithm, an attempt has to be made to assemble a 

shadow test. Since this shadow test has only to be feasible and need not to 

perform optimal with respect to the Bayesian criterion, the objective 

function can be chosen to be an arbitrary linear function of the items. The 

constraints in the model for assembly of the modified shadow test are 

almost similar to those of the shadow test. The only difference is that a 

constraint is added to make sure that the item proposed for selection is in 

the shadow test; that is, if item i
*
 is evaluated, the constraint (xi*=1) is 

added. As a result, both objective function and the constraints are linear 

functions and 0-1 LP-techniques can be applied. The LP model can be 

imported in optimization software packages like CPLEX (ILOG, 2003). 

These packages employ efficient implementations of implicit enumeration 

algorithms, like the Branch-and-Bound (BAB) algorithm, to find feasible 

solutions to the test assembly problems. 

 

LP-model for modified shadow test 

To formulate the LP model, the following notation will be used: 

 i = 1,…,I items in the pool, 

 k = 1,…,n items in the adaptive test, 

 Sk-1  set of items previously administered, 

 Sc  set of items with categorical attribute c, 

 Sq  set of items with quantitative attribute q, 

  Se  set e of mutually exclusive items. 

  xi decision variable to denote whether the item is in the 

test (xi = 1). 

 

Observe that the test assembly model in Step 3(b) is almost equal to 

the shadow test assembly model (van der Linden & Reese, 1998). The same 

set of constraints has to be met. The differences are that a constraint has to 

be added to make sure that the selected item i
*
 is in the shadow test, and that 
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the objective function can be chosen arbitrarily. Therefore, when the item 

pool does not contain item sets, the model comes down to: 
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where f(.) is an arbitrary function. Equations (19a)-(19c) describe generic 

constraints for specifying categorical attributes, quantitative attributes and 

inter-item dependencies of the test. In (19d), values of the decision variables 

for the administered items are fixed to one. Constraint (19e) guarantees that 

the selected item i
* 
is in the shadow test.  

 

Computational Complexity 

From theory of linear programming it is known that the solution time 

for 0-1 LP problems is not bounded by a polynomial function of the 

problem size (Nemhauser & Wolsey, 1988). On the other hand, it should be 

mentioned that the time needed for solving the problem highly depends on 

how the model is built (Williams,1999). When the general LP formulations 

of the models for the STA and the modified STA are compared, it turns out 

that the model for the modified STA is less complicated. The objective is 

not to find an optimal solution, but to find a feasible solution. Because of 

this, computation time will be reduced. 

 On the other hand, the STA requires one LP model to be solved, 

whereas the number of LP models to be solved for the modified STA is 

unknown in advance. It depends on the quality of the item bank whether a 
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feasible shadow test exists for the subsequent items in the row defined in 

Step 2 of the algorithm. 

 A rather pragmatic approach to reduce the number of LP models to 

be solved when the modified STA heuristic is applied, is to limit the 

number of items that are checked. When no feasible test is found within a 

time limit, for example a time limit based on observed response times, just 

take the next best item from a previous shadow test. The consequence is 

that the selected item might be different from the optimal item. 

�UMERICAL EXAMPLES 

CAT software developed at the University of Twente was applied. 

The software makes calls to the solver in the CPLEX 9.0 package (ILOG, 

2003) to assemble the shadow tests. In the first example, the performance of 

the STA and the modified STA were compared. In the second example 

different criteria were applied to an adaptive version a high-stakes 

admission test. 

 

Comparison STA and MSTA 

An item pool from the ACT Assessment Program was used to 

simulate adaptive test administrations following the STA and the modified 

STA. The item pool consisted of 176 items calibrated under a two-

dimensional version of 2-Parametric Logistic Model (Reckase, 1985). 
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where Pi(θj) is the probability that a person j gives correct answer to item i, 

ai is the vector of slope parameters of item i along the dimensions of the 

ability vector θj, and di is a scalar denoting the easiness of the item. The 

calibration of the item parameters was carried out using the program 

NOHARM (Fraser & McDonald, 1988). The items in the pool were 

classified according to the five content and three skill categories used in the 

ACT Assessment Program to formulate the test specifications: Pre-Algebra 

(PA); Elementary Algebra (EA); Coordinate Geometry (CG); Trigonometry 

(T); Intermediate Algebra (IA); Basic Skills (BS); Application (AP); and 

Analysis (AN). The test consisted of 25 items. 
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 Maximum Fisher information criterion for multiple dimensions 

(Segall, 1996) was applied to select the items (See also Veldkamp, 2002). 

This criterion can be applied for both the STA and the modified STA. Both 

approaches were compared with respect to MSE of the resulting ability 

estimators. 

 A grid of nine points, {-1,0,1 }×{ -1,0,1 }, was applied to discretize 
the two-dimensional space. For each point, 1000 examinees were simulated. 

The resulting MSE's are shown in Figure 1. 

 

 

 

Figure 1: MSE’s for both ability estimates. 

 

 

The modified approach performed slightly better for the first 

dimension, whereas the STA performed better for the second dimension. An 

explanation can be found in the value of the discrimination parameters for 

the different dimensions. The discrimination parameters of the items for the 

first dimension were on average higher than the discrimination parameters 

for the second dimension. The MSTA strictly focuses on selecting the most 

informative item in each iteration. Therefore, it focuses more on the first 

dimension and better MSEs are obtained there. Overall, both approaches 

seem to perform equally well. 

The average time for selecting the next item was smaller for the 

modified approach then for the STA. However, the maximum time needed 

for the modified approach was larger. The maximum time was obtained for 

selecting the last item. At the end of the test, many items were rejected 

before a feasible test was found. 
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Application of Bayesian Criteria to the LSAT 

To compare the different Bayesian criteria, they were applied to a 

condensed adaptive version of the LSAT. The item pool for the admission 

test contained 753 items, that fitted the 3-Parameter Logistic Model 

(3PLM). So the probability that examinee j answers item i correctly can be 

described as 
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where ai denotes the discrimination parameter, bi the difficulty parameter, 

and ci the guessing parameter of item i. In this simulation study, item set 

constraints were ignored. Restrictions about content, item type, minority 

orientation, gender orientation, word count and answer key were present. 

The test contained 50 items. The total number of constraints was equal to 

94. The initial estimate of the ability parameter was set equal to 0ˆ =θ . Both 

MSE and Bias were recorded after 10, 20, 30, and 50 items.  

The method with probabilistic item-ineligibility constraints (van der 

Linden & Veldkamp, 2004, 2007) was used to control for over- exposure of 

the items. The target value for the exposure rates was set at .25. 

The Bayesian criteria were compared with respect to (1) MSE and 

Bias of the resulting ability estimates, and (2) The number of items used. 

Selecting items based on Fisher information was applied to judge the 

performance of the selection rules. 

 In Figure 2, the bias functions are shown. All selection rules show 

inward bias. The bias decreases when test length increases. No differences 

in performance were found between selection of items based on Fisher 

information or on one of the Bayesian selection rules, besides Owen's 

criterion. In this simulation, all criteria performed equally well with respect 

to bias. For small tests (test length = 10), it was possible to distinguish 

between the different item selection rules, but for test lengths larger than 20 

items, hardly any differences were found. It turned out that the different 

selection criteria selected mainly the same group of items. Just, the order in 

which the items were selected differed. 

In Figure 3, the MSE functions are shown. Owen's criterion is 

performing worse than the other criteria. For small tests, test length equal to 

ten, small differences in performance can be observed. No persistent 

differences between the criteria were found, and maximum Fisher 

Information criterion performed comparable to the Bayesian criteria. 
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The second criteria dealt with item pool usage. The exposure rates of 

the items are shown in Figure 4. The maximum exposure rates slightly 

exceed the target of .25. This is because of the probabilistic nature of 

exposure control methods. The only criterion that showed different behavior 

is Owen's criterion. This criterion increased the number of items used. All 

other criteria performed comparably with respect to item pool usage. 

 

 

Figure 2: BIAS for different test lengths. Fisher information (solid 

line), Owen’s criterion (big dotted line), maximum posterior-expected 

KL information (dashed line), maximum posterior weighted 

information (small dotted line), and maximum expected information 

(dashed-dotted line). 

 

 

The reason why Owen's criterion is behaving differently is the way it 

is implemented. As mentioned before, Owen's criterion in Equation (5) does 

not select an optimal item. It just selects an item that fulfils the inequality. 

Therefore, Bias and MSE are larger, and item pool usage is increased. 
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Figure 3: MSE for different test lengths. Fisher information (solid line), 

Owen’s criterion (big dotted line), maximum posterior-expected KL 

information (dashed line), maximum posterior weighted information 

(small dotted line), and maximum expected information (dashed-dotted 

line). 

DISCUSSIO� 

Bayesian item selection criteria turned out to be formulated by rather 

complex functions. Owen's criterion, maximum posterior-weighted 

Kullback-Leibler information, and maximum posterior-weighted 

information could be transformed into linear equations rather 

straightforwardly. Other criteria, like minimum posterior variance and 

posterior-expected information measures, either resulted in very 

complicated linear or in non-linear equations. In general, Bayesian criteria 

that take expectations over a posterior result in linear equations, whereas 

criteria  that  take  posterior   predictive   probabilities   of  future  responses  

into   account   result    in     equations     that     are     difficult    to   handle. 
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Figure 4: Exposure rates of items. Fisher information (solid line), 

Owen’s criterion (big dotted line), maximum posterior-expected KL 

information (dashed line), maximum posterior weighted information 

(small dotted line), and maximum expected information (dashed-dotted 

line). 

 

 

In order to deal with all possible criteria the modified shadow test was 

introduced. In this method, the item selection steps of the STA are 

modified. The modified STA is able to handle both linear and non-linear 

objective functions, because it only focuses on optimal selection of the next 

item. 

About the performance of the modified STA heuristic some remarks 

can be made. The search procedure in the pseudo algorithm of the MSTA is 

rather naive. For example, it does not take into account any information 

gathered about why selection of a certain item does not result in a feasible 

shadow test. Infeasibility analysis (Huitzing, Veldkamp, & Verschoor, 

2005, ILOG, 2003) might reveal which features of the item cause 

infeasibility. Items in the list that have the same features can be skipped in 

the search process. This approach would speed up the algorithm 

considerably. 
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In the second study, no differences in performance between selecting 

items based on maximum Fisher information and Bayesian item selection 

criterion were observed. This result was quite surprising, because in van der 

Linden (1998a), Bayesian criteria outperformed maximum Fisher 

information with respect to MSE even for 30 item tests. An explanation for 

this difference is believed to lie in the regression of the prior on background 

variables used in van der Linden (1998a). Apparently, this regression 

accounts for the differences found. 
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