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GELFAND PAIRS RELATED TO GROUPS OF

HEISENBERG TYPE

LINDA SAAL

Abstract. In this article we collect some known results concerning (general-
ized) Gelfand pairs (K,N), where N is a group of Heisenberg type and K is
a subgroup of automorphisms of N. We also give new examples.

1. Introduction and preliminary results

Let N be a two step nilpotent Lie group and assume that K acts on N by
automorphisms. We denote by K⊲ < N the semidirect product of N and K.

In this note we will describe some known results on (generalized) Gelfand pairs
of the form (K⊲ < N,K), and will also give some new examples in the case that
N is a group of Heisenberg type.

Definition 1. Let K be a compact subgroup of the automorphism group of N .
We say that (K⊲ < N,K) (or (K,N)) is a Gelfand pair if the convolution algebra
L1

K (N) of K−invariant, integrable functions on N is commutative.

Examples.

1. Let us consider N = Rn and K = SO (n), the orthogonal group.

L1
K (Rn) =

{

f : Rn → C radial such that

∫ ∞

0

f (r) rn−1dr <∞

}

2. The Heisenberg group Hn is identified with Cn × R with law (z, t) (ź, t́) =
(

z + ź, t+ t́+ 1
2 Imz.ź

)

Then the unitary group U (n) acts on Hn (by automor-
phisms) by

g (z, t) = (gz, t) (1.1)

Let T n be a maximal torus of U (n) .The pairs (U (n) , Hn) and (T n, Hn) are
Gelfand pairs. To see this, we check a well known criterion for Gelfand pairs: for
each (z, t) ∈ Hn, there exists an automorphism in T n that sends (z, t) → (−z,−t) .
Indeed, let us consider the involutive automorphism τ : (z, t) → (z,−t) and then
compose τ with some g ∈ T n such that g (z) = −z.

The subgroups K of U (n) such that (K,Hn) are Gelfand pairs were determined
by Benson, Jenkins and Ratcliff in [1].
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64 LINDA SAAL

The main ingredients for the proof are a Carcano criterion and a Kac list, which
we now describe. We recall that the irreducible, unitary, representations of Hn are

* Infinite-dimensional representations, parametrized by 0 6= λ ∈ R. The corre-
sponding representation πλ is realized on the Fock space Fλ of entire functions on

C
n, which are square integrable with respect to the measure e−|z|2 . We have that

the polynomial algebra P (Cn) ⊂ Fλ.
* Unitary characters, χw (z, t) = ei〈z,w〉, defined for each w ∈ Cn.
Let us consider K ⊂ U (n) . For each πλ and k ∈ K, let πk be the representation

πk
λ (n) = πλ (kn) . (1.2)

Since K acts trivially on the center of Hn, we have πk
λ ≃ πλ. So for k ∈ K, we can

choose an operator ωλ (k) which intertwines πλ and πk
λ. By Schur Lemma, ωλ is a

projective representation of U (n), called the metaplectic representation.
Explicity

ωλ (k) p (z) = p
(

k−1z
)

(1.3)

Up to a factor of det (k)
1
2 , ωλ lifts to a representation on the double covering of

U (n) .

Theorem 1. (Carcano, see [1]) (K,Hn) is a Gelfand pair if and only if the action
of ωλ on Fλ is multiplicity free, that is, each irreducible (proyective) representation
of K appears in (ωλ, Fλ) at most once.

The Kac list (see [4]) gives precisely the triplets (Kc,W, ρ) whereKc is a complex
group,

ρ : K → GL (W )

is an irreducible representation and the induced action on P (W ) is multiplicity
free.

For p ∈ P (W ), the action is given by

(ρ (g) p) (v) = p
(

ρ
(

g−1
)

v
)

(1.4)

So

Theorem 2. Let K be a connected subgroup of U (n) . Then (K,Hn) is a Gelfand
pair if and only if (Kc,C

n) appears in table1.8, page 415, in [1].

We now introduce the groups of Heisenberg type (see [5]).
Consider two vector spaces V and Z, endowed with inner products 〈, 〉V and

〈, 〉Z , a nondegeneraterate skew-symmetric bilinear form Ψ : V × V → Z, and
define a Lie algebra η = V ⊕ Z by [(v, z) , (v́, ź)] = (0,Ψ (v, v́)) .

For V = R2n and Z = R, there is (up to isomorphism) only one such Ψ, and the
corresponding η is the Heisenberg Lie algebra.

We say that η is of Heisenberg type if Jz : V → V given by

〈Jzv, w〉 = 〈z,Ψ (v, w)〉 (1.5)

is an orthogonal transformation for all z ∈ Z with |z| = 1.
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GELFAND PAIRS RELATED TO GROUPS OF HEISENBERG TYPE 65

A connected and simply connected Lie group N is of Heisenberg type if its Lie
algebra is of type H. Since for |z| = 1, Jz is both orthogonal and skew-symmetric
we have

J2
z = −Id.

So by linearity and polarization we have for z, w ∈ Z

JzJw + JwJz = −2 〈z, w〉 Id. (1.6)

Let m := dimZ and let C (m) be the Clifford algebra C
(

Z,− |.|
2
)

. Then the

action J of Z on V extends to a representation of C (m). It is well known that C (m)
is isomorphic to a matrix algebra, over the real, complex or quaternionic numbers,
for m ≡ 1, 2, 4, 5, 6, 8 ( mod 8). So in this cases C (m) has, up to equivalence, only
one irreducible module. For m ≡ 3, 7 ( mod 8) , C (m) is isomorphic to a direct
sum of two matrix algebras and it has two inequivalent irreducible modules, say
V+ and V−.

We say that η is irreducible or isotypical, if so is V as a representation of C (m) .
Let A (N) be the group of automorphisms of N that acts by orthogonal trans-

formations on η. Kaplan and Ricci raised in [7] the question of when (K,N) is a
Gelfand pair, for some specific subgroups K of A (N) .

The structure of A (N) has been given by Riehm in [12] .

Let U0 =
{

g ∈ A (N) : g|Z = Id
}

, and

let Pin (m) be the group generated by {(−ρz, Jz) : z ∈ Z, |z| = 1} ,

where ρz : Z → Z denotes the reflection through the hiperplane orthogonal to z.
Also denote by Spin (m) the subgroup generated by the even products (ρzρw, JzJw)
Let us denote by l (respectively l+, l−) the multiplicity of the unique irreducible

module ( resp. V+, V−) in V .
Then U0 is a classical group given by the following table

U (l,C) , ............m ≡ 1 ( mod 8)

U (l,H) , ............m ≡ 2 ( mod 8)

U (l+, H) × U(l−, H) , ...............m ≡ 3 ( mod 8)

U (l, H) , ...........m ≡ 4 ( mod 8)

O (2l, R) , ..................m ≡ 5 ( mod 8)

O (l, R) , ..................m ≡ 6 ( mod 8)

O (l1, R) ×O(l2, R) , ..................m ≡ 7 ( mod 8)

O (l, R) .....................m ≡ 8 ( mod 8)

Also we have that Pin (m) and U0 commute, and their intersection contains at
most four elements. Moreover, A (N) = Pin (m) × U0, unless m ≡ 1 ( mod 4) . In
this case A (N) /P in (m) × U0 has two elements.

F. Ricci determined in [11] the groups N for which (A (N) , N) is a Gelfand pair.
We give a sketch of the proof.
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66 LINDA SAAL

For a ∈ Z, |a| = 1, let us consider the complex space Va = (V, Ja) and the Lie
algebra ηa = Ra⊕ Va, with bracket given by

〈a, [v, w]〉 = 〈Jav, w〉 .

Then ηa is a Heisenberg algebra. Denote by Na the corresponding Heisenberg
group. Set K = A (N) and Ka = {k ∈ A (N) : k (a) = a} . Since Ka acts trivially
on the center of Na, it is a subgroup of the unitary group U (Va) . We know that
L1

Ka
(Na) is commutative if and only if the metaplectic action of Ka on P (Va) is

multiplicity free, that is by using the Kac list. Also

Theorem 3. ([11]) L1
K (N) is commutative if and only if L1

Ka
(Na) is commutative.

Theorem 4. ([11]) The groups N such that (A (N) , N) are Gelfand pairs are those
for which

m = 1, 2 or 3,
m = 5, 6 or 7 and V irreducible,
m = 7, V isotypic and dimV = 16.

2. Examples of generalized Gelfand pairs

Coming to the general theory of Gelfand pairs, we recall that the following
conditions are equivalent:

(i) L1
K (N) is commutative.

(ii) The algebra DK (N) of left and K−invariant differential operators on N ,
is commutative.

(iii) For each irreducible, unitary representation π of K⊲ < N, the space of
vectors fixed by K is at most one dimensional.

The notion of Gelfand pair was extended to non compact, unimodular subgroups
K of a unimodular Lie group G.

Given a representation (π,H) of a Lie group G, we say that v is a C∞−vector
if the map

g → π (g) v

is infinitely differentiable. We denote by H∞ the space of C∞−vectors and by
H−∞ the dual space of H∞ .

The elements of H−∞ are called distribution vectors. The action π on H induces
a natural action on H−∞ , given by

〈π−∞ (g)µ, v〉 = 〈µ, π∞ (g) v〉 (2.1)

for v ∈ H∞.

Definition 2. We say that (G,K) is a generalized Gelfand pair if for each irre-
ducible, unitary representation π of G, the space of distribution vectors fixed by K
is at most one dimensional.
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GELFAND PAIRS RELATED TO GROUPS OF HEISENBERG TYPE 67

A nice survey on the subject is in [14]. In particular, there are given examples
of pair (G,K) such that DG (G/K) is commutative but (G,K) is not a generalized
Gelfand pair, contrasting with the compact case.

In [10], Mokni and Thomas considered the cases (K,Hn) where K is a subgroup
of U (p, q) ⊂ Aut (Hn) , p+ q = n, extending the Carcano criterion. Indeed, their
result states that for K ⊂ U (p, q) , (K,N) is a Gelfand pair if and only if the
restriction of ω to K is multiplicity free.

Later on we will comment the idea of the proof.
With F. Levstein we considered in [8] the pairs (K,N) where N is of Heisenberg

type and K is roughly the group of automorphisms that preserves the decomposi-
tion η = V ⊕ Z.

We have that

K = Spin (m) × U,

(direct product), where U =
{

g ∈ Aut (N) : g|Z = Id
}

is given by the following list
(see [13]):

Sp (l,R) , ............m ≡ 1 ( mod 8)

Sp (l,C) , ............m ≡ 2 ( mod 8)

(U (l+, l−) ,H) ...............m ≡ 3 ( mod 8)

(Gl (l) , H) , .......m ≡ 4 ( mod 8)

SO∗ (2l) , ..................m ≡ 5 ( mod 8)

O (l, C) , ..................m ≡ 6 ( mod 8)

O ((l+, l−) , R) , ..................m ≡ 7 ( mod 8)

Gl (l, R) .....................m ≡ 8 ( mod 8)

Remark 1. U0 is the maximal, compact subgroup of U and when V is irreducible
and m ≡ 3, 5, 6, 7 ( mod 8) one has U = U0.

For the classical Heisenberg groupHn, that is, form = 1, we have U = Sp (n,R).

Theorem 5. ([8]) Assume that N is irreducible. Then (K,N) is a generalized
Gelfand pair if and only if 1 ≤ m ≤ 9.

To give a sketch of the proof we begin by describing the representations of
K⊲ < N. According to Mackey theory (see [9]), these are given in terms of the
representations of N.

The irreducible, unitary, representations of a group of Heisenberg type N are:
* Infinite -dimensional representations, parametrized by the non zero elements

of the centre Z : for 0 6= a ∈ Z, |a| = 1, the corresponding representation πa is
realized on the Fock space Fa of entire functions on (V, Ja) .

* Unitary characters, χv (z, w) = ei〈w,v〉, defined for each v ∈ V .
The representations of K⊲ < N coming from characters of N are irreducible,

unitary representations of K⊲ < V.
As observed in [10], since V is an abelian group, (K,V ) is a generalized Gelfand

pair and so the space of distribution vectors fixed by K is at most one dimensional.
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68 LINDA SAAL

Then, in order to determine when (K,N) it is a generalized Gelfand pair, it is
enough to consider only those representations of K⊲ < N associated to πa, for
a ∈ Z.

Let Ka = {k ∈ K : k (a) = a} ,
We observe that

Ka = Spina (m)U ,

where Spina (m) is generated by {JbJc : b ⊥ a ⊥ c, |b| = |c| = 1}.
Since the elements of Spina (m) are orthogonal transformations which commute

with Ja, Ka ⊂ Sp(V, Ja) = {g ∈ Gl (V ) : gtJag = Ja}. Also Sp(V, Ja) is the group
of automorphims of the Heisenberg group Na = Ra⊕ V , which fix the centre Ra.

According to [9], the representations of K⊲ < N “coming” from πa are induced
by those of Ka⊲ < Na. So we introduce the notion of induced representation:

Let H be a subgroup of Lie group G, and let (ρ, Vρ) a unitary representation of
H. Set

C (G;Vρ) =
{

f : G→ Vρ continuos : f(gh) = ρ(h−1)f(g)
}

for all g ∈ G, h ∈ H, and
∫

K/H |f(x)|
2
dx <∞.

Then IndG
H(Vρ) is the completion of C (G;Vρ) , and the action of G is by left

translations.
Moreover, a C∞–vector of IndG

H(Vρ) is an infinitely differentiable function f ∈
C (G;W ) (see [16], page 373.)

Theorem 6. (see [8], cfr [11]) (K,N) is a generalized Gelfand pair if and only if,
for each a ∈ Z, (Ka, Na) is a generalized Gelfand pair.

Sketch of the proof.
Let (ρ, Vρ) be an irreducible representation of Ka⊲ < Na and assume that T is

a distribution vector of Vρ, fixed by Ka.
We know that (π,Hπ) := IndKN

KaN (Vρ) is an irreducible representation of K⊲ <
N.

We define µ : H∞
π → C by

〈µ, f〉 :=

〈

T,

∫

Spin(m)

f

〉

(2.2)

For a non zero distribution vector T and v ∈ Vρ such that 〈T, v〉 6= 0, we construct
some fv 6= 0 such that

〈

T,

∫

Spin(m)

fv

〉

6= 0

Let us see that µ is π(K)−invariant. We recall that the action of π on Hπ is by
left translations. For u ∈ U,

〈µ,Luf〉 =

〈

T,

∫

Spin(m)

Luf

〉

.
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Since Spin (m) commutes with U, we have
∫

Spin(m)
Lufdk =

∫

Spin(m)
f(uk)dk =

∫

Spin(m) f(ku)dk = ρ(u−1)
∫

Spin(m) f(k)dk. So by the U−invariance of T we have
〈

T,
∫

Spin(m) Luf
〉

=
〈

ρ−∞(u)T,
∫

Spin(m) f
〉

=
〈

T,
∫

Spin(m) f
〉

Finally if h ∈ Spin(m), 〈µ,Lhf〉 =
〈

T,
∫

Spin(m) Lhf
〉

=
〈

T,
∫

Spin(m) f
〉

by the left invariance of the integral.
Replacing T by Tj and choosing vj 6= 0 such that 〈Tj, vj〉 6= 0, the above

argument shows that there exist two non zero distribution vectors, fixed by K.
They are linearly independent: indeed, if aµ1+bµ2 = 0 then 0 = 〈aµ1 + bµ2, f〉 =

〈

aT1 + bT2,
∫

Spin(m) f
〉

for all f ∈ C∞(K; ρ). But the above construction implies

that aT1 + bT2 = 0 and so a = b = 0.
Conversely, let (π,Hπ) be an irreducible representation of K⊲ < N and assume

that there exist two linearly independent distribution vectors µ1, µ2 fixed by K. So
this representation can not be induced by a character. So

Hπ = IndK⊳N
Ka⊳Na

(Vρ).

Define Tj ∈ V −∞
ρ by (2.2) :

〈

Tj,

∫

Spin(m)

f

〉

:= 〈µj , f〉 .

We prove that Tj is well defined. Moreover that Tj is defined on a dense subset
of V∞

ρ , which is the subspace generated by the vectors ρ (ψ) v, ψ ∈ C∞ (KaNa) ,
and finally, that Ti are Ka-invariant and linearly independent. �

Now we have reduced the problem to the pairs (Ka, Na) .
Again by Mackey theory, the irreducible unitary representations of Ka⊲ < Na

are of the form

ρ = τ ⊗ ωλπλ, (2.3)

where πλ acts on the Fock space Fλ and τ is an irreducible representation of Ka.
Thus

ρ/Ka = τ ⊗ ωλ

It is proved in [10] that τ ⊗ ωλ has r linearly independent distributions vectors if
and only if r is the multiplicity of τ in ωλ.

According to this, we are interested in determining when the restriction of the

metaplectic representation ω ↓
Sp(V,Ja)
Ka

is multiplicity free, where Ka = Spina (m)×
U.

If N is an irreducible group of type H , the corresponding subgroup U is :
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SL (2,R) , ............m ≡ 1 ( mod 8)

SL (2,C) , ............m ≡ 2 ( mod 8)

H
∗, .....................m ≡ 3 ( mod 8)

SU (2) ×R∗, .......m ≡ 4 ( mod 8)

U (1) , ..................m ≡ 5 ( mod 8)

O (1) , ..................m ≡ 6 ( mod 8)

O (1) , ..................m ≡ 7 ( mod 8)

R
∗, .....................m ≡ 8 ( mod 8)

When m ≡ 3, 5, 6, 7 ( mod 8) , U is compact and, by the results proved in [11], we
know that (Spin (m) × U, ) is a Gelfand pair if and only if m = 5, 6, or 7.

Thus, we will study the restriction of the metaplectic representation ω ↓
Sp(V,Ja)
Ka

for m ≡1, 2, 4, 8 ( mod 8) .
To this end we will use the Kac list mentioned before.
Moreover, let us denote by T the one dimensional torus, and by Pr (Cn) , r ∈ N,

the space of homogeneous polynomials of degree α with |α| = r. Then T acts on
Pr (Cn) by eirt, that is, by degree.

Remark 2. Let H be a subgroup of U (n) . Then H acts without multiplicity on
each Pr

(

Cl
)

, r ∈ N, if and only if the action of HC × C∗ on P (Cl) is multiplicity
free, if and only if HC × C∗appear in the Kac list.

Remark 3. We recall that there are two models for the representations of the
Heisenberg group. The Fock model realized on the space of holomorphic functions

on (V, Ja) which are square integrable with respect to the measure e−|z|2dz and
the Schroedinger model realized on L2

(

RN
)

, N = dim V
2 . An intertwining op-

erator sends the monomials zα = zi1
1 z

i2
2 ...z

il

N to the Hermite function hα (x) =

hi1 (x1)hi2 (x2) ...hiN
(xN ) where hi (t) = Hi (t) e−

t
2

2 and Hi (t) is the Hermite
polynomial of degree i.

Write V = RN ⊕ JaRN . Then the metaplectic action of SO (N) on Pr (V )
corresponds to the natural action of SO (N) on Pr

(

RN
)

.
The Mellin transform is the Fourier transform adapted to R>0 and it is defined

by

Mf (λ) =

∫ ∞

0

f (s) siλ ds

s
(2.4)

The action of R>0 on L2(R>0,
ds
s ) given by δtf (s) = f (ts) decomposes, via the

Mellin transform, as

L2(R>0,
ds

s
) =

∫ ∞

−∞

Fλdλ (2.5)

where Fλ is the C−vector space generated by siλ.
We observe that the module generated by gr (s) = sre−s, r ∈ N , is L2

(

R>0, s
−1ds

)

.
Indeed, by a well known Wiener theorem, it is enough to prove that Mgr (s) 6= 0
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for all s, but this holds since Mgr (λ) =
∫

sre−ssiλ ds
s = Γ (r − 1 + iλ) 6= 0, where

Γ denotes the gamma function.
m ≡ 4 (8) .
First, we have to understand how Spina (m)×U is embedded in Sp (Ja, V ) and

the corresponding metaplectic action. In this case

U = Gl (1,H) = SU (2) × R>0, and

V = VΛ ⊕ JaVΛ,

where VΛ is the real spin representation. Thus

Spina (m) → SO (N)

via the spin representation. Also, Gl (1,H) → Sp (V, Ja) as q → aq =
(

Rq, Rq−1

)

.
Thus SU (2) acts by right multiplication by q and the metaplectic action of

Spina (m) × SU (2) on L2
(

RN
)

is the natural one of SO (N) .

Setting L2
(

RN , dx
)

= L2
(

SN−1, dσ
)

⊗ L2
(

R>0, r
n−1dr

)

, we have that the
action of R>0 is given by

ω (at) f (x) = t
N

2 f (tx) , t ∈ R>0, x ∈ RN . (2.6)

This last action is equivalent to δtf (s) = f (ts) on L2(R>0,
ds
s ).

Assume that the action of Spina (m)×SU (2) is multiplicity free on each Pr (V )
and let Vα be an irreducible representation of Spina (m) × SU (2) in Pr (V ). For

p ∈ Vα, we consider the function p (x) e−
|x|2

2 = p
(

x
|x|

)

|x|
r
e−

|x|2

2 . Since SO (N)

acts on p
(

x
|x|

)

in the natural way, and the action of R>0 on sre−s generates a

space isomorphic to L2(R>0,
ds
s ), we conclude that the Ka- module generated by

Vα is Vα ⊗ L2
(

R>0, s
n−1ds

)

. So

ω ↓
Sp(V,Ja)
Ka

= ⊕α

∫ ∞

−∞

α⊗ eiλtdt

and the decomposition is multiplicity free.
The converse follows the same lines.
Since m ≡ 4 (8), we have that V is a complex irreducible Spina (m) × SU (2)-

module. By looking at the Kac list, we know that the action of Spina (m)×SU (2)×
T on P (V ) is multiplicity free only for m = 4. This case corresponds to the action

of GL (2,C)×SL (2,C) on C2 ⊗C2 and the decomposition of ω ↓
Sp(V,Ja)
Ka

was given

in [2].
m ≡ 0 (8) .
In this case U = R∗ and the action is given by

ω (at) f (x) = |t|
N

2 f (tx) (2.7)

We observe that −I ∈ Spina (m) ∩ U. Thus the action of Ka on L2
(

RN
)

is the
same action of Spina (m)×R>0 and we repeat the argument of the above proof to

conclude that ω ↓
Sp(V,Ja)
Ka

is multiplicity free only for m = 8.

m ≡ 1 (8)

Rev. Un. Mat. Argentina, Vol 50-2



72 LINDA SAAL

In this case U ≃ Sl (2,R) and Ka ≃ Spina (m) × Sl (2,R) . Also, V can be
decomposed as Spin (m)− module in an orthogonal direct sum

V = VΛ ⊕ JaVΛ

where VΛ is the real spin representation of Spin (m). So dimVΛ = N and Spina (m)
is embedded in SO (N). But, as Spina (m)−module,

VΛ = VΛ+ ⊕ VΛ−

where VΛ+,VΛ− are the half spin representations. Thus

Spina (m) →֒ SO

(

N

2

)

× SO

(

N

2

)

→֒ SO (N)

Besides, Sl (2,R) is embedded in Sp (V, Ja) as

(

a b
c d

)

→

(

aI −bQ
cQ dI

)

,

where Q = Qt, QQt = I ( see [6].)
It is well known that (see [15])

ω ↓
Sp(V,Ja)
SO(N)×Sl(2,R)= ⊕kVkΛ ⊗Dl(k) (2.8)

where VkΛ denotes the irreducible representation of SO (N) on the harmonic poly-
nomials of degree k on VΛ, and Dl(k) is a discrete series representation of SL (2,R)

and l (k) = k
2 + N

4 denotes the lowest K-type. Also

VkΛ ↓
SO(N)

SO(N

2 )×SO(N

2 )
= ⊕r,sVrΛ+ ⊗ VsΛ− , (2.9)

where the sums runs over the integers r, s such that k − r − s is an even, non
negative integer .

We consider two possibilities for m.
Case m 6= 9.
We have that as SO

(

N
2

)

-modules, Pr (V +) = VrΛ+⊕V(r−2)Λ+⊕V(r−4)Λ+⊕... and

Pr (V −) = VrΛ− ⊕V(r−2)Λ− ⊕V(r−4)Λ− ⊕ ....As SpinC (m− 1)×C
∗ does not appear

in the Kac list, we deduce that there exists r for which the action of Spina (m) on
Pr (V +) can not be multiplicity free. Thus there exists an irreducible representation
α that appears in V(r−2i)Λ+ and in V(r−2j)Λ+ , for some i, j. Then Vα⊗VrΛ− appears

in V(r−2i)Λ+ ⊗ VrΛ− and in V(r−2j)Λ+ ⊗ VrΛ− concluding that VkΛ ↓
SO(N

2 )×SO(N

2 )
Spina(m)

is not multiplicity free.
Case m = 9.
In this case, VjΛ± is irreducible for all j and the action of Spina (m) on Pr (V +)

is multiplicity free.

ω ↓
Sp(V,Ja)
Ka

is still multiplicity free and the proof together with the corresponding
decomposition was given in [2].

m ≡ 2 (8)
In this case U ≃ Sl (2,C) and we can assume m ≥ 10. Then Ka ≃ Spina (m) ×

Sl (2,C) and as Spina (m)− module

V = VΛ ⊕ JaJbVΛ ⊕ JaVΛ ⊕ JbVΛ
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where a is orthogonal to b, and VΛ denotes its real spin representation. Since
dimVΛ = N

2 , Spina (m) is embedded in SO
(

N
2

)

. Besides, Sl (2,C) is embed-

ded in Sp (V, Ja) as

(

a b
c d

)

→

(

aI −bQ
cQ dI

)

, where a, b, c, d belong to C =

{α+ βJaJb s.t. α, β ∈ R} .
Adams and Barbasch proved that the restriction of ω to O

(

N
2 ,C

)

× Sl (2,C)

is multiplicity free and decomposes as ω ↓
Sp(V,Ja)

O(N

2
,C)×Sl(2,C)

=
∫

⊕
Pλ(L2

(

RN
)

)dµ (λ) ,

where Pλ(L2
(

RN
)

) ≃ πλ ⊗ πλ. Moreover they gave explicitely the correspondence

πλ → πλ. D. Barbasch pointed to us that we can consider a tempered repre-
sentation πλ of SL (2,C), and in that case, the restriction to SO

(

N
2 ,R

)

of the
corresponding πλ is not multiplicity free.

Indeed, let πλ be a tempered representation of SL (2,C) then πk := πλ is a
unitary principal series of SL (2,C) with lowest K-type, the k + 1−dimensional
irreducible module of SU (2) .

The corresponding πk := πλ is the unitary principal series of O
(

N
2 ,C

)

with

lowest K-type the irreducible representation of SO
(

N
2 ,R

)

given by the harmonic
polynomials on VΛ of degree k.

We proved that the restriction of πk to SO
(

N
2 ,R

)

is not multiplicity free. First

we recall that if O
(

N
2 ,C

)

= O
(

N
2 ,R

)

AN denotes the Iwasawa decomposition,

then the commutator M of A in O
(

N
2 ,R

)

is a maximal torus of it. Thus, by
Frobenius reciprocity, the multiplicity of the representation with highest weight
2kΛ in πk, [πk : V2kΛ] is equal to m2kΛ (kΛ) , the multiplicity of the weight kΛ in
V2kΛ.

We compute m2kΛ (kΛ) by using Kostant multiplicity formula (see [3]).

Proposition 1. (see [8])

m2kΛ (kΛ) =

(N
4 + j − 1

j

)

for even k = 2j, 2.10

m2kΛ (kΛ) = 0 otherwise

�
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