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Duality results involving functions associated to nonempt y
subsets of locally convex spaces

C. Zălinescu

Abstract. In many papers on consumer theory and production analysis duality results between profit,
revenue, cost, input, output and shortage functions are established. This functions are associated to certain
subsets ofRn. The aim of this paper is to study in a systematic way such duality results in locally convex
spaces and to derive them under minimal hypotheses.

Resultados sobre dualidad mediante funciones asociadas a s ubconjuntos
no vacios de espacios localmente convexos

Resumen. En muchos artı́culos sobre teorı́a del consumo y análisis de la producción, se establecen
resultados de dualidad entre beneficios y costes, e inversiones y rendimientos, proponiéndose diversas
funciones de insuficiencia asociadas a ciertos subconjuntos deR

n. El objeto de este trabajo es el estu-
dio sistemático de dichos resultados de dualidad en espacios localmente convexos, y su obtención bajo
condiciones mı́nimas.

1 Introduction

In the sequel(X, τ) is a nontrivial separated real locally convex space with topological dualX∗; X∗ is
endowed with the weak-star topologyw∗ := σ(X∗, X). SoX∗ becomes a separated locally convex space
whose topological dual is (identified with)X . Forx ∈ X andx∗ ∈ X∗ we set〈x, x∗〉 := x∗(x). In the case
X is just a real linear space we can seeX as a separated locally convex space whose topology is generated
by the family of all semi-norms defined onX ; in this situation the topological dual ofX coincides with
the algebraic dualX ′ of X . We denote byR the set of real numbers,R+ := [0,∞[, R− := ] −∞, 0] and
P := ]0,∞[, where∞ := +∞.

ConsiderA,B ⊂ X andΓ ⊂ R (similar forX replaced byX∗ or other locally convex space). We set

A+B := { a+ b | a ∈ A, b ∈ B }, ΓA := { sa | s ∈ Γ, a ∈ A };
of course,A + B = ∅ if A = ∅ orB = ∅ andΓA = ∅ whenΓ = ∅ or A = ∅. Moreover, fors ∈ R we
setsA := {s}A and forx ∈ X we setx + A := {x} + A. We denote byiA or icrA, intA, clA or A,
convA andaff A the intrinsic core, the interior, the closure, the convex hull and the affine hull ofA ⊂ X ,
respectively; moreover,convA := cl(convA) andaffA := cl(aff A). ToA ⊂ X we associate the sets

A0 := { x∗ ∈ X∗ | 〈x, x∗〉 ≥ −1 ∀x ∈ A },
A+ := { x∗ ∈ X∗ | 〈x, x∗〉 ≥ 0 ∀x ∈ A }, A− := −A+,

A# := { x∗ ∈ X∗ | 〈x, x∗〉 > 0 ∀x ∈ A \ {0} }.
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Note thatA0 is a (w∗-) closed convex set containing0, A+ is a (w∗-) closed convex cone andA# is a
convex cone (if nonempty). For∅ 6= A ⊂ X the bipolar theorems give

A00 = conv(A ∪ {0}) = conv([0, 1]A), A++ = A−− = conv(R+A).

These formulas give the possibility to recoverA using the above polarity operations under certain conditions
onA: A = A00 if (and only if)A is a closed convex set containing0 andA = A++ if (and only if)A is a
closed convex cone.

The asymptotic cone of the nonempty setA ⊂ X is

A∞ := { u ∈ X | ∃(ti)i∈I ⊂ P, ∃(xi)i∈I ⊂ A : ti → 0, tixi → u } ;

whenX is a normed vector space we can take sequences instead of nets. WhenA is a closed convex set we
have thatA∞ =

⋂
t>0 t(A− a), wherea ∈ A. We set∅∞ := {0}.

Recall that forf : X → R := R ∪ {−∞,∞} the domain off is the setdom f := { x ∈ X |
f(x) < ∞} and the epigraph off is the setepi f := { (x, t) ∈ X × R | f(x) ≤ t }; f is proper
if dom f 6= ∅ and f(x) > −∞ for everyx ∈ X . The conjugatef∗ : X∗ → R of f is defined by
f∗(x∗) := sup { 〈x, x∗〉 − f(x) | x ∈ X }; f∗ is convex and weakly-star lower semicontinuous (lsc for
short) andf∗ is proper iff f is proper and minorized by a continuous affine functional (inwhich case
epi f∗∗ = conv(epi f)). We denote byf the functionf : X → R for which epi f := cl(epi f); then
f(x) = lim infx′→x f(x′). Furthermore, we use the notation[f ≤ t] := { x ∈ X | f(x) ≤ t } for t ∈ R,
and similarly for[f = t], [f ≥ t], [f < t], [f > t]. If g : X → R is another function then the convolution
of f andg is the functionf�g : X → R defined by(f�g)(x) := inf { f(u) +e g(x− u) | u ∈ X } (the
sum “+e” is defined in the next section).

2 Gauges and scalarization functions

LetA ⊂ X be an arbitrary set. First we associate toA the following two functions

σA, ςA : X∗ → R, σA(x∗) := sup
x∈A

〈x, x∗〉 , ςA(x∗) := inf
x∈A

〈x, x∗〉 ,

with the conventionssup ∅ := −∞ andinf ∅ := ∞; henceσ∅ = −∞ andς∅ = +∞. The functionσA is
the support function ofA. It is obvious that

ςA(x∗) = −σA(−x∗) ∀x∗ ∈ X∗; (1)

moreoverσA = σconvA, ςA = ςconvA and

convA = {x ∈ X | 〈x, x∗〉 ≤ σA(x∗) ∀x∗ ∈ X∗ }
= {x ∈ X | 〈x, x∗〉 ≥ ςA(x∗) ∀x∗ ∈ X∗ } .

The above formulas show that we can recoverA knowingσA or ςA whenA is a (nonempty) closed convex
set.

Denoting byιA the indicator function ofA ⊂ X , that is,ιA : X → R is defined byιA(x) := 0 for
x ∈ A andιA(x) := ∞ for x ∈ X \ A, it is clear thatσA := ι∗A := (ιA)∗. WhenA is a nonempty setσA
is a properw∗-lsc sublinear functional.

ToA ⊂ X we associate also the gaugesµA, ϑA, νA, θA : X → R defined by

µA(x) := inf {λ > 0 | x ∈ λA } , ϑA(x) := sup {λ > 0 | λx ∈ A } ,
νA(x) := sup {λ > 0 | x ∈ λA } , θA(x) := inf {λ > 0 | λx ∈ A } ;
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henceµ∅ = θ∅ = +∞ andν∅ = ϑ∅ = −∞. Note thatµA is the well known Minkowski functional
associated toA; in Functional AnalysisµA is considered mostly whenA is an absorbing convex set in
which caseµA is a finite-valued sublinear function. Shephard’s input andoutput functions are of typeνA
andµA with A subsets ofRn+. For some properties ofµA andνA see f.i. [12]. In [5] one speaks aboutθA
as the extended Farrell measure; moreover, in [5] one discusses arguments in favor of and against convexity
axioms in DEA (Data Envelopment Analysis).

Note that the functionsθA, µA are finite atx ∈ X \ {0} if and only if x ∈ PA. Moreover,µA =
µ]0,1]A ≥ 0, ϑA = ϑ]0,1]A, νA = ν[1,∞[A, θA = θ[1,∞[A ≥ 0,

µA(tx) = tµA(x), νA(tx) = tνA(x) ∀x ∈ X, ∀t ∈ P,

θA(tx) = t−1θA(x), ϑA(tx) = t−1ϑA(x) ∀x ∈ X, ∀t ∈ P (2)

and
µA(x) ≤ νA(x), θA(x) = 1/νA(x), ϑA(x) = 1/µA(x) ∀x ∈ PA

with the conventions1/∞ := 0 and1/0 := ∞. In fact

µA(x) =
1

0 ∨ ϑA(x)
, 0 ∨ ϑA(x) =

1

µA(x)
, θA(x) =

1

0 ∨ νA(x)
, 0 ∨ νA(x) =

1

θA(x)
(3)

for everyx ∈ X , wheres ∨ t := max{s, t} for s, t ∈ R. We use also the conventions

0 ·e ∞ := ∞ ·e 0 := ∞, 0 ·e (−∞) := (−∞) ·e 0 := 0,

0 ·h ∞ := ∞ ·h 0 := 0, 0 ·h (−∞) := (−∞) ·h 0 := −∞

(the indexese andh are coming from epigraph and hypograph, respectively). We also use the conventions

(−∞) +e (+∞) := (+∞) +e (−∞) := +∞, (−∞) +h (+∞) := (+∞) +h (−∞) := −∞

(s+ t being defined as usual in the other situations).
As for other operations on sets, one may ask when and how we canrecover the setA knowingµA, νA,

θA or ϑA. We have

A = { x ∈ X | µA(x) ≤ 1 } = { x ∈ X | ϑA(x) ≥ 1 } if A = clA = [0, 1]A, (4)

A = { x ∈ X | νA(x) ≥ 1 } = { x ∈ X | θA(x) ≤ 1 } if A = clA = [1,∞[A. (5)

In fact, instead of askingA = clAwe can assume thatA is radially closed, or more precisely, thatA∩Rx is
closed for everyx ∈ X ; moreover, in such a case, the non zero finite values of these functions are attained.

Having now the setA ⊂ X and the elementk ∈ X \ {0} we consider the function

ϕA,k : X → R, ϕA,k(x) := inf{ t ∈ R | x ∈ tk −A },

and its counterpart

ψA,k : X → R, ψA,k(x) := sup{ t ∈ R | x ∈ tk +A };

henceϕ∅,k = +∞ andψ∅,k = −∞. Note thatϕA,k(x) > −∞ andψA,k(x) < ∞ for everyx ∈ X if
k /∈ −A∞. Moreover,

ϕA,sk = s−1ϕA,k, ψA,sk = s−1ψA,k ∀s ∈ P,

A ⊂ B ⇒ [ϕB,k ≤ ϕA,k, ψA,k ≤ ψB,k] , (6)

ψA,k = ψA+R+k,k, ϕA,k = ϕA+R+k,k, (7)

A+ R+k ⊂ [ψA,k ≥ 0], −A− R+k ⊂ [ϕA,k ≤ 0] (8)
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and

ψA,k(x) = −ϕ−A,−k(x) = −ϕA,k(−x) ∀x ∈ X. (9)

For this reason it is sufficient to studyϕA,k or ψA,k. A detailed study of the functionϕA,k in the caseA
closed andA = A+ R+k is performed in [9, Section 2.3]; other properties ofϕA,k are established in [13].

It is known and easy to prove that

ϕA,k(x+ tk) = ϕA,k(x) + t, ψA,k(x + tk) = ψA,k(x) + t ∀x ∈ X, ∀t ∈ R.

Of course, ifA is closed (or more generally,A is closed in the directionk, that is,{ t ∈ R | x + tk ∈ A }
is closed inR for everyx ∈ X) andϕA,k(x) ∈ R thenx ∈ ϕA,k(x)k −A, that is, the finite values ofϕA,k
are attained. Moreover, ifA+ R+k is closed then

A+ R+k = { x ∈ X | ϕA,k(−x) ≤ 0 } = { x ∈ X | ψA,k(x) ≥ 0 }.

The functionϕA,k was introduced by Gerstewitz (Tammer) and Iwanow in [8] and used by Chr. Tammer
and her collaborators, as well as by D. T. Luc and others, mainly for scalarization of vector optimization
problems; the framework was that of an ordered topological vector space. Luenberger [11, Def. 4.1] con-
sidered (practically) the same function, under the name of shortage function, in the context of production
analysis (X beingR

n andA a convex subset ofRn+) and Artzner et. al. [2] considered it in the context
of mathematical finance (X being a space of Lebesgue integrable functions andA the corresponding pos-
itive cone). More historical facts about the use of the functionsϕA,k, ψA,k in Functional Analysis and
Mathematical Economics are given by A. H. Hamel in [10].

In production analysis the conditionA = A + R+k is not granted. Because sometimes the results are
not established in very precise terms in this context, the next three statements refer to the case whenA
might be different ofA + R+k. In the sequel we shall omitk if confusions cannot arrive (mainly in the
proofs), that is, we shall write simplyϕA instead ofϕA,k andψA instead ofψA,k.

Proposition 1 Assume thatA ⊂ X is closed,K ⊂ X andk ∈ X \ {0}. If

A = (A+ R+k) ∩K, (10)

then
A = { x ∈ K | ψA,k(x) ≥ 0 } = { x ∈ K | ϕA,k(−x) ≤ 0 }. (11)

PROOF. If A = ∅ then clearly (11) holds. Assume thatA 6= ∅. The inclusionA ⊂ { x ∈ K | ψA(x) ≥ 0 }
is clear. Takex ∈ K with ψA(x) ≥ 0. If ψA(x) = 0, sinceA is closed, we have thatx = x+ψA(x)k ∈ A.
Otherwise there existst > 0 such thatx − tk ∈ A. Thenx = x − tk + tk ∈ A + R+k, and so, by (10),
x ∈ A. �

WhenK is a cone andk ∈ K condition (10) is implied by the condition(A + K) ∩ K = A, while
in the case−k ∈ K condition (10) is implied by (A − K) ∩ K = A. Note that in [1] one uses sets
Li ⊂ R

r andPi ⊂ R
s with the properties(Li + R

r
+) ∩ R

r
+ = Li —called free disposability for inputs—

and(Pi − R
s
+) ∩ R

s
+ = Pi —called free disposability for outputs.

As seen in (8), the set[ψA ≥ 0] includes always the setA+R+k, and so it might be different ofA even
if A is closed and satisfies (10). TakeK := R

2
+ ⊂ X := R

2, k := (−1,−1), A := [0, 1] × [0, 1]; then
[ψA ≥ 0] = A+ R+k 6= A. It is clear that the hypotheses of Proposition1 are satisfied. Relation (2) in [7]
could give the impression thatA = [ψA ≥ 0] for A a closed convex set without askingA = A + R+k.
As observed in (6) we have thatA ⊂ B ⊂ X impliesψA ≤ ψB. Applying the previous proposition with
K = X , if A andB are closed sets (in the directionk) such thatA = A + R+k andB = B + R+k, then
A ⊂ B if and only ifψA ≤ ψB.

Proposition 2 Assume thatk ∈ X \ {0} andAi ⊂ X satisfies(10) for everyi ∈ I ( 6= ∅). Then
A :=

⋂
i∈I Ai andA′ :=

⋃
i∈I Ai satisfy(10), too.
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PROOF. SinceAi ⊂ K for everyi ∈ I, we have thatA, A′ ⊂ K. HenceA ⊂ (A + R+k) ∩ K and
A′ ⊂ (A′ + R+k) ∩ K. Obviously,(A + R+k) ∩ K ⊂ (Ai + R+k) ∩K = Ai for everyi ∈ I, and so
(A + R+k) ∩K ⊂ A. Let x ∈ (A′ + R+k) ∩K. Thenx = a′ + tk ∈ K for somea′ ∈ A′ andt ≥ 0.
Hence there existsi ∈ I with a′ ∈ Ai, and sox ∈ K ∩ (Ai + R+k) = Ai ⊂ A′. The conclusion follows.

�

Condition (10) will be used later on, too.

Proposition 3 Let I be a nonempty set andAi ⊂ X for everyi ∈ I. Then

ψ∪i∈IAi,k = sup
i∈I

ψAi,k, ϕ∪i∈IAi,k = inf
i∈I

ϕAi,k, ψ∩i∈IAi,k ≤ inf
i∈I

ψAi,k, ϕ∩i∈IAi,k ≥ sup
i∈I

ϕAi,k.

Moreover, ifK ⊂ X is closed and(Ai + R+k) ∩K = Ai (that is,Ai verifies(10)) for everyi ∈ I, then

ψ∩i∈IAi,k = inf
i∈I

ψAi,k, ϕ∩i∈IAi,k = sup
i∈I

ϕAi,k. (12)

In particular, ifAi = Ai + R+k for everyi ∈ I then(12) holds.

PROOF. BecauseA :=
⋂
i∈I Ai ⊂ Aj ⊂ ⋃

i∈I Ai =: A′ for j ∈ I we have thatψA ≤ ψAj
≤ ψA′ for

j ∈ I. This implies thatψA ≤ infi∈I ψAi
≤ supi∈I ψAi

≤ ψA′ . On the other hand it is clear that

{ t ∈ R | x− tk ∈
⋃

i∈I

Ai } =
⋃

i∈I

{ t ∈ R | x− tk ∈ Ai },

whenceψA′ = supi∈I ψAi
. Similarly,ϕA′ = infi∈I ϕAi

.
Assume now thatK is closed and(Ai + R+k) ∩K = Ai for everyi ∈ I. Considerx ∈ X ands ∈ R

such thats < infi∈I ψAi
(x). Hence, for everyi ∈ I we haves < ψAi

(x), and so there existsti > s such
thatx− tik ∈ Ai ⊂ K. Sets := inf{ ti | i ∈ I } ≥ s. Hencex− sk = x− tik + (ti − s)k ∈ Ai + R+k
for everyi ∈ I. Moreover, we have thatx − sk ∈ clK = K. Hencex− sk ∈ (Ai + R+k) ∩K = Ai for
everyi ∈ I, and sox− sk ∈ A. This shows thatψA(x) ≥ s ≥ s. HenceψA = inf i∈I ψAi,k.

A similar argument yieldsϕA = supi∈I ϕAi,k. �

3 Duality relations involving the functions σA, ςA, θA and ϑA

First we establish formulas forςA(x∗) with x∗ ∈ A+.

Proposition 4 LetA ⊂ X and setÃ := conv([1,∞[A). Then for everyx∗ ∈ A+ one has

ςA(x∗) = inf { θA(x) · 〈x, x∗〉 | x ∈ PA }
= inf { θA(x) · 〈x, x∗〉 | x ∈ A }
= inf

{
θA(x) ·e 〈x, x∗〉 | x ∈ A++

}

= inf
{
θ eA(x) ·e 〈x, x∗〉 | x ∈ A++

}
.

(13)

PROOF. If A = ∅ (13) holds taking into account our conventions. Assume thatA 6= ∅. Let x∗ ∈ A+.
Then

ςA(x∗) = inf { 〈x′, x∗〉 | x′ ∈ A }
= inf { t 〈x, x∗〉 | t > 0, x ∈ X, tx = x′ ∈ A }
= inf { t 〈x, x∗〉 | t > 0, x ∈ PA, tx ∈ A }
= infx∈PA [〈x, x∗〉 · inf { t > 0 | tx ∈ A }]
= inf { θA(x) · 〈x, x∗〉 | x ∈ PA } .
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For the second equality one uses (2), while the third is a rewriting of the first one because forx ∈
A++ \ PA we have thatθA(x) = ∞ and〈x, x∗〉 ≥ 0. It is clear thatA+ = Ã+ andςA(x∗) = ς eA(x∗) for

x∗ ∈ A+. Hence the last equality of (13) follows from the previous one replacingA by Ã. �

The next result establishes an estimate forςA(x∗) whenx∗ ∈ X∗.

Proposition 5 Let∅ 6= A ⊂ X . Then

ςA(x∗) ≤ inf { θA(x) | x ∈ PA, 〈x, x∗〉 = 1 } (14)

for everyx∗ ∈ X∗, the inequality being strict forx∗ ∈ (X∗ \A+) ∪ (A+ ∩A−). Moreover, if0 /∈ A then

ςA(x∗) = inf { θA(x) | x ∈ PA, 〈x, x∗〉 = 1 } = inf { θA(x) | x ∈ [x∗ = 1] } (15)

for everyx∗ ∈ A#.

PROOF. Forx∗ ∈ A+ (14) follows immediately from (13). If x∗ /∈ A+ thenςA(x∗) < 0 ≤ λ(x∗) :=
inf { θA(x) | x ∈ PA, 〈x, x∗〉 = 1 }; if x∗ ∈ A+ ∩ A− thenςA(x∗) = 0 < ∞ = λ(x∗). Assume that
0 /∈ A and fixx∗ ∈ A#. Since〈x, x∗〉 > 0 for everyx ∈ PA, using (2) we may take〈x, x∗〉 = 1 in the
second term of (13), getting so (15). �

Assuming that0 /∈ A, the natural question is if (15) is true forx∗ ∈ A+ \ A− (⊃ A#). We give an
affirmative answer under some additional conditions.

Proposition 6 LetA ⊂ X \ {0} be a convex set withiA 6= ∅. Then

ςA(x∗) = inf { θA(x) | x ∈ PA, 〈x, x∗〉 = 1 } = inf { θA(x) | x ∈ [x∗ = 1] } ∀x∗ ∈ A+ \A−.

PROOF. SetA0 := iA. ThenA+
0 = A+, ςA0

= ςA andθA0
(x) = θA(x) for everyx ∈ PA0. Moreover,

A+ \A− ⊂ A#
0 . The first two assertions follow from the fact that(1− t)x+ ty ∈ iA for x ∈ iA, y ∈ A and

t ∈ [0, 1[. SinceA0 ⊂ A it is clear thatθA0
≥ θA. Takex = sx with s ∈ P andx ∈ A0, andθA(x) < t.

Then there existst ∈ ]0, t[ with tx ∈ A. Thenrtx+(1−r)x =
(
rt + (1 − r)s−1

)
x ∈ A0 for all r ∈ ]0, 1[.

HenceθA0
(x) ≤ rt+ (1 − r)s−1 for r ∈ ]0, 1[. Lettingr → 1 we getθA0

(x) ≤ t < t. Hence our claim is
true. For the last claim takex∗ ∈ A+ \ A− and assume that〈x0, x

∗〉 = 0 for somex0 ∈ A0. Takex ∈ A.
Then there existss > 0 such thatx′ := (1+ s)x0− sx ∈ A. It follows that0 ≤ 〈x′, x∗〉 = −s 〈x, x∗〉 ≤ 0,
whence〈x, x∗〉 = 0. Hence−x∗ ∈ A+, a contradiction.

Using Proposition5 for A replaced byA0 we obtain

ςA(x∗) ≤ inf { θA(x) | x ∈ PA, 〈x, x∗〉 = 1 } ≤ inf { θA(x) | x ∈ PA0, 〈x, x∗〉 = 1 } = ςA0
(x∗)

for everyx∗ ∈ A#
0 ⊃ A+ \A−. The conclusion follows. �

The next result is a kind of converse of Proposition6.

Proposition 7 LetA ⊂ X \ {0} be a nonempty closed convex set such thatA = [1,∞[A, that is,A is
semi-conic. ThenA∞ = cl(PA). Moreover, for everyx ∈ A∞ \ (−A∞) one has

θA(x) = sup
{
ςA(x∗) | x∗ ∈ A+, 〈x, x∗〉 = 1

}
. (16)

PROOF. We have thatx + sy = (1 + s)
(

1
1+sx + s

1+sy
)
∈ A for all x, y ∈ A ands ≥ 0 becauseA is

convex and[1,∞[A ⊂ A. HenceA ⊂ A∞, and socl(PA) ⊂ A∞. On the other hand, foru ∈ A∞ we have
that there exist the nets(xi)i∈I ⊂ A and(ti)i∈I ⊂ P with ti → 0 andtixi → u. It follows thatu ∈ cl(PA).
HenceA∞ = cl(PA).

First observe that forsx ∈ A andx∗ ∈ X∗ with 〈x, x∗〉 = 1 we have thats = 〈sx, x∗〉 ≥ ςA(x∗).
This proves the inequality≥ in (16) for everyx ∈ X . Takex ∈ A∞ \ (−A∞) and0 < s < θA(x); this
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is possible becauseθA(x′) > 0 for everyx′ ∈ X (A being closed and0 /∈ A). Thensx /∈ A. Using a
separation theorem we getx∗ ∈ X∗ andr ∈ R such that

〈sx, x∗〉 < r ≤ 〈y, x∗〉 ∀y ∈ A. (17)

SinceA = A + A∞ we obtain that〈u, x∗〉 ≥ 0 for all u ∈ A∞, that is,x∗ ∈ (A∞)+ = (PA)+ = A+.
Becausex ∈ A∞ we have that〈x, x∗〉 ≥ 0, and sor > 0. If 〈x, x∗〉 > 0 we may (and do) assume
that 〈x, x∗〉 = 1. From (17) we obtain thats < r ≤ ςA(x∗). Assume now that〈x, x∗〉 = 0. Because
x ∈ A∞ \ (−A∞), there existsx∗ ∈ A+

∞ = A+ such that〈x, x∗〉 = 1. Thenx∗t := tx∗ + x∗ ∈ A+ and
〈x, x∗t 〉 = 1 for t ∈ R+. Moreover,ςA(x∗t ) ≥ tςA(x∗) + ςA(x∗) ≥ tr + ςA(x∗) > s for t > 0 sufficiently
large. Hence (16) holds. �

Of course, in the conditions of Proposition7, if −x ∈ A∞ then〈x, x∗〉 ≤ 0 for everyx∗ ∈ A+, and
so (16) does not hold (the term in the right hand side of (16) is−∞).

Note that the supremum in (16) could be not attained. To see this consider

A :=
{

(x, y) ∈ R
2 | x ∈ [0, 1], y ≥ 1 −

(
2x− x2

)1/2
}
∪ ([1,∞[ × R+) .

ThenA∞ = R
2
+ = A+, ςA(a, 1) = 1 + a− (1 + a2)1/2 < 1 = θ(0, 1) for everya ≥ 0.

Proposition 8 Let∅ 6= A ⊂ X . Then

σA(x∗) = sup {ϑA(x) · 〈x, x∗〉 | x ∈ [x∗ > 0] ∩ PA }
= sup {ϑA(x) ·h 〈x, x∗〉 | x ∈ [x∗ ≥ 0] ∩ PA }
= sup {ϑA(x) ·h 〈x, x∗〉 | x ∈ [x∗ ≥ 0] ∩A }
= sup

{
ϑA(x) ·h 〈x, x∗〉 | x ∈ [x∗ ≥ 0] ∩A++

}

= sup {ϑA(x) | x ∈ PA, 〈x, x∗〉 = 1 }
= sup {ϑA(x) | x ∈ X, 〈x, x∗〉 = 1 } > 0

(18)

for everyx∗ ∈ X∗ \A−. Moreover, if0 ∈ convA then for everyx∗ ∈ X∗ one has

σA(x∗) = 0 ∨ sup {ϑA(x) | x ∈ X, 〈x, x∗〉 = 1 } . (19)

PROOF. Note first thatσA(x∗) > 0 if and only if x∗ ∈ X∗ \ A−. Let x∗ ∈ X∗ \ A−; then there exists
x ∈ A such that〈x, x∗〉 > 0, and so[x∗ > 0] ∩ PA 6= ∅. Then

σA(x∗) = sup { 〈x′, x∗〉 | x′ ∈ A }
= sup { t 〈x, x∗〉 | t > 0, x ∈ X, tx = x′ ∈ A }
= sup { t 〈x, x∗〉 | t > 0, x ∈ [x∗ > 0] ∩ PA, tx ∈ A }
= supx∈[x∗>0]∩PA [〈x, x∗〉 · sup { t > 0 | tx ∈ A }]
= sup {ϑA(x) · 〈x, x∗〉 | x ∈ [x∗ > 0] ∩ PA } > 0,

that is, (18) holds. Because forx ∈ [x∗ = 0] ∩ PA we haveϑA(x) ·h 〈x, x∗〉 = 0, the second equality
holds, too. For the third equality one uses (2), while the fourth is a rewriting of the second one because for
x ∈ [x∗ ≥ 0] ∩A++ \ PA we have thatϑA(x) = −∞ and〈x, x∗〉 ≥ 0. Taking into account (2), from (18)
we get immediately the fifth equality, while for the last equality observe thatϑA(x) = −∞ for x ∈ X \PA.

Assume that0 ∈ convA; therefore,σA(x∗) = σconvA(x∗) ≥ 0 for everyx∗ ∈ X∗. Setξ(x∗) :=
sup{ϑA(x) | x ∈ X, 〈x, x∗〉 = 1} for x∗ ∈ X∗. It is clear thatξ(0) = −∞ and so (19) holds forx∗ = 0.
If x∗ ∈ X∗ \A− (19) clearly follows from the first part. Let0 6= x∗ ∈ A−. ThenσA(x∗) = 0 andx /∈ PA
for everyx ∈ [x∗ = 1]. Therefore,ξ(x∗) = −∞ and once again we have that (19) holds. �
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Proposition 9 LetA ⊂ X be such that0 ∈ convA. Then for everyx ∈ X we have

0 ∨ ϑconvA(x) = inf { σA(x∗) | x∗ ∈ X∗, 〈x, x∗〉 = 1 } . (20)

PROOF. BecauseσA = σconvA we may (and do) assume thatA = convA. Set

η(x) := inf { σA(x∗) | 〈x, x∗〉 = 1 }
for x ∈ X . Using (19) it is clear that0 ∨ ϑA(x) ≤ η(x) for everyx ∈ X . For the converse inequality we
consider several cases.

a) x = 0; thenϑA(x) = ∞ andη(x) = ∞, and so (20) holds.

b) x ∈ PA \ {0} (henceϑA(x) > 0). Takes > ϑA(x) (if possible). Thensx /∈ A, and so, by a
separation theorem, there existsx∗ ∈ X∗ such that〈sx, x∗〉 > σA(x∗) ≥ 0. Hence〈x, x∗〉 > 0, and
so we may (and do) assume that〈x, x∗〉 = 1. Therefore,η(x) < s; the conclusion follows.

c) x /∈ PA. Consider the functionϕ : X → R defined byϕ(u) = t if u = tx andϕ(u) := ∞ else.
Thenϕ is a lsc convex function withϕ∗(x∗) = 0 if 〈x, x∗〉 = 1 andϕ∗(x∗) = ∞ else. Moreover,
we have that(ιA�ϕ) (u) = inf { t ∈ R | u− tx ∈ A }. It is clear that(ιA�ϕ) (0) = 0. Let us
prove thatιA�ϕ(0) = 0. In the contrary case there exists > 0 and a net(ui)i∈I converging to0
such that(ιA�ϕ) (ui) < −s for everyi ∈ I. Therefore, for everyi ∈ I there existsti > s with
xi := ui + tix ∈ A. We may (and do) assume thatti → t ∈ [s,∞]. If t <∞ thentx ∈ clA = A, a
contradiction. Ift = ∞ thenx = lim t−1

i xi, and sox ∈ A∞ ⊂ A, again a contradiction. Therefore,
ιA�ϕ(0) = 0; in particularιA�ϕ is proper. Since(ιA�ϕ)

∗
= σA + ϕ∗, we obtain (see [14]) that

0 = ιA�ϕ(0) = (ιA�ϕ)
∗∗

(0) = (σA + ϕ∗)∗(0) = − infx∗∈X∗ (σA + ϕ∗) (x∗) = −η(x).
SinceϑA(x) = −∞, we obtain that (20) holds in this case, too. �

Observe that there existsx ∈ X such that (20) is false if0 /∈ convA.
Note that using relations (1) and (3) one can establish duality results involving other combinations of

the functionsσA, ςA, µA, νA, θA andϑA.

4 Duality relations involving σA, ςA and ψA,k

In [7, Rels. (18), (19)] the duality relations

ςA(x∗) = inf
x

(〈x, x∗〉 − ψA(x) · 〈k, x∗〉) (21)

and

ψA(x) = inf
x∗

〈x, x∗〉 − ςA(x∗)

〈k, x∗〉 (22)

are given forX = R
n without mentioning from wherex andx∗ are taken. However in the context of [7] A

(= L(y)) is a convex set (included inRn+) andk (= gx) is an element ofRn+ \ {0}. In the sequel we shall
try to find conditions which ensure the previous duality formulas.

In fact the first relation is true forx∗ with 〈k, x∗〉 > 0 takingx ∈ X , while in the second one must take
x∗ ∈ X∗ with 〈k, x∗〉 > 0 (or, equivalently,〈k, x∗〉 = 1).

Proposition 10 Letx∗ ∈ X∗ with 〈k, x∗〉 ≥ 0 and∅ 6= A ⊂ B ⊂ X . Then

ςA(x∗) = inf
x∈B

(〈x, x∗〉 − ψA,k(x) ·h 〈k, x∗〉) (23)

and
σA(x∗) = sup

x∈B
(〈x, x∗〉 + ψA,−k(x) ·e 〈k, x∗〉) . (24)

If 〈k, x∗〉 > 0 then(23) and (24) hold even ifA = ∅.
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PROOF. Let first〈k, x∗〉 > 0. If A = ∅ then (23) and (24) clearly hold. Assume thatA 6= ∅. We have that

inf
x∈X

(
〈x, x∗〉 − ψA(x) · 〈k, x∗〉

)
= inf
x∈X

(
〈x, x∗〉 − 〈k, x∗〉 · sup{t | x− tk ∈ A}

)

= inf
x∈X

(
inf{〈x, x∗〉 − t 〈k, x∗〉 | t ∈ R, x− tk ∈ A}

)

= inf
{
〈x− tk, x∗〉 | x ∈ X, t ∈ R, x− tk ∈ A

}

= ςA(x∗).

Hence, ifA ⊂ B ⊂ X then

inf
x∈X

(
〈x, x∗〉 − ψA(x) · 〈k, x∗〉

)
≤ inf

x∈B

(
〈x, x∗〉 − ψA(x) · 〈k, x∗〉

)

≤ inf
x∈A

(
〈x, x∗〉 − ψA(x) · 〈k, x∗〉

)

≤ inf
x∈A

〈x, x∗〉

becauseA ⊂ [ψA ≥ 0]. Therefore, (23) holds in this case.
Let now〈k, x∗〉 = 0. Then

inf
x∈X

(
〈x, x∗〉 − ψA(x) ·h 〈k, x∗〉

)
= inf{〈x, x∗〉 | x ∈ Rk + A} = inf{〈x, x∗〉 | x ∈ A} = ςA(x∗),

and so (23) holds in this case, too.
For obtaining (24) just use the formulaσA(x∗) = −ςA(−x∗) in (23). �

If 〈k, x∗〉 < 0 relation (21) does not hold.

Example 1 ConsiderA := [1,∞), k := 1 andx∗ := −1, one hasψA(x) = x− 1 for everyx ∈ X = R,
ςA(x∗) = −∞ and infx∈X{〈x, x∗〉 − ψA(x) · 〈k, x∗〉} = −1.

Corollary 1 Letx∗ ∈ X∗ be such that〈k, x∗〉 ≥ 0 andA ⊂ X . Then

ςA(x∗) = inf { 〈x, x∗〉 | x ∈ B } (25)

providedA ⊂ B ⊂ [ψA,k ≥ 0] and

σA(x∗) = sup { 〈x, x∗〉 | x ∈ B } (26)

providedA ⊂ B ⊂ [ψA,−k ≥ 0].

PROOF. If A = ∅ then necessarilyB = ∅, and so (25) and (26) hold. Assume thatA 6= ∅. It is clear
thatA ⊂ [ψA ≥ 0]; for x ∈ [ψA ≥ 0] clearly〈x, x∗〉 − ψA(x) ·h 〈k, x∗〉 ≤ 〈x, x∗〉. Using the preceding
proposition (forB = X) we get

ςA(x∗) = inf
x∈X

(〈x, x∗〉 − ψA(x) ·h 〈k, x∗〉) ≤ inf
x∈[ψA≥0]

(〈x, x∗〉 − ψA(x) ·h 〈k, x∗〉)

≤ inf
x∈[ψA≥0]

〈x, x∗〉 ≤ inf
x∈B

〈x, x∗〉 ≤ inf
x∈A

〈x, x∗〉 = ςA(x∗).

Hence (25) holds. Replacingx∗ by−x∗ andk by−k in the preceding statement we get (26). �

In what concerns relation (22) it is clear that one must have〈k, x∗〉 6= 0. Also note that forx ∈ X one
has always

ψA(x) ≤ inf{〈x, x∗〉 − ςA(x∗) | x∗ ∈ X∗, 〈k, x∗〉 = 1} =: ηA(x). (27)

Indeed, letx ∈ X , t ∈ R andx∗ ∈ X∗ be such thatx ∈ tk + A and 〈k, x∗〉 = 1. ThenςA(x∗) ≤
〈x− tk, x∗〉 = 〈x, x∗〉 − t, that is,t ≤ 〈x, x∗〉 − ςA(x∗). Therefore, the claim holds.
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However, one cannot expect equality for every setA. One reason is thatψA is not necessarily concave,
while ηA is concave (andηA = ηconvA); moreover, as seen in (7), ψA = ψA+R+k which is not the case
with ςA; however,ςA(x∗) = ςA+R+k(x

∗) if 〈k, x∗〉 > 0. It is natural to consider onlyx∗ with 〈k, x∗〉 > 0
(simple examples can be given withA = A+ R+k convex for which strict inequality holds in (27)).

It is known that forA a nonempty closed convex set we have(A∞)+ = cl{ x∗ | ςA(x∗) > −∞} (use
f.i. [14, Exercise 2.23] forf = ιA). Since(A∞)++ = A∞, we have

−k ∈ A∞ ⇐⇒ [ςA(x∗) > −∞ ⇒ 〈k, x∗〉 ≤ 0] ,

and so
− k /∈ A∞ ⇐⇒ [∃x∗ ∈ X∗ : ςA(x∗) > −∞, 〈k, x∗〉 = 1] . (28)

Note also that whenA is a nonempty closed (not necessarily convex) set andk ∈ X is such that
−k /∈ A∞ we have thatA+ R+k is closed andψA(x) <∞ for everyx ∈ X .

Proposition 11 Assume thatA is a closed convex set. Then

ψA,k(x) = inf{〈x, x∗〉 − ςA(x∗) | x∗ ∈ X∗, 〈k, x∗〉 = 1} ∀x ∈ X (29)

provided−k /∈ A∞, and

ψA,−k(x) = inf{σA(x∗) − 〈x, x∗〉 | x∗ ∈ X∗, 〈k, x∗〉 = 1} ∀x ∈ X (30)

providedk /∈ A∞.

PROOF. If A = ∅ then clearly (29) and (30) hold.
Assume thatA 6= ∅. As observed aboveA + R+k is closed andψA(x) < ∞ for everyx ∈ X .

Fix x ∈ X . By (27) we have thatψA(x) ≤ ηA(x). Take somes ∈ R such thats > ψA(x) = ψA+R+k(x);
thenx − sk /∈ A + R+k. BecauseA + R+k is convex and closed there existx∗0 ∈ X∗ ands0 ∈ R such
that 〈x− sk, x∗0〉 < s0 ≤ 〈a, x∗0〉 + t 〈k, x∗0〉 for all a ∈ A andt ∈ R+. It follows that〈k, x∗0〉 ≥ 0 and
〈x, x∗0〉 − s 〈k, x∗0〉 < s0 ≤ ςA(x∗0). If 〈k, x∗0〉 6= 0, we may assume that〈k, x∗0〉 = 1 (replacingx∗0 by
〈k, x∗0〉−1

x∗0 if necessary). HenceηA(x) ≤ 〈x, x∗0〉 − ςA(x∗0) < s 〈k, x∗0〉 = s. Assume that〈k, x∗0〉 = 0.
Because−k /∈ A∞, by (28) there existsx∗ ∈ X∗ such thatςA(x∗) > −∞ and 〈k, x∗〉 = 1. Then
〈k, x∗ + tx∗0〉 = 1 andςA(x∗ + tx∗0) ≥ ςA(x∗) + tςA(x∗0) ≥ ts0 + ςA(x∗) for t ≥ 0, and so

ηA(x) ≤ inf{ 〈x, x∗ + tx∗0〉 − ςA(x∗ + tx∗0) | t ≥ 0 }
≤ 〈x, x∗〉 − ςA(x∗) + inf{ t · [〈x, x∗0〉 − s0] | t ≥ 0 }
= −∞.

HenceηA(x) < s in this case, too. It follows thatηA(x) ≤ ψA(x). Therefore, (29) holds. Replacingk by
−k andx∗ by−x∗ in (29) we get (30). �

5 Other duality results

Inspired by [7], we consider the nonempty setT ⊂ X × Y , whereY is another separated locally convex
space with topological dualY ∗. As in [7] we associate the sets

P (x) := { y ∈ Y | (x, y) ∈ T }, L(y) := { x ∈ X | (x, y) ∈ T }

for x ∈ X andy ∈ Y ; of course,P (x) andL(y) are convex (resp. closed) ifT is convex (resp. closed).
Moreover, ifT is closed and convex andu ∈ kerT∞ := (T∞)−1(0) := {x ∈ X | (x, 0) ∈ T∞}, then
u ∈ (L(y))∞ for anyy ∈ PrY (T ); conversely, ifu ∈ (L(y))∞ for somey ∈ PrY (T ) thenu ∈ kerT∞. A
similar statement is valid with respect to the other variable.
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Define now the sets

P (x∗) := { y | ∃x ∈ X : y ∈ P (x), 〈x, x∗〉 ≤ 1 }=
⋃

{P (x) | 〈x, x∗〉 ≤ 1 }⊂PrY (T ), (31)

L(y∗) := { x | ∃y ∈ Y : x ∈ L(y), 〈y, y∗〉 ≥ 1 } =
⋃

{L(y) | 〈y, y∗〉 ≥ 1 } ⊂PrX(T ), (32)

for x∗ ∈ X∗ andy∗ ∈ Y ∗.

Lemma 1 LetT ⊂ X × Y be nonempty.

(a) If T is convex thenP (x∗) andL(y∗) are convex for allx∗ ∈ X∗ andy∗ ∈ Y ∗.

(b) If T is closed anddimX <∞ thenP (x∗) is closed for everyx∗ ∈ (kerT∞)#.

(c) If T is closed anddimY <∞ thenL(y∗) is closed for everyy∗ ∈ −(T∞(0))#.

PROOF. (a)Let y1, y2 ∈ P (x∗) ands ∈ [0, 1]. There existx1, x2 ∈ X with y1 ∈ P (x1) andy2 ∈ P (x2),
that is,(x1, y1), (x2, y2) ∈ T and〈x1, x

∗〉 ≤ 1, 〈x2, x
∗〉 ≤ 1. Hence〈sx1 +(1− s)x2, x

∗〉 ≤ 1 and, by the
convexity ofT , (sx1 + (1 − s)x2, sy1 + (1 − s)y2) ∈ T , that is,sy1 + (1 − s)y2 ∈ P (sx1 + (1 − s)x2).
Hencesy1 + (1 − s)y2 ∈ P (x∗). The convexity ofL(y∗) follows similarly.

(b) BecausedimX < ∞ we may (and do) assumeX is a normed space. Fix somex∗ ∈ (kerT∞)#

and considery ∈ cl(P (x∗)), that is, there exists(yi)i∈I ⊂ P (x∗) with yi → y. For everyi ∈ Y there exists
xi ∈ X with (xi, yi) ∈ T and〈xi, x∗〉 ≤ 1. Assume thatti := ‖xi‖ → ∞ (on a subnet); henceti ∈ P

for i ≥ i0. Passing to a subnet if necessary,t−1
i xi → u 6= 0. Sincet−1

i → 0 andt−1
i (xi, yi) → (u, 0), we

have thatu ∈ kerT∞. Moreover, clearly,t−1
i ≥

〈
t−1
i xi, x

∗
〉
→ 〈u, x∗〉, and so〈u, x∗〉 ≤ 0, contradicting

the fact thatx∗ ∈ (kerT∞)#. Therefore, there exists somei0 such that(xi)i≥i0 is bounded, and so we may
(and do) assume thatxi → x ∈ X ; hence〈x, x∗〉 ≤ 1. BecauseT is closed we obtain that(x, y) ∈ T , and
soy ∈ P (x) ⊂ P (x∗).

(c) The proof is similar to that of(b). �

Throughout this sectionk ∈ X \{0} andl ∈ Y \{0} are fixed elements. Using Proposition3 we obtain
that

ψL(y∗),k = sup
{
ψL(y),k | 〈y, y∗〉 ≥ 1

}
, ψP (x∗),l = sup

{
ψP (x),l | 〈x, x∗〉 ≤ 1

}
. (33)

Proposition 12 Assume thatT is a nonempty closed convex set such that0 ∈P (x) for everyx ∈ PrX(T ).
Then

L(y) =
⋂ {

L(y∗) | 〈y, y∗〉 ≥ 1
}

∀y ∈ Y. (34)

Moreover, ifk ∈ kerT∞ then

ψL(y),k = inf
{
ψL(y∗),k | 〈y, y∗〉 ≥ 1

}
∀y ∈ Y. (35)

PROOF. Let us set̃L(y) :=
⋂ {

L(y∗) | 〈y, y∗〉 ≥ 1
}

for y ∈ Y . From (32) it is clear thatL(y) ⊂ L̃(y)

for everyy ∈ Y . Fix y ∈ Y and let us show that̃L(y) ⊂ L(y). Take somex ∈ X \ L(y). If x /∈ PrX(T ),
by (32) we have thatx /∈ L̃(y). So letx ∈ PrX(T ); hence(x, 0) ∈ T . Because(x, y) /∈ T , by a separation
theorem, there exist(x∗, y∗) ∈ X∗ × Y ∗ ands ∈ R such that

〈x, x∗〉 + 〈y, y∗〉 > s > 〈x, x∗〉 + 〈y, y∗〉 ∀(x, y) ∈ T.

Since(x, 0) ∈ T we obtain that〈y, y∗〉 > s0 := s − 〈x, x∗〉 > 0. We may (and do) assume thats0 = 1.
It follows that 〈y, y∗〉 > 1 and(x, y) ∈ T ⇒ 〈y, y∗〉 < 1. The last implication shows thatx /∈ L(y) for
〈y, y∗〉 ≥ 1, that is,x /∈ L(y∗). Since〈y, y∗〉 ≥ 1, we have thatx /∈ L̃(y).

Assume thatk ∈ kerT∞. Because(k, 0) ∈ T∞ we have thatL(y) + R+k = L(y) for everyy ∈ Y ,
and soL(y∗) + R+k = L(y∗) for everyy∗ ∈ Y ∗. Applying Propositions12 and3 (with K = X) we get
the conclusion. The proof is complete.�
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Proposition 13 Assume thatT ⊂ X × Y is a nonempty closed convex set. Then

P (x) =
⋂{

P (x∗) | 〈x, x∗〉 ≤ 1
}

∀x ∈ kerT∞. (36)

Moreover, assume that the closed setF ⊂ Y andl ∈ Y \ {0} are such that

PY (T ) ⊂ F and [(x, y) ∈ T, t ≥ 0, y + tl ∈ F ] =⇒ (x, y + tl) ∈ T. (37)

Then

ψP (x),l = inf
{
ψP (x∗),l | 〈x, x∗〉 ≤ 1

}
∀x ∈ kerT∞. (38)

PROOF. Let us set

P̃ (x) :=
⋂{

P (x∗) | 〈x, x∗〉 ≤ 1
}
, x ∈ X. (39)

From (31) it is clear thatP (x) ⊂ P̃ (x) for everyx ∈ X . Fix x ∈ kerT∞ and let us show̃P (x) ⊂ P (x).
Take somey ∈ Y \ P (x). Because(x, y) /∈ T , by a separation theorem, there exist(x∗, y∗) ∈ X∗ × Y ∗

ands ∈ R such that

〈x, x∗〉 + 〈y, y∗〉 < s < 〈x, x∗〉 + 〈y, y∗〉 ∀(x, y) ∈ T. (40)

Fixing some(x0, y0) ∈ T we have that(x0 + u, y0) ∈ T for everyu ∈ kerT∞. From (40) we obtain
that 〈u, x∗〉 ≥ 0 for everyu ∈ kerT∞. In particular〈x, x∗〉 ≥ 0. Using again (40) we obtain that
〈y, y∗〉 ≤ 〈x, x∗〉 + 〈y, y∗〉 < s, whences0 := s − 〈y, y∗〉 > 0. We may (and do) assume thats0 = 1.
It follows that〈x, x∗〉 < 1 and(x, y) ∈ T ⇒ 〈x, x∗〉 > 1. The last implication shows thaty /∈ P (x) for
〈x, x∗〉 ≤ 1, that is,y /∈ P (x∗). Since〈x, x∗〉 ≤ 1, we have thaty /∈ P̃ (x).

Assume thatF andl satisfy (37). Condition (37) shows that(P (x)+R+l)∩F = P (x) for everyx ∈ X .
By Proposition2 we obtain that(P (x∗) + R+l) ∩ F = P (x∗) for everyx∗ ∈ X∗. Using Proposition3 we
obtain thatinf

{
ψP (x∗),l | 〈x, x∗〉 ≤ 1

}
= ψ eP (x),l. SinceP (x) = P̃ (x) we get (38). �

The next example shows that forx ∈ X \ kerT∞ it is possible that (36) is not verified under the
hypotheses of Proposition13.

Example 2 LetX = Y = R, K := R+, a ∈ R andTa :=
{

(x, y) ∈ X × Y | y ≥ 0, x ≥ a+ y2
}

.
ThenPa(x) = [0,

√
x− a] for x ≥ a andPa(x) = ∅ for x < a. Moreover, fora ≤ 0 one has

P a(u) =

{
[0,∞) if u ≤ 0,

[0,
√

1/u− a] if u > 0,
P̃a(x) =

{
[0,

√−a] if x ≤ 0,

[0,
√
x− a] if x > 0,

while fora > 0 one has

Pa(u) =





[0,∞) if u ≤ 0,

[0,
√

1/u− a] if 0 < u ≤ 1/a,

∅ if u > 1/a,

P̃a(x) =

{
∅ if x < a,

[0,
√
x− a] if x ≥ a.

HenceP̃a(x) = Pa(x) for everyx ∈ K (and everya), but P̃a(x) 6= Pa(x) for x ∈ X \K whena ≤ 0

(P̃ being defined in(39)).

Note that relations (33), (35) and (38), as well as (34) and (36) can be interpreted also as duality results.
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6 Connections with duality results in economics literature

TakingA := { x ∈ X | u(x) ≥ u } andB := X Proposition10 extends [11, Prop. 2.4] becauseb(x, u) =
ψA,g(x). It also extends [11, Prop. 4.1]. Indeed, using the notation from [11], we haveπ(p) = σY(p) and
σ(g; y) = ϕ−Y,g(y). So, from (24) and (9) we get forg · p > 0,A := −Y, k := g andx∗ := p,

π(p) = σY(p) = sup
x∈Rm

(〈x, p〉 + ψY,−g(x) · 〈g, p〉) = sup
x∈Rm

(x · p− σ(g; y)g · p) ,

that is, the conclusion of [11, Prop. 4.1].
In several papers on production analysis a technology is a nonempty setT ⊂ R

n
+ × R

m
+ with n,m ≥ 1

satisfying several axioms among the next ones (see [4, p. 353]):

(A1) T is closed.

(A2) Inputs and outputs are freely disposable; i.e.,(x, y) ∈ T , (x′, y′) ∈ R
n×R

m andx′ ≥ x, 0 ≤ y′ ≤ y
imply (x′, y′) ∈ T (herex′ ≥ x meansx′ − x ∈ R

n
+ andy′ ≤ y meansy − y′ ∈ R

m
+ ).

(A3) There is no free lunch; i.e.,(0, y) ∈ T impliesy = 0.

(A4) Doing nothing is feasible; i.e.,(0, 0) ∈ T .

(A5) T is convex.

Sometimes instead of the (free) disposability axiom(A2) one uses the weak disposability axiom

(A2’) (x, y) ∈ T , s ∈ [1,∞[ andt ∈ [0, 1] imply (sx, y) ∈ T and(x, ty) ∈ T .

Note that axiom(A2) is written in the form: “if(x, y) ∈ T and(x′,−y′) ≥ (x,−y), then(x′, y′) ∈ T ”
in [4] (and other articles); this is equivalent to(A2) if one asks(x′, y′) ∈ R

n
+×R

m
+ . Because the technology

T is perfectly determined by the multifunctionP : R
n
+ ⇉ R

m
+ orL : R

m
+ ⇉ R

n
+, sometimes one mentions

the axioms in terms ofP or L. We setX := R
n andY := R

m. Note that when(A1) and(A2’) hold
we have thatP (x) is a nonempty closed set with[0, 1]P (x) = P (x) for everyx ∈ PrX(T ) andL(y) is a
nonempty closed set with[1,∞[L(y) = L(y) for everyy ∈ PrY (T ). Taking into account (4) and (5) the
preceding remark proves that for(x, y) ∈ X × Y one has the equivalences

Di(y, x) ≥ 1 ⇐⇒ x ∈ L(y) ⇐⇒ (x, y) ∈ T ⇐⇒ y ∈ P (x) ⇐⇒ Do(x, y) ≤ 1

mentioned in [4, p. 353], whereDi(y, x) := νL(y)(x) andDo(x, y) := µP (x)(y); Di andDo are the
Shephard input and output distance functions. BesidesDi andDo in production analysis other functions
are considered, too (see [7] and the references therein):

−→
DT (x, y;−gx, gy) := ψT,(gx,−gy)(x, y), (41)

−→
Do(x, y; gy) := ψP (x),−gy

(y),
−→
D i(x, y;−gx) := ψL(y),gx

(x), (42)

I
−→
Do(w

′, y; gy) := ψP (w′),−gy
(y), I

−→
D i(x, p

′;−gx) := ψL(p′),gx
(x), (43)

whereP (w′) andL(p′) are defined as in (31), (32) forw′ ∈ X∗ = R
n andp′ ∈ Y ∗ = R

m (corresponding to
the setsIP (w/C) andIL(p/R)); heregx ∈ R

n
+ andgy ∈ R

m
+ are nonnull in (42), (43) and(gx, gy) 6= (0, 0)

in (41). Moreover,

Π(p, w) := σT (−w, p), R(x, p) := σP (x)(p), C(y, w) := ςL(y)(w),

IR(w′, p) := σP (w′)(p), IC (p′, w) := ςL(p′)(w).
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Assuming that the axioms(A1), (A2’), (A3), (A4), (A5) hold and using also (3), from Propositions8,
9, 6 and7 we obtain that

R(x, p) = sup
y

{
py

Do(x, y)

∣∣∣∣ py > 0

}
∀x ∈ PrX(T ), ∀p ∈ R

m \ {0},

1

Do(x, y)
= inf

p

{
R(x, p)

py

∣∣∣∣ py > 0

}
∀x ∈ PrX(T ), ∀y ∈ R

m \ {0},

C(y, w) = inf
x

{
wx

Di(y, x)

∣∣∣∣ wx > 0

}
∀y ∈ PrY (T ), ∀w ∈ R

n
+ \ {0},

1

Di(y, x)
= sup

w

{
C(y, w)

wx

∣∣∣∣ wx > 0

}
∀y ∈ PrY (T ), ∀x ∈ R

n
+ \ {0},

respectively; in fact an attentive analysis shows that somehypotheses can be weakened. Such duality results
are mentioned in [6, Rels. (10), (11)]; here one says “Shephard (Refs. 1, 9) proved thatC(y, w) is dual to
Di(y, x) and thatR(x, p) is dual toDo(x, y). His duality theorems were stated as constrained optimization
problems. Here, we follow Färe and Primont (Ref. 3) and state the dualities as unconstrained optimization
problems”.

In the sequel we assume thatT satisfies the axioms(A1)–(A5). In this situationT∞ is a subset of
R
n
+ × R

m
+ and satisfies the axioms(A1)–(A5), too; in particularRn+ × {0} ⊂ T∞, kerT∞ = R

n
+ and

T∞(0) = {0}. Moreover,PrX(T ) = R
n
+ andP (x) is a compact convex set containing0 for every

x ∈ PrX(T ), andL(y) is a nonempty closed convex set with(L(y))∞ = R
m
+ for everyy ∈ PrY (T ). From

axiom(A2) we obtain that

T = (T + R+k) ∩ (Rn+ × R
m
+ ) ∀k ∈ R

n
+ × (−R

m
+ );

hence (10) holds fork ∈ R
n
+ × (−R

m
+ ) (andK := R

n
+ × R

m
+ ). Moreover

P (x) = (P (x) − R
m
+ ) ∩ R

m
+ ∀x ∈ X and L(y) = (L(y) + R

n
+) ∩ R

n
+ ∀y ∈ Y.

Because

− (gx,−gy) /∈ T∞ (⊂ R
n
+ × R

m
+ ), −gx /∈ (L(y))∞ (⊂ R

n
+) and gy /∈ (P (x))∞ (= {0}), (44)

the functions
−→
DT ,

−→
Do,

−→
D i do not take the value+∞; this is also true forI

−→
D i (because−gx /∈ (L(p′))∞

(⊂ R
n
+) and for I

−→
Do whenw′ ∈ R

n
++ := int R

n
+, becauseP (w′) is compact in this case. Indeed,

by Lemma1 P (w′) is closed. Assume thatP (w′) is not bounded. This means that there exists a se-
quence((xn, yn))n≥1 ⊂ T with ‖yn‖ → ∞ and〈xn, w′〉 ≤ 1 for everyn ≥ 1. We may assume that

‖(xn, yn)‖−1 (xn, yn) → (u, v) ∈ T∞ ⊂ R
n
+ ×R

m
+ . Because(0, 0) ∈ T , we get(su, sv) ∈ T for s ∈ R+.

If u = 0, then(0, v) ∈ T and sov = 0 by (A3), contradicting‖(u, v)‖ = 1. Henceu 6= 0. It follows that
〈u,w′〉 ≤ 0, contradicting the fact thatu ∈ R

n
+ \ {0} andw′ ∈ R

n
++. HenceP (w′) is bounded.

Note that forw /∈ R
n
+, taking into account(A2), we have thatΠ(p, w) = ∞, C(y, w) = −∞ (if

L(y) 6= ∅), IC(p′, w) = −∞ (if L(p′) 6= ∅); hence, in those results involving these quantities we may
takew ∈ R

n
+. Using Proposition1 we obtain that

(x, y) ∈ T ⇐⇒
[
(x, y) ∈ R

n
+ × R

m
+ and

−→
DT (x, y;−gx, gy) ≥ 0

]

and
y ∈ P (x) ⇐⇒

[
y ∈ R

m
+ and

−→
Do(x, y; gy) ≥ 0

]
;

taking into account (8) we see that [7, (2)] and [7, (5)]) do not hold.
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Applying Proposition10 we get [7, (16)] (and [4, (16)]; this is obtained under a differentiability as-
sumption on solutions) for (those pairs(p, w) with) pgy + wgx > 0, [7, (18), (33)] forwgx > 0, and [7,
(20), (35)] forpgy > 0. On the other hand, taking into account (44) and using Proposition11 we get [7,
(17), (19), (21)] in which the infimum is taken with respect to(w.r.t.) thosep, w with pgy + wgx > 0 (or
equivalentlypgy + wgx = 1), w.r.t.w with wgx > 0 and w.r.t.p with pgy > 0, respectively. Moreover,
by Lemma1 we have thatP (w′) is a closed convex set containing0 for everyw′ ∈ R

n
++ = (kerT∞)#

andL(p′) is a closed convex set for everyp′ ∈ Y ∗ = R
m = −(T∞(0))#. Using again Proposition11 we

get [7, (34)] in which the supremum is taken w.r.t.w with wgx > 0 for everyp′ ∈ R
m and [7, (36)] in

which the infimum is taken w.r.t.p with pgy > 0 for everyw′ ∈ R
n
++.

We have that [7, (26)] and [7, (31)] follow immediately from (33) (if our interpretation, used throughout
this section, thatC andR are positive real numbers, is correct). Moreover, using Proposition13forF = R

m
+

andl = −gy we get [7, (27)] for everyx ∈ kerT∞ = R
n
+, while using Proposition12for k = gx we get [7,

(32)] for everyy ∈ Y .
Recently one considered technologies in which the output spaceY is a functions space. For example

in [3] one considers the technologỹT ⊂ R
n
+ × L2(Ω,P,Rm+ ) whereP is a probability measure. Note that

the duality results established in [3] can be deduced from the duality results from Section4.
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700506-Iaşi, Romania,
and Institute of Mathematics Octav Mayer, Iaşi, Romania,
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