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Duality results involving functions associated to nonempt y
subsets of locally convex spaces

C. Zalinescu

Abstract. In many papers on consumer theory and production analysistylvesults between profit,
revenue, cost, input, output and shortage functions aablkéstied. This functions are associated to certain
subsets oR"™. The aim of this paper is to study in a systematic way suchityuaksults in locally convex
spaces and to derive them under minimal hypotheses.

Resultados sobre dualidad mediante funciones asociadas a s ubconjuntos
no vacios de espacios localmente convexos

Resumen. En muchos articulos sobre teoria del consumo y analésia groduccion, se establecen

resultados de dualidad entre beneficios y costes, e innessip rendimientos, proponiéndose diversas
funciones de insuficiencia asociadas a ciertos subcorgu@®™. El objeto de este trabajo es el estu-

dio sistematico de dichos resultados de dualidad en esplmalmente convexos, y su obtencion bajo
condiciones minimas.

1 Introduction

In the sequel X, ) is a nontrivial separated real locally convex space wittotogical dualX™; X* is
endowed with the weak-star topology := o(X*, X). SoX* becomes a separated locally convex space
whose topological dual is (identified witly]. Forz € X andz* € X* we set(x, 2*) := 2*(z). In the case
X isjust a real linear space we can séas a separated locally convex space whose topology is dedera
by the family of all semi-norms defined oX; in this situation the topological dual of coincides with
the algebraic duak’ of X. We denote byR the set of real number® := [0, 00, R_ :=] — 00, 0] and
P := 10, oo[, whereso := +cc.

ConsiderA, B ¢ X andI’ C R (similar for X replaced byX * or other locally convex space). We set

A+B:={a+blac A be B}, F'A:={sa|sel,ac A};

ofcourse A+ B =0if A=0orB = 0andl’'A = @) whenI’ = () or A = (). Moreover, fors € R we
setsA := {s}A and forz € X we setr + A := {z} + A. We denote byA oricr A, int A, cl A or 4,
conv A andaff A the intrinsic core, the interior, the closure, the convel &ind the affine hull ofA C X,
respectively; moreovetpnv A := cl(conv A) andaffA := cl(aff A). To A ¢ X we associate the sets

A= {2* c X* | (z,2") > —1 Vo € A},
At = {z" € X* | (z,2*) >0 Vo € A}, A” = AT,
A* = {z* € X* | (z,2%) >0 Vo € A\ {0} }.
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Note thatA® is a (w*-) closed convex set containirly A™ is a @*-) closed convex cone and* is a
convex cone (if nonempty). Fér# A C X the bipolar theorems give

A% =conv(A U {0}) =conv([0,1]4), ATt =A™ =conv(R; A).

These formulas give the possibility to recovkeusing the above polarity operations under certain conastio
on A: A = A if (and only if) A is a closed convex set containinignd A = A*+ if (and only if) A is a
closed convex cone.

The asymptotic cone of the nonempty getC X is

A i={ue X |3(ti)ier CP, I(xi)ier CA : t; =0, tiz; — u};

whenX is a normed vector space we can take sequences instead.olMiets A is a closed convex set we
have thatd. = (), t(4 — a), wherea € A. We set), := {0}.

Recall that forf: X — R := R U {—o0,00} the domain off is the setdom f := {2z € X |
f(z) < oo} and the epigraph of is the setepi f := {(z,t) € X xR | f(x) < t}; f is proper
if domf # () and f(z) > —oo for everyz € X. The conjugatef*: X* — R of f is defined by
fA(x*) = sup{(x,2*) — f(z) |z € X }; f* is convex and weakly-star lower semicontinuous (Isc for
short) andf* is proper iff f is proper and minorized by a continuous affine functionalwimch case
epi f** = conv(epi f)). We denote byf the functionf : X — R for whichepi f := cl(epi f); then
f(x) = liminf, ., f(2'). Furthermore, we use the notatiph< t] := {z € X | f(z) <t} fort € R,
and similarly for[f = t], [f > ], [f < t], [f > t]. If g: X — R is another function then the convolution
of f andg is the functionfOg : X — R defined by(fOg)(z) := inf { f(u) +. g(z —u) | u € X } (the
sum “+." is defined in the next section).

2 Gauges and scalarization functions

Let A C X be an arbitrary set. First we associatedtthe following two functions

oa,sa: X* =R, oa(x™) = sup (z,x*), ca(x™) = inf (z,z%),
€A zEA
with the conventionsup ) := —oco andinf () := oo; hencesy = —cc andsy = +oo. The functiono 4 is

the support function of. It is obvious that
calz™) = —oa(—12") Vot e X*; (1)
MOreovelw 4 = OzonvA, SA = Ssonv A and

comvA ={z e X | (z,2") <oala™) Va*eX*}
={zxeX|(xr,2") >ca(z") Vz"eX"}.

The above formulas show that we can recatdmowingo 4 or ¢4 whenA is a (nonempty) closed convex
set.
Denoting by 4 the indicator function ofA C X, thatis,.4: X — R is defined by.4(x) := 0 for
x € Aandig(z) :==ocoforz € X \ A, itis clearthai g := ¢* := (ta)*. WhenA is a nonempty set 4
is a propenv*-Isc sublinear functional. _
To A C X we associate also the gauges, ¥4,v4,04: X — R defined by

pa(z) =inf {A>0]xe XA}, Ja(x) :=sup{A>0| Az € A},
va(z) :=sup{A>0|z e rA}, Oa(x):=inf {A>0| Xz € A};
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henceuy = 6y = 400 andry = 9y = —oo. Note thatu 4 is the well known Minkowski functional
associated tod; in Functional Analysis:4 is considered mostly wheH is an absorbing convex set in
which caseu 4 is a finite-valued sublinear function. Shephard’s input antput functions are of type,
andy.4 with A subsets oR’ . For some properties gf4 andv4 see f.i. [LZ]. In [5] one speaks abouty
as the extended Farrell measure; moreoveg]inife discusses arguments in favor of and against convexity
axioms in DEA (Data Envelopment Analysis).

Note that the function8,, p4 are finite atx € X \ {0} if and only if x € PA. Moreover,us =
Ho,114 = 0,94 = Jj0,114, VA = V[1,00(4, 04 = O1,00(4 = 0,

pa(te) = tpa(x), va(te) = tva(z) Ve e X, Vt € P,
O4(tz) = t_IHA(x), Palte) = t_lﬂA(ac) Vee X, VteP 2
and
ja@) < va(@), 0a(@)=1/va(@), Ja(e)=1/pal) Vo€ PA
with the conventionsg /oo := 0 and1/0 := co. In fact

1 1 1 ]
:m, 0\/19A($):MA(x); GA(Z):W7 0\/1/,4(35):

pa(z)

for everyz € X, wheres Vv t := max{s, t} for s,t € R. We use also the conventions

0-c00:=00"0:=00, 0 (—00) :=(—00) - 0:=0,

0-po00:=00-0:=0, 0-p (—00) :=(—00) 4 0:= —00

(the indexeg andh are coming from epigraph and hypograph, respectively). M @se the conventions
(—00) 4 (+00) := (+00) +¢ (—00) 1= 400,  (—00) 44 (+00) 1= (+00) +p (—00) := —00

(s + t being defined as usual in the other situations).
As for other operations on sets, one may ask when and how wescewer the setl knowingi 4, v4,
04 ord4. We have

A={zeX |pa(x)<1}={ze X |Va(z)>1} if A=clA=10,1]A4, 4)
A={zeX|va(z)>1}={2e X |0a(x) <1} if A=clA =[1,00[A. (5)

In fact, instead of asking = cl A we can assume thattis radially closed, or more precisely, thahRzx is
closed for every: € X; moreover, in such a case, the non zero finite values of thesxtibns are attained.
Having now the sefl C X and the elemerit € X \ {0} we consider the function

oar: X =R, par(x)=inf{tecR|zeth—A},
and its counterpart

Yar: X — R, Yap(@) =sup{teR |z ecth+A};

henceyy ;, = +oo andy , = —oo. Note thatp 4 (x) > —oo andyy (x) < oo for everyx € X if
k ¢ —A~. Moreover,
Yask =5 ‘Qak, Vase =8 "Yar Vs€EDP,
ACB=[pBr <@ar, Yar<Ypi, (6)
YAk = VALR, bk PAk = PA+R, k ks (7)
A+Rik C[phar > 0], —A—RyEClpaxr <0 (8)
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and

Yar(x) = —p_a k(@) = —par(—z) VoelX. 9)

For this reason it is sufficient to study,  or ¢4 ;. A detailed study of the functiop 4 j, in the cased
closed andd = A + Rk is performed in §, Section 2.3]; other properties ¢f, 5, are established inLf].
It is known and easy to prove that

oak(®+tk) = par(z)+1t, Yarp(z +th) =tar(x)+t VereX, VteR.

Of course, ifA is closed (or more generally, is closed in the directioh, thatis,{t e R |z +tk € A}
is closed inR for everyz € X) andp (x) € Rthenz € p4 1 (x)k — A, thatis, the finite values af 4 1
are attained. Moreover, il + R, k is closed then

A+Rik={ze X |par(—2)<0}={ze X |ar(x)>0}.

The functionp 4 , was introduced by Gerstewitz (Tammer) and Iwanowsjrahd used by Chr. Tammer
and her collaborators, as well as by D. T. Luc and others, Im&in scalarization of vector optimization
problems; the framework was that of an ordered topologieatar space. Luenbergerl, Def. 4.1] con-
sidered (practically) the same function, under the namédoftage function, in the context of production
analysis ( beingR™ and A a convex subset dk’}) and Artzner et. al.q] considered it in the context
of mathematical financeX being a space of Lebesgue integrable functionsAnide corresponding pos-
itive cone). More historical facts about the use of the fioms 4 1, ¥4, in Functional Analysis and
Mathematical Economics are given by A. H. Hamel 1]

In production analysis the conditioh = A + R, k is not granted. Because sometimes the results are
not established in very precise terms in this context, the theee statements refer to the case when
might be different ofA + R k. In the sequel we shall omit if confusions cannot arrive (mainly in the
proofs), that is, we shall write simply 4 instead ofp 4 ;, andy 4 instead ofy 4 .

Proposition 1  Assume thatl C X is closed K C X andk € X \ {0}. If
A=(A+Rk)NK, (10)

then
A={ze K |Yak(®) >0} ={z € K|par(—2) <0} (11)

PrROOF If A = {)then clearly {1) holds. Assume that # (). The inclusiord C {z € K | ¢¥a(z) >0}
is clear. Taker € K with ¢4 (x) > 0. If o4 (x) = 0, sinceA is closed, we have that= =+ ¢4 (z)k € A.
Otherwise there exists> 0 such thatr — tk € A. Thenz = « — tk + tk € A+ Rk, and so, by 10),
reA 1

When K is a cone and: € K condition (L0) is implied by the conditiofA + K) N K = A, while
in the case-k € K condition (L0) is implied by (A — K) N K = A. Note that in [] one uses sets
L; ¢ R" andP; C R* with the propertiegL; + R", ) N R’ = L; —called free disposability for inputs—
and(P; — R%) NR%. = P; —called free disposability for outputs.

As seen in ), the sefy 4 > 0] includes always the set+ R k, and so it might be different o even
if Ais closed and satisfied@. TakeK := R3 C X := R? k := (—1,-1), A := [0,1] x [0,1]; then
[a > 0] = A+ Rk # A. Itis clear that the hypotheses of Propositioare satisfied. Relation (2) in]
could give the impression that = [¢v4 > 0] for A a closed convex set without asking= A + R k.
As observed in§) we have thatd ¢ B C X impliesy4 < ¢ 5. Applying the previous proposition with
K = X, if AandB are closed sets (in the directiéh such thatd = A + Rk andB = B + Rk, then
AcC Bifandonlyifys < p.

Proposition 2 Assume that € X \ {0} and A; C X satisfies(10) for everyi € I (# ). Then
A= ;A and A" := | J,o; A; satisfy(10), too.
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PROOF SinceA; C K for everyi € I, we have thatd, A’ ¢ K. HenceA C (A + R, k)N K and

A" C (A +Rik)Nn K. Obviously,(A +Rik)NK C (A; + Ryk) N K = A; foreveryi € I, and so

(A+Ryk)NK C A. Letz € (A’ +Rik)N K. Thenz = o’ +tk € K for somea’ € A" andt > 0.

Hence there existse I with a’ € A;, andsar € K N (A; + R4 k) = A; € A’. The conclusion follows.
|

Condition (L0) will be used later on, too.

Proposition 3 LetI be a nonempty set andl; C X for everyi € I. Then

l/}uigIAi,k = sup l/}Ai,kv PUicr Az k = lnf PA; ks wﬁiezAi,k < Hlf wAi,ka PricrAqk > sup PA; k-
iel iel iel i€l
Moreover, if K C X is closed andA; + R k) N K = A; (thatis, A; verifies(10)) for everyi € I, then
l/}ﬂieIAi,k = Hlf 1/)A1-,k7 PrierAsk = SUP YA, k. (12)
iel icl
In particular, if A; = A; + Rk for everyi € I then(12) holds.

PROOF.  Becaused := (,.; A; C Aj C ;e Ai =: A’ for j € I we have thatps < ¢4, < ¥u for
j € 1. Thisimplies thatp4 < infier 14, < sup;c;a, < ar. Onthe other handitis clear that

{teRlz—the|JAi}=|J{teR|z—the A},

icl icl

whencey 4r = sup;c; ¥a,. Similarly, o4 = infic; @a,.

Assume now thal( is closed andA; + R k) N K = A, for everyi € I. Considerz € X ands € R
such thats < inf;cr ¥4, (x). Hence, for every € I we haves < 14, (x), and so there exists > s such
thate — t;k € A; C K. Sets:=inf{t; |i € I} > s. Hencex — sk =z — t;k+ (t; —S)k € A; + R,k
for everyi € I. Moreover, we have that — sk € cl K = K. Hencexr — 3k € (A; + Rpk) N K = A, for
everyi € I, and sar — 5k € A. This shows thatv4(z) > 5 > s. Hencey 4 = inficr ¢4, k.

A similar argument yieldg 4 = sup,;c; pa4,x. B

3 Duality relations involving the functions T4, SA, 04 and 4

First we establish formulas fau (x*) with z* € A™.

Proposition 4 LetA C X and setA := conv([1, co[A). Then for every:* € A* one has

ca(z®) =inf{04(x)  (z,2*) |z € PA}
=inf{04(z) - (z,2") |z € A}
=inf {0a(z) -c (x,2") |z € AT} (13)
=inf {0 3(z) - (x,2") |w € ATT }.

ProoR If A = 0 (13) holds taking into account our conventions. Assume that 0. Letz* € AT.
Then

*

~—

=inf{(2/,2") |2’ € A}

=inf{t(z,z") [t>0,z€e X, tx=2" € A}
=inf{t(x,a") |t >0, x € PA, tx € A}
=infyepa [(z,2") -inf {t > 0| tx € A}
=inf {04(z) - (z,2™) |z € PA}.

ca(z
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For the second equality one us&y, (while the third is a rewriting of the first one because for
AT\ PA we have that 4 (x) = oo and(z,z*) > 0. Itis clear thatd™ = AT andqa(2*) = ¢;(«*) for

z* € AT, Hence the last equality o18) follows from the previous one replacing by A n

The next result establishes an estimatefdc* ) whenz* € X*.

Proposition 5 Let) ## A C X. Then
ca(z®) <inf{04(z) |z € PA, (z,2*) =1} (14)
for everyz* € X*, the inequality being strict for* € (X*\ AT) U (A" N A~). Moreover, if0 ¢ A then
ca(z®) =inf{Oa(z) |z € PA, (x,2™) =1} =inf{Oa(z) |z € [z" =1]} (15)
for everyz* € A%,

PROOF Forz* € A* (14) follows immediately from {3). If z* ¢ AT thenga(z*) < 0 < A\(z*) :=

inf{fa(x) |z € PA, (z,2*) =1};if 2* € AT N A~ thenga(z*) = 0 < co = A(z*). Assume that
0 ¢ Aand fixa* € A#. Since(x,z*) > 0 for everyz € PA, using @) we may takex, z*) = 1 in the

second term ofX3), gettingso 15). MW

Assuming that ¢ A, the natural question is ifLE) is true forz* € AT\ A~ (D A#). We give an
affirmative answer under some additional conditions.

Proposition 6 LetA c X \ {0} be a convex set witid # (. Then
ca(z®) =inf{0a(z) |z € PA, (x,2") =1} =inf{0a(x) |z € [z" =1]} vzt e AT\ A,

PROOF Setd, := ‘A. ThenAgr = AT, ¢4, = sa andf,(z) = 04(x) for everyz € PA,. Moreover,
AT\ A~ C A#. The first two assertions follow from the fact tHat—¢)x +ty € ‘Aforx € ‘A, y € Aand
t € [0,1]. Sincedy C Aitis clearthat)s, > 04. Takex = sT with s € P andz € Ao, andf4(z) < 1.
Thenthere exists € |0, f[ with tz € A. Thenrtz+(1—7)T = (rt + (1 —r)s~ ')z € Ao forallr €]0,1].
Henceda, (z) < rt+ (1 —r)s~! forr €]0,1]. Lettingr — 1 we getf4,(x) <t < t. Hence our claim is
true. For the last claim take* € AT\ A~ and assume thaty, z*) = 0 for somer, € Ag. Taker € A.
Then there exists > 0 such that’ := (1 + s)xzg — sz € A. Itfollows that0 < (a/, 2*) = —s (z,2*) <0,
whence(z, z*) = 0. Hence—z* € AT, a contradiction.

Using Propositiord for A replaced byA, we obtain

ca(z®) <inf{0a(z) |z € PA, (z,2") =1} <inf{fa(z) | x € PAy, (z,2™) =1} =¢a,(z")
for everyz* € A} D At \ A~. The conclusion follows. W
The next result is a kind of converse of Propositton

Proposition 7 Let A C X \ {0} be a nonempty closed convex set such that [1,c0[A, thatis, A is
semi-conic. Thenl, = cl(PA). Moreover, for every: € Ay \ (—Ax) one has

0a(x) = sup { <a(a®) | 2" € AT, (z,a") =1} (16)

PrROOF We have that + sy = (1 + s)(ﬁx + 1jsy) € Aforallz,y € Aands > 0 becaused is
convexandl, co[A C A. Henced C A, and sacl(PA) C As. On the other hand, far € A, we have
that there exist the nets; )ic; C A and(t;)ier C P with¢; — 0 andt;z; — w. It follows thatu € cl(PA).
HenceA., = cl(PA).

First observe that fosz € A andz* € X* with (z,z*) = 1 we have thas = (sz,z*) > ca(z*).
This proves the inequality in (16) for everyz € X. Takex € A \ (—Ax) @and0 < s < 64(x); this
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is possible becaugg, (2’) > 0 for everyz’ € X (A being closed an@ ¢ A). Thensxz ¢ A. Using a
separation theorem we get € X* andr € R such that

(sx,x") <r < (y,z*) Yy € A. a7

SinceA = A + A we obtain thatu,z*) > 0 for all u € A, thatis,z* € (A)t = (PA)T = AT.
Becauser € A, we have thatz,z*) > 0, and sor > 0. If (z,2*) > 0 we may (and do) assume
that (x,2*) = 1. From (7) we obtain thats < r < ¢4(z*). Assume now thafz,z*) = 0. Because
€ Ax \ (—Ax), there exist&* € A} = A' such thafz,z*) = 1. Thenz} := ta* +7* € AT and
(x,27) = 1fort € Ry. Moreoverga(zy) > tca(z*) +ca(T*) > tr +ca(T*) > s for t > 0 sufficiently
large. HenceX6) holds. W

Of course, in the conditions of Propositi@nif —x € A, then(x,z*) < 0 for everyz* € A", and
so (16) does not hold (the term in the right hand side I)(is —oc).
Note that the supremum ii§) could be not attained. To see this consider

A::{(:c,y)eR2 |z €[0,1], yz17(2x7x2)1/2}u([1,oo[xR+).

ThenA,, = R2 = At,ca(a,1) =14a— (1+a?)"/? < 1= 6(0,1) for everya > 0.
Proposition 8 Letf) # A C X. Then

oa(x®) =sup{da(x) (z,2%) |z € [z* >0 NPA}
=sup{va(z) 4 (x,2") |z € [z* >0 NPA}
=sup{da(z) p (z,2*) |z €z* >0 NA} (18)
=sup{a(x) p (z,2%) [z €[z* >0]NnATT}
=sup{va(z) |z € PA, (z,2") =1}
=sup{da(z)|ze X, (x,2")=1}>0
for everyz* € X*\ A~. Moreover, if0 € convA then for every:* € X* one has
oa(z*) =0Vsup{da(z) |z e X, (x,2")=1}. (19)

PrROOF Note first thatr 4 (z*) > 0 ifand only if 2* € X*\ A™. Letz* € X*\ A~; then there exists
x € Asuchthatz, z*) > 0, and sqz* > 0] NPA # (). Then

oa(z*) =sup{(a',2*) |2’ € A}
=sup{t(z,z*) [t >0,z € X, te =2" € A}
=sup{t(z,2") [t >0, z€x* >0 NPA, tx € A}
= SuDyepesopa (@27 sup (£ > 0 | 1z € A}]
sup{da(z)-(x,2") |z €[z >0 NPA} >0,

that is, (L8) holds. Because far € [z* = 0] N PA we haved,(x) -, (x,2*) = 0, the second equality

holds, too. For the third equality one us&y, (vhile the fourth is a rewriting of the second one because fo

x € [z* > 0N AT\ PAwe have that 4(x) = —oo and(z, z*) > 0. Taking into accountd), from (18)

we get immediately the fifth equality, while for the last elifyaobserve that) 4 () = —oc forz € X\ PA.
Assume that € convA; thereforeoa(z*) = oeonva(z®) > 0 for everyz™ € X*. Set¢(z*) =

sup{da(z) | z € X, (x,2*) = 1} forz* € X*. Itis clear that(0) = —occ and so 19) holds forz* = 0.

If 2* € X*\ A~ (19 clearly follows from the first part. Lei # 2* € A~. Theno4(z*) = 0 andx ¢ PA

for everyz € [x* = 1]. Thereforeg(z*) = —oo and once again we have thad{ holds. W
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Proposition 9 Let A C X be such tha0 € convA. Then for every: € X we have
0V dmmwa(z) =inf{oa(z™) | 2" € X*, (z,2™)=1}. (20)
PROOF Because 4 = oznva We may (and do) assume that= convA. Set
n(x) :=inf{oa(z®) [ (z,2") =1}

forz € X. Using (L9) it is clear thad V ¥4 (x) < n(z) for everyz € X. For the converse inequality we
consider several cases.

a) = = 0; thend 4 (z) = oo andn(x) = oo, and so 20) holds.

b) x € PA\ {0} (henced(z) > 0). Takes > J4(x) (if possible). Thensz ¢ A, and so, by a
separation theorem, there existse X* such thatsz, 2*) > o4 (2*) > 0. Hence(z, 2*) > 0, and
so we may (and do) assume thatx*) = 1. Thereforey(z) < s; the conclusion follows.

c) = ¢ PA. Consider the functiop: X — R defined byp(u) = ¢ if u = tz andp(u) := oo else.
Theny is a Isc convex function witlp* (z*) = 0 if (z,2*) = 1 andy*(z*) = oo else. Moreover,
we have tha(t40y) (u) = inf{t e R |u—tax € A}. Itis clear that(t40Oy) (0) = 0. Letus
prove that 4Cp(0) = 0. In the contrary case there exist> 0 and a ne{u;);c; converging ta)
such that(t40yp) (u;) < —s for everyi € I. Therefore, for every € I there existg; > s with
x; = u; + t;x € A. We may (and do) assume that— ¢ € [s,00]. If t < cothentz € clA = A4, a
contradiction. Ift = co thenz = limt;lxi, and sar € A, C A, again a contradiction. Therefore,
1a0p(0) = 0; in particular. 4Oy is proper. SincécaOp)* = o4 + ¢*, we obtain (seell4]) that

0= 1a0p(0) = (1abp)™ (0) = (04 + ¢7)"(0) = —infaeex- (04 + ¢7) (27) = —n(z).
Sinced 4 (z) = —oo, we obtain thatZ0) holds in this case, too. B
Observe that there existse X such that 20) is false if0 ¢ convA.

Note that using relationsl) and @) one can establish duality results involving other comtiomes of
the functionss 4, ca, 14, va, 04 andd 4.

4 Duality relations involving o4, 54 and 4,

In[7, Rels. (18), (19)] the duality relations
sa(a”) = nf ((z,27) —da(z) - (k,27)) (21)

and . .
Yale) = inf L) —Sale) &’Zj;(“’“ )
are given forX = R"™ without mentioning from where andz* are taken. However in the context of [A
(= L(y)) is a convex set (included iR’ ) andk (= g.) is an element oR’; \ {0}. In the sequel we shall
try to find conditions which ensure the previous duality fofas.

In fact the first relation is true far* with (k, 2*) > 0 takingaz € X, while in the second one must take
x* € X* with (k, z*) > 0 (or, equivalently{k, z*) = 1).

Proposition 10 Letz* € X* with (k,z*) > 0and() # A C B C X. Then

(22)

sa(e”) = inf ({z,27) = Daxr(2) n (k,27)) (23)
and
oa(a”) = sup ((z,27) + a,—k(@) e (k,27)). (24)

If (k,z*) > 0then(23) and(24) hold even ifA = ().
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PrROOF Letfirst(k,z*) > 0. If A = then £3) and @4) clearly hold. Assume that # ). We have that

;gﬁ(((m,x*> —Ya(x) - (k%)) = l}g(((x,x*) — (k,a*) -sup{t | z — th € A})
= xlg( (inf{(z,2*) —t (k,z*) |t € R, @ — tk € A})
=inf {(z —tk,z*) |z € X, teR, x —th € A}
=qa(x").

Hence, ifA ¢ B C X then

< inf (z,z")
z€A

becaused C [p4 > 0]. Therefore, 23) holds in this case.
Let now(k,z*) = 0. Then

jg( ((z,2*) —Ya(x) p (k,2*)) = inf{(z,2") | 2 € Rk + A} = inf{(z,2") | € A} = ca(z"),

and so 23) holds in this case, too.
For obtaining 24) just use the formula 4 (z*) = —¢a(—2*)in (23). W

If (k,z*) < 0 relation 1) does not hold.

Example 1 ConsiderA := [1,00), k := 1 anda* := —1, 0one hag)s(z) =  — 1 foreveryz € X =R,
ca(z*) = —ccand inf e x {{z, 2*) — va(x) - (k,2*)} = —1.

Corollary 1 Letz* € X* be such thatk,z*) > 0andA C X. Then

ca(z*) =1inf {(z,2*) |z € B} (25)
providedA C B C [¢4,; > 0] and

oa(e®) = sup{(z,2") |z € B} (26)
providedA C B C [tpa,—; > 0].

ProOR If A = () then necessarily3 = (), and so 25) and @6) hold. Assume thatl # 0. It is clear
thatA C [¢pa > 0]; for z € [a > 0] clearly (z,2*) — Ya(x) - (k,z*) < (x,2*). Using the preceding
proposition (forB = X)) we get

((z,2%) —da(x) -n (k,2%)) < inf ((z,27) = Pa(z) -» (k,27))

z*) = inf
ca(z™) xlex velba>0]

< i )< Yy < )= ).
S etz (777 < S (0 = oL () = sale”)

Hence 25) holds. Replacing* by —x* andk by —k in the preceding statement we g26(. MW

In what concerns relatior2p) it is clear that one must havé, «*) # 0. Also note that for: € X one
has always
Ya(z) <inf{{x,z*) —ca(z™) | 2" € X7, (k,2") =1} =:na(x). (27)

Indeed, letr € X, ¢t € R andz* € X* be such that: € tk + A and (k,2*) = 1. Thenga(a*) <
(x —th,x*) = (z,z*) — t, thatis,t < (z,z*) — ca(x*). Therefore, the claim holds.
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However, one cannot expect equality for every4eOne reason is that 4 is not necessarily concave,
while 14 is concave (anhs = 7eonva); MoOreover, as seen iy, Y4 = Y a 1w, Which is not the case
with ¢4; howeverga (z*) = caqr, k(2*) if (k,2*) > 0. Itis natural to consider only* with (k,2*) > 0
(simple examples can be given with= A + R k convex for which strict inequality holds ir27)).

It is known that forA a nonempty closed convex set we hdve, )™ = cl{ z* | sa(z*) > —cc } (use
f.i. [14, Exercise 2.23] fof = 14). Since(A.)™" = A, we have

—k € Ay <= [ca(a™) > —oc0 = (k,2™) < 0],
and so
— k¢ A <= [TT" € X" :64(T") > —o0, (k,T") =1]. (28)
Note also that whem is a nonempty closed (not necessarily convex) setfare X is such that
—k ¢ A we have thatd + Rk is closed and4(z) < oo for everyz € X.

Proposition 11  Assume that is a closed convex set. Then
Yar(x) =nf{(r,z*) —ca(z") | 2" € X*, (k,z") =1} Vo e X (29)
provided—k ¢ A, and
a,—k(x) =inf{oa(z™) — (x,2%) | 2" € X*, (k,2") =1} Ve e X (30)
providedk ¢ A..

PrRoOOF If A = () then clearly 29) and @0) hold.

Assume thatd # (). As observed abovel + Rk is closed and)4(z) < oo for everyz € X.
Fix z € X. By (27) we have that) 4 (z) < na(x). Take some € R such thats > 14 (2) = Y air & (2);
thenz — sk ¢ A+ Ry k. Becaused + Rk is convex and closed there exigf € X* andsy € R such
that (z — sk, z§) < so < (a,z8) +t(k,zf) foralla € A andt € R,. It follows that(k, =) > 0 and
(x,xb) — sk, xf) < so < ca(zy). If (k,z5) # 0, we may assume thak, ;) = 1 (replacingz by
(k,zg)~" a7 if necessary). Hencea (x) < (z,z%) — salay) < s (k,z%) = s. Assume thatk,zf) = 0.
Because-k ¢ A, by (28) there existst* € X* such thats4(Z*) > —oo and(k,z*) = 1. Then
(k,T* + taf) = 1 andsa (T* 4 txf) > ca(T*) + tsa(xf) > tso +sa(T*) fort > 0, and so

na(z) < inf{ (x, 7" + taf) —ca(@T* +txg) |t >0}
<A{x,T") —ca(T") +inf{t- [(x,af) —so] |t >0}

= —0OQ.

Hencen(x) < s in this case, too. It follows thaj (x) < ¢4 (z). Therefore, 29) holds. Replacing: by
—kandz* by —z* in (29 we get 30). W

5 Other duality results

Inspired by [/], we consider the nonempty sEtC X x Y, whereY is another separated locally convex
space with topological duaf*. As in [7] we associate the sets

Px)={yeY|(v,y) €T}, Lly)={zeX|(z,y)eT}

forz € X andy € Y; of course,P(xz) and L(y) are convex (resp. closed)Tf is convex (resp. closed).
Moreover, if T is closed and convex and € ker T, := (Ts) 1(0) := {z € X | (2,0) € T}, then
u € (L(y))s foranyy € Pry (T'); conversely, ifu € (L(y))s for somey € Pry (T') thenu € ker Too. A
similar statement is valid with respect to the other vagabl
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Define now the sets
P(x*):={y|3weX: ye P), (z,7*) < 1}:U{P x) | {(z,2*) <1}CPry(T), (31)
L") ={z|FeY:zely), (yy)>1}=J{LW) | w,y") 21} CPrx(T),  (32)
forz* € X* andy* € Y*.
Lemmal Let?T C X x Y be nonempty.
(@) If Tis convex therP(z*) and L(y*) are convex for alk* € X* andy* € Y*.
(b) If Tis closed andlim X < oo thenP(z*) is closed for every* € (ker Tiy, ).

(c) If T'is closed andlim Y < oo thenL(y*) is closed for every* € —(T,,(0))*.

PROOF  (a)Lety;,y2 € P(z*) ands € [0, 1]. There existry, z2 € X with y; € P(x;) andys € P(z2),
thatis,(x1,y1), (2,y2) € T and(z1,2*) < 1, (we, z*) < 1. Hence(sxzy + (1 — s)xe, z*) < 1 and, by the
convexity of 7, (sz1 + (1 — s)x2, sy1 + (1 — s)y2) € T, thatis,sy; + (1 — s)ya € P(sz1 + (1 — s)x2).
Hencesy; + (1 — s)y2 € P(z*). The convexity ofL(y*) follows similarly.

(b) Becauselim X < oo we may (and do) assumE is a normed space. Fix somé € (ker T, )
and considey € cl(P(z*)), thatis, there exist§y;)ic; C P(z*) with y; — y. For everyi € Y there exists
x; € X with (z;,y;) € T and(z;,z*) < 1. Assume that; := ||z;|| — oo (on a subnet); hendg € P
fori > io. Passing to a subnet if necessafy.z; — u # 0. Sincet; ' — 0 andt; *(z;,y;) — (u,0), we
have that: € ker T.... Moreover, clearlyt; ' > (t;'z;,2*) — (u,z*), and so{u, z*) < 0, contradicting
the fact thatr* € (ker T, )#. Therefore, there exists somgsuch thatz;);>, is bounded, and so we may
(and do) assume that — = € X; hence(x, 2*) < 1. Becausd' is closed we obtain thdt:, y) € T, and
soy € P(x) C P(x*).

(c) The proof is similar to that ofb). W

Throughout this sectioh € X \ {0} and! € Y\ {0} are fixed elements. Using Propositi®mwe obtain
that

wf(y*”g = sup { VL(y) .k | (y,y") > 1 } ) "/)ﬁ(l»«) | = Sup { Yp(a), | (z,2%) <1 } . (33)

Proposition 12  Assume thdf’ is a nonempty closed convex set such thatP (x) for everyz € Prx (7).

Then B
W=({Iw) | wy)=1} WeY. (34)
Moreover, ifk € ker T, then
Yoy = inf { Vi | W7) > 1 } Yy €Y. (35)
PrOOF Letusset(y) := N {L(y ,y*) > 1} fory € Y. From @2) itis clear thatL(y) C L(y)

foreveryy € Y. Fixy € Y and let us show that(7) C L(7). Take som& € X \ L(7). If T ¢ Prx(T),
by (32) we have that ¢ L(y). So lett € Prx(T); hence(Z,0) € T. Becaus€z,y) ¢ T, by a separation
theorem, there exi$t*,7*) € X* x Y* ands € R such that

@7+ G,7") >s>@7)+y) Viry el

Since(7,0) € T we obtain thaty,5*) > so := s — (T, T*) > 0. We may (and do) assume thgt= 1.
It follows that(7,7*) > 1 and(z,y) € T = (y,7*) < 1. The last implication shows that ¢ L(y) for
(y,7*) > 1,thatisz ¢ L(y*). Since(y,7*) > 1, we have that ¢ L(7).

Assume thak € ker T,. Becaus€k,0) € T, we have that.(y) + Rk = L(y) for everyy € Y,
and soL(y*) + R k = Z(y*) for everyy* € Y*. Applying Propositiond2 and3 (with K = X) we get
the conclusion. The proofis complete. l
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Proposition 13 Assume thal’ C X x Y is a nhonempty closed convex set. Then
P(xz) = ﬂ{ﬁ(m*) | (z,2*) <1} Vo € ker T (36)
Moreover, assume that the closed BetC Y andl € Y \ {0} are such that
Py(T)CF and [(z,y) €T, t >0, y+tl € F] = (x,y+tl) € T. (37)

Then

PROOF Letus set
P@):={P@") | (w,2*) <1}, wzeX (39)

From @1) it is clear thatP(z) C P(x) for everyz € X. Fix T € ker T, and let us showP(z) C P(T).
Take somgj € Y \ P(T). Becaus€z,y) ¢ T, by a separation theorem, there eXist,7*) € X* x Y*
ands € R such that

T.7°)+ 7)) <s<(&,T) +(u,7) ViryeT (40)

Fixing some(xo,y0) € T we have tha(zy + u,yo) € T for everyu € kerT.,. From @0) we obtain
that (u,z*) > 0 for everyu € kerT. In particular(Z,z*) > 0. Using again 40) we obtain that
1,7y < (Z, T + (y,7") < s, whencesy := s — (g,7*) > 0. We may (and do) assume that = 1.
It follows that (Z,7*) < 1 and(z,y) € T = (x,T*) > 1. The last implication shows thgt¢ P(x) for
(z,7*) < 1, thatis,y ¢ P(z*). Since(z,z*) < 1, we have thay ¢ P(Z).

Assume thaf" andi satisfy 7). Condition 87) shows thatP(z)+R1)NF = P(x) foreveryz € X.
By Propositior2 we obtain that P(x*) + R 1) N F = P(z*) for everyz* € X*. Using Propositior8 we
obtain thatinf {¢p,.., , | (#,2*) <1} =¢p,, . SinceP(z) = P(z)we get@9). M

The next example shows that far € X \ ker T it is possible that36) is not verified under the
hypotheses of Propositidr8.

Example2 LetX =Y =R, K := Ry, a € RandT, := {(z,y) e X xY |y>0,z>a+y*}.
ThenP,(z) = [0,+/z — a] for x > a and P, (x) = 0 for z < a. Moreover, fora < 0 one has

Pa(u) = {[0’°°) PSR = {[O’ v s
0,/1/u—a] ifu>0, [0,vz —a] ifz>0,
while fora > 0 one has
_ [0, 00) TusO, . ifz<a
P (T osezn Bl e

HenceP, (z) = P,(x) for everyz € K (and every), but P, (z) # P,(z) forz € X \ K whena < 0
(P being defined i1{39)).

Note that relations33), (35) and 38), as well as 84) and @36) can be interpreted also as duality results.
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6 Connections with duality results in economics literature

TakingA := {x € X | u(x) > v } andB := X Propositionl0extends {1, Prop. 2.4] becaudgz, u) =
Ya,q(x). Italso extends], Prop. 4.1]. Indeed, using the notation froiri], we haver(p) = oy (p) and
o(g;y) = v—y,4(y). So, from @4) and @) we getforg-p > 0, A := =), k := g andz™ :=p,

m(p) = oy(p) = s ((z,p) + y,—¢(x) - (9:P)) = sup (x-p—o0a(g:9)9-p),

that is, the conclusion ofl[l, Prop. 4.1].
In several papers on production analysis a technology isvampty sef” C R} x R with n, m > 1
satisfying several axioms among the next ones ($ee. [353]):

(Al) T is closed.

(A2) Inputs and outputs are freely disposable; (e,y) € T, (¢/,y') e R" xR™andz’ > 2,0 <y’ <y
imply (¢/,y") € T (herea’ > x meanst’ — z € R} andy’ <y meangy —y' € R").

(A3) Thereis no free lunch; i.e(0,y) € T impliesy = 0.
(A4) Doing nothing is feasible; i.e(p,0) € T.
(A5) T is convex.
Sometimes instead of the (free) disposability axi@®) one uses the weak disposability axiom
(A2) (z,y) €T,s € [l,o0[andt € [0,1]imply (sz,y) € T and(z, ty) € T

Note that axion{A2) is written in the form: “if (x,y) € T and(2’, —y') > (z, —y), then(a’,y') € T”
in [4] (and other articles); this is equivalent(#?2) if one askgz', y') € R’} x R". Because the technology
T is perfectly determined by the multifunctigh: R’} = R’ or L: R" = R}, sometimes one mentions
the axioms in terms of” or L. We setX := R™ andY := R™. Note that wher(Al) and(A2") hold
we have tha(z) is a nonempty closed set wif), 1] P(x) = P(x) for everyx € Prx(T") andL(y) is a
nonempty closed set with, oo[ L(y) = L(y) for everyy € Pry (T). Taking into account4) and &) the
preceding remark proves that for, y) € X x Y one has the equivalences

Di(y,z) >1<= 2z € L(y) <= (z,y) € T <=y € P(z) <= Dy(z,y) <1
mentioned in §, p. 353], whereD;(y,z) := vi,)(z) and Dy(z,y) = pp(y), D; and D, are the

Shephard input and output distance functions. Besideand D,, in production analysis other functions
are considered, too (se€ fand the references therein):

-
Dr(z,y; —9us 9y) = V1, (g0,—g,) (T, Y), (41)
— —
Do(z,y;9y) == VpP(a),—g, (¥); Di(z,y; —gz) = VL(y),g. (T), (42)
—> —
IDo(W', 45 9y) = VB, —g, (¥),  IDi(@,p'5=g2) == Vg 4. (), (43)

whereP (w') andL(p’) are defined as ir8l), (32) forw’ € X* = R™ andp’ € Y* = R™ (corresponding to
the setdP(w/C) andIL(p/R)); hereg, € R} andg, € R are nonnullin 42), (43) and(g., g,) # (0,0)
in (41). Moreover,

H(pa w) = O—T(fva% R(xvzj) = JP(w)(p>ﬂ C(ya w) = SL(y) (w>a
IR(w',p) i= 05 (p),  1C(P',w) = gy (w).
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Assuming that the axiom@1), (A2"), (A3), (A4), (A5) hold and using alsa3j, from Propositions,
9, 6 and7 we obtain that

R(:c,p)sup{& ‘py>0} Vo € Prx(T), VpeR™\{0},
Y Do(z,y

(z,y)
Doé,y) :n;f{ R(;;p) ‘py>0} Vz € Prx(T), VyeR™\ {0},
C(y,w)igf{% w:c>0} ¥y € Pry(T), Yw e R\ {0},
Dily. 2 sg}p{ % ‘ wx > O} Vy € Pry(T), VaeRY\ {0},

respectively; in fact an attentive analysis shows that Soypetheses can be weakened. Such duality results
are mentioned ing, Rels. (10), (11)]; here one says “Shephard (Refs. 1, 9)gutdvatC(y, w) is dual to
D;(y, x) and thatR(zx, p) is dual toD,(z, y). His duality theorems were stated as constrained optifoizat
problems. Here, we follow Fare and Primont (Ref. 3) ancestag dualities as unconstrained optimization
problems”.

In the sequel we assume thAtsatisfies the axiom@A1l)—(A5). In this situationT,, is a subset of
R? x R and satisfies the axion{&1)~(A5), too; in particularR? x {0} C T, kerT, = R’} and
T(0) = {0}. Moreover,Prx(T) = R’} and P(z) is a compact convex set containingfor every

x € Prx(T'), andL(y) is a nonempty closed convex set with(y)).. = R for everyy € Pry (7). From
axiom(A2) we obtain that

T=(T+Rik)NRE xRY)  VkeR} x (=RT);
hence 10) holds fork € R’} x (—=R7) (andK := R? x R’"). Moreover
P(z) = (P(z) —RT)NRY VreX and L(y)=(L(y)+R})NR} VyeY.
Because
= (90, =9y)  Too (CRE XRY), g0 & (L(y))oo (CRY) and gy ¢ (P(2))oc (=1{0}), (44)

the functionsl_)}, 1_50, 1_51- do not take the value-oo; this is also true foﬂ_f,- (because-g, ¢ (L(p'))oo
(C R%}) and for ID,, whenw' € R", := intR7, becauseP(w’) is compact in this case. Indeed,
by Lemmal P(w') is closed. Assume tha®(w’) is not bounded. This means that there exists a se-
quence((zn,Yn)),~; C T with |ly,| — oo and(z,,w") < 1 for everyn > 1. We may assume that
(@, ye) |~ (2, Yn) — (u,0) € Too C R? x R’"'. Becausg0,0) € T, we get(su, sv) € T fors € R,.
If w =0, then(0,v) € T and sov = 0 by (A3), contradicting|(u, v)|| = 1. Henceu # 0. It follows that
(u,w’) <0, contradicting the fact that € R \ {0} andw’ € R} | . HenceP(w') is bounded.

Note that forw ¢ R, taking into accoun{A2), we have thall(p,w) = oo, C(y,w) = —oo (if
L(y) # 0), IC(p',w) = —oo (if L(p') # 0); hence, in those results involving these quantities we may
takew € R’}. Using Propositiori we obtain that

(x,y) €T <= [(x,y) € R} xRY andBT(ac, Y —Ga, Gy) > 0}

and
y € P(z) <~ [y € RY andﬁo(:c,y;gy) > 0} ;

taking into account®) we see that{, (2)] and [7, (5)]) do not hold.

232



Duality results between profit, revenue, cost, input, outpu

Applying Propositionl0 we get [7, (16)] (and [, (16)]; this is obtained under a differentiability as-
sumption on solutions) for (those paifs w) with) pg, + wg, > 0, [7, (18), (33)] forwg, > 0, and [/,
(20), (35)] forpg, > 0. On the other hand, taking into accoud#) and using Propositiofil we get [/,
(17), (19), (21)] in which the infimum is taken with respeci(tor.t.) thosep, w with pg, + wg, > 0 (or
equivalentlypg, + wg, = 1), w.r.t. w with wg, > 0 and w.r.t.p with pg, > 0, respectively. Moreover,
by Lemmal we have thatP(w’) is a closed convex set containiodor everyw’ € R”, = (ker Ti,)#
andL(p') is a closed convex set for evepy € Y* = R™ = —(T,.(0))*. Using again Propositiohl we
get [7, (34)] in which the supremum is taken w.nt. with wg, > 0 for everyp’ € R™ and [7, (36)] in
which the infimum is taken w.r.p with pg, > 0 for everyw’ € R” .

We have thatT, (26)] and [, (31)] follow immediately from 83) (if our interpretation, used throughout
this section, that’ andR are positive real numbers, is correct). Moreover, using®sdionl3for /' = R’
andl = —g, we get [/, (27)] for everyr € ker T, = R’} while using Propositiod2for k£ = g, we get [/,
(32)] for everyy € Y.

Recently one considered technologies in which the outpatesp is a functions space. For example
in [3] one considers the technolo@yC R’ x L?(Q,P, R'?") whereP is a probability measure. Note that
the duality results established i&] [can be deduced from the duality results from Section
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