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Abstract. In this paper, given an integer a > 1, we look at the smallest
exponent n such that an is not a palindrome.
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Resumen. En este art́ıculo, dado un entero a > 1, nosotros estudiamos el menor
exponente n tal que an no sea palindromo.

1. Introduction

A palindrome is a positive integer whose sequence of base 10 digits reads the
same from left to right and from right to left. More generally, given any in-
teger b > 1 a base b palindrome is a positive integer a such that if its base b
representation is

a = a0 + a1b + . . . + atb
t, ai ∈ {0, . . . , b− 1}, at > 0,

then ai = at−i holds for all i = 0, . . . , t. For example, 12345678987654321 is a
palindrome and bt + 1 is a base b palindrome for b > 1 and t ≥ 1.

Several authors have investigated the occurrence of palindromes in special
sequences. For example, Korec [3] looked at palindromic squares, Harminic and
Soták [2] looked at the occurrence of palindromes in arithmetical progressions
and Luca [5] looked at palindromic Fibonacci numbers. In [1], it is shown that
almost all palindromes are composite.
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The Theorem on page 222 in [5] shows that if a > 1 is any fixed integer, then
the set of n such that an is a base b palindrome is of asymptotic density zero.
Hence, there certainly exists an n such that an is not a base b palindrome. It is
the smallest positive integer n := n(a, b) with this property that we investigate
in this paper.

Note that if a = b + 1 and m is such that
(
m
j

)
< b for all j = 0, . . . ,m, then

all the numbers

ak = (b + 1)k =
k∑

j=0

(
k

j

)
bj , k = 1, . . . , m.

are base b palindromes. Since the inequality
(

m

bm/2c
)
À 2m

√
m

,

holds for all positive integers m, it follows that for a = b + 1 we have that
n(a, b) ≥ (log b)/ log 2+O(log log b). Here, we use log for the natural logarithm.
In particular, n(a, b) can be large. Further, note that n(1, b) = ∞, which is
why we assume that a > 1.

In this note, we prove the following upper bound on the size of n(a, b) when
a > 1.

Theorem 1. There exists an absolute constant C0 such that if a > 1 and b > 1,
then

n(a, b) < exp
(
C0(log A)3 log log A

)
,

where A = max{a, b}.

2. Proof of Theorem 1

Proof. Let a, b and A be as in Theorem 1. We assume that log A > 1 (otherwise,
a = b = 2, and so n(a, b) = 0). We assume that b > 2 and we shall indicate at
the end how to modify the proof in such a way as to deal with the case b = 2
also.

Given a and b we write b = b1b2, where every prime factor of b1 divides a
and b2 is coprime to a. It is clear that b1 and b2 are uniquely determined by a
and b, and in particular they are coprime. Let c ∈ {0, . . . , b−1} be the number
such that c ≡ 0 (mod b1) and c ≡ 1 (mod b2). The number c exists and is
uniquely determined by the Chinese Remainder Theorem.

For a positive integer m let φ(m) be its Euler function. We note that the
congruence

amφ(b) ≡ c (mod b),

holds for all positive integers m. Indeed, note that since b2 and a are coprime,
Euler’s Theorem tells us that aφ(b) ≡ 1 (mod b2). Hence, amφ(b) ≡ 1 (mod b2)
for all m ≥ 1. We now prove that aφ(b) is divisible by b1. For this, let p be
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a prime factor of b1 and assume that pα | b1. Since 2n−1 ≥ n holds for all
positive integers n, we get that

pφ(b) ≥ pφ(pα) = ppα−1(p−1) ≥ ppα−1 ≥ p2α−1 ≥ pα,

and since p | a, we get that aφ(b) is a multiple of pα. Since this is true for
all prime powers pα dividing b1, we get that aφ(b) is a multiple of b1. Hence,
amφ(b) ≡ 0 (mod b1) for all m ≥ 1. Recalling the definition of c, we conclude
that

amφ(b) ≡ c (mod b) for all m ≥ 1.

Thus, the last base b digit of amφ(b) is c for all m ≥ 1. In particular, if every
prime factor of a divides b, then c = 0 and so amφ(b) cannot be a palindrome.
Thus, n(a, b) < φ(b) in this case. In fact, it is easy to show that the better
inequality

n(a, b) ≤ max{α : pα | b for some prime p},
is satisfied in this case.

From now on, we will assume that there exists a prime factor p of a not
dividing b. In particular, c > 0 and (log a/ log b) 6∈ Q.

Suppose now that amφ(b) is a palindrome for m = 1, . . . , N where N is
some positive integer. Then the first digit of amφ(b) is also c. Thus, for each
m = 1, . . . , N , there exists n := n(m) such that

cbn ≤ amφ(b) < (c + 1)bn.

Taking logarithms and dividing both sides of the resulting inequality by log b
we get

log c

log b
+ n ≤ m

(
φ(b) log a

log b

)
<

log(c + 1)
log b

+ n. (2.1)

Let θ = φ(b) log a/ log b. Note that θ 6∈ Q. Since 1 ≤ c < c + 1 ≤ b, we get that
0 ≤ log c/ log b < log(c + 1)/ log b ≤ 1, therefore n = bmθc and inequality (2.1)
leads to the conclusion that

{mθ} ∈ I =
[
log c

log b
,
log(c + 1)

log b

]
, m = 1, . . . , N, (2.2)

where N = bn(a, b)/φ(b)c. In the above, we used bxc and {x} for the integer
part and the fractional part of x, respectively.

Recall now that the discrepancy DN of a sequence (am)N
m=1 of real numbers

(not necessarily distinct) is defined as

DN = sup
0≤γ≤1

∣∣∣∣
#{m ≤ N : {am} < γ}

N
− γ

∣∣∣∣ .

From the above definition we see that the inequality

#{m ≤ N : α ≤ {am} < β} ≤ (β − α)N + 2DNN

holds for all 0 ≤ α ≤ β ≤ 1.
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Thus, setting am = mθ for all m = 1, . . . , N , containment (2.2) for m =
1, . . . , N leads to the conclusion that

N = # {m ≤ N : {am} ∈ I} ≤
(

log(c + 1)
log b

− log c

log b

)
N + 2DNN

≤ log 2
log b

N + 2DNN. (2.3)

We now bound DN . The Koksma-Erdős-Turán inequality (see Lemma 3.2
in [4]) bounds the discrepancy DN as

DN ≤ 3
H

+
3
N

H∑
m=1

1
m‖am‖ , (2.4)

where ‖x‖ is the distance from x to the nearest integer and H ≤ N is an
arbitrary positive integer (see [7] for an even better inequality).

To bound ‖am‖, note that

‖am‖ =
∣∣∣∣m

φ(b) log a

log b
− t

∣∣∣∣ =
1

log b
|mφ(b) log a− t log b| ,

where t is an integer such that t ≤ mφ(b) log a + log b. Note that ‖am‖ is
nonzero since θ 6∈ Q. Thus, |mφ(b) log a − t log b| 6= 0 and a lower bound to it
can be obtained by using the theory of linear forms in logarithms. Indeed, the
main result of Matveev [6] shows that there exists an effectively computable
constant C1 > 1 such that

|mφ(b) log a− t log b| > exp (−C1 log(2mφ(b) log a) log a log b)

≥ exp
(
−C1 log(2m)

(
1 +

2 log A

log 2

)
(log A)2

)
. (2.5)

We thus get that if H ≥ 2 and m ≤ H then log(2m) ≤ 2 log H and so the
inequality (2.5) leads to

1
‖am‖ ≤ (log b)HC2(log A)3 ≤ (log A)HC2(log A)3 ,

where we can take C2 = 2(1 + 2/ log 2)C1. Thus,

DN ≤ 3

(
1
H

+
log A

N
HC2(log A)3

H∑
m=1

1
m

)
≤ 3

(
1
H

+
log A

N
HC2(log A)3+1

)
.

Choosing H = bN1/(C2(log A)3+2)c we get, assuming still that H ≥ 2 and there-
fore that

(N−1/(C2(log A)3+2) − 1)−1 ≤ 2N1/(C2(log A)3+2),

that
DN ≤ 9(log A)N−1/(C2(log A)3+2),
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which together with inequality (2.3) leads to

0 <

(
1− log 2

log b

)
≤ 18(log A)N−1/(C2(log A)3+2),

or

N ≤
(

18 log A

1− (log 2)/ log 3

)C2(log A)3+2

≤ (54 log A)C2(log A)3+2

= exp(C3(log A)3(log log A + 2 log(54))),

where we can take C3 = C2 + 2(log A)−3. Since n(a, b) ≤ φ(b)N < AN , we get
the conclusion of Theorem 1 with a suitable constant C0.

When b = 2, an argument similar to the one from the beginning of this
proof shows that there exists c ∈ {0, 1, 2, 3} such that a2 ≡ c (mod 4). We
may assume of course that c is odd since if not then the last binary digit of a is
zero so no power of a of positive exponent can be a binary palindrome. Thus,
the last two digits of a2 in base 2 are determined and they are either 11 or 01.
Since a2m is a binary palindrome for m = 1, . . . , bn(a, 2)/2c, it follows that the
first two binary digits of am are the same for all such m. Now one may apply the
same argument as before based on the Koksma-Erdős-Turán inequality (2.4)
and the lower bounds for the linear forms in logarithms (2.5) to get a similar
upper bound for n(a, b). We do not give further details here. ¤X
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