
 

 

 

 
Universidade de Vigo  

    http://webs.uvigo.es/rgea 
______________________________________________________________________ 

______________________________________________________________________ 
Facultade de Ciencias Económicas e Empresariais, Campus As Lagoas-Marcosende, 
36310 Vigo. 

RGEA  

 
 
 
 
 
 

Working Paper Series 
 
 
 
 

Sharing a polluted river through environmental 
taxes* 

 
María Gómez Rua  

12-08 
 



Sharing a polluted river
through environmental taxes �

María Gómez-Rúa y

Research Group in Economic Analysis.
Universidade de Vigo.

December 1, 2008

Abstract

We consider a river divided into n segments. There are n agents lo-
cated along the river who generate residues. The river requires cleansing
and it entails some cost. We propose several rules to distribute the total
pollutant-cleaning cost among all the agents. For each rule we provide an
axiomatic characterization using properties based in water taxes. More-
over, we prove that one of the rules coincides with the weighted Shapley
value of a game associated with the problem.

JEL classi�cation: C71; D61.
Keywords: cost sharing, pollutant-cleaning cost, water taxes.

1 Introduction

The aggravation of environmental contamination in the last years is an impor-
tant reason for the countries to institute taxes on the emission of polluting
substances into the di¤erent natural environments. In the particular case of
Spain, sanitation (or water) charges constitute the most representative environ-
mental tax as more than two thirds of the autonomous regions�governments
use them. The sanitation charges are principally a tax instrument for funding
public sewage treatment services (Gago et al., 2006).
From a theoretical point of view, Ni and Wang (2007) develop a model

to study how to allocate the pollutant-cleaning costs among the agents that
cause this pollution. They consider a river which is divided into n segments.
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In each segment there are agents who discharge pollutant substances of some
kind into the river. The authorities could guarantee the cleansing of the water
for public use. They prove that the Upstream Equal Sharing method is the
only rule that satis�es E¢ ciency, Additivity, Irrelevance of Upstream Costs and
Upstream Symmetry (which states that for any given downstream costs, all
upstream polluters share them equally). However, many situations exist where
the last axiom cannot be applicable.
In this paper we consider the same model as in Ni and Wang (2007) and we

characterize the set of rules satisfying E¢ ciency, Additivity and Irrelevance of
Upstream Costs. We then characterize two rules by adding two properties to
these.
Sometimes, residues that �rms dump into the river are biodegradable and

therefore pollution disappears over time. Moreover, in many cases it is possible
to know the biodegradation rate. The property of Biodegradation rate ensures
that the taxes paid by the agents depend on this rate.
Another property is Weighted Tax. In many countries there are several

alternatives in the design of water tax rates. In most cases a variable component
exists which depends on di¤erent factors, such as the volume of water consumed,
the pollution load, the population of the municipality, etc. (Gago et al., 2006;
OECD, 2006). This idea is collected by the axiom of Weighted Tax.
Ni and Wang (2007) prove that the two methods they present coincide with

the Shapley value (Shapley, 1953b) of two di¤erent games. We prove that the
rule characterized by using Weighted Tax coincides with the weighted Shapley
value (Shapley, 1953a) of a new game, where, the value of a coalition represents
the pollutant-cleaning costs in the segments polluted only by agents who belong
to this coalition.
The paper is organized as follows. In Section 2 we introduce the model.

In Section 3 we characterize the family of rules satisfying three properties. In
Section 4 we introduce new properties in this context and we present two rules
and characterization results for them. Moreover, we prove that one of the rule
coincides with the weighted Shapley value of a particular cooperative game.

2 The model

We will follow the model introduced by Ni and Wang (2007). Consider a river
which is divided into n segments indexed in a given order i = 1; 2; :::; n from
upstream to downstream. There are n household-�rms (agents) located along
the river, each of them is located in one of these segments according to the above
order. Each �rm generates a certain amount of pollutants of some kind, which,
all households try to avoid.
Our attempt is to �nd rules or methods to allocate the total cost of pol-

lution cleaning among all the household-�rm pairs that are responsible for the
dumping.
Formally, let N = f1; 2; :::g be the set of all possible agents. Let N � N be

a �nite set of agents. Usually we take N = f1; :::; ng. Let C = (c1; :::; cn) 2 Rn+
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be the pollutant-cleaning cost vector, where ci represents the cost incurred by
agent i:
A pollution cost sharing problem is a pair (N;C):When N is �xed we simply

denote as C the problem.
A solution to a problem (N;C) is a vector x = (x1; :::; xn) 2 Rn+ such thatP
i2N xi =

P
i2N ci, where xi represents the cost share assigned to agent i:

A rule (or method) is a mapping x that assigns to each problem (N;C) a
solution x(N;C):
A transfer utility game, TU game, is a pair (N; v) where N � N is �nite and

v : 2N ! R satis�es v(;) = 0. Given w 2 RN++; we denote the weighted Shapley
value (Shapley, 1953a) with weights given by w as �wi (N; v):

3 Characterization

Ni and Wang (2007) characterize the Upstream Equal Sharing method with
four axioms: additivity, e¢ ciency, independence of upstream costs and upstream
symmetry. The latter ensures that all the upstream agents have equal responsi-
bilities for a given downstream pollution cost. However, situations exist where
this axiom cannot be applicable. For instance, in the Spanish autonomous re-
gions Valencia and Catalonia, the water taxes applicable to the households take
into account the population of the municipality where the house is located. In
these cases we cannot assume that all the upstream agents are symmetric in
regards to the pollution caused.
In this section we characterize the set of rules satisfying the other three

axioms. Before presenting the main result we introduce the properties:

E¢ ciency (E¤)
P

i2N xi =
P

i2N ci.

Additivity (Add) For any C1 = (c11; :::; c
1
n) 2 Rn+, C2 = (c21; :::; c2n) 2 Rn+ and

i 2 N; xi(C1 + C2) = xi(C1) + xi(C2):

Independence of Upstream Costs (IUC) Let l 2 N and C;C 0 2 Rn+ such
that ci = c0i for all i > l: Then, for all i > l; xi(C) = xi(C

0):

Now we present the family of rules satisfying Add, E¤ and IUC. These rules
divide the cost of each segment j (cj) among the agents responsible for it (i 2 N
such that i � j) proportionally to a vector pj 2 Rn+: Namely,

Theorem 1 A rule x satis�es E¤, Add and IUC if and only if for each j =

1; :::; n there exists a weight system
�
pji

�
i2N

2 Rn+ such that p
j
i = 0 when i > j;Pn

i=1 p
j
i = 1 and xi(C) =

Pn
j=1 p

j
i cj for all C 2 Rn+ and all i 2 N:

Proof. See the Appendix.
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4 Other results

In this section we provide axiomatizations of two rules adding in Theorem 1
di¤erent properties based on possible and real taxes over pollution.
In many cases all the agents throw the same kind of residues into the water.

Moreover, the residues are biodegradable and thus the pollution disappears
over time; for instance: organic food waste, garden waste, forest residues, some
industrial waste... In many occasions it is possible to know the biodegradation
rate of the residues, say �. If it happens, the cost that an agent pays for a
polluted area should depend on this biodegradation rate. We introduce a new
property following this idea:

Biodegradation Rate (BR) Given j 2 N; for any i 2 N such that i < j;
xi(0; :::; 0; cj ; 0; :::0) = �

j�ixj(0; :::; 0; cj ; 0; :::0):

We assume that 0 � � � 1: Notice that � = 0 means that the residue of
agent i only a¤ects its own area. In this case BR means that every agent pays
the cost corresponding to its own area, namely xi (C) = ci for all C and i 2 N:
Furthermore, � = 1 means that the residue is non-biodegradable. In this case
BR coincides with Upstream Symmetry.
In the next theorem we study the e¤ects of adding BR to the properties in

Theorem 1.

Theorem 2 . A rule x satis�es Add, E¤, IUC and BR if and only if for each
j = 1; :::; n there exists a weight system

�
pji

�
i2N

2 Rn+ such that p
j
i = 0 when

i > j; pji = �
k�ipjk for any i < k � j;

Pn
i=1 p

j
i = 1 and xi(C) =

Pn
j=1 p

j
i cj for

all C 2 Rn+ and all i 2 N:
Proof. See the Appendix.

In most autonomous regions of Spain there exists a di¤erence between the
rates applicable to domestic uses and those applicable to industrial ones. The
autonomous regional governments of Aragon, Catalonia, Madrid, Galicia, Mur-
cia, Navarre and La Rioja determine the base of the tax for industrial uses by
estimating or directly measuring the pollution load (Gago et al., 2005). Fur-
ther, as previously highlighted, in Valencia and Catalonia the rates applicable
to domestic uses consider the population of the municipality. In all these situa-
tions the taxes can be modulated considering di¤erent factors, such as pollution
load, population of the cities, monthly water consumption, etc. (See Gago et
al., 2006). Other countries like Austria, Canada, France, Germany, Italy, Swe-
den, USA,... have also applied water taxes with similar features (OECD, 2006).
These ideas are captured by the following axiom:

Weighted Tax (WT) Let w = (wi)i2N 2 RN+ : We say that x satis�es WT
with respect to w if for any i; j; k 2 N such that i < k � j;

xi(0; :::; 0; cj ; 0; :::; 0)

xk(0; :::; 0; cj ; 0; :::; 0)
=
wi
wk
:
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This property states that the amount that each agent pays for a polluted
area is given by some factor, which can be exogenous or endogenous.

WT generalizes Upstream Symmetry because when wi = wj for all i; j 2 N;
both properties coincide.
In the next theorem we study the e¤ects of adding WT to the properties in

Theorem 1.

Theorem 3 . A rule x satis�es Add, E¤, IUC and WT if and only if for each
j = 1; :::; n there exists a weight system

�
pji

�
i2N

2 Rn+ such that p
j
i = 0 when

i > j; pji =
wiPj
l=1 wl

for all i � j;
Pn

i=1 p
j
i = 1 and xi(C) =

Pn
j=1 p

j
i cj for all

C 2 Rn+ and all i 2 N:
Proof. See the Appendix.

Ni and Wang (2007) prove that the solution they propose are related with
some natural TU games they introduce. We now relate the solutions given by
Theorem 3 with the weighted Shapley values of other TU game.
Given a pair (N;C) we de�ne the TU game

�
N; vC

�
where vC (S) =

P
f1;:::;ig�S ci

for all S � N . Namely vC (S) represents the pollutant-cleaning costs in the seg-
ments polluted only by agents in S:

Theorem 4 . Let xw the solution given by Theorem 3. Then, xw coincide with
the weighted Shapley value of vC ; �w

�
N; vC

�
:

Proof. See the Appendix.

The Upstream Equal Sharing method coincides with the solution given by
Theorem 3 when wi = wk for all i; k 2 N: By Theorem 4 the Upstream Equal
Sharing method also coincide with the Shapley value of the TU game vC :

5 Appendix

We make a formal proof of the results stated in the paper.

5.1 Proof of Theorem 1.

Let x be a rule de�ned as in 1. We �rst prove that x satis�es E¤, Add and IUC:
x satis�es E¤:

nX
i=1

xi(C) =
nX
i=1

nX
j=1

pji cj =
nX
j=1

cj

 
nX
i=1

pji

!
=

nX
j=1

cj :�
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x satis�es Add: Let C and C 0 2 Rn+ and i 2 N: Thus,

xi(C + C
0) =

nX
j=1

xji (C + C
0) =

nX
j=1

pji (c+ c
0)j

=
nX
j=1

pji
�
cj + c

0
j

�
=

nX
j=1

pji cj +
nX
j=1

pji c
0
j

= xi(C) + xi(C
0):�

x satis�es IUC: Let l 2 N and C;C 0 2 Rn+ such that ci = c0i for all i > l:
Let i 2 N , i > l: Since pji = 0 when i > j;

xi(C) =

nX
j=1

pji cj =

nX
j=i

pji cj =

nX
j=i

pji c
0
j

=

nX
j=1

pji c
0
j = xi(C

0):�

We now prove the reciprocal. Assume that x is a solution satisfying E¤, Add
and IUC. For each j 2 N; let 1j = (y1; ::::; yn) 2 Rn+ be such that yj = 1 and
yi = 0 when i 6= j: We de�ne pj = x(1j):
Let xp be the rule induced by the weight system

�
pj
	
j2N : We will prove

that x = xp by several claims. The claims are proved following Bergantiños and
Vidal-Puga (2004).
Claim 1

�
pj
	
j2N is a weight system.

Proof of Claim 1. Since x satis�es E¤,
Pn

i=1 xi(1j) = 1: By de�nition
of solution, xi(1j) 2 Rn+: Let i; j 2 N such that i > j: We now prove that
pji = 0: Since x satis�es IUC, xi (1j) = xi (0; :::; 0) : Since x (0; :::; 0) 2 Rn+ andPn

l=1 xl (0; :::; 0) = 0; xi (0; :::; 0) = 0: �

Claim 2 Let cj 2 Q+ (a non-negative rational number), then xi(0; :::; cj ; :::; 0) =
cjxi(0; :::; 1; :::; 0):
Proof of Claim 2. Let cj = 1=q; where q 2 N: By Add, xi(0; :::; 1; :::; 0) =Pq
k=1 xi(0; :::;

1
q ; :::; 0) = qxi(0; :::;

1
q ; :::; 0): Thus,

xi

�
0; :::;

1

q
; :::; 0

�
=
xi(0; :::; 1; :::; 0)

q
= cjxi(0; :::; 1; :::; 0): (1)

Let cj 2 Q+, say cj = p
q : By Add,

xi

�
0; :::;

p

q
; :::; 0

�
= pxi

�
0; :::;

1

q
; :::; 0

�
:

Then by (1),

xi

�
0; :::;

p

q
; :::; 0

�
=
p

q
xi(0; :::; 1; :::; 0):�
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Claim 3 Let cj 2 R+nQ+ (a non-negative irrational number), then xi(0; :::; cj ; :::; 0) =
cjxi(0; :::; 1; :::; 0):
Proof of Claim 3. Let cj 2 R+nQ+. Then, there exists fblg1l=1 such that

bl 2 Q+; bl < cj and liml!1 bl = cj :
Let l 2 N: Since x(0; :::; cj� bl; :::; 0) 2 Rn+ and

P
i2N xi(0; :::; cj� bl; :::; 0) =

cj � bl;
0 � xi(0; :::; cj � bl; :::; 0) � cj � bl:

By Add, xi(0; :::; cj ; :::; 0) = xi(0; :::; cj � bl; :::; 0) + xi(0; :::; bl; :::; 0): So,
0 � xi(0; :::; cj ; :::; 0)� xi(0; :::; bl; :::; 0) � cj � bl:

Since bl 2 Q+, xi(0; :::; bl; :::; 0) = blxi(0; :::; 1; :::; 0):Then,
0 � xi(0; :::; cj ; :::; 0)� blxi(0; :::; 1; :::; 0) � cj � bl:

Thus,

0 � lim
l!1

[xi(0; :::; cj ; :::; 0)� blxi(0; :::; 1; :::; 0)] � lim
l!1

[cj � bl] :

So,
0 � xi(0; :::; cj ; :::; 0)� cjxi(0; :::; 1; :::; 0) � 0:

Therefore,
xi(0; :::; cj ; :::; 0) = cjxi(0; :::; 1; :::; 0):�

Claim 4Given i 2 N and C 2 Rn+; xi(c1; :::; cn) =
Pn

j=1 xi(0; :::; 0; cj ; 0; :::; 0):
Proof of Claim 4. It follows from the fact that x satis�es Add.�

Since xpi (c1; :::; cn) =
Pn

j=1 p
j
i cj ; and by Claims 2 and 3, xi(0; :::; cj ; :::; 0) =

cjxi(0; :::; 1; :::; 0) = cjp
j
i for all j 2 N and all cj 2 R+; it is clear that x = xp:�

5.2 Proof of Theorem 2

We �rst prove that x satis�es BR. Let i; j; k 2 N such that i < k � j: Let
(0; ::::; cj ; :::; 0) 2 Rn+: Then,

xi(0:::; cj ; :::; 0) =

nX
l=1

plicl = p
j
i cj = �

j�ipjjcj

= �k�i�j�kpjjcj = �
k�ipjkcj

= �k�ixk(0:::; cj ; :::; 0):�
We now prove the reciprocal. Let x be a rule satisfying Add, E¤, IUC

and BR. By Theorem 1 for each j = 1; :::; n there exists a weight system�
pji

�
i2N

2 Rn+ such that p
j
i = 0 when i > j;

nP
i=1

pji = 1 and xi(C) =
nP
j=1

pji cj for

all C 2 Rn+ and all i 2 N: We now prove that p
j
i = �

k�ipjk for any i < k � j:
Let i; j; k 2 N such that i < k � j: By the proof of Theorem 1, pj = x (1j) :

Since x satis�es BR,

pji = xi (1j) = �
j�ixj (1j) = �

k�i�j�kxj (1j) = �
k�ixk (1j) = �

k�ipjk:�
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5.3 Proof of Theorem 3

We �rst prove that x satis�es WT. Let i; j; k 2 N such that i < k � j: Let
(0; ::::; cj ; :::; 0) 2 Rn+: Then,

xi(0:::; cj ; :::; 0) =
nX
l=1

plicl = p
j
i cj =

wi
jP
l=1

wl

cj

=
wi
wk

wk
jP
l=1

wl

cj =
wi
wk
xk(0:::; cj ; :::; 0):�

We now prove the reciprocal. Let x be a rule satisfying Add, E¤, IUC
and WT. By Theorem 1 for each j = 1; :::; n there exists a weight system�
pji

�
i2N

2 Rn+ such that p
j
i = 0 when i > j;

nP
i=1

pji = 1 and xi(C) =
nP
j=1

pji cj for

all C 2 Rn+ and all i 2 N: We now prove that p
j
i =

wi
jP

l=1

wl

for any i < k � j:

Let i; j; k 2 N such that i < k � j: By the proof of Theorem 1, pj = x (1j) :
Since x satis�es E¤ and WT,

1

pjj
=

jP
l=1

pjl

pjj
=

jX
l=1

xl (1j)

xj (1j)
=

jX
l=1

wl
wj

=

jP
l=1

wl

wj
:

By WT,
pji = xi (1j) =

wi
wj
xj (1j) =

wi
wj
pjj =

wi
jP
l=1

wl

:�

5.4 Proof of Theorem 4

Let w = (wi)i2N 2 RN+ . Let fuSgS�N be a family of TU games such that
uS (T ) = 1 if S\T 6= ? and us (T ) = 0 otherwise. It is well known that fuSgS�N
is a basis for the set of all TU games. Kalai and Samet (1987) de�ne the value
�w� as the unique linear value satisfying that for each S � N; �w�i (uS) =

wiP
k2S wk

if i 2 S and �w�i (uS) = 0 otherwise. Moreover, they prove that for each

w 2 RN+ and each TU game v; �w� (v) = �w (v�) where v� (S) = v (N)�v (NnS)
for all S � N:
For each j = 1; :::; n; let

�
N; vj

�
be the TU game where for all S � N;

vj (S) = cj if S \ f1; :::; jg 6= ? and vj (S) = 0 otherwise. Notice that vj =
cjuf1;:::;jg for all j 2 N:
Given i 2 N;

xwi (C) =
Xn

j=1
pji cj =

Xn

j=i

wiPj
k=1 wk

cj =
Xn

j=i
�w�i

�
vj
�

=
Xn

j=1
�w�i

�
vj
�
=
Xn

j=1
�wi
�
vj�
�
= �wi

�Xn

j=1
vj�
�
:
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Let S � N: Then, vj� (S) = vj (N) � vj (NnS) = cj � vj (NnS) : Since
vj (NnS) = cj when NnS \ f1; :::; jg 6= ? and vj (NnS) = 0 when NnS \
f1; :::; jg = ?,

vj� (S) =

�
cj if f1; :::; jg � S
0 otherwise.

:

Now it is trivial to prove that for all S � N; vC (S) =
Pn

j=1 v
j� (S) : Hence,

xwi (C) = �
w
i

�
vC
�
:�
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