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1 Introduction

Despite its simplicity, mean-variance analysis remains the most widely used asset

allocation method. There are several reasons for its popularity. First, it provides a

very intuitive assessment of the relative merits of alternative portfolios, as their risk and

expected return characteristics can be compared in a two-dimensional graph. Second,

mean-variance frontiers are spanned by only two funds, which simplifies their calculation

and interpretation. Finally, mean-variance analysis becomes the natural approach if

we assume Gaussian or elliptical distributions, because then it is fully compatible with

expected utility maximisation regardless of investor preferences (see e.g. Chamberlain,

1983; Owen and Rabinovitch, 1983; and Berk, 1997).

At the same time, mean-variance analysis also suffers from important limitations.

Specifically, it neglects the effect of higher order moments on asset allocation. In this

sense, Patton (2004) uses a bivariate copula model to show the empirical importance

of asymmetries in asset allocation. Further empirical evidence has been provided by

Jondeau and Rockinger (2006) and Harvey et al. (2002). From the theoretical point

of view, Athayde and Flôres (2004) derive several useful properties of mean-variance-

skewness frontiers, and obtain their shape for some examples by simulation techniques.

In this paper, we make mean-variance-skewness analysis fully operational by work-

ing with a rather flexible family of multivariate asymmetric distributions, known as

location-scale mixtures of normals (LSMN), which nest as particular cases several im-

portant elliptically symmetric distributions, such as the Gaussian or the Student t, and

also some well known asymmetric distributions like the Generalised Hyperbolic (GH )

introduced by Barndorff-Nielsen (1977). The GH distribution in turn nests many other

well known distributions, such as symmetric and asymmetric versions of the Hyperbolic,

Normal Gamma, Normal Inverse Gaussian or Multivariate Laplace (see Appendix C),

whose empirical relevance has already been widely documented in the literature (see e.g.

Madan and Milne, 1991; Chen, Härdle, and Jeong, 2004; Aas, Dimakos, and Haff, 2005;

and Cajigas and Urga, 2007). In addition, LSMN nest other interesting examples, such

as finite mixtures of normals, which have been shown to be a flexible and empirically

plausible device to introduce non-Gaussian features in high dimensional multivariate dis-

tributions (see e.g. Kon, 1984), but which at the same time remain analytically tractable.
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In terms of portfolio allocation, our first result is that if the distribution of asset

returns can be expressed as a LSMN , then the distribution of any portfolio that com-

bines those assets will be uniquely characterised by its mean, variance and skewness.

Therefore, under rather mild assumptions on investors’ preferences, optimal portfolios

will be located on the mean-variance-skewness frontier, which we are able to obtain in

closed form. Furthermore, we will show that the efficient part of this frontier can be

spanned by three funds: the two funds that generate the usual mean-variance frontier,

plus an additional fund that spans the skewness-variance frontier.

For practical purposes, we study several aspects related to the maximum likelihood

estimation of a general conditionally heteroskedastic dynamic regression model whose

innovations have a LSMN representation. In particular, we obtain analytical expres-

sions for the score by means of the EM algorithm. We also describe how to evaluate

the unconditional information matrix by simulation, and confirm the accuracy of our

proposed technique in a Monte Carlo exercise.

Finally, we apply our methodology to obtain the frontier generated by the ten US

sectoral indices in Datastream. Our results illustrate several interesting features of the

resulting mean-variance-skewness frontier. Specifically, we find that, for a given variance,

important gains in terms of positive skewness can be obtained with very small reductions

in expected returns. We also analyse the effect of considering additional assets in our

portfolios. In particular, we formally test whether the Datastream World-ex US index is

able to improve the investment opportunity set in the traditional mean-variance sense,

as well as in the skewness-variance sense.

The rest of the paper is organised as follows. We define LSMN in section 2.1, and

explain how to reparametrise them so that their mean is zero and their covariance matrix

the identity. Then, we analyse portfolio allocation in section 3, and discuss maximum

likelihood estimation in section 4. Section 5 presents the results of our empirical appli-

cation, which are followed by our conclusions. Proofs and auxiliary results can be found

in appendices.
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2 Distributional assumptions

2.1 Location-scale mixtures of normals

Consider the following N -dimensional random vector u, which can be expressed in

terms of the following Location-Scale Mixture of Normals (LSMN ):

u = α + ξ−1Υβ + ξ−1/2Υ1/2r, (1)

where α and β are N -dimensional vectors, Υ is a positive definite matrix of order

N , r ∼ N(0, IN), and ξ is an independent positive mixing variable. For the sake of

concreteness, we will denote the distribution function of ξ as F (·; τ ), where τ is a vector

of q shape parameters. Since u given ξ is Gaussian with conditional mean α + Υβξ−1

and covariance matrix Υξ−1, it is clear that α and Υ play the roles of location vector

and dispersion matrix, respectively. The parameters τ allow for flexible tail modelling,

while the vector β introduces skewness in this distribution.

We will refer to the distribution of u as LSMNN(α,β,Υ, τ ). To obtain a version

that we can use to model the standardised residuals of any conditionally heteroskedastic,

dynamic regression model, we need to restrict α and Υ in (1) as follows:

Proposition 1 Let ε∗ ∼ LSMNN(α,β,Υ, τ ) and πk(τ ) = E
(
ξ−k
)
. If πk(τ ) <∞ for

k = 1, 2, α = −c(β, τ )β and

Υ =
1

π1(τ )

[
IN +

c(β′β, τ )− 1

β′β
ββ′

]
,

where

c(x, τ ) =
−1 +

√
1 + 4xc2v(τ )

2xc2v(τ )
, (2)

and

cv(τ ) =

√
π2(τ )− π2

1(τ )

π1(τ )
,

then E(ε∗) = 0 and V (ε∗) = IN .

As expected, the scale of ξ−1, which can be fully characterised by π1(τ ), is arbitrary,

and can be set to 1 without loss of generality. Notice also that the distribution of ε∗

becomes a simple scale mixture of normals, and thereby spherical, when β is zero. Like

any scale mixture of normals, though, this distribution does not allow for thinner tails

than the normal. Nevertheless, financial returns are very often leptokurtic in practice,

as section 5 confirms.
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Another important feature of a LSMN is that, although the elements of ε∗ are un-

correlated, they are not independent except in the multivariate normal case. In general,

the LSMN induces “tail dependence”, which operates through the positive mixing vari-

able in (1). Intuitively, ξ forces the realisations of all the elements in ε∗ to be very large

in magnitude when it takes very small values, which introduces dependence in the tails

of the distribution. In addition, we can make this dependence stronger in certain regions

by choosing β appropriately. Specifically, we can make the joint probability of extremely

low realisations of several variables much higher than what a Gaussian variate can allow

for, as illustrated in Figures 1a-f, which compare the density of the standardised bivariate

normal with those of two asymmetric examples: a particular case of the GH distribution

known as the asymmetric t (see Appendix C) and a LSMN whose mixing variable is

Bernoulli.1 We can observe in Figures 1c and 1e that the non-Gaussian densities are

much more peaked around their mode than the Gaussian one. In addition, the contour

plots of the asymmetric examples show that we have introduced much fatter tails in the

third quadrant by considering negative values for all the elements of β. This is con-

firmed in Figure 2, which represents the so-called exceedance correlation between the

uncorrelated marginal components in Figure 1. Therefore, a LSMN could capture the

empirical observation that there is higher tail dependence across stock returns in market

downturns (see Longin and Solnik, 2001). In this sense, the examples that we consider

illustrate the flexibility of a LSMN to generate different shapes for the exceedance cor-

relation, which could be further enhanced by assuming a multinomial distribution for

ξ.

It is possible to show that the marginal distributions of linear combinations of a

LSMN (including the individual components) can also be expressed as a LSMN :

Proposition 2 Let ε∗ be distributed as a N ×1 standardised LSMN random vector with
parameters τ and β. Then, for any vector w ∈ RN , with w 6= 0, s∗ = w′ε∗/

√
w′w is

distributed as a standardised LSMN scalar random variable with parameters τ and

β(w) =
c (β′β, τ ) (w′β)

√
w′w

w′w + [c (β′β, τ )− 1] (w′β)2/(β′β)
,

where c(·, ·) is defined in (2).

1Interestingly, the LSMN driven by the Bernoulli mixing variable in Figures 1 and 2 can be inter-
preted as a mixture of two multivariate normal distributions with different mean vectors but proportional
covariance matrices.
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Proposition 2 generalises an analogous result obtained by Blæsild (1981) for the GH

distribution. Note that only the skewness parameter, β(w), is affected, as it becomes a

function of the weights, w. As we shall see in section 3, this is particularly useful for

asset allocation purposes, since the returns to any conceivable portfolio of a collection

of assets is a linear combination of the returns on those primitive assets. For the same

reason, Proposition 2 is very useful for risk management purposes, since we can easily

compute in closed form the Value at Risk of any portfolio from the parameters of the joint

distribution. Finally, it also implies that skewness is a “common feature” of LSMN, in

the Engle and Kozicki (1993) sense, as we can generate a full-rank linear transformation

of ε∗ with the asymmetry confined to a single element.

2.2 Dynamic econometric specifications

We will analyse investments in a risk-free asset and a set of N risky assets with excess

returns yt. To accommodate flexible specifications, we assume that those excess returns

are generated by the following conditionally heteroskedastic dynamic regression model:

yt = µt(θ) + Σ
1
2
t (θ)ε∗t ,

µt(θ) = µ (It−1; θ) ,
Σt(θ) = Σ (It−1; θ) ,

 (3)

where µ() and vech [Σ()] are N and N(N+1)/2-dimensional vectors of functions known

up to the p × 1 vector of true parameter values, θ0, It−1 denotes the information set

available at t− 1, which contains past values of yt and possibly other variables, Σ
1/2
t (θ)

is someN×N “square root” matrix such that Σ
1/2
t (θ)Σ

1/2′
t (θ) = Σt(θ), and ε∗t is a vector

martingale difference sequence satisfying E(ε∗t |It−1; θ0) = 0 and V (ε∗t |It−1; θ0) = IN . As

a consequence, E(yt|It−1; θ0) = µt(θ0) and V (yt|It−1; θ0) = Σt(θ0).

In this context, we will assume that the distribution of ε∗t is a LSMN conditional on

It−1. Importantly, given that the standardised innovations are not generally observable,

the choice of “square root”matrix is not irrelevant except in univariate models, or in mul-

tivariate models in which either Σt(θ) is time-invariant or ε∗t is spherical (i.e. β = 0), a

fact that previous efforts to model multivariate skewness in dynamic models have over-

looked (see e.g. Bauwens and Laurent, 2005). Therefore, if there were reasons to believe

that ε∗t were not only a martingale difference sequence, but also serially independent,

then we could in principle try to estimate the “unique” orthogonal rotation underlying

the “structural” shocks. However, since we believe that such an identification procedure
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would be neither empirically plausible nor robust, we prefer the conditional distribution

of yt not to depend on whether Σ
1/2
t (θ) is a symmetric or lower triangular matrix, nor

on the order of the observed variables in the latter case. This can be achieved by making

β a function of past information and a new vector of parameters b in the following way:

βt(θ,b) = Σ
1
2
′

t (θ)b. (4)

It is then straightforward to see that the distribution of yt conditional on It−1 will not

depend on the choice of Σ
1
2
t (θ).2

3 Portfolio allocation

3.1 The investor’s problem

Consider an investor whose wealth at time t− 1 is At−1. If she allocates her wealth

among the N + 1 available assets, then her wealth at t can be expressed as:

At = At−1 (1 + rt + w′
tyt) ,

where rt is the risk free rate, and wt is the vector of allocations to the risky assets, both

of which are known at t− 1. She will choose the allocations that maximise her expected

utility at t− 1. That is,

w∗
t = arg max

wt∈RN
E [U(At)|It−1] , (5)

where U(·) is her utility function and It−1 denotes the information set available at t− 1.

In this context, we can show the following property for any LSMN :

Proposition 3 Let yt be conditionally distributed as a N×1 LSMN random vector with
conditional mean µt(θ), conditional covariance matrix Σt(θ), and shape parameters τ
and b. Then, for any vector wt ∈ RN known at t−1, the conditional distribution of w′

tyt

can be fully characterised as a function of its mean, variance and skewness.

Proposition 3 implies that, if the distribution of asset returns is a LSMN, then any

portfolio is completely described just by its mean, variance and skewness. Hence, no

matter what preferences we consider, the expected utility of any portfolio will be a

2Nevertheless, it would be fairly easy to adapt all our subsequent expressions to the alternative
assumption that βt(θ,b) = b ∀t (see Menćıa, 2003).
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function of its first three moments. In this sense, it is straightforward to show that the

first two moments of At can be expressed as:

Et−1(At) = At−1 [1 + rt + w′
tµt(θ)] ,

Et−1

{
[At − Et−1(At)]

2} = A2
t−1w

′
tΣt(θ)wt.

As for the third moment, we can use the results in Appendix B to show that

Et−1

[
(At − Et−1(At))

3] = A3
t−1ϕt(θ,b, τ )

where

ϕt(θ,b, τ ) = (s1t + 3s2ts3t) [w′
tΣt(θ)b]

3
+ 3s2t [w′

tΣt(θ)wt] [w
′
tΣt(θ)b] , (6)

and

s1t =
E
{

[ξ−1 − π1(τ )]
3
}

π3
1(τ )

c3[b′Σt(θ)b, τ ],

s2t = c2v(τ )c[b′Σt(θ)b, τ ],

s3t = {c[b′Σt(θ)b, τ ]− 1} / [b′Σt(θ)b] .

Since in line with most of the literature we are implicitly assuming that the investment

technology shows constant returns to scale, we can normalise the above moments by

setting At−1 = 1 without loss of generality. In addition, we will systematically consider

all portfolio returns in excess of the risk free rate in what follows.

3.2 Mean-variance and skewness-variance frontiers

Consider an investor who, ceteris paribus, prefers high expected returns and positive

skewness but dislikes high variances. Under this fairly mild assumption, a portfolio

whose returns can be expressed as a LSMN will only be optimal if it is located on the

mean-variance-skewness frontier. Given that Proposition 3 shows that only the first three

moments matter in this context, it will always be possible to improve the investor’s utility

at any interior point by either increasing the expected return or the positive skewness of

her portfolio, or reducing its variance.

The mean-variance-skewness frontier is a generalisation of the mean-variance frontier:

µ0t = σ0t

√
µ′

t(θ)Σ−1
t (θ)µt(θ). (7)
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which we obtain by maximising expected return µ0t for every possible standard deviation

σ0t. As is well known, the mean-variance frontier (7) can be spanned by just two funds:

the risk-free asset and a portfolio with weights proportional to Σ−1
t (θ)µt(θ).

Similarly, we can obtain a skewness-variance frontier by maximising skewness subject

to a variance constraint:

Proposition 4 If

s2t

s1t + 3s2ts3t

[
b′Σt(θ)b+

s2t

s1t + 3s2ts3t

]
> 0. (8)

then the solution to the problem

max
wt∈RN

ϕt(θ,b, τ ) s.t. w′
tΣt(θ)wt = σ2

0t (9)

will be
[ϕt(θ,b, τ )]1/3 = Λ1(θ,b, τ )σ0t, (10)

where

Λ1(θ,b, τ ) =
{

(s1t + 3s2ts3t) [b′Σt(θ)b]
3/2

+ 3s2t [b′Σt(θ)b]
1/2
}1/3

, (11)

which is achieved by

w†
t =

σ0t√
b′Σt(θ)b

b. (12)

Otherwise the solution to (9) will be

[ϕt(θ,b, τ )]1/3 = max {Λ1(θ,b, τ ),Λ2(θ,b, τ )}σ0t,

where
Λ2(θ,b, τ ) = 21/3√s2t [−s1t − 3s2ts3t]

−1/6 , (13)

which is obtained by portfolios that satisfy

b′Σt(θ)w‡
t = σ0t

√
−s2t

s1t + 3s2ts3t

. (14)

Therefore, there are two cases. If (8) is satisfied, then there will be a unique solution

to the skewness-variance frontier given by (10). In this case, we can interpret b as

a “skewness-variance” efficient portfolio, since every portfolio on this frontier will be

proportional to b. However, when (8) is not satisfied, (12) will not necessarily yield

maximum skewness, because there is another local maximum characterised by (14). In

addition, whereas there will be just one portfolio satisfying (12) for any given variance,

there might be an infinite number of portfolios that satisfy (14), all of them yielding

exactly the same variance and skewness but different expected returns. Therefore, we

must take their expected returns into account in order to decide which of them will be
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preferred by a rational investor. Specifically, for any investor who, ceteris paribus, prefers

high to low expected returns, it will only be optimal to chose the portfolio satisfying (14)

that maximises expected return. In this sense, we can show that:

Proposition 5 If (8) does not hold, then the solution to the problem

arg max
wt∈RN

w′
tµt(θ) s.t.


w′

tΣt(θ)wt = σ2
0t

b′Σt(θ)wt = σ0t

√
−s2t

s1t + 3s2ts3t

(15)

can be expressed as a linear combination of the “skewness-variance” efficient portfolio b
and the “mean-variance” efficient portfolio Σ−1

t (θ)µt(θ).

Once again, it is important to emphasise that (15) only has a solution if condition

(8) is not satisfied. In that case, the asymmetry-variance frontier will be spanned by the

risk free asset, Σ−1
t (θ)µt(θ), and b if in addition (13) is greater than (11). Otherwise,

we will only need two funds: the risk-free asset and b.

3.3 Mean-variance-skewness frontiers

The efficient portion of the mean-variance-skewness frontier yields the maximum

asymmetry for every feasible combination of mean and variance. We can express this

problem as follows:

max
wt∈RN

ϕt(θ,b, τ ) s.t.

{
w′

tµt(θ) = µ0t

w′
tΣt(θ)wt = σ2

0t

(16)

Obviously, there are other approaches to obtain this frontier. For instance, Athayde

and Flôres (2004) maximise expected returns subject to constraints on the variance and

asymmetry, as in Proposition 5. However, we prefer the formulation in (16) because it

is straightforward to ensure the feasibility of the target expected return and variance.

Specifically, we can exploit the fact that, for a given expected return µ0t, the target

variance σ2
0t must be greater or equal than that of the mean-variance frontier (7), that is

σ2
0t ≥

µ2
0t

µ′
t(θ)Σ−1

t (θ)µt(θ)
. (17)

We can solve (16) by forming the Lagrangian

L = ϕt(θ,b, τ ) + γ1 [µ0t −w′
tµt(θ)] + γ2

[
σ2

0t −w′
tΣt(θ)wt

]
, (18)
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and differentiating it with respect to the portfolio weights, thereby obtaining the follow-

ing first order conditions:

∂L
∂wt

=
{

3(s1t + 3s2ts3t) [b′Σt(θ)wt]
2
+ 3s2t [w′

tΣt(θ)wt]
}

Σt(θ)b

+6s2t [b′Σt(θ)wt]Σt(θ)wt − γ1µt(θ)− 2γ2Σt(θ)wt. (19)

We can explicitly obtain in closed-form the set of portfolio weights that satisfy these

conditions:

Proposition 6 The efficient mean-variance-skewness portfolios that solve (19) can be
expressed as either

w∗
1t =

µ0t + ∆−1
t µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ)− 1

∆t

b, (20)

or

w∗
2t =

µ0t −∆−1
t µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
Σ−1

t (θ)µt(θ) +
1

∆t

b, (21)

where

∆t =

√
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t

.

Thus, there are two potential solutions,3 both of which can be expressed as a lin-

ear combination of the mean-variance efficient portfolio Σ−1
t (θ)µt(θ) and the skewness-

variance efficient portfolio b. Hence, Proposition 6 shows that the efficient region of the

mean-variance-skewness frontier can be spanned by the aforementioned three funds. In

addition, it can be shown that if (8) holds, then not only the efficient section but also

the whole frontier will be spanned by those three funds.

In order to obtain an explicit equation for the frontier, let j = −1,+1 and define

ϕ0t(j) as the third centred moment that results from introducing (20) or (21) in (6),

3In order to assess whether (20) or (21) yields the efficient part of the frontier, we can check for
which of the two solutions the Hessian matrix,

6(s1t + 3s2ts3t)(b′Σt(θ)wt)Σt(θ)bbΣt(θ)′

+6s2t

[
Σt(θ)bw′

tΣt(θ) + Σt(θ)wtbΣt(θ)′
]

+ [6s2t(b′Σt(θ)wt)− 2γ2]Σt(θ),

is negative definite.
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respectively. It is straightforward to show that ϕ0t(j) can be expressed as:

ϕ0t(j) = (s1t + 3s2ts3t)h1t(4h
2
1t − 3h2t)µ

3
0t

+3
{
(s1t + 3s2ts3t)h1t(h2t − h2

1t)
[
µ′

t(θ)Σ−1
t (θ)µt(θ)

]
+ s2th1t

}
µ0tσ

2
0t

+j
√

(h2t − h2
1t){σ2

0

[
µ′

t(θ)Σ−1
t (θ)µt(θ)

]
− µ2

0t}

×
(

(s1t + 3s2ts3t)(4h
2
1t − h2t)µ

2
0t

+
{
(s1t + 3s2ts3t)(h2t − h2

1t)
[
µ′

t(θ)Σ−1
t (θ)µt(θ)

]
+ 3s2t

}
σ2

0t

)
(22)

where

h1t =
µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
,

h2t =
b′Σt(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)
.

If (17) is satisfied with equality, which only occurs on the mean variance frontier, then one

can show that w∗
1t = w∗

2t and ϕ0t(−1) = ϕ0t(1). Interestingly, if b = Σ−1
t (θ)µt(θ), then

the mean-variance and skewness-variance frontiers will coincide, and (22) will collapse

to

ϕ0t = (s1t + 3s2ts3t)µ
3
0t + 3s2tµ0tσ

2
0t,

where (17) holds with equality.

It is not difficult to show that (22) satisfies the set of properties obtained by Athayde

and Flôres (2004) for general distributions. The two most important ones are homothecy

and linearity along directions in which the Sharpe ratio remains constant. Homothecy

states that if a portfolio with weights w∗
t belongs to the frontier, then kw∗

t will also be

on the frontier. Moreover, if we consider a direction in which σ0t is proportional to µ0t,

σ0t = k′µ0t say, then the cubic root of the asymmetry will also be proportional to |µ0t|

along this direction.

Figures 3 and 4 show the shape of the mean-variance-skewness frontier for two ex-

amples with three risky assets. In Figure 3 we have chosen b so that (8) is satisfied.

The three dimensional plot of the frontier is displayed in Figure 3a. In addition, we

also compute the three types of contour plots. Figure 3b shows the well known mean-

variance frontier, but it also includes several iso-skewness lines along which ϕt(θ,b, τ )

is constant. Note that the efficient section of the mean-variance frontier corresponds to

negative skewness in this example.
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We focus on the mean-skewness space in Figure 3c, where we plot the iso-variance

lines and include the efficient parts of both mean-variance and asymmetry-variance fron-

tiers, whose linearity on this space is due to the homothecy property discussed above.

Note that the mean-variance frontier is located on the eastern part of the space, while

the asymmetry-variance frontier is on the northern half. This is a general result be-

cause for a given variance the former contains the points with highest expected return,

which is displayed on the x-axis, while the latter maximises skewness (on the y-axis).

Furthermore, for the same reason the asymmetry-variance frontier will always be above

the mean-variance line. In this sense, an investor who prefers higher expected returns

and positive skewness will choose a portfolio that is located to the right of the skewness-

variance frontier and above the mean-variance one. Otherwise, she will be worse off in

terms of either expected return or skewness. Thus, if she only cares about the mean,

she will choose some point on the mean-variance frontier, while if she only cares about

asymmetry, she will choose some point on the skewness-variance frontier. In general,

though, she will choose an intermediate combination.

We consider the skewness-variance space in Figure 3d, where we can confirm the

linearity of the skewness-variance frontier (see Proposition 4).

Finally we display in Figure 4 the analogous graphs for a case in which condition (8)

is not satisfied and (13) is larger than (11). As expected, in this case the iso-variance

contours have a flat region with maximum skewness. However, only the points of this

region with highest expected return will be relevant in practice, as the vertical part of

the iso-skewness contours in Figure 4b show.

4 Maximum likelihood estimation

In the previous sections, we have assumed that we know the true values of the para-

meters of interest, φ = (θ′, τ )
′
. Of course, this is not the case in practice. Given that

we are considering a specific family of distributions, it seems natural to estimate φ by

maximum likelihood.

The log-likelihood function of a sample of size T takes the form

LT (φ) =
T∑

t=1

l (yt|It−1; φ) ,

where l (yt|It−1; φ) is the conditional log-density of yt given It−1 and φ. We can generally
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express this log-density as

l (yt|It−1; φ) = log [E [f (yt|ξt, It−1; φ) |IT ; φ]] ,

where f (yt|ξt, It−1; φ) is the Gaussian likelihood of yt given ξt, It−1 and φ. Given the

nonlinear nature of the model, a numerical optimisation procedure is usually required

to obtain maximum likelihood (ML) estimates of φ, φ̂T say. Assuming that all the el-

ements of µt(θ) and Σt(θ) are twice continuously differentiable functions of θ, we can

use a standard gradient method in which the first derivatives are numerically approxi-

mated by re-evaluating LT (φ) with each parameter in turn shifted by a small amount,

with an analogous procedure for the second derivatives. Unfortunately, such numerical

derivatives are sometimes unstable, and moreover, their values may be rather sensitive

to the size of the finite increments used. Fortunately, it is possible to obtain analytical

expressions for the score vector of our model, which should considerably improve the

accuracy of the resulting estimates (McCullough and Vinod, 1999). Moreover, a fast

and numerically reliable procedure for the computation of the score for any value of φ is

of paramount importance in the implementation of the score-based indirect estimation

procedures introduced by Gallant and Tauchen (1996).

4.1 The score vector

We can use EM algorithm - type arguments to obtain analytical formulae for the

score function st(φ) = ∂l (yt|It−1; φ) /∂φ. The idea is based on the following dual

decomposition of the joint log-density (given It−1 and φ) of the observable process yt

and the latent mixing process ξt:

l (yt, ξt|It−1; φ) ≡ l (yt|ξt, It−1; φ) + l (ξt|It−1; φ)

≡ l (yt|It−1; φ) + l (ξt|yt, It−1; φ) ,

where l (yt|ξt, It−1; φ) is the conditional log-likelihood of yt given ξt, It−1 and φ;

l (ξt|yt, It−1; φ) is the conditional log-likelihood of ξt given yt, It−1 and φ; and finally

l (yt|It−1; φ) and l (ξt|It−1; φ) are the marginal log-densities (given It−1 and φ) of the

observable and unobservable processes, respectively. If we differentiate both sides of the

previous identity with respect to φ, and take expectations given the full observed sample,

IT , then we will end up with:

st(φ) = E

(
∂l (yt|ξt, It−1; φ)

∂φ

∣∣∣∣ IT ; φ

)
+ E

(
∂l (ξt|It−1; φ)

∂φ

∣∣∣∣ IT ; φ

)
(23)
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because E [∂l (ξt|yt, It−1; φ) /∂φ| IT ; φ] = 0 by virtue of the Kullback inequality. This

result was first noted by Louis (1982); see also Ruud (1991) and Tanner (1996, p. 84).

In this way, we decompose st(φ) as the sum of the expected values of (i) the score of

a multivariate Gaussian log-likelihood function, and (ii) the score of the distribution of

the mixing variable.4 We illustrate this procedure in Appendix C for the particular case

of the GH distribution.

4.2 The information matrix

Given correct specification, the results in Crowder (1976) imply that the score vector

st(φ) evaluated at φ0 has the martingale difference property under standard regularity

conditions. In addition, his results also imply that under additional regularity conditions

(which in particular require that φ0 is locally identified and belongs to the interior of the

parameter space), the ML estimator will be asymptotically normally distributed with a

covariance matrix which is the inverse of the usual information matrix

I(φ0) = p lim
T→∞

1

T

T∑
t=1

st(φ0)s
′
t(φ0) = E[st(φ0)s

′
t(φ0)]. (24)

In general, though, (24) cannot be obtained in closed form.5 The simplest consistent

estimator of I(φ0) is the sample outer product of the score:

ÎT (φ̂T ) =
1

T

T∑
t=1

st(φ̂T )s′t(φ̂T ).

However, the resulting standard errors and tests statistics can be badly behaved in finite

samples, especially in dynamic models (see e.g. Davidson and MacKinnon, 1993). We

can evaluate much more accurately the integral implicit in (24) in pure time series models

by generating a long simulated path of size Ts of the postulated process ŷ1, ŷ2, · · · , ŷTs ,

where the symbol ˆ indicates that the data has been generated using the maximum

likelihood estimates φ̂T . This path can be easily generated by exploiting (1). Then, if

we denote by sts(φ̂T ) the value of the score function for each simulated observation, our

proposed estimator of the information matrix is

ĨTs(φ̂T ) =
1

Ts

Ts∑
ts=1

sts(φ̂T )s′ts(φ̂T ),

4It is possible to show that ε∗′
t ε∗

t /N converges in mean square to 1/[π1(τ )ξ] as N →∞. This means
that in the limit the latent variable ξt could be fully recovered from observations on yt, which would
greatly simplify the calculations implicit in expression (23).

5Exact formulas for the conditional information matrix are known, for instance, for the Gaussian
(see Bollerslev and Wooldridge, 1992) and the Student t distributions (see Fiorentini, Sentana, and
Calzolari, 2003).
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where we can get arbitrarily close in a numerical sense to the value of the asymptotic

information matrix evaluated at φ̂T , I(φ̂T ), as we increase Ts. Our experience suggests

that Ts = 100, 000 yields reliable results.

We have compared the finite sample performance of our technique with the accu-

racy of other alternative estimators of the sampling variance of the ML estimators. In

our Monte Carlo exercise, we use a trivariate experimental design borrowed from Sen-

tana (2004), which aimed to capture some of the main features of the conditionally

heteroskedastic factor model in King, Sentana, and Wadhwani (1994). Specifically, we

model the standardised residuals with the GH distribution, while the conditional mean

and variance specifications are given by:

µt(θ) = µ,
Σt(θ) = cc′λt + Γt,

(25)

where µ′ = (µ1, µ2, µ3), c′ = (c1, c2, c3), Γt = diag(γ1t, γ2t, γ3t),

λt = α0 + α1(f
2
t−1|t−1 + ωt−1|t−1) + α2λt−1, (26)

γit = φ0 + φ1

[
(yit−1 − µi − cift−1|t−1)

2 + c2iωt−1|t−1

]
+ φ2γit−1, i = 1, 2, 3, (27)

ft|t = ωt|tc
′Γ−1

t (yt − µt(θ)) and ωt|t = [λ−1
t + c′Γ−1

t c]−1. This parametrisation can be

interpreted in terms of a latent factor model where (26) would be the variance of the

latent factor, while (27) would correspond to the idiosyncratic effects. As for parameter

values, we have chosen µi = .2, ci = 1, α1 = φ1 = .1, α2 = φ2 = .85, α0 = 1 − α1 − α2

and φ0 = 1 − φ1 − φ2. Although we have considered other sample sizes, for the sake of

brevity we only report the results for T = 1000 observations.

We assess the performance of three possible ways of estimating the standard errors

in GH models, namely, outer-product of the gradient (O), numerical Hessian (H) and

information (I) matrix, which we obtain by simulation using the ML estimators as if

they were the true parameter values, as suggested before.6 Since the purpose of this

exercise is to guide empirical work, our target is the sampling covariance matrix of the

ML estimators, VT (φ̂T ), which we estimate as the Monte Carlo covariance matrix of φ̂T

in 30,000 samples of 1,000 observations each. Given the large number of parameters

involved, we summarise the performance of the estimators of VT (φ̂T ) by looking at the

sampling distributions of the logs of vech′[V E
T (φ̂T )−VT (φ̂T )]vech[V E

T (φ̂T )−VT (φ̂T )] and

6We choose η = .1, ψ = 1 and b = −.1ι as the shape parameters of the GH distribution. See
appendix C.
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vecd′[V E
T (φ̂T )−VT (φ̂T )]vecd[V E

T (φ̂T )−VT (φ̂T )], where E is either O, H or I.7 The results,

which are presented in Figures 5a and 5b, respectively, show that the I standard errors

seem to be systematically more reliable than either the O or numerical H counterparts.

5 Empirical application

We now apply the methodology derived in the previous sections to the ten Datas-

tream main sectoral indices for the US.8 Specifically, our dataset consists of daily excess

returns for the period January 4th, 1988 - October 12th, 2007 (4971 observations), where

we have used the Eurodollar overnight interest rate as safe rate (Datastream code ECUS-

DST). The model used is a generalisation of the one in the previous section (see (25)),

in which the mean dynamics are captured by a diagonal VAR(1) model with drift, and

the covariance dynamics by a conditionally heteroskedastic single factor model in which

the conditional variances of both common and specific factors follow GQARCH(1,1)

processes to allow for leverage effects (see Sentana, 1995). We have borrowed this appli-

cation from Menćıa and Sentana (2008), who find that these indices are asymmetric and

leptokurtic. We have estimated this model by maximum likelihood under the assumption

that the conditional distribution of the innovations is GH. Although this distribution has

already been used to model the unconditional distribution of financial returns (see e.g.

Prause, 1998), to the best of our knowledge it has not yet been used in its more general

form for modelling the conditional distribution of financial time series, which is the rele-

vant one from our perspective. We use the formulae for the score provided in Appendix

C, and compute the standard errors by simulation as explained in section 4.2.

The first column of Table 1 shows the estimates of the shape parameters of this

distribution. Although not all of the asymmetry parameters are individually signifi-

cant, Menćıa and Sentana (2008) report that symmetry is rejected at conventional lev-

els. In particular, a joint LR test of symmetric vs. asymmetric GH innovations yields

23.45 (p-value=0.012), while the result of an analogous LM symmetry test is 25.35 (p-

value=0.005).

One potential concern is whether we are able to correctly capture the dynamics of the

7In the case of a single parameter, the mean of the sampling distribution of these two norms reduces
to the mean square error of the different estimators of its sampling variance.

8Namely, Basic Materials, Consumer Goods, Consumer Services, Financials, Health Care, Industrials,
Oil and Gas, Technology, Telecommunications and Utilities.
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data. If our model were misspecified, then it could introduce severe distortions in the re-

sults. However, if our specification of the model dynamics is correct, the departure from

normality that we have found should not affect the consistency of the Gaussian PML

estimators of θ. With this in mind, we compare the estimates of the conditional vari-

ances obtained with a univariate Gaussian AR(1)-GQARCH(1,1) model for the equally

weighted portfolio with the ones obtained from the Gaussian version of our multivariate

model. Reassuringly, Figure 6a shows that the (log) standard deviations of the two series

display a very similar pattern, although the univariate estimates are somewhat noisier.

Another way to check the adequacy of our specification is to compare the multivariate

Gaussian and GH estimates. In this sense, Figure 6b shows that the (log) standard de-

viations implied by the two distributional assumptions for the equally weighted portfolio

are extremely similar.

From an investor’s point of view, an important question is whether the addition of

some assets improves the trade-offs that they face. Given that we have only considered

investments in the US so far, it seems natural to test whether the mean-variance-skewness

frontier remains unchanged when we also allow for investments outside the US, which

we proxy by the Datastream World ex-US index. Notice that this test generalises the

usual mean-variance spanning tests, because it also takes into account the effect of the

World ex-US index on the skewness-variance frontier.

As is well known (see e.g. Gibbons, Ross, and Shanken, 1989), the additional asset

does not lead to any change in the mean-variance frontier if and only if the conditional

mean of the additional asset satisfies

µ2t(θ) = d′
12t(θ)µ1t(θ), (28)

where µ1t(θ) and µ2t(θ) denote, respectively, the vector of (conditional) expected ex-

cess returns on the ten US indices, and the expected excess return of the Word ex-US

index, while d12t(θ) denotes the coefficients of the conditional regression of the World

ex-US index excess returns on those of the US sectoral indices. Therefore, we can follow

Gibbons, Ross, and Shanken (1989), and check (28) by introducing an intercept in this

expression and assessing whether it equals zero in practice.

Similarly, the World ex-US index will only expand the skewness-variance frontier if its

skewness parameter is significantly different from zero (see (20) and (21)). We analyse

these two effects in Table 2 by means of Wald and LR tests. While we are unable
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to reject the mean-variance spanning restriction (28), the World ex-US index seems to

introduce significant skewness in the investment opportunity set of a US investor. As

a consequence, we reject the joint null. This result has interesting implications. In

particular, for the set of assets that we consider, a US investor that only cares about

mean-variance efficiency will not be willing to invest outside the US. In contrast, if this

investor takes skewness into account in making her portfolio decisions, then she will find

significant gains by investing part of her wealth outside the US.

Figure 7 illustrates these gains by showing the mean-variance-skewness frontier be-

fore and after considering the additional asset. The results of this figure correspond

to a representative day whose mean vector and covariance matrix are set to their un-

conditional values. We can observe the differences between the two frontiers in Figure

7a, where we consider a three dimensional plot in which we include the positions of the

individual indices. We can also observe in Figure 7b that the mean-variance frontier is

almost unaffected, which is consistent with (28) being satisfied. Nevertheless, the iso-

skewness lines have moved to the left, which implies that, for given levels of expected

return and skewness, we can obtain a lower standard deviation if we invest in the World

ex-US index. Figures 7c and 7d confirm this effect on the iso-variance and the skewness-

variance frontiers, respectively. We can also notice in Figure 7c that the iso-variance

lines are rather flat with respect to skewness. Hence, if we start from some point on

the mean-variance frontier and follow the corresponding iso-variance line, we can sub-

stantially increase skewness without hardly deteriorating expected returns. Finally, note

that the third column of Table 1 shows that the estimates of the shape parameters of

the GH distribution remain fairly stable when we include the additional asset.

6 Conclusions

In this paper, we make mean-variance-skewness analysis fully operational by working

with a rather flexible family of multivariate asymmetric distributions, known as location-

scale mixtures of normals (LSMN), which nest as particular cases several popular and

empirically relevant distributions that account for asymmetry and tail dependence with

a rather flexible and parsimonious structure. Specifically, we assume that, conditional

on the information that agents have at the time they make their investment decisions,

the standardised innovations of excess returns can be expressed as a LSMN .
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In this context, we show that the distribution of any portfolio of the original assets

can be fully characterised in terms of its mean, variance and skewness. Hence, investors

who like high means and positive asymmetry but dislike high variances will only choose

among portfolios on the mean-variance-skewness frontier regardless of their specific pref-

erences. In this sense, our result extends previous results by Chamberlain, 1983; Owen

and Rabinovitch, 1983 and Berk, 1997, which justify the use of mean-variance analysis

with elliptically distributed returns. In addition, we are able to obtain analytical expres-

sions for the mean-variance-skewness frontier, and show that its efficient part can always

be spanned by three funds: the risk-free asset, a mean-variance efficient portfolio, and a

skewness-variance efficient portfolio.

We also study the maximum likelihood estimation of dynamic models for excess

returns with LSMN innovations. In particular, we provide analytical expressions for

the score on the basis of the EM algorithm, and explain how to evaluate the information

matrix by simulation. A detailed Monte Carlo exercise confirms that our method yields

more accurate standard errors than the Hessian matrix or the sample outer product of

the score.

Finally, we estimate the mean-variance-skewness frontier generated by the ten Datas-

tream main sectoral indices for the US for the particular case of GH innovations. We

find that by moving away from the traditional mean-variance frontier, we can increase

skewness for a given variance without hardly reducing expected returns. We also analyse

whether including the Datastream World ex-US index can improve the investment oppor-

tunity set of a US investor. We find that this additional asset does not have a significant

impact from a mean-variance perspective. In contrast, it does indeed offer substantial

improvements once we take into account its effect on skewness.

It would be interesting to check whether our empirical results are robust to replacing

the GH assumption by a nonparametric specification for the distribution of the mixing

variable ξt. Another fruitful avenue for future research would be to assess the asset

pricing implications of our model. In particular, we could relate our framework to the

extensions of the CAPM based on the first three moments of returns (see e.g. Kraus and

Litzenberger, 1976; Barone-Adesi, 1985; and Lim, 1989). Similarly, it would be useful to

explore the implications of our model at different time horizons. As a starting point, we

could exploit the properties of specific examples such a the Variance Gamma process,
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which generates Asymmetric Normal Gamma returns at any investment horizon (see e.g.

Madan and Milne, 1991; and Madan, Carr, and Chang, 1998). Finally, it would also be

interesting to derive a specification test of the “common feature” in skewness implicit

in our model, and, if needed, relax that assumption by allowing for several skewness

factors.
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A Proofs of Propostions

Proposition 1

If we impose the parameter restrictions of Proposition 1 in equation (1), we get

ε∗ = c (β′β, τ ) β

[
ξ−1

π1(τ )
− 1

]
+

√
ξ−1

π1(τ )

[
IN +

c (β′β, τ )− 1

β′β
ββ′

] 1
2

r (A1)

Then, we can use the independence of ξ and r, together with the fact that E(r) = 0

to show that ε∗ will also have zero mean. Analogously, we will have that

V (ε∗) = c2v(τ )c2 (β′β, τ ) ββ′ + IN +
c (β′β, τ )− 1

β′β
ββ′,

Substituting c (β, ν, γ) by (2), we can finally show that V (ε∗) = IN . �

Proposition 2

Using (A1), we can write s∗ as

s∗ = c (β′β, τ )
w′β√
w′w

[
ξ−1

π1(τ )
− 1

]
+

√
ξ−1

π1(τ )

w′
√

w′w

[
IN +

c (β′β, τ )− 1

β′β
ββ′

] 1
2

r.

But since the second term in this expression can be written as the product of the square

root of the mixing variable times a univariate normal variate, r say, we can also rewrite

s∗ as

s∗ = c (β′β, τ )
w′β√
w′w

[
ξ−1

π1(τ )
− 1

]

+

√
ξ−1

π1(τ )

√
1 +

c (β′β, τ )− 1

β′β

(w′β)2

w′w
r (A2)

Given that s∗ is a standardised variable by construction, if we compare (A2) with the

general formula for a standardised LSMN in (A1), then we will conclude that the para-

meters τ are the same as in the multivariate distribution, while the skewness parameter

is now a function of the vector w. Finally, the exact formula for β(w) can be easily

obtained from the relationships

c
[
β2(w), τ

]
β(w) = c (β′β, τ )

w′β√
w′w

,

c
[
β2(w), τ

]
= 1 +

c (β′β, τ )− 1

β′β

(w′β)2

w′w
,

�
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Proposition 3

If we introduce the results of Proposition 1 in (3), we can express yt as:

yt = µt(θ) + c(b′Σt(θ)b, τ )Σt(θ)b

[
ξ−1
t

π1(τ )
− 1

]
+

√
ξ−1

π1(τ )

{
Σt(θ) +

c[b′Σt(θ)b, τ ]− 1

b′Σt(θ)b
Σt(θ)bb′Σt(θ)

} 1
2

rt

where ξt ∼ iid F (·; τ ) and rt∼iid N(0, IN) are independent. Hence, w′
tyt can be ex-

pressed as:

w′
tyt = w′

tµt(θ) + c[b′Σt(θ)b, τ ]w′
tΣt(θ)b

[
ξ−1
t

π1(τ )
− 1

]
+

√
ξ−1
t

π1(τ )

{
w′

tΣt(θ)wt +
c[b′Σt(θ)b, τ ]− 1

b′Σt(θ)b
[w′

tΣt(θ)b]
2

} 1
2

rt (A3)

We can observe that w′
tyt is a LSMN that can be characterised in terms of its mean

w′
tµt(θ), its variance w′

tΣt(θ)wt and the bi-linear form w′
tΣt(θ)b. Finally, the bijective

relationship between w′
tΣt(θ)b and the third centred moment of w′

tyt (see 6) proves the

required result. �

Propositions 4 and 5

We can solve (9) by forming the Lagrangian

L = ϕt(θ,b, τ ) + γ2

(
σ2

0t −w′
tΣt(θ)wt

)
. (A4)

If we differentiate (A4) with respect to the portfolio weights, we obtain the following

first order conditions:

∂L
∂wt

=
{
3(s1t + 3s2ts3t)[b

′Σt(θ)wt]
2 + 3s2tσ

2
0t

}
Σt(θ)b

+ {6s2t[b
′Σt(θ)wt]− 2γ2}Σt(θ)wt = 0

There are two possible situations. First, assume that

3(s1t + 3s2ts3t)[b
′Σt(θ)wt]

2 + 3s2tσ
2
0t (A5)

is different from zero. In this case, we can express the optimal portfolio weights as

wt = κb for some constant κ. Then, if we impose the variance constraint by choosing

κ appropriately, we obtain (12). However, an additional solution will be obtained if the
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scalars (A5) and 6s2t[b
′Σt(θ)wt]−2γ2 are both zero. This solution will be characterised

by

b′Σt(θ)wt = ±σ0t

√
−s2t

s1t + 3s2ts3t

, (A6)

wtΣt(θ)wt = σ2
0t. (A7)

However, we will choose the positive sign because it is the one that yields positive

skewness. Condition (A6) defines a plane. Thus, this solution will only exist if this

plane intersects the ellipse defined by (A7). We need to find under what conditions

(A6) and (A7) are both satisfied. If this solution exists, there will be an infinite number

of portfolios with the same asymmetry and standard deviation but different expected

returns. We can consider the one that has maximum expected return by solving (15).

In this case, the Lagrangian can be expressed as

L = w′
tµt(θ) + γ1

[
σ2

0t −w′
tΣt(θ)wt

]
+γ2

[
σ0t

√
−s2t

s1t + 3s2ts3t

− b′Σt(θ)wt

]
. (A8)

If we differentiate (A8) with respect to wt, we obtain:

wt =
1

2γ1

[
Σ−1

t (θ)µt(θ)− γ2b
]

(A9)

It is straightforward to show that

γ1 = ±
√

µt(θ)Σ−1
t (θ)µt(θ)− 2γ2b′µt(θ) + γ2

2(b
′Σt(θ)b)

2σ0t

(A10)

ensures that (A7) holds. If we introduce (A9) and (A10) in (A6), we obtain the following

restriction:

Σ−1
t (θ)µt(θ)− γ2b√

µt(θ)Σ−1
t (θ)µt(θ)− 2γ2b′µt(θ) + γ2

2 [b
′Σt(θ)wt]

= ±σ0t

√
−s2t

s1t + 3s2ts3t

If we square the above expression, it is straightforward to show that it can be expressed

as a second order equation which will only have real solutions if (8) does not hold. �

Proposition 6

In what follows we maintain the assumption that (A5) is different from zero, since

the equality case is treated in Propositions 4 and 5. If we set (19) to zero, we can express
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the optimal portfolio weights as:

w∗
t =

γ1

6s2t[b′Σt(θ)w∗
t ]− 2γ2

Σ−1
t (θ)µt(θ)

−{3(s1t + 3s2ts3t)[b
′Σt(θ)w∗

t ]
2 + 3s2tσ

2
0t}

6s2t[b′Σt(θ)w∗
t ]− 2γ2

b (A11)

If we pre-multiply (A11) by b′Σ−1
t (θ), we obtain:

b′Σt(θ)w∗
t =

γ1

6s2t[b′Σt(θ)w∗
t ]− 2γ2

b′µt(θ)

−{3(s1t + 3s2ts3t)[b
′Σt(θ)w∗

t ]
2 + 3s2tσ

2
0t}

6s2t[b′Σt(θ)w∗
t ]− 2γ2

b′Σb (A12)

Hence, we can express (A11) as

w∗
t =

γ1

6s2tz∗ − 2γ2

Σ−1
t (θ)µt(θ)− [3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

6s2tz∗ − 2γ2

b (A13)

where z∗ is the solution of the following equation:

[6s2t + 3(b′Σt(θ)b) (s1t + 3s2ts3t)] z
2

−2γ2z +
[
3s2t(b

′Σt(θ)b)σ2
0t − γ1b

′µt(θ)
]

= 0. (A14)

The equality restrictions of our problem can then be written as:

µ0 =
γ1

6s2tz∗ − 2γ2

µ′
t(θ)Σ−1

t (θ)µt(θ)

− [3(s1t + 3s2ts3t)z
∗2 + 3s2tσ

2
0]

6s2tz∗ − 2γ2

µ′
t(θ)b (A15)

σ2
0t =

γ2
1

[6s2tz∗ − 2γ2]
2µ′

t(θ)Σ−1
t (θ)µt(θ)

+
[3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

2

[6s2tz∗ − 2γ2]
2 b′Σt(θ)b

−2
γ1 [3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

[6s2tz∗ − 2γ2]
2 µ′

t(θ)b (A16)

Thus, we must find z∗, γ1 and γ2 such that (A14), (A15) and (A16) are satisfied. From

(A15), it is straightforward to express γ1 as:

γ1 =
µ0

µ′
t(θ)Σ−1

t (θ)µt(θ)
[6s2tz

∗ − 2γ2]

+
[3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0]

µ′
t(θ)Σ−1

t (θ)µt(θ)
µ′

t(θ)b (A17)
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If we introduce (A17) in (A16), we will obtain after some algebraic manipulations that:

[6s2tz
∗ − 2γ2]

2 =
(b′Σb)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′b)2

σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t

×
[
3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t

]2
From condition (17) σ2

0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t ≥ 0, whereas

(b′Σt(θ)b)
(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b) is also non-negative because of the Cauchy-

Schwarz inequality. Therefore, we can express γ2 as:

γ2 = 3s2tz
∗

±1

2

√
(b′Σb)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0

[
3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t

]
,

whence

γ1 =
[3(s1t + 3s2ts3t)z

∗2 + 3s2tσ
2
0t]

µ′
t(θ)Σ−1

t (θ)µt(θ)

×

µ′
t(θ)b± µ0t

√
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2

σ2
0

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0

 .
If we introduce these expressions in (A14), we obtain the following “non-trivial” solutions:

z∗ = µ0t
µ′

t(θ)b

µ′
t(θ)Σ−1

t (θ)µt(θ)

∓

√[
(b′Σt(θ)b)

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− (µ′

t(θ)b)2] [σ2
0t

(
µ′

t(θ)Σ−1
t (θ)µt(θ)

)
− µ2

0t

]
µ′

t(θ)Σ−1
t (θ)µt(θ)

(A18)

There are potentially two other solutions characterised by 3(s1t+3s2ts3t)z
∗2+3s2tσ

2
0t = 0.

However, it can be checked that those two solutions belong to the inefficient frontier

mentioned in Proposition 5.

Finally, we obtain the required result by introducing (A18) in (A13). �

B Third and fourth moments of a LSMN

Consider wt ∈ RN . Then,

E
[
(w′

t(yt − µt(θ))3|It−1; θ, τ
]

= vec(wtw
′
t)
′Φt(θ, τ )wt = ϕt(θ,b, τ ),

E
[
(w′

t(yt − µt(θ))4|It−1; θ, τ
]

= vec(wtw
′
t)
′Kt(θ, τ )wt,
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where

Φt(θ, τ ) = E [vec [(yt − µt(θ))(yt − µt(θ))′] (yt − µt(θ))′|It−1; θ, τ ]

= s1tvec [Σt(θ)bb′Σt(θ)]b′Σt(θ)

+s2tvec [Σ∗
t (θ)]b′Σt(θ)

+s2t (IN2 + KNN) [Σt(θ)b⊗Σ∗
t (θ)] ,

Kt(θ, τ ) =

= E [vec [(yt − µt(θ))(yt − µt(θ))′] vec′ [(yt − µt(θ))(yt − µt(θ))′] |It−1; θ, τ ]

= κ1tvec [Σt(θ)bb′Σt(θ)] vec′ [Σt(θ)bb′Σt(θ)]

+κ2t (IN2 + KNN) (Σ∗
t (θ)⊗Σt(θ)bb′Σt(θ)) (IN2 + KNN)

+κ2t [vec [Σt(θ)bb′Σt(θ)] vec′ [Σ∗
t (θ)] + vec [Σ∗

t (θ)] vec′ [Σt(θ)bb′Σt(θ)]]

+κ3t [(IN2 + KNN) (Σ∗
t (θ)⊗Σ∗

t (θ)) + vec (Σ∗
t (θ)) vec′(Σ∗

t (θ))] ,

KNN is the duplication matrix, and

κ1t =
E
[
(ξ−1 − π1(τ ))

4
]

π4
1(τ )

c4(b′Σt(θ)b, τ ),

κ2t =
E
[
(ξ−1 − π1(τ ))

2
ξ−1
]

π3
1(τ )

c2(b′Σt(θ)b, τ ),

κ3t =
π2(τ )

π2
1(τ )

,

Σ∗
t (θ) = Σt(θ) + s3tΣt(θ)bb′Σt(θ).

C The Generalised Hyperbolic distribution

C.1 The density function

If the mixing variable ξ appearing in (1) follows a GIG (−ν, γ, δ) distribution, then

the density of the N × 1 GH random vector u will be given by

fGH(u) =

(
γ
δ

)ν
(2π)

N
2 [β′Υβ + γ2]

ν−N
2 |Υ|

1
2 Kν (δγ)

{√
β′Υβ + γ2δq

[
δ−1(u−α)

]}ν−N
2

×Kν−N
2

{√
β′Υβ + γ2δq

[
δ−1(u−α)

]}
exp [β′ (u−α)] ,

where −∞ < ν <∞, γ > 0, q [δ−1(u−α)] =
√

1 + δ−2(u−α)′Υ−1(u−α) and Kν (·)

is the modified Bessel function of the third kind (see Abramowitz and Stegun, 1965, p.

374, as well as appendix C.3).

29



Given that δ and Υ are not separately identified, Barndorff-Nielsen and Shephard

(2001) set the determinant of Υ equal to 1. However, it is more convenient to set

δ = 1 instead in order to reparametrise the GH distribution so that it has mean vector

0 and covariance matrix IN . Hence, if ξ ∼ GIG(−ν, γ, 1), then τ = (ν, γ)′, π1(τ ) =

Rν(γ)/γ, and cv(τ ) =
√
Dν+1(γ)− 1, where Rν (γ) = Kν+1 (γ) /Kν (γ) and Dν+1 (γ) =

Kν+2 (γ)Kν (γ) /K2
ν+1 (γ). It is then straightforward to use Proposition 1 to obtain a

standardised GH distribution.

One of the most attractive properties of the GH distribution is that it contains as

particular cases several of the most important multivariate distributions already used in

the literature. For the standardised vector ε∗, the most important ones are:

• Normal, which can be achieved in three different ways: (i) when ν → −∞ or (ii)

ν → +∞, regardless of the values of γ and β; and (iii) when γ →∞ irrespective of the

values of ν and β.

• Symmetric Student t, obtained when −∞ < ν < −2, γ = 0 and β = 0.

• Asymmetric Student t, which is like its symmetric counterpart except that the

vector β of skewness parameters is no longer zero.

• Asymmetric Normal-Gamma, which is obtained when γ = 0 and 0 < ν <∞ (see

Madan and Milne, 1991).

• Normal Inverse Gaussian, for ν = −.5 (see Aas, Dimakos, and Haff, 2005).

• Hyperbolic, for ν = 1 (see Chen, Härdle, and Jeong, 2004)

• Asymmetric Laplace, for ν = 1 and γ = 0 (see Cajigas and Urga, 2007).

C.2 The score function

For our purposes, it is analytically convenient to replace ν and γ by η and ψ, where

η = −.5ν−1 and ψ = (1 + γ)−1, although we continue to use ν and γ in some equations

for notational simplicity. In this context, the EM-type procedure that we follow is

divided in two parts. In the maximisation step, we derive l (yt|ξt, It−1; φ) and l (ξt|It−1; φ)

with respect to φ. Then, in the expectation step, we take the expected value of these

derivatives given IT = {y1,y2, · · · ,yT} and the parameter values.

Conditional on ξt, yt is the following multivariate normal:

yt|ξt, It−1 ∼ N

[
µt(θ) + Σt(θ)ct(φ)b

[
γ

Rν (γ)

1

ξt
− 1

]
,

γ

Rν (γ)

1

ξt
Σ∗

t (φ)

]
,
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where ct(φ) = c[Σ
1
2
′

t (θ)b, ν, γ] and

Σ∗
t (φ) = Σt(θ) +

ct(φ)− 1

b′Σt(θ)b
Σt(θ)bb′Σt(θ)

If we define pt = yt − µt(θ) + ct(φ)Σt(θ)b, then we have the following log-density

l (yt|ξt, It−1; φ) =
N

2
log

[
ξtRν (γ)

2πγ

]
− 1

2
log |Σ∗

t (φ)| − ξt
2

Rν (γ)

γ
p′

tΣ
∗−1
t (φ)pt

+b′pt −
b′Σt(θ)b

2ξt

γct(φ)

Rν (γ)
.

Similarly, ξt is distributed as a GIG with parameters ξt|It−1 ∼ GIG (−ν, γ, 1), with

a log-likelihood given by

l (ξt|It−1; φ) = ν log γ − log 2− logKν (γ)− (ν + 1) log ξt −
1

2

(
ξt + γ2 1

ξt

)
.

In order to determine the distribution of ξt given all the observable information IT ,

we can exploit the serial independence of ξt given It−1; φ to show that

f (ξt|IT ; φ) =
f (yt,ξt|It−1; φ)

f (yt|It−1; φ)
∝ f (yt|ξt, It−1; φ) f (ξt|It−1; φ)

∝ ξ
N
2
−ν−1

t × exp

{
−1

2

[(
Rν (γ)

γ
p′

tΣ
∗−1
t (φ)pt + 1

)
ξt +

(
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

)
1

ξt

]}
,

which implies that

ξt|IT ;φ ∼ GIG

(
N

2
− ν,

√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2,

√
Rν (γ)

γ
p′

tΣ
∗−1
t (φ)pt + 1

)
.

From here, we can use (C4) and (C5) to obtain the required moments. Specifically,

E (ξt|IT ; φ) =

√
γct(φ)
Rν(γ)

b′Σt(θ)b + γ2√
Rν(γ)

γ
p′

tΣ
∗−1
t pt + 1

×RN
2
−ν

[√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

√
Rν (γ)

γ
p′

tΣ
∗−1
t pt + 1

]
,

E

(
1

ξt

∣∣∣∣ IT ; φ

)
=

√
Rν(γ)

γ
p′

tΣ
∗−1
t pt + 1√

γct(φ)
Rν(γ)

b′Σt(θ)b + γ2

× 1

RN
2
−ν−1

[√
γct(φ)
Rν(γ)

b′Σt(θ)b + γ2

√
Rν(γ)

γ
p′

tΣ
∗−1
t pt + 1

] ,
E ( log ξt| IT ; φ) = log

(√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

)
− log

(√
Rν (γ)

γ
p′

tΣ
∗−1
t pt + 1

)

+
∂

∂x
logKx

[√
γct(φ)

Rν (γ)
b′Σt(θ)b + γ2

√
Rν (γ)

γ
p′

tΣ
∗−1
t pt + 1

]∣∣∣∣∣
x=N

2
−ν

.
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If we put all the pieces together, we will finally have that

∂l(yt| It−1; φ)

∂θ′
= −1

2
vec′[Σ−1

t (θ)]
∂vec[Σt(θ)]

∂θ′
− f(IT ,φ)p′

tΣ
∗−1
t (φ)

∂pt

∂θ′

−1

2

ct(φ)− 1

ct(φ)b′Σt(θ)b
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
vec′ (bb′)

∂vec[Σt(θ)]

∂θ′
+ b′∂pt

∂θ′

+
1

2
f(IT ,φ)[p′

tΣ
∗−1
t (φ)⊗ p′

tΣ
∗−1
t (φ)]

∂vec[Σ∗
t (φ)]

∂θ′

−1

2

g(IT ,φ)√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

vec′ (bb′)
∂vec[Σt(θ)]

∂θ′
,

∂l (yt| It−1; φ)

∂b
= − ct(φ)− 1

ct(φ)b′Σt(θ)b
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ)

−f (IT ,φ) ct(φ)p′
t + ε′t + f (IT ,φ)

ct(φ)− 1

b′Σt(θ)b
(b′pt)

×

{
[ct(φ)− 1] (b′pt)

c2t (φ)b′Σt(θ)b
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ)

+
p′

t

ct(φ)
− 1√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ)

}

+
[2− g (IT ,φ)]√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
b′Σt(θ),

∂l (yt| It−1; φ)

∂η
=
N

2

∂ logRν (γ)

∂η
+

(
b′Σt(θ)b− 1

2ct(φ)

)
∂ct(φ)

∂η
+

log (γ)

2η2

−∂ logKν (γ)

∂η
− 1

2η2
E [log ξt|YT ; φ]− f (IT ,φ)

2

{
∂ logRν (γ)

∂η
p′

tΣ
∗−1
t (φ)pt

+
∂ct(φ)

∂η

[
b′Σt(θ)b− (b′εt)

2

c2t (φ)b′Σt(θ)b

]}

−b′Σt(θ)b

2
g (IT ,φ)

{
∂ct(φ)

∂η
− ct(φ)

∂ logRν (γ)

∂η

}
,

and

∂l (yt| It−1; φ)

∂ψ
=
N

2

∂ logRν (γ)

∂ψ
+

N

2ψ (1− ψ)
+

(
b′Σt(θ)b− 1

2ct(φ)

)
∂ct(φ)

∂ψ

+
1

2ηψ (1− ψ)
− ∂ logKν (γ)

∂ψ
− f (IT ,φ)

2

{[
∂ logRν (γ)

∂ψ
+

1

ψ (1− ψ)

]
p′

tΣ
∗−1
t (φ)pt

+
∂ct(φ)

∂ψ

[
b′Σt(θ)b− (b′εt)

2

c2t (φ)b′Σt(θ)b

]}

−b′Σt(θ)b

2
g (IT ,φ)

{
− ct(φ)

ψ (1− ψ)
+
∂ct(φ)

∂ψ
− ct(φ)

∂ logRν (γ)

∂ψ

}
+ g (IT ,φ)

Rν (γ)

ψ2
,
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where

f (IT ,φ) = γ−1Rν (γ)E (ξt|IT ; φ) ,

g (IT ,φ) = γR−1
ν (γ)E

(
ξ−1
t |IT ; φ

)
,

∂vec[Σ∗
t (φ)]

∂θ′
=
∂vec[Σt(θ)]

∂θ′
+
ct(φ)− 1

b′Σt(θ)b
{[Σt(θ)bb′ ⊗ IN ] + [IN ⊗Σt(θ)bb′]} ∂vec[Σt(θ)]

∂θ′

+
ct(φ)− 1

[b′Σt(θ)b]2

{
1√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b
− 1

}

×vec [Σt(θ)bb′Σt(θ)] vec′ (bb′)
∂vec[Σt(θ)]

∂θ′
,

∂pt

∂θ′
= −∂µt(θ)

∂θ′
+ ct(φ) [b′ ⊗ IN ]

∂vec[Σt(θ)]

∂θ′

+
ct(φ)− 1

b′Σt(θ)b

1√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

Σt(θ)bvec′ (bb′)
∂vec[Σt(θ)]

∂θ′
,

∂ct(φ)

∂ (b′Σt(θ)b)
=
ct(φ)− 1

b′Σt(θ)b

1√
1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

,

∂ct(φ)

∂η
=

ct(φ)− 1

[Dν+1 (γ)− 1]
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

∂Dν+1 (γ)

∂η
,

and
∂ct(φ)

∂ψ
=

ct(φ)− 1

[Dν+1 (γ)− 1]
√

1 + 4 (Dν+1 (γ)− 1)b′Σt(θ)b

∂Dν+1 (γ)

∂ψ
.

C.3 Modified Bessel function of the third kind

The modified Bessel function of the third kind with order ν, which we denote as

Kν (·), is closely related to the modified Bessel function of the first kind Iν (·), as

Kν (x) =
π

2

I−ν (x)− Iν (x)

sin (πν)
. (C1)

Some basic properties of Kν (·), taken from Abramowitz and Stegun (1965), are

Kν (x) = K−ν (x),Kν+1 (x) = 2νx−1Kν (x)+Kν−1 (x), and ∂Kν (x) /∂x = −νx−1Kν (x)−

Kν−1 (x). For small values of the argument x, and ν fixed, it holds that

Kν (x) ' 1

2
Γ (ν)

(
1

2
x

)−ν

.

Similarly, for ν fixed, |x| large and m = 4ν2, the following asymptotic expansion is valid

Kν (x) '
√

π

2x
e−x

{
1+

m-1

8x
+

(m-1) (m-9)

2! (8x)2 +
(m-1) (m-9) (m-25)

3! (8x)3 + · · ·
}
. (C2)
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Finally, for large values of x and ν we have that

Kν(x) '
√

π

2ν

exp (−νl−1)

l−2

[
(x/ν)

1 + l−1

]−ν [
1-

3l-5l3

24ν
+

81l2-462l4+385l6

1152ν2
+ · · ·

]
, (C3)

where ν > 0 and l =
[
1 + (x/ν)2]− 1

2 . Although the existing literature does not discuss

how to obtain numerically reliable derivatives of Kν(x) with respect to its order, our

experience suggests the following conclusions:

• For ν ≤ 10 and |x| > 12, the derivative of (C2) with respect to ν gives a better

approximation than the direct derivative of Kν(x), which is in fact very unstable.

• For ν > 10, the derivative of (C3) with respect to ν works better than the direct

derivative of Kν(x).

• Otherwise, the direct derivative of the original function works well.

We can express such a derivative as a function of Iν(x) by using (C1) as:

∂Kν(x)

∂ν
=

π

2 sin (νπ)

[
∂I−ν(x)

∂ν
− ∂Iν(x)

∂ν

]
− π cot (νπ)Kν(x)

However, this formula becomes numerically unstable when ν is near any non-negative

integer n = 0, 1, 2, · · · due to the sine that appears in the denominator. In our experience,

it is much better to use the following Taylor expansion for small |ν − n|:

∂Kν(x)

∂ν
=
∂Kν(x)

∂ν

∣∣∣∣
ν=n

+
∂2Kν(x)

∂ν2

∣∣∣∣
ν=n

(ν − n)

+
∂3Kν(x)

∂ν3

∣∣∣∣
ν=n

(ν − n)2 +
∂4Kν(x)

∂ν4

∣∣∣∣
ν=n

(ν − n)3 ,

where for integer ν:

∂Kν(x)

∂ν
=

1

4 cos (πn)

[
∂2I−ν(x)

∂ν2
− ∂2Iν(x)

∂ν2

]
+ π2 [I−ν(x)− Iν(x)] ,

∂2Kν(x)

∂ν2
=

1

6 cos (πn)

[
∂3I−ν(x)

∂ν3
-
∂3Iν(x)

∂ν3

]
+

π2

3 cos (πn)

[
∂I−ν(x)

∂ν
-
∂Iν(x)

∂ν

]
-
π2

3
Kn(x),

∂3Kν(x)

∂ν3
=

1

8 cos (πn)

{[
∂4I−ν(x)

∂ν4
− ∂4Iν(x)

∂ν4

]
−4π2

[
∂2I−ν(x)

∂ν2
− ∂2Iν(x)

∂ν2

]
− 12π4 [I−ν(x)− Iν(x)]

}
+ 3π2∂Kn(x)

∂ν
,

and

∂4

∂ν4
Kν(x) =

1

8 cos (πn)

{
3

2

[
∂5I−ν(x)

∂ν5
− ∂5Iν(x)

∂ν5

]
-10π2

[
∂3I−ν(x)

∂ν3
− ∂3Iν(x)

∂ν3

]
-4π4

[
∂I−ν(x)

∂ν
− ∂Iν(x)

∂ν

]}
+6π2∂

2Kn(x)

∂ν2
− π4Kn(x).
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Let ψ(i) (·) denote the polygamma function (see Abramowitz and Stegun, 1965). The

first five derivatives of Iν(x) for any real ν are as follows:

∂Iν(x)

∂ν
= Iν(x) log

(x
2

)
−
(x

2

)ν
∞∑

k=0

Q1(ν + k + 1)

k!

(
1

4
x2

)k

,

where

Q1 (z) =

{
ψ (z) /Γ (z) if z > 0
π−1Γ (1− z) [ψ (1− z) sin (πz)− π cos (πz)] if z ≤ 0

∂2Iν(x)

∂ν2
= 2 log

(x
2

) ∂Iν(x)
∂ν

− Iν(x)
[
log
(x

2

)]2
−
(x

2

)ν
∞∑

k=0

Q2(ν + k + 1)

k!

(
1

4
x2

)k

,

where

Q2(z) =


[ψ′ (z)− ψ2 (z)] /Γ (z) if z > 0

π−1Γ (1− z)
[
π2 − ψ′ (1− z)− [ψ (1− z)]2

]
sin (πz)

+2Γ (1− z)ψ (1− z) cos (πz) if z ≤ 0

∂3Iν(x)

∂ν3
= 3 log

(x
2

) ∂2Iν(x)

∂ν2
− 3

[
log
(x

2

)]2 ∂Iν(x)
∂ν

+
[
log
(x

2

)]3
Iν(x)

−
(x

2

)ν
∞∑

k=0

Q3(ν + k + 1)

k!

(
1

4
x2

)k

,

where

Q3(z) =


[ψ3 (z)− 3ψ (z)ψ′ (z) + ψ′′ (z)] /Γ (z) if z > 0
π−1Γ (1− z) {ψ3 (1− z)− 3ψ (1− z) [π2 − ψ′ (1− z)] + ψ′′ (1− z)} sin (πz)
+Γ (1− z) {π2 − 3 [ψ2 (1− z) + ψ′ (1− z)]} cos (πz) if z ≤ 0

∂4Iν(x)

∂ν4
= 4 log

(x
2

) ∂3Iν(x)

∂ν3
− 6

[
log
(x

2

)]2 ∂2Iν(x)

∂ν2
+ 4

[
log
(x

2

)]3 ∂Iν(x)
∂ν

−
[
log
(x

2

)]4
Iν(x)−

(x
2

)ν
∞∑

k=0

Q4(ν + k + 1)

k!

(
1

4
x2

)k

,

where

Q4(z) =



[
-ψ4 (z) + 6ψ2 (z)ψ′ (z)− 4ψ (z)ψ′′ (z)− 3 [ψ′ (z)]2 + ψ′′′ (z)

]
/Γ (z) if z > 0

π−1Γ (1− z) {−ψ4 (1− z) + 6π2ψ2 (1− z)− 6ψ2 (1− z)ψ′ (1− z)

−4ψ (1− z)ψ′′ (1− z)− 3 [ψ′ (1− z)]2 + 6π2ψ′ (1− z)
−ψ′′′ (1− z)− π4} sin (πz) + Γ (1− z) 4ψ3 (1− z)− 4π2ψ (1− z)
+12ψ (1− z)ψ′ (1− z) + 4ψ′′ (1− z) cos (πz) if z ≤ 0

and finally,

∂5Iν(x)

∂ν5
= 5 log

(x
2

) ∂4Iν(x)

∂ν4
− 10

[
log
(x

2

)]2 ∂3Iν(x)

∂ν3
+ 10

[
log
(x

2

)]3 ∂2Iν(x)

∂ν2

−5
[
log
(x

2

)]4 ∂Iν(x)
∂ν

+
[
log
(x

2

)]5
Iν(x)−

(x
2

)ν
∞∑

k=0

Q5(ν + k + 1)

k!

(
1

4
x2

)k

,
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where

Q5(z) =


{
ψ5 (z)− 10ψ3 (z)ψ′ (z) + 10ψ2 (z)ψ′′ (z) + 15ψ (z) [ψ′ (z)]2

−5ψ (z)ψ′′′ (z)− 10ψ′ (z)ψ′′ (z) + ψ(iv) (z)
}
/Γ (z) if z > 0

π−1Γ (1− z) fa (z) sin (πz) + Γ (1− z) fb (z) cos (πz) if z ≤ 0

with

fa (z) = ψ5 (1− z)− 10π2ψ3 (1− z) + 10ψ3 (1− z)ψ′ (1− z) + 10ψ2 (1− z)ψ′′ (1− z)

+15ψ (1− z) [ψ′ (1− z)]2 + 5ψ (1− z)ψ′′′ (1− z) + 5π4ψ (1− z)
−30π2ψ (1− z)ψ′ (1− z) + 10ψ′ (1− z)ψ′′ (1− z)− 10π2ψ′′ (1− z) + ψ(iv) (1− z) ,

and

fb (z) = −5ψ4 (1− z) + 10π2ψ2 (1− z)− 30ψ2 (1− z)ψ′ (1− z)

−20ψ (1− z)ψ′′ (1− z)− 15 [ψ′ (1− z)]2 + 10π2ψ′ (1− z)− 5ψ′′′ (1− z)− π4.

C.4 Moments of the GIG distribution

If X ∼ GIG (ν, δ, γ), its density function will be

(γ/δ)ν

2Kν (δγ)
xν−1 exp

[
−1

2

(
δ2

x
+ γ2x

)]
,

where Kν (·) is the modified Bessel function of the third kind and δ, γ ≥ 0, ν ∈ R,

x > 0. Two important properties of this distribution are X−1 ∼ GIG (−ν, γ, δ) and

(γ/δ)X ∼ GIG
(
ν,
√
γδ,

√
γδ
)
. For our purposes, the most useful moments of X when

δγ > 0 are

E
(
Xk
)

=

(
δ

γ

)k
Kν+k (δγ)

Kν (δγ)
(C4)

E (logX) = log

(
δ

γ

)
+

∂

∂ν
Kν (δγ) . (C5)

The GIG nests some well-known important distributions, such as the gamma (ν > 0,

δ = 0), the reciprocal gamma (ν < 0, γ = 0) or the inverse Gaussian (ν = −1/2).

Importantly, all the moments of this distribution are finite, except in the reciprocal

gamma case, in which (C4) becomes infinite for k ≥ |ν|. A complete discussion on this

distribution can be found in Jørgensen (1982), who also presents several useful Gaussian

approximations based on the following limits:√
δγ[(γx/δ)− 1]

δγ→∞→ N(0, 1)√
δγ log (γx/δ)

δγ→∞→ N(0, 1)

γ2

2
√
ν

[
x− 2ν

γ2

]
ν→+∞→ N(0, 1)

−2ν3/2

δ2

[
x+

δ2

2ν

]
ν→−∞→ N(0, 1)
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Table 1
Maximum likelihood estimates of a conditionally heteroskedastic single factor

model for ten Datastream sectoral indices for the US

Ten indices Extended model
Parameter SE SE
η 0.095 0.004 0.091 0.003
ψ 1 - 1 -
b

Basic Materials -0.100 0.038 -0.088 0.040
Consumer Goods 0.068 0.066 0.053 0.070
Consumer Services 0.077 0.091 0.093 0.091
Financials 0.009 0.052 0.048 0.050
Health Care -0.033 0.078 -0.082 0.083
Industrials -0.096 0.084 -0.080 0.089
Oil and Gas 0.116 0.056 0.130 0.058
Technology -0.091 0.066 -0.092 0.066
Telecommunications 0.067 0.074 0.062 0.082
Utilities -0.027 0.037 -0.034 0.042
World ex-US -0.163 0.052

Note: Extended model denotes the model based on the ten US indices and the World ex-US index.
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Table 2:
Spanning tests. Improvement in the investment opportunity set caused by the

introduction of the World ex-US index

Null hypothesis Wald LR
p-value p-value

Mean-variance efficiency 1.00 0.317 1.05 0.306
Skewness-variance efficiency 9.64 0.002 9.79 0.002
Joint 13.57 0.001 13.72 0.001

Notes: The mean-variance efficiency test denotes a test of the null hypothesis µ2t(θ) = d′
12tµ1t(θ),

where µ1t(θ) and µ2t(θ) denote, respectively, the vector of expected excess returns of the 10 US
indices and the expected excess return of the World ex-US index, while d12t denotes the coefficients
of the conditional regression of the excess returns of the World ex-US index on those of the 10 US
sectoral indices. The skewness-variance efficiency test denotes a test of the null hypothesis that
the element of the skewness vector b corresponding to the World ex-US index is zero.
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Figure 1a: Standardised bivariate normal den-
sity
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Figure 1b: Contours of a standardised bivari-
ate normal density

Figure 1c: Standardised bivariate asymmetric
Student t density with 10 degrees of freedom
(η = .1) and β = (−3,−3)′
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Figure 1d: Contours of a standardised bivari-
ate asymmetric Student t density with 10 de-
grees of freedom (η = .1) and β = (−3,−3)′

Figure 1e: Standardised bivariate LMSN with
a Bernoulli mixing variable and β = (−3,−3)′
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Figure 1f: Contours of a standardised bivari-
ate LMSN with a Bernoulli mixing variable
and β = (−3,−3)′

Notes: The Bernoulli mixing variable of Figures 1e and 1f is such that it has mean E(ξ) = 1 and
Pr(ξ = 0.6) = 0.04.



Figure 2: Exceedance correlation for symmetric and asymmetric location-scale mixtures of normals
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∗
2| ε∗1 >

κ, ε∗2 > κ) for positive κ and corr(ε∗1, ε
∗
2| ε∗1 < κ, ε∗2 < κ) for negative κ (see Longin and Solnik,

2001). Symmetric t distribution with 10 degrees of freedom (η = .1) and Asymmetric t distribution
with η = .1 and β = (−3,−3). Asymmetric Bernoulli denotes a location-scale mixture of normals
with β = (−3,−3) and mixing variable such that it has mean E(ξ) = 1 and Pr(ξ = 0.6) = 0.04.



Figure 3: Mean-Variance-Skewness frontier of a LSMN. Example 1.

(a) Three dimensional representation
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Notes: The mean-variance frontier is plotted with dotted lines, while dash-dot lines are used for
the skewness-variance frontier.



Figure 4: Mean-Variance-Skewness frontier of a LSMN. Example 2.

(a) Three dimensional representation
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Figure 5a: Sampling distribution of the log of vech′[V E
T (φ̂T ) − VT (φ̂T )]vech[V E

T (φ̂T ) − VT (φ̂T )]
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Figure 5b: Sampling distribution of the log of vecd′[V E
T (φ̂T ) − VT (φ̂T )]vecd[V E

T (φ̂T ) − VT (φ̂T )]
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Notes: Obtained from a Monte Carlo study with 1, 000 replications of sample size T = 1, 000,
except VT (φ̂T ), which is the sampling variance of the ML estimators in 30,000 samples of the same
size. E refers to the standard errors obtained by either the outer-product of the gradient (O),
numerical Hessian (H), or the simulated unconditional information matrix.



Figure 6a: Comparison of the univariate and multivariate Gaussian estimates of the equally weighted
portfolio of the US Datastream sectoral indices
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Figure 6b: Comparison of the multivariate Gaussian and GH estimates of the equally weighted
portfolio of the US Datastream sectoral indices
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Figure 7: Mean-Variance-Skewness frontier of the the US Datastream indices and change induced by
adding the World ex-US Datastream index

(a) Three dimensional representation
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(d) Standard Deviation vs. Asymmetry
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Notes: Frontier of excess returns with moments expressed in percent terms. Thick lines represent
the contours obtained from the ten US indices, while the contours of the frontier obtained including
the World ex-US index are represented with thin lines. The mean-variance frontier is plotted with
dotted lines, while dash-dot lines are used for the skewness-variance frontier. Asterisks (circle) are
used to plot the positions of the individual US indices (World ex-US index). The results correspond
to a representative day whose mean vector and covariance matrix are set to their unconditional
values.
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