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Abstract

We study minimum cost spanning tree problems with groups. We
assume that agents are located in di¤erent villages. We introduce a rule
for dividing the cost of connecting all agents to the source among the
agents taking into account the group structure. We characterize this rule.
We prove that the rule coincides with the Owen value of the TU game
associated with the irreducible matrix.

1 Introduction

In this paper we study minimum cost spanning tree problems (mcstp). A group
of agents (denoted by N), located at di¤erent geographical places, want a partic-
ular service which can only be provided by a common supplier, called the source
(denoted by 0). Agents will be served through connections which involves some
cost. Although, they do not care whether they are connected directly or indi-
rectly to the source. This situation is described by a symmetric matrix C, where
cij denotes the connection costs between i and j (i; j 2 N [ f0g) :
There are many economic situations that can be modeled in this way. For

instance, several towns may draw power from a common power plant, and hence
have to share the cost of the distribution network (Dutta and Kar, 2004).
Bergantiños and Lorenzo (2004, 2005) study a real situation where villagers
had to pay the cost of constructing pipes from their respective houses to a water
supplier. Other examples include communication networks, such as telephone,
internet, or cable television.
We assume that agents construct a minimum cost spanning tree (mt): The

question is how to divide the cost associated with the mt between the agents.
Di¤erent rules give di¤erent answers to this question. One of the most important
topics is the axiomatic characterization of rules. The idea is to propose desirable
properties and to �nd out which of them characterize each rule. Properties often

�Financial support from Ministerio de Ciencia y Tecnología and FEDER through grant
SEJ2005-07637-C02-01 and from Xunta de Galicia through grants PGIDIT06PXIB362390PR
and PGIDIT06PXIC300184PN is gratefully acknowledged.
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help agents to compare di¤erent rules and to decide which rule is preferred in a
particular situation.
In some cases, as in Dutta and Kar (2004) or Bergantiños and Lorenzo (2004,

2005), agents are located in di¤erent villages. This means, in terms of the cost
matrix, that the connection cost between two agents of the same village is not
larger than the connection cost between an agent of this village and an agent
from other village.
The classical model of mcstp; as described above, can also model these sit-

uation. Nevertheless, it ignores the fact that some group of agents are located
in the same city or village. It could be interesting to include this fact in the
model. We do it by considering an extra element in the model. Namely a
partition G =

�
G1; :::; Gm

	
of the set of agents N: For each k = 1; :::;m, Gk

represents the group of agents located in the same village, city, ...
In this paper we follow the axiomatic approach and we introduce a rule as the

unique rule satisfying a set of desirable properties. Our idea is to generalize the
axiomatic characterization of the rule ' given by Bergantiños and Vidal-Puga
(2007d), which involves three properties. Restricted Additivity (RA) which says
that the rule must be additive on the cost matrix. Population Monotonicity
(PM) ; which says that if a new agent comes, no agent of the initial society
can be worse o¤. Symmetry (SYM) ; which says that symmetric agents (with
respect to the cost matrix) must pay the same.
We adapt these properties to mcstp with groups. The property of RA could

be formulated in a similar way. Nevertheless, PM and SYM should be adapted.
The main idea for adapting each of these properties is claiming both twice. Once
among the groups and other among agents inside the same group.
In order to adapt these properties a question comes to our mind. The cost

paid by agents of a village should depend on the internal characteristics of the
other village? For instance, should this cost depends on the number of agents
of the other villages? We consider that both answers, yes or no, are reasonable.
In this paper we have chosen no. Then, we have adapted the properties of PM
and SYM taking into account it.
We consider two properties of SYM: Symmetry among agents in the same

group (SYMA) says that if two agents are symmetric and belongs to the same
group, they must pay the same. Symmetry among groups (SYMG) says that if
two groups are symmetric the total amount paid by the members of each group
minus the cost of connecting agents inside the group among themselves must
be the same. Two groups are symmetric if their connection costs to the other
groups are the same.
We also consider two properties of PM: Population monotonicity over agents

(PMA) says that if agent i enters in group Gk, no agent of group Gk can be
worse o¤. Moreover, if the connection costs between group Gk and the other
groups do not change, agents of the other groups must pay the same. Population
monotonicity over groups (PMG) says that if a new group joins the society, no
agent of the initial society can be worse o¤.
The main result of the paper says that there is a unique rule, we call it F;

satisfying RA; SYMA; SYMG; PMA; and PMG:
We now describe the rule F characterized above. F can be considered as

a two steps rule. In the �rst step we compute the amount that each group
should pay in order to be connected to the source. We do it applying the rule
' de�ned in Bergantiños and Vidal-Puga (2007a). In the second step we decide
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the amount that each agent of each group has to pay. For each group Gk; we
consider themcstp inside each group

�
Gk0 ; C

'
�
: In

�
Gk0 ; C

'
�
the connection cost

between two agents of Gk is the same as in C. Nevertheless, the connection cost
between any agent of Gk and the source is the amount computed for the group
Gk in the �rst step.
Owen (1977) introduces a value for TU games with a group structure. It

is assumed that agents are partitioned into di¤erent groups. Moreover, the
objective is to divide the value of the grand coalition among the agents taking
into account the group structure. Owen (1977) proves that his value generalizes
the Shapley value.
Bird (1976) de�ne the minimal network and the TU game (N; vC) associ-

ated with an mcstp (N0; C) : Bergantiños and Vidal-Puga (2007a) de�ne the
irreducible matrix C� associated with an mcstp (N0; C) through the minimal
network. The rule ' in mcstp is de�ned as the Shapley value of the TU game
(N; vC�). The rule F in mcstp with groups generalizes the rule ': We can ask
if there is some relationship between F and the Owen value of (N; vC� ; G) : The
answer is not trivial because (N; vC� ; G) does not appear in the de�nition of F:
Nevertheless, we will prove that F coincides with the Owen value of (N; vC� ; G) :
The paper is organized as follows. In Section 2 we introduce mcstp: In

Section 3 we introduce mcstp with groups. In Section 4 we de�ne the rule F
and we present the axiomatic characterization. In Section 5 we prove that F
coincides with the Owen value. In Appendix we present the proofs of the results
obtained in the paper.

2 Minimum cost spanning tree problems

Let N = f1; 2; :::g be the set of all possible agents. Given a �nite set N � N ,
let �N be the set of all permutations over N . Given � 2 �N , let Pre (i; �)
denote the set of elements of N which come before i in the order given by �,
i:e:; P re (i; �) = fj 2 N : � (j) < � (i)g. Given S � N , let �S denote the order
induced by � among the agents in S.
We are interested in networks whose nodes are elements of a set N0 = N [

f0g, where N � N is �nite and 0 is a special node called the source. Usually
we take N = f1; :::; ng.
A cost matrix C = (cij)i;j2N0

on N represents the cost of direct link between
any pair of nodes. We assume that cij = cji � 0 for each i; j 2 N0 and cii = 0
for each i 2 N0. Since cij = cji we work with undirected arcs, i:e: (i; j) = (j; i).
We denote the set of all cost matrices over N as CN . Given C; C 0 2 CN we

say C � C 0 if cij � c0ij for all i; j 2 N0:
A minimum cost spanning tree problem, brie�y an mcstp; is a pair (N0; C)

where N � N is a �nite set of agents, 0 is the source, and C 2 CN is the cost
matrix.
Given an mcstp (N0; C), we de�ne the mcstp induced by C in S � N as

(S0; C).
A network g over N0 is a subset of f(i; j) : i; j 2 N0g : The elements of g are

called arcs: Given a network g over N0 and S � N0 we denote by gS the network
induced by g among the elements of S: Namely, gS = f(i; j) 2 g : fi; jg � Sg :
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Given a network g and a pair of nodes i and j, a path from i to j in g
is a sequence of di¤erent arcs f(ih�1; ih)glh=1 satisfying (ih�1; ih) 2 g for all
h 2 f1; 2; :::; lg, i = i0, and j = il.
A tree is a network such that for all i 2 N there is a unique path from i to

the source. If t is a tree, we usually write t =
��
i0; i
�	
i2N where i0 represents

the �rst agent in the unique path in t from i to 0.
Let GN denote the set of all networks over N0. Let GN0 denote the set of all

networks where every agent i 2 N is connected to the source, i:e: there exists a
path from i to 0 in the network.
Given an mcstp (N0; C) and g 2 GN , we de�ne the cost associated with g as

c (N0; C; g) =
X
(i;j)2g

cij :

When there is no ambiguity, we write c (g) or c (C; g) instead of c (N0; C; g).
An minimum cost spanning tree for (N0; C), brie�y an mt, is a tree t over N0

such that c (t) = min
g2GN0

c (g). It is well-known that an mt exists, even though it is

not necessarily unique. Given an mcstp (N0; C), we denote the cost associated
with any mt as m (N0; C).

Given an mcstp, Prim (1957) provides an algorithm for solving the problem
of connecting all agents to the source such that the total cost of creating the
network is minimal. The idea of this algorithm is simple: starting from the
source we construct a network by sequentially adding arcs with the lowest cost
and without introducing cycles.
Formally, Prim�s algorithm is de�ned as follows. We start with S0 = f0g

and g0 = ;:
Stage 1 : Take an arc (0; i1) such that c0i1 = min

j2N
fc0jg. If there are several

arcs satisfying this condition, select just one. Now, S1 = f0; i1g and g1 =
f(0; i1)g.
Stage p + 1: Assume that we have de�ned Sp � N0 and gp 2 GN . We now

de�ne Sp+1 and gp+1. Take an arc
�
i0p+1; ip+1

�
with i0p+1 2 Sp and ip+1 2 N0nSp

such that ci0p+1ip+1 = min
k2Sp;l2N0nSp

fcklg. If there are several arcs satisfying

this condition, select just one. Now, Sp+1 = Sp [ fip+1g and gp+1 = gp [��
i0p+1; ip+1

�	
.

This process is completed in n stages. We say that gn is a tree obtained
following Prim�s algorithm. Notice that this algorithm leads to a tree, but this
is not always unique.

Given an mcstp (N0; C) and an mt t, Bird (1976) de�ned the minimal net-
work (N0; Ct) associated with t as follows: ctij = max

(k;l)2gij
fcklg, where gij denotes

the unique path in t from i to j. Even though gij depends on the choice of t,
ctij is independent of the chosen t. Proof of this can be found, for instance, in
Aarts and Driessen (1993).
The irreducible form of an mcstp (N0; C) is de�ned as the minimal network

(N0; C
�) associated with a particular mt t. If (N0; C�) is an irreducible form,

we say that C� is an irreducible matrix.
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One of the most important issues addressed in the literature about mcstp
is how to divide the cost of connecting agents to the source between them. We
now brie�y introduce some of the rules studied in the literature.
A (cost allocation) rule is a function f such that f (N0; C) 2 RN andP

i2N
fi (N0; C) = m (N0; C) for each mcstp (N0; C). As usual,  i (N0; C) repre-

sents the cost allocated to agent i.
Notice that we implicitly assume that the agents build an mt. As far as we

know, all the rules proposed in the literature make this assumption.

A coalitional game with transferable utility, brie�y a TU game, is a pair
(N; v) where v : 2N ! R satis�es v (?) = 0. Sh (N; v) denotes the Shapley
value (Shapley (1953)) of (N; v).
For each mcstp (N0; C) : Bird (1976) introduces the TU game (N; vC). For

each coalition S � N ,
vC (S) = m (S0; C) :

There are several rules studied in the literature. We mention, for instance,
the rules studied in Bird (1976), Kar (2002), and Dutta and Kar (2004). In this
paper the rule introduced by Feltkamp et al (1994) and called Equal Remaining
Obligations rule (ERO) will be very important. ERO is called the P � value
in Branzei et al (2004).
On the other hand, in Bergantiños and Vidal-Puga (2007a) it is de�ned the

rule ' as
' (N0; C) = Sh (N; vC�)

where C� is the irreducible matrix associated with C. Bergantiños and Vidal-
Puga (2007e) prove that, surprisingly, ' coincides with ERO. This rule is also
studied in Bergantiños and Vidal-Puga (2007b, 2007c, 2007d).

We now de�ne several properties formally.
We say that f satis�es Restricted Additivity (RA) if for all mcstp (N0; C)

and (N0; C 0) satisfying that there exists an mt t = f(i0; i)gi2N in (N0; C),
(N0; C

0), and (N0; C + C 0) and an order � = (i1; : : : ; ijN j) 2 �N such that
ci01i1 � ci02i2 � : : : � ci0jNjijNj and c

0
i01i1

� c0
i02i2

� : : : � c0
i0jNjijNj

, we have that

f(N0; C + C
0) = f(N0; C) + f(N0; C

0):

RA is an additivity property restricted to some subclass of problems. No
rule satis�es additivity over all mcstp. The reason is that in the de�nition of
a rule we are claiming that

P
i2N

fi (N0; C) = m (N0; C) ; which is incompatible

with additivity over all mcstp. See Bergantiños and Vidal-Puga (2007d) for a
detailed discussion of RA:

We say that f satis�es population monotonicity (PM) if for allmcstp (N0; C) ;
all S � N; and all i 2 S;

fi (N0; C) � fi (S0; C) :

PM says that, if new agents join a society, no agent of the initial society
can be worse o¤. This is a well-known property, which has been used in many
di¤erent situations.
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We say that i; j 2 N are symmetric if for all k 2 N0 n fi; jg, cik = cjk.
We say that f satis�es Symmetry (SYM) if for all mcstp (N0; C) and all

pair of symmetric agents i; j 2 N ,

fi (N0; C) = fj (N0; C) :

We say that f satis�es strong cost monotonicity (SCM) if for all mcstp
(N0; C) and (N0; C 0) such that C � C 0 and all i 2 N;

fi(N0; C) � fi(N0; C
0):

SCM implies that if a number of connection costs increase and the rest
of connection cost (if any) remain the same, no agent can be better o¤. This
property is called solidarity in Bergantiños and Vidal-Puga (2007a).

In Lemma 0 below we present some results used in the paper. The proof can
be found in Bergantiños and Vidal-Puga (2007a, 2007b, 2007c, 2007d).

Lemma 0.
(a) (N0; C) is irreducible if and only if there exists an mt t in (N0; C) satis-

fying the two following conditions:
(A1) t = f(ip�1; ip)gjN jp=1 where i0 = 0.
(A2) Given ip; iq 2 N0, p < q, then cipiq = max

p<r�q

�
cir�1ir

	
.

(b) If C is an irreducible matrix, then for all S � N0, i =2 S we have that

vC (S [ fig)� vC (S) = min
j2S0

fcijg :

(c) If C is an irreducible matrix, then vC is a concave game. Namely, if
S � T � N and i =2 T; then

vC (S [ fig)� vC (S) � vC (T [ fig)� vC (T ) :

(d) If C and C 0 are under the conditions of RA; then for all S � N;

v(C+C0)� (S) = vC� (S) + vC0� (S) :

(e) ' is the unique rule on mcstp satisfying RA; PM; and SYM:
(f) ' satis�es SCM:

3 Minimum cost spanning tree problems with
groups

There are many economic situations that can be modeled as a mcstp. Let us
mention some examples. Several towns may draw power from a common power
plant, and hence have to share the cost of the distribution network (Dutta and
Kar, 2004). Bergantiños and Lorenzo (2004, 2005) study a real situation where
a valley authority has to construct pipes from a dam to several houses. These
houses are located in di¤erent villages of the valley.
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The classical model of mcstp; as described in the previous section can also
model this situation. Nevertheless, it ignores the fact that some group of agents
are located in the same city or village. It could be interesting to include this
fact in the model. That�s the main issue of this section.
We do it by considering an extra element in the model. Namely a partition

G =
�
G1; :::; Gm

	
of the set of agents N: The interpretation of G is clear. For

each k = 1; :::;m, Gk represents a group of agents, which are located in the
same city, village, ...
In many situations, for instance the examples mentioned at the beginning

of this section, the cost between any pair of agents is closely related to the
distance between both agents. Under these circumstances it seems reasonable
that the connection cost between two agents of the city Gk is not larger than
the connection cost between an agent of city Gk and an agent from other city
(or the source).

We now introduce the model formally. An mcstp with groups is a triple
(N0; C;G) where (N0; C) is an mcstp, G =

�
G1; :::; Gm

	
is a partition of N and

for each k = 1; :::m
max
i;j2Gk

fcijg � min
i2Gk;j =2Gk

fcijg :

A rule in mcstp with groups is a function f such that f (N0; C;G) 2 RN
and

P
i2N

fi (N0; C;G) = m (N0; C) for each mcstp (N0; C).

As in classical mcstp; the main objective is to divide the cost associated with
an mt among the agents in a fair way.

Example 1. Consider themcstp (N0; C;G) with groups whereN = f1; 2; 3g ;
G =

�
G1; G2

	
; G1 = f1; 2g ; G2 = f3g ; and

C =

0BB@
0 8 8 8
8 0 2 4
8 2 0 4
8 4 4 0

1CCA :

In this case m (N0; C) = 14: Moreover, 12 units are associated with the cost
of connecting cities 1 and 2 with the source and 2 units are associated with the
cost of connecting agents 1 and 2 inside city 1.
Since we are looking for fair shares it seems reasonable to divide these 2

units equally between agents 1 and 2.
The 12 units comes of the construction of the network in which some of the

three agents is connected with the source and some agent of G1 is connected
with agent 3: In order to divide the 12 units among the agents two approaches
seems reasonable.

1. The cost paid by each city does not depend on the characteristics of the
other city. Assuming it both cities are symmetric. Thus, each city should
pay 6. Since agents inside city 1 are also symmetric, both pay the same.
Then, agent 1 pays 1+3=4, agent 2 pays 1+3=4, agent 3 pays 6.
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2. The cost paid by each city should take into account the number of agents
who gets bene�ts of their connection. Thus, city 1 should pay twice than
city 2, i:e:; city 1 pays 8 and city 2 pays 4. Since agents inside city 1 are
also symmetric, both pay the same. Then, agent 1 pays 1+4=5, agent 2
pays 1+4=5, agent 3 pays 4.

In this paper we have decided to follow the �rst approach. Thus, some
properties introduced later will be de�ned according with it.

4 The rule and the axiomatic characterization

In this section we introduce a rule for mcstp with groups. Moreover, we also
characterize this rule. Our characterization is inspired in the characterization
given in Bergantiños and Vidal-Puga (2007d).

In this paper we follow the axiomatic approach and we introduce a rule as the
unique rule satisfying a set of desirable properties. Our idea is to generalize the
axiomatic characterization of the rule ' given by Bergantiños and Vidal-Puga
(2007d), which involves three properties: RA; PM; and SYM:
Now we adapt these properties to mcstp with groups. The property of RA

could be formulated in a similar way. Nevertheless, PM and SYM should be
adapted. The main idea for adapting each of these properties is claiming both
twice. Once among the groups and other among agents inside the same group.

We say that f satis�es Restricted Additivity (RA) if for allmcstp with groups
(N0; C;G) and (N0; C 0; G) satisfying that there exists an mt t = f(i0; i)gi2N in
(N0; C;G), (N0; C 0; G), and (N0; C+C 0; G) and an order � = (i1; : : : ; ijN j) 2 �N
such that ci01i1 � ci02i2 � : : : � ci0jNjijNj and c

0
i01i1

� c0
i02i2

� : : : � c0
i0jNjijNj

, we

have that
f(N0; C + C

0; G) = f(N0; C;G) + f(N0; C
0; G):

We say that f satis�es symmetry among agents in the same group (SYMA)
if for all mcstp with groups (N0; C;G) and all pair of symmetric agents i; j 2
Gk 2 G,

fi (N0; C;G) = fj (N0; C;G) :

We now de�ne symmetry among groups. We �rst de�ne symmetric groups.
Intuitively two groups of agents are symmetric if their connection costs to the
other groups are the same. Because of the model each pair of groups Gk and Gk

0

can connect in several ways. For each pair of agents i 2 Gk; j 2 Gk0 they can
construct the arc (i; j) : Since we are assuming that agents will construct an mt;
it is reasonable to assume that they will construct an arc (i; j) with minimum
cost.
We say that two groups Gk and Gk

0
are symmetric if for all Gl 2 G0 nn

Gk; Gk
0
o
,

min
i2Gk;j2Gl

fcijg = min
i2Gk0 ;j2Gl

fcijg :

8



The next step is to say that symmetric groups should pay the same. The
amount paid by group Gk is

P
i2Gk

fi (N0; C;G) : Thus, we can decompose this

amount in two parts, the cost of connecting agents inside the group among them-
selves,m

�
Gk; C

�
; and the cost of connecting the group with the source (possible

through other groups),
P
i2Gk

fi (N0; C;G) � m
�
Gk; C

�
: We are assuming that

the amount paid by a group should not depend on the internal characteristics
of the other groups. Then, it seems reasonable to say that m

�
Gk; C

�
should

be paid by agents of Gk: Thus, we formulate the second symmetry property as
follows.
We say that f satis�es symmetry among groups (SYMG) if for all mcstp

with groups (N0; C;G) and all pair symmetric groups Gk; Gk
0 2 G,X

i2Gk

fi (N0; C;G)�m
�
Gk; C

�
=
X
i2Gk0

fi (N0; C;G)�m
�
Gk

0
; C
�
:

We now de�ne the two population monotonicity properties, over groups and
over agents.
The idea of population monotonicity over groups is quite simple. If a new

group joins the society, no agent of the initial society can be worse o¤. Formally,
We say that f satis�es population monotonicity over groups (PMG) if for

all mcstp with groups (N0; C;G) ; all Gk 2 G; and all i 2 NnGk;

fi (N0; C;G) � fi
��
NnGk

�
0
; C;GnGk

�
:

The population monotonicity over agents will say what happens when an
agent enters in a group. We claim that no agent of the initial group can be
worse o¤.
Assume that after the entrance of agent i in group Gk the minimum con-

nection cost between group Gk and the rest of the groups did not change, i:e:;
for each Gl; l 6= k; min

j2Gk;j02Gl
fcjj0g = min

j2Gk[fig;j02Gl
fcjj0g : Since we are as-

suming that the amount paid by a group should not depend on the internal
characteristics of the other groups and the entrance of agent i did not change
the connection cost among groups, we claim that agents of the others groups
must pay the same. Formally,
We say that f satis�es population monotonicity over agents (PMA) if for all

mcstp with groups (N0; C;G) ; allGk 2 G; and all i 2 Gk such thatGkn fig 6= ?;

fj (N0; C;G) � fj
�
(Nn fig)0 ; C;

�
GnGk

�
[
�
Gkn fig

��
if j 2 Gkn fig :

Moreover, if for each Gl with l 6= k; min
j2Gk;j02Gl

fcjj0g = min
j2Gknfig;j02Gl

fcjj0g ;

then

fj (N0; C;G) = fj
�
(Nn fig)0 ; C;

�
GnGk

�
[
�
Gkn fig

��
if j 2 NnGk:

Remark 1. PMA can be reformulated without the condition Gkn fig 6= ?:
The reason is that if Gkn fig = ?; then PMA will say nothing.
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We now de�ne the rule F in mcstp with groups. We �rst give the intuitive
idea. This rule can be considered as a two steps rule. In the �rst step we
compute the amount that each group should pay in order to be connected to
the source. We do it applying the rule ' de�ned in Bergantiños and Vidal-Puga
(2007a).
In the second step we decide the amount that each agent of each group has

to pay. For each group Gk; we consider the mcstp inside each group
�
Gk0 ; C

'
�
:

In this mcstp; the connection cost between two agents of Gk is the same as in C
but the connection cost between any agent of Gk and the source is the amount
computed by the group Gk in the �rst step.
We now present the de�nition formally. Given themcstp with groups (N0; C;G)

we de�ne the mcstp among groups
�
G0; C

G
�
as follows:

� G0 =
�
G0; G1; :::; Gm

	
where G0 = 0:

� CG is the cost matrix and for each Gk; Gk
0 2 G0 the connection cost

between Gk and Gk
0
is denoted by

cGkk0 = min
i2Gk;j2Gk0

fcijg :

Let (N0; C;G) be an mcstp with groups and i 2 Gk: Thus,

Fi (N0; C;G) = 'i
�
Gk0 ; C

'
�

where

c'jj0 =

�
cjj0 if 0 =2 fj; j0g
'k
�
G0; C

G
�

if 0 2 fj; j0g :
Before introducing the results of the paper, we present Lemma 1, which will

be used often in the proofs of the main results.

Lemma 1. Given (N0; C;G) we can �nd an mt t in (N0; C) satisfying:
(i) For each k = 1; :::;m; tGk induces an mt in

�
Gk; C

�
:

(ii) tn ([mk=1tGk) =
n
(k; k0) : 9i 2 Gk; j 2 Gk0 with (i; j) 2 t

o
is anmt in

�
G0; C

G
�
:

(iii) For each k = 1; ::::;m and each i 2 Gk; tGk
[ f(0; i)g is an mt in (Gk0 ; C'):

Proof. See Appendix.

In the next proposition we prove that F is a rule in mcstp with groups. We
also prove that F generalizes the rule ' de�ned in Bergantiños and Vidal-Puga
(2007a).

Proposition 1.
(a) For each mcstp with groups (N0; C;G) ;X

i2N
Fi (N0; C;G) = m (N0; C) :

(b) Let (N0; C;G) be an mcstp with groups where G = fNg. Thus, for each
i 2 N;

Fi (N0; C;G) = 'i (N0; C) :

10



(c) Let (N0; C;G) be an mcstp with groups where G = figi2N : Thus, for
each i 2 N;

Fi (N0; C;G) = 'i (N0; C) :

Proof. See Appendix.

We now present the main results of the section.

Proposition 2. F satis�es RA; SYMG; SYMA; PMG; and PMA.

Proof. See Appendix.

Proposition 3. There is a unique rule satisfying RA; SYMG; SYMA;
PMG; and PMA.

Proof. See Appendix.

Next theorem is a trivial consequence of propositions 2 and 3.

Theorem 1. F is the unique rule satisfying RA; SYMG; SYMA; PMG;
and PMA.

Remark 2. The properties used in Theorem 1 are independent. The proof
is in Appendix.

5 An approach using TU games

Owen (1977) introduces a value for TU games with a group structure. It is
assumed that agents are partitioned into di¤erent groups. Moreover, the objec-
tive is to divide the value of the grand coalition among the agents taking into
account the group structure. Owen (1977) proves that his value generalizes the
Shapley value.
The rule ' inmcstp is de�ned as the Shapley value of the TU game (N; vC�).

The rule F in mcstp with groups generalizes the rule ': We can ask if there
is some relationship between F and the Owen value of (N; vC� ; G) : The an-
swer is not trivial because (N; vC� ; G) does not appear in the de�nition of F:
Nevertheless, we will prove that F coincides with the Owen value of (N; vC� ; G) :

We �rst introduce the Owen value formally. A TU game with group structure
is a triple (N; v;G) where (N; v) is a TU game and G =

�
G1; :::; Gm

	
is a

partition of N:
We say that a permutation � 2 �N is admissible with respect to G if given

i; i0 2 Gk 2 G and j 2 N with �(i) < �(j) < �(i0), then j 2 Gk: We denote by
�G the set of all permutations over N admissible with respect to G.
Given (N; v;G) and i 2 Gk 2 G; the Owen value is de�ned as

Owi (N; v;G) =
1

j�Gj
X
�2�G

[v (Pre (i; �) [ fig)� v (Pre (i; �))] :

11



Theorem 2. For each mcstp with groups (N0; C;G) and i 2 Gk 2 G;

Fi (N0; C;G) = Owi (N; vC� ; G) :

Proof. See Appendix.

6 Appendix

6.1 Proof of Lemma 1

We prove that when we apply Prim�s algorithm if at Stage p; Sp =

0@ l[
j=1

Gkj

1A[
G0 where G0 � Gkl+1 ; G0 6= ?; and G0 6= Gkl+1 ; then at Stage p+1 we can select
an arc

�
i0p+1; ip+1

�
where i0p+1 2 G0 and ip+1 2 Gkl+1nG0:

Let
�
i0p+1; ip+1

�
be such that i0p+1 2 G0, ip+1 2 Gkl+1nG0 and

ci0p+1ip+1 = min
i2G0;j2Gkl+1nG0

fcijg :

By de�nition of Prim�s algorithm it is enough to prove that ci0p+1ip+1 � cij
in the following cases:

1. i 2 G0; j 2 Nn

0@l+1[
j=1

Gkj

1A : Thus, ci0p+1ip+1 � cij because
�
i0p+1; ip+1

	
�

Gkl+1 , i 2 Gkl+1 ; j 2 Gk0 , k0 2 f1; :::;mg n fk1; :::; kl+1g, and kl+1 6= k0:

2. i 2
l[

j=1

Gkj ; j 2 Gkl+1nG0: Thus, ci0p+1ip+1 � cij because
�
i0p+1; ip+1

	
�

Gkl+1 , i 2 Gk0 , k0 2 fk1; :::; klg ; j 2 Gkl+1 , and kl+1 6= k0:

3. i 2
l[

j=1

Gkj ; j =2 Gkl+1nG0: Thus, ci0p+1ip+1 � cij because
�
i0p+1; ip+1

	
�

Gkl+1 , i 2 Gk
0
; k0 2 fk1; :::; klg ; j 2 Gk

00
, k00 2 f1; :::;mg n fk1; :::; kl+1g

and kl+1 6= k0:

We now prove parts (i) and (ii) :
We apply Prim�s algorithm to (N0; C) : Let (0; i1) be the �rst arc selected

according Prim�s algorithm. We assume wlog that i1 2 G1: If G1n fi1g 6= ?;
by the previous statement, at Stage 2 of Prim�s algorithm we can select an arc�
i02; i2

�
satisfying that i02 2 G1 \ S1 = fi1g and i2 2 G1n fi1g :

If we repeat this argument we can prove that for each p = 2; :::;
��G1�� the arc�

i0p; ip
�
selected at Stage p satis�es that i0p 2 G1 and ip 2 G1:

At Stage p =
��G1�� + 1 we select an arc �i0p; ip� where i0p 2 G1 [ f0g and

ip =2 G1[f0g :We assume wlog that ip 2 G2: By de�nition of Prim�s algorithm,
ci0pip = cG12 when i

0
p 2 G1 whereas ci0pip = cG02 when i

0
p = 0: Repeating the same
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argument as above we can prove that for each p =
��G1�� + 2; :::; ��G1 [G2�� the

arc
�
i0p; ip

�
selected at Stage p satis�es that i0p 2 G2 and ip 2 G2:

In general, for each q = 1; :::;m and for each p =
���[q�1l=1G

l
��� + 2; :::; ��[ql=1Gl��

the the arc
�
i0p; ip

�
selected at Stage p satis�es that i0p 2 Gq and ip 2 Gq:

Moreover, for each q = 1; :::;m and for each p =
���[q�1l=1G

l
���+1 the the arc �i0p; ip�

selected at Stage p satis�es that i0p 2 [
q�1
l=1G

l [ f0g and ip 2 [ml=q�1Gl:
Now it is easy to conclude that parts (i) and (ii) hold.
We now prove part (iii) : Let k 2 f1; :::;mg : Because of parts (i) and (ii)

it is enough to prove that for each i 2 Gk c'0i � max
j;j02Gk

n
c'jj0
o
: Since c'0i =

'k(G0; C
G) for all i 2 Gk and c'jj0 = cjj0 for all j; j0 2 Gk; we must prove that

'k(G0; C
G) � max

j;j02Gk
fcjj0g :

Given anmcstp (N0; C) ; for all i 2 N; 'i (N0; C) = Shi (N; vC�) : By Lemma
0 (b) ; for all S � N; i =2 S; vC� (S [ fig)� vC� (S) = c�ij for some j 2 N0n fig :
So, 'i (N0; C) � min

j2N0nfig

�
c�ij
	
:

Thus, 'k(G0; C
G) � min

k02G0nfkg

n�
cGkk0

��o
: As the matrix irreducible is the

minimal network associated with an mt,

min
k02G0nfkg

n�
cGkk0

��o � min
k02G0nfkg

�
cGkk0

	
:

Because of the de�nition of (N0; C;G) ; min
k02G0nfkg

�
cGkk0

	
� max

j;j02Gk
fcjj0g ;

Thus, Claim 1 (iii) holds.

6.2 Proof of Proposition 1

(a) By de�nition of F;

X
i2N

Fi (N0; C;G) =
mX
k=1

X
i2Gk

'i
�
Gk0 ; C

'
�
:

Since ' is a rule inmcstp, for each k = 1; :::;m;
P
i2Gk

'i
�
Gk0 ; C

'
�
= m(Gk0 ; C

'):

So, X
i2N

Fi (N0; C;G) =
mX
k=1

m(Gk0 ; C
'):

By Lemma 1 (iii), for any k = 1; :::;m; we can construct an mt in (Gk0 ; C
')

tGk [f(0; i)g with i 2 Gk: Thus, m(Gk0 ; C') = m(Gk; C')+'k(G0; C
G): Hence,

X
i2N

Fi (N0; C;G) =
mX
k=1

�
m(Gk; C') + 'k(G0; C

G)
�

=

mX
k=1

m(Gk; C') +

mX
k=1

'k(G0; C
G):

13



Since ' is a rule in mcstp;
mP
k=1

'k(G0; C
G) = m(G0; C

G): Now,

X
i2N

Fi (N0; C;G) =
mX
k=1

m(Gk; C') +m(G0; C
G):

By de�nition of C'; c'ij = cij for all i; j 2 Gk. Thus,m(Gk; C') = m(Gk; C):
Hence,

X
i2N

Fi (N0; C;G) =
mX
k=1

m(Gk; C) +m(G0; C
G):

By Lemma 1 (i) and (ii), m(N0; C) =
mP
k=1

m(Gk; C) +m(G0; C
G):

Replacing this expression in equation above, we obtain the result.

(b) Let G = fNg: Thus, F (N0; C;G) = '(N0; C
'):

By de�nition, c'ij = cij for all i; j 2 N and c'0i = min
j2N

fc0jg for all i 2 N:

Thus, C � C': Since ' satis�es SCM; '(N0; C) � '(N0; C
'): By Lemma 1

(iii), m(N0; C) = m(N0; C
'): Now, '(N0; C) = '(N0; C

'):

(c) Let G = figi2N : For each i 2 N;

Fi(N0; C;G) = 'i(fig0; C') = c'0i = 'i(G0; C
G)

Moreover, G0 = N0 and cGij = cij for all i; j 2 N0, that is, CG = C:
Therefore, F (N0; C;G) = '(N0; C).

6.3 Proof of Proposition 2

We divide the proof in several claims.

Claim 1. F satis�es RA:
Proof of Claim 1. Let (N0; C;G) and (N0; C 0; G) be twomcstp with groups

satisfying that there exists an mt t = f(i0; i)gi2N in (N0; C;G), (N0; C 0; G), and
(N0; C + C 0; G) and an order � = (i1; : : : ; ijN j) 2 �N such that ci01i1 � ci02i2 �
: : : � ci0jNjijNj and c

0
i01i1

� c0
i02i2

� : : : � c0
i0jNjijNj

.

We �rst prove that it is possible to �nd a tree t satisfying the conditions of
RA de�ned above and the three conditions of Lemma 1 for the problems C; C 0;
and C + C 0:
Let t be the tree satisfying the conditions of RA: Assume that there exists

Gk 2 G such that tGk is not a tree in Gk: Since t is a tree in N0; tGk has no
cycles. Let fX1; :::; Xlg the partition of Gk in connected components induced
by tGk . Namely, if i; j 2 Xl0 for some l0 = 1; :::; l, then there is a path in tGk

from i to j: Moreover, if i 2 Xl0 , j 2 Xl00 and l0 6= l00; then there is no path in
tGk from i to j:
Let i 2 Xl0 , j 2 Xl00 and l0 6= l00: Since t is a tree there is a path gij in t

from i to j: For each arc (i0; j0) 2 gij we have that t1 = (tn f(i0; j0)g) [ f(i; j)g
is a tree in (N0; C) : Since t is an mt in (N0; C) and (N0; C 0), cij � ci0j0 and
c0ij � c0i0j0 Because of the de�nition of (N0; C;G) and (N0; C

0; G0) we deduce that
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if (i0; j0) 2 gij ; i0 2 Gk
0
; j0 2 Gk00 ; and k0 6= k00, then cij = ci0j0 and c0ij = c0i0j0 :

Since i 2 Xl0 and j 2 Xl00 we can �nd (i0; j0) 2 gij such that i0 2 Gk
0
; j0 2 Gk00 ;

and k0 6= k00: Now t1 is an mt in (N0; C;G), (N0; C 0; G), and (N0; C + C 0; G):
The order �0 = (i01; : : : ; i

0
jN j) 2 �N obtained by changing in the order � the

arc (i0; j0) by (i; j) also satis�es the conditions of the de�nition of RA.
Now, t1Gk induces a partition ofGk in l�1 connected components. If l�1 = 1;

then t1Gk induces a tree in Gk: Otherwise we proceed with t1 as with t. Finally,
we �nd an mt tl�1 such that tl�1

Gk induces a tree in Gk:
Once we �nish with Gk we proceed with the other groups. At the end of the

procedure we �nd an mt tp such that tp
Gk induces a tree in each Gk 2 G: That

is, tp satis�es the conditions of Lemma 1 (i). Since tp is a tree in N0; we deduce
that tp also satis�es the conditions of Lemma 1 (ii). Using arguments similar
to those used in the proof of Lemma 1 (iii), we can prove that tp also satis�es
the conditions of Lemma 1 (iii).
Then, we can assume that the tree t also satis�es the conditions of Lemma

1.
Let Gk 2 G: Since t satis�es the conditions of Lemma 1 (ii),

�
G0; C

G
�
and�

G0; C
0G� are under the conditions of RA: Since ' satis�es RA, 'k �G0; CG�+

'k
�
G0; C

0G� = 'k
�
G0; C

G + C 0G
�
:Moreover, it is easy to see that CG+C 0G =

(C + C 0)
G
:

Since t satis�es the conditions of Lemma 1 (iii), we have that t� = tGk [
f(0; ij)g with ij 2 Gk is an mt in (Gk0 ; C'); (Gk0 ; C 0'); and (Gk0 ; (C + C 0)'):
Let �Gk = (i1; :::; ijGkj) be the order induced by � over the agents in Gk:We

have proved above that for all (j; j0) 2 tGk ; c'0i � c'jj0 and c
0'
0i � c0'jj0 : Therefore,

(Gk0 ; C
') and (Gk0 ; C

0') are under the conditions of RA: Since ' satis�es RA;
'i(G

k
0 ; C

') + 'i(G
k
0 ; C

0') = 'i(G
k
0 ; C

' + C 0') for all i 2 Gk: Moreover, it is
easy to see that C' + C 0' = (C + C 0) ':
Now, for all Gk 2 G and all i 2 Gk

Fi(N0; C;G) + Fi(N0; C
0; G) = 'i(G

k
0 ; C

') + 'i(G
k
0 ; C

0')

= 'i(G
k
0 ; (C + C

0)')

= Fi(N0; C + C
0; G):�

Claim 2. F satis�es SYMG:
Proof of Claim 2. Let Gk and Gk

0
be two symmetric groups. Then, for

all Gl 2 G0nfGk; Gk
0g;

cGkl = min
i2Gk;j2Gl

fcijg = min
i2Gk0 ;j2Gl

fcijg = cGk0l:

That is, k and k0 are symmetric agents in
�
G0; C

G
�
: Since ' satis�es SYM ,

'k
�
G0; C

G
�
= 'k0

�
G0; C

G
�
:

By Lemma 1 (iii), m(Gk0 ; C
') = m(Gk; C) + 'k(G0; C

G): Thus,X
i2Gk

Fi(N0; C;G)�m(Gk; C) =
X
i2Gk

'i(G
k
0 ; C

')�m(Gk; C)

= m(Gk0 ; C
')�m(Gk; C)

= 'k(G0; C
G):
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Repeating the same argument with Gk
0
instead of Gk; we obtain thatX

i2Gk0

Fi(N0; C;G)�m(Gk
0
; C) = 'k0(G0; C

G):

Thus, F satis�es SYMG: �

Claim 3. F satis�es SYMA:
Proof of Claim 3. Let i; j 2 Gk 2 G be symmetric agents in (N0; C;G).

By de�nition of C'; for all j0 2 Gk; c'ij0 = cij0 and c'jj0 = cjj0 : Moreover,
c'0i = c'0j = 'k(G0; C

G). Hence, i and j are symmetric agents in
�
Gk0 ; C

'
�
:

Since ' satis�es SYM , 'i
�
Gk0 ; C

'
�
= 'j

�
Gk0 ; C

'
�
: Thus,

Fi(N0; C;G) = 'i
�
Gk0 ; C

'
�
= 'j

�
Gk0 ; C

'
�
= Fj(N0; C;G):

Hence, F satis�es SYMA: �

Claim 4. F satis�es PMG:
Proof of Claim 4. Let Gk 2 G: Since ' satis�es PM , 'l(G0; C

G) �
'l((GnGk)0; CG) for all l 6= k:
Let C 0' denote the matrix C' associated with the problem (

�
NnGk

�
0
; C;GnGk):

Let Gl 2 GnGk. For all i; j 2 Gl; c'ij = c0'ij : For all i 2 Gl;

c'0i = 'l(G0; C
G) � 'l((GnGk)0; CG) = c0'0i

That is C' � C 0': Let i 2 Gl: Since ' satis�es SCM , 'i(G
l
0; C

') �
'i(G

l
0; C

0'): So, Fi(N0; C;G) � Fi(
�
NnGk

�
0
; C;GnGk); i:e:; F satis�es PMG:

�

Claim 5. F satis�es PMA:
Proof of Claim 5. Let Gk 2 G and i 2 Gk: By convenience, let us denote as

C 0 the cost matrix C restricted to the problem ((Nnfig)0; C; (GnGk)[(Gknfig)).
Notice that C 0 coincides with C on the agents of (Nnfig)0:
We consider several cases:

1. Assume that cGkl = c0Gkl for all l 2 f0; 1; :::;mg : Thus, 'l
�
G0; C

G
�
=

'l
�
(GnGk)0 [ (Gknfig); C 0G

�
for all l = 1; :::;m:Hence,

�
(Gknfig)0; C'

�
=�

(Gknfig)0; C 0'
�
:

� Since ' satis�es PM; 'j
�
Gk0 ; C

'
�
� 'j

�
(Gknfig)0; C'

�
for all j 2

Gknfig: Then,

Fj(N0; C;G) = 'j
�
Gk0 ; C

'
�
� 'j

�
(Gknfig)0; C'

�
= 'j

�
(Gknfig)0; C 0'

�
= Fj((Nnfig)0; C; (GnGk) [ (Gknfig))

for all j 2 Gknfig:
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� Let Gl 2 G such that l 6= k: Then, c'jj0 = c0'jj0 for all j; j
0 2 Gl [ f0g.

Hence, 'j(G
l
0; C

') = 'j(G
l
0; C

0') for all j 2 Gl: So,

Fj(N0; C;G) = 'j(G
l
0; C

') = 'j(G
l
0; C

0')

= Fj((Nnfig)0; C 0; (GnGk) [ (Gknfig))

for all j 2 Gl:

2. Assume that cGkk0 6= c0Gkk0 for some k
0 2 f0; 1; :::;mg : Then, cGkk0 < c0Gkk0 :

Moreover, cGll0 � c0Gll0 for all l; l
0 2 f0; 1; :::;mg :

Since ' satis�es SCM , 'k
�
G0; C

G
�
� 'k

�
G0; C

0G� : Now, c'jj0 = c0'jj0 for
all j; j0 2 Gknfig and c'0j � c0'0j for all j 2 Gknfig: Since ' satis�es SCM;

'j
�
(Gknfig)0; C'

�
� 'j

�
(Gknfig)0; C 0'

�
for all j 2 Gknfig:

Since ' satis�es PM; we have that 'j
�
Gk0 ; C

'
�
� 'j

�
(Gknfig)0; C'

�
:

Then,

Fj(N0; C;G) = 'j
�
Gk0 ; C

'
�
� 'j

�
(Gknfig)0; C'

�
� 'j

�
(Gknfig)0; C 0'

�
= Fj((Nnfig)0; C 0; (GnGk) [ (Gknfig))

for all j 2 Gknfig: �

6.4 Proof of Proposition 3

Let f be a rule in mcstp with groups satisfying RA; SYMG; SYMA; PMG;
PMA: We prove that f = F: We proceed with several claims.

Claim 1. If G =
�
figi2N

	
or G = ffNgg ; then f (N0; C;G) = ' (N0; C) :

Proof of Claim 1.
Let G =

�
figi2N

	
, i:e: each agent forms a group. Given an mcstp (N0; C)

we de�ne f 0 (N0; C) = f (N0; C;G) : Then,X
i2N

f 0i (N0; C) =
X
i2N

fi (N0; C;G) = m (N0; C) :

Hence, f 0 is a rule in mcstp:
Since f satis�es SYMG in mcstp with groups, f 0 satis�es SYM in mcstp:

Since f satis�es PMG in mcstp with groups, f 0 satis�es PM in mcstp: More-
over, f 0 also satis�es RA: By Lemma 0 (e) ; ' is the unique rule in mcstp
satisfying SYM; RA; and PM: Thus,

f(N0; C;G) = f 0 (N0; C) = '(N0; C):

Let G = fNg, i:e: all agents are in the same group. Given an mcstp (N0; C)
we de�ne f 0 (N0; C) = f (N0; C;G) : As above, f 0 is a rule in mcstp:
Since f satis�es SYMA in mcstp with groups, f 0 satis�es SYM in mcstp:

Since f satis�es PMA in mcstp with groups, f 0 satis�es PM in mcstp: More-
over, f 0 also satis�es RA: By Lemma 0 (e) ; ' is the unique rule in mcstp
satisfying SYM; RA; and PM: Thus,

f(N0; C;G) = f 0 (N0; C) = '(N0; C): �
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Claim 2. For each mcstp with groups (N0; C;G) and each Gk 2 G; let
(N 0

0; C
0; G0) the problem obtained from (N0; C;G) by considering that the rest

of the groups have a unique agent whose connection cost to the rest of the agents

is given by
�
G0; C

G
�
: Namely, N 0 = Gk [

 S
l 6=k
filg

!
; G0 =

n
Gk; filgl 6=k

o
; and

C 0 is de�ned as follows: if i; j 2 Gk [ f0g ; then c0ij = cij : If i 2 Gk and j = il
with l 6= k; then c0ij = cGkl: If i = 0 and j = il with l 6= k; then c0ij = cG0l: If i = il,
j = il0 and k =2 fl; l0g ; then c0ij = cGll0 :

Thus, for each i 2 Gk

fi (N0; C;G) = fi (N
0
0; C

0; G0) :

Proof of Claim 2.
Let (N0; C;G) be an mcstp with groups and Gk 2 G. We assume, wlog;

that k = m:
We take (N 00

0 ; C
00; G00) = (N0; C;G): For each l = 1; :::;m � 1 we de�ne

(N 0l
0 ; C

0l; G0l) as follows.

� N 0l = N
0l�1 [ filg :

�
�
G0l
�l
=
�
G0l�1

�l [ filg = Gl [ filg. For any l0 6= l;
�
G0l
�l0
=
�
G0l�1

�l0
:

� C 0l is de�ned as follows:

c0lij =

8<:
cij if i; j 2 N 0l�1

0

0 if i = il, j 2 Gl
cGll0 if i = il, j 2 G0l

0
, l 6= l0

For each l = 1; :::;m� 1 and for each l0 6= l;

min
i2(G0l)l;j2(G0l)l

0
fc0lijg = min

i2(G0l�1)l;j2(G0l�1)l
0
fc0l�1ij g:

Since f satis�es PMA; for all i 2 Gm and all l = 1; :::;m� 1;

fi(N
0l�1
0 ; C 0l�1; G0l�1) = fi(N

0l
0 ; C

0l; G0l):

Now,

fi(N0; C;G) = fi(N
00
0 ; C

00; G00) = fi(N
0m�1
0 ; C 0m�1; G0m�1):

Since f satis�es PMA; for all i 2 Gk;

fi(N
0m�1
0 ; C 0m�1; G0m�1) = fi(N

0
0; C

0; G0): �

Claim 3. For each mcstp with groups (N0; C;G) and each Gk 2 G;X
i2Gk

fi (N0; C;G) = fk

�
G0; C

G;
�
Gl
	m
l=1

�
+m

�
Gk; C

�
:

Proof of Claim 3.
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Consider the problem among groups
�
G00; C

0G;
�
G0l
	m
l=1

�
associated with

(N 0
0; C

0; G0) as in Claim 2. It is trivial to see that C 0G coincides with CG:
Applying Lemma 1 it is easy to deduce

m (N 0
0; C

0; G0) = m
�
G0; C

G;
�
Gl
	m
l=1

�
+m(Gk; C):

By Claim 2,
P
i2Gk

fi (N0; C;G) =
P
i2Gk

fi (N
0
0; C

0; G0) : Then,

X
l 6=k

fil (N
0
0; C

0; G0) +
X
i2Gk

fi (N0; C;G) =
X
l 6=k

fil (N
0
0; C

0; G0) +
X
i2Gk

fi (N
0
0; C

0; G0)

= m
�
G0; C

G;
�
Gl
	m
l=1

�
+m(Gk; C)

=
mX
l=1

fl

�
G0; C

G;
�
Gl
	m
l=1

�
+m(Gk; C):

Now, it is enough to prove that for all l 6= k;

fil (N
0
0; C

0; G0) = fl

�
G0; C

G;
�
Gl
	m
l=1

�
:

Let l 6= k. Applying Claim 2 to (N 0
0; C

0; G0) with G0l instead of Gk we obtain
that

fil (N
0
0; C

0; G0) = fil (N
00
0 ; C

00; G00)

where N 00 = fi1; :::; img ; c00ijij0 = cG
GjGj0 for all j; j

0 = 0; 1; :::;m; and G00 =n
fijgmj=1

o
: Notice that (N 00

0 ; C
00; G00) is equivalent to

�
G0; C

G;
�
Gl
	m
l=1

�
. By

Claim 1 we have

fil (N
00
0 ; C

00; G00) = 'il (N
00
0 ; C

00) = 'l
�
G0; C

G
�
= fl

�
G0; C

G;
�
Gl
	m
l=1

�
:�

Claim 4. It is enough to prove that f is unique on the subclass of mcstp
(N0; C;G) satisfying that there exists x 2 R+ and a network g such that cij = x
if (i; j) 2 g and cij = 0 otherwise.
Proof of Claim 4.
Norde et al (2004) proved that if C is a cost matrix, then there exists a

family fCpgap=1 of cost matrices satisfying three conditions:

1. C =
Pa

p=1 C
p:

2. For each p 2 f1; :::; ag there exist xp 2 R and a network gp such that
cpij = xp if (i; j) 2 gp and cpij = 0 otherwise.

3. There exists � : f(i; j)gi;j2N0;i<j !
n
1; 2; :::; n(n+1)2

o
such that if i; j; k; l 2

N with i < j; k < l, and �(i; j) < �(k; l); then cij � ckl and c
p
ij � cpkl for

all p 2 f1; :::; ag:
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By condition 3, C1 and
Pa

p=2 C
p satisfy the conditions of the de�nition of

RA: Then,

f (N0; C;G) = f
�
N0; C

1; G
�
+ f

 
N0;

aX
p=2

Cp; G

!
:

By condition 3, C2 and
Pa

p=3 C
p satisfy the conditions of the de�nition of

RA: Then,

f

 
N0;

aX
p=2

Cp; G

!
= f

�
N0; C

2; G
�
+ f

 
N0;

aX
p=3

Cp; G

!
:

Repeating the same argument we obtain that

f (N0; C;G) =
aX
p=1

f (N0; C
p; G) :

By condition 2, Claim 4 holds. �

Let (N0; C;G) be an mcstp with groups and Gk 2 G: By Claim 2 we can as-
sume that (N0; C;G) has the same structure as the problem (N 0

0; C
0; G0) de�ned

in Claim 2.
By Claim 4 we can assume that there exists x 2 R+ and a network g such

that cij = x if (i; j) 2 g and cij = 0 otherwise.

Claim 5. Let Gk 2 G: Assume that there exists l 2 f0; 1; :::;mg, l 6= k; and
i0 2 Gk such that ci0il = 0. Thus, for each i 2 Gk;

fi (N0; C;G) =
fk
�
G0; C

G;
�
Gl
	m
l=1

�
jGkj :

Proof of Claim 5.
We know that max

i;j2Gk
fcijg � min

i2Gk;j2N0nGk
fcijg : Since min

i2Gk;j2N0nGk
fcijg

� ci0il = 0; we have that cij = 0 for all i; j 2 Gk: Therefore, m(Gk; C) = 0: By
Claim 3, X

i2Gk

fi (N0; C;G) = fk

�
G0; C

G;
�
Gl
	m
l=1

�
:

Moreover, c0i 2 f0; xg for all i 2 Gk: Three cases are possible:

1. c0i = 0 for all i 2 Gk: Thus, all agents in Gk are symmetric. Since f
satis�es SYMA; for all i 2 Gk

fi(N0; C;G) =
fk
�
G0; C

G;
�
Gl
	m
l=1

�
jGkj = 0:

2. c0i = x for all i 2 Gk: Thus, all agents in Gk are symmetric. Since f
satis�es SYMA; for all i 2 Gk

fi(N0; C;G) =
fk
�
G0; C

G;
�
Gl
	m
l=1

�
jGkj :
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3. There exist i0 2 Gk such that c0i0 = 0 and ix 2 Gk such that c0ix = x:

Then, cG0k = min
i2Gk

fc0ig = 0: Now it is not di¢ cult to prove that for all S �

G0; vCG� (S [ fkg)� vCG� (S) = 0: Thus, 'k
�
G0; C

G
�
= Shk (G; vCG�) =

0:

By Claim 1, for all i 2 Gk; fi
�
Gk; C;

�
Gk
	�
= 'i

�
Gk; C

�
= 0:

By PMG; for all i 2 Gk; fi(N0; C;G) � fi
�
Gk; C;

�
Gk
	�
= 0:

By Claim 1, fk
�
G0; C

G;
�
Gl
	m
l=0

�
= 'k

�
G0; C

G
�
= 0:

Thus, for all i 2 Gk; fi(N0; C;G) = 0. �

Claim 6. Assume that for all l 2 f0; 1; :::;mg with l 6= k and all i 2 Gk,
ciil = x. Thus, for each i 2 Gk;

fi (N0; C;G) = fi
�
Gk0 ; C;

�
Gk
	�
:

Proof of Claim 6.
Let t0 be an mt in

�
Gk0 ; C

�
and let t00 be an mt in

��
NnGk

�
0
; C
�
: Following

Prim�s algorithm, we can construct an mt t in (N0; C;G) such that t = t0 [ t00:
Therefore,

m(N0; C) = m
�
Gk0 ; C

�
+m

��
NnGk

�
0
; C
�
:

Since f satis�es PMG; fi(N0; C;G) � fi
�
Gk0 ; C;

�
Gk
	�
for all i 2 Gk and

fi(N0; C;G) � fi

��
NnGk

�
0
; C; fGlgl 6=k

�
for all i 2 NnGk: Thus,

m(N0; C) =
X
i2Gk

fi(N0; C;G) +
X

i2NnGk

fi(N0; C;G)

�
X
i2Gk

fi
�
Gk0 ; C;

�
Gk
	�
+

X
i2NnGk

fi

��
NnGk

�
0
; C; fGlgl 6=k

�
= m

�
Gk0 ; C

�
+m

��
NnGk

�
0
; C
�
:

Thus, fi(N0; C;G) = fi
�
Gk0 ; C;

�
Gk
	�
for all i 2 Gk: �

Claim 7. For all i 2 Gk; fi (N0; C;G) = Fi (N0; C;G) :
Proof of Claim 7.
We distinguish two cases, given by claims 5 and 6.

1. There exists l 2 f0; 1; :::;mg, l 6= k; and i0 2 Gk such that ci0il = 0.
Let i 2 Gk: By Claim 5,

fi (N0; C;G) =
fk
�
G0; C

G;
�
Gl
	m
l=0

�
jGkj :

By Claim 1, fk
�
G0; C

G;
�
Gl
	m
l=0

�
= 'k(G0; C

G): So,

fi (N0; C;G) =
'k(G0; C

G)

jGkj :

21



Consider now the problem (Gk0 ; C
') where c'jj0 = cjj0 if 0 62 fj; j0g and

c'0j = 'k(G0; C
G) for all j 2 Gk:

We have seen in the proof of Claim 5 that cjj0 = 0 for all j; j0 2 Gk:
Therefore, m(Gk0 ; C

') = 'k(G0; C
G) and all agents in Gk are symmetric

in (Gk0 ; C
'). Since ' satis�es SYM;

'i(G
k
0 ; C

') =
'k(G0; C

G)

jGkj :

Then,
fi (N0; C;G) = 'i(G

k
0 ; C

') = Fi (N0; C;G) :

2. Assume that for all l 2 f0; 1; :::;mg with l 6= k and all i 2 Gk, ciil = x.

Let i 2 Gk: By Claim 6, fi (N0; C;G) = fi
�
Gk0 ; C;

�
Gk
	�
. By Claim 1,

fi
�
Gk0 ; C;

�
Gk
	�
= 'i

�
Gk0 ; C

�
. Thus,

fi (N0; C;G) = 'i
�
Gk0 ; C

�
:

Consider now the problem (Gk0 ; C
'):We know that c'jj0 = cjj0 if 0 62 fj; j0g

and c'0j = 'k(G0; C
G) for all j 2 Gk:

For all l 6= k; cGkl = x: Now it is not di¢ cult to prove that for all S � G0;
vCG� (S [ fkg)� vCG� (S) = x: Thus, 'k

�
G0; C

G
�
= Shk (G; vCG�) = x:

Hence, (Gk0 ; C
') =

�
Gk0 ; C

�
: Then,

fi (N0; C;G) = 'i
�
Gk0 ; C

�
= 'i(G

k
0 ; C

') = Fi (N0; C;G) :

6.5 Proof of Remark 2

We prove that if we remove some of the properties of Theorem 1, we can �nd
more rules satisfying the other properties. We do it by considering several
claims. In each claim we de�ne a rule satisfying four properties but failing the
other. We do not make the proofs rigorously in order to do not enlarge the
paper. We simply give an idea of the proof.

Claim 1. There exist rules satisfying RA; SYMG; SYMA; and PMG but
failing PMA:
Proof of Claim 1. We de�ne the rule f1 as follows. Let (N0; C;G) be an

mcstp with groups and i 2 Gk 2 G: Thus,

f1i (N0; C;G) =
'k
�
G0; C

G
�
+m(Gk; C)

jGkj :
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1. f1 satis�es RA: Using arguments similar to those used in the proof of
Claim 1 of Proposition 2 we can prove that

'k
�
G0; (C + C

0)G
�
= 'k

�
G0; C

G
�
+ 'k

�
G0; C

0G�
and

m(Gk; C + C 0) = m(Gk; C) +m(Gk; C 0):

Now it is trivial to conclude that

f1i (N0; C + C
0; G) = f1i (N0; C;G) + f

1
i (N0; C

0; G):

2. f1 satis�es SYMG: Let Gk and Gk
0
be two symmetric groups. Then,

k and k0 are symmetric agents in
�
G0; C

G
�
: Since ' satis�es SYM ,

'k
�
G0; C

G
�
= 'k0

�
G0; C

G
�
: Now,X

i2Gk

f1i (N0; C;G)�m(Gk; C) = 'k
�
G0; C

G
�

= 'k0
�
G0; C

G
�

=
X
i2Gk0

f1i (N0; C;G)�m(Gk
0
; C):

3. f1 satis�es SYMA: It is trivial.

4. f1 satis�es PMG: Let Gk 2 G: Since ' satis�es PM , 'l(G0; C
G) �

'l((GnGk)0; CG) for all l 6= k:

Thus, for all i 2 Gl; l 6= k;

f1i (N0; C;G) =
'l
�
G0; C

G
�
+m(Gl; C)

jGlj

� 'l((GnGk)0; CG) +m(Gl; C)
jGlj

= f1i (
�
NnGk

�
0
; C;GnGk):

5. f1 fails PMA: Assume that G = fNg : Thus, f1 divides m (N0; C) equally
among the agents. In this case it is trivial to see that f1 does not satisfy
PMA:

Claim 2. There exist rules satisfying RA; SYMG; SYMA; and PMA but
failing PMG:
Proof of Claim 2. We de�ne the rule f2 as follows. Let (N0; C;G) be an

mcstp with groups and i 2 Gk: Thus,

f2i (N0; C;G) = Shi
�
Gk; v0C

�
+
m
�
G0; C

G
�

m jGkj

where for all S � Gk; v0C (S) = m
�
S;C�jS

�
and C�jS is the irreducible matrix

associated with the problem (S;C) :

23



1. f2 satis�es RA: By Lemma 0 (d) ; for all S � N; v(C+C0)� (S) = vC� (S)+

vC0� (S) : Using similar arguments we can conclude that for all S � Gk;
v0C+C0 (S) = v0C (S)+ v

0
C0 (S) : Since Sh is additive on v, we conclude that

Shi
�
Gk; v0C+C0

�
= Shi

�
Gk; v0C

�
+ Shi

�
Gk; v0C0

�
:

We have proved in the proof of Claim 1 of Proposition 2 that CG and C 0G

are also under the conditions of RA: Thus,

m
�
G0; (C + C

0)
G
�
= m

�
G0; C

G
�
+m

�
G0; C

0G� :
Now, it is obvious that f2 satis�es RA:

2. f2 satis�es SYMG: Let Gk and Gk
0
be two symmetric groups.

X
i2Gk

f2i (N0; C;G)�m(Gk; C) =
X
i2Gk

Shi
�
Gk; v0C

�
+
m
�
G0; C

G
�

m
�m(Gk; C)

= v0C
�
Gk
�
+
m
�
G0; C

G
�

m
�m(Gk; C)

= m(Gk; C�jGk) +
m
�
G0; C

G
�

m
�m(Gk; C)

= m(Gk; C) +
m
�
G0; C

G
�

m
�m(Gk; C)

=
m
�
G0; C

G
�

m
:

Analogously,

X
i2Gk

f2i (N0; C;G)�m(Gk; C) =
m
�
G0; C

G
�

m
:

Hence, f2 satis�es SYMG:

3. f2 satis�es SYMA: Let i; j 2 Gk be a pair of symmetric agents. It is trivial
to see that i and j are also symmetric in

�
Gk; v0C

�
: Then, Shi

�
Gk; v0C

�
=

Shj
�
Gk; v0C

�
: Hence, f2i (N0; C;G) = f2j (N0; C;G):

4. f2 satis�es PMA: Let i 2 Gk be such that Gkn fig 6= ?:
We know that for all j 2 Gkn fig ;

Shj
�
Gk; v0C

�
=

1

jGkj!
X

�2�
Gk

�
v0C (Pre (j; �) [ fjg)� v0C (Pre (j; �))

�
:

By Lemma 0 (c) ; vC� is a concave game. Using similar arguments we can
prove that v0C is a concave game. Then, for all � 2 �Gk ;

v0C (Pre (j; �) [ fjg)�v0C (Pre (j; �)) � v0C ((Pre (j; �) n fig) [ fjg)�v0C ((Pre (j; �) n fig)) :
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Making some computations it is possible to prove that for all j 2 Gkn fig ;

Shj
�
Gk; v0C

�
� Shj

�
Gkn fig ; v0C

�
:

Let us denote
�
N�i; C;G�i

�
=
�
(Nn fig)0 ; C;

�
GnGk

�
[
�
Gkn fig

��
: Then,

m
�
G�i0 ; CG

�i
�
� m

�
G0; C

G
�
: Now, for all j 2 Gkn fig ;

f2j (N0; C;G) = Shj
�
Gk; v0C

�
+
m
�
G0; C

G
�

m jGkj

� Shj
�
Gkn fig ; v0C

�
+
m
�
G�i0 ; CG

�i
�

m (jGkj � 1)
= f2j

�
N�i; C;G�i

�
:

Assume that for eachGl with l 6= k; min
j2Gk;j02Gl

fcjj0g = min
j2Gknfig;j02Gl

fcjj0g :

Let j 2 Gl 2 GnGk: Then

f2j (N0; C;G) = Shj
�
Gl; v0C

�
+
m
�
G�i0 ; CG

�i
�

m jGlj

= Shj
�
Gl; v0C

�
+
m
�
G0; C

G
�

m jGlj :

5. f2 fails PMG: Assume that G =
�
figi2N

	
: Thus, f2 divides m (N0; C)

equally among the agents. Now it is trivial to see that f2 does not satisfy
PMG:

Claim 3. There exist rules satisfying RA; SYMG; PMG; and PMA but
failing SYMA:
Proof of Claim 3. We de�ne the rule f3 as follows. Given T � N , let

�N denote the order induced in N by the index of the agents. Namely, given
i; j 2 N; �N (i) < �N (j) if and only if i < j. For each mcstp (N0; C) and i 2 N
we de�ne

 i (N0; C) = vC�
�
Pre

�
i; �N

�
[ fig

�
� vC�

�
Pre

�
i; �N

��
:

Let (N0; C;G) be an mcstp with groups and i 2 Gk: Thus,

f3i (N0; C;G) =  i
�
Gk0 ; C

'
�
:

1. f3 satis�es RA: Let C and C 0 as in the de�nition of RA: Proceeding
as in the proof of Claim 1 in Proposition 2, we obtain that (Gk0 ; C

')
and (Gk0 ; C

0') are under the conditions of RA: Bergantiños and Vidal-
Puga (2007d) proved that  satis�es RA: Therefore,  i(G

k
0 ; (C +C

0)') =
 i(G

k
0 ; C

') +  i(G
k
0 ; C

0') for all i 2 Gk: Thus, given i 2 Gk 2 G,

f3i (N0; C + C
0; G) =  i(G

k
0 ; (C + C

0)')

=  i(G
k
0 ; C

') +  i(G
k
0 ; C

0')

= f3i (N0; C;G) + f
3
i (N0; C

0; G):
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2. f3 satis�es SYMG. Let Gk and Gk
0
be two symmetric groups. Then,

k and k0 are symmetric agents in
�
G0; C

G
�
: Since ' satis�es SYM ,

'k
�
G0; C

G
�
= 'k0

�
G0; C

G
�
:

By Lemma 1 (iii), m(Gk0 ; C
') = 'k(G0; C

G) +m(Gk; C):

Therefore,X
i2Gk

f3i (N0; C;G)�m(Gk; C) =
X
i2Gk

 i(G
k
0 ; C

')�m(Gk; C)

= m(Gk0 ; C
')�m(Gk; C)

= 'k(G0; C
G)

Proceeding in the same way for Gk
0
we obtain thatX

i2Gk0

f3i (N0; C;G)�m(Gk
0
; C) = 'k0(G0; C

G):

Therefore, f3 satis�es SYMG:

3. f3 satis�es PMG. It is not di¢ cult to prove that  satis�es SCM: Using
arguments similar to those used in the proof of Claim 4 of Proposition 2,
we can prove that f3 satis�es PMG:

4. f3 satis�es PMA. It is not di¢ cult to prove that  satis�es PM: Using
arguments similar to those used in the proof of Claim 5 of Proposition 2,
we can prove that f3 satis�es PMA:

5. f3 fails SYMA: Consider the mcstp with groups where N = f1; 2; 3g;
G = fG1; G2g, G1 = f1; 2g; G2 = f3g and

C =

0BB@
0 4 4 4
4 0 1 4
4 1 0 4
4 4 4 0

1CCA :

Agents 1 and 2 are symmetric. '1(G0; C
G) = '2(G0; C

G) = 4: Therefore,
c'01 = c'02 = 4 and c

'
23 = 1: Now, f

3
1 (N0; C;G) = 4 and f

3
2 (N0; C;G) = 1:

Claim 4. There exist rules satisfying RA; SYMA; PMG; and PMA but
failing SYMG:
Proof of Claim 4. We de�ne the rule f4 as follows. Let (N0; C;G) be an

mcstp with groups and i 2 Gk 2 G:
Let �0 be an order over the set of all �nite subsets of N ; �0 induces an order

over the elements of G: We also denote this order as �0: We de�ne the rule �
over

�
G0; C

G
�
. For each Gl 2 G;

�l
�
G0; C

G
�
= v(CG)� (Pre (l; �

0) [ flg)� v(CG)� (Pre (l; �
0)) :

Now,
f4i (N0; C;G) = 'i

�
Gk0 ; C

�
�

where

c�jj0 =

�
cjj0 if 0 =2 fj; j0g
�k
�
G0; C

G
�

if 0 2 fj; j0g :
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1. f4 satis�es RA:

We have proved in Claim 1 of Proposition 2 that
�
G0; C

G
�
and

�
G0; C

0G�
are under the conditions of RA: Moreover, (C + C 0)G = CG + C 0G:

By Lemma 0 (d) ; v(C+C0)� (S) = vC�(S) + vC0�(S) for all S � N: So, for
each Gl 2 G;

�l

�
G0; (C + C

0)
G
�
= �l

�
G0; C

G
�
+ �l

�
G0; C

G
�
:

By Lemma 0 (b), for all S � N; vC� (S [ fig) � vC� (S) = min
j2S0

fc�ijg:
Therefore,

�k(G0; C
G) � min

k02G0nfkg
f(cGkk0)�g:

Since the irreducible matrix is the minimal network associated with an
mt;

min
k02G0nfkg

f(cGkk0)�g � min
k02G0nfkg

fcGkk0g:

Because of the de�nition of (N0; C;G);

min
k02G0nfkg

fcGkk0g � max
jj02Gk

fcjj0g:

A similar result can be obtained for C 0: Now, it is easy to conclude that
t� = tGk [ f(0; ij)g with ij 2 Gk is an mt in (Gk0 ; C�); (Gk0 ; C 0�): Hence,
(Gk0 ; C

�) and (Gk0 ; C
0�) are under the conditions of RA: Moreover, C� +

C 0� = (C + C 0)
�
: Since ' satis�es RA; for all i 2 Gk;

f4i (N0; C + C
0; G) = 'i(G

k
0 ; (C + C

0)�)

= 'i(G
k
0 ; C

� + C 0�)

= 'i
�
Gk0 ; C

�
�
+ 'i

�
Gk0 ; C

0��
= f4i (N0; C;G) + f

4
i (N0; C

0; G) :

2. f4 satis�es SYMA: Let i; j 2 Gk 2 G be symmetric agents in (N0; C;G).
By de�nition of C�; i and j are symmetric agents in

�
Gk0 ; C

�
�
: Since '

satis�es SYM , 'i
�
Gk0 ; C

�
�
= 'j

�
Gk0 ; C

�
�
: Thus,

f4i (N0; C;G) = 'i
�
Gk0 ; C

�
�
= 'j

�
Gk0 ; C

�
�
= f4j (N0; C;G):

3. f4 satis�es PMG: Let Gk 2 G: It is easy to prove that � satis�es PM . Us-
ing arguments similar to those used in the proof of Claim 4 of Proposition
2 we can prove that f4 satis�es PMG:

4. f4 satis�es PMA:

We �rst prove that � satis�es SCM: By Lemma 0 (b), for all S � N;
vC� (S [ fig)� vC� (S) = min

j2S0
fc�ijg: Bergantiños and Vidal-Puga (2007a)

prove that if C � C 0; then C� � C 0�: Now, it is easy to conclude that �
satis�es SCM:

Using arguments similar to those used in the proof of Claim 5 of Propo-
sition 2 we can prove that f4 satis�es PMA:
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5. f4 fails SYMG: Consider the mcstp with groups where N = f1; 2g; G =
fG1; G2g, G1 = f1g; G2 = f2g and

C =

0@ 0 10 10
10 0 2
10 2 0

1A :

Assume that G1 comes before than G2 in �0: Groups G1 and G2 are
symmetric and m(G1; C) = m(G2; C) = 0: Nevertheless

f41 (N0; C;G)�m(G1; C) = �1(G0; C
G) = 10 and

f42 (N0; C;G)�m(G2; C) = �2(G0; C
G) = 2:

Claim 5. There exist rules satisfying SYMG; SYMA; PMG; and PMA
but failing RA:
Proof of Claim 5. We de�ne the rule f5 as follows. Let (N0; C;G) be an

mcstp with groups and i 2 Gk:
We �rst de�ne the rule � over

�
G0; C

G
�
. Let �eG be the subset of permu-

tations in which the groups with the expensive cost to the source connect �rst,
i:e:

�eG =
n
� 2 �G j cG0�(l) � cG0�(l0) when � (l) > � (l0)

o
:

For each Gl 2 G; let � be the rule de�ned as

�l
�
G0; C

G
�
=

1

j�eGj
X
�2�eG

�
v(CG)� (Pre (l; �) [ flg)� v(CG)� (Pre (l; �))

�
:

Now,
f5i (N0; C;G) = 'i

�
Gk0 ; C

�
�

where

c�jj0 =

�
cjj0 if 0 =2 fj; j0g
�k
�
G0; C

G
�

if 0 2 fj; j0g :

1. f5 satis�es SYMG: It is trivial to see that � satis�es SYM: Using argu-
ments similar to those used in the proof of Claim 2 of Proposition 2 we
can prove that f5 satis�es SYMG:

2. f5 satis�es SYMA: Using arguments similar to those used in the proof of
Claim 3 of Proposition 2 we can prove that f5 satis�es SYMA:

3. f5 satis�es PMG: Using arguments similar to those used in Bergantiños
and Vidal-Puga (2007a), it is possible to prove that � satis�es PM: Using
arguments similar to those used in the proof of Claim 4 of Proposition 2
we can prove that f5 satis�es PMG:

4. f5 satis�es PMA: Let Gk 2 G and i 2 Gk: Let us denote as C 0 the cost
matrix C restricted to the problem ((Nnfig)0; C; (GnGk)[ (Gknfig)) and
G0 = (GnGk) [ (Gknfig). We consider two cases:
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(a) Assume that cGkl = c0Gkl for all l 2 f0; 1; :::;mg : Thus, �l
�
G0; C

G
�
=

�l
�
(GnGk)0 [ (Gknfig); C 0G

�
for all l = 1; :::;m:Hence,

�
(Gknfig)0; C�

�
=�

(Gknfig)0; C 0�
�
:Moreover, � satis�es PM: Using arguments similar

to those used in the proof of Claim 5 of Proposition 2 we can prove
that for all j 2 Gknfig;

f5j (N0; C;G) = f5j ((Nnfig)0; C; (GnGk) [ (Gknfig))

and for all Gl 2 G, l 6= k and all j 2 Gl

f5j (N0; C;G) = f5j ((Nnfig)0; C; (GnGk) [ (Gknfig)):

(b) Assume that cGkk0 6= c0Gkk0 for some k
0 2 f0; 1; :::;mg : Then, cGkk0 < c0Gkk0 :

Moreover, cG0l = c0G0l for all l 6= k:

This means that �eG0 � �eG: Moreover, if � 2 �eG and � =2 �eG0

there exists �0 2 �eG0 such that �0GnGk = �GnGk and �0 (k) < � (k) :

Intuitively, group k comes �rst in the orders of �eG0 than in the orders
of �eG:
By Lemma 0 (c) ; for each cost matrix C; vC� is a concave game.
Making some computations it is possible to prove that �k

�
G0; C

G
�
�

�k
�
G0; C

0G� :
Now, using arguments similar to those used in the proof of Claim 5
of Proposition 2 we can prove that for all j 2 Gkn fig ;

f5j (N0; C;G) � f5j ((Nnfig)0; C; (GnGk) [ (Gknfig)):

5. f5 fails RA: Consider the mcstp with groups where N = f1; 2g; G =
fG1; G2g, G1 = f1g; G2 = f2g

C =

0@ 0 10 10
10 0 2
10 2 0

1A and C 0 =

0@ 0 10 12
10 0 2
12 2 0

1A :

If we take t = f(0; 1) ; (1; 2)g we realize that C and C 0 are under the
conditions of RA:

Now �eG (C) = f12; 21g ; �eG (C 0) = f21g ; �eG (C + C 0) = f21g : Thus,
f5 (N0; C;G) = (6; 6) ; f

5 (N0; C
0; G) = (2; 10) ; and f5 (N0; C + C 0; G) =

(4; 20) :

6.6 Proof of Theorem 2

Let (N0; C;G) be an mcstp with groups and i 2 Gk 2 G:
Let (N 0

0; C
0; G0) the problem obtained from (N0; C;G) as in Claim 2 of the

proof of Proposition 3: Namely, N 0 = Gk [
 S
l 6=k
filg

!
; G0 =

n
Gk; filgl 6=k

o
;

and C 0 is de�ned as follows: if i; j 2 Gk [ f0g ; then c0ij = cij : If i 2 Gk and
j = il with l 6= k; then c0ij = cGkl: If i = 0 and j = il with l 6= k; then c0ij = cG0l:

If i = il, j = il0 and k =2 fl; l0g ; then c0ij = cGll0 :

29



We know that
Fi (N0; C;G) = Fi (N

0
0; C

0; G0) :

We proceed with several claims.

Claim 1. Owi (N; vC� ; G) = Owi (N
0; vC0� ; G0) :

Proof of Claim 1.
We know that

Owi (N; vC� ; G) =
1

j�Gj
X
�2�G

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] and

Owi (N
0; vC0� ; G0) =

1

j�G0 j
X

�02�G0
[vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �0))] .

For each �0 2 �G0
let O (�0) denote the set of orders of �G inducing the

same order than �0 among the agents in Gk and among the groups. Namely,
O (�0) is the set of orders � 2 �G satisfying two conditions:

1. �Gk = �0Gk :

2. Given j 2 Gl; j0 2 Gl0 ; k =2 fl; l0g we have that � (j) < � (j0) if and only
if �0 (il) < �0 (il0) :

Thus, for all �0 2 �G0
; jO (�0)j =

Y
l 6=k

���Gl��!� :
We now prove that given �0 2 �G0

and � 2 O (�0) ; we have that

vC0� (Pre (i; �0) [ fig)�vC0� (Pre (i; �0)) = vC� (Pre (i; �) [ fig)�vC� (Pre (i; �)) :

By Lemma 0 (b)

vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �0)) = min
j2Pre(i;�0)0

�
c0�ij
	
and

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
j2Pre(i;�)0

�
c�ij
	
:

We consider two cases:

� Pre (i; �0) \Gk 6= ?:
We know that for all l = 1; :::;m; max

j;j02Gl
fcjj0g � min

j2Gl;j0 =2Gl
fcjj0g. Be-

cause of the de�nition of the irreducible matrix as the minimal network
associated with the minimal tree given by Lemma 1, it is easy to deduce
that for all l = 1; :::;m; max

j;j02Gl

�
c�jj0
	
� min

j2Gl;j0 =2Gl

�
c�jj0
	
: Now,

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
j2(Pre(i;�)\Gk)0

�
c�ij
	
:

Analogously,

vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �0)) = min
j2(Pre(i;�0)\Gk)0

�
c0�ij
	
:

Because of the de�nition of C 0, c�ij = c0�ij for all j 2 Gk: Since � 2 O (�0) ;
P re (i; �) \Gk = Pre (i; �0) \Gk: Then, the result holds.
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� Pre (i; �0) \Gk = ?:
Let t be the mt given by Lemma 1. We can compute C� as the minimal
network associated with t:

By Lemma 1, we know that tGk is an mt in
�
Gk; C

�
and tn ([ml=1tGl) is

an mt in
�
G0; C

G
�
: Now it is easy to deduce that t0 = tGk [ tn ([ml=1tGl)

induces an mt in (N 0
0; C

0; G0) : Then, we can compute C 0� as the minimal
network associated with t0:

Since Pre (i; �0) \ Gk = ?; we can assume that min
j2Pre(i;�0)0

�
c0�ij
	
= c0�iil

with l 6= k (il = i0 = 0 is also possible). Let giil be the unique path in t
0

joining i and il. Then, c0�iil = c0iaib where (ia; ib) 2 giil . By de�nition of
C 0; c0iaib = cjajb where ja 2 Ga and jb 2 Gb:
Since min

j2Pre(i;�0)0

�
c0�ij
	
= c0�iil ; G

l � Pre (i; �)0 : Now, there exists jl 2 Gl

such that
min

j2Pre(i;�)0

�
c�ij
	
= c�ijl :

Because of the de�nition of C� as the minimal network associated with t
we have that (ja; jb) belongs to the unique path in t joining i and jl: Thus,

min
j2Pre(i;�)0

�
c�ij
	
= c�ijl � cjajb = min

j2Pre(i;�0)0

�
c0�ij
	
:

Using arguments similar to those used above we can prove that min
j2Pre(i;�)0

�
c�ij
	
�

min
j2Pre(i;�0)0

�
c0�ij
	
:

It is easy to see that,
���G�� = m!

 
mY
l=1

���Gl��!�! ; ����G0
��� = m!

���Gk��!� ; and for
each �0 2 �G0

; jO (�0)j =
Y
l 6=k

���Gl��!� : Thus,
Owi (N; vC� ; G) =

1

j�Gj
X

�02�G0

X
�2O(�0)

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

=
1

j�Gj
X

�02�G0

X
�2O(�0)

[vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �0))]

=
1

j�Gj
X

�02�G0

0@Y
l 6=k

��Gl��!
1A [vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �0))]

=
1

j�G0 j
X

�02�G0
[vC0� (Pre (i; �0) [ fig)� vC0� (Pre (i; �0))]

= Owi (N
0; vC0� ; G0) : �

Thus, we can assume that (N0; C;G) satis�es that
��Gl�� = 1 for all l 6= k:
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Claim 2. Let � 2 �G such that Pre (i; �) \Gk 6= ?: Thus,

vC� (Pre (i; �) [ fig)�vC� (Pre (i; �)) = v(C')� (Pre (i; �Gk) [ fig)�v(C')� (Pre (i; �Gk)) :

Proof of Claim 2.
We have seen in the proof of Claim 1 that

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
j2(Pre(i;�)\Gk)0

�
c�ij
	
:

By Lemma 0 (b) ;

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = min
j2Pre(i;�Gk)0

�
c'�ij
	
:

Let t be anmt as in Lemma 1. Thus, tk = tGk[f(0; i)g is anmt in
�
Gk0 ; C

'
�
:

Because of the proof of Lemma 1, for all (j; j0) 2 tk; c'jj0 � c'0i: Since (C
')
� is

the minimal network associated with tk; we deduce that

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = min
j2(Pre(i;�Gk)\Gk)

0

�
c'�ij
	
:

Since Pre (i; �Gk) \Gk = Pre (i; �) \Gk, it is enough to prove that for all
j 2 Pre (i; �) \Gk; c'�ij = c�ij : Let j 2 Gk:
We know that (C')� is the minimal network associated with tk and C� is

the minimal network associated with t: Let g'ij denote the unique path in t
k

joining i and j: Let gij denote the unique path in t joining i and j: By Lemma
1, tGk is a tree in

�
Gk; C'

�
: Since tkGk = tGk ; we deduce that g'ij = gij � tGk :

Then,
c'�ij = max

(a;b)2g'ij
fc'abg = max

(a;b)2gij
fc'abg :

By de�nition of C'; c'ij0 = cij0 for all j0 2 Gk: Now,

c'�ij = max
(a;b)2gij

fcabg = c�ij : �

Claim 3. Let � 2 �G such that Pre (i; �) \ Gk = ?: Let �0 denote the
order induced by � among groups in G: Namely, �0 (l) < �0 (l0) if and only if
there exist j 2 Gl and j0 2 Gl0 such that � (j) � � (j0) : Since � 2 �G; �0 is well
de�ned.
Thus,

1. vC� (Pre (i; �) [ fig)�vC� (Pre (i; �)) = v(CG)� (Pre (k; �
0) [ fkg)�v(CG)� (Pre (k; �

0)).

2. v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = 'k
�
G0; C

G
�
:

Proof of Claim 3.

1. By Lemma 0 (b) ;

vC� (Pre (i; �) [ fig)� vC� (Pre (i; �)) = min
l2Pre(i;�)0

fc�ilg and

v(CG)� (Pre (k; �
0) [ fkg)� v(CG)� (Pre (k; �

0)) = min
l2Pre(k;�0)0

�
cG�kl
	
:
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It is obvious that Pre (i; �) = Pre (k; �0) : Let t be an mt as in Lemma 1.
Thus, tG = tn ([ml=1tGl) is an mt in

�
G0; C

G
�
: Using arguments similar to

those used in the proof of Claim 2, we can prove that for all l 2 Pre (i; �) ;
c�il = cG�kl :

2. By Lemma 0 (b) ;

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = min
j2Pre(i;�Gk)0

�
c'�ij
	
:

Since Pre (i; �) \Gk = ?, Pre (i; �Gk)0 = f0g : Thus,

v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk)) = c'�0i :

By Lemma 1 (iii) ; tk = tGk [ f(0; i)g is an mt in
�
Gk0 ; C

'
�
: Since C'� is

the minimal network associated with tk;

c'�0i = c'0i = 'k
�
G0; C

G
�
: �

Claim 4. Fi (N0; C;G) = Owi (N; vC� ; G) :
Proof of Claim 4.
We know that

Fi (N0; C;G) = 'i
�
Gk0 ; C

'
�
= Shi

�
Gk; v(C')�

�
=

1

j�Gk j
X

�2�
Gk

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
:

Let Xk
1 ; X

k
2 the partition of �Gk where

Xk
1 =

�
� 2 �Gk : Pre (i; �) \Gk 6= ?

	
and

Xk
2 =

�
� 2 �Gk : Pre (i; �) \Gk = ?

	
:

Since j�Gk j =
��Gk��!;

Fi (N0; C;G) =
1

jGkj!
X
�2Xk

1

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
+

1

jGkj!
X
�2Xk

2

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
:

By Claim 3.2,

1

jGkj!
X
�2Xk

2

�
v(C')� (Pre (i; �) [ fig)� v(C')� (Pre (i; �))

�
=

1

jGkj!
��Xk

2

��'k �G0; CG�
=

1

jGkj'k
�
G0; C

G
�
:

We know that

Owi (N; vC� ; G) =
1

j�Gj
X
�2�G

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] :
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Let X1; X2 the partition of �G where

X1 =
�
� 2 �G : Pre (i; �) \Gk 6= ?

	
and

X2 =
�
� 2 �G : Pre (i; �) \Gk = ?

	
:

Since
���G�� = m!

��Gk��!,
Owi (N; vC� ; G) =

1

m! jGkj!
X
�2X1

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

+
1

m! jGkj!
X
�2X2

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))] :

By Claim 2,

1

m! jGkj!
X
�2X1

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

=
1

m! jGkj!
X
�2X1

�
v(C')� (Pre (i; �Gk) [ fig)� v(C')� (Pre (i; �Gk))

�
:

For each �k 2 �Gk ;
���� 2 X1 : �Gk = �k

	�� = m!: Thus, the last expression
coincides with

=
1

jGkj!
X

�k2Xk
1

�
v(C')�

�
Pre

�
i; �k

�
[ fig

�
� v(C')�

�
Pre

�
i; �k

���
:

Let �G denote the set of all orders of the m groups fG1; :::; Gmg : Given
� 2 �N ; let �0 denote the order induced by � among the groups (as in Claim
3). For each �G 2 �G;

jf� 2 X2 : �
0 = �Ggj =

���Gk��� 1�!
By Claim 3.1,

1

m! jGkj!
X
�2X2

[vC� (Pre (i; �) [ fig)� vC� (Pre (i; �))]

=
1

m! jGkj!
X
�2X2

�
v(CG)� (Pre (k; �

0) [ fkg)� v(CG)� (Pre (k; �
0))
�

=
1

m! jGkj
X
�02�G

�
v(CG)� (Pre (k; �

0) [ fkg)� v(CG)� (Pre (k; �
0))
�

=
1

jGkj'k
�
G0; C

G
�
:

Then, Fi (N0; C;G) = Owi (N; vC� ; G) : �
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