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ABSTRACT

The Besov characteristic of a distribution f is the function sf defined for
0 ≤ t < ∞ by

sf (t) = sup{ s ∈ R; f ∈ Bs
1/t,1(R

n) }.
We give in this paper a criterion for a function Γ defined on [0, +∞[ to be
the Besov characteristic of a distribution. Generalizations of this criterion to
particular weighted Besov spaces and to anisotropic Besov spaces are also given.

Key words: Besov spaces, wavelet analysis, weighted Besov spaces, anisotropic Besov
spaces, anisotropic wavelet analysis.
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Introduction

The Besov characteristic of a distribution f is the frontier of its Besov domain, the
set of indices (s, t) such that f belongs to Bs

1/t,1(R
n). To determine the Besov char-

acteristic of a distribution gives us information about its global regularity.
Our purpose in this paper is to give a sufficient and necessary condition under

which a curve s = s(t) is the Besov characteristic of a distribution. The proof mainly
relies on characterization of Besov spaces in wavelet expansions (using a Meyer basis).
We also generalize the criterion to the cases of weighted and anisotropic Besov spaces.

Similar results have been given by Triebel in [6, chapter 1, section 18, and chap-
ter 7, section 2] in the case of compactly supported distributions with the following
result.
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Theorem. The Besov characteristic Γ of a compactly supported distribution
f ∈ S ′(Rn) with non-empty singular support defined by

Γf (t) = sup{ s ∈ R; f ∈ Bs
1/t,∞(Rn) }

is a continuous, non-decreasing and concave function of slope bounded by n. Con-
versely, if Γ is a continuous, non-decreasing and concave function on R+ of slope
bounded by n, there exists f ∈ S ′(Rn) with a singular support of measure equal to 0,
such that Γf = Γ.

The definition of the singular support is recalled in section 1.
Jaffard in [2,3] in the context of multifractal formalism has also given the following

criteria in the local case.

Theorem. The (local) Besov characteristic of a distribution f ∈ S ′(Rn) defined by

ωf,loc(t) = sup{ s ∈ R; f ∈ Bs
1/t,∞,loc(R

n) }
is a continuous, non-decreasing and concave function of slope bounded by n. Con-
versely, if Γ is a continuous, non-decreasing and concave function on R+ of slope
bounded by n, there exists f ∈ S ′(Rn) such that Γf = ωf,loc.

Without assumptions on the localization of the distribution, we show that the
profile of the Besov characteristic can be quite different and more cases appear. In
addition, for any admissible curve, we construct explicitly a distribution which has
for Besov characteristic this curve. Moreover, this distribution can be chosen with an
empty singular support, i.e., it locally belongs to C∞(Rn). It means that the Besov
characteristic of the distribution can only depend of its global behavior.

1. Definition, first properties and main result

We define a smooth resolution of unity ϕj , j ≥ 0, in the following way. The function ϕ0

is in C∞(Rn), is supported on the ball { ξ ∈ Rn, |ξ| ≤ 2 }, and is identically equal to 1
on the ball {ξ ∈ Rn, |ξ| ≤ 1}. For j ≥ 1, we define ϕj , for ξ ∈ Rn, by

ϕj(ξ) = ϕ0(2−jξ) − ϕ0(2−j+1ξ).

We define the operator Δj , j ∈ N0, on S ′(Rn) by

(̂Δjf) = ϕj f̂ .

For 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R, the Besov space Bs
p,q(R

n) is defined by

Bs
p,q(R

n) =
{

f ∈ S ′(Rn); ‖f‖Bs
p,q

=
( ∞∑

j=0

2jsq‖Δj(f)‖q
Lp

)1/q

< ∞
}

(usual modification if q = ∞).
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Definition 1.1. Let f ∈ S ′(Rn). The Besov characteristic of f is the function defined
on [0,∞[, at values in R, by

sf (t) = sup{ s ∈ R; f ∈ Bs
1/t,1(R

n) }.
For example, the Besov characteristic of a function f ∈ S(Rn) is sf ≡ +∞.

Remark. We fix in the definition of the Besov characteristic q = 1. By an immediate
rescaling, the results we will give can be obtained for any choice of q, 0 < q ≤ ∞.

Proposition 1.2. Let f be a distribution and sf its Besov characteristic. Then sf

satisfies one of the following cases:

(i) sf = +∞ on [0, +∞[.

(ii) sf = −∞ on ]0, +∞[.

(iii) sf is continuous, concave and s′f ≤ n on [0,∞[.

(iv) There exists t0 > 0 such that

sf (t) =

⎧⎪⎨⎪⎩
+∞ if t ∈ [0, t0[,
s0 if t = t0, s0 ∈ R,

−∞ if t ∈]t0, +∞[;

(v) There exists t0 > 0 such that

sf (t) =

⎧⎪⎨⎪⎩
g(t) if t ∈ [0, t0[,
s0, if t = t0, s0 ∈ R, s0 ≤ limt→t−0

g(t),

−∞ if t ∈]t0, +∞[,

where g is continuous, concave and g′ ≤ n on [0, t0[.

Proof. Let us recall the following embeddings (which can be found, for example, in
[1, chapter 2, section 3, and chapter 4, section 3.1]). For all 0 < p ≤ p′ ≤ ∞ and
s ∈ R, one has

Bs
p,1(R

n) ↪→ B
s−n

p + n
p′

p′,1 (Rn) (1)

Let s0 	= s1 ∈ R and 0 ≤ p1 < p0 ≤ ∞. Let f ∈ S ′(Rn) be such that f ∈
Bs0

p0,1(R
n) ∩ Bs1

p1,1(R
n). Then, one gets

f ∈ Bs
p,q(R

n) for all
1
p
∈

[
1
p0

,
1
p1

]
and s = (1 − θp)s0 + θps1 (2)

with θp = 1/p−1/p0
1/p1−1/p0

. This result is a direct consequence of the definition of the Besov
spaces and of the Hölder inequality.

The proof of Proposition 1.2 relies on the following observations.
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Revista Matemática Complutense

2007: vol. 20, num. 2, pags. 407–421
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(i) If there exists t0 ≥ 0 such that sf (t0) = −∞ then for all t ≥ t0, one has also
sf (t) = −∞. It is a direct consequence of the embedding (1).

(ii) If there exists t0 ≥ 0 such that sf (t0) = +∞ then for all t ≤ t0, one has
sf (t) = +∞. It also is a direct consequence of (1).

(iii) If sf (0) = +∞, then there exists at most one point t0 such that −∞ < sf (t0) <
+∞. Suppose indeed that there exist t0, t1 ≥ 0 with t0 < t1 such that sf (t0) =
s0 and sf (t1) = s1 with −∞ < s0, s1 < +∞. Let s 	= s1 −1/2 ∈ R be such that

s0 + 1 ≤ − (s − (s1 − 1/2))
t1

t0 + s.

Then f ∈ Bs
∞,1(R

n) since sf (0) = ∞ and f ∈ B
s1−1/2
1/t1,1 (Rn) since sf (t1) = s1.

By the Hölder inequality (2), f belongs to Bs0+1
1/t0,1(R

n), which is in contradiction
with sf (t0) = s0.

(iv) Suppose now that −∞ < sf (t) < ∞ for all t ∈ [0, t0[ with 0 < t0 ≤ ∞.
By the Hölder inequality (2), sf is continuous and concave on [0, t0[. Hence,
sf is absolutely continuous and s′f is well defined almost everywhere (see [4,
chapter 7], for example). Moreover, by the embedding (1), we get that s′f ≤ n
and that sf (t0) ≤ limt→t−0

sf (t).

Finally, sf satisfies one of the listed cases of Proposition 1.2.

We are now interested in the converse assertion, which is the object of Theorem 1.4.
But let us first recall the definition of the singular support of a distribution.

Definition 1.3. Let f ∈ S ′(Rn). The singular support of f is the set

sing supp f = {x ∈ Rn; f |B(x, r) /∈ C∞(Rn) for any r > 0 }.

Theorem 1.4. Let Γ = Γ(t) be a function defined on [0, +∞[ at values in R such
that Γ satisfies one of the five cases of Proposition 1.2 (where sf is now replaced
with Γ).

There exists a distribution f ∈ S ′(Rn) such that sf = Γ and sing supp f = ∅.

2. Proof of Theorem 1.4

We will use the characterizations of Besov spaces with the Meyer wavelet basis. For
that, let us introduce the quasi-Banach spaces bs

p,q for s ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞.
For j ∈ N, we define the subsets Gj of {(F, M)}n by

G0 = {(F, M)}n and Gj = { (F, M)}n \ {(F, . . . , F )} if j ≥ 1.
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A sequence c = {cG
j,k} belongs to bs

p,q if and only if

‖c‖bs
p,q

=
[∑

j≥0

∑
G∈Gj

∣∣∣∣2js2−jn/p
(∑

k

|cG
j,k|p

)1/p
∣∣∣∣q]1/q

< ∞

(usual modification for p = ∞ and/or q = ∞).
Let us fix ψF a Meyer scaling function and ψM the associated (mother) wavelet

in one dimension. The wavelet basis of L2(Rn), is the collection

{
ψG

j,k = 2nj/2
n∏

r=1

ψGr
(2jxr − kr), j ≥ 0, k ∈ Zn, G ∈ Gj

}
with x = (x1, . . . , xn), G = (G1, . . . , Gn), and k = (k1, . . . , kn). We have the following
result ([6, chapter 3, Theorem 3.12]).

Theorem 2.1. Let 0 < p, q ≤ ∞ and s ∈ R. Let f ∈ S ′(Rn). Then f ∈ Bs
p,q(R

n)
if, and only if, it can be represented as

f =
∑
j,k,G

cG
j,k2−jn/2ψG

j,k, c ∈ bs
p,q,

unconditional convergence being in S ′(Rn) and locally in any Bσ
p,q(R

n) with σ < s.
The representation is unique,

cG
j,k = 2nj/2(f, ψG

j,k)

and
I : f → {2nj/2(f, ψG

j,k)}
is an isomorphic map of Bs

p,q(R
n) onto bs

p,q. If in addition p, q < ∞ then {ψG
j,k} is

an unconditional basis of Bs
p,q(R

n).

Before studying the different cases of Theorem 1.4, let us give two lemmas which
deal with the simpler examples where the Besov characteristic is a line or a piecewise
linear function and which will be useful for the proof of this theorem.

Lemma 2.2. Let a ∈ R, a ≤ n, and b ∈ R. There exists f ∈ S ′(Rn) with
sing supp f = ∅ such that

sf (t) = at + b,

and such that its wavelet coefficients {cG
j,k} = c are all non-negative and satisfy

‖c‖bs
1/t,1

≤ 1,

for all t ≥ 0 and s ≤ s(t).
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Proof. Let c be defined by

cG
j,k =

{
6

π2
1
j2 2−jtb if j ≥ 1, G = (M, . . . , M) and k ∈ K̃j ,

0 otherwise,

where K̃j is finite of cardinal 2j(n−a) and is such that |k| ≥ 2j2
if k ∈ Kj . An easy

calculation shows that ‖c‖bs
1/t,1

is finite if and only if s ≤ at + b and in that case, we
have ‖c‖bs

1/t,1
≤ 1. Noticing that the coefficients do not vanish for large k only, we can

show that f defined by its wavelet expansion (3) belongs to C∞(Rn) on any compact
set and so sing supp f = ∅. Thus, f satisfies the conclusion of Lemma 2.2.

Lemma 2.3. Let Γ be a real-valued function on [0,∞[. Assume that Γ is continuous,
concave, piecewise linear on the intervals [tk, tk+1[, 1 ≤ k ≤ n with 0 = t1 < t2 <
· · · < tn < tn+1 = +∞ and that Γ′ ≤ n.

There exists f ∈ S ′(Rn) with non-negative wavelet coefficients {cG
j,k} = c, such

that sing suppf = ∅, sf = Γ, and

‖c‖bs
1/t,1

≤ 1.

Proof. Let Γ be a function satisfying the assumptions of Lemma 2.3. There exist
some reals { ap, p ≤ n } with a1 ≥ a2 ≥ · · · ≥ an and { bp, p ≤ n } such that

Γ(t) = apt + bp

on [tp, tp+1]. Thus, one has, for any t ∈ [0,∞[,

Γ(t) = inf
1≤p≤n

apt + bp.

For 1 ≤ p ≤ n, let fp be a distribution according to Lemma 2.2 with non-negative
wavelet coefficients { cG,p

j,k } = cp such that sing supp fp = ∅, sfp
(t) = apt + bp for

t ∈ [0, +∞[ and ‖cp‖bs
1/t,1

≤ 1 if s ≤ apt + bp. Then f = 1
n

∑n
p=1 fp satisfies the

conclusion of Lemma 2.3. Indeed, we clearly have sf (t) ≥ inf1≤p≤n sfp
(t) = Γ(t) and,

since the wavelet coefficients of fp, 1 ≤ p ≤ n, are all non-negative, we get

sf (t) = inf sfp
(t) = Γ(t).

Moreover, the wavelet coefficients { cG
j,k } = c, of f satisfy ‖c‖bs

1/t,1
≤ 1 for all t ≥ 0

and s ≤ sf (t).

Remark. The last argument of positivity of the wavelet coefficients can be replaced
by observing that on each interval ]tp, tp+1[, one has sfp

< sfj
for j 	= p. Then

for all t ∈]tp, tp+1[ and for all ε > 0 small enough, we have fj ∈ B
sfp+ε

1/t,1 (Rn) and

fp /∈ B
sfp+ε

1/t,1 (Rn). Hence f /∈ B
sfp+ε

1/t,1 (Rn) and sf (t) = sfp(t) on each interval ]tp, tp+1[.
Since sf is continuous by Proposition 1.2, we get sf = Γ on [0,∞[.
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Now, let Γ be as in Theorem 1.4. Considering particular sequences c, we will
construct distributions (given by their wavelet expansions) which have Γ as its Besov
characteristic.

First case. Γ ≡ +∞ on [0,∞[.
As it has already been said, any function of the Schwartz class gives the result.

Second case and fourth case. Γ ≡ −∞ on ]0,∞[ or there exists t0 > 0 such that

sf (t) =

⎧⎪⎨⎪⎩
+∞ if t ∈ [0, t0[,
s0 if t = t0, s0 ∈ R,

−∞ if t ∈]t0, +∞[.

Let us consider the sequence c given by

cG
j,k =

{
1
j2 2−j2nt02jnt02−js0 if j ≥ 2, G = (M, . . . , M), and k ∈ Kj ,

0 otherwise,

where Kj is such that |k| ≥ 2j2
if k ∈ Kj and CardKj = 2nj2

. One has

‖c‖bs
1/t,1

=
∑
j≥2

1
j2

2j(s−s0)2−jn(t−t0)2−j2n(t0−t).

Hence, if t < t0, then ‖c‖bs
1/t,1

is finite for all s ∈ R. If t = t0, ‖c‖bs
1/t,1

is finite for all
s ≤ s0. If t > t0, ‖c‖bs

1/t,1
= ∞ for all s ∈ R.

We define f ∈ S ′(Rn) by
f =

∑
j,k,G

cG
j,kψG

j,k. (3)

Then, f belongs to Bs
1/t,1(R

n) if and only if ‖c‖bs
1/t,1

< ∞ and we obtain the second
case (putting t0 = 0) and the fourth case with s0 ∈ R. Moreover, the singular support
of f is empty since f is in C∞(Rn) on every compact subset of Rn. Indeed, let R > 0,
x ∈ B(0, R) and j0 ≥ 2 be such that 2j2

0 ≥ 2j0+1R. Then, we have, for α ∈ Nn and
with G(0) = (M, . . . , M),∑

j,G,k

|cG
j,k∂αψG

j,k(x)| ≤
∑
j≤j0

∑
k∈Kj

|cG(0)

j,k 2j|α|∂αψG(0)
(2jx − k)|

+
∑
j≥j0

∑
k∈Kj

|cG(0)

j,k 2j|α|∂αψG(0)
(2jx − k)|

≤ C(j0)‖∂αψG(0)‖∞
+

∑
j≥j0

∑
k∈Kj

|cG(0)

j,k 2j|α|∂αψG(0)
(2jx − k)|
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Since ψG(0)
belongs to the Schwartz class and |2jx − k| � |k| for |k| ≥ 2j2

, j ≥ j0,
and x ∈ B(0, R), we have the following estimate for all M ∈ N:

|∂αψG(0)
(2jx − k)| ≤ C

(1 + |2jx − k|)M
≤ 2−j2M .

Taking M > n − nt0, it follows that∑
j,G,k

|cG
j,k∂αψG

j,k(x)| ≤ C(R).

Thus, the α-th derivative series is normally convergent on each compact set and
sing supp f = ∅.

Considering the sequence

cG
j,k =

{
2−j2nt02jnt02−j3/2

if j ≥ 2, G = (M, . . . , M), and k ∈ Kj ,

0 otherwise,

in the wavelet expansion (3), we obtain the second and fourth cases with s0 = ∞.
With the sequence

cG
j,k =

{
2−j2nt02jnt02j3/2

if j ≥ 2, G = (M, . . . , M), and k ∈ Kj ,

0 otherwise,

the result follows for s0 = −∞.
We are now interested in the case where the function Γ is concave and continuous

on [0, t0[ with 0 < t0 ≤ ∞. The idea is to approximate Γ with piecewise linear
functions.

Fifth case. Let Γ be a concave and continuous function on [0, t0[= I (t0 > 0) with
Γ′ ≤ n, −∞ ≤ Γ(t0) ≤ limt→t−0

Γ(t) and Γ ≡ −∞ on ]t0, +∞[.
Let l ≥ 0. There exists Ml ≥ 0 such that |Γ′| ≤ Ml a.e. on [0, t0−2−l] = Il. Then,

there exists a piecewise linear function Γl ≥ Γ such that, for all t ∈ Il,

|Γl(t) − Γ(t)| ≤ 2−l

(see figure 1).
By Lemma 2.3, we can construct a distribution fl with non-negative wavelet co-

efficients {cG,l
j,k } = cl such that sing supp fl = ∅, sfl

= Γl, and ‖cl‖bs
1/t,1

≤ 1 for all
t ≥ 0 and s ≤ Γl(t). Let us define f ∈ S ′(Rn) by

f =
∑
l≥0

2−lfl.
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Figure 1 – Approximation of Γ by Γl on [0, t0 − 2−l]

and denote by c = {cG
j,k} its wavelet coefficients. They are given, for j ≥ 0, G ∈ Gj ,

and k ∈ Zn, by
cG
j,k =

∑
l≥0

2−lcG,l
j,k .

Clearly, the singular support of f is empty. Let us now determine its Besov charac-
teristic. If t ≥ 0 and s < Γ(t), it comes out that

‖c‖bs
1/t,1

≤
∑
l≥0

2−l‖cl‖bs
1/t,1

≤
∑

l

2−l < +∞.

Hence, f belongs to Bs
1/t,1(R

n) and sf (t) ≥ Γ(t). If t ∈ I and s > Γ(t), there exists
l0 such that sfl0

(t) = Γl0(t) < s. Since all the coefficients are non-negative, one has
cG
j,k ≥ cG,l0

j,k ≥ 0 for all j ∈ N, G ∈ Gj , and k ∈ Zn. It follows that

‖c‖bs
1/t,1

≥ ‖cl0‖bs
1/t,1

= ∞.

Finally, we get sf = Γ on I and sf ≥ Γ on [0,∞[.
Taking a distribution g ∈ S ′(Rn) with non-negative wavelets coefficients and such

that g ≡ +∞ on [0, t0[, g(t0) = Γ(t0) and g ≡ −∞ on ]t0,∞[, we obtain that sf+g = Γ.

Third case. Γ is continuous, concave and Γ′ ≤ n on [0,∞[.
The proof of the fifth case can easily be adapted to obtain this case, replacing

I = [0, t0[ with [0,∞[ and Il = [0, t0 − 2−l] with [0, l] (see figure 2).
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Figure 2 – Approximation of Γ by Γl on [0, l].

Remark. For the second and fourth cases, if t0 > 0 (or t0 = 0 and s0 = +∞), the fact
that sing supp f = ∅ follows immediately from the fact that f ∈ B∞

∞,1(R
n).

3. Generalization to the weighted and to the anisotropic cases

3.1. Weighted Besov characteristic

We restrict the study to a class of weights for which the result of Proposition 1.2 and
Theorem 1.4 can be immediately generalized to the weighted Besov spaces.

For α ∈ R and x ∈ Rn, we define the weight wα by

wα(x) = (1 + |x|2)|α|/2.

Definition 3.1. Let s, α ∈ R and 0 < p, q ≤ ∞. The weighted Besov space
Bs

p,q(R
n, α) is the collection of all distributions f ∈ S ′(Rn) such that fwα ∈ Bs

p,q(R
n).

We put
‖f‖Bs

p,q(Rn,α) = ‖fwα‖Bs
p,q(Rn).

Definition 3.2. Let g ∈ S ′(Rn). The weighted Besov characteristic of g is the
function sα

g defined for t ∈ R+ and at values in R by

sα
g (t) = sup{ s ∈ R; g ∈ Bs

1/t,1(R
n, α) }.

Proposition 3.3. (i) Let g ∈ S ′(Rn). Then its weighted Besov characteristic sα
g

satisfies one of the five cases of Proposition 1.2 (replacing sf with sα
g ).

Revista Matemática Complutense
2007: vol. 20, num. 2, pags. 407–421 416
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(ii) Let Γ = Γ(t) be a function defined on [0,∞[ at values in R such that Γ satisfies
one of the five cases of Proposition 1.2 (where sf is now replaced by Γ). There
exists a distribution g ∈ S ′(Rn) such that sα

g = Γ.

Proof. The proof is a direct consequence of the result in the unweighted case. Indeed,
one has, by definition

sα
g (t) = sup{ s ∈ R; gwα ∈ Bs

1/t,1(R
n) },

which means that sα
g is the Besov characteristic of gwα. Hence sα

g satisfies one of the
five cases of Proposition 1.2.

Conversely, let Γ satisfy one of the five cases of Proposition 1.2. Then, by Theo-
rem 1.4, there exists f ∈ C∞

loc(R
n) such that sf = Γ. But g = (1 + |x|2)−α/2f belongs

to L1
loc(R

n) ⊂ S ′(Rn) and sα
g = sf = Γ.

3.2. Anisotropic Besov characteristic

By the transference method proposed by Triebel in [6, chapter 3, section 5]), it is
possible to extend the results of sections 1 and 2 to the anisotropic case. Let us first
recall the definitions of anisotropic Besov spaces and characteristic.

An n-tuple α ∈ Rn is called an anisotropy in Rn if and only if

0 < α1 ≤ · · · ≤ αn < ∞ and
n∑

j=1

αj = n.

For t > 0, r ∈ R and x ∈ Rn we put

tαx = (tα1x1, . . . , t
αnxn) and trα = (tr)α.

We define a smooth anisotropic resolution of unity ϕα
j in the following way. The

function ϕα
0 ∈ S(Rn) satisfies

ϕα
0 (ξ) = 1 if sup

l
|ξl| ≤ 1 and ϕα

0 (ξ) = 0 if sup
l

2−αl |ξl| ≥ 1,

where ξ = (ξ1, . . . , ξn) ∈ Rn. Let

ϕα
j (ξ) = ϕα

0 (2−jαξ) − ϕα
0 (2−(j−1)αξ), j ≥ 1, ξ ∈ Rn.

One has

∞∑
j=0

ϕα
j ≡ 1 on Rn,

suppϕα
0 ⊂ Rα

1 and suppϕα
k ⊂ Rα

k+1 \ Rα
k−1, k ≥ 1,
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where the sets Rα
j are the rectangles

Rα
j = {x ∈ Rn; |xl| ≤ 2jαl }, j ≥ 0.

We define the operators Δα
j on S ′(Rn) by

Δ̂j,α(f) = ϕα
j f̂ .

For 0 < p ≤ ∞, 0 < q ≤ ∞, and s ∈ R, the anisotropic Besov space Bs,α
p,q (Rn) is

defined by {
f ∈ S ′(Rn); ‖f‖Bs,α

p,q
=

( ∞∑
j=0

2jsq‖Δα
j (f)‖q

Lp

)1/q

< ∞
}

(usual modification if q = ∞).

Remark. The definition of Bs,α
p,q (Rn) does not depend on the choice of the resolution

{ϕα
j }. These spaces are quasi-Banach spaces and are Banach spaces if p ≥ 1 and

q ≥ 1 (see [5, section 2.3.3]).

Remark. For α = (1, . . . , 1), we obtain Bs,α
p,q (Rn) = Bs

p,q(R
n).

Lemma 3.4. Let α be an anisotropy. Let 0 < p, q < ∞ and s0, s1 ∈ R, s0 > s1.
Then Bs0,α

p,q (Rn) ⊂ Bs1,α
p,q (Rn).

Definition 3.5. Let f ∈ S ′(Rn). The anisotropic Besov characteristic of f is the
function sα

f defined for t ∈ [0,∞[ at values in R by

sα
f (t) = sup{ s ∈ R; f ∈ Bs,α

1/t,1(R
n) }.

In the case of compactly supported distributions, Triebel has shown the following
result in [6, chapter 5, section 3.4].

Theorem 3.6. Let α be an anisotropy.

(i) Let f ∈ S ′(Rn) be not in C∞(Rn) and let supp f be compact. Then sα
f is an

increasing concave function of slope smaller than or equal to n.

(ii) For any real increasing concave function Γ on [0,∞[ of slope smaller than or
equal to n there is a compactly supported distribution f ∈ S ′(Rn) such that
sα

f = Γ.

Without any assumption on the compactness of the support, we obtain the fol-
lowing result.

Theorem 3.7. Let α be an anisotropy.
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(i) Let f ∈ S ′(Rn). Then its anisotropic Besov characteristic sα
f satisfies one of

the five cases of Proposition 1.2 (replacing sf with sα
f ).

(ii) Let Γ = Γ(t) be a function defined on [0,∞[ at values in R such that Γ satisfies
one of the five cases of Proposition 1.2 (where sf is now replaced by Γ). There
exists a distribution f ∈ S ′(Rn) such that sα

f = Γ.

The proof follows exactly the same arguments of the proof of Theorem 3.6, which
is based on the transference method (section 5.3 of [6]). We will indeed show that we
can transfer the result from the isotropic case to the anisotropic case, via the Meyer
representation of the spaces. Let us first recall the construction of the anisotropic
Meyer wavelets.

We fix an anisotropy α. Again ψF denotes the Meyer scaling function in one
dimension and ψM the associated wavelet. For an integer n ≥ 2, we denote by Ij,α

the sets
Ij,α ⊂ {F, M}n × Nn

0 , j ∈ N0.

We put {F, M }n∗ = {F, M }n \ { (F, . . . , F ) }. Then, by definition, one has I0,α =
{ ((F, . . . , F ), (0, . . . , 0)) }. If j ≥ 1, by definition Ij,α is the collection of all elements
(G, k) with G ∈ {F, M }n∗ and k ∈ Nn

0 such that

kr = [(j − 1)αr] if Gr = F

and
[(j − 1)αr] ≤ kr < [jαr] if Gr = M,

for r = 1, . . . , n and k = (k1, . . . , kn).
Remark. Since αn ≥ 1, in all the anisotropic cases, the set Ij,α with j ∈ N satisfies

1 ≤ Card Ij,α ≤ (2n − 1)
n∏

r=1

(1 + [jαr] − [(j − 1)αr]) ≤ (2n − 1)
n∏

r=1

(2 + αr).

The anisotropic Meyer wavelet basis is then the collection{
ψ

(G,k),α
j,m (x) = 2|k|/2

n∏
r=1

ψGr (2
krxr − mr), j ∈ N0, (G, k) ∈ Ij,α, m ∈ Zn

}
where |k| = k1 + k2 + · · ·+ kn. Let us define the anisotropic quasi-Banach spaces bs,α

p,q

for s ∈ R, 0 < p ≤ ∞, and 0 < q ≤ ∞. For c = {c(G,k)
j,m ∈ C, j ∈ N0, (G, k) ∈ Ij,α,

m ∈ Zn}, we put

‖c‖bs,α
p,q

=
( ∞∑

j=0

∑
(G,k)∈Ij,α

2j(s−n/p)q

( ∑
m∈Zn

|c(G,k)
j,m |p

)q/p)1/q

(usual modification for p = ∞ and/or q = ∞). Then

bs,α
p,q = { c; ‖c‖bs,α

p,q
< ∞}.
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Theorem 3.8 ([6, chapter 5, section 2]). Let α be an anisotropy and ψ
(G,k),α
j,m the

anisotropic Meyer wavelets. Let 0 < p, q ≤ ∞ and s ∈ R. Then f belongs to
Bs,α

p,q (Rn) if, and only if, it can be represented as

f =
∑

j,(G,k),m

c
(G,k)
j,m 2−|k|/2ψ

(G,k),α
j,m , c ∈ bs,α

p,q , (4)

unconditional convergence being in S ′(Rn) and locally in any Bσ,α
p,q (Rn) with σ < s.

The representation (4) is unique,

c
(G,k)
j,m = 2|k|/2(f, ψ

(G,k),α
j,m )

and
I : f → { 2|k|/2(f, ψ

(G,k),α
j,m ) }

is an isomorphic map of Bs,α
p,q onto bs,α

p,q . If in addition p < ∞ and q < ∞, then

{ψ(G,k),α
j,m } is an unconditional basis in Bs,α

p,q (Rn).

For more details and for proofs on the anisotropic Meyer and Daubechies wavelets
and the anisotropic multiresolution, we refer again to [6, chapter 5, section 2].

Proof (of Theorem 3.7). Via the universal Meyer representation, we can transfer the
assertions of Proposition 1.2 and of Theorem 1.4 to the anisotropic case. Let
f ∈ S ′(Rn) be given by its wavelet expansion

f =
∑
j∈N

∑
G∈Gj

∑
k∈Zn

cG
j,k2−jn/2ψG

j,k.

Let g ∈ S ′(Rn) be given by

g =
∞∑

j=0

∑
(G,k)∈Ij,α

∑
m∈Zn

λ
(G,k)
j,m 2−|k|/2ψ

(G,k),α
j,m

where the coefficients λ
(G,k)
j,m are either 0 or coincide for fixed j ∈ N0 one-to-one with

the coefficients cG
j,k. Then, we have sα

g = sf . Conversely, for g ∈ S ′(Rn), we can
construct a distribution f such that sf = sα

g and Theorem 3.7 follows.
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Revista Matemática Complutense
2007: vol. 20, num. 2, pags. 407–421 420
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