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ABSTRACT 
 
We introduce the serial contest by building on the desirable properties of two 

prominent contest games. This family of contest games relies both on relative efforts (as 

Tullock’s proposal) and on absolute effort differences (as difference-form contests). An 

additional desirable feature is that the serial contest is homogeneous of degree zero in 

contestants’ efforts. The family is characterized by a parameter representing how 

sensitive the outcome is to contestants’ efforts. It encompasses as polar cases the (fair) 

lottery and the (deterministic) all-pay auction. Equilibria have a close relationship to 

those of the (deterministic) all-pay auction and important properties of the latter hold 

for the serial contest, too. 

 

Keywords: rent-seeking, (non-) deterministic contest, contest success function, 

all-pay auction, rent dissipation, exclusion principle, preemption effect, cap, campaign 

contributions. 
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1. Introduction

In a contest game agents exert irreversible e¤ort to increase their probability of winning
a prize. Contests have been used to analyze a variety of situations including lobby-
ing, rent-seeking and rent-defending contests, litigation, political campaigns, military
con�ict, patent races, arms races, sports events, promotional competition, labor mar-
ket tournaments or R&D competition. Moreover, recent papers (like e.g. Alesina and
Spolaore (2005), Baron and Diermeier (2006), Konrad (2000a and b) or Polborn and
Klumpp (2006)) have embedded simple contest games in larger models in order to cap-
ture the e¤ect of con�ict on other variables of interest. This paper proposes a new
family of contest games to model such situations.

In a contest the probability of winning is given by a contest success function (hence-
forth CSF) which depends on the e¤orts of the players. A special case is the all-pay
auction, in which the player exerting the highest e¤ort wins the prize with probability
one. Such a contest is therefore called deterministic (or perfectly discriminating). The
all-pay auction has been analyzed by Hillman and Riley (1989), Baye et al. (1993, 1996)
or Che and Gale (1998), among others.1

The literature has frequently studied two families of CSFs. The �classical�speci�ca-
tion was proposed by Tullock (1980) and has been further analyzed in Pérez-Castrillo
and Verdier (1992), Baye et al. (1994) or Skaperdas (1996). In Tullock�s speci�cation
the probability of winning of bidder Bi is given by

	i(b) =
b�iPn
j=1 b

�
j

; (1.1)

where b = (b1; :::; bn) is a vector of e¤ort levels of the n contestants and � is a positive
parameter measuring returns to scale from e¤ort. Note that if the CSF is completely
insensitive to e¤ort (� = 0), the extreme case of a (fair) lottery is obtained. The opposite
case of extreme sensitivity (�!1) yields the all-pay auction. Tullock�s formulation is
also known as ratio-form, since (1.1) can be rewritten so that it depends on the ratio of
contestants�e¤orts. It depends, hence, on a relative criterion.

Tullock�s functional form has the important advantage of being homogenous of de-
gree zero in e¤ort. Homogeneity is a realistic property that might be interpreted as
saying that it does not matter whether lobbying expenditures are measured in dollars
or in euros. In addition, homogeneity is a convenient analytical property which may
explain the popularity of Tullock�s CSF in applications.2

1 Although non-deterministic contests are also all-pay auctions, in the current paper we refer to the
deterministic all-pay auction simply as all-pay auction. In keeping up with much of the existing litera-
ture, we use the terms �contestants�and �bidders�as well as �e¤ort levels�and �bids�interchangeably.

2 Malueg and Yates (2006, p. 719) write concerning homogeneity: �This property is intuitively
appealing for rent-seeking contests. The contest winner is determined by relative e¤orts. For example,
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The second popular contest family is called �di¤erence-form�CSFs. It has been
proposed by Hirshleifer (1989) and further studied in Skaperdas (1996), Baik (1998)
and Che and Gale (2000). Although the precise mathematical formulation of the CSF
di¤ers in these papers, the common element is that win probabilities are based on
e¤ort di¤erences. For instance, Che and Gale propose the following piece-wise linear
di¤erence-form for contests with two bidders

	1(b) = max

�
min

�
1

2
+ �(b1 � b2); 1

�
; 0

�
and 	2(b) = 1�	1(b): (1.2)

As Tullock�s speci�cation, the positive scalar � speci�es how deterministic the contest
is, containing the polar cases of the (fair) lottery and the all-pay auction. Notice that,
since (1.2) depends on the di¤erence of e¤orts, it is not homogenous and it relies on an
absolute criterion.

The allocation of the prize according to an absolute criterion is controversial. Che
and Gale argue forcefully that it is appropriate in many contexts. Skaperdas (1996) and
Hirshleifer (2000) point out that it is a strong property. Consider the following quote
from Hirshleifer (p. 779):

�It might be thought a fatal objection against the di¤erence form of the
CSF that a force balance of 1,000 soldiers versus 999 implies the same out-
come (in terms of relative success) as 3 soldiers versus 2! That this may
seem unreasonable is probably due to the exclusion of idiosyncratic and un-
modelled factors that might inject a random element into the outcome. Any
reasonable provision for randomness would imply a higher likelihood of the
weaker side winning the 1,000:999 comparison than in the 3:2 comparison.�

Summarizing, it seems that an important trade-o¤ emerges. The choice of a CSF
comparing absolute e¤ort levels seems to imply the vulnerability against the above
criticism. Moreover, one seems to be forced to give up homogeneity. In the current
paper we propose a CSF reconciling these criteria. In a nutshell, we follow Hirshleifer�s
suggestion to weaken the absolute criterion and do this in such a way as to obtain a
homogenous CSF.

Instead of postulating that win probabilities depend on the absolute mark-up b1�b2,
we require that they depend on the percentage mark-up

b2�b1
b2

if b1 � b2
b1�b2
b1

if b1 � b2

if all players double their e¤ort, then the probabilities of winning the contest are unchanged� the increase
in e¤ort is completely wasted.�
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of the highest bid. So we de�ne

	1(b) =

(
1
2 �

b2�b1
2b2

if b1 � b2
1
2 +

b1�b2
2b1

if b1 � b2
and 	2(b) = 1�	1(b): (1.3)

Notice that this assignment process follows exactly Hirshleifer�s suggestion.
The present paper proposes the serial CSF as a generalization of the previous ex-

pression.3 In the case of two contestants the serial contest can be de�ned as follows

	1(b) =

8<:
1
2

�
b1
b2

��
if b1 � b2

1� 1
2

�
b2
b1

��
if b1 � b2

and 	2(b) = 1�	1(b). (1.4)

A formulation for more than two contestants will be provided in Section 2.4 Similarly to
the other two families, the family of serial contest games is characterized by a economics
of scale parameter � that comprises the polar cases of the (fair) lottery and the all-pay
auction. As the CSF becomes more sensitive to e¤ort levels, the contest becomes more
deterministic until the benchmark case of the all-pay auction is reached. Notice also
that the serial contest is homogeneous.

The next �gure compares the three families of CSFs for � 2 f1=2; 1; 10g. In the
examples we �x the bid of the second contestant as b2 = 1.5 In the examples the piece-
wise linear function (red) is Che and Gale�s CSF and the serial CSF (black) intersects
Tullock�s CSF (blue) from below. The third example shows that both the serial and
Tullock�s CSF can have a region with increasing marginal returns from e¤ort. It also
suggests that as the all-pay auction is approached, Tullock�s CSF and the serial contest
behave very similarly.

3 The class of serial contests is related to three di¤erent literatures. First, it is inspired in a proposal
for bankruptcy problems known as the Contested Garment Principle (see Dagan (1996) for an analysis
of this bankruptcy solution). Second, there is a similarity to the Serial Cost Sharing Rule of Moulin and
Shenker (1992). Third, there exists a close relationship to the Shapley Value of appropriately de�ned
cooperative games (see Littlechild and Owen (1973) for the closely related airport game).

4 Notice that for � = 1, (1.4) boils down to (1.3).
5 Note that because of homogeneity this is w.l.o.g. under Tullock�s and the serial CSF, but not

with the di¤erence-form. Under the later contestant 1�s win probability is responsive to his e¤ort when
b1 2 [b2 � 1=(2�); b2 + 1=(2�)].
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Figure 1.1: Three CSFs for � 2 f1=2; 1; 10g and b2 = 1.



The current paper o¤ers a strategic analysis of the serial contest. For the case of
two contestants we provide characterization of equilibrium for all values of the returns
to scale from e¤ort parameter � and for any valuations for the prize the contestants
might have. As in the Tullock rent-seeking game, pure strategy Nash equilibria exist
only if the contest is not too deterministic (� � 1). For more deterministic contests we
analyze mixed strategy Nash equilibria.

Surprisingly, it turns out that the equilibrium properties of the serial contest are
very robust to di¤erent amounts of non-determinacy. Broadly speaking, for a wide
range of non-determinacy the equilibria are essentially the ones of the extreme case of
the all-pay auction (� � 1). This includes the constant returns to scale case (� = 1) in
which the equilibrium is in pure strategies: contestants bid the expectation of the mixed
strategy equilibrium of the all-pay auction. Intuitively, as the contest approaches the
fair lottery further (� < 1), the predictions of the serial contest di¤er more from the
all-pay auction and converge to the optimal behavior in a lottery completely insensitive
to e¤ort. We investigate then to what extent these results are robust to an increase in
the number of contestants. As long as the CSF is not too insensitive to e¤ort, further
contestants have a strict incentive not to participate in the contest. We show also
that the close relationship between the serial contest and the all-pay auction extends
to further equilibrium properties like rent dissipation, exclusion principle, preemption
e¤ect or the consequences of a cap on individual e¤ort levels.

Summarizing, the contest proposed in the current paper has several advantages over
the two previously mentioned contest families:

With respect to Tullock�s formulation, we provide a CSF in which �in addition to
relative e¤orts � absolute e¤ort di¤erences play a role. Whether this is appropriate
depends on the context. From a more applied point of view the serial contest with two
contestants allows characterization of equilibrium for all levels of sensitivity of the CSF
to contestants e¤orts and for any valuations for the prize the contestants might have.
Moreover, the equilibrium of the serial contest is very robust.6

With respect to di¤erence-form contests, the serial contest o¤ers the advantages of
weakening the absolute criterion in the assignment process and of being homogenous.
It can also be easily de�ned for more than two contestants and we o¤er a preliminary
equilibrium analysis of this case.7 With respect to the robustness of the equilibrium

6 The Tullock rent-seeking game has the drawback that it is only well understood when the CSF
is either very insensitive to e¤ort (0 � � � n=(n � 1)) or it is extremely sensitive (� ! 1). Baye et
al. (1994) study the intermediate cases when two contestants have a common valuation for the prize.
They characterize symmetric equilibria when the set of bids is discrete and analyze total expected
rent dissipation. Concerning robustness, for the cases in which the Tullock rent-seeking game o¤ers
equilibrium predictions, these predictions di¤er from the all-pay auction qualitatively (see Nitzan (1994)
and the discussion in Che and Gale (2000) or Fang (2002)).

7 While Hirshleifer�s (1989) di¤erence-form contest is de�ned for any number of contestants, Che
and Gale�s CSF is not and it is not clear what the proper extension is.
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predictions, Che and Gale (2000) show the convergence of equilibrium to the one of the
polar all-pay auction, while in the serial contest equilibria are essentially the same for
a wide range of non-determinacy.

The paper is organized as follows. We introduce the serial contest for any number
of contestants in the next section. Section 3 analysis equilibrium in the case of two
contestants. The robustness to an increase in the number of contestants is investigated
in Section 4; and further links to the all-pay auction are derived in Section 5. The last
section o¤ers a concluding discussion.

2. The Serial Contest Model

Consider a contest where n > 1 agents (contestants) compete for a prize. Each con-
testant has a valuation for the object, denoted by Vi, and submits a bid bi. The set of
contestants or bidders is denoted by B = fB1; : : : ; Bi; : : : ; Bng. Bidders are risk-neutral,
and they bid simultaneously. The valuations are common knowledge and without loss
of generality ordered such that V1 � V2 � : : : � Vn > 0.

The winner is determined through a contest success function. This function asso-
ciates, to each vector of bids b, a lottery specifying for each agent a probability of getting
the object.

De�nition 2.1. [CSF] A contest success function is a mapping

	 : Rn ! �n

such that for each b 2 Rn, 	(b) is in the n � 1 dimensional simplex, i.e. 	(b) is such
that, for each i, 	i (b) � 0, and

Pn
i=1	i (b) = 1.

The CSFs (1.1), (1.2) and (1.4) mentioned in the Introduction are examples for
De�nition 2.1. Given the contest success function 	 and linear costs of e¤ort, agents�
expected utility from participating in the contest, when the vector of bids is b, is

E�i (b) = 	i (b)Vi � bi: (2.1)

We de�ne now formally the class of serial contest functions for any number of con-
testants. In order to do this it is necessary to distinguish between non-degenerated
(fb � 0; b 6= 0g) and degenerated bid vectors (all contestants bid zero). In the latter
case we follow Baye et al. (1994) and establish a fair lottery for the prize.8 More-
over, without loss of generality we suppose that the vector of bids is ordered such that

8 This speci�cation is also consistent in the sense that it follows from the requirements of an anony-
mous assignment and that probabilities add up to one. An alternative assumption is that the prize
remains with the contest administrator but then the sum of probabilities is smaller than one.
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b1 � b2 � ::: � bn.9 Given this order, we can rewrite equation (1.4) as follows

	2(b) =
1

2

�
b2
b1

��
	1(b) =

�
1�

�
b2
b1

���
+
1

2

�
b2
b1

��
.

We are now in a position to extend the two-contestant CSF to any number of agents.

De�nition 2.2. [Serial CSF] If b is a non-degenerated and ordered vector of bids such
that b1 � b2 � ::: � bn � 0. Then the serial contest success function with economics of
scale parameter � � 0 assigns for all Bi 2 B

	i(b) =

nX
j=i

b�j � b�j+1
j � b�1

,

with bn+1 = 0. If b is degenerated, then the serial contest success function establishes a
fair lottery among the contestants.

It is common in the contest literature to interpret the scalar � as measuring eco-
nomics of scale because it indicates the marginal return from lobbying e¤orts.

Notice that the class of serial contest success functions can also be de�ned recursively
as follows

	n(b) =
b�n
n � b�1

and 	i(b) = 	i+1(b) +
b�i � b�i+1
i � b�1

for all i 2 f1; 2; : : : ; n� 1g:

3. The Two-Contestants Case

3.1. Constant Returns to Scale: � = 1

In this section we analyze pure strategy Nash equilibria of the serial contest in its
simplest functional form. We �nd that any equilibrium has all-pay auction properties,
because contestants bid the expectation of the equilibrium mixed strategy of the all-pay
auction. We establish a unique equilibrium.

Theorem 3.1. Suppose n = 2, V1 � V2 and � = 1. There exists a unique pure
strategy Nash equilibrium to the serial contest. In this equilibrium contestants�bids

9 If necessary relabel the set of bidders.

ivie
9



and expected payo¤s are as follows

b�1 =
V2
2 b�2 =

(V2)2

2V1

E�1 (b
�) = V1 � V2 E�2 (b

�) = 0;

while total e¤ort is

TE(b�) =
V2(V1 + V2)

2V1
:

Proof. See Appendix A.1.

The equilibrium has a particularly simple structure because the payo¤ function of
B2 is linear. For low b1 it is increasing while for high b1 it is decreasing. The equilibrium
bid b�1 = V2=2 makes B2 indi¤erent between any b2 2 [0; b�1]. Given b�1, B2�s indi¤erence
means that he can as well bid b�2, which makes b

�
1 optimal for B1. Note that this

indi¤erence of the weaker contestant is also a feature of the equilibrium of the all-pay
auction. In the all-pay auction the weaker bidder places the atom (1 � V2=V1) at zero
and randomizes continuously up to his valuation when he enters the contest. We show in
Subsection 3.3 that decreasing � by an arbitrary small amount makes the indi¤erence
between abstaining and contesting disappear. But before doing so we close the gap
between constant returns to scale and the polar case of the all-pay auction.

3.2. Increasing Returns to Scale: � > 1

It is well known that in the all-pay auction there is no equilibrium in pure strategies.
Moreover, non-deterministic contests (like the Tullock rent-seeking game) exhibit this
feature when the CSF approaches the all-pay auction and becomes sensitive enough to
e¤ort. This is also true in the serial contest.

To see why there is no pure strategy equilibrium under increasing returns assume
that there are only two bidders. At least one of them, say agent B2, must choose b�2 such
that it maximizes b�2 =(2b

�
1 )V2 � b2. For � > 1 this objective function is strictly convex

and strictly negative for small bids. However, if b�1 is low enough then the objective
function becomes positive again and thus, b�2 = b

�
1. But then, given the strong concavity

of the CSF, it pays for bidder B1 to increase his bid.

Proposition 3.2. Suppose � > 1. There exists no pure strategy Nash equilibrium to
the serial contest.

Proof. See Appendix A.2.

We turn now to mixed strategy equilibria. Such a strategy for player Bi is denoted
by �i and the associated strategy pro�le is indicated by �. The next result says that any
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serial contest in which the CSF is su¢ ciently sensitive to e¤ort has an equilibrium with
all-pay auction properties, since contestants bid in expected terms as in the deterministic
case.

Theorem 3.3. Suppose n = 2, V1 � V2 and � � 1. There exists a Nash equilibrium
in mixed-strategies to the serial contest. In this equilibrium contestants�expected bids
and expected payo¤s are as follows

E(��1) =
V2
2 E(��2) =

(V2)2

2V1

E�1 (�
�) = V1 � V2 E�2 (�

�) = 0;

while the expected total e¤ort is

ETE(��) =
V2(V1 + V2)

2V1
:

Proof. See Appendix A.3.

3.3. Decreasing Returns to Scale: � < 1

As for the constant returns to scale case, we establish a unique equilibrium. To underline
the �continuous�variation of equilibria for variations of �, the statement includes the
one of Theorem 3.1.

Theorem 3.4. Suppose n = 2, V1 � V2 and � � 1. There exists a unique pure
strategy Nash equilibrium to the serial contest. In this equilibrium contestants�bids
and expected payo¤s are as follows

b�1 =
�V1
2

�
V2
V1

��
b�2 =

�V2
2

�
V2
V1

��
E�1 (b

�) = V1
h
1� �+1

2

�
V2
V1

��i
E�2 (b

�) = V2
1��
2

�
V2
V1

��
;

while total e¤ort is

TE(b�) =
�

2

�
V2
V1

��
(V1 + V2):

Proof. See Appendix A.4.

For � < 1 both payo¤ functions are strictly concave and the equilibrium is strict.
When the CSF becomes insensitive to e¤ort and approaches the fair lottery, equilibrium
bids go to zero.10

10 It is interesting to observe that in this equilibrium total e¤ort need not be increasing in �. Consider
the following example. Let V1 = 9 and V2 = 1. We have that with � = 1=2, TE(b�; � = 1=2) = 5=6.
With � = 1, TE(b�; � = 1) = 5=9.
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4. Many Contestants

In this section we investigate the robustness of the equilibrium predictions of the two-
bidder serial contest w.r.t an increase in the number of contestants. We �nd further
similarities to the all-pay auction equilibrium when the CSF is not too insensitive to
e¤ort.

An important property of the all-pay auction refers to participation in the contest.
A well known result says the following. Suppose valuations are decreasingly ordered,
that is, V1 � V2 � � � � � Vn. There exists a mixed strategy equilibrium in which the
two contestants with the highest valuations bid in (expectation) as in Theorems 3.1 and
3.3. All other contestants abstain from the contest with probability one. Moreover, this
equilibrium is unique if V2 > V3.11 Thus, when embedding an all-pay auction into a
larger game, one might argue that it is reasonable to deal only with two contestants. In
this section we show that the serial contest has similar properties when the CSF is not
too di¤erent from the all-pay auction. More precisely, this is true under non-decreasing
returns to scale but not under decreasing returns to scale.

4.1. Constant Returns to Scale: � = 1

The next result says that under constant returns to scale there is an equilibrium in
pure strategies in which (loosely speaking) the prescriptions of Theorems 3.1 apply to
contestants B1 and B2, while all other contestants have a strict incentive to abstain
from the contest with probability one.

Theorem 4.1. Suppose V1 � V2 � � � � � Vn and � = 1. There exists a pure strategy
Nash equilibrium to the serial contest. In this equilibrium contestants�bids and expected
payo¤s are as follows

b�1 =
V2
2 b�2 =

V 22
2V1

b�j = 0 for j > 2

E�1 (b
�) = V1 � V2 E�2 (b

�) = 0 E�j (b
�) = 0 for j > 2;

while total e¤ort is

TE(b�) =
V2(V1 + V2)

2V1
:

11 When there is a multiplicity of equilibria, in no equilibrium there is a contestant whose expected
payo¤ exceeds the one speci�ed in the statement. Moreover, the only case in which there is no revenue
equivalence among equilibria is when more than one contestant have the second highest valuation which
is strictly lower than the highest one. See Baye et al. (1996) for more details.
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Proof. See Appendix A.5.

As the all-pay auction, the serial contest has multiple equilibria. For instance, if there
are three contestants with the same valuation it is not clear who abstains. Moreover,
even in situations in which valuations di¤er this multiplicity might persist. Consider
the following example.

Example 4.2. Let (V1; V2; V3) = (10; 9; 8) and � = 1. The following strategy pro�le is
an equilibrium. Contestant B1 is not active and bids ~b1 = 0. Bidder B2 bids ~b2 = 4
and B3 exerts e¤ort ~b3 = 32=9. Given the abstention of B1, the others act optimally
(by Theorem 3.1). Given ~b2 and ~b3, E�1(b1;~b�1) < 0 for all b1 > 0.

The strategy pro�le used in this example constitutes an equilibrium because of a
�coordination failure�. The �wrong�set of contestants is active. Given the other bids
and that valuations are very close it does not pay for the bidder with the highest
valuation to submit a positive bid. This equilibrium disappears if V1 increases. Despite
the multiplicity of equilibria we can establish that an important property of the all-pay
auction holds for any equilibrium of the constant returns to scale serial contest.

Theorem 4.3. Suppose V1 � V2 � � � � � Vn and � = 1. In any pure strategy Nash
equilibrium of the serial contest there are exactly two active bidders. If a strategy pro�le
constitutes an equilibrium in which the bidder pair Bi and Bk with i < k is active, then
the prescriptions of Theorem 3.1 apply (substituting the subscript 1 for i and 2 for k).

Proof. See Appendix A.6.

The multiplicity of equilibria in the serial contest is a natural extension of the multi-
plicity of equilibria in the all-pay auction (see Theorem 1 and 2 in Baye et al. (1996)). In
the latter a multiplicity arises when contestants have exactly the same valuation, while
in the former a multiplicity exists when valuations are exactly or almost the same. In
both contests di¤erent coordinations result in di¤erent sets of active contestants.

4.2. Increasing Returns to Scale: � > 1

The next result says that we can extend the mixed strategy equilibrium in Theorem 3.3
in the same way as we did with the pure strategy equilibrium of Theorem 3.1.

Theorem 4.4. Suppose V1 � V2 � � � � � Vn and � � 1. There exists a Nash equilib-
rium in mixed-strategies to the n-player serial contest. In this equilibrium contestants�
expected bids and expected payo¤s are as follows

E(��1) =
V2
2 E(��2) =

(V2)2

2V1
b�j = 0 for j > 2

E�1 (�
�) = V1 � V2 E�2 (�

�) = 0; E�j (�
�) = 0 for j > 2;
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while the expected total e¤ort is

ETE(��) =
V2(V1 + V2)

2V1
:

Proof. See Appendix A.7.

Again, there are multiple equilibria. To see this note that for more than three
contestants Theorem 4.4 establishes an asymmetric equilibrium even if the game is
symmetric. Following Dasgupta and Maskin (1986), our Lemma A.1 (in the Appendix)
guarantees the existence of a symmetric equilibrium even when there are more than
three contestants.

Because of Theorems 4.1 and 4.4 one might argue that it is reasonable to restrict
the analysis of the serial contest to the case of only two bidders. We show next that
this is no longer so when the CSF is very insensitive to e¤ort.

4.3. Decreasing Returns to Scale: � < 1

As in the constant returns to scale case, one might try to generalize the equilibrium
of the two-bidder contest to any number of contestants. It turns out that this is a
di¢ cult task and we will leave an exhaustive analysis for future research. However, it
is straightforward to see that with decreasing returns to scale low valuation contestants
have strong incentives not to abstain from the contest.

Taking into account that valuations are decreasingly ordered, it is natural that this
order is re�ected in the bids of a pure strategy equilibrium. The contestants��rst order
conditions imply then that the following strategy pro�le is a candidate equilibrium

b�1 =

24�V1
0@ nX
j=2

1

j(j � 1)

�
�Vj
j

� �
1��

1A351�� and

b�i =

�
�Vi
i

� 1
1��

24�V1
0@ nX
j=2

1

j(j � 1)

�
�Vj
j

� �
1��

1A35�� ;8Bi 6= B1.
Note that for n = 2, this strategy pro�le becomes identical to the one in Theorem

3.4.12 Notice also that b�i > 0 for all Bi =2 fB1; B2g. It turns out that in many situations
12 It can also be shown that the candidate equilibrium strategy pro�le converges to the one for

constant returns to scale. That is, as � ! 1�, b�1 ! V2
2
; b�2 ! (V2)

2

2V1
and b�i ! 0 for all agents Bi with

i > 2.
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the candidate equilibrium constitutes indeed a pure strategy equilibrium to the many-
bidder serial contest with decreasing returns to scale. It is thus straightforward to �nd
examples in which more than two contestants have an incentive to participate.13

To summarize, there are situations in which the predictions of the many-bidder
serial contest might di¤er from the two-contestant case. However, it is worth pointing
out that this might happen when the CSF is very insensitive to e¤ort. These situations
are the less interesting cases because the applications of contest models mentioned in
the Introduction are not instances in which contestants have very limited in�uence in
determining the winner of the contest.

5. Properties of Equilibrium: Further Links to the All-Pay Auction

In this section we show that �apart from the links we have already established between
the serial contest and the all-pay auction �there are important further properties which
both share.

5.1. The Extent of Rent Dissipation

Apart from the issue of existence of Nash equilibria in pure and mixed strategies, the
primary concern of the rent-seeking literature has been the question how di¤erent con-
tests a¤ect rent dissipation. As usual, assume in this subsection that all agents have the
same valuation V for the political prize. The rent dissipation rate D is measured by the
ratio between total rent-seeking outlays in equilibrium and the value of the contested
rent.

Corollary 5.1. Assume n = 2 and V1 = V2 = V . In (a symmetric) equilibrium of the
serial contest the extent of rent dissipation is D = minf�; 1g.

Proof. See Appendix A.8.

The corollary shows that the serial contest shares with the all-pay auction the fol-
lowing feature: with symmetric valuations (and � � 1) the rent is fully dissipated, even
when the number of rent-seekers is small. Moreover, this conclusion remains approx-
imately true for further values of the economies of scale parameter �. This contrasts
with a well known result establishing D = 1=2 in the Tullock rent-seeking game with
economics of scale parameter � = 1 (see e.g. Konrad (2006)).

13 It is, however, in general not true that the candidate strategy pro�le is always an equilibrium.
When valuations are close, it is possible to construct counter-examples. In these examples, because of
the strong concavity of the CSF, lower bidders have an incentive to outbid the highest bidder.
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5.2. The Exclusion Principle

In their analysis of the all-pay auction Baye et al. (1993) have identi�ed an interesting
incentive for a contest administrator that is very related to the extent of rent dissipation.
They consider an administrator who is interested in maximizing the expected total
amount of bids. The exclusion principle is de�ned as the precommitment to preclude
contestants most valuing the prize from participating in the contest. Baye et al. (1993)
show that depending on the vector of valuations the administrator may have an incentive
to organize such an ine¢ cient contest. Given that our Theorems 4.1 and 4.4 establish
that the expected equilibrium revenues follow equation (10) in Baye et al. (1993), we
can directly apply their Proposition 2 and obtain the following result.

Corollary 5.2. Let V1 � V2 � ��� � Vn. For any � � 1, there exist valuations such that
the exclusion principle applies and the politician bene�ts from excluding the contestants
valuing the prize most from participating in the serial contest.

Notice that the exclusion principle does not apply to the Tullock rent-seeking game
with economics of scale parameter � = 1 (Fang (2002)).

5.3. The Preemption E¤ect

Another related property of the all-pay auction is the preemption e¤ect (see Che and
Gale (2000)). This e¤ect occurs if an increase in the asymmetry of valuations of con-
testants causes the low valuation bidder to be more pessimistic about his prospects of
winning and to become less aggressive. This allows the high valuation bidder to bid less
aggressive, too. We de�ne the preemption e¤ect as a decrease in expected total e¤ort
due to a decrease in V2.14 Direct computation of @ETE=@V2 from the expressions in
Theorems 3.3 and 3.4 shows that this derivative is positive and we have the following
result.
14 We de�ne the preemption e¤ect in response to a variation in V2 in order to �t it with the preceding

intuition from Che and Gale (2000). These authors de�ne the e¤ect as a decrease in expected total
e¤ort due to an increase in V1 (p. 37). For the case of the all-pay auction under both de�nitions there is
preemption. However, B1 does not lower his bid on average in response to an increase in V1. Instead, his
expected bid remains unchanged. To the contrary, under our de�nition both bidders bid less aggressive.
For the serial contest the choice of de�nition matters. De�ning the e¤ect in response to V1 yields that
for � � 1, there is always a preemption e¤ect. For � 2 ( 1

2
; 1), there is a preemption e¤ect if and only

if � > V1
V1+V2

and for � 2 [0; 1
2
], there is never a preemption e¤ect. Broadly speaking, the lower �, the

more moderate the asymmetry must be for the preemption e¤ect to occur. The reason for the di¤erent
results under both de�nitions comes from the fact that in response to a change in V1 contestant B1
bids more aggressive while B2 reduces his e¤ort. For the preemption e¤ect to apply, the increase must
be less than the reduction. In the second price all-pay auction the occurrence of a preemption e¤ect
depends also on the way the asymmetry is increased (see Riley (1999)).
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Corollary 5.3. Assume n = 2 and V1 � V2. For any � > 0, there is always a preemp-
tion e¤ect in the serial contest.

5.4. The E¤ect of a Cap on Political Lobbying

Che and Gale (1998) use the all-pay auction model to study campaign spending in a
lobbying game. They analyze the e¤ect of contribution limits �modelled by a cap m
on bids � on aggregate expenditures. They show that a cap on individual bids may
have the perverse e¤ect of increasing expected total e¤ort. The intuition for this e¤ect
is that a cap can attenuate bidder 1�s ability to preempt bidder 2. As a result bidding
competition may be increased and aggregate expenditures may be raised. A similar
result is true in the serial contest.

Broadly speaking, given that the cap is low enough, in the equilibrium of the serial
contest both contestants submit the highest possible bid. Thus, the restricted ability to
preempt results in a game that admits a pure strategy Nash equilibrium �even when
without cap there is none (see Proposition 3.2). These strategies are not an equilibrium
without a cap, because for B1 it pays to outbid the competitor. But this deviation
from the candidate equilibrium is prevented by the cap, making the strategy pro�le an
equilibrium. A cap increases expected total e¤ort if valuations are asymmetric enough
and, as a consequence, in the equilibrium without a cap the total e¤ort is relatively low.
We obtain the following result.

Corollary 5.4. Assume n = 2 and V1 > V2. For any � > 0, a cap has always the
potential to increase expected total e¤ort in the serial contest. Formally, this occurs if

�

4

�
V2
V1

��
(V1 + V2) < m <

�V2
2
; (5.1)

where � = � if � � 1 and � = 1 otherwise.

Proof. See Appendix A.9.

This contrasts with Fang�s result that a cap does not increase expected total e¤ort in
the Tullock rent-seeking game with economics of scale parameter � = 1 (Fang (2002)).

6. Concluding Remarks

We have analyzed a family of contest games in which the sensitivity of the contest
success function to the contestants� e¤orts is parameterized by a economics of scale
parameter �. It contains the polar cases of the (fair) lottery and the (deterministic)
all-pay auction in which � = 0 and � ! 1, respectively. Our model has advantages
over previous work on contests.
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First, although win probabilities depend on e¤ort di¤erences, we weaken this ab-
solute criterion. In the serial contest win probabilities depend on percentage mark-ups
of e¤ort. Moreover, the serial contest is homogenous of degree zero in e¤ort.

Second, in applications, two-player contests are often plugged into larger models in
order to analyze the e¤ect of con�ict situations on other variables of interest. In such a
situation the game is solved by backwards induction and the equilibrium payo¤s of the
contest subgame are plugged into the previous stage. The serial contest o¤ers a very
tractable model for this purpose. We have shown that given contestants�valuations V1
and V2, with V1 � V2, equilibrium payo¤s are given by

E�1 = V1

�
1� �+1

2

�
V2
V1

���
and E�2 = V2

1��
2

�
V2
V1

��
;

where � = � if � � 1 and � = 1 otherwise.15 Thus, the model builder does not need
to deal with the speci�c algebraic form of the equilibrium strategies. These expressions
apply to the polar case of the all-pay auction and �nite values for � can be interpreted as
departures from this polar case through a contest success function less and less sensitive
to e¤ort. The model builder can thus easily check for robustness, that is, up to which
value for � the conclusions of the polar all-pay auction remain true. Further advantages
are that this equilibrium is unique in many situations and that often further contestants
have a strict incentive not to participate in the contest.

Third, in their analysis of the (two-player) di¤erence-form contest, Che and Gale
(2000) provide important robustness results for the all-pay auction in the sense that
the equilibrium converges to that of the all-pay auction. In contrast, this paper pro-
vides robustness results for the all-pay auction because equilibria (with any number of
contestants) are essentially the same over a large parameter region.

While our model is a step toward a general theory of contests, more work is needed.
On one hand, there are open questions within the class of serial contests. First, for
increasing returns to scale, we do not o¤er an explicit derivation of the equilibrium
mixed-strategies and it is important to determine the properties of other equilibria
when they exist. Second, our analysis of the many player contest for decreasing returns
to scale is incomplete and it is important to know what the equilibrium is. On the other
hand, given that the serial contest shares important properties of equilibrium with other
contests, it is important to know whether these properties extend to more general classes
of contests.
15 To the best of our knowledge, for the popular Tullock rent-seeking game it is not known what

the equilibrium is when there is no common value and the economics of scale parameter � is larger
than n=(n� 1). In our companion paper Alcalde and Dahm (2007) we tackle this issue generalizing the
technics used in the current paper.
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A. Appendix

A.1. Proof of Theorem 3.1

We show �rst that the pro�le b� is an equilibrium. Suppose B2 bids b�2. We have that

E�1(b1; b
�
2) = b1

��
V1
V2

�2
�1
�
if 0 � b1 � b�2 and E�1(b1; b�2) = V1�

(V2)
2

4b1
� b1 otherwise.

Note that b�1 maximizes this function. Suppose B1 bids b
�
1. We obtain E�2(b

�
1; b2) = 0

if 0 � b2 � b�1 and E�2(b�1; b2) = V2 �
(V2)

2

4b2
� b2 � 0 otherwise. Hence, B2 can not do

better than bidding b�2.
We show now uniqueness. Suppose that there is another equilibrium b�� 6= b�. Be-
cause of the preceding we have b��1 6= b�1 and b

��
2 6= b�2. First, suppose b��2 < b��1 .

We have that E�2(b��) = b��2

�
V2
2b��1

� 1
�
. If b��1 < b�1, then E�2(b

��) is increasing

in b��2 implying b��2 = b��1 . If b
��
1 > b�1, then E�2(b

��) is decreasing in b��2 implying
b��2 = 0. But then B1 can improve by bidding b�1. Second, assume b

��
2 � b��1 . We have

that E�1(b��) = b��1

�
V1
2b��2

� 1
�
and E�2(b��) = V2 � b��1 V2

2b��2
� b��2 . The maximizer of

E�2(b
��) is b��2 =

q
b��1 V2
2 . If b��1 < b�1, this implies that E�1(b

��) is increasing in b��1
yielding the contradiction b��1 = b��2 = b�1. If b

��
1 > b�1, then at the optimum we have

E�2(b
��) = V2 � 2

q
b��1 V2
2 < 0.

Straightforward computations yield E�(b�) and TE(b�). Q:E:D:

A.2. Proof of Proposition 3.2

Suppose b� is a pure strategy equilibrium. Analogously to the reasoning in step 1 of the
proof of Theorem 4.3 it can be established that the cardinality of the set of active bidders
jBAj � 2. W.l.o.g. number these contestants such that b�1 � b�2 � � � � � b�k > 0. Consider
any Bi 2 BA with i � 2. Equilibrium requires E�i(b�) =

h
	i+1+

(b�i )
��(b�i+1)�
i(b�1)

�

i
Vi�b�i =h

	i+1�
(b�i+1)

�

i(b�1)
�

i
Vi+ b

�
i

h
(b�i )

��1

i(b�1)
� Vi� 1

i
� 0 (setting 	n+1 = 0). Given that the �rst term

is negative, it is needed that the second is positive. Given � > 1, the latter inequality

implies that
@E�i(bi;b

�
�i)

@bi
= �

(b�i )
��1

i(b�1)
� Vi � 1 > (b�i )

��1

i(b�1)
� Vi � 1 � 0 holds, 8bi 2 [b�i ; b�i�1].

Thus, b�1 = b�2 = � � � = b�k > 0 must hold. E�i(b
�) � 0 implies b�1 � Vi

k for all
i 2 f1; : : : ; kg. Consider the active bidder with the highest valuation, say, Bj . If

bj � b�1, then E�j(bj ; b��j) =
h
1� (b�1)

�

k(b�j )
�

i
Vj � bj and

@E�j(bj ;b
�
�j)

@bj

���
bj=b�1

> 0, b�1 <
�Vj
k .
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Given � > 1 and that Vj is the highest valuation, the latter holds and Bj has a pro�table
deviation. Q:E:D:

A.3. Proof of Theorem 3.3

The proof we o¤er is constructive and uses three lemmata. In a �rst step, we use a �nite
approximation to establish the existence of a symmetric mixed strategy equilibrium for
any symmetric serial contest and to derive some properties of it. We go then a step
further and build on this equilibrium to obtain one in asymmetric contests.16

We start by normalizing valuations such that (V̂1; V̂2) = (1; V2=V1). Since the serial
contest is homogenous of degree zero in e¤ort, this is w.l.o.g., because it does not change
the ranking of payo¤s from pure strategies. If a pure strategy b1=V1 yields

E�1(b1=V1; �
�
2) = ProbfB1 wins j ��2g �

b1
V1

in the normalized game, then b1 obtains E�1(b1; ��2) = E�1(b1=V1; �
�
2)V1 in the original

game because win probabilities are the same.
Consider �rst the symmetric serial contest in which there is a common valuation

V̂ = 1. We consider in addition to the original game a discrete version of the serial
contest. The serial contest is �nite with grid G if the strategy space is discrete such that
given some integer G only bids on the �nite grid f0; 1=G; 2=G; : : : ; (G � 1)=G; 1g are
feasible. We indicate an arbitrary element of the grid by x=G where x 2 f0; 1; : : : ; Gg.17
Let ~�G denote an equilibrium to the game with �nite grid G. The �rst lemma is a direct
consequence of Dasgupta and Maskin (1986). It establishes existence of equilibrium and
relates the continuous to the �nite game. For later reference it refers to any number of
contestants.18

Lemma A.1. The symmetric n-bidder serial contest has a symmetric mixed strategy
Nash equilibrium, both when the strategy space is �nite and when it is continuous.
Moreover, the pro�le �� = limG!1 ~�G exists and constitutes a mixed strategy Nash
equilibrium to the continuous serial contest.

Proof. The existence of a symmetric equilibrium for the serial contest with �nite grid
G follows from Lemma 6 in Dasgupta and Maskin (1986). We will show that the con-
ditions of their Theorem 6 are also satis�ed. This theorem guarantees the existence

16 Our analysis of the symmetric serial contest follows very closely Baye et al. (1994) who investigate
the symmetric two-bidder Tullock rent-seeking contest.
17 Note that this is realistic because it implies the existence of a smallest monetary unit 1=G, like in

experimental settings. For simplicity we say that bidder Bi bids x, although we mean x=G.
18 From Dasgupta and Maskin�s results it also follows that the equilibrium strategy has no atom at

zero e¤ort, since this is a point of discontinuity of the CSF.
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of a symmetric mixed strategy equilibrium when the strategy space is continuous. In
addition, the proof of Dasgupta and Maskin�s Theorem 6 shows that the limiting equi-
librium of a �nite approximation to the strategy space as the grid size goes to zero is
indeed an equilibrium to the continuous game. The application of their theorem requires
�ve conditions to be ful�lled. First, the sum of payo¤s must be upper semi-continuous.
Since

Pn
i=1E�i(b) = 1 �

Pn
i=1 bi is continuous, it is upper semi-continuous, too. Sec-

ond, E�i(b) must be bounded. This holds as �1 � E�i(b) � 1 for bi 2 [0; 1] and
i = 1; 2; : : : ; n. Third, the discontinuities in the individual payo¤ functions must be of
dimension less than n. This holds because for the serial contest the origin is the only
point of discontinuity. Fourth, a so-called property � must hold. Because of the single
discontinuity this inequality is straightforward to check. Fifth, the individual payo¤
functions E�i(bi; b�i) must be weakly lower semi-continuous in bi. This is ful�lled as
they are lower semi-continuous. Thus, Theorem 6 in Dasgupta and Maskin (1986) can
be applied.

We return now to two-bidder serial contest with �nite grid G.

Lemma A.2. Suppose � � 1. In any symmetric Nash equilibrium ~�G = (~�G1 ; ~�
G
2 ) of a

symmetric two-bidder serial contest with �nite grid G it is true that

(1) 0 � E�i(~�G) �
1

G
and (2)E(~�Gi ) =

1

2
� E�i(~�G).

Proof. First of all, let us introduce some additional notation. Given G, and contestant
Bi�s strategy ~�Gi , ~�

G
ik denotes the probability that contestant Bi assigns to bidding k=G.

Note that in a symmetric equilibrium no mass will be placed at 1, that is, ~�GiG = 0 for
i = 1; 2. To proof Lemma A.2, we will concentrate on agent B1. A similar reasoning
applies to agent B2.
(1) (a) For the lower bound: The expected payo¤ from bidding x when the opponent
follows the equilibrium strategy ~�G2 is

E�1(x; ~�
G
2 ) =

G�1X
j=0

~�G2j	1(x; j)�
x

G
: (A.1)

Choosing x = 0 a contestant can secure himself E�1(0; ~�G2 ) � 0. Thus, E�i(~�G) � 0.
(b) For the upper bound: Given that ~�G is an equilibrium, B1 must react optimally
to B2�s strategy. Hence, the following holds for all x: (i) E�1(x; ~�G2 ) � E�1(~�G), (ii)
E�1(x; ~�

G
2 ) = E�1(~�

G) if ~�G1x > 0 and (iii) ~�
G
1x = 0 if E�1(x; ~�

G
2 ) < E�1(~�

G). Using
(A.1), condition (i) can be rewritten as

G�1X
j=0

~�G2j	1(x; j) � E�1(~�G) +
x

G
: (A.2)
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Let x � 0 be the lowest bid that is part of the symmetric mixed strategy equilibrium.19
By (ii) condition (A.2) holds with equality

1

2
~�G2x +

1

2

x�

(x+ 1)�
~�G2(x+1) + � � �+

1

2

x�

(G� 1)� ~�
G
2(G�1) = E�1(~�

G) +
x

G
: (A.3)

For x+ 1 condition (A.2) becomes�
1� 1

2

x�

(x+ 1)�

�
~�G2x+

1

2
~�G2(x+1)+ � � �+

1

2

(x+ 1)�

(G� 1)� ~�
G
2(G�1) � E�1(~�

G)+
x+ 1

G
: (A.4)

Computing ~�G2x from equation (A.3) and substitution in inequality (A.4) yields�
1

2
� x�

(x+ 1)�

�
1� 1

2

x�

(x+ 1)�

��
~�G2(x+1) +

+

�
1

2

(x+ 1)�

(x+ 2)�
� x�

(x+ 2)�

�
1� 1

2

x�

(x+ 1)�

��
~�G2(x+2) +

+ � � �+
�
1

2

(x+ 1)�

(G� 1)� �
x�

(G� 1)�

�
1� 1

2

x�

(x+ 1)�

��
~�G2(G�1) �

� E�1(~�G) +
x+ 1

G
�
�
2E�1(~�

G) +
2x

G

��
1� 1

2

x�

(x+ 1)�

�
= (A.5)

=
1

G

�
1� x

�
1� x�

(x+ 1)�

��
� E�1(~�G)

�
1� x�

(x+ 1)�

�
:

Note that every term on the left hand side of condition (A.5) is non-negative. To see
this, de�ne � = x�

(x+1)� 2 [0; 1]. Each term is non-negative if and only if �2� 2�+1 � 0,
which is true. Suppose, by way of contradiction, that E�1(~�G) > 1

G . The right hand
side of condition (A.5) is strictly smaller than

1

G

�
x�

(x+ 1)�
� x

�
1� x�

(x+ 1)�

��
� 0, x � x+ 1:

(2) We have that in a symmetric equilibrium

E�i(~�
G) = ProbfBi winsg � E(~�Gi ):

Summing up for both agents gives

2E�i(~�
G) = ProbfB1 winsg+ ProbfB2 winsg � 2E(~�Gi )

and rearranging yields the statement.

19 I.e., ~�G1x > 0, and ~�
G
1j = 0 for all j < x.
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Lemma A.3. Suppose � � 1. If �� is a symmetric (possibly mixed) Nash equilibrium
strategy pro�le of a symmetric two-bidder serial contest, then the following bidding
strategies �� constitute a Nash equilibrium to the asymmetric two-bidder serial contest
with V̂1 > V̂2:

� Contestant B1 bids ��1 = ��1 and

� contestant�s B2�s strategy ��2 is such that he abstains from the contest with prob-
ability (1� V̂2=V̂1) and bids ��2 whenever he participates.

Proof. To see that B2 has no pro�table deviation from ��2, note that in the symmetric
game B2 obtains an expected payo¤ of E�2 (��) = 0. Since ��1 = �

�
1 and V̂2 is the same

in both games, any pure strategy yields the same as in the symmetric game, B2 obtains
E�2 (�

�) = 0 and is willing to abstain with probability (1 � V̂2=V̂1). For B1 note that
in the symmetric game, given the mixed strategy ��2 by B2, all pure strategies b1 in the
support of ��1 maximize

E�1(b1; �
�) = V̂2E[PrfB1 winsjb1;	1; ��g]� b1; (A.6)

where E[PrfB1 winsjb1;	1; ��g] is B1�s expected win probability from the pure strategy
b1 when the CSF is	1 and B2 mixes according to the equilibrium strategy ��. Note that,
although we do not know whether �� is a continuous, discrete, or partially continuous
and discrete distribution, the following must be true. When V̂1 > V̂2, since ��2 = ��2
(conditional on entry), we look for pure strategies that maximize

E�1(b1; �
�
2) =

 
1� V̂2

V̂1

!
V̂1 + V̂2E[PrfB1 winsjb1;	1; ��g]� b1: (A.7)

Given that any pure strategy in the support of ��1 maximizes (A.6) and that (A.6)
and (A.7) only di¤er by an additive constant, any pure strategy in the support of ��1
maximizes (A.7), too. For later reference observe that a pure strategy maximizing (A.6)
yields E�2(��) = 0, while with (A.7) E�1(��) = V̂1 � V̂2 is obtained.

We are now in a position to prove Theorem 3.3.
Proof of Theorem 3.3. The existence of a mixed strategy equilibrium follows from
Lemma A.1. The expressions for expected bids, total e¤ort and payo¤s follow from
Lemmata A.2 and A.3, taking into account that we normalized the game. Q:E:D:

Although the explicit derivation of the equilibrium mixed-strategies is beyond the
scope of the present paper, we conclude this proof computing four examples of the
symmetric two-bidder serial contest with a �nite strategy space. We represent the cases
of � equal to 1, 2, 10 and 1 with a grid of G = 13 in Figure A.1. The computations
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Figure A.1: Q = 13 and � 2 f1; 2; 10;1g

suggest that, as the returns to scale increase, the bulk of probability mass shifts to the
right and some mass is attached to low bids. As � increases further, �� becomes more
and more uniformly distributed, which is the optimal bidding strategy in the all-pay
auction.20

A.4. Proof of Theorem 3.4

For � = 1, the statement follows from Theorem 3.1. Suppose � < 1. Given two bids

bH ; bL with bH � bL, de�ne the maximization problems [PL]maxbL 1
2

�
bL
bH

��
VL�bL and

[PH ] maxbH
�
1� 1

2

�
bL
bH

���
VH � bH , with unique maximizers ~bL(bH) =

�
2
�VL

b�H

� 1
��1

and ~bH(bL) =
�
�VH
2 b�L

� 1
�+1
, respectively.

We show �rst that the pro�le b� is an equilibrium. Suppose B2 bids b�2. We have that if
b1 � b�2, then the optimal choice must solve [PH ] and we obtain ~bH(b�2) = b�1. If b1 � b�2,

then b1 must solve [PL] and ~bL(b�2) =
�
2V

�1
��1
1 V

�
��1
2

�
V2
V1

� �2

��1
. This means that B1 has an

incentive to raise his bid until equalling the one of B2, because ~bL(b�2) � b�2 if and only

if
�
V2
V1

��+1
��1 � 1 which is true. Suppose B1 bids b�1. We have that if b2 � b�1, then the

20 Due to the �niteness, contestants obtain very low but strictly positive expected pro�ts (smaller
than 0:039). Moreover, the expected bid �even of the constant returns to scale case and the discrete
all-pay auction �is strictly lower than 0:5 (but larger than 0:46). Baye et all (1994) have shown that in
the two-player case the symmetric equilibrium of the discrete all-pay auction converges to the unique
equilibrium of the continuous strategy space all-pay auction.
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solution to [PH ] and yields ~bH(b�1) =
�
2V

�
�+1

1 V
1

�+1

2

�
V2
V1

� �2

�+1
. This implies that that B2

has an incentive to lower his bid until equalling the one of B1, because ~bH(b�1) � b�1 if
and only if

�
V2
V1

�1��
� 1 which is true. If b2 � b�1, then solving [PL] the optimal choice

is ~bL(b�1) = b
�
2.

Uniqueness follows from the fact that any other equilibrium b�� 6= b� must be a di¤erent
solution to [PL] and [PH ]. However, ~bH = b�1 and ~bL = b

�
2 are the only solution satisfying

b�1 � b�2. Straightforward computations yield E�(b�) and TE(b�). Q:E:D:

A.5. Proof of Theorem 4.1

Consider the pure strategy equilibrium of Theorem 3.1. This result implies that given
b�j = 0 for j > 2, the e¤orts of B1 and B2 are optimal. Consider any Bj with j > 2. We

have that E�j(bj ; b��j) = bj
�
2Vj
3V2

� 1
�
if 0 � bj � b�2, E�j(bj ; b��j) =

�
bj
V2
� V2

6V1

�
Vj � bj

if b�2 � bj � b�1 and E�j(bj ; b��j) =
�
1 � V2

4bj

�
1 + V2

3V1

��
Vj � bj otherwise. In all three

cases E�j(bj ; b��j) < 0. Q:E:D:

A.6. Proof of Theorem 4.3

We show �rst that in any equilibrium there are exactly two active bidders.
Suppose b� is an equilibrium. Denote b�H = maxi=1;:::;nb

�
i and b

�
L = minj=1;:::;nb

�
j s.t.

b�j > 0. The sets BA, BH and BL denote the set of active bidders, the set of bidders
with e¤ort b�H and the contestants who bid b�L, respectively. The cardinality of these
sets is denoted by jBAj, jBH j and jBLj.
Step 1: jBAj � 2.
If jBAj = 0, then for all Bi holds E�i(b�) = Vi

n , but E�i(bi =
Vi
2n ; b

�
�i) =

2n�1
2n Vi >

E�i(b
�). If jBAj = 1, then the active bidder can improve by bidding b�H

2 .
Step 2: BA = BH [ BL.
Suppose 9b�i s.t. b�H > b�i > b�L and let b

�
i be the lowest such bid. We have that

E�i(b
�) = Vi

�
b�i�b�L

(jBAj�jBLj)b�H
+

b�L
jBAjb�H

�
� b�i . Since this is a linear function of b�i , the

assumption that b�H > b
�
i > b

�
L requires b

�
H =

Vi
jBAj�jBLj . This implies E�i(b

�) < 0.

Step 3: jBAj � 2.
Take Bi 2 BL. For bi � b�L we have E�i(bi; b��i) = bi

�
Vi

jBAjb�H
� 1
�
. Note that b�L must

maximize this expression independently of whether b�L = b�H or not. Hence, b�L > 0
implies b�H � Vi

jBAj . Note that if b
�
L < b�H , then b

�
H = Vi

jBAj and E�i(bi; b
�
�i) = 0. For
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bi � b�H we have

E�i(bi; b
�
�i) � Vi

�
1� b

�
H

bi

jBAj � 1
jBAj

�
� bi � Vi

�
1� Vi

bi

jBAj � 1
jBAj2

�
� bi; (A.8)

where the �rst inequality comes from the fact that more than one contestant might bid
b�L and the second from the bound on b

�
H . The maximizer of the last expression in (A.8)

is b��i =

p
jBAj�1
jBAj Vi. Suppose b�L < b�H . If jBAj > 2 the last expression in (A.8) at b��i

is strictly positive and Bi has a pro�table deviation from b�L. Suppose b
�
L = b

�
H . This

requires b��i = b�H , implying that b
�
H =

Vi
jBAj and jB

Aj = 2 must hold.
The second part of the statement follows, because Theorem 3.1 applies, given that in
any equilibrium all but exactly two contestants abstain. Q:E:D:

A.7. Proof of Theorem 4.4

Consider the mixed strategy equilibrium of Theorem 3.3. Assume there are further
bidders Bj with j > 2 who have valuations lower or equal to V2 and that such a
bidder considers to bid any pure strategy b0 > 0. Given ��1, contestant B2 obtains
E�2(�

�
1; b

0) � 0 in the two contestants game. Since the serial contest is anonymous and
V2 � Vj , we have 0 � E�2(�

�
1; b

0) = E�2(�
�
1; b

0; 0) � E�j(�
�
1; 0; b

0) > E�j(�
�
1; �

�
2; b

0).
The strict inequality comes from the fact that the serial CSF assigns for each event in
which b2 > 0 in the support of ��2 a strictly lower win probability to both B1 and Bj
than when b2 = 0. Q:E:D:

A.8. Proof of Corollary 5.1

For � � 1 the result follows from Theorem 3.4. For � � 1 consider again the �nite
approximation with normalization V̂ = 1. In a symmetric equilibrium D = 2E(~�Gi ).
Given E(~�Gi ) =

1
2 � E�i(~�

G) and 0 � E�i(~�
G) � 1

G , we have that 1 � D � 1 � 2
G .

Q:E:D:

A.9. Proof of Corollary 5.4

Let n = 2, V1 > V2 and m be in the range speci�ed by (5.1). Notice that the upper
bound implies that, whatever the value of �, the cap restricts at least B1�s optimal bid.
We show �rst that there exists a pure strategy equilibrium in which both contestants
bid m. Suppose contestant Bi bids bi = m. We have that for Bj 6= Bi, E�j(bj ;m) =
1
2

�
bj
m

��
Vj � bj holds. Let � = 1 and note that, since m < V2=2 � Vj=2, E�j(bj ;m)

is strictly increasing. Thus, bi = m is optimal. Consider � < 1. E�j(bj ;m) is a
strictly concave function. Moreover, it is strictly increasing at bj = m if and only if
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m < (�Vj)=2. This holds because of (5.1) and V1 > V2. Let � > 1. E�j(bj ;m) is a
strictly convex function which is strictly decreasing at bj = 0 and strictly increasing at
bj = m. In addition at bj = m we have that E�j(m;m) = V2=2 �m > 0, because of
(5.1). Consider expected total e¤ort. It is increased if and only if ETE < 2m, where
ETE is speci�ed in Theorems 3.3 and 3.4. This yields the lower bound in (5.1). Q:E:D:
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