
RACSAM
Rev. R. Acad. Cien. Serie A. Mat.
VOL. 101 (1), 2007, pp. 45–50
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Enlargements of operators between locally convex spaces

José A. Conejero

Abstract. In this note we study three operators which are canonically associated with a given linear
and continuous operator between locally convex spaces. These operators are defined using the spaces
of bounded sequences and null sequences. We investigate the relation between them and the original
operator concerning properties, like being surjective or a homomorphism.

Extensiones de Operadores entre Espacios Localmente Convexos

Resumen. En esta nota estudiamos tres operadores que están asociados canónicamente a un ope-
rador lineal y continuo previamente prefijado entre espacios localmente convexos. Estos operadores se
definen utilizando los espacios de sucesiones acotadas y de sucesiones nulas. Investigamos la relación
existente entre ellos y el operador original con respecto a ciertas propiedades, como ser sobreyectivo o un
homomorfismo.

1 Introduction, notation and preliminaries
Let E, F be locally convex spaces, l.c.s., and let U0(E) denote the family of all closed absolutely convex
zero neighbourhoods in E. We consider `∞(E), the space of bounded sequences in E, endowed with the
topology given by the zero neighbourhood basis UN ∩ `∞(E), U ∈ U0(E). We also consider c0(E), the
space of null sequences, with the topology inherited from `∞(E), and their quotient. Let L(E,F ) be the set
of linear and continuous operators from E to F . Given T ∈ L(E,F ) we consider the associated operators
T∞, T 0 and T ? defined as follows:

T∞ : `∞(E) −→ `∞(F )
(xn)n −→ (Txn)n,

T 0 : c0(E) −→ c0(F )
(xn)n −→ (Txn)n,

T ? : `∞(E)/c0(E) −→ `∞(F )/c0(F )
(xn)n + c0(E) −→ (Txn)n + c0(F )

These operators are well-defined, linear and continuous. The space `∞(E)/c0(E) is called an enlarge-
ment of E, since E can be identified with the quotient of the set of convergent sequences in E. Harte
used the foregoing operators to generalize some results on the invertibility of operators from the frame of
Banach spaces to normed spaces [12]. This was possible because `∞(E)/c0(E) is complete, whenever E
is normed [12, Th. 4.5.2]. Let us recall some of these results:
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Theorem 1 ([12, Th. 3.3.5.2 & Th. 3.4.5.2]) Let X, Y be normed spaces T ∈ L(X, Y ).

1. If T ? is injective, then T is a monomorphism, and if T is a monomorphism, then T ? is also.

2. T ? is almost open if and only if T is almost open.

An operator T ∈ L(E,F ) is a homomorphism if for every U ∈ U0(E) there exists V ∈ U0(F ) such
that V ∩ T (E) ⊂ T (U). An injective homomorphism is a monomorphism, also called a bounded below
operator. A surjective homomorphism T ∈ L(E,F ) is an open operator. The behaviour of these operators
between normed spaces has been studied by Berberian, Harte, and Abramovich et al. [1, 2, 12]. T is said to
be almost open if for every U ∈ U0(E) there exists V ∈ U0(F ) such that V ⊂ T (U)

F
. Open and almost

open operators coincide when E, F are Fréchet spaces by the open mapping theorem, see e.g. [15, p. 166]
or [17, Lemma 8.2]. Besides, the almost open operators coincide with the nearly open operators in the sense
of Pták with dense range, see [16, p. 24]. For a detailed study of almost open operators between normed
spaces see [12]. Bonet and the author studied the topological properties of the set of monomorphisms and
almost open operators in [6]. The role of duality between these classes of operators was treated in [5].

In this note we study several properties of the operators T∞, T 0 and T ? in the setting of locally convex
spaces, in which new phenomena appear, as our examples show.

2 Injectivity
Let T ∈ L(E,F ). Clearly, T∞ and T 0 are injective whenever T is. The converse is also true looking at the
first coordinate. Clearly, if T ? is injective, then T is injective. However, the injectivity of T is not enough
to conclude the converse as the next trivial example shows:

Example 1 Consider the space of all summable sequences `1, let (en)n denote the canonical basis and
T ∈ L(`1) be defined as Ten := 1/n2en, n ∈ N. We have (1/n2en)n ∈ c0(`1), but (en)n /∈ c0(`1).
Therefore T ? is not injective because ker(T ?) is not trivial.

Proposition 1 Let T ∈ L(E,F ) be injective. Suppose that one of the following conditions is verified:

(1) E is semi-Montel, or

(2) T−1 : T (E) ⊂ F → E is sequentially continuous,

then T ? is injective.

PROOF. To proof (1) fix (xn)n ∈ `∞(E) such that (Txn)n ∈ c0(F ). Suppose on the contrary that
(xn)n /∈ c0(E), then there exists U ∈ U0(E) and a subsequence (xnk

)k such that xnk
/∈ U, k ∈ N. Since

(xnk
)k is bounded, there exists an adherent point to it, say x ∈ E . Therefore Tx is adherent to (Txnk

)k

and Tx = 0. So (xnk
)k has 0 as an adherent point, a contradiction. On the other hand, (2) follows from the

definition of T ?. �

Harte proved that if T ? is injective and E,F are normed spaces, then T is a monomorphism, see [12,
Th. 3.3.5.2]. The same conclusion can also be drawn for F metrizable.

Proposition 2 Let E be a normed space and T ∈ L(E,F ) with T ? injective. Then T−1 : T (E) → E is
sequentially continuous. In addition, if F is metrizable, then T is a monomorphism.

PROOF. Suppose that T−1 : T (E) → E is not sequentially continuous. There exists a sequence (xn)n ⊂
E such that (Txn)n ∈ c0(F ), but (xn)n /∈ c0(E). Therefore there exists a subsequence (xnk

)k and
ε > 0 such that ‖xnk

‖ ≥ ε for all k ∈ N. Define (zk)k ∈ `∞(E) as zk := xnk
/‖xnk

‖, k ∈ N. Since
(Txnk

)k ∈ c0(F ), we get (Tzk)k ∈ c0(F ). As T ? is injective we have (zk)k ∈ c0(E), a contradiction. If
F is metrizable and T−1 is sequentially continuous, then it is continuous, and T is a monomorphism. �

The assumption that F is metrizable cannot be dropped to obtain that T is a monomorphism as the next
examples shows.
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Example 2 (1) Let T be the identity operator T : (`1, ‖·‖) → (`1, σ(`1, `∞)). It is bijective but it
is not open because the norm topology is strictly finer than the weak topology on every infinite-
dimensional Banach space. By Schur’s lemma, e.g. [15, 22.4(2)], `1 has the property that all their
weakly convergent sequences are also norm convergent. So that, T−1 is sequentially continuous but
it is not continuous.

(2) There exists a linear partial differential operator with constant coefficients P (D) =
∑

|α|≤m aαDα,
and an open set Ω ⊂ Rn such that P (D) : C∞(Ω) → C∞(Ω) is surjective, but P (D) : D′(Ω) →
D′(Ω) is not surjective. Such an example can be found in [13, 14]. It can be proved that if P (D) :
C∞(Ω) → C∞(Ω) is surjective, then the operator T := P (D)′ : D(Ω) → D(Ω) has a sequentially
continuous inverse T−1 : T (D(Ω)) → D(Ω), so T ? is injective. Nevertheless, T cannot be a
monomorphism because T ′ := P (D) : D′(Ω) → D′(Ω) would be surjective by the Hahn-Banach
theorem. A contradiction.

3 Surjectivity
An operator T ∈ L(E,F ) is surjective whenever T∞ or T 0 are surjective. To deal with the converse we
need to introduce the notion of lifting of bounded sets. T ∈ L(E,F ) is said to lift bounded sets if for every
bounded set B ⊂ F there is some bounded set C ⊂ E such that B ⊂ T (C). Quasinormable Fréchet spaces
and their relevance for the lifting of bounded sets can be seen in [11], [17, Ch. 26] and [4]. Clearly, if T
lifts bounded sets, then T and T∞ are surjective. The surjectivity of T is not enough to get that T∞ is also
surjective.

Example 3 There exists a Köthe echelon space E = λ1(A) which is a Montel space with quotient isomor-
phic to F = `1; see [15, Ex. 31.5] or [17, Ex. 27.21 and Prop. 27.22]. The quotient mapping q : E → F
does not lift bounded sets since the bounded sets of E are relatively compact. In this case q is surjective,
but q∞ is not surjective.

If T∞ is surjective, then T ? is also surjective. However, the converse sometimes fails.

Example 4 Let X0 be a non-complete normed space and let X be its norm-completion. Let T be the
inclusion operator T : X0 ↪→ X . T is not surjective, nor T∞, but T ∗ is by [12, Th. 5.7.1], since T is
almost open.

Finally, we study necessary conditions to ensure that T 0 is surjective.

Proposition 3 If F is a metrizable l.c.s. and T ∈ L(E,F ) lifts bounded sets, then T 0 is surjective.

PROOF. Fix (yn)n ∈ c0(F ). Since F is metrizable there exists (αn)n ⊂ K such that limn |αn| = ∞
and (αnyn)n ∈ `∞(F ). Besides there is C ⊂ E such that (αnyn)n ⊂ T (C). So that, there is (x′n)n with
Tx′n = αnyn, n ∈ N. Defining xn := x′n/αn, n ∈ N, we have (xn)n ∈ c0(E) and T 0(xn)n = (yn)n.
�

Proposition 4 Let E,F be metrizable l.c.s. If T ∈ L(E,F ) is surjective and open, then T 0 is surjective.
In particular, a surjective operator T between Fréchet spaces satisfies that T 0 is surjective.

PROOF. Let (Uk)k be an absolutely convex zero-neighbourhood basis in E. Clearly, (T (Uk))k is a
zero-neighbourhood basis in F . If (yn)n ∈ c0(F ), we can find a strictly increasing sequence (nk)k ⊂ N,
with n1 = 1, such that yn ∈ T (Uk), n ≥ nk+1. Define the sequence (xn)n ⊂ E as follows: for every
1 ≤ n < n2 we take xn ∈ E with Txn = yn, and inductively, for every nk ≤ n < nk+1 we take
xn ∈ Uk−1 with Txn = yn. Clearly, (xn)n ∈ c0(E) and T 0(xn)n = (yn)n. �
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Example 5 There exists a (DF) space, F := indn Fn, which is also a complete (LB) space, with sequences
converging to 0 in F which are not converging to 0 in any step Fn. Such a space is said to be not sequentially
retractive. As an example take F = (λ1(A))′b, being the dual of a Köthe echelon space λ1(A) which is
Fréchet-Montel, but it is not Fréchet-Schwartz [17, Ej. 27.21]. The space in Example 3 verifies these
conditions. Consider the quotient T : E → F , with E := ⊕∞k=1Fk defined as follows. If x ∈ E is
represented as (xk)k with xk ∈ Fk for every k ∈ N, then we define Tx :=

∑∞
k=1 xk for every x = (xk)k

in E. Take a sequence (xn)n ∈ c0(E). This is contained in ⊕k0
k=1Fk for some k0 ∈ N, therefore (Txn)n ⊂

Fk0 and (Txn)n tends to zero in Fk0 . However, there exist sequences in c0(F ) without preimage in c0(E).

Example 6 Let ϕ be the space of eventually null sequences in K. This can be endowed with the sum
norm ‖·‖1, and with the euclidean norm, ‖·‖2. Let T : (ϕ, ‖·‖1) → (ϕ, ‖·‖2) be the identity operator.
This is clearly surjective and continuous, but it is not open. If it was the case, these norms ‖·‖1 and ‖·‖2
would coincide in a dense subspace of `1. This would imply `1 = `2. On the other hand, the operator
T 0 : c0(ϕ, ‖·‖1) → c0(ϕ, ‖·‖2) is injective but it is not surjective: We define

yn := (0, . . . , 0, 1/(n + 1), . . . , 1/(2n), 0, . . .) , n ∈ N.

Clearly, yn ∈ ϕ and ‖yn‖1 ≥ 1
2 for every n ∈ N, so (yn)n /∈ c0(ϕ, ‖·‖1), but (yn)n ∈ c0(ϕ, ‖·‖2). Finally,

using the injectivity of T 0, we obtain that there is no (xn)n ∈ c0(ϕ, ‖·‖1) verifying also T 0(xn)n = (yn)n.

4 Homomorphisms
In this section we study conditions to state when T∞, T 0 and T ? are homomorphisms, monomorphisms or
open. It is easy to see that T is a homomorphism whenever T∞ or T 0 is a homomorphism.

Theorem 2 (1) If T ∈ L(E,F ) is a monomorphism, then T∞ is a monomorphism.

(2) If T ∈ L(E,F ) is a homomorphism, then T 0 is.

PROOF.

(1) We only need to prove that T∞ is a homomorphism: For every U ∈ U0(E) we have to find some
V ∈ U0(F ) such that (V N ∩ `∞(F )) ∩ T∞ (`∞(E)) ⊂ T∞(UN ∩ `∞(E)). Given U ∈ U0(E)
there is V ∈ U0(F ) such that V ∩ T (E) ⊂ T (U). Consider (yn)n ∈ V N ∩ `∞(F ) such that
Txn = yn, n ∈ N, for a sequence (xn)n ∈ `∞(E). The sequence (xn)n belongs to UN ∩ `∞(E)
because (Txn)n ⊂ V ∩ T (E) ⊂ T (U) and T is injective.

(2) For every U ∈ U0(E) we have to find some V ∈ U0(F ) such that (V N ∩ c0(F )) ∩ T 0 (c0(E)) ⊂
T 0(UN ∩ c0(E)). Given U ∈ U0(E) there exists V ∈ U0(F ) such that V ∩T (E) ⊂ T (U). Consider
(yn)n ∈ V N ∩ c0(F ) such that Txn = yn, n ∈ N, for a sequence (xn)n ∈ c0(E). There exists
n0 ∈ N such that xn ∈ U for every n ≥ n0. On the other hand there exists zn ∈ U such that
Tzn = yn for every n ∈ N. Finally, consider the sequence (wn)n defined as: wi = zi for 1 ≤ i < n0

and wi = xi for i ≥ n0. This sequence belongs to UN ∩ c0(E) and T 0((wn)n) = (yn)n. �

Remark 1 Let T ∈ L(E,F ) and T∞ be a homomorphism. As T∞(c0(E)) ⊂ c0(F ) it follows that
T ? : `∞(E)/c0(E) → `∞(F )/c0(F ) is a homomorphism.

However, T ? can be a homomorphism without T∞ being a homomorphism, c.f. see [12, Th. 4.7.4].

Example 7 Let X, Y be normed spaces with Y complete and T ∈ L(X, Y ) be injective, surjective but not
open. Neither T nor T∞ are homomorphisms. However, T is almost open, and then T ? is open by [12,
Th. 3.4.5.2].
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For T open, the fact that T∞ is open was completely characterized by Dierolf and Bonet, using the
bounded decomposition property (BDP), see [7]. Concerning quasinormability, there are results of De
Wilde [9], Cholodovskiı̌ [8], and Dierolf and Bonet [7, Prop. 1] that characterize the relation between
surjectivity and openness for q∞, see [7, p. 67]. The following result summarizes all these results.

Theorem 3 Let Y be a separable Fréchet space. The following are equivalent:

1. Y quasinormable,

2. for every Fréchet space E containing Y , the operator q∞ is a homomorphism, q : E → E/Y being
the quotient map.

3. for every Fréchet space E containing Y , the operator q∞ is surjective, q : E → E/Y being the
quotient map.

The foregoing conditions must be verified for all E. On the one hand, the Köthe echelon space in Exam-
ple 3, has a quotient q isomorphic to `1. In this case q∞ is not surjective, but it is a homomorphism. On the
other hand, the operator q∞, associated to a quotient q, can be surjective without being a homomorphism,
as the next example shows. In this example we refer to the (DDC) for (DF) spaces, see [4] for more details
about it.

Example 8 Consider an (LB) space F = indn Fn that does not verify the (DDC). Köthe and Grothendieck
introduced a Köthe matrix A = (ai,j;k)(i,j)∈N2,k∈N defined as follows [15, Sec. 31.7]:

ai,j;k :=

{
1 for i ≥ k, i ∈ N,

j for i < k, i ∈ N.

If we consider F := λp(A)′b for 1 < p < ∞, then `∞(F ) is not barrelled. This is a complete regular (LB)
space without the (DDC) [3]. For a further treatment of this kind of examples, we refer to [10, 4.7]. Consider
the quotient T : E → F , where E := ⊕∞k=1Fk, as we do in Example 5. This is a strict inductive limit
of Banach spaces, and hence it verifies the (DDC). By [4, Th. 14] we have that `∞(E) is quasibarrelled.
Since E is complete, then `∞(E) is also barrelled. Clearly, T is continuous and surjective. Besides, both of
them are (LB) spaces, so if we apply a proper version of the open mapping theorem, [18, Th. 8.4.11] or [17,
Th. 24.30], we conclude that T is open. On the other hand, T∞ : `∞(E) → `∞(F ) is continuous, and it is
also surjective due to the regularity of F . However, T∞ cannot be open because `∞(E) is barrelled, and
every quotient of a barrelled space is barrelled. A contradiction.

Finally, we study the relevance of lifting bounded sets to determine that T∞ is a homomorphism.

Theorem 4 Let F be a metrizable l.c.s. If T ∈ L(E,F ) is an open operator lifting bounded sets, then T∞

is open.

PROOF. Fix U ∈ U0(E). We can find V1 ∈ U0(F ) such that V1 ⊂ T (U). Applying [17, Lemma 26.11]
we can find V2 ∈ U0(F ) verifying that for every (yn)n ⊂ V2, there exists a bounded sequence (xn)n ⊂ U
such that Txn = yn for every n ∈ N. If we define V := V1 ∩ V2, then it can be seen V N ∩ `∞(F ) ⊂
T∞(UN ∩ `∞(E)). �

The hypothesis of lifting bounded sets is necessary. In Example 3, we have that q is open, but q∞ is not
surjective, so q∞ cannot be open. Nevertheless, the hypothesis of lifting bounded sets is not necessary for
the study of T 0: If E, F are metrizable l.c.s. and T ∈ L(E,F ) is open, then T 0 is open. However, this
result is not true for non-metrizable (DF) spaces. The operator T in Example 5 is an open operator between
(DF) spaces, but T 0 is not surjective so it cannot be open.
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