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IMPLEMENTATION OF OPTIMAL CONTRACTS
UNDER ADVERSE SELECTION

Pablo Amorés and Bernardo Moreno

Abstract

This paper studies the principal-multiagent model of a firm subject to ad-
verse selection. We focus on agents who have complete information. We propose
some desirable properties to be satisfied by mechanisms implementing the first-
best in Nash equilibrium: (1) enforceability (a property related with the individ-
ual rationality of the mechanism), (ii) renegotiation-proofness, (iii) small strat-
egy spaces,(iv) unique implementation, (v) unique best-reply, and (vi) no mixed
strategies. We prove that enforceability is not compatible with renegotiation-
proofness or the unique best-reply property. Then we propose two mechanisms.
The first one satisfies properties (i), (ii) and (iv). The second mechanism verifies
all properties but enforceability.

Keywords:Adverse Selection, Contract Theory, Implementation Theory,
Nash Equilibrium.

JEL Classification Numbers: C720, D820



1. INTRODUCTION

The principal-agent model has been extensively studied in the literature (see Ma-
cho and Pérez Castrillo [10] for a good review). Specifically, the principal-two
agents problem of a firm subject to adverse selection has been studied in several
papers (Demski and Sappington [2], Ma, Moore and Turnbull [9] and Glover [6]).
These authors assume that agents have private information about their types and
that agents’ types are imperfectly correlated. The first-best contracts are those
that the principal would like to sign if he knew agents’ types. Since these contracts
are such that some type of agents have incentives to lie, the Revelation Princi-
ple (Gibbard [5]) implies that they are not implementable either in dominant
strategies or in Bayes-Nash equilibrium. Then, most papers focus on designing
mechanisms that implement the second-best contracts (those that maximize the
expected profits of the principal subject to truth-telling is an equilibrium) in
Bayes-Nash equilibrium.

In this paper, we assume that agents have complete information about them-
selves and their colleagues (think of workers of a section in some firm, or of
professors of a department in a University). We show that the principal can get
advantage from this informational structure among agents in the sense that he can
implement the first-best contracts in Nash equilibrium (Demsky and Sappington
[3] consider the case of perfect correlation of types, a special case of complete
information).

If we want to be sure that the first-best contracts are descentralizable, it is not
enough to provide a mechanism that implements them in the formal sense (i.e.
for each state of the world, the set of Nash equilibria outcomes coincides with the
first-best contracts). Think for example on the mechanisms used in the proofs of
general results establishing necessary and sufficient conditions for implementation
in Nash equilibrium (see Maskin [11], Moore and Repullo [13], and Dutta and
Sen[4]). They implement in Nash equilibrium any choice rule satisfying these
conditions. However, the complexity of that mechanisms makes it hard to believe
that they can be applied in the real world.

In order to put in practice a mechanism it should verify some properties that
guarantee that agents will play it just as we expect. From here, we have consider
two different factors. First, the mechanism should take into account the way in
which agents calculate their expected utility by playing some profile of strategies.
This is fundamental to know which are the real equilibria of the game. Secondly,
we have to be sure that agents will be able to find the equilibria of the mechanism



without many problems.

Keeping in mind these two factors, we propose six desirable properties to be
satisfied by any mechanism implementing the first-best contracts in Nash equi-
librium: enforceability, renegotiation-proofness, small strategy spaces, unique im-
plementation, unique best-reply property and no mixed strategies.

The first two properties refer to the way in which agents calculate their utility
by playing each profile of strategies. Enforceability is a property related with
the individual rationality of the mechanism. The implementation literature has
paid little attention to this problem. Suppose that for some profile of strategies
the mechanism selects outcomes that are not individually rational for any type
of agent (i.e. outcomes that give to the agents a utility level smaller than the
reservation utility level whatever their types are). In that case agents would
prefer to reject these outcomes. Obviously, if they can do that, their expected
utility by playing these strategies is not given by the outcomes that the mechanism
selects. To avoid that situation we will demand that the mechanisms always choose
contracts that can not be rejected by agents. Of course, this means a restriction
on the outcomes that can be selected by the mechanisms'.

Suppose now that, once the mechanism has selected some outcomes, the agents
renegotiate among them. Again, if these renegotiation takes place, the agents’
expected utility by playing any profile of strategies is not given by the outcomes
that the mechanism chooses, but it will be given by the outcomes that they
obtain after the renegotiation. The implementing mechanisms should take this
into account. Usually, in the implementation literature studying this type of
problems, the renegotiation rule is taken as given (see Moore [12]). However, in
general we may have no idea about which is this renegotiations rule. A mechanism
is renegotiation-proof when it works whatever the renegotiation rule is.

The objective of the other four properties is to make the search for the equi-
librium strategies easier. For that, we first require that the strategy spaces be
as small as possible. Like this, the rules of the mechanism are more simple, and
agents have less problems to coordinate among them to play the Nash equilibrium
strategies. In the same spirit, the unique implementation property claims that,
for each state of the world, there should not be more than one Nash equilibrium.
In this way we avoid problems of coordination on which equilibrium to play. The
alm of the unique-best reply property is to give to agents strong incentives to
stick to the equilibrium strategies, by requiring that the equilibrium strategy of

'In a bargaining model, Jackson and Palfrey [8] examine this form of implementation with
individually rational mechanisms (they call it voluntary implementation).



each agent must be the unique best response to the equilibrium strategies of the
other agents. Finally, we also want to avoid the existence of mixed equilibrium
strategies. On the one hand, the existence of mixed and pure Nash equilibrium
would contradict the unique implementation and the unique best-reply properties.
On the other hand, since mixed equilibrium strategies are usually hard to find, if
there is only one Nash equilibrium and it involves playing mixed strategies, it is
probable that the agents do not play that equilibrium (and then the mechanism
would not work).

Unfortunately some of these properties are not compatible. Specifically, en-
forceability is a big restriction, since it reduces the set of outcomes that the mecha-
nisms can select. We prove that this property is not compatible with renegotiation-
proofness or with the unique best-reply property. Moreover, although we have not
prove it, we have the intuition that enforceability is not compatible with no mixed
strategies either.

Then, we propose two different mechanisms implementing the first-best con-
tracts in Nash equilibrium. The first mechanism (Mechanism 1) is enforceable,
has small strategy spaces and satisfies the unique implementation property. The
second mechanism (Mechanism 2) drop out enforceability. In exchange for that
it is renegotiation-proofness, has small strategy spaces, and satisfies the unique
implementation, unique best-reply and no mixed strategies properties. Moreover,
following the spirit of renegotiation-proofness, it satisfies the last three properties
regardless of the renegotiation rule used by agents. Mechanism 2 tries to make
up for the lack of enforceability by including a strategy for each agent that guar-
antees him the reservation utility level, regardless of the strategy announced by
his counterpart.

The remainder of this paper is as follows. Section 2 presents the model and
some basic definitions. In Section 3 we present the desirable properties of the
mechanisms. Section 4 studies the compatibility of these properties. In Section 4
we propose the two mechanisms. Conclusions are given in Section 5.

2. THE MODEL

A risk-neutral principal owns two production processes, A and B. In order to
operate these technologies he wants to hire two agents, agent A and agent B
respectively. Each process, x; = X;(e;,0;), i € {A, B}, depends on the level of
effort exerted by agent i, ¢;, and a random variable with binary support, 6; €
{6',0*} (with 0 < o' < 82>, that can be interpreted as a productivity parameter.



We will refer to this parameter as the type of the agent. When agent i is of type
k (ke {1,2}) we will write 9? (or 0% when it is clear enough). For all agent i, the
higher 8; realization places the agent in a more productive setting: for all e; > 0,
X;(e;,0%) > Xy(e;s,0"). Therefore, when 0; = 0% (0; = 0'), we will say that agent
i is more productive (less productive). Assume that for each process there are
decreasing returns to effort (X;. > 0 and X;.. < 0, where X, and X, denotes
the first and second derivative of X; with respect to argument ¢). We will also
assume that for all e; > 0 and 0; € {0, 0%}, Xa(es,0;) = Xp(es, 0;)°.

Fach agent observes (04,05) before he decides whether he signs a contract.
However, the principal does not observe either (04,05) or (ea,ep). Therefore
contracts have to be based on the levels of outputs. A contract for agent i will
be a pair, ¢; = (z;, R;) € ]Ri, where x; is a level of output produced by him, and
R; is a payment from the principal. We will assume that the price of the output
is normalized to one (so z; represents both output and value of that output).
Then, when agent i signs a contract ¢; = (z;, R;) € R?, the principal’s profits are
7., = z; — R;. Assume also that there is a reservation wage, R°, denoting the
payofls that an agent would obtain if he did not sign any contract (we can think
on R? as the unemployment compensation). Notice that R® does not depend on
the type of the agent.

For all agent i € {A, B} and all ; € {0",0%}, we can compute the level of effort
which is necessary for agent 1, ¢;, to produce a level of output x;. Then, agent
i’s preference relation can be defined over z; and R;. Let u;(.,0;) : ]R%r — R be
a utility function representing this preference relation over the contracts in ]Ri.
For simplicity, we will assume that if both agents are of the same type, they are
identical, that is, for all i € {A, B} and k € {1,2}, u;(.,0%) = u(.,0"). Assume
also w.l.o.g. that u(O,RO,Ql) = u(O,RO,QQ) = [U°. We will call to this value U°
the reservation utility level. For all i € {A, B}, all 0, € {0',0%}, and all ¢ € R2,
we say that contract ¢ is individually rational for agent i when u(c,6;) > U°.

We will suppose that, for all 0% € {06}, the utility functions u(.,0%) satisfy
the following assumptions:

Assumption 1. For all 0% € {0",0%}, u(.,0%) is twice continuous and differen-
tiable in (z, R), decreasing in x, increasing in R and strictly concave in (x, R).

Assumption 2 (Single-crossing property). For all (z,R) € R? and all o' >

2Notice that this model does not include joint production processes where the effort of both
agents is necessary to produce a unique output.



x, let Ry, Ry € Ry be such that u(z,R,0') = u(z/,Ry,0") and u(z, R,0%) =
u(z', Ry, 0%). Then Ry > Ry.

From these assumptions it follows that preferences on ]Ri are strictly convex
and that the indifference curves of the less and the more productive agent only
cross in one point®.

Suppose that the principal could observe the type of the agents before signing
any contract (i.e. he had complete information). Then, for all i € {A, B} and
all k € {1,2}, if agent i is of type k, the principal would offer him the following
contract:

cp = (z3, Rp) € argng]%gc{ﬂc cu(e, 0) > U (1)
ceRy

The solutions to these programs for all k € {1,2} are what we call first-best
contracts. We will assume that these contracts are such that Ter >0 and ey > 0.
It is easy to see that the first best contracts are defined by the following two
equations:

u(ck, 0 = U° (2)
ou(z;, Ry, 0%) Ou(z:, R:,0")

= — 3
OR ox 3
and that they verify the following properties:

7[_01‘ < 7[_03 (4>

u(cy,0") < U° < u(c},0%) (5)

We have represented graphically the first-best contracts in Figure 2.1. Here,

solid (dotted) curves represent indifference curves of an agent of type 1 (type 2).

It is clear that any individually rational contract for an agent of type 1 is also

individually rational for an agent of type 2. Straight lines with slope one represent
contracts which give to the principal the same profits.

3Most papers studying this problem assume that preferences can be represented by an ad-
ditively separable utility function, u(z, R,0;) = U(R) — D(x,0;), where U is increasing and
strictly concave, D is increasing and strictly convex in z, and for all z, D(z, 91) > D(z, 92) and
Dy(x,0") > D,(x,6%). These functions are included in our domain.
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Figure 2.1:

In order to be sure that the agents will accept to sign the first-best contracts we
assume that they strictly prefer to sign a contract which gives them the reservation
utility level, rather than not signing any contract*. From now, we denote as NC
to the situation in which an agent signs no contract. Then we can write our
assumption as follows:

Assumption 3. For all i € {A, B} and all ¢ € R? with u(c,0;) > U°, agent i
strictly prefers ¢ rather than NC. Moreover, for all ¢ € R% with u(c',0;) < U°,
agent i strictly prefers NC' rather than c .

Under Assumption 3, it is clear that we can not identify the situation NC'

with any contract in R%. To represent the preference relation over the whole set
R? UNC we define a utility function v(.,6;) : R U NC — R such that, (i) for all

4For that, we can assume that the agents do not like to be unemployed, and that then, they
prefer to have a job that allows them to obtain the reservation utility level rather than to be
out of work and to be paid the unemployment compensation (although they still prefer to be
unemployed rather than to sign a contract which gives them an utility level smaller than UO).



c € R? with u(c,0;) > U°, v(c,0;) = u(c,0;) + = (where £ > 0), (ii) for all c € R?
with u(c,8;) < U° v(e,0;) = u(c,0;), and (iil) v(NC,0;) = U°.

Now, we introduce some additional notation. A state of the world is a profile
(04,05) € {0',0°} x {0",0°}. For all k,1 € {1,2} we denote 0" to the state of the
world (04,05) = (0F,0"). Let © = {0',0" 0™ 0*®} be the set of feasible states
of the world. For all 0" € ©, all ¢ = (z, R) € R2 and all i € {4, B}, let v;(c,0")
be the utility level obtained by agent ¢ with contract ¢ given that the state of the
world is 0" (i.e. va(c,0%) = v(e,0%) and vg(c,0) = v(c,0")). In the same way,
v;(NC, 9“) represents the utility level of agent ¢ if he does not sign any contract
and the state of the world is 6" (le. v;(NC, 9“) = ).

Let C = {c = (z,R) € R2 : 2 — R > 0} be the set of feasible contracts. The
set of feasible outcomes that can be offered by the principal is CUNC. A choice
rule is a mapping ¢ : © — (CUNC) x (C' U NC), which associates each state of
the world with a feasible outcome for each agent. Specifically, let ® be the choice
rule that selects for each state of the world the first best contracts (i.e. for all
0" € @, ®(0*") = (ct, ¢f)). We call this rule the First Best Choice Rule (FBCR).

A mechanism is a tuple I' = (S, g) where for all i € {A, B}, S; is the strategy
space for agent i, S = Sy x Sg,and g : S — (CUNC) x (CUNC) is an outcome
function which associates to each profile of strategies some feasible outcomes. For
all profile of strategies s € S and all i € {A, B}, s; and s_; denote the strategies
of agent 7 and the strategy of the other agent respectively. For all s € S and all
i € {A, B}, we denote as g;(s) the outcome selected by the mechanism for agent 4
when agents announce s. For all 0% € ©, all s € S and all i € {A, B}, v;(g(s),0")
denote the utility level obtained by ¢ with the outcome that the mechanism select
for him given that the agents have announced s and the state of the world is %
(ie. vi(g(s),0") = vi(gs(s), 0™)).

A concept of equilibrium, F, is a mapping from © to S, £ : © — S. In
particular, the Nash equilibrium is defined as follows:

Definition 1. Let I' = (S,g) be a mechanism. We say that (sa,s5) € S Is a
Nash equilibrium of mechanism T’ for the state of the world 0 when, for all

i € {A, B} and all 8 € S, vi(g(sa, sg),0™) > vi(g(s), s_4),0™).

For all concept of equilibrium F and all state of the world 6" € ©, let E (T, le)
be the set of equilibrium strategies of mechanism I' when the state of the world
is 0. Specifically, N (T, 9“) denotes the set of Nash equilibrium strategies. We
say that mechanism I' implements the choice rule ¢ in F-equilibrium when, for

all 0" € ©, g(E(T,0%)) = p(6"") # 0.



Since we are assuming that the principal does not observe the realization of
(04,05), his aim is then to design a mechanism that implements the FBCR.

From Equation 5 we have that, if agent 7 is more productive (92), he strictly
prefers the contract designed for a less productive type. For this reason, in any
direct mechanism in which each agent only has to announce his type and where
the outcome function gives each agent the first-best contract corresponding to
his announcement, truth telling is not a dominant strategy for some states of
the world. A well-known result in the literature (the Revelation Principle, see
Gibbard [5]) tell us that then, the FBCR can not be implemented in dominant
strategies. This lead us to focus on implementation in Nash equilibrium.

3. DESIRABLE PROPERTIES FOR THE IMPLEMENT-
ING MECHANISMS

Maskin [11] showed that any choice rule which is Nash implementable must satisfy
a monotonicity condition. Roughly speaking, this condition says that if the choice
rule selects some outcome for some preferences profile, it must select the same
outcome if the preferences of all agents change in such a way that this outcome
has moved up in everyone rankings. Notice that the FBCR satisfies this condition
in an obvious way: given any preferences profile and the outcome selected by
the FBCR for it, there is no other preferences profile such that this outcome has
moved up in the ranking of both agents. If there are three or more agents, this
monotonicity condition together with an additional requirement called no veto
power® are sufficient for implementation in Nash equilibrium. For the case in
which there are only two agents, Moore and Repullo [13], and Dutta and Sen [4]
have established a necessary and sufficient condition for Nash implementation.
In the proofs of these general results the authors propose some mechanisms
which work for any choice rule. However, these mechanisms are not very appealing
and they have been the object of criticism in the literature. One of the main
objections against them is that they use integer games (i.e. games in which the
agent who announces the highest integer obtains his most preferred outcome)®.
This indicates that such mechanisms should be taken just as a tool in the proof
of general results. When we face up to a specific problem, we have to look for

®No veto power means that, if there exists an outcome which is the most preferred for all
but one agent, it must be selected by the choice rule.
6See Jackson [7] and Moore [12] for a criticism of integer games.
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specific mechanisms whose behavior is better within this particular framework.
That is what we try to do in this paper: we study the possibility of implementing
the FBCR in Nash equilibrium by means of mechanisms satisfying desirable prop-
erties. In particular, we will try to avoid mechanisms which use integer games.
Nevertheless, this is not our only aim. Now we detail the properties that we
would like to be satisfied by any mechanism implementing the FBCR in Nash
equilibrium.

3.1. Strategy Spaces as Small as Possible

We try to avoid mechanisms with large strategy spaces because they usually make
it difficult to understand their rules to the agents. Moreover, the larger are the
strategy spaces, the more difficult is that agents coordinate among them to play
the equilibrium strategies. The next two propositions tell us the minimum size of
the strategy spaces of any mechanism implementing the FBCR in Nash equilib-
rium.

Proposition 1. Let I' = (5, g) be a mechanism implementing the FBCR in Nash
equilibrium. Then, at least for one agent i € {A, B}, the strategy space S; is
composed by more than three elements.

Proof. Let I' = (S,g) be a mechanism that implements the FBCR in Nash
equilibrium and suppose by contradiction that, for all i € {A, B}, S; has as
much as three elements. For each 0" € ©, let (s%, s%) € N(T',0"). Obvi-
ously, g(s% ) = (¢}, ¢r). Notice that, for all i € {A, B}, sl # s?* (otherwise
(sA : sB) ¢ N(T',0°%)). Moreover, s # s\ (otherwise (s'2, sB) gé N(P 912)), and
P # s% (otherwise (s%,s%) ¢ N( ,0?%)). Suppose that s2 # s22 and si2 # sl
Then, since for all i € {A, B } S has as much three elements we have that,
for all i € {A B}, S; = {s}',s?? s}?}. Therefore, (s%,s%) = (skl,SQBQ) (other-
wise we have that, for some 0" € ©, (s%, s%) ¢ N(F 0*)). For alli € {A, B}, all
0; € {6',6%} and all s.; €855 let 31(9 /s_;) = argmax{v(g;(s;,5-:),0;) : s; € S;}.
Stepl. Since gp(sil,st) = gp(sil,s2) = ¢} and (s, s4) ¢ N(T,0'), then
sp(0%/s4) = si2. Moreover, v(gp(sl, sp(0/s4)),0%) > v(c},0%), and then we
have that gg(sl, sl?) # 3.
Step 2. Since (SA,SB) ¢ N(T,0%), it is clear that s,(0?/s22) # s'2. Moreover,
since sp(0”/sY) = s¥2, then sA(QQ/s ) # sl (otherwise (sl s) € N(T,0%),

which is a contradiction, since gg(sy, s2) # c3). Therefore s4(0°/s52) = s%.
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Moreover, since (s2,s12) ¢ N(T,0*%), we have that v(ga(s4(0?/s2),52),6%) >
v(ct,0%), and then g4(s%2,s2) # ;.

Step 3. Since gA<8A,8232) = ga(sl} s2) = ¢} and (s%,522) ¢ N(T,0"), then
s4(0/s2) = s12. Moreover, since (s%,s2) € N(T,0%*) and v(c},0%) > v(c},0%),

we have that ga(s'?, s%2) # c}.

Step 4. Since (SA,SB) ¢ N(T,0"), it is clear that sp(0'/s2) # si2. Moreover,

since s4(0'/s2) = s, then sp(0'/s'?) # s2 (otherwise (s2,s2) € N(T,0'),

which is a contradiction, since g4(s'Z,5%) # ). Therefore sg(0'/s'?) = s4.

Moreover, since (8A,SIB2) € N(T,0™) and v(ct,0%) > v(ch,0%), we have that

95(s¥, SB) # .

Step 5. Since (SA,SB) ¢ N(T,0?"), it is clear that s4(0%/s}) # sl. Moreover,

since sp(0'/s'?) = sH, then s4(0°/s5) # s'¢ (otherwise (s%,sH) € N(T,0%"),

which is a contradiction, since gg(s'?, sh) # ci). Therefore s4(0°/sh) = s%.

Moreover, since (sA,sB) ¢ N(T,0%"), we have that v(ga(sa(0?/s4),sH),0%) >

v(ct,0%), and then g4(s%2,sH) # ;.

Step 6. Since (SA,SB) ¢ N(T',0™), it is clear that sp(0'/s%) # s%. Moreover,

since 54(0%/s4) = 522, then sp(0'/s%) # s (otherwise (s%,s4) € N(T,6?"),

which is a contradiction, since g4(s%,sy) # ¢3). Finally, since s A(82 /s12) = s%,

then sp(0'/s2) # 512 (otherwise (s%,s2) € N(T,0?"), which is a contradiction,

since g4(s7, 52) # ).

From Step 6 we have that sB(Ql /%) = (), which is a contradiction. The cases

where sf = 3?42 or 3132 = 81191 are similar. H

Proposition 2. Let I' = (5, g) be a mechanism implementing the FBCR in Nash
equilibrium such that, at least for one agent i € {A, B}, the strategy space S;
is composed by only four elements. Then, the strategy space of the other agent
j € {A B}, j#1, is composed by more than two elements.

The proof of this proposition is similar to the one of Proposition 1 and we omit
it. From Propositions 1 and 2 we have that, in any mechanism implementing the
FBCR in Nash equilibrium, at least the strategy space of one agent has four
elements and the strategy space of the other agent has three elements”.

"The issue of the dimensionality of the strategy space has been studied by Reichelstein and
Reiter [14] among others. They only consider the case in which strategy spaces are Euclidean
and thus, a natural measure of size is dimensionality. In our case, given the nature of the
mechanisms that we will propose, the natural measure of size is the number of elements of the
strategy space.

12



3.2. Enforceability

An important issue to be taken into consideration when we design a mechanism
implementing the FBCR is whether the agents who play the mechanism are really
obliged to accept the contracts that the outcome function chooses. This fact will
be of fundamental importance in order to know the way in which agents work out
their expected utility levels associated to each profile of strategies (and therefore,
to know which are the equilibria of the game associated with the mechanism).
If we were able to force agents to sign the contracts that the mechanism selects
for each profile of strategies that they play (whatever it is), then agents’ expected
utility with these strategies will only depend on such contracts. On the contrary, if
they may reject the outcome of the mechanism, no agent will accept any contract
which is not individually rational for him. In that case, the utility level that an
agent gets will not be the one for the non-individually rational contract that the
mechanism chooses, but the reservation utility level.

Ideally, we would allow agents to reject contracts and we would design a mech-
anism that implements the FBCR taking into account that if we give a non-
individually rational contract to some agent, he will obtain the reservation utility
level. Such mechanism could include contracts of three categories: (1) contracts
that are individually rational for none type of agent, and that then would never
be accepted (that is, contracts which are non-individually rational for an agent
of type 2, since such contracts are non-individually rational for an agent of type
1 as well), (2) contracts that are individually rational for both types of agents,
and that then, would always be accepted (that is, contracts that are individually
rational for an agent of type 1, since they would be individually rational for an
agent of type 2 as well) and, (3) contracts that are individually rational only for
agents of type 2, and that then, sometimes would be accepted and sometimes
would be rejected (for example contract ¢z in Figure 5.1, which is individually
rational for an agent of type 2, bult it is not individually rational for an agent of
type 1).

Unfortunately, as the next proposition shows, if agents may walk away from
the mechanism we can not implement in Nash equilibrium the FBCR.

Proposition 3. If agents may refuse to sign the contracts chosen by the mecha-
nism then the FBCR can not be implemented in Nash equilibrium.

Proof. Let I' = (S,g) be a mechanism that implements the FBCR in Nash
equilibrium and suppose by contradiction that agents may refuse to sign the

13



contracts that the mechanism chooses. Notice that, for all i € {A B}, all
0; € {01,0%}, and all s € S with v(g;(s),0;) < U°, agent i will reject contract
gi(s) and then his expected utility from that profile of strategies will be U°.
Let (s%,5%) € N(I,0%%). We have that for all i € {A, B} and all s; € S,
v(gs(si,5%2),0%) < v(gi(s%,5%),0%) = v(ch,0%), and therefore v(g;(s;, s22),0") <
U°. This implies that for all i € {A, B} with §; = ' and all s; € S;, the
agent i’s expected utility from strategies (s;, s?%) is U°. Therefore (s%,s%) is a
Nash equilibrium of mechanism I' when the state of the world is 6'!, which is a

contradiction. B

This negative result is due to the fact that when agents are of type 1 there
are Nash equilibria in which they do not sign any contract. It seems that, in
order to implement the FBCR in Nash equilibrium, we have to force the agents
to sign the resulting contracts of the mechanism. For that we have to think about
the mechanism design as a three-stage problem. In the first stage the principal
proposes a mechanism. In the second stage the agents decide whether they want
to commit themselves to play the mechanism. Finally, in the third stage those
agents who accepted the mechanism play the game induced by it. We will assume
that agents anticipate that the outcome of the mechanism will be the equilibrium
one, and therefore they will commit themselves to play any mechanism whose
equilibrium contracts give them a utility level equal or greater than reservation
utility level (and in particular, any mechanism implementing the FBCR).

However, this approach creates a new problem. It is clear that any mechanism
implementing the FBCR will always select non-individually rational contracts for
some type of agent (for example, the mechanism have to choose contract ¢} for
some strategies, and such contract is not individually rational for an agent of type
1). The question is then: even though an agent has committed himself to play
the mechanism, can he be forced to sign the contract that the mechanism chooses
in case it was non-individually rational for him?

It seems reasonable that, if an agent is able to prove in court that the contract
that has been chosen by the mechanism is not individually rational for him, then
the principal can not make him sign that contract (just as we can not force anyone
to be a slave, although he had committed himself to be one). When will an agent
be able to prove that a contract is not individually rational for him?

Suppose that agents can always prove when a contract is non-individually
rational for him. This would be equivalent to say that an agent type 1 can prove
what his type is (he just has to prove that a contract like ¢z in Figure 5.1 is
non-individually rational for him). In that case the problem of implementing the
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FBCR would be obvious. All we have to do is to ask each agent to prove that
he is type 1. If he prove that, then we offer him contract cj, otherwise we offer
him contract ¢j (notice that, under Assumption 3, for an agent type 1 would be a
dominant strategy to prove what his type is). Therefore, this case has no interest.
However, the logical thing is that agents can not prove what their types are. In
this case, the only contracts that an agent could refuse to sign (even though they
had been chosen by the mechanism that the agent promised to accept) would be
the ones that are not individually rational for both types of agents. An impartial
jury would be able to understand that such contracts are not individually rational
for any agent (although they do not know their types). This, together with
Proposition 3, leads us to consider that it would be desirable that our mechanisms
never select contracts like these. In this sense, we have the following definition:

Definition 2. We say that a mechanism I = (S, g) is enforceable if for all s € S
and all i € {A, B}, there is some 0; € {0',0*} with v(g;(s),0;) > U°

As Figure 2.1 makes clear, under our assumptions the later property is equiva-
lent to saying that for all i € {A, B} and all s € S, v(gi(s),0%) > U°. As we have
argued, if a mechanism implementing the FBCR does not satisfy this property,
then it achieves its objective with threats which are not credible.

3.3. Renegotiation Proofness Among Agents

When an agent i € {A, B} signs contract (z;, R;) € C with the principal, they are
establishing a double commitment. On the one hand, agent 7 is committing himself
to produce an amount of output x; for the principal. On the other hand, the
principal is committing himself to pay an amount R; to agent i. Suppose now that
once the principal has signed a contract (z;, R;) € C with each agent i € {A, B},
agents decide to renegotiate these contracts among them. For example, the agents
could reach an agreement in such a way that agent A gives to agent B part of
the payoff that he will receive from the principal and, in exchange for that, agent
B has to produce part of the output that agent A had committed to produce for
the principal. Obviously, any of such renegotiations have to be such that, at the
end: (i) the sum of the quantities produced by both agents equals the sum of the
quantities that each agent separately had committed himself to produce, and (ii)
the sum of the payoffs that each agent really receives equals the sum of the payoffs
that the principal had committed himself to give to each agent separately.
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It is unlikely that the principal can prevent this kind of renegotiation among
the agents: first, the principal may not know whether the output that each agent
is giving to him has been really produced by this agent, and secondly, the principal
can not control what agents do with their income. Agents will have incentives to
carry out such renegotiations when, by doing that, they end better off (compared
with the contracts that they really signed). Notice that the way in which the
agents share out some given contracts may depends on their types (for example,
the same renegotiation of some given profile of contracts could be beneficial for
an agent when he is of type 1, and to be damaging for him when he is of type 2).

Renegotiation changes the strategic aspect of the problem of designing a mech-
anism. Now, agent i’s utility level associated to some profile of strategies is not
determined by the contract that the mechanism selects for him, but it is de-
termined by the final redistribution of the profile of contracts selected by the
mechanism. Then, profiles of contracts that were not desirable for some agent
may become more attractive for him if renegotiation is considered. A mechanism
implementing the FBCR should take this into account.

Now we introduce some notation. Let ¢ € (C U NC) x (C U NC) be a profile
of feasible outcomes. A renegotiation rule will be a mapping I : (CUNC) x (CU
NC) x © — (R2ZUNC) x (R% UNC), such that:

(i) for all€ = (ca,cp) € OxC and all 0¥ € ©, F (¢, 0")=(Fa(c,0"),F(c,0*)) €
R? x R? satisfies that F4(c, 0F1) 4 (T, 0") = c4 4 cp (where, for all i € {A, B},
FZ-(E,QM) denotes the output and the payoff corresponding to agent i after the
renegotiation of the contracts ¢ given that the state of the world is le), and

(ii) for all ¢ € C and all 0" € ©, F((c, NC),0") = (¢, NC), F((NC,¢),0") =
(NC,c) and F((NC,NC),0"™) = (NC,NCO) (that is, if there is one agent who

does not sign any contract then no renegotiation is possible).

For all state of the world 6" € ©, all profile of feasible outcomes ¢ € (C' U
NC)x(CUNC), allagent i € {A, B}, and all renegotiation rule I, let v;(F(2), 0")
be the utility obtained by agent i after renegotiate according to F' the outcomes
€ when the state of the world is 0% (i.e. v;(F(¢),0") = v (Fy(¢,0™),0™)).

We will say that a renegotiation rule F' is admissible when for all i € {A, B},
all ¢ € C x O and all 0% € O, v;(F(2),0%) > v(C,0M). That is, we do not
admit renegotiation rules where some agent is worse after the renegotiation than
with his initial contract (this can be interpreted as a requirement of individual
rationality on the renegotiation). Let F be the class of admissible renegotiation
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rules. Notice that for all F' € F, all € = (c4,cp) € C x C and all 6" € ©,
7TCA ‘I‘ TrCB - T[_FA(E,QM) ‘I‘ WFB(E,GM)'
Now, we have the following definition:

Definition 3. For all mechanism I' = (S,g), all admissible renegotiation rule
F € F and all state of the world 0" € ©, we say that s € S is a F-Nash
equilibrium of T' for state of the world 0" when, for all i € {A, B} and all
s, € Sy, v;(F(g(s)),0") > vi(F(g(s, 5 4)),0"). Let F — N(T0") denote the set of

F-Nash equilibrium of mechanism I' when the state of the world is ™.

In words, a profile of strategies is a F-Nash equilibrium when, taking into
account that the renegotiation rule used by the agents is I, no agent can improve
by means of an unilateral deviation.

Let F! denotes the situation where the agents do not renegotiate their con-
tracts. It is clear that F! € F, and that the notion of F'!-Nash equilibrium
matches the usual definition of Nash equilibrium. For simplicity, we will still
write Nash equilibrium when we are talking about a F’-Nash equilibrium (and,
for all mechanism I' = (9, g) and all 0" € ©, we will still write N(I",0*') instead
of F'T — N(T,0")).

Suppose that the principal knows that the agents will renegotiate their con-
tracts in accordance with some given renegotiation rule F' € F. In that case he
have to design a mechanism implementing the FBCR not in Nash equilibrium,
but in F'-Nash equilibrium.

Obviously, given any F' € F, a mechanism implementing the FBCR in F-Nash
equilibrium may not work for any other different renegotiation rule (i.e. given any
F € F with F # P, the former mechanism may not implement the FBCR in E-
Nash equilibrium). Then, what happens if the principal does not know the specific
renegotiation rule that will be used by the agents, or if he does not even know
whether agents will renegotiate their contracts at the end?

The best thing would be to design a mechanism implementing the FBCR in
F-Nash equilibrium whatever the renegotiation rule F' € F is. If we are able
to design a mechanism like that, then it does not matter that the principal does
not know the renegotiation rule used by the agents. In this sense we have the
following definition:

Definition 4. We say that a mechanism I' = (S,g) is renegotiation-proof
when, for all admissible renegotiation rule F' € F, I implements the FBCR in
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F-Nash equilibrium®.

3.4. Unique Implementation

Let F' € F be the renegotiation rule used by the agents and let I' = (S, g) be a
mechanism that implements the FBCR in F-Nash equilibrium. Suppose that our
implementing mechanism is such that for some state of the world there are at least
two profiles of strategies which are a F-Nash equilibrium. It is clear that both
profiles of strategies yield the same outcome: the first-best contracts. However, if
one of the agents decides to play the strategy corresponding to the first profile of
strategies and the other agent plays the strategy corresponding to the second one,
the resulting outcome may not be the first-best contracts. The existence of more
than one equilibrium for some state of the world creates a problem of coordination
among agents. In order to implement the FBCR we have to be certain that agents
coordinate their decisions to play the same equilibrium.

To avoid this problem we would like that our mechanisms had a unique equi-
librium for each state of the world. For that, we have the following definition:

Definition 5. Let F' € F be an admissible renegotiation rule and let T' = (5, g)
be a mechanism that implements the FBCR in F-Nash equilibrium. We say
that T' satisfies the F-unique implementation property when for all "' € ©,
F — N(T,0") has only one element.

To continue with the notation of the previous subsection, we will write unique
implementation property to denote the F!-unique implementation property.

3.5. Unique Best-Reply

Let F' € F be the renegotiation rule used by the agents and let I' = (S, g) be
a mechanism that implements the FBCR in F-Nash equilibrium. If a profile of
strategies is a F'-Nash equilibrium then no agent can improve by means of any
unilateral deviation. For this reason we usually admit that, if any agent (say agent
i) thinks that the rest of agents will play the equilibrium strategies, he will play
his equilibrium strategy too. However, what happen if there is another strategy
for agent i, different from the equilibrium one, which gives him the same utility?

8Notice that, since F'! € F, any renegotiation-proof mechanism also implements the FBCR
in Nash equilibrium.
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In that case agent ¢ will be indifferent between both strategies. This made us
wonder whether agent 7 will play his equilibrium strategy.

To clear up this doubt we would like that, in case that the rest of agents play
their equilibrium strategies, any strategy of agent 4 different from the equilibrium
one gets him a level of utility strictly smaller. For that we make use of the
following two definitions:

Definition 6. Given any renegotiation rule ' € F, any mechanism I' = (S, g),
and any state of the world 0" € ©, we say that s € S is a F-strict-Nash
equilibrium of mechanism T' when the state of the world is "' when, for all
i € {A B} and all s, € S;\{s:}, v;(F(gi(s)),0") > vi(F(gi(s},54)),0"). Let
F — SN(T,0™) denote the set of these strict-Nash equilibrium.

Definition 7. Given any renegotiation rule ' € F, let T' = (S, g) be a mechanism
implementing the FBCR in F-Nash equilibrium. We will say that I' satisfies
the F-unique best-reply property when, for all state of the world, any F'-
Nash equilibriumn is also a F-strict Nash equilibriumn (that is, for all 0" ¢ ©,
F— SN(T,0") = F — N(T,6™)).

Let F' € F be the renegotiation rule used by the agents, and let I' = (5, g)
be a mechanism that implements the FBCR in F-Nash equilibrium. If the im-
plementing mechanism satisfies the I'-unique best-reply property, then the agents
have strong incentives to stick to equilibrium strategies. Notice that if a mech-
anism implements the FBCR in F-Nash equilibrium and satisfies the I-unique
best-reply property, then it doubly implements the FBCR in F-Nash and F-strict-
Nash equilibrium. Although the inverse is not necessarily true, it will be if the
mechanism also satisfies the F'-unique implementation property.

Again, to continue with previous notation, we will write unique best-reply
property to denote the F!-unique best-reply property.

3.6. No Mixed Strategies

Let T' = (S,g) be a mechanism. A mized strategy for agent i is a probability
distribution on S;. Formally, a mixed strategy for agent ¢ is a mapping o; : S; —
[0,1] such that } ¢ 04(s;) =1 (where 0;(s;) denotes the probability that agent
i assigns to announce s;). For all i € {A B}, let 3; be the set of admissible
probability distributions on S;, and let ¥ = ¥4 X X be the set of admissible
profiles of mixed strategies. For all 0; € 3;, let S;(0;) be the set of elements of
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S; that are announced with strictly positive probability according to strategy o;,
that is S;(0;) = {s; € S; : 05(s;) > 0}. We say that o; € %; is a pure strategy for
agent 7 when, for some s; € S;, S;(0;) = s; (i.e. agent i announce with probability
one some element of S;).

Up to now we have only considered the specific case in which agents play pure
strategies. However, sometimes agents may find profitable to play another type
of mixed strategies. Therefore, if we want to be sure that we are implementing
the FBCR, our mechanisms should work not only for pure strategies, but also for
mixed strategies.

Considering mixed strategies force us to generalize some of our previous def-
initions on implementation. First notice that when agents play mixed strategies
we may not know exactly which will be the outcome selected by the mechanism.
All that we will have is a probability distribution among all possible outcomes
that can be selected by the mechanism. Formally, for all mechanism I" = (5, g),
all (04,05) € ¥ and all (sa,sp) € S, mechanism I' will select the outcome
g(sa, sp) with probability o 4(s4) x 0p(sg). Moreover, if the agents are using the
renegotiation rule I € F and the state of the world is %' € ©, then they will
obtain the outcome F(g(s4,5p),0") with probability o 4(s4) x o(sp). There-
fore, for knowing how good is a profile of mixed strategies for an agent, he has
to calculate his expected utility. To be consistent with previous notation, for all
F e Falic{A B}, al " €0, and all ¢ € %, let v5(F(g(c)),0") denote the
expected utility? of agent i when agents play the profile of mixed strategies o, the
renegotiation rule is F' and the state of the world is 6.

In this way, now a concept of equilibrium FE will be a mapping from the set
of feasible states of the world to the set of admissible profiles of mixed strategies,
E :© — ¥ In particular, we have the following definition of F'-Nash equilibrium
when mixed strategies are considered:

Definition 8. For all mechanism I' = (S,g), all admissible renegotiation rule
F € F and all state of the world 0" € ©, we say that 0 € ¥ is a F-Nash
equilibrium of T for state of the world 0" when, for all i € {A, B} and all
ol € %y, v5(F(g(0)),0%) > v¢(F(g(d,, o ;)),0™). Let F — N(T,0") still denote
the set of I'-Nash equilibrium of mechanism I" when the state of the world is 0%
(where F' — N(T,0") may include now non-pure profiles of strategies).

In the same way that when we only considered pure strategies, we will say that
a mechanism I" = (5, ¢) implements the FBCR in F'-Nash equilibrium when, for

®We will suppose that the usual von Neumann-Morgenstern assumptions hold.
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all state of the world, the set of F'-Nash equilibrium outcomes coincides with the
first-best contracts (i.e. for all 0" € ©, g(F — N(T,0")) = ®(6")). Now that F —
N(T, 9“) may include non-pure profiles of strategies, the natural way of defining
the equilibrium outcomes is like those which have a strictly positive probability to
occur given that the agents are playing a F-Nash equilibrium profile of strategies.
That is, g(F — N(T,0")) = {g(sa,sg) : Io4,08) € F — N(T,0") with s, €
Sa(o4) and sp € Sg(op)}. Notice that then, since the FBCR is single valued, for
all pair (s4,sg) € S which is announced with strictly positive probability in some
F'-Nash equilibrium, the mechanism will select the same outcome: the first-best
contracts. That is, for all 0" € ©, all (04,05) € F — N(T',0"), all s4 € Sa(04)
and all sp € Sg(op), we have that g(sa, sp) = (cf, ¢}).

The existence of non-pure equilibrium strategies in our implementing mecha-
nisms can create some difficulties. First, non-pure equilibrium strategies will be
usually difficult to find. If we want that the agents find easily the solution to
the game that we are proposing to them, we should try to avoid that this solu-
tion involves playing a non-pure strategy. Of course, one could argue that our
implementing mechanisms could have pure and non-pure equilibrium strategies,
and that in that case the agents would be able to find easily at least one of the
solutions of the game. For that reason, we consider that a minimum requirement
that any mechanism should satisfy is that, for all state of the world, there exists
at least one equilibrium consisting of pure strategies.

Definition 9. Let F' € F be an admissible renegotiation rule and let T' = (5, g)
be a mechanism implementing the FBCR in F-Nash equilibrium. We say that T’
satisfies the F-pure equilibrium property when, for all " € ©, there exists
some (04, 05) € F'— N(T,0") such that, for alli € {A, B}, 0, is a pure strategy.

However, even in the case that our mechanisms satisfy this property, the ex-
istence of non-pure equilibrium strategies is still problematic. On the one hand,
notice that the existence of pure and non-pure equilibrium strategies would con-
tradict the spirit of the F-unique implementation property. On the other hand,
the existence of non-pure equilibrium strategies also conflicts with the spirit of
the F-unique best-reply property. To see that consider the following example.
Let F' € F be the renegotiation rule used by the agents, and let I' = (5, ¢)
be a mechanism implementing the FBCR in F-Nash equilibrium. Given any
0" € O, let (04,08) € ' — N(I',0") be such that, for some i € {A, B}, oy
is not a pure strategy. Then there exists at least two elements s;, s, € S;(0;).
Let now o, € 3; be such that S;(0}) = s.. Notice that when the agents play

7
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the profile of strategies (0;,0_;) or (0,0 _;), the mechanism will select with
probability equal to one the same outcome, (c},c;). Therefore we have that
Ve (F(g(oi,05)),0") = vE(F(g(o},05)),0™), and so ; is not the unique best-
reply to o_;.

Therefore, given any F' € F, if our mechanisms satisfy the F'-unique implemen-
tation or the F-unique best-reply properties, we should totally avoid the existence

of non-pure equilibrium strategies. For that we define the following property

Definition 10. Given any renegotiation rule F' € F, let T' = (S, g) be a mech-
anism implementing the FBCR in I'-Nash equilibrium. We say that T' sat-
isfies the F-only pure equilibria property when, for all 0" € © and all
(0a4,05) € F — N(P,QM), o4 and op are pure strategies.

That is, if a mechanism satisfies this property, all equilibrium strategies are
pure. Obviously, for all ' € F, the F-only pure equilibria property implies
the F-pure equilibrium property. As we have already argued, we will always
look for mechanisms satisfying the F-pure equilibrium property, and in case that
these mechanisms also satisfy the F-unique implementation property or the F'-
unique best-reply property, then we will also want that they verify the F-only
pure equilibria property.

As usual, we will write (only) pure equilibria property to denote the F7-(only)
pure equilibrium property. In the same way, from now, for all mechanism I' =
(S, g) we will still write s = (s4,55) € S to denote the pure strategy where each
agent i € {A, B} is announcing with probability one s;.

To summarize, these are the properties that we consider desirable for our
implementing mechanisms: (i) strategy-spaces as small as possible, (ii) enforce-
ability, (iil) renegotiation-proofness, (iv) F-unique implementation, (v) F-unique
best-reply, and (vi) F-only pure equilibria. Regarding properties (iii)-(vi), sup-
pose that we are able to design a renegotiation-proof mechanism. Since the basic
idea behind renegotiation-proofness is that any mechanism satisfying this prop-
erty implements the FBCR for all F' € F, we would also like that such mechanism
satisfies the F-unique implementation, the F-unique best-reply, and the F-only
pure equilibria properties, not for some given renegotiation rule, but for all F' € F.
We will discuss about the connection between these properties in the next section.
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4. COMPATIBILITY OF DESIRABLE PROPERTIES

Unfortunately, some of the properties analyzed in the previous section are not
compatible. First, we will prove that any enforceable mechanism satisfying the
pure equilibrium property is not renegotiation-proof. For that we need five pre-
vious lemmas:

Lemma 1. There exists some F' € F with vg(Fp((ch,c3)), 0") > vp(cy, 0'2).

We omit the proof of this lemma. It follows from Assumptions 1 and 2 and
from the definition of ¢. Roughly speaking this lemma says that, if agent A is of
type 1 and agent B is of type 2, the redistribution of 2¢} where both agents receive
c5 1s not Pareto-efficient. In Figure 4.1 we have represented this redistribution
problem by means of the Edgeworth box. There we can see that there are some
redistributions (like the one given by point z), where both agents are strictly
better than with c3.

The next lemma says that, if we give to the agents the first-best contracts,
they will not renegotiate:

Lemma 2. For all I € F and all 0" € ©, we have that F((c}, c}),0") = (¢, c}).

Proof. Suppose by contradiction and w.l.o.g. that there is some F' € F and
some 0" € © such that Fu((cf,c;),0%) # ;. Then, since v4(Fa((ct, ¢f)), 0") >
va(ct, 0™, by definition of ¢} we have that Tpa((cten)0f) < Tep- In that case
T pg((ep,ci).0t) > Tep- Then, by definition of f, v(Fp((ct, ), 0%) < vg(cr, 0,
which contradicts that F' € F. R

The following lemma states that, if a mechanism is renegotiation-proof, then
any profile of strategies which is a F-Nash equilibrium for some F' € F is also a
Nash equilibrium:

Lemma 3. Let I' = (S,g) be a renegotiation-proof mechanism. Then, for all
FeF, all0*" € © and all s € F — N(T,0") we have that s € N(T',0™).
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Proof. TLet T' = (5, g) be a renegotiation-proof mechanism. Then, for all ' € F,
all 0" € © and all s € F' — N(T',0") we have that g(s) = (c}, ¢f), and therefore,
by Lemma 2, I'(g(s),0") = (c,c!). Suppose by contradiction that for some
F € F, some 0" € © and some s € F' — N(T,0") we have that s ¢ N(T',0").
Then, there exists some i € {A, B} and some s, € S; such that v;(g(s}, s ;),0") >
v;(g(s),0"). Therefore, by definition of F we have that v;(F(g(s}, s_;)),0") >
vi(g(s), 54),0%) > vi(g(s),0") = v;(F(g(s)),0™), which contradicts that s €
F—N(T,0").m

Finally, the next two lemmas show that, in any enforceable mechanism satis-
fying the pure equilibrium property, all pure Nash equilibrium for the state of the
world #'? is such that, for some unilateral deviation of agent B, the mechanism
selects contracts (c3, c3).

Lemma 4. Let I' = (S,g) be a mechanism implementing the FBCR in Nash
equilibrium and satisfying the pure equilibrium property. For all 0" € O, let
(sh i) € N(T',0"). Then we have that s} # s%

Proof. Let T' = (5, ¢) be a mechanism implementing the FBCR in Nash equilib—

rium and satisfying the pure equilibrium property For all 6" € ©, let (sh sh) e

N(T, 9“) Suppose by contradiction that st = s%2. In that case it is clear that

s12 # 5% and that v(ga(s'?, s%2),0%) = v(ga(s'?, 512),0%) = v(ct,0%) > v(ch,0%) =
(gA(sA ,522),60%), which contradicts that (s%2,s%) € N(T',0%%). ®

Lemma 5. Let I' = (S, g) be an enforceable mechanism implementing the FBCR
in Nash equilibrium and satisfying the pure equilibrium property. For all 6*' € ©,
let (sk, s%) € N(T',0"). Then we have that g(s'?,s2) = (c5,c3).

Proof. Let I' = (5, g) be an enforceable mechanism implementing the FBCR in

Nash equilibrium and satisfying the pure equilibrium property, and for all *' € ©,

let (s¥, sy € N(T,0M).

Step 1. Since (s%,s%) € N(T, 0%?) it is clear that g4(s%?,s%) = 5, and then we

have that, for all s, € Sy, either (i) ga(sy,s%) € C with v(ga(sy,5%),0%) =

v(cy,0%) (and then v(ga(s'y, s2),0") < U°), or (i) ga(sy,s2) = NC.

Step 2. Since (512, 512) € N(T',0'%) it is clear that gg(s'Z,55) = ¢3, and then we

have that, for all s’y € Sp, either (i) gp(s'2, s%5),0%) € C with v(gp(sZ, siy), 0%) =
v(ch, 0%) (and then v(gp(sZ, s),0") < UO) or gp(siZ, s),0%) = NC.

Suppose now by contradiction that g(s'2, s%2) # (c3,¢3). Then we have four cases:
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Case 1. Suppose that g(s'?, s22) = (NC,NC). Then by Steps 1 and 2 we have
that (s'2,5%2) € N(T,0"), which contradicts that T' implements the FBCR in
Nash equilibrium.
Case 2. Suppose that ga(s'? s22) # NC and gg(slg, s2) = NC. Then by Step 1
v(ga(s?, s2),0%) = v(cy,0%). Therefore, by Steps 1 and 2 we have that (s'2,s%) €
N(T, 821) which contradicts that I' implements the FBCR in Nash equilibrium.
Case 3. Suppose that ga(s'?, s22) = NC and gp(s'g, s%2) # NC. Then by Step 2
v(gp(sZ, s2),0%) = v(cs,0%). Therefore, by Steps 1 and 2 we have that(s'2, s22) €
N(T, 812) which contradicts that I' implements the FBCR in Nash equilibrium.
Case 4. Suppose that ga(s}?, s22) # NC and gp(s'¢, s%) # NC. Then by Steps 1
and 2 we have that v(g4(s'?, s%2),0%) = v(cs,0%) and v(gp(s'?, sB) 0%) = v(ch, 0%).
Therefore, by Steps 1 and 2 we have that (s'2,5%) € N(T',0**). Since we have
assumed that g(s}?, s27) £ (¢}, c3), this contradicts that T' implements the FBCR,
in Nash equilibrium. l

Now we can prove that enforceability and the pure equilibrium property are
not compatible with renegotiation-proofness:

Proposition 4. Let I' = (S, g) be an enforceable mechanism implementing the
FBCR in Nash equilibrium and satisfying the pure equilibrium property. Then T’
is not renegotiation-proof.

Proof. Let I' = (5, g) be an enforceable mechanism implementing the FBCR in
Nash equilibrium. Suppose by contradiction that I' is renegotiation-proof. Let
F € F be such that vg(Fg((c}, c5)),0") > vplcs, 0) (by Lemma 1 we know
that such F exists). Let s = (s4,s5) € F'— N(I',0"). Since I is renegotiation-
proof, g(s) = (c%,¢5). Then, by Lemma 2 Fp(g(s),0") = c5. Moreover, by
Lemma 3 s € N(T',0'). Then, by Lemmas 4 and 5, there exists some s € Sp
such that g(sA,sB) = (c5,¢3). Therefore, we have that vp(Fp(g(sa,sy)),0")
= vp(Fp((ch,c3)),0") > vp(cs,0") = vp(Fg(g(s)),0"), which contradicts that
s€ F—N(,0%). 1

As we have argued in the previous section, we consider that the pure equilib-
rium property is a requirement that can not be waived if we want to be sure that
the agents will play correctly the mechanism. In that case, from Proposition 4 it
is clear that, if we do not know the specific renegotiation rule that will be used by
the agents and the domain of those admissible renegotiation rules is F, then we
will not be able to implement the FBCR by means of an enforceable mechanism.
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If we insist on enforceable mechanisms, we will have to impose additional restric-
tions on the domain of admissible renegotiation rules. That is, we have to be sure
that some renegotiation rules in F will not be used by the agents (for example,
we should be sure that either any renegotiation rule like those defined in Lemma
1 or F7 will not be used by the agents).

We will say that a subdomain F' C F is compatible with enforceability when
there exists some enforceable mechanism I' = (S, g) such that, for all F' € F', T
implements the FBCR in I'-Nash equilibrium and it satisfies the F'-pure equilib-
rium property. For simplicity, when looking for enforceable mechanisms, we will
restrict ourselves to the subdomain F' = F (that is, we will assume that the
agents do not renegotiate their contracts). Of course, this is not the only subdo-
main of F compatible with enforceability, but it is the simplest one'. Moreover,
in that case we will like that the implementing mechanisms only satisfy the unique
implementation, unique best-reply and only pure equilibrium properties, instead
of requiring the version of these properties for all F' € F.

Unfortunately, as the next proposition states, even if we assume that the
agents do not renegotiate their contracts among them, enforceability and the pure
equilibrium property are not compatible with the unique best-reply property:

Proposition 5. Let I' = (S, g) be an enforceable mechanism implementing the
FBCR in Nash equilibrium and satisfying the pure equilibrium property. Then T’
does not satisfy the unique best-reply property.

Proof. Let I' = (5, g) be an enforceable mechanism implementing the FBCR in
Nash equilibrium and satisfying the pure equilibrium property. For all 6" ¢
0, let (s, s¥) € N(T,0"). By Lemma 4 we have that si2 # s2. Since
(s12,512) € N(T',0"), we have that gp(s2,s12) = ¢5. Then, by Lemma 5 we
have that gp(s'¢, s%) = ¢ = gp(s'¢, s¥), which contradicts the unique best-reply

property. B

Finally, although we have no proof of that, we have the intuition that any
enforceable mechanism will always have unwanted mixed equilibrium strategies'!.
Then, when we consider enforceable mechanisms, we will implement only in pure
strategies.

U An interesting extension of this work would be to study which is the largest subdomain
F' C F that is compatible with enforceability.

UTf & mechanism is enforceable, there is no contract that can be considered as a bad outcome
for both type of agents. That seems to play a crucial role here.
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From these results we have that, regarding the properties stated in the previous
section, we will have to choose among the following two desiderata:

Desiderata 1
(1.1) Strategy-spaces as small as possible
(1.2) Enforceability

(1.3) Unique implementation

Desiderata 2
2.1) Strategy-spaces as small as possible
2) Renegotiation-proofness
2.3) F-unique implementation for all F' € F
2.4) F-unique best-reply for all F' € F
2.5) F-only pure equilibria for all F' € F

(
(2
(
(
(

5. TWO MECHANISMS

In this section we propose two different mechanisms implementing the FBCR in
Nash equilibrium and satisfying Desiderata 1 and 2 respectively.

5.1. A Mechanism Satisfying Desiderata 1

Before defining the first mechanism we need the following result:

Lemma 6. Let cj,c5 € C be the first-best contracts for the less and the more
productive agents respectively. Then, under Assumptions 1 and 2, there exist
some contracts c3,cqy € C such that:

(i) (01,91) > (e, 01) > v(cy,0') > v(cy,0') and

(ii) v(es, 0%) > v(ct, 0) > v(ch, 0%) = v(cq, 0%).

The proof of this lemma follows from Assumptions 1 and 2 and we omit it.
Notice that there are many contracts satisfying Conditions (i) and (ii) of Lemma
6. In Figure 5.1 we provide an example of these contracts. Now, we define
Mechanism 1 as follows:

Mechanism 1. Tet ¢3,¢4 € C be as defined in Lemma 6. Then, Ty = (S5,9) is
such that, Sy = {s\,s%,5%, s4}, S = {sk, 5%, 5%}, and the outcome function is
shown in the following table:
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Sh Sk Sk
3114 (CL CT) (C;7 C3) <C47 C;)
3124 (sz C4) (CT7 C;) (C;7 C;)
3?4 <C37 C;) (C;7 C3) (C;7 CT)
3%4 <C47 CT) <C37 C;) <C47 C;)
Table 1

Theorem 5.1. Mechanism 1 implements the FBCR in Nash equilibrium. More-
over, it satisfies Desiderata 1.

Proof. That the strategy spaces of Mechanism 1 are as small as possible follows
from Propositions 1 and 2, and that it is enforceable follows from the fact that for
all s € S and all i € {A, B}, v(gs(s),0%) > U°. Now we prove that I'; uniquely
implements the FBCR in Nash equilibrium.

Claim 1. (s4,s) € N(T'y,0"), (s%,5%) € N(T'1,0"), (s%,s%) € N(T'1,6%") and
(s%,s%) € N(Ty,0%).

On the one hand, for all i € {A, B}with 0; = 0', ¢! is the best contract that can
be selected by T'y. On the other hand, for all i € {A, B} with ; = 6%, ¢ and c3
are the only contracts which are strictly preferred to ¢} for agent 7. Then, from
the matrix defining Ty it follows that (s, skh) € N(Ty,0"), (s%,s%) € N(I'y,0'),
(s%,s%) € N(T'1,0*") and (s%, %) € N(Ty,0%).

Claim 2. (2.1) For all 6% # 01 (sY sk) ¢ N(Ty,0"), (2.2) for all % # 02,
(s%,s%) ¢ N([y,0™), (2.3) for all 0% £ 0% (s%,s%) ¢ N([1,0") and, (2.4) for
all 0" #£ 072, (s%,5%) ¢ N(T'y,0™).

It follows from the matrix defining Iy and the fact that, for all i € {A, B},
v(es, 0%) > v(ch, 0%) and v(cq, 0') > v(ch, 01).

Claim 3. For all 0¥ € ©, there is no s’ € N(I'y,0") with s’ € {(s,s}), (s%, s%),
(%, 5. (4 b1

Let & = (s4,85) € S be such that s’ ¢ {(s},sk), (5%, %), (s%,5%), (s%,5%),
(sh,sL)}. Then, there is some i € {A, B} with g;(s') = ¢} and such that, for
some s/ € S;, g;(s,8,) = cb. Since for all 0; € {0',0%}, v(ct,0;) > v(ch,0;), we
have that, for all 0*' € @, s' ¢ N(I'y,0"). Moreover, since for all 6, € {0',0°},
v(et,04) > v(ey,04), we have that, for all 0% € ©, (s4,sL) & N([1,0"). B

Notice that as Proposition 4 predicts, Mechanism 1 is not renegotiation-proof

(specifically, for all ' € F such that vp(Fp((ch,c5),0") > vg(ch,0') and all
s € S with g(s) = (ct, c}), we have that s ¢ F' — N(T',0'%)), and as Proposition 5

29



Figure 5.1:
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predicts, it does not satisfy the unique best-reply property (for instance, (5%, s%) €
N<P17 812)7 but UB(Q((‘S?M 323)? 812) = UB(Q((‘SAu sB) 812))

5.2. A Mechanism Satisfying Desiderata 2

Now we propose a mechanism satisfying Desiderata 2. For all ¢ € C and all
0 € {0",0%}, let m(c,0} = max{m. : v(c',0) > v(c,0)}. Then we have the following

result.

Lemma 7. Let cj,c; € C be the first-best contracts for the least and the most
productive agents respectively. Then, under Assumptions 1 and 2, there exist
some contracts cs, cg € C where:

(1) ¢s € C is such that 7., = w(cs,0%) = 7.,

(2) cg € C is such that (i) 7., = 7(cs,0%), (ii) Tee > max{m(cs,0"), 7(cs,0")},
and 27, > s 4 (cg, 91).

We omit the proof of this lemma. In Figure 5.2 we provide an example of
these contracts. Now we can define the mechanism.

Mechanism 2. Let cj,c},c5,c6 € C be some contracts as deﬁned in Lemma 7.
Then, T'y = (S, g), is such that, for alli € {A, B}, Si = {s}!, s}! s?! 5?2} and the

outcome function is the following:

sh s12 s 5% s%
st (e3,¢1) (NC,cs) | (NC,NC)| (NC,NC) | (et,NC)
s | (NC,NCO) (c3,¢3) (e, o) (ce, cq) (NC,NC)
2 (es, NC) | (NC,NC) (ch,¢c7) (ce,c5) (e5, NCO)
333 (NC,cg) (s, Cq) (e, o) (ch,c3) (NC,NC)
ST (NC.eh) | (NC.es) | (NC,NC) | (NC,NC) [ (NC,NC)

Table 2

As we show in the Appendix, v(cg, 0%) < U° (and so v(cg, 0') < U®). Then, it
is clear that this mechanism does not satisfy enforceability. Mechanism 2 tries to
make up for this lack by including a strategy for each agent i € {A, B}, %, that
can be interpreted as the option of not signing any contract. If an agent demdes
to play this strategy, he will not sign any contract, regardless of the strategy
announced by his counterpart. Although we have had to give up enforceability,
at least the mechanism gives to the agents the chance of not signing any contract.
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Figure 5.2:
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Theorem 5.2. Mechanism 2 satisfies Desiderata 2.

We provide the proof of this theorem in the Appendix. From Propositions 1
and 2 we have that there are not any other mechanism implementing the FBCR
in Nash equilibrium where the strategy spaces of both agents are substantially
smaller'?. The basic idea behind the rest of the proof is the following. First
notice that there is a restriction on the minimum utility level that an agent can
obtain by renegotiating a profile of contracts: no agent will accept to end up worse
after the renegotiation than with the contract that he originally signed. That is,
for all state of the world 6" € ©, all profile of contracts @ € C x C and all agent
i € {A, B}, we have that min{v;(F(c),0") : F' € F} = v;(¢,0"). Obviously this
also implies a restriction in the maximum utility level that an agent can obtain
by renegotiating a profile of contracts (i.e. by renegotiating any given profile
of contracts, no agent 7 can obtain a utility level as large that he leaves to his
counterpart, say agent j, with a utility level smaller than the one that agent j
would obtain with his initial contract). Taking this into account we prove that, (i)
for all state of the world 0¥ € ©, all renegotiation rule F' € F, and all profile of
strategies (04,05) € X different from the pure strategies (s%, s¥), (04, 05) is not
a F-Nash equilibrium of Mechanism 2 when the state of the world is %, and (ii)
for all state of the world "' € © and all renegotiation rule F' € F, the profile of
pure strategies (04,05) = (s%,s%) is a F-strict-Nash equilibrium of Mechanism
2 when the state of the world is 6.

6. CONCLUSION

When the agents have complete information the principal can uniquely implement
in Nash equilibrium the first-best by means of simple and natural mechanisms that

2There are another implementing mechanisms where the strategy space of one agent has
only three elements and the stratregy space of the other agent has four elements (for example
Mechanism 1). Obviously, this is not a substantial reduction on the size of the strategy spaces.
Moreover, the fact that in Mechanism 2 each agent has five strategies allow us to give an
economic interpretation to this strategies. For all i € {4, B}, s? can be interpreted as the
option of not signing any contract. Moreover, as it is shown in the proof of Theorem 5.2, we
can associate each state of the world with a different strategy for each agent (specifically, for all
0" ¢ O, the equilibrium strategy of agent i € {A, B} is s¥'). This is not possible in Mechanism
1: although we can add a new strategies for the agents, it can be proved that in any mechanism
satisfying Desiderata 1 there will be always an agent who has the same equilibrium strategy for
two different states of the world.
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are enforceable in the sense that all the contracts that it selects are individually
rational for some type of agent. Moreover, if we renounce to enforceability, we can
doubly and uniquely implement the first-best in Nash and strict-Nash equilibrium
by means of a simple mechanism that has not mixed strategies. The fact that
agents renegotiate among them once they have signed their contracts does not
change this result: the same simple and natural mechanism works whatever the
renegotiation rule used by the agents is.

There is nothing essential in the definition of our mechanisms that prevent us
from extending them to the case where there are an arbitrary number of agents
and types. When there are n agents (where n is an even integer greater than three)
and only two different types, an obvious way to implement first-best contracts is
by dividing the agents into groups of two and applying our mechanisms in each
of these groups separately.

A possible extension is to environments where the two production processes
are complementary. However, here a new problem arises, that of organizational
structure (see Baron and Besanko [1]). A priori, it seems that implementation of
first-best contracts is more difficult under complementarities since the principal
can not threatens with using only one of the two production processes.

7. APPENDIX

The proof of Theorem 5.2 is preceded by several lemmas. Throughout all the
proof we suppose that Assumptions 1, 2 and 3 are satisfied. The first lemma tell
us how are the preferences of the least and the most productive agent over the
outcomes selected by Mechanism 2, and how are the principal’s profits with some
of these outcomes.

Lemma 8. Let cj,c}, c5,c6 € C be as defined in Lemma 7. Then we have that:
(i) v(ct,0Y) > v(NC,0") > v(cs,0") > v(cg,0) and v(NC,0") > v(cy,0") >
v(cg, 01),
(ii) v(cs, 0%) > v(ct, 0%) > v(ch, 0%) > v(NC,0%) > v(cg,0%), and
(i) T = Ty < ey < Teg.

We omit the proof of this lemma. It follows from former definitions and from
Assumptions 1, 2 and 3. We will use these lemma in the rest of the proof, although
we will not mention it explicitly. The following lemma states that if both agents
are of the same type and they sign the same contract, then no renegotiation is
possible.
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Lemma 9. For all 0" € © (k € {1,2}), all¢ = (ca,cp) € R2? with ¢y = cp,
and all F € F, we have that Fu(¢,0"%) = Fp(¢,0"™) = c4 = cp.

Proof. Suppose by contradiction that for some 6" € © (k € {1,2}), some
¢ = (ca,cp) € R¥*? with ¢4 = cp, and some I € F, we have that I4(¢,0") #
Fp(T,0"). Notice that then, for some A € (0,1), c4 = cp = MU(E,0") + (1 —
M E4(C,0™). Suppose w.lo.g. that vp(Fa(€), %) > vp(F5(c), 0"). Since, by as-
sumption, preferences are strictly convex, we have that vg(cg, ") >vg(Fp(€), %),
which is a contradiction. Finally, by definition of F, it is clear that if = (¢4, cp) €
R2*? is such that c4 = cp, and I € F is such that F4(¢,0") = I'5(C, 0"), then
FA<E, Qkk) = FB<E, Qkk) = CpA = CB. |

The rest of lemmas establish some limits on the maximum level of utility that
the agents can obtain when they renegotiate the profiles of contracts that the
mechanism may select.

Lemma 10. Let ¢}, ¢}, c5,c6 € C be as defined in Lemma 7. Then we have that:
(i) max{vg(F((c},c})),0") : I € F} < vp(cs,0"), and
(i) max{va(F((c}, 1), 0°") : F € F} < wvales, 071).

Proof. Suppose by contradiction that, for some F' € F, vp(F((ct,ct)),0") >
vp(cs, 0. Let F((ct,cl),0") = (c4,c5). Then, by definition of ¢} and c5, we
have that 7, < 7, = 7. and clg # ci. Therefore, T, 2> Ter and cy # . Hence,
by definition of ¢t, va(ct, 0'%) > va(cy,0"), which contradicts that I € F. The
proof of Point (ii) is analogous. B

Lemma 11. Let ¢}, ¢}, c5,c6 € C be the first-best contract for an agent of type
2. Then we have that:

(i) max{va(F((c3,c5)),0%) : F € F} < U°, and

(i) max{vp(F((c3,c5)),0?") : I' € F} < U°.

Proof. Suppose by contradiction that, for some I € F, va(F((c5,¢3)),0") > U°.
Let F'((c3,¢3),0') = (¢4, ¢). Then, by definition of ¢, we have that 7., < 7;,
and therefore, 7. > 7.;. Hence, by definition of 3, vp(ch, 0'%) > vp(cy, 0'?),
which contradicts that F' € F. The proof of Point (ii) is analogous. B

Lemma 12. Let cj, ¢}, c5,c6 € C be as defined in Lemma 7. Then we have that:
(i) max{va(F((c3,c})),0™) : F e F} < U°,
(i) max{vg(F((ct,c3)),0") : F € F} < U°,
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(iii) max{va (F( N
(iv) max{vg(F((c], ¢5) : ,
(v) max{vA(F(Ec{ c§2>) 922) e FY <wales, 0%), and

(vi) max{vg(

T

=

Proof. Point (i). Suppose by contradiction that, for some F' € F, va(F((c3, 7)),
o) > U°. Let F((c},ct),0M) = (¢4,c). Then, by definition of ¢t and 5, we
have that w, < 7. < 7., and therefore 7. > m... Hence, by definition of ¢j,
vp(ct, 0M) > vp(cy, 0M), which contradicts that F' € F.

Point (ii). Analogous to Point (i).

Point (iii). Suppose by contradiction that, for some F' € F, v4(F((c}, %)), 0'%) >
U Tet F((cs,c}),0") = (d4,¢5). Then, by definition of ¢} and ¢}, we have
that T, < ey < Ty Therefore, T, 2 Tes. Hence, by definition of ¢} and c3,
vp(ct, 0'?) > vp(cs, 0'%) > vp(cy, 0'?), which contradicts that F' € F.

Point (iv). Analogous to Point (iii).

Point (v). Suppose by contradiction that, for some F' € F, va(F((ct, b)), 0%%) >
va(cs,0%). Let F((ct,c5),0%) = (c4,c5). Then, by definition of ¢%, and c5, we
have that 7 < . = 7. and cy # c}. Therefore, Ter, 2> ey and ¢y # c3. Hence,
by definition of ¢4, vp(cy, 072) > vp(cy, 07%), which contradicts that I’ € F.
Point (vi). Analogous to Point (v). B

Lemma 13. Let ¢}, ¢}, c5,c6 € C be as defined in Lemma 7. Then we have that:
(1) max{v4(F((cg,cs)), 911) FeF}<U°,
(ii) max{vp(F((cs,cs)),0 1) FeF} <U°
(iii) max{va(F((ce,c5)), 0! ) FeF}<U°
(iv) max{vg(F ((cs, 6)),821) FeF}y<U°
(v) max{va(F((cs,c6)),0"%) : F € F}y < U°,
(vi) max{vp(F((cs,¢c5)),0%") : F € F} < U°,
(vii) max{va(F((cs,cs5)),0 6?2 ): FeF}<U and
(viii) max{vg(F ((05,06)),§22) FeFy<U°

C
C

Proof. Point (i). Suppose by contradiction that, for some F' € F, va(F((cg,c5)),
o) > U°. Let F((cg,c5),0M™) = (c4,c%). Then, by definition of ¢ and c5, we
have that Tet, < Ter = Ty Therefore, Tely 2 Teg > (s, Ql). Hence, by definition
of ¢5 and cg, vg(cs, 0'') > vp(cly, 0'1), which contradicts that F € F.

Point (ii). Analogous to Point (i).
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Point (iii). Suppose by contradiction that, for some F' € F, v4(F((cg,¢c5)),0"%) >
U°. Let F((cs,c5),0') = (c4,c5). Then, by definition of ¢} and cs, we have
that T, S Moy = Ty Therefore, T, 2 Tege Hence, by definition of ¢5 and cg,
vp(cs, 0'?) > vp(cy, 0'), which contradicts that F' € F.

Point (iv). Analogous to Point (iii).

Point (v). Suppose by contradiction that, for some F' € F, va(F((cs,cq)),0') >
U°. Let F((cs,cq),0™) = (4, cg). Then, by definition of ¢* and cs, we have that
T, < Tep = ey and ¢y # c5. Therefore, m > 7. and g # cg. Hence, by
definition of cg, vg(cg, 01%) > vp(cly, 0'?), which contradicts that F' € F.

Point (vi). Analogous to Point (v).

Point (vii). Suppose by contradiction that, for some F' € F, v4(F((cg, ¢5)), 07%) >
U°. Let F((cg,c5),0%) = (4, clg). Then, by definition of ¢} and cg, we have that
Mo, < Moy < Teg Therefore, T, > T Hence, by definition of cs, 03(05,922) >
vg(cly, 07%), which contradicts that F' € F.

Point (viii). Analogous to Point (vii). B

Lemma 14. Let ¢, ¢}, c5,c6 € C be as defined in Lemma 7. Then we have that:
(i) max{va(F((cs, cq)),0") : F' € F} < U,
(if) max{vp(F((cs, c6)),0?") : I' € F} < U°,
(iii) max{v4(F((cg,¢c6)),0%") : F € F} < U°, and
(iv) max{vg(F((cs,cq)),0') : F € F} < U°.

Proof. Point (i). Suppose by contradiction that, for some F' € F, va(F((cq,cg)),
0') > U°. Tet F((ce,cq),0") = (¢4, ). Then, by definition of ¢ and cg, we
have that Mo, < Tep < Teg, and therefore, e, > T Hence, by definition of cg,
vp(ce, 0'?) > vp(cy,0'), which contradicts that F' € F.

Point (ii). Analogous to Point (i).

Point (iii). Suppose by contradiction that, for some F' € F, va(F((cg,cq)), 0*") >
U°. Let F((cg,ce),0%") = (¢4, c%). Then, by definition of ¢, we have that . <
;. Therefore, by definition of ¢ and cg, mo, > m(cg, 0). Hence, vg(cq, 07) >
vg(cly, 071), which contradicts that F' € F.

Point (iv). Analogous to Point (iii). B

Proof of Theorem 5.2.
First notice that, from the definition of F, the minimum level of utility that
an agent can obtain after the renegotiation is what he obtained without any
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renegotiation. Moreover, whatever the renegotiation rule is, if the mechanism
selects NC' for some agent then no renegotiation is possible.

Claim 1. For all F' € F and all (04,05) # (s}, sH), (0a,08) ¢ F'— N(T'y,0™).
Step 1.1. For all F' € F and all (04,05) € F — N(Ty,0"), op(sg) = 0.

Irom the definition of F and from Point (ii) of Lemma 12 and Point (ii) of
Lemma 13, we have that, for all s4 € S, min{UB(F(g(sA,sB)) oYY FeF}>
max{vg(F(g(sa,s5)), 811) : F' € F}. Moreover, for all ¢/, € S, for which the
former inequality is not strict, we have that min{vg(F(g(s,,s3)),0") : F €
F} > max{vp(F(g(s4, 1)), 911) F € F}, and so the result is clear.

Step 1.2. For all F' € F and all (04,05) € F — N(Ty,0"), oca(sy) = 0.

Irom the definition of F and from Point (i) of Lemma 12 and Point (i) of Lemma
13 we have that for all sp € Sp \ {822}, min{vs(F(g(s},sp)),0") : F € F} >
max{va(F(g(s%,s5)),0") : F € F}. This fact, together with Step 1.1. prove
our statement.

Step 1.3. For all F' € F and all (04,05) € F — N(Ty,0"), oca(s%) = 0.

From the definition of F and from Lemma 9 we have that for all sg € Sg\ {s}2
min{va(F(g(sY,s5)),0") : F € F} > max{vs(F(g(s%,s5)),0") : F € F}.
This fact, together with Step 1.1. prove our statement.

Step 1.4. For all F' € F and all (04,05) € F — N(Ty,0"), op(s2) = 0.

From the definition of F and from Lemma 9 we have that for all s4 € Sy \
(2,52}, minfun(P(g(sa,58)),01) : F € F} > max{op(Flglsa, s7),0") :
F e F}. This fact, together with Steps 1.2 and 1.3 prove our statement.

Step 1.5. For all FeF and all (0a,08) € F — N(Ty,0™), op(s%) = 0.

Identical to Step 1.4.

Step 1.6. For all F' € F and all (04,05) € F — N(T'y,0"), o ( 2) = 0.

From the definition of F we have that for all s € Sp\{sk,5% ,5% } min{v(F(g(s!,
sp)),0") : F € F} > max{va(F(g(s'Z,55)),0") : F € F}. This fact, together
with Steps 1.1, 1.4 and 1.5 prove our statement.

Step 1.7. For all F' € F and all (04,05) € F'— N(Ty,0"), a4(s%) = 0.

Identical to Step 1.6.

Step 1.8. For all F' € F and all (04,05) € F — N(T'y,0"), op(s%) = 0.

From the definition of F we have that min{vg(F(g(sY,s4)),0") : F € F} >
max{vp(F(g(sY,s%)),0") : I' € F}. This fact, together with Steps 1.2, 1.3, 1.6
and 1.7 prove our statement.

Claim 2. For all F' € F and all (04,0p) # (s2,512), (04,05) € F — N(Ty,0").
Step 2.1. For all F' € F and all (04,05) € F'— N(Ty,0'%), a4(s%) = 0.
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Irom the definition of F and from Point (iii) of Lemma 12 and Point (iii) of
Lemma 13, we have that, for all sg € S5, min{UA(F(g(sA, sp)),0%) : F € F} >
max{va(F(g(s%,sg)), 812) : F' € F}. Moreover, for all 5 € Sp for which the
former inequality is not strict, we have that min{vs(F(g(s2,s%)),0") : F €
F} > max{va(F(g9(s%, s5)), 912) F € F}, and so the result is clear.

Step 2.2. For all F' € F and all (04,05) € F'— N(Ty,0'%), 04(s%) = 0.

Irom the definition of F and from Point (i) of Lemma 11, Point (v) of Lemma 13
and Point (i) of Lemma 14, we have that for all s € Sp, min{UA(F(g(sA, sp)), 0%) :
F e F}y > max{va(F(g(s%,s5)),0") : F € F}. Moreover, for all sj, € Sp for
which the former inequality is not strict, we have that min{v4(F(g(s'}, s%)),0") :
F e F} > max{va(F(g(s%,55)),0") : F € F}, and so the result is clear.

Step 2.3. For all F' € F and all (04,05) € F'— N(Ty,0%), ap(st) = 0.

From the definition of F and from Point (i) of Lemma 10 we have that for all s4 €
S\ L5, 5724, min{on(F(g(sa, 58)),02) - F € F} > max{up(Flg(sa, s14)),6")
F e F}. This fact, together with Steps 2.1 and 2.2 prove our statement.

Step 2.4. For all FeF and all (0a,08) € F — N(T9,0"), op(s%) = 0.

From the definition of F and from Point (iv) of Lemma 14 we have that for all s4 €
S\ 5%, 5721, min{us (F(g(sa, 5)),02) : F € F} > max{us(Flg(sa, 52)),0%)
F e F}. This fact, together with Steps 2.1 and 2.2 prove our statement.

Step 2.5. For all F' € F and all (04,05) € F — N(Ty,0"), op(s%) = 0.

Identical to Step 2.4.

Step 2.6. For all F' € F and all (04,05) € F' — N(Ty,0'?), aB(sB) 0.

From the definition of F we have that for all s4 € Sx\ {s%,5%}, min{vg(F(g(sa,
s2)),0") . ' € F} > max{vp(F(g(s4,5%)),0") : ' € F}. This fact, together
with Steps 2.1 and 2.2 prove our statement.

Step 2.7. For all F' € F and all (04,05) € F — N(Ty,0"), oca(s) = 0.

From the definition of F we have that min{v(F(g(s2,s12)),0') : F' € F} >
max{va(F(g(s,s12)),0") : ' € F}. This fact, together with Steps 2.3, 2.4, 2.5
and 2.6 prove our statement.

Step 2.8. For all F' € F and all (04,05) € F'— N(Ty,0'), a4(s%) = 0.

Identical to Step 2.7.

Claim 3. For all F' € F and all (04,0p) # (54, s%), (04,05) € F — N(Ty,0™).
Step 3.1. For all F' € F and all (04,05) € F — N(Ty,0%"), op(sg) = 0.

Irom the definition of F and from Point (iv) of Lemma 12 and Point (iv) of
Lemma 13, we have that, for all s4 € S, min{UB(F(g(sA, O, 0N FeFy>
max{vg(F(g(sa,s5)), 811) : F' € F}. Moreover, for all ¢/, € S, for which the
former inequality is not strict, we have that min{vg(F(g(s,,s3)),0") : F €
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F} > max{vp(F(g(sy,52)),0") : F € F}, and so the result is clear.

Step 3.2. For all F' € F and all (04,05) € F'— N(Ty,0™), a4(s'3) = 0.

From the definition of F and from Point (iii) of Lemma 14 we have that for all s €

S5\ {52}, minfua(F(g(si,50)),6") : F € F} > maxfoa(F(g(s7, 55)),6%) -

F e F}. This fact, together with Step 3.1 prove our statement.

Step 3.3. For all F' € F and all (04,05) € F'— N(Ty,0*), o5(s2) = 0.

Irom the definition of F and from Point (ii) of Lemma 11 and Point (vi) of Lemma

13, we have that for all s4 € Sy \ {5}, min{vB(F(g(sA,sB)) 0> FeF}>

max{vp(F(g(sa,s%)),0”") : F € F}. Moreover, for all s/, € S4 '\ {s >} for which

the former inequality is not strict, we have that min{vg(F(g(s4,s5)),0%") : F €

F} > max{vg(F(g(sy,5%)),0%") : F € F}. This fact, together with Step 3.2,

prove our statement.

Step 3.4. For all F' € F and all (04,05) € F' — N(Ty, 6*"), oA(sA) 0.

From the definition of F we have that for all sg € Sg\{s¥,s22}, min{va(F (g(s%,

sp)),0%") : I' € F} > max{va(F(g(sY,55)),0™) : I € F}. This fact, together

with Steps 3.1 and 3.3 prove our statement.

Step 3.5. For all F' € F and all (04,05) € F'— N(Ty,0%), 04(s%) = 0.

From the definition of F and from Point (iii) of Lemma 14 we have that for all sz €

S\ {512, 52}, min{oa(F(g(s% 56)),0') : F € F} > max{ua(F(g(s%2, 5)),6")

F e F}. This fact, together with Steps 3.1 and 3.3 prove our statement.

Step 3.6. For all FeF and all (0a,08) € F'— N(T'9,0”"), o5(s%) = 0.

From the definition of F we have that for all s, € S4\{s'?,5%,s%}, min{vg(F(g(s4,
st)),0%) - F € f} > max{vp(F(g(s4,5%)),0%") : F € F}. Moreover, for all

sy € Sa\ {s'? s%2 5%} for which the former inequality is not strict, we have that

min{vp(F(g(sy, s4)),0%) : F' € F} > max{op(F(g(sy, s%)),0°") : b2 € F}. This

fact, together with Steps 3.2, 3.4 and 3.5 prove our statement.

Step 3.7. For all F' € F and all (04,05) € F'— N(Ty,0%), a4(s4) = 0.

From the definition of F and from Point (ii) of Lemma 10 we have that, for all sz €

Sp\ {512,52, 5%} min{vs(F(g(s%,s)),0%") : F € F} > max{va(F(g(sY,s5)),

821) : F' € F}. This fact, together with Steps 3.1, 3.3, and 3.6 prove our statement.

Step 3.8. For all F' € F and all (04,05) € F — N(Ty,0%"), op(sh) = 0.

From the definition of F we have that min{vg(F(g(s%,s%)),0*) : F € F} >

max{vp(F(g(s%,s5)),0%) : I' € F}. This fact, together with Steps 3.2, 3.4, 3.5

and 3.7 prove our statement.

Claim 4. For all F' € F and all (04,0p) # (s%,52), (04,05) ¢ F — N(Ty,0%).

Step 4.1. For all F' € F and all (04,05) € F' — N(Ty,0%), ap(s3) = 0.
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Irom the definition of F and from Lemma 9 and Point (vi) of Lemma 12 we have
that for all s4 € Sy, min{ve(F(g(sa,5%)),0%%) : F € F} > max{vg(F(g(s4,5%)),
0”*) . ' € F}. Moreover, from Lemma 9, for all s’y € S for which the former
inequality is not strict, we have that min{vg(F(g(s'y,s)),0*) : F' € F} >
max{vg(F(g9(s4,s4)), 822) F € F}, and then our statement is proved.

Step 4.2. For all F' € F and all (04,05) € F'— N(Ty,0%), a4(s%) = 0.

From the definition of F we have that for all sp € Sp\{s%}, min{vs(F(g(s%,s5)),
922) P e f} > max{va(F(g(s%,s5)), 07) : F € F}. Moreover, for all
sy € Sp\ {s4} for which the former inequality is not strict, we have that
min{va(F(g(sy,s5)), 0°%) : F € F} > max{va(F(g(s%,5%)), 922) F e F}.
This together with Step 4.1 prove our statement.

Step 4.3. For all F' € F and all (04,05) € F'— N(Ty,0%), a4(s'3) = 0.

Irom the definition of F and from Lemma 9 and Point (v) of Lemma 12 we have
that for all s € Sp\{s% }, min{va(F(g(s% ,sB)) 0%*) . F € F} > max{va(F(g(s'Z,
sp)),0%%) : I' € F}. Moreover, for all s € Sp\ {s4} for which the former
inequality is not strict, we have that min{vs(F(g(s'l,s%5)),0*%) : F € F} >
max{va(F(g(s'2,5%5)),0%2) : F € F}. This together with Step 4.1 prove our
statement.

Step 4.4. For all F' € F and all (04,05) € F' — N(Ty, 922) op(s%) = 0.

From the definition of F we have that for all s4 € Sx\ {s'?, s}, min{vg(F(g(sa,
s2)),0%%) . F € F} > max{vp(F(g(s4,5%)),0%%) : F' € F}. Moreover, for all
sy € Sa\ {5} 5%} for which the former inequality is not strict, we have that
min{vB(F(g(sA,sB)) 07) . F € F} > max{vp(F(g(s,s%)),0%®) : F € F}. This
together with Steps 4.2 and 4.3 prove our statement.

Step 4.5. For all F' € F and all (04,05) € F — N(Ty,0%), op(sh) = 0.

From the definition of F and from Lemma 9 we have that for all s4 € S4\{s'?, %},
min{vB(F(g(sA,sB)) 0”2 . F € F} > max{vp(F(g(sa,s4)),0”) : F € F}.
Moreover, for all s, € S4 \ {s}?,s%} for which the former inequality is not strict,
we have that min{vg(F(g(s}, sB)) 0?) . F € F} > max{vg(F(g(s4,s4)),0%) :
F € F}. This together with Steps 4.2 and 4.3 prove our statement.

Step 4.6. For all F' € F and all (04,05) € F — N(Ty,0%), oa(s}) = 0.

From the definition of F we have that for all sy € Sp\{s},5%,5% }, min{va(F (g(s%,
sp)),0%%) : F € F} > max{va(F(g(s',s5)),0”) : F € F}. This fact, together
with Steps 4.1, 4.4 and 4.5 prove our statement.

Step 4.7. For all F' € F and all (04,05) € F — N(Ty,0%), oa(sy) = 0.

Irom the definition of F and from Point (vii) of Lemma 13 we have that for all
sp € Sp\ {5454, 5%}, min{va(F(g(s%,sp)),0%) : F € F} > max{va(F(g(s%,
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sp)),0??) : F € F}. This fact, together with Steps 4.1, 4.4 and 4.5 prove our
statement.

Step 4.8. For all F' € F and all (04,05) € F — N(Ty,0%), op(si2) = 0.

From the definition of F and from Point (viii) of Lemma 13, min{vg(F (g(s%2,5%)),
0”) . F € F} > max{vp(F(g(s%,512)),0”) : I € F}. This fact, together with
Steps 4.2, 4.3, 4.6 and 4.7 prove our statement.

Claim 5. For all F' € F and all 0" € ©, (s* s¥) € F — SN(Ty,0™).

Step 5.1. For all F € F, (si!,sh) € F — SN(PQ,QH)

From the definition of F we have that, for all s/, € S\ {s}} and all sy €
S5\ s}, minfoa(F(g(s¥, 55)),0™) : F € F} > max{oa(Flg(sy, s8),01) -
F € F} and min{vp(F(g(sY,sH)),0") : F € F} > max{vp(F(g(sY, ), 0") :
F € F}, and so our statement is clear.

Step 5.2. For all F' € F, (si2,s}2) € F — SN(I'y, 0").

From the definition of F and from Point (v) of Lemma 13 we have that, for all s/, €
Sa\ {52}, min{ua(F(g(s%2,58)),02) : F € F} > max{oa(Flg(sy, 5),0) -
F € F}. In the same way, from the definition of F and from Point (ii) of Lemma
14 we have that, for all s’y € Sp \ {22} min{vg(F(g(s'Z,52)),0"”): F € F} >
max{vg(F(g(s'2,5%)),0") : F € F}, and so our statement is clear.

Step 5.3. For all F' € F, (s% s%) € I'— SN(Ty,0™).

Irom the definition of F and from Point (iii) of Lemma 14 we have that, for all
5, € S\ {52}, min{ua (F(g(s%, 52)),0%) : F € F} > max{ua(Plg(sy, 54)), 6% :
F € F}. In the same way, from the definition of F and from Point (vi) of Lemma
13 we have that, for all s’y € Sp \ {s%} min{vg(F(g(s%!,s4)),0*): F € F} >
max{vp(F(g(s%, s,)),0%") : F' € F}, and so our statement is clear.

Step 5.4. For all F € F, (s%,s%) € F — SN(I'y,0%).

Irom the definition of F and from Lemma 9 and Point (vii) of Lemma 13, we
have that, for all s/, € Su\ {82}, min{va(F(g(s%,5%2)),0”) : F € F} >
maX{UA(F(g(sA,sB)) 0*2) . F € F}. In the same way, from the definition of
F and from Lemma 9 and Point (viii) of Lemma 13, we have that for all sy €
S5\ {52}, min{op(F(g(s2,52)),6%) : F € F} > max{op(Flg(s7, 5)),0%) -

F € F}, and so our statement is clear. B

42



References

[1]

2]

3]

[9]

[10]

[11]

BARON, D. and D. BESANKO, 1992, Information, Control and Organiza-
tional Structure, Journal of Economics and Management Strategy, 1, 237-275.

DEMSKY, J. and D. SAPPINGTON, 1984, Optimal Incentive Contracts
with Multiple Agents, Journal of Economic Theory, 33, 152-171.

DEMSKY, J. and D. SAPPINGTON, 1983, Multy-Agent Control in Perfectly
Correlated Environments, Economic Letters, 13, 325-330.

DUTTA, B. and A. SEN, 1991, A Necessary and Sufficient Condition for
Two-Person Nash Implementation, Review of Fconomic Studies, b8, 121-128.

A. GIBBARD, 1973, Manipulation Voting Schemes: A General Result,
Econometrica, 41, 587-602.

J. GLOVER, 1994, A Simpler Mechanism that Stops Agents from Cheating,
Journal of Economic Theory, 62, 221-229.

M. O. JACKSON, 1992, Implementation in Undominated Strategies: A Look
at Bounded Mechanisms, Review of Fconomic Studies, 59, 757-775.

M. O. JACKSON and T. PALFREY, Efficiency and Voluntary Implementa-
tion in Markets with Repeated Pairwise Bargaining, forthcoming in Econo-
metrica.

MA, C., MOORE, J. and S. TURNBULL, 1988, Stopping Agents from Cheat-
ing, Journal of Economic Theory, 46, 355-372.

MACHO, I. and D. PEREZ CASTRILLO, 1994, Introduccién a la Economia

de la Informacién, Ariel Economia, Barcelona.

MASKIN, E., 1979, Nash Equilibrium and Welfare Optimality, mimeo.

43



[12] MOORE, J., 1992, Implementation, Contracts and Renegotiation in Environ-
ments with Symmetric Information, Econometric Society Monographs, Vol.
ESM 20 (Cambridge University Press), 182-282.

[13] MOORE, J. and R. REPULLO, 1990, Nash Implementation: A Full Char-
acterization, Fconometrica, 58, 1083-1099.

[14] REICHELSTEIN, S. and S. REITER, 1988, Game Forms with Minimal Mes-
sage Spaces, Fconometrica, 56, 661-692.

44



