Rev. Fac. Ing. - Univ. Tarapaca, vol. 13 no. 1, 2005, pp. 69-76

FIVE ONTOLOGICAL LEVELS TO DESCRIBE AND EVALUATE SOFTWARE
ARCHITECTURES

Hernan Astudillo!

Recibido el 8 de abril de 2004, aceptado el 2 de noviembre de 2004

RESUMEN

Los modelos de calidad para la arquitectura del software son taxonomias de atributos de calidad, comunmente usados
para especificar y para evaluar requisitos no funcionales. La mayoria de los modelos de calidad ofrecen un enfoque de
dos niveles, que distinguen los atributos externamente observables de los internamente medibles, dando lugar a criterios
compuestos de calidad que son especificos a cada stakeholder. Mucho trabajo se ha dedicado a determinar la influencia
de los atributos internos sobre los externos, y la mayoria de los modelos usan una jerarquia de dos niveles. Este articulo
argiie que este aparente orden dual obscurece el que los requisitos son formulados por diversos stakeholders acerca de
sujetos diversos, y que la palabra “arquitectura” significa algo diferente para cada uno de ellos: la organizacion de un
sistema, una descripcion de tal organizacion, y el proceso de elaborar tales descripciones. El esquema propuesto organiza
los atributos de arquitectura en cinco niveles ontoldgicos, que difieren en sus preocupaciones, tipos de usuarios y técnicas
de medicion disponibles: computaciones, entregables (binarios/configuraciones), sofiware (textos), especificaciones (de
la arquitectura y/o del disefio) y proceso de arquitectura.

Palabras clave: Arquitectura de software, especificacion de software, calidad, evaluacion, ontologia de pruebas,
computaciones versus diseflo.

ABSTRACT

Quality models for software architecture are taxonomies of quality attributes, commonly used to specify and evaluate non-
functional requirements. Most quality models offer a two-level approach, distinguishing externally observable and internally
measurable attributes, yielding stakeholder-specific composite quality criteria. Much effort is devoted to determine which
internal attributes influence which external ones, and most models stick to a two-level hierarchy. This paper argues that this
apparent dual order obscures the fact that requirements are made by different stakeholder about different subjects, and the
word “architecture” means different things to each of them: the organization of a system, a description of such organization,
and the process of elaborating such descriptions. The proposed scheme organizes architecture attributes according to five
ontological (descriptive) levels, each of them with different concerns, types of users and available measurement techniques:
computations, deployables (binaries/configurations), sofiware (texts), specifications (of architecture and/or design), and
architecture process. Finally, levels and stakeholders are related to specific architecture views.

Keywords: Sofiware architecture, software specification, quality, evaluation, testing ontology, computation versus design.

INTRODUCTION

A proposed or existing software system is usually evaluated
using long lists of requirements, expressed as attributes,
and somehow measuring how well they are satisfied by
the system. Beyond merely performing the tasks it was
required to do, the system must exhibit several system-
wide properties commonly referred to as “the ilities”, with
names like reliability, maintainability, usability and
portability?. There are few if any stakeholders of any system

who are concerned about all of the above properties.
Typically, end users care about observable properties (like
functionality, performance and reliability, among others),
yet modifiability is paramount in the minds of people who
may never use the system at all (e.g. those who would pay
for its maintenance or porting).

Software architectures are evaluated with the same criteria
formulated to evaluate software products; or rather,
evaluating the architecture of a system is taken as

! Departamento de Informatica, Universidad Técnica Federico Santa Maria, Avda. Espaiia 1680, Valparaiso, Chile, hernan@acm.org
2 They might as well be called “the nesses”, since others are conciseness, completeness and correctness.

Hernadn Astudillo

evaluating the system it describes. However, this loses
sight of the fact that the architect’s stakeholders are not
necessarily the same as the system’s stakeholders. The
architect’s output is used by developers, QA, system
administrators, project managers, and other architects,
among others; each audience has specific purposes in
mind, and specific quality criteria as well.

An otherwise excellent and lucid treatment of software
quality asserts that “the quality attributes that are
influenced by the architecture of a system are ...
functionality, performance, modifiability, and reliability”
[1,p.192]. Another widely used text mutters in the same
breath “reliability, availability, and maintainability” [13,
s.9.4]. In fact, similar statements can be found in most
treatments of software architecture quality.

We believe this flat treatment of quality arises from trying
to evaluate architecture as if it were one thing, although
in practice the term “architecture” is loosely used to
describe different things: the organization of a system,
the description of such organization, and the process of
elaborating descriptions to achieve such organizations? .
Hence, speaking of “architecture quality” without
reference to a specific stakeholder is ambiguous.

Section 2 (Software Quality Models) introduces key
notions of quality models, Section 3 (Development of
Quality Models) presents some key or currently used
quality models, Section 4 (Mistakes, faults and Failures)
explains an ontological model used in the testing
community, Section 5 (Five Ontological levels) presents
a scheme that organizes architecture attributes according
to five ontological (descriptive) levels, Section 6
(“Architecture” and Stakeholders) relates these levels to
specific stakeholders, Section 7 (Related Ideas) points
out some CS developments related to this topic, and
Section 8 (Conclusions and Future Work) presents some
implications and future work.

SOFTWARE QUALITY MODELS

Quality models for software architecture are taxonomies
of quality attributes, commonly used to specify and
evaluate non-functional requirements. Most models (e.g.
[5] [11]) offer a two-level approach, distinguishing

w

Yet another use is naming the discipline that concerns itself with
these organizations, descriptions and processes; but this meaning is
not relevant to this work because requirements made to the discipline
itself of Software Architecture are well beyond the scope of any
development project.

externally observable and internally measurable
attributes, yielding stakeholder-specific composite quality
criteria. Significant work has been performed to
determine which internal attributes influence which
external ones, and most models stick to a two-level
hierarchy.

A quality model is a taxonomy of quality attributes and
their relationships [1]. A quality attribute is a specific
characterization or property of a process or product, which
can be measured or observed. Quality attributes
encompass the traditionally called “ilities”. A quality
attribute may have several metrics, each of which define
a measurement or scale (quantitative or qualitative) and
amethod or technique to observe or measure the attribute.
Metrics can be internal or external: internal metrics are
applied during construction to the executable system or
to its source code (e.g. subsystem performance or code
complexity), whereas external metrics are applied to an
executing software product (e.g. functionality, reliability
and performance).

In most quality treatments, it is mentioned that some
quality attributes (like performance and reliability) have
quantitative metrics that can be measured by executing
the system, and other quality attributes have qualitative
values that can be observed by executing the system (e.g.
testing for usability) or through non-operational scenarios
(e.g. identifying required steps to introduce a new function
into the system). There are thus two dimensions of
interest: the nature of the measurement (quantitative vs.
qualitative) and the time of measurement (executing a
system vs. analyzing a description). Clearly, all four
possible combinations are in use:

+ Executing/Quantitative: performance and stability.

» Executing/Qualitative: usability.

e Analyzing/Quantitative: modifiability

* Analyzing/Qualitative: modifiability and some kinds
of performance.

In some quality models, external attributes are correlated
with top-level “characteristics” and internal ones with
subordinate “sub-characteristics”.

Some quality attributes are influenced by the system
architecture, and thus can be (partially) evaluated from
the architecture descriptions [1]; in particular,
functionality, performance, modifiability and reliability.
Some system-wide properties, like usability, suffer only
minor influence from the architecture.

70 Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005

Five ontological levels to describe and evaluate software architectures

DEVELOPMENT OF QUALITY MODELS

Traceability

Completeness

Consistency

Accuracy

Error tolerance

EXxecution efficiency

torage efficiency

Reliability

Efficiency

Usability

Access control

Access audit

Operability

Training

Communicativeness

Simplicity
Maintainability Conciseness
Instrumentation

Testability

Self-descriptiveness

Flexibility — Expandability
Generality
FoEY Modularity
Software system
Reusability independence
Machine
independence

Interoperability

Communications
commonality

Data commonality

Fig. 1 McCall quality framework.

In the 1970’s, McCall and Cavano [12], [5] defined a
“quality framework” with criteria for product quality that
start off from three points of view (see Fig. 1):4

* Operation (using it).
* Revision (changing it).
e Transition (porting it).

About the same time, Boehm [4] proposed a quality
model (see Fig. 2) that starts off from refining a system’s
general usefulness into quality criteria from three points
of view, according to the type and circumstance of the
users:

* End-user (“as-is” usefulness)
» Potential user, at other place (portability)
» Potential user, at other time (maintainability)

4 Quality models are herein depicted in a graphical fashion after [13].

Device
independence
Self-containedness

Accuracy

Portability

Reliability Completeness
As-is
usefulness Efficiency < Accountabilif

\~ Device efficienc
Human / ; | Accessibility |
engineering // Communicativeness
clf-descriptiveness
Testability &/
Maintainability [Understandability k7
l Modifiability ' Legibility

Augmentabili

Fig. 2 Boehm’s Quality Model.

Further development of quality models led to a
standardization proposal by ISO, in the ISO 9126 [11],
which offers a two-level scheme with characteristics and
sub-characteristics (see Fig. 3). One key difference of
this quality model is that it allows each quality sub-
characteristic to influence only one top-level
characteristic, unlike most other models.

Suitability

Accuracy

Functionality

Interoperability

|

|

|
Security |
Maturity |
|

|

Reliability

Fault-tolerance

Recoverability

Understandability

Learnability

Usability -
Operability

Icilenc
y Resource behavior

|
|
|
|
|
Changeability |
|
|
|
|
|
|

Analyzability
Maintainability |« -
Stability
Testability
Adaptability
Portability Installability
Conformance

Replaceability

Fig. 3 1S0-9126 Quality Model.

Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005 71

Hernadn Astudillo

A widely used taxonomy for software architecture quality
is the one explained by Bass et al. [3], which distinguishes
two main kinds of quality attributes according to whether
they are observable during execution or not:

Observable during execution

* Performance

e Security and Availability (includes
authentication and authorization, MTBEF, etc.)

* Functionality (specified tasks)

» Usability (efficient and effective from the user’s
point of view)

Not observable during execution

* Modifiability (maintainability) (minimal
redundancy)

* Portability

* Reusability (total or partial)

* Integrable and easy to test

Other proposed quality models include the one by HP
[10], called FURPS (functionality, usability, reliability,
performance and supportability), and Dromey’s [9]
proposal of eight high-level quality attributes, namely
the same six from ISO9126 plus reusability and process
maturity.

MISTAKES, FAULTS AND FAILURES

Software testing has a long history already, and this shows
especially when considering its careful and mature
modeling [13] of its subject matter: mistakes, faults and
failures.

* Ahuman mistake (error) results in one or more faults
(defects) in some software product.

* Afault may lead to one or more failures, if and when
conditions for faulty execution are met.

* A failure is a departure by the system from its
specified behavior (during execution).

Thus, humans incur mistaken actions, which result in
faults in software, which cause failures in computations.

The key aspect of this three-level description is that it
clearly distinguishes, and yet keeps connected, three
domains: computations, texts, and actions. Some
implications of the distinction are that different techniques
can be used to ferret out these different anomalies; for
example, code reviews (involving people) to detect

mistakes, fault-seeding (involving software texts) to
estimate remaining faults, and stress-test (involving
computations) to measure MTBF.

More interestingly to us, the connection between domains
leads to techniques that span them; for example, fault-
tree analysis [13] allows identifying likely location of
faults by analyzing clustering of detected failures.

FIVE ONTOLOGICAL LEVELS

We would like to generalize testing’s three-domain
ontology to software architecture (and software design
generally), and to this end we must preserve a careful
distinction among computations, texts and actions.
Clearly, the (architect’s) actions and the computations
remain, but unlike the programmer vis-a-vis his programs,
the architect is concerned with three kinds of text:
elaborates high-level descriptions (specifications) of what
to build, which are used by designers/developers to build
texts (software), which are then translated by automated
tools into executable and configuration files
(deployables). Since systems are collections of programs
collaborating to provide the illusion of a single joint
behavior, the computational abstractions and externally
observable behavior (computations) arise from the
execution of combinations of deployables to one or more
machines.

Thus, we identify five levels, in increasing order of
abstraction from the executing system itself:

* Computations: the system in execution and the
computational constructs it gives rise to, including
processes, threads, monitors and so.

* Deployables: all artifacts that are installable and/or
deplorable for the system operation, including
binaries (executable files) and configuration files.

* Software (texts): all textual artifacts that are taken
by automatic translators to generate other (probably
deployable) artifacts: programs, source code en
general, configuration parameters, “makefiles,” etc.

* Architecture specifications: descriptions of which
software must be built, and why; i.e. architecture
and/or design specifications.

* Architecture process: tasks required to elaborate
architecture descriptions.

These five levels are ontologically different, i.e. talk about
different kinds of things, and have different organizing
quality criteria and evaluation metrics techniques.

72 Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005

Five ontological levels to describe and evaluate software architectures

One point that may deserve explicit defense are the
“deployables;” after all, a single-program developer can
(in most cases) assume their existence and correctness.
In the architecture process, deployables are what is
actually delivered by software organizations to users, and
thus what is actually managed by the user’s system
administrators. Also, since configurations inhabit the gray
area of not-quite-automated generation between texts and
computations, unlike “executable” files,” they must be
subject to artifact management even before delivery, just
like source code is.

“ARCHITECTURE” AND STAKEHOLDERS

Requirements come from stakeholders, but not all
stakeholders are alike, and not all requirements are alike.
Stakeholders make requirements, but not about the same
subject. Quality of software architecture is treated as a
somewhat global property, but different stakeholders have
specific concerns about specific (sub-)products of the
architecture process. In fact, there is no single stakeholder
who cares for all quality criteria (except of course the hapless
architect, who must satisfy them all, and the remote executive
common to all stakeholders, if there is one). To wit:

* Although algorithms must be cast in software to be
useful, people who design algorithms are almost
always concerned with their run-time behavior (time,
space, complexity, etc.) rather than their
“concreteness” as software artifacts that must be
assigned, written, versioned, integrated, deployed,
and otherwise managed. Conversely, developers and
project managers are usually concerned with these
“artifactual” aspects rather than with complexity or
integrity considerations; architects are (at most)
concerned with picking algorithms or parameterizing
their policies; and end-users are concerned with none
of this, but only with the resulting behavior and its
properties (functionality, reliability, availability,
efficiency and so on).

* End users are concerned (usually) only with the
“observable” attributes [6], whereas maintainability
is a concern of business owners and their operating
proxies, the project managers. End-users don’t really
care for maintainability or portability; they only care
about actual, current use of the system. Properties
like availability, integrity and confidentiality are
closer to their minds, too.

> An admittedly porous category, since modern Web delivery
mechanisms combine several mechanisms.

* Scalability, portability and manageability, as
evaluable properties, are of concern to the
“sysadmins”, those who keep the system running and
have to adapt it to changing operating conditions.
However, usually they do not maintain the system,
and whoever takes this task will care indeed about
maintainability and related criteria.

Clearly, the word “architecture” is loosely used to
describe several things: the organization of a system, the
description of such organization, and the process of
elaborating such descriptions®. But the users of the
architect’s output (a solution and its specification) have
specific ideas of what they need and how it is to be
evaluated.

A quality model specifically for software architecture (as
opposed to software products) could relate quality
attributes (e.g. maintainability) to specific subject matters
(e.g. software texts) and to specific architecture
stakeholders (e.g. project managers). These quality
attributes need not be specific, since any of the previously
reviewed schemes would provide a good basis for
determining what to measure in each case.

To illustrate this approach, we will use a typical set of
architecture stakeholders, explored in [2]. A goal of the
architect is to create and document a solution that pleases
alot of people (his own “local stakeholders”, so to speak).
Since (with some naiveté) every system-building project
can be conceptualized as a modeling effort, with models
increasingly detailed and concrete, we start with analysts
that produce the business model, architects who propose
major subsystems and technologies, and developers who
create actual software pieces onto the chosen platform.
Each of them has a different take on the solution and its
description:

The solution satisfies the requirements of the end user,
both functional and non-functional; this should be
verifiable by the analyst and by QA. Traceability is a key
attribute here’ .

The solution is verifiable by other architects, who can
evaluate trade-offs and determine its fitness as solution

Yet another use is naming the discipline that concerns itself with
these organizations, descriptions and processes; but this meaning is
not relevant to this work because requirements made to the discipline
itself of Software Architecture are beyond the scope of any
development project.

Traceability is not addressed explicitly in this description of quality
models organizing principles, although in practice is a key quality
attribute that influences several high-level criteria.

-

Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005 73

Hernadn Astudillo

to the problem. This implies clearly stating the system
goals, and offering traceability.

The solution can be built by the developers. This implies
partitioning the solution into comprehensible pieces, with
clear interfaces and definitions, and explicit mapping of
dependencies among pieces.

Yet others are usually ignored as users of the architect’s
output: quality assurance (QA), project management, and
administration of the deployed system?®:

The product can be tested by QA. This relies on the above
mentioned partitioning (to plan unit testing) and
traceability (to verify deployed functionality and
properties).

The process can be managed by the process manager.
This relies on partitioning (to determine work units for
teams and individuals) and on dependencies (to schedule
work); thus, project managers must be able to determine
“intermediate deliverables” that are usable, testable and
allow to show working progress.

The product can be administrated by the client’s
sysadmins. This may imply that the product itself has
run-time interfaces for this specific purpose, and that it
fits into the environment where it will be deployed (e.g.
standard platforms, security schema, integration
mechanisms, etc.).

These demands can be organized (see Fig. 4) around the
five ontological levels; where possible, we have used the
ISO 9126 characteristic name:

The solution (computations) must offer the functionality
and the observable properties (reliability, usability,
efficiency) specified by its requirements (according to
users, as estimated by analysts, verified by QA, and
predicted by peer architects).

The solution (executable) must be installable and
operable/administrable (according to the client
sysadmins).

The solution (sofiware) must be buildable (according to
developers and designers), testable (according to QA),
maintainable (according to future project managers, as
verified by current ones), and measurable by standard
tools (according to the project manger).

The solution description itself must be analyzable
(according to other peer architects).

The construction process must be manageable (according
to the project manager).

8 Yet other minor roles are omitted here for sake of simplicity.

(Usability) |
((Operability))

(Maintainability)
Architecture

specification {(Analyzability))
Architecture S
RS Manageability

Computations

Analysts

Deployables

Developers

Peer architects

Proj. managers

Fig. 4 The Five-Level Ontology and Quality Models.

The resulting combination is shown in Fig. 4, which uses
the ISO 9126 as underpinning quality model but can be
reformulated as required with other quality models.
Attributes shown within single parenthesis (like
“(Functionality)”) are top-level characteristics in ISO
9126, and those within double parenthesis (like
“(Installability)”) are second-level ISO 9126
characteristics.

We suggest that clearly identifying the different notions
of quality by those concerned with the system architecture
will allow stakeholders (and their agents) to recognize
quality criteria specific to their role, and gather them
accordingly. The absence of such structuring mechanism
would, in many cases, lead to trying to settle all quality
matters in a process where distinction among
requirements must be made by external meta-criteria (e.g.
relative importance of their defenders in the
organizational hierarchy).

RELATED IDEAS

The distinction between computations and descriptions
of them is also central to a recent proposal by Peter
Denning [7] regarding computing matters and practices.
Denning argues that we would do well in distinguishing
Computing Mechanics (study of computing as matter)
and Computing Design (principles of good practice).

74 Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005

Five ontological levels to describe and evaluate software architectures

Computing Mechanics deals with the structure and
operation of computations, which are grouped into five
categories: computation, communication, coordination,
automation, and recollection; some typical topics are
Turing machine, grammar, process, naming, caching, and
so on. Computing Design gathers principles of design
that enable professionals to use their knowledge of
Computing Mechanics to build specific systems. The
design principles arise from five concerns:

» Simplicity: forms of abstraction and structure to hide
the apparent complexity of applications.

e Performance: throughput, response time,
bottlenecks, capacity planning...

* Reliability: redundancy, recovery, checkpoint,
integrity, system trust...

» Evolvability: adaptability to changes in function and
scale.

* Security: integrity, confidentiality and availability.

Thus, the design principles correspond precisely to top-
level attributes in most quality models.

CONCLUSIONS AND FUTURE WORK

Requirements come from stakeholders, but not all
stakeholders are alike, and not all requirements are alike.
Stakeholders make requirements, but not about the same
subject. It is perhaps unhelpful treating all quality
attributes as fundamentally equal, and sweeping away
their differences in subject and object as immaterial, or
mere “operational differences” to be considered at the
time of taking measurements and evaluating quality.

This paper has argued that current quality models based
on two-level schemes of quality attributes are sidelining
two core issues regarding usefulness of such models:
requirements are made by different stakeholder about
different subjects, and the word “architecture” means
different things to each of them (organization of a system,
the description of such organization, and the process of
elaborating such descriptions). To address these issues,
it proposed a five-level description for software
architecture outputs, each level with different concerns,
types of users and available measurement techniques:
computations, deployables (binaries and configurations),
software (texts), specifications (of architecture and/or
design), and the architecture process itself.

Work currently in course aims to extend to the proposed
5-level model some implications of the mistake-fault-
failure model from testing, such as the predictive/
analytical models that have arisen from combining levels.
A central concern is trying to determine the equivalents

for “bug” in architecture, a question that itself requires
disambiguation since all five ontological levels
necessarily will have different notions of bug.

Finally, we suggest that clearly identifying the different
“things” desired and measured by those concerned with
the system architecture will allows stakeholders (and their
agents) to recognize quality criteria specific to their role,
and gather them accordingly, instead of trying to settle
all quality matters as a process where distinction among
requirements is to be made by external meta-criteria (e.g.
relative importance of their defenders in the
organizational hierarchy).

REFERENCES

[1] S.Albin. “The Art of Software Architecture: Design
Methods and Techniques”. Wiley (2003).

[2] H. Astudillo and S. Hammer. “Understanding
Architecture: What we do and why we do it”
OOPSLA’98 Workshop on Architecture as Method.
Vancouver, BC, Canada, Oct. 1998.

[3] L. Bass, P. Clemens and R. Katzman. “Software
Architecture in Practice”. Addison-Wesley, 1998.

[4] B.W.Boehm, J.R. Kaspar, M. Lipow, G. MacCleod.
Characteristics of Software Quality. Amsterdam:
North Holland.

[5] J.P. Cavano and J.A. McCall. “A Framework for
the Measurement of Software Quality.” Procs. ACM
Software Quality Assurance Workshop, pp.133-139,
Nov. 1978.

[6] P. Clements, R. Katzman and M. Klein.
Evaluating Software Architectures. Addison-
Wesley, 2002.

[7] P. Denning. “Great Principles of Computing.”
Communications of the ACM, 46(11):15-20, Nov.
2003.

[8] L. Dobrica and E. Niemeld. “A survey on
Software Architecture Analysis Methods.” IEEE
Transactions on Software Engineering 28(7):
638-653, July 2002.

[9] R. Geoff Dromey. “Cornering the Chimera”, IEEE
Software, 13(1):33-42, January 1996.

Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005 75

Hernadn Astudillo

[10] R.B. Grady and D.L. Caswell. Software Metrics:
Establishing a Company-Wide Program. Prentice-
Hall, 1987.

[11] ISO/TEC 9126. Information Technology - Software
Product Evaluation: Quality Characteristics and
Guidelines for Their Use, 1991.

[12] J. McCall, P. Richards and G. Walters. Factors in
Software Quality (3 vols.), NTIS AD-A049-014,
015, 055, Nov. 1977.

[13] S.L. Pfleeger. Software Engineering: Theory and
Practice (2" Ed). Prentice Hall, 2001.

76 Rev. Fac. Ing. - Univ. Tarapacd, vol. 13 no. 1, 2005

