
REVISTA FACULTAD DE INGENIERÍA, U.T.A. (CHILE), VOL 12 N°1, 2004, pp. 15-23

GRAPHIC SPECIFICATION OF ABSTRACT DATA TYPES

Pedro Rossel1 Ricardo Contreras2 María Cecilia Bastarrica3

Recibido el 5 de diciembre de 2003, aceptado el 7 de mayo de 2004

RESUMEN

La definición formal de requisitos de software usando especificaciones algebraicas tiene todas las ventajas de las
especificaciones formales y su sólida base teórica. Este tipo de especificaciones es generalmente textual. La mayor parte
de los lenguajes de especificación modernos tienen una representación gráfica para mejorar su usabilidad. Esto también
es el caso de las especificaciones algebraicas. En este artículo presentamos una recopilación de las formas en que los
tipos abstractos de datos pueden ser representados gráficamente usando especificaciones algebraicas, proponiendo una
notación que incluye el conjunto de todas las facetas encontradas en la literatura. También mostramos un ejemplo de
aplicación y algunos resultados experimentales de usar esta notación gráfica en la práctica.

Palabras Claves: Ingeniería de software, métodos formales, especificación algebraica, tipos abstractos de datos.

ABSTRACT

Formally specifying software requirements using algebraic specifications has all the advantages of formal
specifications. This type of specifications is usually textual. Most modern specification languages have a graphical
representation in an attempt to improve usability. This is also the case for algebraic specifications .Here we present a
survey on how abstract data types are represented graphically. We propose a structure containing a superset of all
elements surveyed. We also show an application example, and we report some experimental results when using this
graphical representation.

Keywords: Software engineering, formal methods, algebraic specification, abstract data types, graphic language.

1 Universidad Católica del Maule, Departamento de Computación e Informática. Av. San Miguel 3605 Talca, Chile, prossel@hualo.ucm.cl
2 Universidad de Concepción, Departamento de Ingeniería Informática y Ciencias de la Computación. Edmundo Larenas 215 Concepción, Chile,
rcontrer@inf.udec.cl
3 Universidad de Chile, Departamento de Ciencias de la Computación. Blanco Encalada 2120 Santiago, Chile, cecilia@dcc.uchile.cl

INTRODUCTION

The first and perhaps the most important step for the
success of the software development process is the
requirements specification. This is critical because it is
common to introduce mistakes that are difficult and
expensive to remove afterwards. There are several tasks
in requirement treatment: requirement elicitation,
writing these requirements as a consistent, complete and
non-ambiguous document, and requirements analysis.
Writing requirements is usually known as requirement
specification; different notations have been proposed for
this purpose ranging from unstructured and informal
text to highly formal mathematical notations. The
approach used in each case depends on the goals of the
project and the available resources.

Informal specifications are easy to develop but they
provide very little support for system analysis. In this
way there is no certainty that specifications are
complete, non-ambiguous, or that they fulfill all the

desired characteristics of functional or non-functional
requirements. However, most people use informal
specifications because formal methods are still
perceived as more difficult and expensive, even though
it has been largely proven that this is not true [3], [6],
[8], [13]. Formal specifications may require a longer
specification time and expert personnel, but they allow
and support specification analysis and they reduce
testing effort.

Algebraic specifications are a formal way of specifying
software systems as heterogeneous algebra's, i.e. a series
of sets over which some operations are defined [10].
This technique has been developed for the last three
decades and it is widely known.

Besides formality, specifications can also be classified
as either textual or graphical. Traditionally,
specifications were textual and this allowed a lot of fine
grained detail to be specified. However, it is difficult to
grasp the meaning of the whole system just looking at a

Pedro Rossel, Ricardo Contreras, María Cecilia Bastarrica

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 16

textual specification, so efforts have been made to
develop visual notations to overcome this difficulty.
Graphical specifications are generally clearer than
textual specifications, but they are also less scalable.

Fig. 1.- Classification of requirements specifications

The textual or graphical characteristic is orthogonal
with respect to the formality of the specification. In this
way we may have all combinations as shown in Fig. 1.
Algebraic specifications are typically textual, but in
recent years there has been an effort towards specifying
them graphically. Therefore, we can count on all the
theory behind algebraic specifications while gaining the
usability provided by graphical notations.

Formal and Informal Specifications

There are two extreme ways of specifying software
requirements: a complete formal specification and an
informal specification. There also exist some
intermediate representations that have shown to be
useful in practice more as a means of communication
between users and specialists than as requirement
specification languages. These semiformal notations
have also been used for documenting design, probably
because there is no standard notation, neither for
requirements nor for design. Table 1 is taken from [9]
and it shows different categories in formality and
examples in each category.

In order to have a formal requirements specification we
need a formal specification language. A formal
specification language provides a notation (syntax
domain), an object universe (semantic domain), and the
definition of precise rules about which object satisfies
the specification [23].

Table 1.- Classification of notations

Informal Semiformal Formal

These techniques do
not have complete
sets of rules to
constrain the models
that can be created.
Natural language
(written text) and
unstructured pictures
are typical instances.

These techniques
have a defined
syntax. Typical
instances are
diagrammatic
techniques with
precise rules that
specify conditions
under which
constructs are
allowed and textual
and graphical
descriptions with
limited checking
facilities.

These techniques
have rigorously
defined syntax and
semantics. There is
an underlying
theorical model
against which a
description
expressed in a
mathematical
notation can be
verified.
Specification
languages based on
predicate logic are
typical instances.

Examples

• Natural
Language
Specifications

• Data/Control
Flow Diagrams

• Entity-
Relationship
Diagrams

• Use Case
Diagrams

• Petri Nets

• State
Machines

• VDM

• Z

Textual and Graphical Specifications

A graphical specification is one whose elements are
visual, rather that textual. Despite the linguistic parallel,
however, graphical specifications are not easily related
to their textual counterparts even in very simple
problems. Important efforts are devoted in current
research to this correspondence.

In many cases, people perceive information easier when
it is presented in a graphic form. Given the
comprehensive advantages of pictorial representations
for people not trained in formal methods, some efforts
have been made to establish a bridge between this kind
of users and rigorous formal users. In [17], a language
for specification of high level properties of real time
systems is presented, based on temporal logic, and to
hide obscure formal notation to users, authors employ a
two-level approach allowing user-level expression s to
have a graphical notation. In this work the idea of a
bridge is implemented by considering this approach as a
natural division of responsibilities. The use of templates
is a partially constructed formula of the underlying
temporal logic, similar to the templates we present for
graphic notation.

Algebraic specifications are generally textual, but there
have been some attempts to make them graphical in
order to gain usability and to shorten the learning curve.

Graphic specification of abstract data types

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 17

In a very interesting work, Neary and Woodward [18]
address the problem of comparing the relative
comprehensibility of one textual and two visual forms
of algebraic specifications. This comparison uses a
small specification presented to a test group, and they
conclude that the graphical formalisms are easier to
manage for novice users.

The Paper

In this paper we present an overview of algebraic
specification of abstract data types (ADTs) and their
graphical representation. We also show an application
example. Fig. 2 sets the context of its contents.

Fig. 2.- Paper context

The next Section presents how ADTs are formally
specified using algebraic specifications; it also presents
its most relevant characteristics. Then, we show how a
simple information system can be specified using ADTs
showing both a textual and a graphical version. Finally,
we report the results of our experience using graphical
ADTs and presents some conclusions.

ABSTRACT DATA TYPES SPECIFICATION

An abstract data type can be considered as a black box,
where users can only see the syntax and semantics of its
operations. ADT operarations can be classified as either
constructors or inspectors [2]. Fig. 3 illustrates this
feature.

Operations on the left hand side of the figure are used
for constructing objects. Those on the right hand side,
access and test, are used for querying information from
an abstract object, and modification changes ADTs
internal data [2].

Algebraic specification is a formal method used for
software requirements specification. They are used

since the 1970's as a technique for dealing with data
structures in such a way that is independent from their
implementation [6], providing a common description for
data structures and operations that apply to them [2].
Algebraic specifications are natural for defining ADTs.

Fig. 3.- ADT Specification

The relationships among operations in an ADT are
defined with equations generally called axioms,
between terms built using both constants and the
aforementioned operations. Each term represents an
abstract object and an equation specifies that two terms
represent the same object. Axioms are the semantic
essence of algebraic specifications [2].

There are several approaches to algebraic specifications,
which differ more in the form than in content, as it can
be seen in [2], [4], [10], [12], [22], [24]. This article
takes the perspective given by [4] and [12], adding some
elements that support the characteristics of transaction
processing systems [20]. We also enrich the set E to
include not only axioms but also the whole semantics of
the defined ADT.

Formally, an algebraic specification is identified in [6],
[7] as a triple:

SPEC = {S ; OP ; E} (1)

where:

S: set of abstract data types,
OP: set of constant and operation declarations,
E: set of equations or axioms.

Notation

The structure of an algebraic ADT specification may
contain the following elements:

ADT name: Beginning of the specification, where the
ADT name is indicated.

IMPORT: Specifies other ADTs that can be used in the
present specification.

Pedro Rossel, Ricardo Contreras, María Cecilia Bastarrica

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 18

TUPLES: Declares a locally defined data type, that
may be composed of a series of fields. Types declared
in TUPLES can be used in the current specification for
defining variables, as well as in all ADTs that import
the current ADT.

SYNTAX: Operation signatures are specified by
including their name, domain and range.

SEMANTICS: Section formed by five subsections that
define: VARIABLES, AXIOMS, SEQUENCES, DATA
and PREDICATES. These parts give meaning to the
operations declared in SYNTAX, and also state the
constraints and conditions where they are valid.
SEQUENCES are used to constrain the order in which
operations must be accomplished; the operation on the
left of the >> sign must be performed before the one on
the right. VARIABLES is used to define local variables.
DATA constrains the values that variables can take;
interval values can be established, or constants with
values of other variables previously restricted in DATA
can be considered. AXIOMS are present in almost all
algebraic specification languages. PREDICATES adds
another level of constraining operation definition.
AXIOMS are expressed through equations while
PREDICATES establish certain properties through first
order logic assertions.

END ADT: Indicates the end of the abstract data type
specification.

The elements name, SYNTAX and AXIOMS are
identical to those used in [4], [12], [22], [24]. The
element IMPORT is used in [4], [12], [22] and TUPLES
appears in [12]. SEMANTICS can be found in [4], but
only in a restricted format. VARIABLES is used as in
[4], [12], [24]. SEQUENCES can be found in [5], [24].
DATA is not used in any of the algebraic specification
languages reviewed, but it further specifies and
constrains the values variables can take. We use the
syntax given by [24] for the PREDICATES. The formal
syntax of each specification element is given in the
Appendix.

These specification elements were chosen because they
provide the expressiveness we need for specifying
information systems characteristics, while still keeping
the specification simple. All of them are formally
defined and they allow us to specify both functional and
non functional requirements.

A Graphic Specification for ADTs

We propose to use a graphic notation for some parts of
the ADT specification including the same elements
defined in the textual algebraic specification. The

elements and structure of the graphic specification
language are a synthesis of the proposals of [1], [5],
[14], [15]. The textual algebraic specification language
is isomorphic with the graphic language, so each
element of one language has a correspondent element in
the other one, and this correspondence is unique.
Correspondence between both languages is shown in
Table 2. This table also shows the syntax of graphical
elements.

In the proposed graphic language, each ADT is defined
by two diagrams: one general diagram including all
described elements, but SEQUENCES, and another
diagram including only the SEQUENCES diagrams. We
chose to put SEQUENCES in another diagram to make
the specification clearer; each operation may participate
in several sequences, making it quite complex. For
elements VARIABLES, DATA and PREDICATES we
still use only the textual notation. All these features are
illustrated in the example in Section EXAMPLE:
INFORMATION SYSTEMS.

Characteristics

Graphic specifications have some virtues that are not
very obvious in a textual specification, although they
could be present. We here discuss some of the
advantages of having both, a textual and a graphic dual
specification.

Modularity

In the context of an ADT graphic specification, an ADT
can be seen as a module, which in an isolated way
ignores the details and specification of other modules.
For a specific ADT, it is not necessary to make explicit
the specification of those ADTs in IMPORT and
TUPLES. However, in order to integrate a complete
system, we should also consider the relationship among
these modules.

In order to have a modular specification it is necessary
to have a consistent specification within the ADT and
with respect to other ADTs specification [20].

Hierarchy

Modularity is not enough to manage complexity. We
need to be able to deal with abstraction and hierarchical
specifications in a common approach. Our notation can
deal with hierarchical specifications mainly through the
IMPORT and TUPLE sections.

When an ADT2 is imported by an ADT1, ADT1 may
use the operations and definitions of the ADT2, under
the constraints that ADT1 may impose. If there are

Graphic specification of abstract data types

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 19

several hierarchical levels, the higher ones can use the
operations defined in all lower level ADTs.

Scalability

Graphic specifications tend to be more intuitively
understandable than textual specifications; however, as
the complexity of the system grows, this characteristic
decreases rapidly. Having a dual textual and graphic
notation allows us to use graphic specifications for
small and simple pieces, but we can still use the textual
notation for very complex ADT specifications. Even
though, this is generally accepted as true, we can use the
modularity and hierarchical properties to keep all
specifications as simple as possible, and continue using
the graphic notation as the complete system
specification grows in size and complexity.

Learning

In general, we can say that the brain does not code and
internalize information unless it finds it significant.
Relevant information is then retained through a
memorization process [11], [25].

Long term memory is essential for the learning process
[25]. This memory stores information in association
networks organized in a hierarchical way [11]. Thus,
using diagrams for graphical specification, with
modularity and hierarchy characteristics as those
presented in this article, makes it easier to have them
coded in memory, and so it implies an easier use and a
faster learning process.

EXAMPLE: INFORMATION SYSTEMS

In this work, we considered the specification of
information systems, i.e. transaction processing
systems. This kind of systems stands for most of the real
world applications [16], [21], so it is an interesting
application domain. Transaction processing systems
include several activities, mainly data storage, data
processing according to business rules, user interface,
and data recovery; it may also add a programming
interface to allow for extensibility. Fig. 4 illustrates the
type of interactions expected for this kind of systems.

According to [19] and [22], information systems have
requirements of diverse nature: functional,
non-functional, hardware, etc. For this work we
focussed on functional requirements and some of the
possible non-functional requirements, such as operation
precedence, data representation, and constraints on data
values.

Table 2.- Correspondence between languages

Algebraic Graphic Description

ADT name

END ADT

A D T N a m e

The complete ADT
specification is between
its name and the END
ADT. The complete
graphical specification is
within the ADT box with
the same name.

IMPORT

I M P O R T
A D T 1

A D T 2

A D T 3

All imported ADTs are
shown within the main
box.

TUPLES A D T N a m e

N a m e 1 : A D T 1 ,
N a m e 2 : A D T 2

A D T 2A D T 1

The name of the included
tuples is included in the
upper part of the box, as
well as the ADT boxes
where they belong.

SYNTAX

D o m a i n R a n g e

Opera to r Name

→

Operations defined for the
ADT are show as round
rectangles where the
domain and the range of
the operation are stated.

VARIABLES

AXIOMS

DATA

PREDICATES

A D T N a m e

V A R I A B L E S
 A X I O M S
 D A T A
 P R E D I C A T E S

SEMANTICS is formed
by the declaration of
VARIABLES, AXIOMS,
DATA, PREDICATES
and SEQUENCES.
VARIABLES, DATA and
PREDICATES are
declared almost in the
same way in both
languages. AXIOMS and
SEQUENCES are defined
graphically in the
following rows.

AXIOMS

O p e r a t o r N a m e

o p 1 , o p 2 resul t→

There is a box for each
AXIOM, where the
operations involved are
stated in the form of
equations.

SEQUENCES
o p e r a t o r 1
o p 1 , o p 2

o p e r a t o r 2
o p 3 , o p 4

>>

There is an arrow with a
>> symbol that specifies
precedence between
declared operations. All
operations included must
have been declared in
SYNTAX. SEQUENCE
diagrams are the only
ones that are not included
within the ADT box for
clarity.

Pedro Rossel, Ricardo Contreras, María Cecilia Bastarrica

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 20

ADT Toart
IMPORT Book_Collection, Article_Collection
SYNTAX
 consult_book_by_author:
 Document_Author × Book_Collection → Book_Collection;
 consult article by author:
 Document_Author × Article_Collection → Article_Collection
SEMANTICS
 VARIABLES
 ∀ bo ∈ Book; bs ∈ Book_Collection;
 author ∈ Document_Author;
 ar ∈ Article; as ∈ Article_Collection
 AXIOMS
 consult_book_by _author(author, create_bc()) = create_bc();
 consult_article_by_author(author, create_ac()) = create_ac()
 SEQUENCES
 Book_Collection.enter_book(bo, bs) >>
 consult_book_by_author(author, bs1);
 Article_Collection.enter_article(ar, as) >>
 consult_article_by_author(author, as1)
 PREDICATES
 ∃ author ∈ Document_Author
 (∃ bo ∈ Book (=(author, bo.Author) ⇒
 =(consult_book_by_author(author, enter_book(bo, bs)), bo))
 OR ∃ ar ∈ Article (=(author, ar.Author) ⇒
 =(consult_article_by_author(author, enter_article(ar, as)), ar)))
END ADT

ADT Book_Collection
IMPORT Document_Author, Document_Name
TUPLES
 Book TUPLE OF
 Code : Natural,
 Author : Document_Author,
 Name : Document_Name,
 Editorial : String,
 Number_Edition : Natural,
 Publication_Year: Natural
SYNTAX
 create_bc: → Book_Collection;
 enter_book: Book ∈ Book_Collection → Book_Collection;
 eliminate_book: Book ∈ Book_Collection → Book_Collection
SEMANTICS
 VARIABLES
 ∀ x ∈ Book; y, y1 ∈ Book_Collection;
 author ∈ Document_Author
 AXIOMS
 eliminate_book(x, create_bc()) = create_bc();
 eliminate_book(x, enter_book(x, y)) = y
 SEQUENCES
 enter_book(x, y) >> eliminate_book(x, y1)
 DATA
 x.Number_Edition ≥ 1;
 x.Year_Edition ≥ 1900
 PREDICATES
 =(enter_book(x, enter_book(x, y)), enter_book(x, y));
 ∃ author ∈ Document_Author ∃ x ∈ Book (=(x.Author, author)
 ⇒ ∃ y ∈ Books_Collection =(enter_book(x, y1), y));
 (=(enter_book(x, y1), y) ⇒
 ∃ author ∈ Document_Author =(x.Author, author))
END ADT

S T O R A G E
P R O C E S S

D A T A S T O R A G E

R E C O V E R Y
P R O C E S S

I N P U T

O U T P U TI N P U T

N e w D a t a

Inser t , de le te and/or update

A n s w e rQ u e r y

Q u e r y A n s w e r

Fig. 4.- Data Storage and Recovery System

Fig. 5.- Textual Algebraic Specification of ADT Toart

In order to show the application of the proposed
specification languages, a simple information system is
specified. The system name is “TOART” (TO ARTicle)
and it allows to register the papers and books used in the
preparation of a scientific article. This system should
have functionality for the insertion, deletion and query
of books and articles. The system should be able to
answer at least two questions (functional requirements):

• Which books did certain author write?
• Which articles did certain author write?

The textual algebraic specification of the system is
formed by three ADTs: Toart, described in Fig. 5,

Book_Collection, in Fig. 6, and Article_Collection,
similar to Book_Collection. ADT Toart imports and
uses the other two in its specification.

In ADT Toart, the operation consult_book_by_author
returns the book or books that certain author has written.
Similarly, consult_article_by_author returns the article
or articles written by the author. In the case of ADT
Book_Collection, the operation enter_book inserts a
new book into the collection, and operation
eliminate_book deletes a book from the collection.

Data types such as Boolean, Natural, Integer and String,
are predefined as part of the algebraic specification
language. Document_Author and Document_Name are
imported by Book_Collection and Article_Collection
and they are assumed to be defined elsewhere.

Fig. 6.- Textual Algebraic Specification of ADT
 Book_Collection

The graphic specification of the system contains three
diagrams, one for each ADT. The type diagram for
ADT Toart is shown in Fig. 7. Sequence diagrams in
Fig. 8 also belong to ADT Toart.

Graphic specification of abstract data types

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 21

Toar t

I M P O R T

S Y N T A X

Ar t i c l e_Co l l ec t ionB o o k _ C o l l e c t i o n

P R E D I C A T E S
∈a u t h o r D o c u m e n t _ A u t h o r

 (bo Book (=(author , bo .Author)
 = (consu l t_book_by_au thor (au tho r , en t e r_book(bo , b s)) , bo))
 OR a r Ar t ic le (=(author , a r .Author)
 =(consul t_ar t ic le_by_author (au thor , en te r_ar t ic le (a r , as)) , a r)))

∃
∃ ∈ ⇒

∃ ∈ ⇒

∀

A X I O M S

author ,

c o n s u l t _ b o o k _ b y _ a u t h o r

c r e a t e _ b c c r e a t e _ b c

.

au thor ,

consu l t _a r t i c l e_by_au tho r

c r ea t e_ac c rea t e_ac

.

V A R I A B L E S

bo Book ; b s Book_Col l ec t ion ; au tho r Documen t_Author ;
ar Ar t ic le ; as Ar t ic le_Col lec t ion

∈ ∈
∈∈

Ar t i c l e_Co l l ec t ion
D o c u m e n t _ A u t h o r x A r t i c l e _ C o l l e c t i o n

consu l t _a r t i c l e_by_au tho r

B o o k _ C o l l e c t i o n
D o c u m e n t _ A u t h o r x B o o k _ C o l l e c t i o n

c o n s u l t _ b o o k _ b y _ a u t h o r

→

→

→

∈

→

Fig. 7.- Graphic Specification of ADT Toart

Toar t

en te r_book
bo, bs

>>

Book_Col lec t ion

consu l t_book_by_author
author , bs

enter_art icle
ar, as

>>

Art ic le_Col lec t ion

consul t_ar t ic le_by_author
author , as

Fig. 8.- Graphic Specification of the Sequences in

ADT Toart

Even though the system specified in the example is
simple, it shows all the specification elements in the
textual and graphic languages. We can intuitively
compare the understandability of both approaches,

where it is clear that it is easier to identify operations,
axioms and sequences in the graphic notation, but we
can also see that graphic notation is less scalable when
the specification is long and complex.

CONCLUSIONS

Algebraic specifications are traditionally textual but
they can also be specified graphically. Many approaches
have been proposed in this direction. We presented a
superset of all the features proposed in order to show the
potential expressiveness of the technique, including
those especially suited for specifying transactional
systems.

As it happens with most graphical notations, graphical
ADTs allow us to get a general understanding of a
system easier than the textual specification for the same
system. However, developing the most complex parts of
the specification as axioms or predicates remains very
close to text or completely textual, so there is no
improvement.

We have had the experience of applying this two forms
of algebraic specifications for two semesters for
teaching formal methods to fourth year computer
science students. They unanimously declared that the
graphical form was easier to understand than its textual
isomorphic specification. Even though this was not a
controlled experiment, it gives us some intuition about
the usability and understandability of graphical ADT
specifications.

As expected, a graphical isomorphic representation of a
textual algebraic specification can only improve
understandability, even though it does not remove the
complexity of developing the specification.

REFERENCES

[1] H. Ben-Abdallah, I. Lee, and J.Y. Choi; “GSCR: a

Graphical Language with Algebraic Semantics for
the Specification of Real-Time Systems”.
Technical report, Department of Computer and
Information Science, University of Pennsylvania,
Philadelphia, United States, 1995.

[2] E.A. Boiten, H.A. Partsch, D. Tuijnman, and

N.Völker; “How to Produce Correct Software –
An Introduction to Formal Specification and
Program Development by Transformations”. The
Computer Journal, Vol. 35, No. 6, pp.547 – 554,
December 1992.

Pedro Rossel, Ricardo Contreras, María Cecilia Bastarrica

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 22

[3] J.P. Bowen and M.G. Hinchey; “Seven More
Myths of Formal Methods”. IEEE Software, Vol .
12, No. 4, pp. 34 – 40, July 1995.

[4] I.M. Bradley; “Notes on Algebraic Specifications”.

Information and Software Technology, Vol. 31,
No. 7, pp. 357 – 365, September 1989.

[5] L.M.F. Carneiro, D.D. Cowan, and C.J.P. Lucena;

“Introducing ADVcharts: a Visual Formalism for
Describing Abstract Data Views”. Technical
report, Computer Science Departament &
Computer Systems Group, University of Waterloo,
Waterloo, Canada, 1993.

[6] H. Ehrig, B. Mahr, I. Classen, and F. Orejas;

“Introduction to Algebraic Spe cification. Part 1:
Formal Methods for Software Development”. The
Computer Journal, Vol. 35, No. 5, pp. 460 – 467,
October 1992.

[7] H. Ehrig, B. Mahr, and F. Orejas; “Introduction to

Algebraic Specification. Part 2: From Classical
View to Foundations of System Specifications”.
The Computer Journal, Vol. 35, No.5, pp. 468 –
477, October 1992.

[8] K. Finney; “Mathematical Notation in Formal

Specification. Too Difficult for the Masses?” IEEE
Transactions on Software Engineering, Vol. 22,
No. 2, pp. 158 – 159, February 1996.

[9] M.D. Fraser, K. Kumar, and V.K. Vaishnavi;

“Strategies for Incorporating Formal
Specifications in Software Development”.
Communications of the ACM, Vol. 37, No. 10, pp.
74 – 86, October 1994.

[10] C. Ghezzi, M. Jazayeri, and D. Mandrioli;

“Fundamentals of Software Engineering”.
Prentice-Hall International Editions, 1991.

[11] T.L. Good and J. Brophy; “Contemporary

Eductional Psychology”. Addison Wesley, 5
edition, January 1995.

[12] J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones,

A. Modet, and J.M. Wing; “Larch: Languages and
Tools for Formal Specification”. Springer-Verlag,
1993.

[13] A. Hall; “Seven Myths of Formal Methods”. IEEE

Software, Vol. 7, No. 5, pp. 11 – 19, September
1990.

[14] D. Harel; “On Visual Formalisms”.
Communications of the ACM”, Vol. 31, No. 5, pp.
514 – 530, September 1988.

[15] J. B. Johnston; “The Contour Model of Block

Structured Processes. SIGPLAN Notices, Vol. 6,
No. 2, pp. 55 – 82, 1971.

[16] K. E. Kendall and J. E. Kendall; “System Analysis

and Design”. Prentice Hall, 4 edition, 1999.

[17] I. Lee and O. Sokolsky; “A Graphical Property

Specification Language”. In Proceedings of 2nd
IEEE Workshop on High-Assurance Systems
Engineering. IEEE Computer Society Press, 1997.

[18] D. Neary and M. Woodward; “An Experiment to

Compare the Comprehensibility of Textual and
Visual Forms of Algebraic Specifications”. Journal
of Visual Languages and Computing, Vol. 13, No.
2, pp. 149 – 175, April 2002.

[19] R. S. Pressman; “Software Engineering. A

Practitioners Approach”. McGraw-Hill, 5 edition,
June 2000.

[20] P.O. Rossel; “A Language for Formal

Requirements Specification with a Graphic
Representation”, (In Spanish). Master's thesis,
Universidad de Concepción, Concepción, Chile,
January 2000.

[21] J. A. Senn; “Analysis and Design of Information

Systems”. McGraw-Hill, 2 edition, January 1989.

[22] I. Sommerville; “Software Engineering”.

Addison-Wesley Publishing Company, 6 edition,
2000.

[23] J. M. Wing; “A Specifier's Introduction to Formal

Methods”. IEEE Computer, Vol. 23, No. 9, pp. 8 –
24, September 1990.

[24] J. Woodcock and M. Loomes; “Software

Engineering Mathematics”. Addison -Wesley
Publishing Company, 1989.

[25] A. E. Woolfolk; “Educational Psychology”. Allyn

& Bacon, 7 edition, 1998.

APPENDIX: FORMAL SYNTAX

The formal syntax of the algebraic specification has
been defined in [20], and we summarize it here. Figs. 9,
10, and 11 show this definition.

Graphic specification of abstract data types

Revista Facultad de Ingeniería, Chile Vol.12 Nº1, 2004 23

A D T A D T _ n a m e

I M P O R T

T U P L E S

,

A D T _ n a m e T U P L E O F

A D T _ n a m e

;
,

f ie ld

S Y N T A X
;

o p e r a t o r S E M A N T I C S

V A R I A B L E S ∀
;

va r i ab le

A X I O M S
;

a x i o m S E Q U E N C E S
;

s e q u e n c e

D A T A
;

d a t u m P R E D I C A T E S
;

e x p r e s s i o n

E N D A D T

Fig. 9.- Formal definition of algebraic specification
 syntax (a)

f i e ld_name : ADT_name
field : : =

operator : : =

opera to r_name: A D T _ n a m e
x

A D T _ n a m e

variable : : =

var iab le_name A D T _ n a m e
,

∈

axiom : : =

opera t ion = var iab le_name
var iab le_name. f ie ld_name

constant
{}
opera t ion

;

operation : : =

opera to r_name(var iab le_name

var iab le_name. f ie ld_name
constant

{}
opera t ion

,
)

A D T _ n a m e .

sequence : : =

A D T _ n a m e .

opera to r_name(operands) >>

opera to r_name(operands)

→

Fig. 10.- Formal definition of algebraic specification
 syntax (b)

=

p r e d i c a t e _ n a m e : : =

p red ica t e : : =

p r e d i c a t e _ n a m e (v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e
c o n s t a n t
{ }
o p e r a t i o n

,
)

v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e
c o n s t a n t

d a t u m : : =

< >...

v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e

= { }
< > { }
>
<

> =

< =

=
< >

expres s ion : : =

(e x p r e s s i o n A N D e x p r e s s i o n)

p r e d i c a t e
N O T e x p r e s s i o n

∃

(e x p r e s s i o n O R e x p r e s s i o n)
⇒
⇔

(expres s ion exp res s ion)
(expres s ion exp res s ion)

v a r i a b l e e x p r e s s i o n

v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e
c o n s t a n t
{ }

,

o p e r a n d s : : =

Fig. 11.- Formal definition of algebraic specification
 syntax (c)

