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RESUMEN 
 
La definición formal de requisitos de software usando especificaciones algebraicas tiene todas las ventajas de las 
especificaciones formales y su sólida base teórica. Este tipo de especificaciones es generalmente textual. La mayor parte 
de los lenguajes de especificación modernos tienen una representación gráfica para mejorar su usabilidad. Esto también 
es el caso de las especificaciones algebraicas. En este artículo presentamos una recopilación de las formas en que los 
tipos abstractos de datos pueden ser representados gráficamente usando especificaciones algebraicas, proponiendo una 
notación que incluye el conjunto de todas las facetas encontradas en la literatura. También mostramos un ejemplo de 
aplicación y algunos resultados experimentales de usar esta notación gráfica en la práctica. 
 
Palabras Claves: Ingeniería de software, métodos formales, especificación algebraica, tipos abstractos de datos. 
 
 

ABSTRACT 
 
Formally specifying software requirements using algebraic specifications has all the advantages of formal 
specifications. This type of specifications is usually textual. Most modern specification languages have a graphical 
representation in an attempt to improve usability. This is also the case for algebraic specifications .Here we present a 
survey on how abstract data types are represented graphically. We propose a structure containing a superset of all 
elements surveyed.  We also show an application example, and we report some experimental results when using this 
graphical representation. 
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INTRODUCTION 
 
The first and perhaps the most important step for the 
success of the software development process is the 
requirements specification. This is critical because it is 
common to introduce mistakes that are difficult and 
expensive to remove afterwards. There are several tasks 
in requirement treatment: requirement elicitation, 
writing these requirements as a consistent, complete and 
non-ambiguous document, and requirements analysis. 
Writing requirements is usually known as requirement 
specification; different notations have been proposed for 
this purpose ranging from unstructured and informal 
text to highly formal mathematical notations. The 
approach used in each case depends on the goals of the 
project and the available resources. 
 
Informal specifications are easy to develop but they 
provide very little support for system analysis. In this 
way there is no certainty that specifications are 
complete, non-ambiguous, or that they fulfill all the 

desired characteristics of functional or non-functional 
requirements. However, most people use informal 
specifications because formal methods are still 
perceived as more difficult and expensive, even though 
it has been largely proven that this is not true [3], [6], 
[8], [13]. Formal specifications may require a longer 
specification time and expert personnel, but they allow 
and support specification analysis and they reduce 
testing effort. 
 
Algebraic specifications are a formal way of specifying 
software systems as heterogeneous algebra's, i.e. a series 
of sets over which some operations are defined [10]. 
This technique has been developed for the last three 
decades and it is widely known. 
 
Besides formality, specifications can also be classified 
as either textual or graphical. Traditionally, 
specifications were textual and this allowed a lot of fine 
grained detail to be specified. However, it is difficult to 
grasp the meaning of the whole system just looking at a 
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textual specification, so efforts have been made to 
develop visual notations to overcome this difficulty. 
Graphical specifications are generally clearer than 
textual specifications, but they are also less scalable. 
 

 
 

Fig. 1.- Classification of requirements specifications 
 
The textual or graphical characteristic is orthogonal 
with respect to the formality of the specification. In this 
way we may have all combinations as shown in Fig. 1. 
Algebraic specifications are typically textual, but in 
recent years there has been an effort towards specifying 
them graphically. Therefore, we can count on all the 
theory behind algebraic specifications while gaining the 
usability provided by graphical notations. 
 
Formal and Informal Specifications 
 
There are two extreme ways of specifying software 
requirements: a complete formal specification and an 
informal specification. There also exist some 
intermediate representations that have shown to be 
useful in practice more as a means of communication 
between users and specialists than as requirement 
specification languages. These semiformal notations 
have also been used for documenting design, probably 
because there is no standard notation, neither for 
requirements nor for design. Table 1 is taken from [9] 
and it shows different categories in formality and 
examples in each category. 
 
In order to have a formal requirements specification we 
need a formal specification language. A formal 
specification language provides a notation (syntax 
domain), an object universe (semantic domain), and the 
definition of precise rules about which object satisfies 
the specification [23]. 

 

Table 1.- Classification of notations 

Informal Semiformal Formal 

These techniques do 
not have complete 
sets of rules to 
constrain the models 
that can be created. 
Natural language 
(written text) and 
unstructured pictures 
are typical instances. 

These techniques 
have a defined 
syntax. Typical 
instances are 
diagrammatic 
techniques with 
precise rules that 
specify conditions 
under which 
constructs are 
allowed and textual 
and graphical 
descriptions with 
limited checking 
facilities. 

These techniques 
have rigorously 
defined syntax and 
semantics. There is 
an underlying 
theorical model 
against which a 
description 
expressed in a 
mathematical 
notation can be 
verified. 
Specification 
languages based on 
predicate logic are 
typical instances. 

Examples 

• Natural 
Language 
Specifications 

• Data/Control 
Flow Diagrams 

• Entity-
Relationship 
Diagrams 

• Use Case 
Diagrams 

• Petri Nets 

• State 
Machines 

• VDM 

• Z 

 
Textual and Graphical Specifications 
 
A graphical specification is one whose elements are 
visual, rather that textual. Despite the linguistic parallel, 
however, graphical specifications are not easily related 
to their textual counterparts even in very simple 
problems. Important efforts are devoted in current 
research to this correspondence. 
 
In many cases, people perceive information easier when 
it is presented in a graphic form. Given the 
comprehensive advantages of pictorial representations 
for people not trained in formal methods, some efforts 
have been made to establish a bridge between this kind 
of users and rigorous formal users. In [17], a language 
for specification of high level properties of real time 
systems is presented, based on temporal logic, and to 
hide obscure formal notation to users, authors employ a 
two-level approach allowing user-level expression s to 
have a graphical notation. In this work the idea of a 
bridge is implemented by considering this approach as a 
natural division of responsibilities. The use of templates 
is a partially constructed formula of the underlying 
temporal logic, similar to the templates we present for 
graphic notation. 
 
Algebraic specifications are generally textual, but there 
have been some attempts to make them graphical in 
order to gain usability and to shorten the learning curve. 
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In a very interesting work, Neary and Woodward [18] 
address the problem of comparing the relative 
comprehensibility of one textual and two visual forms 
of algebraic specifications. This comparison uses a 
small specification presented to a test group, and they 
conclude that the graphical formalisms are easier to 
manage for novice users. 
 
The Paper 
 
In this paper we present an overview of algebraic 
specification of abstract data types (ADTs) and their 
graphical representation. We also show an application 
example. Fig. 2 sets the context of its contents. 
 

 
 

Fig. 2.- Paper context 
 
The next Section presents how ADTs are formally 
specified using algebraic specifications; it also presents 
its most relevant characteristics. Then, we show how a 
simple information system can be specified using ADTs 
showing both a textual and a graphical version. Finally, 
we report the results of our experience using graphical 
ADTs and presents some conclusions. 
 
 

ABSTRACT DATA TYPES SPECIFICATION 
 
An abstract data type can be considered as a black box, 
where users can only see the syntax and semantics of its 
operations. ADT operarations can be classified as either 
constructors or inspectors [2]. Fig. 3 illustrates this 
feature. 
 
Operations on the left hand side of the figure are used 
for constructing objects. Those on the right hand side, 
access and test, are used for querying information from 
an abstract object, and modification changes ADTs 
internal data [2]. 
 
Algebraic specification is a formal method used for 
software requirements specification. They are used 

since the 1970's as a technique for dealing with data 
structures in such a way that is independent from their 
implementation [6], providing a common description for 
data structures and operations that apply to them [2]. 
Algebraic specifications are natural for defining ADTs. 
 

 
 

Fig. 3.- ADT Specification 
 
The relationships among operations in an ADT are 
defined with equations generally called axioms, 
between terms built using both constants and the 
aforementioned operations. Each term represents an 
abstract object and an equation specifies that two terms 
represent the same object. Axioms are the semantic 
essence of algebraic specifications [2]. 
 
There are several approaches to algebraic specifications, 
which differ more in the form than in content, as it can 
be seen in [2], [4], [10], [12], [22], [24]. This article 
takes the perspective given by [4] and [12], adding some 
elements that support the characteristics of transaction 
processing systems [20]. We also enrich the set E to 
include not only axioms but also the whole semantics of 
the defined ADT. 
 
Formally, an algebraic specification is identified in [6], 
[7] as a triple: 
 

SPEC = {S ; OP ; E}  (1) 
 
where:  
 
S: set of abstract data types,  
OP: set of constant and operation declarations,  
E: set of equations or axioms.  
 
Notation 
 
The structure of an algebraic ADT specification may 
contain the following elements: 
 
ADT name: Beginning of the specification, where the 
ADT name is indicated. 
 
IMPORT: Specifies other ADTs that can be used in the 
present specification. 
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TUPLES: Declares a locally defined data type, that 
may be composed of a series of fields. Types declared 
in TUPLES can be used in the current specification for 
defining variables, as well as in all ADTs that import 
the current ADT. 
 
SYNTAX: Operation signatures are specified by 
including their name, domain and range. 
 
SEMANTICS: Section formed by five subsections that 
define: VARIABLES, AXIOMS, SEQUENCES, DATA 
and PREDICATES. These parts give meaning to the 
operations declared in SYNTAX, and also state the 
constraints and conditions where they are valid. 
SEQUENCES are used to constrain the order in which 
operations must be accomplished; the operation on the 
left of the >> sign must be performed before the one on 
the right. VARIABLES is used to define local variables. 
DATA constrains the values that variables can take; 
interval values can be established, or constants with 
values of other variables previously restricted in DATA 
can be considered. AXIOMS are present in almost all 
algebraic specification languages. PREDICATES adds 
another level of constraining operation definition. 
AXIOMS are expressed through equations while 
PREDICATES establish certain properties through first 
order logic assertions. 
 
END ADT: Indicates the end of the abstract data type 
specification. 
 
The elements name, SYNTAX and AXIOMS are 
identical to those used in [4], [12], [22], [24]. The 
element IMPORT is used in [4], [12], [22] and TUPLES 
appears in [12]. SEMANTICS can be found in [4], but 
only in a restricted format. VARIABLES is used as in 
[4], [12], [24]. SEQUENCES can be found in [5], [24]. 
DATA is not used in any of the algebraic specification 
languages reviewed, but it further specifies and 
constrains the values variables can take. We use the 
syntax given by [24] for the PREDICATES. The formal 
syntax of each specification element is given in the 
Appendix. 
 
These specification elements were chosen because they 
provide the expressiveness we need for specifying 
information systems characteristics, while still keeping 
the specification simple. All of them are formally 
defined and they allow us to specify both functional and 
non functional requirements.  
 
A Graphic Specification for ADTs 
 
We propose to use a graphic notation for some parts of 
the ADT specification including the same elements 
defined in the textual algebraic specification. The 

elements and structure of the graphic specification 
language are a synthesis of the proposals of [1], [5], 
[14], [15]. The textual algebraic specification language 
is isomorphic with the graphic language, so each 
element of one language has a correspondent element in 
the other one, and this correspondence is unique. 
Correspondence between both languages is shown in 
Table 2. This table also shows the syntax of graphical 
elements.  
 
In the proposed graphic language, each ADT is defined 
by two diagrams: one general diagram including all 
described elements, but SEQUENCES, and another 
diagram including only the SEQUENCES diagrams. We 
chose to put SEQUENCES in another diagram to make 
the specification clearer; each operation may participate 
in several sequences, making it quite complex. For 
elements VARIABLES, DATA and PREDICATES we 
still use only the textual notation. All these features are 
illustrated in the example in Section EXAMPLE: 
INFORMATION SYSTEMS. 
 
Characteristics 
 
Graphic specifications have some virtues that are not 
very obvious in a textual specification, although they 
could be present. We here discuss some of the 
advantages of having both, a textual and a graphic dual 
specification. 
 
Modularity 
 
In the context of an ADT graphic specification, an ADT 
can be seen as a module, which in an isolated way 
ignores the details and specification of other modules. 
For a specific ADT, it is not necessary to make explicit 
the specification of those ADTs in IMPORT and 
TUPLES. However, in order to integrate a complete 
system, we should also consider the relationship among 
these modules. 
 
In order to have a modular specification it is necessary 
to have a consistent specification within the ADT and 
with respect to other ADTs specification [20]. 
 
Hierarchy 
 
Modularity is not enough to manage complexity. We 
need to be able to deal with abstraction and hierarchical 
specifications in a common approach. Our notation can 
deal with hierarchical specifications mainly through the 
IMPORT and TUPLE sections.  
 
When an ADT2 is imported by an ADT1, ADT1 may 
use the operations and definitions of the ADT2, under 
the constraints that ADT1 may impose. If there are 
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several hierarchical levels, the higher ones can use the 
operations defined in all lower level ADTs. 
 
Scalability 
 
Graphic specifications tend to be more intuitively 
understandable than textual specifications; however, as 
the complexity of the system grows, this characteristic 
decreases rapidly. Having a dual textual and graphic 
notation allows us to use graphic specifications for 
small and simple pieces, but we can still use the textual 
notation for very complex ADT specifications. Even 
though, this is generally accepted as true, we can use the 
modularity and hierarchical properties to keep all 
specifications as simple as possible, and continue using 
the graphic notation as the complete system 
specification grows in size and complexity. 
 
Learning 
  
In general, we can say that the brain does not code and 
internalize information unless it finds it significant. 
Relevant information is then retained through a 
memorization process [11], [25]. 
 
Long term memory is essential for the learning process 
[25]. This memory stores information in association 
networks organized in a hierarchical way [11]. Thus, 
using diagrams for graphical specification, with 
modularity and hierarchy characteristics as those 
presented in this article, makes it easier to have them 
coded in memory, and so it implies an easier use and a 
faster learning process. 
 
 

EXAMPLE: INFORMATION SYSTEMS 
 
In this work, we considered the specification of 
information systems, i.e. transaction processing 
systems. This kind of systems stands for most of the real 
world applications [16], [21], so it is an interesting 
application domain. Transaction processing systems 
include several activities, mainly data storage, data 
processing according to business rules, user interface, 
and data recovery; it may also add a programming 
interface to allow for extensibility. Fig. 4 illustrates the 
type of interactions expected for this kind of systems. 
 
According to [19] and [22], information systems have 
requirements of diverse nature: functional, 
non-functional, hardware, etc. For this work we 
focussed on functional requirements and some of the 
possible non-functional requirements, such as operation 
precedence, data representation, and constraints on data 
values. 
 

Table 2.- Correspondence between languages 

Algebraic Graphic Description 

ADT name 

END ADT 

A D T  N a m e

 

The complete ADT 
specification is between 
its name and the END 
ADT. The complete 
graphical specification is 
within the ADT box with 
the same name. 

IMPORT 

I M P O R T
A D T  1

A D T  2

A D T  3

 

All imported ADTs are 
shown within the main 
box.  

 

TUPLES A D T  N a m e

N a m e 1 :  A D T 1 ,
N a m e 2 :  A D T 2

A D T  2A D T  1

 

The name of the included 
tuples is included in the 
upper part of the box, as 
well as the ADT boxes 
where they belong. 

SYNTAX 

D o m a i n R a n g e

Opera to r  Name

→

 

Operations defined for the 
ADT are show as round 
rectangles where the 
domain and the range of 
the operation are stated. 

VARIABLES 

AXIOMS 

DATA 

PREDICATES 

A D T  N a m e

V A R I A B L E S
    A X I O M S
    D A T A
    P R E D I C A T E S

 

SEMANTICS is formed 
by the declaration of 
VARIABLES, AXIOMS, 
DATA, PREDICATES 
and SEQUENCES. 
VARIABLES, DATA and 
PREDICATES are 
declared almost in the 
same way in both 
languages. AXIOMS and 
SEQUENCES are defined 
graphically in the 
following rows. 

AXIOMS 

O p e r a t o r  N a m e

o p 1 , o p 2 resul t→
 

There is a box for each 
AXIOM, where the 
operations involved are 
stated in the form of 
equations. 

SEQUENCES 
o p e r a t o r 1
o p 1 ,  o p 2

o p e r a t o r 2
o p 3 ,  o p 4

>>

 

There is an arrow with a 
>> symbol that specifies 
precedence between 
declared operations. All 
operations included must 
have been declared in 
SYNTAX. SEQUENCE 
diagrams are the only 
ones that are not included 
within the ADT box for 
clarity. 
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ADT Toart  
IMPORT Book_Collection, Article_Collection  
SYNTAX  
    consult_book_by_author:  
        Document_Author × Book_Collection → Book_Collection;  
    consult article by author:  
        Document_Author × Article_Collection → Article_Collection  
SEMANTICS  
    VARIABLES  
        ∀ bo ∈ Book; bs ∈ Book_Collection; 
        author ∈ Document_Author;  
        ar ∈ Article; as ∈ Article_Collection  
    AXIOMS  
        consult_book_by _author(author, create_bc()) = create_bc();  
        consult_article_by_author(author, create_ac()) = create_ac()  
    SEQUENCES  
        Book_Collection.enter_book(bo, bs) >>  
            consult_book_by_author(author, bs1);  
        Article_Collection.enter_article(ar, as) >>  
            consult_article_by_author(author, as1)  
    PREDICATES  
        ∃ author ∈ Document_Author  
           (∃ bo ∈ Book ( =(author, bo.Author) ⇒ 
           =(consult_book_by_author(author, enter_book(bo, bs)), bo)) 
           OR ∃ ar ∈ Article ( =(author, ar.Author) ⇒ 
           =(consult_article_by_author(author, enter_article(ar, as)), ar))) 
END ADT 

ADT Book_Collection  
IMPORT Document_Author, Document_Name 
TUPLES  
    Book TUPLE OF  
        Code : Natural,  
        Author : Document_Author,  
        Name : Document_Name,  
        Editorial : String,  
        Number_Edition : Natural,  
        Publication_Year: Natural  
SYNTAX  
    create_bc: → Book_Collection;  
    enter_book: Book ∈ Book_Collection → Book_Collection;  
    eliminate_book: Book ∈ Book_Collection → Book_Collection  
SEMANTICS  
    VARIABLES  
        ∀ x ∈ Book; y, y1 ∈ Book_Collection;  
            author ∈ Document_Author 
    AXIOMS  
        eliminate_book(x, create_bc()) = create_bc();  
        eliminate_book(x, enter_book(x, y)) = y  
    SEQUENCES  
        enter_book(x, y) >> eliminate_book(x, y1)  
    DATA  
         x.Number_Edition ≥  1;  
         x.Year_Edition ≥  1900  
    PREDICATES  
        =(enter_book(x, enter_book(x, y)), enter_book(x, y));  
        ∃ author ∈ Document_Author ∃ x ∈ Book ( =(x.Author, author) 
            ⇒ ∃ y ∈ Books_Collection =(enter_book(x, y1), y) );  
         ( =(enter_book(x, y1 ), y) ⇒  
         ∃ author ∈ Document_Author =(x.Author, author) ) 
END ADT  
 
 

S T O R A G E
P R O C E S S

D A T A  S T O R A G E

R E C O V E R Y
P R O C E S S

I N P U T

O U T P U TI N P U T

N e w  D a t a

Inser t ,  de le te  and/or  update

A n s w e rQ u e r y

Q u e r y A n s w e r

 
 

Fig. 4.- Data Storage and Recovery System 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Fig. 5.- Textual Algebraic Specification of ADT Toart 

 
In order to show the application of the proposed 
specification languages, a simple information system is 
specified. The system name is “TOART” (TO ARTicle) 
and it allows to register the papers and books used in the 
preparation of a scientific article. This system should 
have functionality for the insertion, deletion and query 
of books and articles. The system should be able to 
answer at least two questions (functional requirements): 
 
• Which books did certain author write? 
• Which articles did certain author write?  
 
The textual algebraic specification of the system is 
formed by three ADTs: Toart, described in Fig. 5, 

Book_Collection, in Fig. 6, and Article_Collection, 
similar to Book_Collection. ADT Toart imports and 
uses the other two in its specification. 
 
In ADT Toart, the operation consult_book_by_author 
returns the book or books that certain author has written. 
Similarly, consult_article_by_author returns the article 
or articles written by the author. In the case of ADT 
Book_Collection, the operation enter_book inserts a 
new book into the collection, and operation 
eliminate_book deletes a book from the collection. 
 
Data types such as Boolean, Natural, Integer and String, 
are predefined as part of the algebraic specification 
language. Document_Author and Document_Name are 
imported by Book_Collection and Article_Collection 
and they are assumed to be defined elsewhere. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.- Textual Algebraic Specification of ADT 
        Book_Collection 
 

The graphic specification of the system contains three 
diagrams, one for each ADT. The type diagram for 
ADT Toart is shown in Fig. 7. Sequence diagrams in 
Fig. 8 also belong to ADT Toart.  
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Toar t

I M P O R T

S Y N T A X

Ar t i c l e_Co l l ec t ionB o o k _ C o l l e c t i o n

P R E D I C A T E S
∈a u t h o r     D o c u m e n t _ A u t h o r

   (     bo     Book (  =(author ,  bo .Author)
   = (consu l t_book_by_au thor (au tho r ,  en t e r_book(bo ,  b s ) ) ,  bo ) )
   OR    a r     Ar t ic le  (  =(author ,  a r .Author)
   =(consul t_ar t ic le_by_author (au thor ,  en te r_ar t ic le (a r ,  as ) ) ,  a r ) ) )

∃
∃ ∈ ⇒

∃ ∈ ⇒

∀

A X I O M S

author ,

c o n s u l t _ b o o k _ b y _ a u t h o r

c r e a t e _ b c c r e a t e _ b c

.

au thor ,

consu l t _a r t i c l e_by_au tho r

c r ea t e_ac c rea t e_ac

.

V A R I A B L E S

bo     Book ;  b s     Book_Col l ec t ion ;  au tho r      Documen t_Author ;
ar     Ar t ic le ;  as     Ar t ic le_Col lec t ion

∈ ∈
∈∈

Ar t i c l e_Co l l ec t ion
D o c u m e n t _ A u t h o r  x  A r t i c l e _ C o l l e c t i o n

consu l t _a r t i c l e_by_au tho r

B o o k _ C o l l e c t i o n
D o c u m e n t _ A u t h o r  x  B o o k _ C o l l e c t i o n

c o n s u l t _ b o o k _ b y _ a u t h o r

→

→

→

∈

→

 
 

Fig. 7.- Graphic Specification of ADT Toart 
 

Toar t

en te r_book
bo,  bs

>>

Book_Col lec t ion

consu l t_book_by_author
author ,  bs

enter_art icle
ar,  as

>>

Art ic le_Col lec t ion

consul t_ar t ic le_by_author
author ,  as

 
 
Fig. 8.- Graphic  Specification  of the Sequences in 

ADT Toart 
 

Even though the system specified in the example is 
simple, it shows all the specification elements in the 
textual and graphic languages. We can intuitively 
compare the understandability of both approaches, 

where it is clear that it is easier to identify operations, 
axioms and sequences in the graphic notation, but we 
can also see that graphic notation is less scalable when 
the specification is long and complex.  
 
 

CONCLUSIONS 
 
Algebraic specifications are traditionally textual but 
they can also be specified graphically. Many approaches 
have been proposed in this direction. We presented a 
superset of all the features proposed in order to show the 
potential expressiveness of the technique, including 
those especially suited for specifying transactional 
systems. 
 
As it happens with most graphical notations, graphical 
ADTs allow us to get a general understanding of a 
system easier than the textual specification for the same 
system. However, developing the most complex parts of 
the specification as axioms or predicates remains very 
close to text or completely textual, so there is no 
improvement. 
 
We have had the experience of applying this two forms 
of algebraic specifications for two semesters for 
teaching formal methods to fourth year computer 
science students. They unanimously declared that the 
graphical form was easier to understand than its textual 
isomorphic specification. Even though this was not a 
controlled experiment, it gives us some intuition about 
the usability and understandability of graphical ADT 
specifications. 
 
As expected, a graphical isomorphic representation of a 
textual algebraic specification can only improve 
understandability, even though it does not remove the 
complexity of developing the specification. 
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APPENDIX: FORMAL SYNTAX 

 
The formal syntax of the algebraic specification has 
been defined in [20], and we summarize it here. Figs. 9, 
10, and 11 show this definition. 



Graphic specification of abstract data types 
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A D T A D T _ n a m e

I M P O R T

T U P L E S

,

A D T _ n a m e   T U P L E  O F

A D T _ n a m e

;
,

f ie ld

S Y N T A X
;

o p e r a t o r S E M A N T I C S

V A R I A B L E S ∀
;

va r i ab le

A X I O M S
;

a x i o m S E Q U E N C E S
;

s e q u e n c e

D A T A
;

d a t u m P R E D I C A T E S
;

e x p r e s s i o n

E N D  A D T

 
 

Fig. 9.- Formal definition of algebraic specification  
  syntax (a) 
 
 

f i e ld_name :  ADT_name
field : : =

operator :  :  =

opera to r_name: A D T _ n a m e
x

A D T _ n a m e

variable :  :  =

var iab le_name A D T _ n a m e
,

∈

axiom :  :  =

opera t ion = var iab le_name
var iab le_name. f ie ld_name

constant
{}
opera t ion

;

operation :  :  =

opera to r_name( var iab le_name

var iab le_name. f ie ld_name
constant

{}
opera t ion

,
)

A D T _ n a m e .

sequence :  :  =

A D T _ n a m e .

opera to r_name(operands )  >>

opera to r_name(operands )

→

 
 

Fig. 10.- Formal definition of algebraic specification  
   syntax (b) 

 

=

p r e d i c a t e _ n a m e :  :  =

p red ica t e :  :  =

p r e d i c a t e _ n a m e ( v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e
c o n s t a n t
{ }
o p e r a t i o n

,
)

v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e
c o n s t a n t

d a t u m  :  :  =

< >...

v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e

=  { }
< >  { }
>
<

>  =

<  =

=
< >

expres s ion  :  :  =

( e x p r e s s i o n  A N D  e x p r e s s i o n )

p r e d i c a t e
N O T  e x p r e s s i o n

∃

( e x p r e s s i o n  O R  e x p r e s s i o n )
⇒
⇔

( expres s ion         exp res s ion )
(expres s ion         exp res s ion )

v a r i a b l e   e x p r e s s i o n

v a r i a b l e _ n a m e
v a r i a b l e _ n a m e . f i e l d _ n a m e
c o n s t a n t
{ }

,

o p e r a n d s  :  :  =

 
 

Fig. 11.- Formal definition of algebraic specification  
    syntax (c) 

 
 
 
 


