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Executive Summary

Two studies about a full-bridge boost rectifier are reported in this deliverable. In the first
one the converter is analyzed in the frame of Variable Structure Systems and Sliding Mode. In
the section 2 of the deliverable, the converter is analyzed in the frame of PCHS and controlled
using IDA-PBC. The later includes experimental results.

The results reported here for both approaches can be generalized to several plants. The
particularization to the full-bridge boost rectifier is natural, as this converter is supposed to be
used in the Flywheel system to feed the rotor of the DFIM.

Section 1 studies the dynamics of a single-phase unity power factor full-bridge boost converter
circuit and develops a nonlinear controller for the regulation of its output DC voltage, which
keeps the input power factor close to unity. The controller has a two loop structure: the inner
is a fast dynamic response loop with a sliding controller shaping the inductor input current of
the converter, and the outer is a linear controlled slow dynamic response loop that regulates the
output DC voltage. The squared value of the DC voltage is passed through a LTI notch filter
to eliminate its ripple before using it in the outer control loop. This filter, consequently, allows
one to expand the bandwidth of the loop and improves its dynamic response.

An Interconnection and Damping Assignment Passivity Based Control (IDA-PBC) for a full-
bridge rectifier is presented in Section 2. The closed loop system performance fulfils unity power
factor in the AC mains and output DC voltage regulation. The controller design takes advantage
of the Generalized State Space Averaging (GSSA) modelling technique to convert the quoted
non-standard problem (in actual variables) into a standard regulation one (in GSSA variables).
In this approach, the output current is the measured signal instead of the line current; therefore,
the number of sensors does not increase in comparison with traditional approaches. The whole
system is robust with respect to load variations.
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1 Sliding mode control of a full-bridge unity power factor rec-
tifier

This section studies the dynamics of a single-phase unity power factor
full-bridge boost converter circuit and develops a nonlinear controller for
the regulation of its output DC voltage, which keeps the input power
factor close to unity. The controller has a two loop structure: the inner
is a fast dynamic response loop with a sliding controller shaping the in-
ductor input current of the converter, and the outer is a linear controlled
slow dynamic response loop that regulates the output DC voltage. The
squared value of the DC voltage is passed through a LTI notch filter
to eliminate its ripple before using it in the outer control loop. This
filter, consequently, allows one to expand the bandwidth of the loop and
improves its dynamic response.

1.1 Introduction

In order to meet the requirements of the electrical quality standards (for example IEC 1000-3-2)
for the input current of low-power equipment, it is necessary to perform the AC-DC conversion
of the electrical power using switch-mode power converters [9]. Among these circuits, the most
popular choice for medium and high power applications is the boost power converter operating
in continuous conduction mode [1, 16]. However, as it is known, it is difficult to control these
converters because of their non-minimum phase behaviour with respect to the output voltage.
This fact is worsened by the basic control objective of the sinusoidal shape in the converter input
current. This specification has a non-standard form because it only imposes the shape of a signal
and not its value as a function of time, which would fit to a tracking problem. Also, there is
another control objective: the mean value of the DC bus capacitor voltage must be regulated
to a specified value. But, as it will be seen in the next section, the two control objectives must
accomplished with only one control variable, and this fact implies a complex controller structure,
in general, a two control loop topology.

The section is organized as follows: Subsection II presents the model of the bidirectional
boost rectifier and the control objectives. Subsection III discusses the steady-state and the zero-
dynamics behaviour of the system, showing the converter input-output active power balance.
Subsection IV develops a set of bounds for the system’s response based on the physical param-
eters of the system. Subsection V shows the design of the controller detailing each one of the
two loops (current and voltage). In Subsection VI several simulations of the proposed control
scheme are showed. Finally, Subsection VII summarizes the conclusions.

1.2 Problem formulation

1.2.1 Physical model of the boost converter

The averaged model of the boost converter (at the switching frequency) [4] is given by

Lẋ1 = −ux2 − rx1 + vs (1)

Cẋ2 = ux1 − 1
R

x2 (2)

where x1 and x2 are the input inductor current and the output capacitor voltage variables,
respectively; vs = E sin(ωrt) is the ideal sinusoidal source that represents the AC-line source;
R is the DC-side resistive load; r is the parasitic resistance of the inductor; and L and C are
the inductance and the capacitor of the converter. The control variable u takes its value in
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the closed real interval [−1, 1] and represents the averaged value of the PWM (pulse-width-
modulated) control signal injected into the real system.

Figure 1: Bidirectional boost active rectifier converter.

In the actual implementation of the system it is assumed that the output voltage x2, the
input current x1 and the source voltage vs are available for measurement. In the following
analysis, it will be interesting to deal with the DC component 1 of some variables that will be
noted as 〈·〉0. It is important to remark that the system described by equations (1) and (2) can
be seen as the interconnection of two subsystems with different time constants. In particular,
the dynamics of equation (2) is much slower than the dynamics of equation (1). This fact
has led to the development of the classical control schemes for these systems consisting of two
concentric control loops: the inner (fast) for shaping the inductor current, and the outer (slow)
for regulating the output capacitor voltage. In this control architecture, the output of the outer
loop controller acts as the modulating signal in an AM modulator, with carrier vs, whose output
is the reference for the inner loop. The handicap of this control topology, caused by the slow
outer voltage loop, is the need for big capacitors in the DC bus to prevent large overvoltages in
case of great load perturbations.

1.3 Control objectives

The control objectives are:

1. The AC-DC converter must operate with a power factor close to one. This is achieved by
ensuring that, in the steady-state, the inductor current x1 follows a sinusoidal signal with
the same frequency and phase as the AC-line voltage source vs, i.e. x1d = Id sin(ωrt). The
value for Id should be calculated by the controller in order to accomplish the following
objective,

2. The DC component of the output capacitor voltage 〈x2〉0 should be driven to the constant
reference value 〈x2〉0d, where 〈x2〉0d > E in order to have boost behaviour.

3. The value of the DC bus capacitor must be as low as possible for cost reasons. This
requirement implies that the controller should be able to reject large perturbations in the
load with short transients to prevent overvoltages in the bus.

1.4 Steady-State and Zero-Dynamics Analysis

If the state vector of the system (1)-(2) is fixed assuming perfect control action, at the desired
values (x1d = Id sin(ωrt), x2d = Vd = 〈x2〉0d) and neglecting the higher order harmonics, an

1The DC component, or averaged function, of a periodic signal f(t) of period T is calculated as 〈f(t)〉0 ,
1
T

∫ t

t−T
f(τ)dτ .
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input-output active power balance [4] is performed resulting in:

Pi = 〈x1dvs − rx2
1d〉0 =

1
2
(EId − rI2

d) (3)

Po =
x2

2d

R
=

V 2
d

R
(4)

Since the input active power must be equal to the output active power (Pi = Po), then

1
2
(EId − rI2

d) =
V 2

d

R
(5)

should hold. This equation has two solutions Id = E
2r ±

√
E2

4r2 − 2V 2
d

rR which are real if and only

if Vd
E <

√
R
8r [4]. This condition is known as the boost condition of the power converter. The

smaller solution of (5), Id = E
2r −

√
E2

4r2 − 2V 2
d

rR , corresponds to a stable equilibrium and is the
selected relation between the desired mean value of the DC capacitor (Vd) and the amplitude of
the desired inductor current (x1d = Id sin(ωrt)).

As it is known, the bidirectional boost rectifier has relative degree 1 regardless of the output,
x1 or x2. Besides this, it is also known that if the output is x2, the system has a non-minimum
phase behaviour. For this reason, this system is usually controlled through the current x1.
In this case, the system has a minimum phase behaviour, i.e. its zero-dynamics is stable. In
order to verify this assertion, x1 is taken as the output of the system by fixing its value to
x1d = Id sin(ωrt) in equations (1)-(2) resulting in

u =
(E − rId) sin(ωrt)− ωrLId cos(ωrt)

x2
(6)

dx2

dt
= −Id

2 sin(ωrt) cos(ωrt)ωrL

Cx2
− Id

2 (sin(ωrt))
2 r

Cx2

+
Id (sin(ωrt))

2 E

Cx2
− x2

CR
(7)

where u and x2 are the control variable and the capacitor voltage, respectively, in the zero-
dynamics. Then, equation (7) describes the behaviour of the zero-dynamics of the system. This
equation is a Bernoulli ODE, but multiplying each side of the equation (7) by x2 and taking
z = 1

2x2
2, we get the following linear ODE:

dz

dt
= −Id

2 sin(ωrt) cos(ωrt)ωrL

C
− Id

2 (sin(ωrt))
2 r

C

+
Id (sin(ωrt))

2 E

C
− 2z

CR
, (8)

whose solution is z(t) = f(t)+p(t)+K, where f(t) = 1
2C1 exp(− 2t

RC ) is the vanishing (limt→∞ f(t) =
0) term corresponding to the first order linear dynamics, p(t) = A sin(2ωrt) + B cos(2ωrt) is the
oscillating term (at frequency 2ωr), and K = V 2

d
2 is the constant term. It is worth noting that

the DC value of z(t) in steady-state is 〈z〉0 = K = V 2
d
2 , i.e. averaging z(t) with period T = π

ωr
in

steady-state results in the mean value of the DC capacitor bus squared and divided by 2. The
same result can be obtained averaging equation (8),

d〈z〉0
dt

=
1

2C

(
EId − rI2

d

)− 2〈z〉0
RC

=
V 2

d

RC
− 2〈z〉0

RC
(9)

whose solution is 〈z〉0 = V 2
d
2 + C1 exp(− 2t

RC ).
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1.5 Control Design

This section is devoted to the design of both the control u and Id, since the latter operates as a
control in a linear equation describing the dynamics of 〈x2

2/2〉0. The control objectives can bePSfrag replaements Vi
Vi Vi

u u
x1

x1
x2x2Id IdloadLoadSliding ontroller ConverterNoth �lter and linear ontroller

Figure 2: Control scheme blocks diagram.

written as follows:

• x1(t) = Id sin(ωrt)

• 〈z〉0 = 0.5V 2
g

both requirements being demanded in steady-state, where z = 0.5x2
2.

As far as the first objective is concerned, sliding control is proposed since it is appropriate
due to its very nature for switching converters, and it will provide a controlled system robust
with respect to load variations [14]. Thus, σ(x, t) = x1 − Id sin(ωrt) = 0 is considered as the
switching surface. Note that its relative degree is one. Following the standard procedure [15],
one has

ueq =
1
x2

[(E − rId) sin(ωrt)− ωrLId cos(ωrt)]

u =
{ −1 if σ(x, t) < 0

+1 if σ(x, t) > 0

A necessary condition for sliding motion is x2 6= 0; note that the dot product of the x-
gradient of σ(x, t) and the control vector is −x2/L which, in turn, will be assumed negative.
Furthermore, −1 6 ueq(x, t) 6 +1 defines the subset of σ(x, t) = 0 where sliding motion occurs.
The substitution of the zero-dynamics in these inequalities results in the necessary conditions
to be held by the plant parameters and will be considered in the next section.

With regards to the second objective, the variable 〈z〉0 is regulated to V 2
d /2 applying classical

linear control design to equation (9) with r = 0, where Id acts as the control variable. This
ordinary differential equation describes the zero-dynamics, i.e. the Ideal Sliding Dynamics.
Taking the zero-dynamics as the dynamics of z = 0.5x2

2 makes sense because the current loop is
much faster than the voltage one, as has already been pointed out. In addition, z(t) has a DC
component and a fundamental harmonic at 2ωr which is removed through the linear notch filter

H(s) =
s2 + 4ω2

r

s2 + 4ξωrs + 4ω2
r

(10)

A block diagram depicting this control scheme is shown in Fig. 2.

7
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0.0060.0080.010
Figure 3: min2{d(t)} − max2{n(t)} as a function of the variables (L,C) in the range L ∈
[0.0005, 0.005], C ∈ [0.0005, 0.01].

1.6 Parameter Analysis

The plant parameters are important in the performance of the controlled converter. Some of
them, such as the load R and the input voltage, can vary with time, or can be affected by
perturbations. Others, such as the inductance L and the capacitance C, are design parameters;
that is to say, their values can be specified by the converter designer and can be assumed constant
as long as the process takes. In this section, the influence of parameters L, C and R on the
fulfilment of the control objectives is considered. Furthermore, a new specification is taken into
account; namely, an output voltage ripple lower or equal to 0.05 p.u. For the sake of simplicity,
r = 0 has been chosen in this section.

PSfragreplaements
0.020.040.060.080.100.120.140.160.180.200.220.240.26

L C

0.05

0.001 0.002 0.0020.003 0.004 0.004

0.005

0.0060.0080.010
Figure 4: lpu as a function of the variables (L, C) in the range L ∈ [0.0005, 0.005], C ∈
[0.0005, 0.01].

First, let it be assumed the steady-state for the input current, x1 = x1d = Id sin(ωrt). From
equation (1), the steady-state for the product ux2 is given by

ussx2ss = [E sin(ωrt)− ωrLId cos(ωrt)] (11)

Second, as in the previous sections, the change of variable z = 0.5x2
2 in equation (2) results
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in
C

dz

dt
= ux2x1 − 2z

R
(12)

Thus, from equations (11) and (12), the steady-state for the new variable z is

zss(t) =
V 2

d

2

[
1 +

2LCV 2
d ω2

r −E2

E2(1 + ω2
rR

2C2)
cos(2ωrt)

− ωr(E2R2C + 2LV 2
d )

E2R(1 + ω2
rR

2C2)
sin(2ωrt)

]
(13)

By substitution of x2ss =
√

2zss in equation (11), the steady-state for the input variable is
obtained, which is a quotient of periodic signals. The numerator, n(t), is a pure sine of amplitude

E

√
1 + 4

V 4
d ω2

rL
2

E4R2

and the denominator, d(t), is a periodic signal that oscillates between

Vd

√√√√√1±

√√√√
(
1 + 4ω2

rV 4
d L2

E4R2

)

1 + ω2
rR

2C2

A necessary condition to avoid saturation of the input variable, i.e. 0 < u < 1, is

max{n(t)} < min{d(t)}
Since both terms of the inequality are positive, it is equivalent to

min2{d(t)}−max2{n(t)} = V 2
d − E2

(
1 + 4

ω2
rVd

4L2

E4R2

)

−
√

V 4
d

(
1 + 4

ωr
2Vd

4L2

E4R2

)
(1 + ωr

2R2C2)−1 > 0

(14)

Note that inequality (14) implies Vd > E, or equivalently, 〈x2〉d > E, recovering the boost
character of this converter.

The graph of min2{d(t)} − max2{n(t)} as a function of the variables (L, C) in the range
L ∈ [0.0005, 0.005], C ∈ [0.0005, 0.01] is depicted in Fig. 3.

As for the second specification, from equation (13), the amplitude of the voltage ripple is
given in p.u. by

lpu =

√√√√√

1 +

√(
E4R2 + 4 ωr

2Vd
4L2

)

E4R2 (1 + ωr
2R2C2)


− 1 (15)

The graph of lpu as a function of the variables (L,C) in the range L ∈ [0.0005, 0.005],
C ∈ [0.0005, 0.01] is depicted in Fig. 4.

It is worth noting that if (14) and lpu < 0.05 holds for L, C, E and R0, it also holds for L,
C, E and R > R0. Both inequalities provide us with restrictions to be held by the parameters
E,L, C, R, ωr and Vd.
Comments
• From Figs. 3 and 4, L > 0.001 and C > 0.003 appear to be conditions for the specifications
to be held, presuming E = 220

√
2V, R0 = 10 Ω, Vd = 400V and ωr = 100π rad/s.

• Note from the pictures the dominance of the value of the capacitor in the fulfilment of the
plant parameter requirements.
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Figure 5: The input voltage vs(t) together with the input current x1(t) and the output voltage
x2(t).
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Figure 6: Input current x1(t) in phase with the input voltage vs(t).
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Figure 7: z(t) together with 〈z〉0.
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1.7 Simulation results

The previous control design has been simulated in a single-phase active filter with the following
parameters: L = 1mH, C = 4.7mF, vs(t) = 220

√
2 sin(ωrt)V, ωr = 100π rad/s, Vd = 400 V.

A pulsating function taking values R = 100 Ω and R = 10 Ω, respectively, has been considered
as the resistive load. Fig. 5 shows the evolution of the input voltage vs, the input current x1

and the bus voltage x2. A detail of the input current x1 in phase with the output voltage vs is
shown in Fig. 6. Finally, in Fig. 7, the auxiliary variable z = 0.5x2

2 is depicted together with
the notch filter output, z being the input.

1.8 Conclusions

In this section, a dynamic sliding-mode control scheme for a single phase AC/DC regulator
system with unity power factor has been proposed. The design procedure presented in this
section suggests a sliding surface dynamically defined in order to fulfil two specifications in a
single input system, namely: unity power factor and output voltage regulation. Fundamental to
the regulation is a linear notch filter, eliminating the harmonics of the squared output voltage.
A converter parameter design procedure that can be used to minimize the capacitor has also
been proposed. The theoretical predictions have been validated by means of simulation results.
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2 Robust Controller for a Full-Bridge Rectifier Using the IDA
Approach and GSSA Modelling

An Interconnection and Damping Assignment Passivity Based Control
(IDA-PBC) for a full-bridge rectifier is presented in this section. The
closed loop system performance fulfils unity power factor in the AC
mains and output DC voltage regulation. The controller design takes
advantage of the Generalised State Space Averaging (GSSA) modelling
technique to convert the quoted non-standard problem (in actual vari-
ables) into a standard regulation one (in GSSA variables). In this ap-
proach, the output current is the measured signal instead of the line cur-
rent; therefore, the number of sensors does not increase in comparison
with traditional approaches. The whole system is robust with respect
to load variations.

2.1 Introduction

In industrial applications DC power supplies connected to AC mains must have some desirable
properties such as high power density, high power factor, high efficiency, low current distortion,
and simple control scheme, particularly due to the enforcement of strict harmonic regulations
(for example IEC 61000-3-2) [7]. For medium and high power applications, the most popular
choice to this end is the power switching boost rectifier operating in continuous conduction
mode [5]. However, it is difficult to control these converters because of their non-minimum
phase behaviour with respect to the output voltage, which, in turn, is worsened by the basic
control objective of the sinusoidal shape in the converter line current. This specification has a
non-standard form because it only imposes the shape of a signal and not its value as a function
of time, which would pose to a tracking problem.

Using the GSSA [13] modelling method, it is possible to describe the control objectives,
namely load voltage regulation and unity power factor at the input AC mains, as a regulation
problem. Generally speaking, industrial loads for this rectifier are variable loads, this being the
main drawback to obtain simple controllers. Common solutions require the sensing of input
voltage, line current and output voltage. Achieving robustness to load variations is not a simple
control problem because whenever load varies, the amplitude of the line current must change
to a new value to keep DC voltage regulation, but keeping the control objective over the line
current shape. It is difficult to treat this problem as a tracking problem without measuring the
load since the line current reference depends on it.

As reported in the excellent survey [10], traditional control strategies establish two loops:
an line current inner loop for power factor compensation and an output voltage outer loop for
voltage regulation. Works [3] and [11] warn of difficulties in actual implementations of these two
loops because of the different dynamics they undergo. An adaptive scheme, which results in a
complex control law, is proposed in [4]. All of these works use at least two sensors; even three
as an extra output current measure is required to estimate the load.

The control proposed here has been designed for a non linear GSSA model with an inherited
Port Controlled Hamiltonian (PCH) structure. We take advantage of this structure to solve the
aforementioned GSSA regulation problem and we obtain a closed-loop system robust to load
variations. For this proposal, only two signals need to be measured, namely the output voltage
and the output current, this being one of the main results of this section. The input voltage
amplitude is supposed to be known, e.g. through sensing.

Interconnection and damping assignment passivity based control has been developed in the
last years by Ortega et alt. as a control technique based on energy balance. It was applied solve
regulation problems in physical systems written in Euler-Lagrange equations and recently ex-
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tended to Port Controlled Hamiltonian Systems. The reader is referred to [12] and the references
therein for basic results.

The main contributions of the present section are: first, a tracking problem is solved in
a PCH framework; using GSSA models it is possible to transform the non-standard tracking
control problem into a regulation one. Second, the extension of the Hamiltonian structure of
the nonlinear model to the GSSA model and finally, the experimental validation of the control
strategy designed.

The section is organised as follows. Second Subsection provides a short review of the GSSA
modelling technique. The third Subsection develops a preliminary analysis of the system based
on the energy in steady state and states the control objectives. In Subsection four a GSSA
model for the full-bridge converter in its relevant harmonics is obtained and written as a PCH
system. The fifth Subsection develops the IDA approach for this system to obtain a stabilising
control law. The sixth Subsection shows simulation results obtained from a switched model
of the full-bridge rectifier, and the robustness to load variations behaviour is remarked. The
seventh Subsection describes the experimental setup and shows experimental results. Finally,
some conclusions are drawn.

2.2 Review of the GSSA method

The GSSA method was introduced in [13] and expanded later to highlight the accuracy of this
modelling technique applied to describe the dynamic behaviour of DC/DC converters in [8]
and [2]. This review has been taken from the last reference.

The method is based on the fact that a signal x(τ) on the interval τ ∈ [t − T, t] can be
represented by the Fourier series

x(τ) =
∞∑

`=−∞
〈x〉`(t)ej`ωoτ , (16)

where ωo = 2 π
T and 〈x〉`(t) are the time-dependent complex Fourier coefficients given by

〈x〉k(t) =
1
T

∫ t

t−T
x(τ)e−jkωoτdτ. (17)

To reconstruct x(τ) from its Fourier coefficients, equation (16) can be reformulated as

x(τ) = 〈x〉0 + 2
∞∑

`=1

(<〈x〉` cos(`ωoτ)−=〈x〉` sin(`ωoτ)), (18)

where the time argument t of 〈x〉` has been dropped to simplify the notation, and <〈x〉` and
=〈x〉` are the real and imaginary parts of 〈x〉`, respectively.

In order to use this representation for the x(τ) in a state-space model of a system, two useful
facts concerning differentiation with respect to time and computation of the average of a product
are

d〈x〉k(t)
dt

= 〈dx

dt
〉k(t)− jkωo〈x〉k(t) (19)

〈qx〉k =
∞∑

i=−∞
〈q〉k−i〈x〉i. (20)
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Figure 8: Full-bridge boost type rectifier

2.3 Preliminary analysis of the system

The following equations describe the dynamical behaviour of the full-bridge boost type rectifier
in Fig. 8.

dφ(t)
dt

=
−u(t)

C
q(t)− r

L
φ(t) + vi(t) (21)

dq(t)
dt

=
u(t)
L

φ(t)− il(t) (22)

where φ(t) is the magnetic flux through inductor L, q(t) is the electrical charge in capacitor C,
r is a resistance modelling the parasitic resistive effect of the inductor and the switches, u(t)
describes the position of the switches taking values in the discrete set {−1, 1}, il(t) is the load
current and vi(t) = E sin(ωot) is the AC voltage source of amplitude E and angular frequency
ωo = 2πf , f being the frequency in Hz. In this section, and only for GSSA modelling purposes,
the load will be assumed resistive, then il = q

C
1
R .

As in [4], the control objectives for this rectifier are 2

• The DC value of the output voltage q(t)
C , 〈q(t)〉0C should be equal to a desired constant value

Vd > E; i.e.
〈q(t)〉0∗ = CVd (23)

• The power factor of the converter should be equal to one. This means that, in steady-state,
the inductor current φ(t)

L follows a sinusoidal signal with the same frequency and phase as
the AC-line voltage source; i.e.

φ∗(t) = LId sin(ωot), (24)

where Id is the appropriate constant value fulfilling the aforementioned objective.

Note that the second control objective does not correspond to a tracking problem because
amplitude Id depends on variable il(t).

2In this paper * will be used to express the value in steady-state
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A useful variable transformation which simplifies 3 forthcoming developments is obtained
through v(t) = −u(t)q(t) and z = [z1, z2] = [φ(t), 1

2q(t)2]. The system in the new variables is

dz1(t)
dt

= −rz1(t)
L

+
v(t)
C

+ vi(t) (25)

dz2(t)
dt

= −v(t)z1(t)
L

− il(t)
√

2 z2(t). (26)

The energy in the storing elements L and C of this system can be described by

HT (t) =
z1(t)2

2L
+

z2(t)
C

(27)

and equations (25-26) can be rewritten as



dz1(t)
dt

dz2(t)
dt


 =

[
0 v(t)

−v(t) 0

]
∂HT

∂z
−

[
r 0
0 Cil(t)

√
2 z2(t)

]
∂HT

∂z
+

[
vi(t)

0

]
, (28)

which corresponds to a PCHS system [12] of the form

ż = [JT (v)−RT (x)]
∂HT

∂z
(z) + gT , (29)

where JT = −JT
T , RT (x) = RT

T (x) > 0 are the matrices in equation (28) describing the inter-
connection structure and damping, respectively. The last inequality results from z2(t) > 0 and
il(t) > 0 because the load voltage is non negative. The input voltage (vi(t), 0) is considered as
an external disturbance modelled by vector gT . In order to obtain the simplest coherent GSSA
model, let us determine the harmonic content of the states and the input in steady-state.

To this end, let z∗1(t) = LId sin(ωot) be the z1 desired dynamics and il(t) the load current
assuming a resistive load. In order to obtain the steady-state zero dynamics, let us take into
account this assumption in equations (25-26) and let us solve for v and z2. The steady state
response yields

z∗2(t) = αz2 + βz2 sin(2ωot + θz2) (30)
v∗(t) = C(E − rId) sin(ωot) + IdωoLC cos(ωot),

(31)

where

αz2 =
IdRC2

4
(E − rId)

βz2 =
IdRC2

4

√
(E − rId)2 + (IdωoL)2

1 + (ωoRC)2

tan(θz2) =
(E − rId)− ωoRC(ωoLId)
ωoRC(E − rId) + ωoLId

The value of parameter Id can be obtained from equation (23). Note that αz2 is the output
voltage DC-component to be achieved. Thus, αz2 = C2V 2

d
2 , and

Id =
E

2 r
∓

√(
E

2 r

)2

− 2V 2
d

rR
(32)

3First, the new input v linearises and decouples the first equation; second, the Fourier expansion of q2 is much
simpler than that of q, at least in steady-state.
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As in [5] and [4] the expression for the Id can also be obtained through power balance.
The minus sign has been chosen since it yields a stable equilibrium point with lower power
consumption. The total stored energy in steady-state results in

H∗
T (t) = αH + βH sin(2ωot + θH), (33)

where

αH =
IdCR

4
(E − rId) +

LI2
d

4

βH =
IdCR

4 (E − rId) + LI2
d

4√
1 + (ωoRC)2

tan(θH) =
1

ωoRC
.

Expressions (30), (31) and (24) show that a suitable GSSA model of the system, useful
for controller design purposes, should contemplate the first harmonic Fourier components for
z1(t), the zero and second harmonic Fourier components for z2(t) and the first harmonic Fourier
components for v(t). As for the Hamiltonian HT (t), from equation (33), the DC-component
and second harmonic should be considered. If, in addition, C is chosen to obtain a low voltage
ripple in the capacitor, then βz2 and βH are negligible with respect to αz2 and αH , respectively.
Hence, the second harmonic Fourier components of z2(t) and HT (t) will not be considered from
now on.

2.4 The Full-Bridge rectifier as a PCH system in GSSA variables

Although the most general GSSA model of a system has infinite dimension, the harmonic con-
tents of signals in steady-state can be used to find accurately enough finite dimensional GSSA
models. To this aim, using (20) and taking into account the Fourier components we have con-
sidered as relevant, the bilinear product v(t)z1(t) in (26) can be approximated as

〈vz1〉0 =
∞∑

k=−∞
〈v〉−k〈z1〉k = 〈v〉0〈z1〉0 + 2

∞∑

k=1

(〈v〉Rk 〈z1〉Rk + 〈v〉Ik〈z1〉Ik
)

(34)

' 2
(〈v〉R1 〈z1〉R1 + 〈v〉I1〈z1〉I1

)
.

Furthermore,
〈ilq〉0 ' 〈il〉0〈q〉0 + 2

(〈il〉R1 〈q〉R1 + 〈il〉I1〈q〉I1
)

(35)

As it has been assumed q(t) has predominantly DC harmonic components, the complex
coefficients of order one in equation (35) will be discarded. Thus, 〈z2〉0 ' 1

2(〈q〉0)2 and 〈q〉0 '√
2〈z2〉0. Hence, using equations (19), (34) and (35), the GSSA model of the system defined by

(26) becomes

d〈z2〉0
dt

= −〈il〉0
√

2〈z2〉0 − 2
L
〈v〉R1 〈z1〉R1 −

2
L
〈v〉I1〈z1〉I1

d〈z1〉R1
dt

= − r

L
〈z1〉R1 +

1
C
〈v〉R1 + ωo〈z1〉I1

d〈z1〉I1
dt

= − r

L
〈z1〉I1 +

1
C
〈v〉I1 − ωo〈z1〉R1 −

E

2
.

(36)
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Let x = [〈z2〉0, 〈z1〉R1 , 〈z1〉I1], u = [〈v〉R1 , 〈v〉I1] be the state and control vectors, respectively,
and

x∗ =
[
C2V 2

d

2
, 0,

−LId

2

]
(37)

the desired equilibrium.
The original control problem has become a regulation problem in the GSSA domain. For

simplicity, let us denote the load current DC component by Io = 〈il〉0. Then, the system in (36)
can be written as the PCH system:




dx1(t)
dt

dx2(t)
dt

dx3(t)
dt


 =




0 −u1 −u2

u1 0 ωoL
2

u2 −ωoL
2 0


 ∂H

∂x
−




CIo
√

2x1 0 0
0 r/2 0
0 0 r/2


 ∂H

∂x
+




0
0
−E

2


 . (38)

Or in a more compact form

ẋ = [J(u)−R(x)]
∂H

∂x
(x) + g, (39)

where J = −JT , R(x) = RT (x) > 0 are the interconnection and damping matrices, respectively,
and vector g models an external disturbance. Note that H(x) is the DC-component of the
Hamiltonian HT (z) in equation (27); i.e.

H(x) = 〈HT (z)〉0 =
1
C
〈z2〉0 +

1
L
〈φ〉R1

2
+

1
L
〈φ〉I1

2
(40)

or
H(x) =

1
C

x1 +
1
L

x2
2 +

1
L

x2
3. (41)

The GSSA system in equation (38) preserves the PCH structure of the system in equation
(28), with the remarkable advantage of a regulation control objective. This allows the IDA
passivity based design approach to be methodically used. In this line, an IDA-PB control
fulfilling system specifications is designed in the next section. The control law depends on
the output voltage DC-component and requires measuring the DC output current to guarantee
robustness with respect to load variations.

2.5 Controller design

The final objective of the IDA-PBC approach [12] is to design a feedback control u = β(x) such
that the closed-loop dynamics is the PCH reference system:

ẋ = [Jd(x)−Rd(x)]
∂Hd

∂x
(x), (42)

where Jd(x) = −JT
d (x) and Rd(x) = RT

d (x) > 0 are targeted interconnection and damping
matrices, and the new energy function Hd(x) = H(x) + Ha(x) has a strict local minimum at
the desired equilibrium.

Following [12], we proceed in the standard manner.

(i) (Structure preservation) Given Jd(x) and Rd(x), let Ja(x) and Ra(x) be defined by

Jd(x) := J(x,β(x)) + Ja(x) = − [J(x,β(x)) + Ja(x)]T ,

Rd(x) := R(x) + Ra(x) = [R(x) + Ra(x)]T > 0.

Then, the desired dynamics is achieved if it is possible to find functions β(x) and k(x) :=
∂Ha(x)

∂x satisfying

[J(x,β(x)) + Ja(x)− (R(x) + Ra(x))]k(x) = − [Ja(x)−Ra(x)]
∂H

∂x
(x) + g (43)
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(ii) (Integrability) k(x) is the gradient of a scalar function. That is,

∂ki

∂xj
(x) =

∂kj

∂xi
(x)

(iii) (Equilibrium condition)
∂Hd

∂x
(x∗) = 0

(iv) (Lyapunov Stability)
∂2Hd

∂x2

∣∣∣∣
x∗

> 0

If conditions (43), (ii), (iii) and (iv) hold, then x∗ is a (locally) stable equilibrium point of
the closed-loop system.

Let us particularise the aforementioned procedure for the full-bridge boost rectifier controller
defining Jd(x) = J(x, β(x)) and Rd(x) = R(x), i.e. Ja(x) = 0 and Ra(x) = 0.
• (Structure Preservation)
Equation (43) yields

0 = −IoC
√

2x1k1 − u1k2 − u2k3 (44)

0 = u1k1 − r

2
k2 +

ωL

2
k3 (45)

0 = u2k1 − ωL

2
k2 − r

2
k3 +

E

2
. (46)

Then, from equations (45)-(46),

u1 = −−r k2 + ω Lk3

2 k1

u2 =
ω L k2 + r k3 − E

2 k1





. (47)

• (Integrability) Replacing equation (47) in (44) and taking into account that k(x) = ∂Ha(x)
∂x ,

the following partial differential equation is obtained:

2Io C
√

2x1

(
∂Ha

∂x1

)2

= −r

(
∂Ha

∂x2

)2

−
(

r
∂Ha

∂x3
−E

)
∂Ha

∂x3
. (48)

As we are interested in control inputs u1, u2, which only depend on the output voltage DC-
component, we take k2 = k2(x1) and k3 = k3(x1). Then, by the integrability condition

∂ki

∂x1
=

∂2Ha

∂x1∂xi
=

∂2Ha

∂xi∂x1
= 0

for i = 2, 3 and k2 = a2 and k3 = a3 are indeed constant. Thus, the PDE is actually an ODE
on x1, whose solution is given by

Ha(x) = −2
3

√
−
√

2x1

Io C
x1 (a2

2 r + a2
3 r − a3 E) + a2 x2 + a3 x3 (49)

and

k(x) =




√
2 (a2

2 r + a2
3 r − a3 E)

6
√
−Io C

√
x1

√
2 (a2

2 r + a2
3 r − a3 E)

−

√
−Io C

√
x1

√
2 (a2

2 r + a2
3 r − a3 E)

3 Io C
√

x1
, a2, a3


 .

(50)
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• (Equilibrium assignment)
From equation (49) and the definition of Ha (Ha = Hd −H), the following conditions on a2, a3

and Id so that x∗, from equation (37), is a singular point of Hd are derived:

1
C

+

√
−2IoC

√
C2V 2

d (a2
2r + a2

3r − a3 E)

3IoC
√

C2V 2
d

=
√

2(a2
2r + a2

3r − a3E)

6
√
−IoC

√
C2V 2

d (a2
2r + a2

3r − a3E)

a2 = 0
a3 − Id = 0

This equations system has two solutions:

{a2 = 0, Id =
E +

√
E2 − 8 Io Vd r

2 r
, a3 = Id}

and

{a2 = 0, Id =
E −

√
E2 − 8 Io Vd r

2 r
, a3 = Id}.

Then, taking the latter solution, k1 and the control inputs derived in equation (47) are

k1 = −
√

2
√

I2
oVdC

√
2
√

x1

2IoC
√

x1

u1 = −ωL(−E +
√

E2 − 8IoVdr)C
√

VoVd

4rVd

u2 =
(E +

√
E2 − 8IoVdr)C

√
VoVd

4Vd





,

where Vo denotes the output voltage DC-component 〈vo〉0 and
√

2x1 = 〈q〉0 = C〈vo〉0.
• (Lyapunov Stability)
Replacing the values4 of k2, k3 and Id into Ha and the last, in turn, into Hd(x), the closed-loop
Hamiltonian becomes

Hd(x) =
1

6CrL

(
42(3/4)

√
CVdx

(3/4)
1 rL− 3x3CLE + 3x3CL

√
E2 − 8IoVdr − 6x1rL− 6x2

2Cr − 6x2
3Cr

)
.

Since the Hessian matrix of Hd is diagonal with positive eigenvalues, x∗, the singular point of
Hd, is a local minimum. Moreover, x∗ is an asymptotically stable equilibrium point as can be
stated noticing in equation (42) that for Io > 0, Rd(x) = R(x) is full rank, and the solution of
∂Hd
∂x (x) = 0 is unique, namely x = x∗. If Io = 0, then Id = 0 and x2 and x3 converge to zero;

then, u2 = E
2 C

√
Vo
Vd

. Replacing this in equation (38) yields dx3(t)
dt = 0 if and only if Vo = Vd.

2.6 Simulation results

2.6.1 Linear Load

The whole system behaviour is simulated as a discrete control system using MatLab and Simulink.
The continuous IDA-PB controller is discretised and implemented through a PWM so that the

4Note that taking Io = Vd
R

, the Id value obtained in equation (32) is recovered.
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Figure 9: General Controller Scheme

simulations are closer to the actual system. fig. 9 outlines the closed-loop diagram. The actual
rectifier is shown at the top of the figure with Pulses as the input signal and the couple il(t) and
vo(t) as the output measured variables; note that the input voltage vi(t) is sensed too for being
used as input in the Controller and IDFT blocks. The real-time discrete Fourier transform is
carried out in the RDFT block. It is based on a recursive discrete Fourier transform technique,
see [6] for details, which allows the right Fourier coefficients to be obtained at sampling times.
The Controller block computes the suitable averaged Fourier components for the control signal
u(t) while the inverse discrete Fourier transform is performed in the IDFT block to obtain the
discrete v(kT ) control signal. finally, the fixed frequency pulses are provided by the PWM block
by pulse-width modulating the real valued u(t) control signal.

The following parameters are used for simulation purposes: Rnom = 100 Ω, L = 2 mH,
C = 2200 µF, E = 120 V, f = 50 Hz, Vd = 200 V; the PWM switching frequency is fs = 20KHz.

The obtained output voltage for the three values of the load, i.e. R = Rnom = 100 Ω for
0s 6 t < 0.5s, R = 20 Ω for 0.5s 6 t < 1s, and R = 500 Ω for 1s 6 t < 1.5s, is depicted in
figure 10. The inductor current i(t) and the scaled input voltage vi(t) are depicted in figure 11
for each of the selected loads. These figures show that the specifications are fulfilled.

2.6.2 NonLinear Load

Using averaged sensed variables instead of actual ones lets this controller to deal with nonlinear
loads. To this end, simulation of this kind of load has been considered by means of resistance
values composed by a mean value plus a triangular ripple (20% amplitude) at the fundamental
frequency. Fig. 12 shows the output DC voltage regulation performance and Fig. 13 shows the
power factor correction performance for the case of a nonlinear load which mean values change
from 100Ω to 50Ω and from the later to 500Ω.

2.7 Experimental Setup and Results

The experimental setup used to test the designed controller has the following parts:
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Figure 10: Time evolution of DC output voltage, vo(t), in front of load changes.

• Full-bridge boost converter with IGBT switches (1200 V, 100 A) and parameters: r =
0.092Ω, L = 2.7mH, C = 1400µF. The switching frequency of the converter is 20 KHz
and a synchronous centered-pulse single-update pulse-width modulation strategy is used
to map the controller’s output to the IGBT gate signals.

• Load: resistive load bank which allows to select R = 513Ω, R = 120Ω, R = 60Ω or open
circuit.

• Analog circuitry of sensors: the AC mains voltage, and DC bus voltage are sensed with
isolation amplifiers whereas load current is sensed with an hall-effect sensor. All the signals
from the sensors pass through the corresponding gain conditioning stages to adapt their
values to A/D converters.

• Control hardware and DSP implementation: the control algorithm has been implemented
using the Analog Devices single-chip DSP motor controller ADMC401 processor. The
processing core of this device is the 26MHz fixed-point ADSP-2171 DSP processor. The
ADMC401 deals with the PWM generation and the A/D conversions. The sampling rate
of the A/D channels is Ts = 20Khz, the same as the switching frequency of the Full-Bridge
system.

• The nominal RMS AC mains voltage is Vs = 48.9V RMS and its nominal frequency is 50
Hz.

• Control Objectives: The desired regulated DC output voltage and the power factor should
be Vo = 130V and near unity, respectively. It is important to note that the IGBT switches
are oversized for this particular application resulting in undesirable power losses and har-
monic distortion. These power looses has been taken into account increasing the series
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resistance r by a switch looses resistance of rsw = 0.3Ω. The system performance could
be improved replacing these IGBT switches with low power ones.

From the aforementioned experimental setup some results have been obtained with the de-
signed digital controller. These results are presented through oscilloscope and power analyzer
screen dumps of the AC mains electrical variables and, as appropriate, the DC bus voltage.

2.7.1 DC bus voltage regulation

Figure 14: DC bus voltage (Vo) in front of load variations (1 sec./time-division).

In this experiment, at start time the DC bus voltage rests at the diode rectifier level with
a resistive load of R = 60Ω. Then, the control action is applied keeping the load resistance
and the output voltage increases to the desired DC value. Afterwards, two load changes from
R = 60Ω to R = 120Ω and from R = 120Ω to no-load condition were applied at t = 3.3 and
t = 7.0 seconds, respectively. Fig. 14 shows the shape of the DC bus output voltage. As it can
be seen, the controlled system is robust with respect to load variations.

2.7.2 Line current and power factor behaviour

This subsection shows, in Fig. ?? and Fig. ??, the line current shape and power factor value for
two load conditions, namely R = 60Ω and R = 120Ω. As it can be seen, the higher the power
managed, the closer to unity the power factor is. It is important to remark that the cos(φ) is
equal to one in both cases.

2.8 Conclusions

This paper shows how the GSSA modelling technique can be used not only to accurately model
the behaviour of variables in an AC-DC full-bridge power electronic converter, but also to
explore advanced control techniques taking advantage of the inherent domain change, from time
to GSSA domain.

In the case considered here, a non-standard tracking control problem for a full-bridge boost
rectifier results in a regulation one. An IDA-PB control has been designed measuring the load
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(a) CH1: vi V, CH2: il10mV/A

(b) Power input Data

Figure 15: Source voltage and line current, and power information at AC mains for R = 60Ω

current and the load voltage, and presuming the input voltage is known. The closed-loop system
is robust to load variations achieving unity power factor in the AC mains and load voltage
regulation. Some experimental results are included showing the the feasibility of the designed
controller.
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(a) CH1: vi V, CH2: il10mV/A

(b) Power input Data

Figure 16: Source voltage and line current, and power information at AC mains for R = 120Ω
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