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A Repetitive Controller for Discrete-Time Passive
Systems

Ramon Costa-Castélland Robert Gfio

Abstract

This work proposes and studies a new repetitive controterdiscrete-time systems which are required to
track or to attenuate periodic signals. The main charatierof the proposed controller is its passivity. This fact
implies closed-loop stable behavior when it is used witltcrdite-time passive plants. The work also discusses
the energetic structure, the frequency response and theerésponse of the proposed controller structure. Some
examples are included to illustrate its practical use.

CONTENTS

I Introduction 2
[ Basic Cdll 3
[I1 The energetic structure of the repetitive cell 8
IV Frequency response of the repetitive cell 11
\% Time Response 13
\ Closed-loop Numerical Example 16

VI-A  Example 1. . . . . . e 16

VI-B  Example 2 : the odd-harmoniccase . . . . . .. .. .. .. ... ... ...... 20
VIl Conclusion 23
References 23

This work was supported in part by ti@misbn Interministerial de Ciencia y Tecnologia (CICYinder project DP12004-06871-C02-02.
Ranmbn Costa-Castdlland Robert Gfid are with thelnstituto de Organizadin y Control de Sistemas Industrialésniversitat Poliecnica
de CatalunyaBarcelona, Spain. E-mai{Ramon.Costa,Roberto.Grip@upc.edu



. INTRODUCTION

The concept of repetitive control has been largely used fferént control areas such as CD and
disk arm actuators [1], robotics [2], electro-hydrauli8$, [electronic rectifiers [4], pulse-width modulated
(PWM) inverters [5], [6], and current harmonics active fitgr].

It is known that the usual repetitive controller cell causegreat increase in the order of the system
and, then, the closed-loop stability is difficult to analymeng algebraic methods. Normally, the stability
study of these systems is based on splitting the closeddgsiem in three series-connected subsystems
which are required to be stable. For two of them, checkingstlability is a trivial matter but, for the
remaining system the Small Gain Theorem is used to assusealtdity [8], [9], [16], [10]. This last step
takes only into account the norm so, it may be very resteciivsome cases.

Moreover, these repetitive cells have a big relative de¢iiaeimplies a slow response time in front of
sudden changes of the periodical references to track asrdestices to attenuate.

This work presents a new repetitive éellThis new cell has the same interesting properties than the
traditional one: it introduces infinite (or high gain) at imamic frequencies, it can be used as an odd-
harmonic repetitive controller [10], it has a simple sturetand it has a very low computational cost.
However, in contrast to the traditional repetitive corled, the proposed one has passivity structure
(equivalently, it is Positive Real), so it only introducesiraited phase loss. As a consequence it can be
used to reject/follow periodic signals in discrete-timasgge plants, or plants that can be passivized using
feedback [11], without worrying about the overall systermseld-loop stability [12].

1In this work the termsepetitive controllerand repetitive cellare used as a synonyms.
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Fig. 1. Pole Zero map forw and 8 of the same sign¥ =6, 5 = 0.5,a = 1)

Fig. 3 shows the block-diagram of the proposed repetitive cedlinput-output behavior is described
by the transfer function

Y(2) N -3
= = 1
¢(z) U(z) kzN —« @)
It is not difficult to see that the poles of)(aré:
Px = N\/ |a|€j(%k+7r(l_;;3n(a)))a k= 07 17 et N — ]-7 (2)

so they are uniformly distributed over a circumference afiug® {/a. The frequencies associated to the
poles arew;, = 20k 4 “U=S91%) g the poles are placed covering all the harmonic freqesnaf the
fundamental oneZ, in the frequency principal periog-, 7]. This pole placement is the same as the
one obtained in the traditional repetitive cell.

In contrast to the traditional repetitive cell, the propbsme has zeroes placed in:

o= VAR, po 1, N o)

so they are also uniformly distributed over a circumferenteadius V/3 with associated frequencies
_ o7 m(1—sign(3))
wp =Jh+ ==y

Zsign(z) equalsl for = > 0 and—1 for z < 0.
3la| < 1 is necessary to assure the stability of the repetitive cell.
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Fig. 3. Block-diagram of the proposed repetitive cell.
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Depending on the signs aef and 5 appear the following cases: if sign) = sign(«) the poles and the
zeroes are placed at the same frequencies [Fitjyrand if sign3) # sign(«) the poles and the zeroes
are placed at shifted frequencies. In this last case theidrarjes associated with the zeros are exactly in
the middle between the frequencies that correspond to tfaeed poles [Figure].
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close all

clear all

disp (’ ini )
OB/ 888/ S/ S/ S8/ 8/ S/ S/ /S8 8/ S/ S/ S/ S8/ 8/ 8/ S/ S/ S/ S/ 8/ 88/ Y8/ S/ S/ 8/ 8/ 8/ Y8/ S/ S BB 8/8/ o
OB/ /S8 888/ S/ /S8 8/ S/ S/ S/ /S8 8/ S/ S/ S/ /S8 8/ Sy S/ S/ /S 8/ 8/ S/ S/ S/ S/ 8/ 8/ 8/ Y8/ S SR 8/8/ o

N=6; beta=0.5; alpha=1;

Num=zeros(1,N+1);

Num(N+1)=—Dbeta;

Num(1)=1;

Den=zeros(1,N+1);
Den(N+1)=alpha;
Den(1)=1,;

F=tf (Num,Den—1);

figure ,pzmap(F) title(’(z"N.—\beta.)/(.z"N.—_\alpha.)__.N=6_\beta=0.5,\alpha=1")
axis equal
print —depsc2 dibupaperl.eps

OB/ /S8 888/ S/ /S8 888/ S/ /S8 8/ S/ S/ S/ S8/ 8/ 8/ S/ S/ S/ /S8 8/ Y8/ S/ S/ 8/ 8/ 8/ S/ S/ S BB 8/8/ o
OB/ 8/ S/ SO/ /S8 88/ S/ S/ /S8 88/ S/ /S8 8Y 8/ 8/ S/ S/ S/ S/ 8Y 8/ 8/ S/ S/ S/ 8/ 8/ 88/ S/ S S ReBBBR 8/8/ o
N=6; beta=—-0.5; alpha=1;

Num=zeros (1 ,N+1);

Num(N+1)=Dbeta;

Num(1)=1;

Den=zeros(1,N+1);
Den(N+1)=alpha;
Den(1)=1,;

F=tf (Num,Den —1);

figure ,pzmap(F) title(’(z"N.—\beta.)/(.z"N.—_\alpha.)__.N=6_\beta=0.5,.\alpha=1")
axis equal

print —depsc2 dibupaper2.eps

OB/ S8/ S/ S/ S/ 8Y S/ S/ S/ /S8 88/ S/ S/ S/ S8/ 8/ S/ S/ S/ S/ S/ 8/ 88V S/ S/ S/ 8/ 8/ 88/ S/ S BB 6/8/ o
OB/ /S8 S8/ S/ S/ 8/ 88/ S/ S/ 8/ 8/ 8/ S/ S/ S/ 8/ 8/ 8V S/ S/ S/ 8/ 8/ 8/ 8/ S/ S/ S/ 8/ 8/ 8/ 8/ S/ S BB 8/8/ o
N=7; beta=0.5; alpha=1;

Num=zeros (1 ,N+1);

Num(N+1)=—beta;

Num(1)=1;

Num=Numx (1/(1—beta));

Den=zeros(1,N+1);

Den(N+1)=alpha;

Den(1)=1;

F1=tf (Num,Den-1);

N=7; beta=-0.5; alpha=1;
Num=zeros(1,N+1);
Num(N+1)=beta;
Num(1l)=1;

Num=Numx (1/(1— beta));
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Den=zeros(1 ,N+1);
Den(N+1)=alpha;
Den(1)=1,;

F2=tf (Num,Den~1);
Fo=tf ([1,zeros(1,N)],Den,—1);

TFinal=4N;

yl=impulse (F1, TFinal);
y2=impulse (F2, TFinal);
yo=impulse (Fo, TFinal);

figure,

stem(yl,’'r’); hold on

stem(yo, 'b’);

stem(y2,'g’);

axis([0,TFinal ,—0.2,2.2])
title('k(.z"No—\beta.)/(.z"N.—_\alpha.)_..N=7."), grid
text(2,1.9,"\alpha=1)\beta=0.5,k=2")
text(2,0.6667,\alpha=1)\beta=0.5,k=0.6667")
text(2,1,’\alpha=1)beta=0,k=1")

print —depsc2 dibupaper3.eps

disp (’ Jfi o




[11. THE ENERGETIC STRUCTURE OF THE REPETITIVE CELL

This section studies the energetic structure of the praposeetitive cell showing that it has a passivity
structure. Particularly, it displays that the repetitivedl ©s QSR-dissipative. These properties are of great
relevance when the repetitive cell is combined with othesteayps and when its frequency response is
analyzed.

A state-space description of the transfer function in equafl) is

Xni1 = Ax, +Bu, 4)
where
0 1 0 O 07
0 01 0 0
Ooo0o01---0
A= SN S R (6)
0O 00©O0 --- 1
@ 000 - 0
B=[000 -- 0 1] (7)
C:[k(a_ﬁ)a()?()vao] (8)
D = [K] 9)

Definition 1 (Discrete-Time Passivity)A discrete-time system is passive with storage functign=
ixTPx,, if :
25 n

AV, 2V, —V, <ylu, (10)

wherey, andu, are the output and input vectors at time

Definition 2 (Discrete-Time Positive Real [13]}et H(z) be a square matrix of real rational functions.
ThenH(z) is called Discrete-Time Positive Real (DTPR) if it has thedaling propertie

« All the elements oft(z) are analytic in|z| > 1.

« H(z) + H(z) >0, V|z| > L.

Lemma 1 ([13]): Let H(z) be a square matrix of real rational function ofwvith no poles in|z| > 1
and simple poles only ofx| = 1 and let(A, B, C,D) be a minimal realization oH(z). Then necessary
and sufficient conditions foH(z) to be DTPR are that there exist a real symmetric positive iefinatrix
P and real matriced. and W such that:

ATPA —P = -L7L (11)
ATPB=C" - L'W (12)
W'W = (D+D") -B'PB (13)

Using Lemmal and the state-space description of the repetitive cell maggns 4)-(5) gives the
following proposition.
Proposition 1: The repetitive cellC(z) = k
|| <1landaf # 1is DPTR.
Proof: It is not difficult to check that)-(9) is a minimal realization ofX). Its system matrixA has
all its eigenvalues on the closed unit circle and all of themsample poles. Also, by direct inspection it
is easy to check thdtA, B) is a controllable pair andC, A) is an observable pair. Due to the fact that

Zx:g, introduced in equationlf, for £ > 0, |a] < 1,

z

“H*(2) stands for the complex conjugate transposdigt).



la| <1, 8] <1 andaf # 1 the inequalityl — a3 > 0 is always fulfille@. Then, a set of matrices which
fulfills the equations X1)-(13) in Lemmal is:

1 0 0 O 07
0100 --- 0
k(B—a)* |00 10 - 0
P=——- 14
1 — fa SR (14)
000¢O0 -0
0000 - 1,
k(1—0?)(a—p)° ]
M= 00 0 0
0 000 0
L — 0 000 0 (15)
0 000 -
i 0 000 -+ 0]
(a=B)/k(1-a?) ]
(1-pa)(a=p)*
_ [k(1=p?)
W = 1-fa (16)
0
0
L 0 _
It is important to note that fofo| < 1, || < 1 andaf # 1 P is a symmetric and positive definite matrix
and, also . and W are matrices over the reals. [

Remark 1:Matrix P stated in equation1d) can be used to describe the energy of the syst&n).
So, it can be defined the following Lyapunov function:

nééﬁPm (17)
By straightforward algebraic manipulations using equati@ri)-(13) it can be proven that:
AV, =V, =V, (18)
_ —% (L, + W) (L, + W)
+ Ynln (19)

This equation is composed by a dissipative term which depend. and W, and an additive one as a
function of the product of two power variableg, andw,,. From this equation it is possible to show that
L represents the autonomous system dissipation Wkileepresents the input dissipation.

Remark 2:Due to the discrete-time positive realnesst:) its polar plot C'(¢?*),w € [0, 7)) lies on
the closed right half-plane of the Nyquist plane.
The following definition characterizes the energy struetaf a dissipative system.

Definition 3 ([14]): Dissipative systems with supply functions of the form

AV, =y'Qy, +2y.Su, +u'Ru, (20)

with Q and R being symmetric matrices arftl an appropriate size matrix, are regarded @sS,R) —
dissipative systems.

>The conditiona8 # 1 only precludes two trivial and uninteresting cases, namely: 1, 3 = 1 anda = —1, 3 = —1. In these two
situations the repetitive cell reduces to a proportional contraller) = k£ and, thus, they have no interest.
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Taking into account this definition the dissipativity of tegstem under study is accordingly classified
in the next Proposition.

Proposition 2: The repetitive cell,C'(z) = l{;jx
I8l <1andaf #1is (Q,S,R) — dissipative.

Proof: In Propositionl it is stated that system in equatioh) (s DPTR, so it is passive. Matrix

P is used to define a storage function, equatidr),(and its evolution in terms of. and W appears in
equation 19). Due to the particular structure @&, equation 8), and L, equation 15), it is possible to
rewrite equationsy) and (L9) as:

:g, introduced in equationlf, for £ > 0, |a] < 1,

AV, = —% (Ll’lx,ll + Wun)T (Ll’lxi + Wun)

+ Yoy (21)
yn = C'x; + Du, (22)

wherex! and C! stands for the first component af, and C respectively, and.!! stands for the first
diagonal element of..

From equation Z2) it is possible to obtairx! as a function ofy,, andwu, which, then, can be replaced
in (21) in order to obtainAV;, as function ofy,, andu,. After some algebraic manipulations it is possible
to rewrite the energy evolution of the system in i@ S, R) — dissipative form, see equatior2Q). The
values ofQ, S andR are the scalars:

1 —ao?
?=%@a-1 (23)
k(1 —3?)
o 2 (fa—1) (24)
1
S = 5 (25)
Once the values of), S and R have been obtained the proof is finished. [ |

Remark 3:Following the classification in [14] the repetitive cell(z) = ijjg, introduced in equation
(2), for is:

. passiveif o] =1 and|f| = 1.

« input strictly passivef |o| =1 and|5| # 1.

. output strictly passivéf |«| # 1 and|5| = 1.

. very strictly passivef |a| # 1 and|3| # 1.

The following Lemma makes possible to characterize therpplat of the repetitive cell in the
proposition below.

Lemma 2 ([14]): If a system(A, B, C, D) with transfer function7(z) is (@, S, R) — dissipative then:

1) If Q < 0 then the graph ofi(e’*) lies inside the circle on the complex plane with ceq%rand

radlus(m) VSZHRIQ]

2) If Q =0 then the graph of7(¢’“) lies to the right (ifS > 0) or the left (if S < 0) of the vertical
line Re(z} = —o¢
Proposition 3: The Nyquist plot ofC/(z) = k:ZN’ﬁ wherek > 0, |o| <1, |5| < 1 andaf # 1, lies
. inside a circle of centew and radius®“ 2L if |a| < 1.
. to the right of Réz} = W if o =1.
Proof: Straightforward by applying the values obtained €@y S and R in Proposition2 to the
Lemma2. [ ]
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IV. FREQUENCY RESPONSE OF THE REPETITIVE CELL
This section details some geometric aspects of the frequesponse(¢’*) = k-5 w € [—, 7))

eij_a7
of the repetitive cell stated in equatiod)( Some of these characteristics can be useful to asses the
performance of a closed-loop system including the repetitell as a controller by looking its contribution
to the open-loop transfer function shape. In this sensefdh@wving proposition states its geometrical
shape.

Proposition 4: The frequency response @f(z) = 220 with k > 0, la] < 1 and|f] < 1is a

circumference with center £ ktff; and radiusr £ k:'f_fz', i.e. located in the open right half-plane of
the Nyquist plane.
Proof: Rewriting C'(¢7*) in cartesian form

C(e") = Re{C(e™)} +j Im{C(e™*)}

~ (a+B)cos(Nw) — fa—1 = (a— 3)sin(Nw)
 2cos(Nw)a —a? — 1 chos(Nw)oz —a? -1
the equationRe{C(¢’*)} — ¢)* + (Im{C(e’¥)})* = r? is verified. ]

Remark 4:The maximum and minimum gains of the repetitive aéllz) are |C(ej‘”)\max =c+r =

max{(k1=2, k+2} and [C(e7)|min = ¢ — r = min{ki=2, k1*2}, respectively. The maximum phase loss

of C(2) is pmax = min,, |ZC(e’*)| = arctan ((B DY (U—h)(1-F) 1-p2 ) and its is always in the-Z, 7]

(a3 —a)B—a?+1 ’ 1—Pa

range. The phase minima occur at frequencies: 5. arccos (;;f’l) +2251, 1=0,1,...,N —1 reflected

to the [—7, 7] range. The bandwidth of the gain peaks|@e’~)| measured in théC'(e’~)| = 1 level is

Aw = 2 arccos <—k2(ﬂ;$;)ﬁ__(§;ﬂ)>.

It is worth to mention that the frequency domain charactiessof C'(z) = k:jx:g can be obtained in a
simple way from the same characteristics(dfz) = k%. Specifically,C'(z) = C’(2") so the relation
in the frequency domain i€'(¢/) = C’'(e/N*) which implies only a compression by of the frequency
axis.

In order to obtain the desired tacking/rejection perforogam the closed-loop system the controller
must contribute with high gain in the harmonic frequenctas, interesting cases among all the possible
values ofa and 5 are:

e 0<a<land-1<f<a

e —l<a<Oanda< (<1
In both cases the gain offered by the repetitive cell at thenbaic frequencies is greater than one, so it
contributes to reduce the closed-loop sensitivity functimagnitude at these frequencies. Figghows the
bode diagrams of the repetitive controller when- 0. In this case gain peaks are uniformly distributed
in frequency beginning with zero frequency, thus includinigh dc gain. Whens > 0 (solid line) the
zeroes are located at the same frequencies as the polesatino®ing the gain peaks (more narrow when
the zero is closer to the pole). In the other case; 0 (dashed line), the zeroes are located at the mean
frequency between the frequencies of the two adjacent gblesreducing the gain at their frequencies
and widening the gain peaks corresponding to the poleshort, the position of the gain peaks is affected
by the sign ofa and its modulus and shape depends|@hand 3. The phase Bode diagram in Fig.
shows, and the equation f@r,.x in Remark4 quantifies, that the maximum phase loss of the repetitive
cell C(z) falls as/ get closer ton.

Fig. 6 shows the pole-zero map corresponding to the frequencymespplots in Figd. Whena and
[ have the same sign poles and zeros are located at the samerfcegs (angles), but when they have
different sign poles and zeros appear in an alternate pattfefrequencies.

This frequency response could be compared to the cascade connefcticraditional repetitive cell and a comb filter.
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V. TIME RESPONSE

The repetitive cellC'(z), like the traditional repetitive controllers [10], can baderstood as a signal
generator when a finite duration signal of lengthis applied to its input. In this sense, the repetitive
controller is interpreted, according to the Internal MoBeihciple [15], as the generator of the reference
signals to track or the disturbance signals to attenuatagimeecessary to include in the open-loop transfer
function of the system.

Proposition 5: Let z;(n) a discrete-time sequence of finite duratidh(z,(n) = 0, n < 0, n > N)
andz(n) =k - (z1(n —mN) — fz1(n — (m+ 1)N)) o™ a discrete-time infinite-duration signal that
is made up of attenuated and shifted in time copies;0f). Then thez-transform ofz(n) is

X(2) = {e(n)} = koL

2N — o

X1(2) (26)

where X, (2) £ 3{x1(n)}.
Proof: Straightforward applying the-transform toz(n). [ |
Remark 5:Whena = 1, § = 0 andk = 1 Eq. 26) reduces toX(z) = va—]ile(z) corresponding
to z(n) = > °_,x1(n — mN) that represents a periodical signal obtained by repetiion; (n). When
a=1andk = ﬁ, z(n) =Y 7 x1(n —mN), z(n) is a periodic signal with a period, (n) after the

m=

first period has elapsed, see Fi.
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close all
clear all

T=1,

z=tf ([1,0],[1],T);

planta = 0.3402998466082983380264369971080. ..
(z + 0.710216255761721015769691687030e0)(z — 1) /...
(z °~ 2- 0.785893111668710341188483317476e0z +
0.367879441171442321595523770163€0);

nyquist(planta)

B L T s s o s e s s s i T T T T e s o T T T 0 20 )
B s s s s s s s s N T T T T e T T T T 20 )
B s T s s s T T T T e L T T T T 0 )

betal=1;
beta2=1./5;
N=10/2;

Num=zeros(1,N+1);
Num(N+1)=betaZ2;
Num(l)=1+beta2;

Den=zeros(1,N+1);
Den(N+1l)=betal;
Den(1)=1;

F1=tf (Num,Den,T)
N=10;

Den=zeros(1 ,N+1);
Den(N+1)=betal;
Den(1)=1,;

Num=zeros(1,N+1);
Num(N+1)=beta?2;
Num(1l)=1+beta?2;
F2=tf (Num, Den,T)
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VI. CLOSED-LOOP NUMERICAL EXAMPLE

€1 —:C Uq . P Y1 .
/

y T

Y2 u : : €2
< O 4—2
+

Fig. 8. Feedback connection of two passive systems.

It is well known that the closed-loop connection of two pesssystems generates another passive
system [12]. In this sense, the proposed repetitive ¢€(lz{) can be connected to any passive plant
(P(2)), see Fig.8, giving a passive closed-loop system. Besides this, theraltert structure assures
the desired tracking/attenuation performance, for examahy periodic reference applied én will be
followed by y, with low or zero steady-state error.

Traditionally, repetitive controllers are introduced inclsed-loop system in a plug-in manner [16],
i.e. they are used to augment an existing controller. Inkhid of connection the repetitive controller is
placed in parallel with an unity gain block. Since this syste also passive this property is also preserved
if the proposed repetitive cell is used as the repetitive. (o, in Fig.8 the controllerC'(z) could be
replaced by the repetitive cell in parallel with an unity garoportional system.

The only requirement to use the proposed repetitive celesdiscrete-time passivity of the plant. If
it is not passive then an inner feedback control loop shoeldised to passivize it [11]. In this case, see
Fig. 8, P(z) should be replaced by the plant and the passivizing coatrail feedback connection.

A. Example 1

The plant defined by the transfer function:

4.4076(z — 0.8553)(z — 0.484)
T (2= 0.6708)(z — 0.9)

is DTPR as it can be seen in the Nyquist plot of Fg.As it is expected, it lays entirely on the right
half-plane. The control performance specification is toigtes controller which allows the closed-loop
system to perfectly track a reference signal defined by:

G(z) (27)

ea(n) = 3 4 2sin(win) + 1.5sin(2win) + 0.7 sin(6win) (28)

wherew; = 27 and N = 10. As the reference signal is periodic with peridd and nonzero mean, the
controller must have high gain at frequengy and all its harmonics, including DC. Two controllers are
possible, the first one with zeros and poles at the same angle:
210 0.5
Ci(z) = —5— (29)

210 -1
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Nyquist Diagram
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Fig. 9. Example 1: Nyquist plot of7(z) in equation 7).

and the second one with zeros and poles at different angles

210405
CQ(Z) = —210 1

In both cases the pole position has been fixed in order torokto steady-state error. The location of
the zeros is a design parameter which must be fixed to shafestheency response in the desired way.
For the purposes of comparison in both cakes 1 and the modulus of the zeros has been fixed equal.

Fig. 10 shows the system output for both cases. Although the tranisislightly different both converge
to the same steady state. From the performance point of vatv tontroller are equivalent, so other
criteria must be used to decide among them. As it has beerrgeskin previous section, the equal angle
controller is more selective in frequency and it almost eress the plant frequency response between
harmonic frequencies. Additionally, the introduced phasalways less than the phase introduced by
the different angle controller. On the other hand, the diffié angle approach attenuates the frequency
response magnitude of the plant between harmonic frege®nci

As a robustness measure, the minimum distartefrom the open-loop transfer functiord,(z) =
C(2)P(z), Nyquist plot to—1 is usually used. Although this is not a general case (it dépem the plant
frequency response) in the presented example the comt(@Bg hasd = ||(1 + L) !||. = 0.2584 while
the controller 80) hasd = 0.5112. Although this figure is of great interest in practical apations it is
important to remember that, in this design, robustnessasiged by the passivity structure.

(30)
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Fig. 10. Example 1 : Closed-loop time response.
close all
clear all
T=1;
z=tf ([1,0],[1],T);
planta = 0.340299846608298338026436997108:«0...
(z + 0.710216255761721015769691687030e0)(z — 1) /...
(z ©~ 2—- 0.785893111668710341188483317476e0z +
0.367879441171442321595523770163e0);
nyquist(planta)
OBS/8YS/S/8/S/ S/ S/ S8/ S/ 8 S/ S/ /S8 S/ 8/ S/ S/ 8 S/ /S 8/ S/ S/ 8/ S8/ 8/ S8/ 88/ 8/ 8/ S/ 8/ S S B BB S8/ 8/ 8/8/8/ D
OB/ S8/ S/ S/ S8/ S/ S/ 8 S/ S8/ 88/ S/ S/ 8/ 8y 8/ S/ S/ 8/ 8 S/ S/ S/ 8/ 8V S/ S/ S/ 8/ 8V S/ S/ 8/ 8/ 8 S BBy S/ 8/ 8/ 8/ 8/ D
OB/ S/ S8/ S/ S/ S8/ S/ S/ S/ 8y S/ S/ S/ 88/ S/ S/ 8/ 8y S/ S/ S/ 8/ 88/ S/ S/ 8/ 8/ S/ S/ S/ 8/ 8/ S/ S/ 8/ 8/ 8/ BBy S/ S8/ 8/8/8/ D
betal=1;
beta2=1./5;
N=10/2;
Num=zeros(1,N+1);

Num(N+1)=beta?2;
Num(l)=1+beta?2;
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Den=zeros(1 ,N+1);
Den(N+1l)=betal;
Den(1)=1,;

F1=tf (Num,Den,T)
N=10;

Den=zeros(1,N+1);
Den(N+1)=-betal;
Den(1)=1;

Num=zeros(1,N+1);
Num(N+1)=—beta2;
Num(l)=1+beta?2;
F2=tf (Num, Den,T)
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B. Example 2 : the odd-harmonic case

Nyquist Diagram
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Fig. 11. Example 2: Nyquist plot aff(z) in equation 81).

The plant

~0.3403(z 4 0.7102)(z — 1)
~ 22-0.7852 + 0.3678

is also DTPR as it can be observed in its Nyquist plot, see Higln this example it is desired to design
a controller which allows the closed-loop system to traclefarence signal defined by:

u(n) = 2sin(win) + 1.5sin(3win) (32)

G(2) (31)

As this plant has a zero in z=1 it is compulsory to use an oddbaic repetitive controller [10] in
order to assure internal stability. However, the use of atr-tmarmonic repetitive controller reduces the
tracking/rejection capabilities to the odd harmonicsslimportant to note that reference signa2)(only
contains this kind of harmonics.

Two possible controllers are possible, the first with zenod poles at the same angle:

22405

Ci(z) = 1 (33)
and the second with zeros and poles at different angle
2> —0.5

Ca(z) = Sl (34)

In both cases the pole position has been fixed in order toroktxo steady-state error. For the shake of
comparison, in both casds= 1 and the modulus of the zeros has been fixed equal.
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Fig. 12. Example 2: Closed-loop time response.

Fig. 12 shows the system output for both cases. Although the transgsponse is slightly different,
as expected, both converge to the same steady state.

The minimum distances from the open-loop transfer funchiyquist plot to—1 in this example are:
d = 1.0511 for the controller 83) andd = 1.5876 for the controller 84).
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close all
clear all

[0.85526135458575, 0.48398374321304];
[0.67081008683825, 0.90000000000000];
[4.40756404382341];

z
p
k
planta=zpk(z,p,ks+1);

betal=1;
beta2=1./5;
N=10;

Num=zeros (1 ,N+1);
Num(N+1)=beta2;
Num(1l)=1-beta?2;

Den=zeros(1 ,N+1);
Den(N+1)=betal;
Den(1)=1,;

F1=tf (Num,Den;1)

cl=feedback (plantaFl,1);

te=0:1:6:N;

u=3+(2Zsin ((2xpi/N)xte)+1.5«sin ((2x2xpi /IN)xte)+0.7«sin ((6x2«pi/N)xte))’;
y= Isim(cl,u,te);

figure,plot(te ,[u,y]),title('Time_Response’) ,...
ylabel ("input—output’) ,xlabel ('samples’) ,grid
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VIlI. CONCLUSION

This work has presented a new repetitive controller to trank attenuate periodic references and
disturbances, respectively, for discrete-time passiaatpl The energetic structure and frequency and time
responses of the repetitive cell are studied proving thiad$t passivity structure and showing some useful
characteristics for the design stage of a closed-loop syskis main characteristic, passivity structure,
assures to obtain a stable closed-loop system when the iglad$o discrete-time passive. It is worth
of remark that the design procedure does not include, urihikkeprocedures for traditional repetitive
controllers, any exact or approximate inversion of the pthmamics. From an implementation point of
view, this new cell needs the same amount of memory than #uhtibnal ones and only an additional
addition and product are needed for each sampling period.
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