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A Repetitive Controller for Discrete-Time Passive
Systems

Ramon Costa-Castelló and Robert Grĩnó

Abstract

This work proposes and studies a new repetitive controller for discrete-time systems which are required to
track or to attenuate periodic signals. The main characteristic of the proposed controller is its passivity. This fact
implies closed-loop stable behavior when it is used with discrete-time passive plants. The work also discusses
the energetic structure, the frequency response and the time response of the proposed controller structure. Some
examples are included to illustrate its practical use.
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I. I NTRODUCTION

The concept of repetitive control has been largely used in different control areas such as CD and
disk arm actuators [1], robotics [2], electro-hydraulics [3], electronic rectifiers [4], pulse-width modulated
(PWM) inverters [5], [6], and current harmonics active filters [7].

It is known that the usual repetitive controller cell causesa great increase in the order of the system
and, then, the closed-loop stability is difficult to analyzeusing algebraic methods. Normally, the stability
study of these systems is based on splitting the closed-loopsystem in three series-connected subsystems
which are required to be stable. For two of them, checking thestability is a trivial matter but, for the
remaining system the Small Gain Theorem is used to assure itsstability [8], [9], [16], [10]. This last step
takes only into account the norm so, it may be very restrictive in some cases.

Moreover, these repetitive cells have a big relative degreethat implies a slow response time in front of
sudden changes of the periodical references to track or disturbances to attenuate.

This work presents a new repetitive cell1. This new cell has the same interesting properties than the
traditional one: it introduces infinite (or high gain) at harmonic frequencies, it can be used as an odd-
harmonic repetitive controller [10], it has a simple structure and it has a very low computational cost.
However, in contrast to the traditional repetitive controllers, the proposed one has passivity structure
(equivalently, it is Positive Real), so it only introduces a limited phase loss. As a consequence it can be
used to reject/follow periodic signals in discrete-time passive plants, or plants that can be passivized using
feedback [11], without worrying about the overall system closed-loop stability [12].

1In this work the termsrepetitive controllerand repetitive cellare used as a synonyms.
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II. BASIC CELL
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Fig. 1. Pole Zero map forα andβ of the same sign (N = 6, β = 0.5,α = 1)

Fig. 3 shows the block-diagram of the proposed repetitive cell. Its input-output behavior is described
by the transfer function

C(z) =
Y (z)

U(z)
= k

zN − β

zN − α
(1)

It is not difficult to see that the poles of (1) are2:

pk = N
√

|α|ej( 2·π
N

k+
π(1−sign(α))

2N ), k = 0, 1, . . . , N − 1, (2)

so they are uniformly distributed over a circumference of radius3 N
√

α. The frequencies associated to the
poles areωk = 2π

N
k + π(1−sign(α))

2N
, so the poles are placed covering all the harmonic frequencies of the

fundamental one,2π
N

, in the frequency principal period[−π, π]. This pole placement is the same as the
one obtained in the traditional repetitive cell.

In contrast to the traditional repetitive cell, the proposed one has zeroes placed in:

zk = N
√

|β|ej( 2·π
N

k+
π(1−sign(β))

2N ), k = 0, 1, . . . , N − 1, (3)

so they are also uniformly distributed over a circumferenceof radius N
√

β with associated frequencies
ωk = 2π

N
k + π(1−sign(β))

2N
.

2sign(x) equals1 for x ≥ 0 and−1 for x < 0.
3|α| < 1 is necessary to assure the stability of the repetitive cell.

Figures/dibu_paper_1.eps
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Fig. 2. Pole Zero map forα andβ of different sign (N = 6, β = −0.5,α = 1)
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Fig. 3. Block-diagram of the proposed repetitive cell.
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Depending on the signs ofα andβ appear the following cases: if sign(β) = sign(α) the poles and the
zeroes are placed at the same frequencies [Figure1], and if sign(β) 6= sign(α) the poles and the zeroes
are placed at shifted frequencies. In this last case the frequencies associated with the zeros are exactly in
the middle between the frequencies that correspond to the adjacent poles [Figure2].
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1 c l o s e a l l
2 c l e a r a l l
3 di sp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−− i n i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 N=6; beta = 0 . 5 ; a l pha =1;
7 Num=z e r o s ( 1 ,N+ 1 ) ;
8 Num(N+1)=−beta ;
9 Num( 1 ) = 1 ;

10
11 Den=z e r o s ( 1 ,N+ 1 ) ;
12 Den (N+1)=− a l pha ;
13 Den ( 1 ) = 1 ;
14
15 F= t f (Num, Den ,−1) ;
16
17 f i g u r e , pzmap ( F ) ,t i t l e ( ’ ( z ˆN −\b e t a ) / ( z ˆN − \ a l pha ) N=6 \ b e t a =0 .5 , \ a l pha =1 ’ )
18 a x i s equa l
19 p r i n t −depsc2 d i b up a p e r 1 . eps
20
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 N=6; beta =−0.5; a l pha =1;
24 Num=z e r o s ( 1 ,N+ 1 ) ;
25 Num(N+1)=−beta ;
26 Num( 1 ) = 1 ;
27
28 Den=z e r o s ( 1 ,N+ 1 ) ;
29 Den (N+1)=− a l pha ;
30 Den ( 1 ) = 1 ;
31
32 F= t f (Num, Den ,−1) ;
33 f i g u r e , pzmap ( F ) ,t i t l e ( ’ ( z ˆN −\b e t a ) / ( z ˆN − \ a l pha ) N=6 \ b e t a =−0.5 , \ a l pha =1 ’ )
34 a x i s equa l
35 p r i n t −depsc2 d i b up a p e r 2 . eps
36
37
38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
40 N=7; beta = 0 . 5 ; a l pha =1;
41 Num=z e r o s ( 1 ,N+ 1 ) ;
42 Num(N+1)=−beta ;
43 Num( 1 ) = 1 ;
44 Num=Num∗ (1/ (1− beta ) ) ;
45 Den=z e r o s ( 1 ,N+ 1 ) ;
46 Den (N+1)=− a l pha ;
47 Den ( 1 ) = 1 ;
48
49 F1= t f (Num, Den ,−1) ;
50
51
52 N=7; beta =−0.5; a l pha =1;
53 Num=z e r o s ( 1 ,N+ 1 ) ;
54 Num(N+1)=−beta ;
55 Num( 1 ) = 1 ;
56 Num=Num∗ (1/ (1− beta ) ) ;
57
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58 Den=z e r o s ( 1 ,N+ 1 ) ;
59 Den (N+1)=− a l pha ;
60 Den ( 1 ) = 1 ;
61
62 F2= t f (Num, Den ,−1) ;
63 Fo= t f ( [ 1 ,z e r o s ( 1 ,N) ] , Den ,−1) ;
64
65 TF ina l =4∗N;
66 y1= impu lse ( F1 , TF ina l ) ;
67 y2= impu lse ( F2 , TF ina l ) ;
68 yo= impu lse ( Fo , TF ina l ) ;
69
70
71 f i g u r e ,
72 stem ( y1 , ’ r ’ ) ; hold on
73 stem ( yo , ’ b ’ ) ;
74 stem ( y2 , ’ g ’ ) ;
75 a x i s ( [ 0 , TF ina l ,−0 . 2 , 2 . 2 ] )
76 t i t l e ( ’ k ( z ˆN −\b e t a ) / ( z ˆN − \ a l pha ) N=7 ’ ) , gr id
77 t e x t ( 2 , 1 . 9 , ’\ a l pha =1 ,\ b e t a =0 .5 , k=2 ’ )
78 t e x t ( 2 , 0 . 6 6 6 7 , ’\ a l pha =1 ,\ b e t a =−0.5 , k =0.6667 ’ )
79 t e x t ( 2 , 1 , ’\ a l pha =1 ,\ b e t a =0 , k=1 ’ )
80 p r i n t −depsc2 d i b up a p e r 3 . eps
81
82
83 di sp ( ’−−−−−−−−−−−−−−−−−−−−−−−−−−− f i −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
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III. T HE ENERGETIC STRUCTURE OF THE REPETITIVE CELL

This section studies the energetic structure of the proposed repetitive cell showing that it has a passivity
structure. Particularly, it displays that the repetitive cell is QSR-dissipative. These properties are of great
relevance when the repetitive cell is combined with other systems and when its frequency response is
analyzed.

A state-space description of the transfer function in equation (1) is

xn+1 = Axn + Bun (4)

yn = Cxn + Dun (5)

where

A =

















0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
α 0 0 0 · · · 0

















(6)

B =
[

0 0 0 · · · 0 1
]T

(7)

C = [k (α − β) , 0, 0, · · · , 0] (8)

D = [k] (9)

Definition 1 (Discrete-Time Passivity):A discrete-time system is passive with storage functionVn =
1
2
xT

nPxn if :
∆Vn , Vn+1 − Vn < yT

nun (10)

whereyn andun are the output and input vectors at timen.
Definition 2 (Discrete-Time Positive Real [13]):Let H(z) be a square matrix of real rational functions.

ThenH(z) is called Discrete-Time Positive Real (DTPR) if it has the following properties4:
• All the elements ofH(z) are analytic in|z| > 1.
• H∗(z) + H(z) ≥ 0, ∀|z| > 1.
Lemma 1 ([13]): Let H(z) be a square matrix of real rational function ofz with no poles in|z| > 1

and simple poles only on|z| = 1 and let(A,B,C,D) be a minimal realization ofH(z). Then necessary
and sufficient conditions forH(z) to be DTPR are that there exist a real symmetric positive definite matrix
P and real matricesL andW such that:

ATPA − P = −LTL (11)

ATPB = CT − LTW (12)

WTW =
(

D + DT
)

− BTPB (13)
Using Lemma1 and the state-space description of the repetitive cell in equations (4)-(5) gives the

following proposition.
Proposition 1: The repetitive cell,C(z) = k zN−β

zN−α
, introduced in equation (1), for k > 0, |α| ≤ 1,

|β| ≤ 1 andαβ 6= 1 is DPTR.
Proof: It is not difficult to check that (6)-(9) is a minimal realization of (1). Its system matrixA has

all its eigenvalues on the closed unit circle and all of them are simple poles. Also, by direct inspection it
is easy to check that(A,B) is a controllable pair and(C,A) is an observable pair. Due to the fact that

4
H

∗(z) stands for the complex conjugate transpose ofH(z).
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|α| ≤ 1, |β| ≤ 1 andαβ 6= 1 the inequality1−αβ > 0 is always fulfilled5. Then, a set of matrices which
fulfills the equations (11)-(13) in Lemma1 is:

P =
k (β − α)2

1 − βα

















1 0 0 0 · · · 0
0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0
0 0 0 0 · · · 1

















(14)

L =



















√

k(1−α2)(α−β)2

1−βα
0 0 0 · · · 0

0 0 0 0 · · · 0
0 0 0 0 · · · 0
...

...
...

...
.. .

...
0 0 0 0 · · · 0
0 0 0 0 · · · 0



















(15)

W =

















(α−β)
√

k(1−α2)√
(1−βα)(α−β)2

−
√

k(1−β2)
1−βα

0
0
0

















(16)

It is important to note that for|α| ≤ 1, |β| ≤ 1 andαβ 6= 1 P is a symmetric and positive definite matrix
and, also,L andW are matrices over the reals.

Remark 1:Matrix P stated in equation (14) can be used to describe the energy of the systemC(z).
So, it can be defined the following Lyapunov function:

Vn ,
1

2
xT

nPxn (17)

By straightforward algebraic manipulations using equations (11)-(13) it can be proven that:

∆Vn = Vn − Vn−1 (18)

= −1

2
(Lxn + Wun)T (Lxn + Wun)

+ ynun (19)

This equation is composed by a dissipative term which depends onL andW, and an additive one as a
function of the product of two power variables,yn andun. From this equation it is possible to show that
L represents the autonomous system dissipation whileW represents the input dissipation.

Remark 2:Due to the discrete-time positive realness ofC(z) its polar plot (C(ejω), ω ∈ [0, π]) lies on
the closed right half-plane of the Nyquist plane.
The following definition characterizes the energy structure of a dissipative system.

Definition 3 ([14]): Dissipative systems with supply functions of the form

∆Vn = yT
nQyn + 2yT

nSun + uT
nRun (20)

with Q andR being symmetric matrices andS an appropriate size matrix, are regarded as(Q,S,R) −
dissipative systems.

5The conditionαβ 6= 1 only precludes two trivial and uninteresting cases, namely:α = 1, β = 1 and α = −1, β = −1. In these two
situations the repetitive cell reduces to a proportional controllerC(z) = k and, thus, they have no interest.
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Taking into account this definition the dissipativity of thesystem under study is accordingly classified
in the next Proposition.

Proposition 2: The repetitive cell,C(z) = k zN−β

zN−α
, introduced in equation (1), for k > 0, |α| ≤ 1,

|β| ≤ 1 andαβ 6= 1 is (Q,S,R) − dissipative.
Proof: In Proposition1 it is stated that system in equation (1) is DPTR, so it is passive. Matrix

P is used to define a storage function, equation (17), and its evolution in terms ofL andW appears in
equation (19). Due to the particular structure ofC, equation (8), andL, equation (15), it is possible to
rewrite equations (5) and (19) as:

∆Vn = −1

2

(

L1,1x1
n + Wun

)T (

L1,1x1
n + Wun

)

+ ynun (21)

yn = C1x1
n + Dun (22)

wherex1
n andC1 stands for the first component ofxn andC respectively, andL1,1 stands for the first

diagonal element ofL.
From equation (22) it is possible to obtainx1

n as a function ofyn andun which, then, can be replaced
in (21) in order to obtain∆Vn as function ofyn andun. After some algebraic manipulations it is possible
to rewrite the energy evolution of the system in the(Q,S,R)− dissipative form, see equation (20). The
values ofQ,S andR are the scalars:

Q =
1 − α2

2k (βα − 1)
(23)

R =
k(1 − β2)

2 (βα − 1)
(24)

S =
1

2
(25)

Once the values ofQ, S andR have been obtained the proof is finished.
Remark 3:Following the classification in [14] the repetitive cell,C(z) = k zN−β

zN−α
, introduced in equation

(1), for k > 0, |α| ≤ 1, |β| ≤ 1 andαβ 6= 1 is:
• passiveif |α| = 1 and |β| = 1.
• input strictly passiveif |α| = 1 and |β| 6= 1.
• output strictly passiveif |α| 6= 1 and |β| = 1.
• very strictly passiveif |α| 6= 1 and |β| 6= 1.
The following Lemma makes possible to characterize the polar plot of the repetitive cell in the

proposition below.
Lemma 2 ([14]): If a system(A,B,C,D) with transfer functionG(z) is (Q,S,R)−dissipative then:
1) If Q < 0 then the graph ofG(ejω) lies inside the circle on the complex plane with centerS

|Q|
and

radius
(

1
|Q|

)

√

S2 + R | Q |.
2) If Q = 0 then the graph ofG(ejω) lies to the right (ifS > 0) or the left (if S < 0) of the vertical

line Re{z} = − R
2S

.
Proposition 3: The Nyquist plot ofC(z) = k zN−β

zN−α
wherek > 0, |α| ≤ 1, |β| ≤ 1 andαβ 6= 1, lies

• inside a circle of centerk(αβ−1)
α2−1

and radius|k(α−β)|
1−α2 if |α| < 1.

• to the right of Re{z} = 1−β2

2k(1−βα)
if |α| = 1.

Proof: Straightforward by applying the values obtained forQ, S and R in Proposition2 to the
Lemma2.
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IV. FREQUENCY RESPONSE OF THE REPETITIVE CELL

This section details some geometric aspects of the frequency response (C(ejω) = k ejω−β

ejωN−α
, ω ∈ [−π, π])

of the repetitive cell stated in equation (1). Some of these characteristics can be useful to asses the
performance of a closed-loop system including the repetitive cell as a controller by looking its contribution
to the open-loop transfer function shape. In this sense, thefollowing proposition states its geometrical
shape.

Proposition 4: The frequency response ofC(z) = k zN−β

zN−α
with k > 0, |α| < 1 and |β| ≤ 1 is a

circumference with centerc , k 1−βα

1−α2 and radiusr , k |α−β|
1−α2 , i.e. located in the open right half-plane of

the Nyquist plane.
Proof: Rewriting C(ejω) in cartesian form

C(ejω) = Re{C(ejω)} + j Im{C(ejω)}

=
(α + β) cos(Nω) − βα − 1

2 cos(Nω)α − α2 − 1
+ j

(α − β) sin(Nω)

2 cos(Nω)α − α2 − 1

the equation(Re{C(ejω)} − c)2 + (Im{C(ejω)})2 = r2 is verified.
Remark 4:The maximum and minimum gains of the repetitive cellC(z) are |C(ejω)|max = c + r =

max{k 1−β

1−α
, k 1+β

1+α
} and |C(ejω)|min = c − r = min{k 1−β

1−α
, k 1+β

1+α
}, respectively. The maximum phase loss

of C(z) is φmax = minω |∠C(ejω)| = arctan

(

(β−α)
√

((1−α2)(1−β2))

(α3−α)β−α2+1
, 1−β2

1−βα

)

and its is always in the[−π
2
, π

2
]

range. The phase minima occur at frequenciesωl = 1
N

arccos
(

α+β

βα+1

)

+ 2π
N

l, l = 0, 1, . . . , N − 1 reflected

to the [−π, π] range. The bandwidth of the gain peaks in|C(ejω)| measured in the|C(ejω)| = 1 level is

∆ω = 2
N

arccos
(

k2(β2+1)−(α2+1)
2(k2β−α)

)

.

It is worth to mention that the frequency domain characteristics of C(z) = k zN−β

zN−α
can be obtained in a

simple way from the same characteristics ofC ′(z) = k z−β

z−α
. Specifically,C(z) = C ′(zN) so the relation

in the frequency domain isC(ejω) = C ′(ejNω) which implies only a compression byN of the frequency
axis.

In order to obtain the desired tacking/rejection performance in the closed-loop system the controller
must contribute with high gain in the harmonic frequencies,the interesting cases among all the possible
values ofα andβ are:

• 0 < α < 1 and−1 ≤ β < α
• −1 < α < 0 andα < β ≤ 1

In both cases the gain offered by the repetitive cell at the harmonic frequencies is greater than one, so it
contributes to reduce the closed-loop sensitivity function magnitude at these frequencies. Fig.4 shows the
bode diagrams of the repetitive controller whenα > 0. In this case gain peaks are uniformly distributed
in frequency beginning with zero frequency, thus includinghigh dc gain. Whenβ > 0 (solid line) the
zeroes are located at the same frequencies as the poles thus narrowing the gain peaks (more narrow when
the zero is closer to the pole). In the other case,β < 0 (dashed line), the zeroes are located at the mean
frequency between the frequencies of the two adjacent polesthus reducing the gain at their frequencies
and widening the gain peaks corresponding to the poles6. In short, the position of the gain peaks is affected
by the sign ofα and its modulus and shape depends on|α| and β. The phase Bode diagram in Fig.4
shows, and the equation forφmax in Remark4 quantifies, that the maximum phase loss of the repetitive
cell C(z) falls asβ get closer toα.

Fig. 6 shows the pole-zero map corresponding to the frequency response plots in Fig.4. Whenα and
β have the same sign poles and zeros are located at the same frequencies (angles), but when they have
different sign poles and zeros appear in an alternate pattern of frequencies.

6This frequency response could be compared to the cascade connection of a traditional repetitive cell and a comb filter.
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Fig. 4. Frequency response forα = 0.99, β = 0.90 (solid) andα = 0.99, β = −0.90 (dash),N = 7 andk = 1.
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Fig. 5. Frequency response forα = −0.99, β = 0.90 (solid) andα = −0.99, β = −0.90 (dash),N = 7 andk = 1.
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Fig. 6. Pole-zero map forα = −0.99, β = −0.90 (same frequency) andα = −0.99, β = 0.90 (different frequency), N=7.

V. T IME RESPONSE

The repetitive cellC(z), like the traditional repetitive controllers [10], can be understood as a signal
generator when a finite duration signal of lengthN is applied to its input. In this sense, the repetitive
controller is interpreted, according to the Internal ModelPrinciple [15], as the generator of the reference
signals to track or the disturbance signals to attenuate that is necessary to include in the open-loop transfer
function of the system.

Proposition 5: Let x1(n) a discrete-time sequence of finite durationN (x1(n) = 0, n < 0, n ≥ N )
andx(n) = k

∑∞
m=0 (x1(n − mN) − βx1(n − (m + 1)N)) αm a discrete-time infinite-duration signal that

is made up of attenuated and shifted in time copies ofx1(n). Then thez-transform ofx(n) is

X(z) = z{x(n)} = k
zN − β

zN − α
X1(z) (26)

whereX1(z) , z{x1(n)}.
Proof: Straightforward applying thez-transform tox(n).

Remark 5:When α = 1, β = 0 and k = 1 Eq. (26) reduces toX(z) = zN

zN−1
X1(z) corresponding

to x(n) =
∑∞

m=0 x1(n − mN) that represents a periodical signal obtained by repetitionof x1(n). When
α = 1 andk = 1

1−β
, x(n) =

∑∞
m=0 x1(n − mN), x(n) is a periodic signal with a periodx1(n) after the

first period has elapsed, see Fig.7.

Figures/pzmap7.eps
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Fig. 7. Impulse response:α = 1, β ∈ {−0.5, 0, 0.5}, k = 1
1−β

andN = 7.
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1 c l o s e a l l
2 c l e a r a l l
3
4 T=1;
5 z= t f ( [ 1 , 0 ] , [ 1 ] , T ) ;
6 p l a n t a = 0.340299846608298338026436997108 e0∗ . . .
7 ( z + 0.710216255761721015769691687030 e0 )∗ ( z − 1) / . . .
8 ( z ˆ 2 − 0.785893111668710341188483317476 e0∗ z + . . .
9 0.367879441171442321595523770163 e0 ) ;

10
11 n y q u i s t ( p l a n t a )
12
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
16
17 be t a1 =1;
18 be t a2 = 1 . / 5 ;
19 N= 1 0 / 2 ;
20
21 Num=z e r o s ( 1 ,N+ 1 ) ;
22 Num(N+1)=− be t a2 ;
23 Num(1)=1+ be t a2 ;
24
25 Den=z e r o s ( 1 ,N+ 1 ) ;
26 Den (N+1)= be t a1 ;
27 Den ( 1 ) = 1 ;
28
29 F1= t f (Num, Den , T )
30
31 N=10;
32
33 Den=z e r o s ( 1 ,N+ 1 ) ;
34 Den (N+1)=− be t a1 ;
35 Den ( 1 ) = 1 ;
36
37 Num=z e r o s ( 1 ,N+ 1 ) ;
38 Num(N+1)=− be t a2 ;
39 Num(1)=1+ be t a2 ;
40 F2= t f (Num, Den , T )
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VI. CLOSED-LOOP NUMERICAL EXAMPLE
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Fig. 8. Feedback connection of two passive systems.

It is well known that the closed-loop connection of two passive systems generates another passive
system [12]. In this sense, the proposed repetitive cell (C(z)) can be connected to any passive plant
(P (z)), see Fig.8, giving a passive closed-loop system. Besides this, the controller structure assures
the desired tracking/attenuation performance, for example, any periodic reference applied ine1 will be
followed by y1 with low or zero steady-state error.

Traditionally, repetitive controllers are introduced in aclosed-loop system in a plug-in manner [16],
i.e. they are used to augment an existing controller. In thiskind of connection the repetitive controller is
placed in parallel with an unity gain block. Since this system is also passive this property is also preserved
if the proposed repetitive cell is used as the repetitive part. So, in Fig.8 the controllerC(z) could be
replaced by the repetitive cell in parallel with an unity gain proportional system.

The only requirement to use the proposed repetitive cell is the discrete-time passivity of the plant. If
it is not passive then an inner feedback control loop should be used to passivize it [11]. In this case, see
Fig. 8, P (z) should be replaced by the plant and the passivizing controller in feedback connection.

A. Example 1

The plant defined by the transfer function:

G(z) =
4.4076(z − 0.8553)(z − 0.484)

(z − 0.6708)(z − 0.9)
(27)

is DTPR as it can be seen in the Nyquist plot of Fig.9. As it is expected, it lays entirely on the right
half-plane. The control performance specification is to design a controller which allows the closed-loop
system to perfectly track a reference signal defined by:

e2(n) = 3 + 2 sin(ω1n) + 1.5 sin(2ω1n) + 0.7 sin(6ω1n) (28)

whereω1 = 2π
N

and N = 10. As the reference signal is periodic with periodN and nonzero mean, the
controller must have high gain at frequencyω1 and all its harmonics, including DC. Two controllers are
possible, the first one with zeros and poles at the same angle:

C1(z) =
z10 − 0.5

z10 − 1
(29)

Figures/Connexio_feedback.eps
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Fig. 9. Example 1: Nyquist plot ofG(z) in equation (27).

and the second one with zeros and poles at different angles

C2(z) =
z10 + 0.5

z10 − 1
(30)

In both cases the pole position has been fixed in order to obtain zero steady-state error. The location of
the zeros is a design parameter which must be fixed to shape thefrequency response in the desired way.
For the purposes of comparison in both casesk = 1 and the modulus of the zeros has been fixed equal.

Fig. 10 shows the system output for both cases. Although the transient is slightly different both converge
to the same steady state. From the performance point of view both controller are equivalent, so other
criteria must be used to decide among them. As it has been presented in previous section, the equal angle
controller is more selective in frequency and it almost preserves the plant frequency response between
harmonic frequencies. Additionally, the introduced phaseis always less than the phase introduced by
the different angle controller. On the other hand, the different angle approach attenuates the frequency
response magnitude of the plant between harmonic frequencies.

As a robustness measure, the minimum distance (d) from the open-loop transfer function,L(z) =
C(z)P (z), Nyquist plot to−1 is usually used. Although this is not a general case (it depends on the plant
frequency response) in the presented example the controller (29) hasd = ‖(1 + L)−1‖∞ = 0.2584 while
the controller (30) hasd = 0.5112. Although this figure is of great interest in practical applications it is
important to remember that, in this design, robustness is provided by the passivity structure.

Figures/dibu_paper_6.eps
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Fig. 10. Example 1 : Closed-loop time response.

1 c l o s e a l l
2 c l e a r a l l
3
4 T=1;
5 z= t f ( [ 1 , 0 ] , [ 1 ] , T ) ;
6 p l a n t a = 0.340299846608298338026436997108 e0∗ . . .
7 ( z + 0.710216255761721015769691687030 e0 )∗ ( z − 1) / . . .
8 ( z ˆ 2 − 0.785893111668710341188483317476 e0∗ z + . . .
9 0.367879441171442321595523770163 e0 ) ;

10
11 n y q u i s t ( p l a n t a )
12
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
16
17 be t a1 =1;
18 be t a2 = 1 . / 5 ;
19 N= 1 0 / 2 ;
20
21 Num=z e r o s ( 1 ,N+ 1 ) ;
22 Num(N+1)=− be t a2 ;
23 Num(1)=1+ be t a2 ;
24

Figures/dibu_paper_7.eps
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25 Den=z e r o s ( 1 ,N+ 1 ) ;
26 Den (N+1)= be t a1 ;
27 Den ( 1 ) = 1 ;
28
29 F1= t f (Num, Den , T )
30
31 N=10;
32
33 Den=z e r o s ( 1 ,N+ 1 ) ;
34 Den (N+1)=− be t a1 ;
35 Den ( 1 ) = 1 ;
36
37 Num=z e r o s ( 1 ,N+ 1 ) ;
38 Num(N+1)=− be t a2 ;
39 Num(1)=1+ be t a2 ;
40 F2= t f (Num, Den , T )
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B. Example 2 : the odd-harmonic case
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Fig. 11. Example 2: Nyquist plot ofG(z) in equation (31).

The plant

G(z) =
0.3403(z + 0.7102)(z − 1)

z2 − 0.785z + 0.3678
(31)

is also DTPR as it can be observed in its Nyquist plot, see Fig.11. In this example it is desired to design
a controller which allows the closed-loop system to track a reference signal defined by:

u(n) = 2 sin(ω1n) + 1.5 sin(3ω1n) (32)

As this plant has a zero in z=1 it is compulsory to use an odd-harmonic repetitive controller [10] in
order to assure internal stability. However, the use of an odd-harmonic repetitive controller reduces the
tracking/rejection capabilities to the odd harmonics. It is important to note that reference signal (32) only
contains this kind of harmonics.

Two possible controllers are possible, the first with zeros and poles at the same angle:

C1(z) =
z5 + 0.5

z5 + 1
(33)

and the second with zeros and poles at different angle

C2(z) =
z5 − 0.5

z5 + 1
(34)

In both cases the pole position has been fixed in order to obtain zero steady-state error. For the shake of
comparison, in both casesk = 1 and the modulus of the zeros has been fixed equal.

Figures/dibu_paper_4.eps
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Fig. 12. Example 2: Closed-loop time response.

Fig. 12 shows the system output for both cases. Although the transient response is slightly different,
as expected, both converge to the same steady state.

The minimum distances from the open-loop transfer functionNyquist plot to−1 in this example are:
d = 1.0511 for the controller (33) andd = 1.5876 for the controller (34).

Figures/dibu_paper_5.eps
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1 c l o s e a l l
2 c l e a r a l l
3
4 z =[0 .85526135458575 , 0 .48398374321304 ] ;
5 p =[0 .67081008683825 , 0 .90000000000000 ] ;
6 k = [4 .40756404382341 ] ;
7
8 p l a n t a =zpk ( z , p , k ,−1) ;
9

10 be t a1 =1;
11 be t a2 = 1 . / 5 ;
12 N=10;
13
14 Num=z e r o s ( 1 ,N+ 1 ) ;
15 Num(N+1)= be t a2 ;
16 Num(1)=1− be t a2 ;
17
18 Den=z e r o s ( 1 ,N+ 1 ) ;
19 Den (N+1)=− be t a1 ;
20 Den ( 1 ) = 1 ;
21 F1= t f (Num, Den ,−1)
22
23 c l = feedback ( p l a n t a∗F1 , 1 ) ;
24 t e =0 :1 :6∗N;
25 u =3+(2∗ s i n ( ( 2∗ pi /N)∗ t e )+1 .5∗ s i n ( ( 2∗2∗ pi /N)∗ t e )+0 .7∗ s i n ( ( 6∗2∗ pi /N)∗ t e ) ) ’ ;
26 y= l s im ( c l , u , t e ) ;
27
28 f i g u r e , p l o t ( te , [ u , y ] ) , t i t l e ( ’ Time Response ’ ) , . . .
29 y l a b e l ( ’ i npu t−o u t p u t ’ ) , x l a b e l ( ’ samples ’ ) ,gr id
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VII. C ONCLUSION

This work has presented a new repetitive controller to trackand attenuate periodic references and
disturbances, respectively, for discrete-time passive plants. The energetic structure and frequency and time
responses of the repetitive cell are studied proving that ithas passivity structure and showing some useful
characteristics for the design stage of a closed-loop system. Its main characteristic, passivity structure,
assures to obtain a stable closed-loop system when the plantis also discrete-time passive. It is worth
of remark that the design procedure does not include, unlikethe procedures for traditional repetitive
controllers, any exact or approximate inversion of the plant dynamics. From an implementation point of
view, this new cell needs the same amount of memory than the traditional ones and only an additional
addition and product are needed for each sampling period.
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