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A Newton approach to bivariate Hermite interpolation on
generalized natural lattices

J. M. Carnicer and M. Gasca

Abstract. A natural lattice is the set of all the intersections points of a set of lines in general position in
the plane. The Lagrange interpolation problem on a natural lattice with n—+ 2 lines has a unique solution in
the space of bivariate polynomials of degree not greater than n. A generalized natural lattice is the set of
all intersection points of a set of distinct lines, allowing parallelism and multiple concurrences. A Hermite
interpolation problem is posed on a generalized natural lattice in a space of polynomials whose degree
decreases along the directions corresponding to parallel lines. In this paper, we study the unisolvence of
this problem and suggest a Newton approach for solving it.

Una aproximacion a la interpolacion de Hermite bivariada sobre reticulos
naturales generalizados usando férmulas de Newton

Resumen. Un reticulo natural es el conjunto de todas las intersecciones de un conjunto de rectas del
plano en posicién general. El problema de interpolacién de Lagrange sobre un reticulo natural de n + 2
rectas tiene solucion tnica en el espacio de los polinomios bivariados de grado menor o igual que n. Un
reticulo natural generalizado estd formado por todas las intersecciones de un conjunto de rectas distintas,
sin excluir paralelismos o concurrencias multiples. A un reticulo natural generalizado le asociamos un
problema de interpolacion de Hermite en un espacio de polinomios cuyo grado disminuye a lo largo de las
direcciones correspondientes a las rectas paralelas del reticulo. En este trabajo estudiamos la existencia y
unicidad de solucién del problema y el uso de férmulas de Newton para su resolucion.

1. Introduction

An interpolation problem is determined by the space of interpolating functions and a set of interpolation
data. In multivariate polynomial interpolation, the existence and uniqueness of solution of a problem with a
set of interpolation data in a polynomial space always depends on the geometrical distribution of the set of
interpolation points, also called nodes (see [10]). One of the most frequent problems in this framework is
the identification of simple distributions of points such that the unisolvence of the problem on a given space
is guaranteed.

In this paper, we study a particularly simple distribution of nodes in the plane. The interpolation points
are the intersections of n + 2 straight lines rg, ..., r,4+1 and the interpolation space is a subspace of the
space of polynomials of degree not greater than n, IT,, (R?). The case of n + 2 lines in general position,
giving rise to (”;2) different intersection points, was studied among other authors by Chung and Yao [7]

Presentado por Jests Ildefonso Diaz.

Recibido: 3 de Mayo de 2002. Aceptado: 13 de Septiembre de 2002.

Palabras clave / Keywords: bivariate polynomial interpolation, Newton formula
Mathematics Subject Classifications: 41A05, 65D05, 41A63

(© 2002 Real Academia de Ciencias, Espafia.

185



J. M. Carnicer and M. Gasca

who introduced the term natural lattice. If we denote by X the set of (”;“2) intersection points and by r;(x)

an affine polynomial such that r;(x) = 0 is an equation of the line r;, the polynomial

n+1
) — ri(z)
a )_pez;(f(P) 1210 D) (1)
i (P)#£0

matches the function f at all points P € X.

Natural lattices are the simplest cases of sets satisfying what Chung and Yao called the geometric char-
acterization. The geometric characterization is important because the solution of the corresponding interpo-
lation problem can be found by a very simple Lagrange formula, which is a generalization of (1). Busch [1]
extended Chung and Yao’s geometric characterization allowing multiple concurrences but not parallel lines.
He provided a recursive procedure for the construction of Lagrange formulae. These formulae become very
complicated and we think that a Newton approach is more appropriate for solving the problem.

Our aim in this paper is to extend natural lattices allowing parallel lines and multiple concurrences
of lines. This problem was studied by Dyn and Ron in [8]. They analyzed completely the simple case
where no multiple concurrences of lines occur although parallel lines are allowed. They observed that the
Lagrange interpolation formula (1) for the interpolating polynomial still holds. This formula describes the
unique solution of the problem in a subspace of polynomials in IT,,(R? ) whose degree diminishes when we
restrict the variables to lines of some directions. Dyn and Ron also described the interpolation problem for
the general case but a constructive method to obtain the solution was not provided for this case. On the
other hand, their motivation for studying this problem came from some results on box spline spaces. As a
consequence, their approach requires a larger background than here. Further results can be found in [2].

For the sake of completeness and in order to offer a simpler approach, we study again in Section 2 the
simple case, introduce the interpolation spaces and provide the Lagrange interpolation formula. In Section
3, we study the general case (without coincidences of lines) from a Newton approach, giving a constructive
method to find the solution of the problem by a Newton formula. In these sections, we use the spaces of
polynomials introduced by Dyn and Ron [8] whose degree diminishes along prescribed directions. These
spaces arise in a natural way in the interpolation problems with asymptotic conditions that we have studied
in some recent papers [4, 5, 6]. In Section 4, we see the relationship between both approaches. Interpolation
problems with asymptotic conditions have also been considered in [11] as traces of usual data when two
manifolds tend to be parallel. Finally, some examples are given in Section 5.

In summary, for a set of any n + 2 different lines, we provide a set of interpolation conditions on
the intersection points, a subspace of II,,(R?) as the interpolation space and a construction of the unique
solution of the interpolation problem.

2. Lagrange formulae for generalized natural lattices in the
simple case

Let 79, 71,...7p+1 be n + 2 different straight lines and assume that any 3 of them do not intersect at the
same point. Let X be the set of intersection points

X :={r;Nrj|i<j, r;isnotparallel tor;}. 2)
For each i let us define
ki ::|{j>i|rj isparalleltori}|. 3)

Observe that each point in X is the intersection of a line r; with a transversal (not parallel) line r;, 7 < j.
The number of lines r;, j > i, transversal to r; is n + 1 — ¢ — k; and then we have

n n

|X|:Z(n+1—i—ki):<n;2>—2ki. @)
=0

=0
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The number of nodes | X| is less than or equal to (”;“2) and depends on the number of parallel lines.
Formula (1) still holds as a Lagrange formula to solve the Lagrange interpolation problem on the set of
nodes X. The interpolation space is not IL,, (R?) in general. How to describe the space generated by the
Lagrange polynomials

n+1

ri(x)
lp(z) = : (5)
e
i (P)#0
in terms of the given lines rg,...,r,+1? In order to answer to this question, let us associate to each line

r; a directional vector p; # 0. The direction of r; can be regarded as the 1-dimensional subspace (p;)
of R?. Then r; is parallel to r; if and only if they have the same direction (p;) = (p;). Let D :=
{{po),--.,{pns1)} be the set of directions of the lines rq, ..., p41. To each direction (p) € D we may
associate the number

r{p) := |{i € {0,...,n 4+ 1} | r; has direction (p) } | — 1.) 6)

If we denote
D1 :={{p) | (p) € D,r(p) > 1}, 7

Faex (9)
i=0

{p)ED:1

then we have

and we may write (4) in the form

X| = <n—2+—2> s <,¢<p>2+1>.

(p)€D1

Let us now observe that all Lagrange polynomials {p(x) in (5) are products of n linear factors. More
precisely, if P = r; N r;, then {p(x) = ][, ;(rn(z)/ra(P)). For any direction (p) € D, then, at least
k(p) factors of ¢, (x) correspond to lines with direction (p). This means that {p () belongs to the subspace
of polynomials of degree n whose degree decreases to n — x{p) when restricted to lines with direction (p),
for each (p) € D;.

Let us introduce the idea of directional degree.

Definition 1 Given a bivariate polynomial p and a direction of the plane (v), v € R2?, we define the
directional degree of p along (v) as

0 = d t
(0)p = maxdeg, p(a + tv),

where deg, p(a + tv) denotes the degree of the univariate polynomial p(a + tv) in the indeterminate t.

Let us observe that 0,y p depends on the direction but not on the particular choice of a vector v in this
direction. The partial degree of a polynomial p in each of the indeterminates can be seen as the directional
degree along the directions ((1,0)), ((1,0)). Conversely the directional degree can be seen as a partial
degree.

Given v € R?, take a vector w € R? such that {v,w} form a basis of R*> and define the bivariate
polynomial P(t,s) := p(tv + sw). Bach a € R? can be writen as a = tov + sow, and so p(a + tv) =
P(to +t, sp). Then

Ot)p = max deg, p(a + tv) =  max deg, P(to +1,50) = maxdeg, P(t, so).

So we have seen that 9(,,yp is the partial degree in the indeterminate ¢ of P(t,s), which is independent on
the choice of w.
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The fact that the directional degree coincides with a partial degree under a change of variables implies
that many properties of the partial degree can be extended to directional degrees. In fact, we have

01wy (Pq) = Opuyp + O(v) Q- ©))

Let us now introduce a notation for spaces of polynomials whose degree diminishes along prescribed
directions.

Definition 2 Given a set V' of different directions and a mapping - V- — N U {0}, we define I1,(V, p)
as the polynomial space

M, (V,u) = {p € I, (R?) | Oy < n—pv), Y(v) € V}.

Remark 1 The directions (v) such that p(v) = 0 are redundant in the previous definition. So, if V; :=
{(v) e V | u{v) > 1}, we have I, (V, ) = I, (Vy, ). N

The following proposition shows that if a product of polynomials belongs to the space II,,(V, ), then

the factors belong to that space.

Proposition 1 Let V be a set of directions and i : V- — NU{0}. If ¢ € IL,(V, u), ¢ # 0, can be factored
as a product of two polynomials, ¢ = q1qo, then q1, g2 € I, (V, ).

PROOF. Clearly ¢, ¢2 € II,,(R?), because
degqi +deggqx = degg < n.
Letv € R? with (v) € V. By (2.8) we may write
Oy t1 + )2 = Owyq < n — p{v)

and then 9¢,yq; <n —p(v),i=1,2. N

The next result shows that the space generated by the Lagrange functionsis justIL,, (D, k) = II,,(D1, ).

We discuss first the case in which all lines r; are parallel, that is, D consists only of one direction (v),
with k(v) = n + 1. Then X is the empty set and IT,, (D, k) = 0, the null space. Since dimII,,(D, &) =
0 = |X]|, in a trivial sense II,,(D, k) coincides with the space generated by the empty set of Lagrange
polynomials. In order to avoid this trivial case, we shall require that |[D| > 2 or equivalently X # ().

Theorem 1 Letrg, ..., 1,1 be a set of n+ 2 different lines not all of them parallel. Assume that no more
than two of these lines intersect at the same point and let

X :={r;Nrj|i<j, r;isnotparallel tor;}.

Let D be the set of directions of the lines rq, . . . ,7p+1. Foreach (p) € D, let k{p) be defined by (6) and the
set of directions Dy by (7). For any function f defined on a set containing X, the Lagrange interpolation
problem: find a polynomial q € 11,,(D, k) such that

q(P)=f(P), PeX,
has a unique solution q, which can be expressed by (1). Furthermore

dim IL,,(D, k) = <”;2> -y <“(p)2+ 1) (10)

pED:

andI1,,(D, k) =11,(D1,k) = ({p | P € X), where p are the Lagrange polynomials (5).
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PROOF. LetW := ({p | P € X) be the space generated by the polynomials (5). Since the polynomials
[ p are linearly independent, we have

dim W = | X] = <n—2|—2> -y <n<p>2+1>.

pED,

Clearly ¢{p(a + tv) is the product of constants and polynomials of first degree in ¢. In fact, ;(a + tv) is
a constant polynomial for all a if and only if v is a directional vector of r;. Therefore 0, (p is equal to
the number of lines not containing the point P nor the direction v, that is, 6<U>€ p = n — k{v). Then we
have {p € II,,(D, ) for all P € X and therefore W C II,(D,x) = II,,(D1, ). So we have shown
the existence of an interpolant ¢ € IL,,(D, k) given by (1.1). Let us show that there exists a unique ¢ €
1, (D, k) satisfying the given interpolation conditions. This is equivalent to show that the only polynomial
in IT,, (D, k) vanishing on X is the zero polynomial. The proof will be done by induction on the number of
lines.

If n = 0, we have two lines ¢, 71 determining two different directions and a single intersection point
X = {roNry}. The space II (D, ) coincides with the space IT of all constant polynomials. If a constant
vanishes at a point, then it must be the zero polynomial.

Let us now show the result for n + 2 lines, assuming that it holds for n + 1 lines. Since neither the
interpolation points nor the space depend on the order of the lines, we may assume without loss of generality
that the last two lines r,, 7,41 are not parallel. Let p; be a directional vector for the line r;, s = 0,...,n+1.
Let ¢ be a polynomial vanishing on X and let ag +tpg be a parameterization of the line rg. Then, ¢(ag+tpo)
is a polynomial of degree less than or equal to n — k{pg) = n — ko, where ko is given by (3) vanishing on
the n+ 1 — ko points of X Nrq. Therefore ¢(ag +tpo) = 0 for all ¢ and then r is a factor of the polynomial
q- So, we can write ¢ = rog, where § € II,,_; (R?) is a polynomial with 8,,,¢ < n — 1 — r({p), if (p) € D,
(p) # (po)»and 0y,,,¢ < n—~k(po). Furthermore g vanishes on X \ ro. For the set of lines r1, ..., rp11, we
define the set of directions D := {(p1),..., (pn), (pns1)} and & (p) := |{i > 0| r; has direction (p)}| —1.
Then § € T,_; (D, &) and vanishes on X := {r; Nr; | 0 < i < j,r; not parallel to r;} = X \ ro. By the
induction hypothesis ¢ is the zero polynomial and then ¢ is identically zero.

We have shown that the interpolation problem is unisolvent and this allows us to compute the dimen-
sion of the space II,,(Dy, ), dim IL,,(D;,x) = |X|, and conclude that W = II,(D;, ). So, the result
follows. W

As a consequence of Theorem 1, we can deduce a formula for dim IT,,(V, u) if the space IT,,(V, u) can
be interpreted as the solution space of an interpolation problem described in the theorem.

Corollary 1 Let V be a set of directions of the plane and i : V. — N U {0}. Let us define V; := {{v) €
V() > 1} If

n> 3 )+ Vil -2, (11)
(’U)EV1
then
dim L, (V. ) = <n42r2> B Z (u<v>2+ 1>. 12)
(v)eW

PROOF. First, for each different direction of V; we take p(v) + 1 lines of direction (v). If (11) holds,
then we can take other lines with any different directions not belonging to V; until obtaining n + 2 lines
T0,---,Tn+1. Let D be the set of directions of the lines r;, 7 = 0,...,n + 1, x{p) defined by (6) and D,
defined by (7). Then, the condition imposed on the lines rg, . .., 7,41 implies that Vi = Dy, ulv; = &|p, -
By Remark 1, IT,,(V, ) = I1,(D, k).

However there might exist more than two lines among ryg, . .., 7,41 meeting at the same point. In this
case, we can always choose a line 7; parallel to r; so that at most two lines intersect at the same point.
Since the lines 7y, ..., 7,41 have simple intersections, the interpolation problem associated to these lines
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is the Lagrange problem described in Theorem 1. The space II,,(D, x) does not depend on the lines but
rather on the directions of these lines. Then the space associated to the L.agrange problem based on the lines
705 -« .y Tnt1 is still I1, (D, k). From (10), we obtain (12). MW

3. Newton formulae for generalized natural lattices

A generalized natural lattice is any set of n + 2 different straight lines. In the preceding section we have
dealt with sets of lines such that no 3 lines intersect at the same point. Now we consider the general case:
multiple concurrences and also parallel lines are allowed. However, we do not consider coincidences of
lines. Multiple concurrences can be interpreted as limit cases of simple intersections and so, directional
derivatives appear in a natural way, leading to Hermite interpolation problems. In this case Lagrange for-
mulae become very complicated (see [1]) and so we prefer a Newton approach.

In order to apply the results of [9], we introduce some notations. Let us consider n + 2 different lines
To,T1,--.,"nt1. Without loss of generality, we may assume that all parallel lines corresponding to any
direction have consecutive indices. This assumption allows us to simplify our index notation. Let us define

Tij = Tpt1—j, J=0,...,m(i) :=n—1i— ks (13)
where k; is given by formula (3), and an index set
I={(i,j) 10 <i<n;0<j<m(i)}, (14)
lexicographically ordered. For notational convenience we introduce the sets
Rij:={rn|h<i}U{rip|p<jl={rn|h<iorh>n+1-3}, (i,j) el (15)

Now we introduce the set of polynomials

bij ::Hthrip: H T, (Lj)ef. (16)

h<i  p<j re€R;;
Let X be the set of all points determined as intersection of at least two lines among 7, . .., rp41. For any
point P € X, let
v(P):=|{ie{0,....,n+1} | ry(P) =0} - 2. (17)

In order to state the main result in this section we use multiindex notation. If & = (ay,as), |a] =
a1 + az and D := Dg1 D¢2, where e; = (1,0), e2 = (0,1).

€es ?

Theorem 2 Letry,...,r,1 be n + 2 different lines not all of them parallel and let X be the set of points
lying on at least two of those lines

X :={rinr;|i<j,r;isnotparallel tor;} # 0.

Let D be the set of directions of the lines r;, i = 0,...,n+ 1. Foreach {p) € D, let k(p) be defined by (6).
For any sufficiently differentiable function f defined on an open set containing X, the Hermite interpolation
problem: find a polynomial q € 11,,(D, k) such that

D%(P) = D"f(P), la|<v(P), PeX, (18)

where v(P) is given by (17), has a unique solution. Furthermore, the set of polynomials ¢;j, (i,7) € I
defined by (16) is a basis of 11, (D, k) and q can therefore be expressed by

n milz

(i)
q=>> aijdij. (19)

i=0 j=0
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PROOF. Letus denote by u;; € X the intersection of the lines r;, r;5,

Uqj = ’l‘iﬂ’l‘ij :’l‘iﬂ’l’n+1_j, (17]) e l. (20)

Observe that the concurrence of 3 or more lines at the same point give rise to repetition of points. The
number of different indices for a given point P € X is precisely (”(PQ)H). In order to use the results of [9],

we need some definitions. For (i, j) € I, we define a functional L;; in the form
Lij f := D% f(uij), (21)
where p; is a directional vector of the line r; and
tij = |{r € Rij | r(u;j) = 0}|. (22)
According to [9], there exists a unique polynomial ¢ in the space

W= (¢ | (i,4) € ) (23)

such that .
Lijq= Ly f, (i,j)€l. 24)

The polynomial ¢ can be expressed in the form (19) and its coefficients can be computed from (24). Indeed,
in [9], it is shown that for (i,7) € T

Lij¢hk - Ov (hvk) € f) (hak) > (ivj)v
Lijpi; # 0,

hence the matrix (L;; ¢hk)(i i)(hk)el with the indices lexicographically ordered is lower triangular and the
coefficients a;; can be computed by the recurrence

ago := Loo f, agj = (Lijf - Z ahkLij¢hk)/Lij¢ij7 (i,7) > (0,0). (25
(h,k)<(i,5)

In this sense, the functions (16) can be considered a Newton basis for the interpolation problem (24) in the
space W and (19) can be seen as a Newton formula.

In order to prove the theorem, we shall show that the space W defined in (23) is II,, (D, ) and that the
set of interpolation conditions (24) is equivalent to the set of conditions (18).

First, we show that W = II,,(D, k). Observe that ¢;; = [][,.; Hh>n+1_j rp, divides 1;; =
Hh#,nﬂﬂ- ry. For any (p) € D, 9(,y¢;; is equal to the number of lines rp,, h # i, j whose direction is
not (p). So O(,yhi; = n—k(p) foreach (p) € D, and then +;; € I1,,(D, k), where D is the set of directions
of the lines g, ..., rp41 and & is defined in (6). Since ¢;; divides 1);; we deduce from Proposition 1 that
¢ij € IL,(D, k). So we have seen that W C II,,(D, k). On the other hand, since the interpolation problem
in W is unisolvent, dim W is equal to the number of interpolation data, that is

n n n

. n+2
dimW = |I| = m(t) +1) = n+1l—i—Fk)= — k;.
=i+ 1 =3 >(2)Z
By (8) and Corollary 1, we have
. n+2 k(p) +1 .
dlmW:( 5 )— Z ( 5 =dimII, (D, k)
(p)ED1

and so the space W generated by the Newton basis is I1,,(D, k).
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It only remains to show that the interpolation conditions (24) given by the linear functionals L;; in
(21) are equivalent to the Hermite conditions (18). If P is any point of X and r;,..

v(P)+2
2

Ty iy 41
ig < -+ < iy(p) < iy(p)+1. are the lines containing P, then the ( ) interpolation data are

Dk f(P), 0<j<k<u(P).

Pij

The corresponding linear forms f +— D’p“l_ _f(P) are linearly independent because the interpolation problem

(24) is unisolvent. This set of linear forms is generated by the ("(PQ)“) linear functionals f — D f(P),
|a| < n. Therefore, the space generated by both sets of linear functionals is the same. So we have shown
that the interpolation problems (18) and (24) are equivalent in the sense that both lead to the same solution
q for an arbitrary f. W

Remark 2 The proof of Theorem 2 suggests a construction of the solution ¢ of the interpolation problem
(18). First, we write the problem in the equivalent form (24). The definition of the linear forms L;; of (21)
require an ordering of the lines such that parallel lines have consecutive indices and the definitions (13),
(14), (15), (20) and (22). Taking into account that

le):: Z <|Z|>,UO¢D0(

lee|=k

we compute L;; f as a linear combination of D® f(u;;) which are data of the problem (18). Then, (19) is
a Newton formula for the solution of the problem (24), because the coefficients a;; can be computed by
(25). For the efficient computation of each L;;¢p in (25) one can take into account [3]. An alternative is
suggested by the formula )
dii
Dtpiij¢hk(uij) = st X
We first compute the product of univariate polynomials [[,.c g, 7(wij + pis) = ¢nk(uij + pis) and then
the coefficient of st of this polynomial is (1/t;;!)Lij¢px. M

70¢hk(uij + pis).

4. Generalized natural lattices and asymptotic conditions

Spaces of bivariate polynomials of a certain degree which decreases when the variables are restricted to
lines with prescribed directions have appeared in [8] and in some recent papers [4, 5, 6] dealing with
interpolation problems with asymptotic conditions. In fact, the results of Section 3 can also be obtained
using those asymptotic conditions.

Let p be a bivariate polynomial of degree n and p(a + tv), t € R, be the restriction of p to the line
of parametric equation = a + tv, a,v € R2. In [4, 5] asymptotic conditions on p along the line r were
introduced as certain conditions on the coefficients of degree n,n — 1, ... of p(a + tv).

As seen in [9], an interpolation problem with n + 1 — ¢ data on a straight line r;, 0 < ¢ < n, is
unisolvent in Hn(]RQ). In [5] a construction similar to that of [9] was provided to deal with interpolation
problems including asymptotic conditions. In this framework, a problem with n + 1 — ¢ data (asymptotic
ornot) on 74, 0 < i < n, gave rise to II,(IR?) as a suitable space in order to have unisolvence.

The problem that we have considered in the proof of Theorem 2 can be studied in this form. Let us
denote by I the set of indices

Ii={(i,j)|0<i<n;0<j<n—i} (26)

lexicographically ordered. A set of linear forms L;;, (i,) € I, is used for posing the problem. The set
I defined in (14) is contained in I and the linear forms L;;, (i,5) € I, are those defined in (21). For
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® ®
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Figure 1. Two generalized natural lattices with 6 lines.

(1,7) € T'\ I, L;;p prescribe the values of the coefficients of highest degrees of the polynomial solution of
the problem when the variables are restricted to certain lines. In [5], we show that the interpolation problem

Lz]p:LZva (iaj)EIa

has a unique solution p € IL, (IR?) and that p can be constructed from a Newton formula in the sense that
the the basis constructed there {¢;; | (4, j) € I} satisfies

Lijone =0, (h k), (i,5) € I, (h,k) > (i, ]),
Lijpi; #0, (i,j) € 1.

Choose a direction (p). Under our indexing assumptions, the interpolation data of the form (21) are
given by the indices s < i < s+ k{p), 0 < j < n+1— s — k{p), that is, indices belonging to I.
In each line r4yp there are k(p) — h asymptotic conditions, h = 0,...,k(p) — 1. In Theorem 3.2 of
[6]. we showed that a polynomial ¢ € II,,(R?) satisfies the vanishing asymptotic conditions on the lines
Ts,Ts41y- - sin(py—1 if and only if it has degree n — k(p) when restricted to any line with direction
(p). The same reasoning works when we consider several groups of parallel lines. So, the subspace of
polynomials in IT,, (R?) satisfying the vanishing asymptotic conditions for (i, ) € I\ Iis I, (D, k).

The interpolation problem of finding p € IT,,(R?) such that L;;p has prescribed values for all (i, j) € I
and satisfying vanishing asymptotic conditions for all indices (i, j) € I \ I hasa unique solution. In other
words, there is a unique polynomial p € IL,, (D, x) such that L;;p takes prescribed values for all (¢, j) € I.
So, we have derived the same conclusions as in Section 3 from another point of view.

5. Examples

Figures 1 and 2 show different natural lattices. We have marked with a black circle the simple intersection
which give rise to Lagrange interpolation data (value of the function at that point). We have surrounded a
black circle by a concentric circle to indicate the intersection of three lines giving rise to first order Hermite
data (value of the function and two partial derivatives of first order).

The interpolation space is I14(R?) in Figure 1 left. In the case of Figure 1 right, the space is that of
quartic polynomials which become cubic along two directions, namely the directions of the axes. The
dimension of this space is 13.

In Figure 2 left, the interpolation space is the subspace of polynomials of degree not greater than seven,
whose directional degree is not greater than five along the directions of the axes OX, OY and the bisector of
the quadrant XOY. This space has dimension 27. Finally, in Figure 2 right, the interpolation space is that of
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sextic polynomials of degree not greater than five along the directions of the axes and their bisectors. This
space has dimension 24.

. [ ] [ ]
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Figure 2. Two generalized natural lattices with 8 and 9 lines

Let us describe the construction of the solution of the problem corresponding to Figure 1 right. Denote
by rg, r1 the lines of direction OX, 7o, r3 the lines of direction OY and r4, r5 the diagonals of the rectangle
determined by rq, 71,72, 3. The index set (14) is

I:={(0,0),(0,1),(0,2),(0,3),(1,0), (1,1), (1,2), (1,3), (2,0), (2, 1), (3,0), (3,1), (4, 0)}.

The interpolation points are
U5 :’I“Z'ﬂ’r‘g,,j, (’L,]) el

Observe that the four vertices of the rectangle appear three times in the above list
Upp = Up2 = U30, Up1 = Up3 = U21, U = U13 = U20, Ul = U12 = U3z1-
The Newton basis (16) is given by
dij = [[ro [[ 50 Gi)el
h<i p<j

Finally the linear forms L;; f defined in (21) are given by

f(uij), for(i,5) € {(0,0),(0,1),(1,0),(1,1),(4,0)},

& (), for (1,5) € (0,2),(0.3),(1,2), (1.9)},
). for (i.7) € {(2,0),(2:1),(3.0), 3. 1))

The problem can be solved using the recurrence (25). For the computation see Remark 2.
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