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Mateḿatica Aplicada / Applied Mathematics
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Interfaces in solutions of diffusion-absorption equations

S. Shmarev

Abstract. We study the properties of interfaces in solutions of the Cauchy problem for the nonlinear
degenerate parabolic equationut = ∆ um − up in Rn × (0, T ] with the parametersm > 1, p > 0
satisfying the conditionm + p ≥ 2. We show that the velocity of the interfaceΓ(t) = ∂{supp u(x, t)}

is given by the formulav =

[
− m

m− 1
∇um−1 +∇Π

]∣∣∣∣
Γ(t)

whereΠ is the solution of the degenerate

elliptic equationdiv (u∇Π) + up = 0, Π = 0 on Γ(t). We give explicit formulas which represent the
interfaceΓ(t) as a bijection fromΓ(0). It is proved that the solutionu and its interfaceΓ(t) are analytic
functions of timet and that they preserve the initial regularity in the spatial variables.

Interfaces en soluciones de las ecuaciones de absorci ón-difusi ón

Resumen. Se estudian las propiedades de las interfaces de las soluciones del problema de Cauchy
para ecuaciones parabólicas no lineales degeneradasut = ∆ um − up enRn × (0, T ] con paŕametros
m > 1, p > 0 que satisfagan la condición m + p ≥ 2. Se demuestra que la velocidad de la interface

Γ(t) = ∂{supp u(x, t)} viene dada por la fórmulav =

[
− m

m− 1
∇um−1 +∇Π

]∣∣∣∣
Γ(t)

, dondeΠ es

la solucíon de la ecuación eĺıptica degeneradadiv (u∇Π) + up = 0, Π = 0 sobreΓ(t). Se deducen
las formulas que representan explı́citamente la interfaceΓ(t) como una biyecíon deΓ(0). Se demuestra
que la solucíon u y su interfaceΓ(t) son anaĺıticas como funciones del tiempot y que conservan la
regularidad inicial respecto de las variables espaciales.

1. Lagrangian coordinates

We study the Cauchy problem

ut = ∆um − up in S = Rn × (0, T ), u(x, 0) = u0(x) ≥ 0 in Rn (1)

with the parametersm > 1, p > 0 subject to the conditionm+ p ≥ 2. It is known that in the casem > 1,
p ∈ (0, 1) the initially compact support can split into several components and that the solution vanishes in a
finite time. We refer to [1, Ch.3] for the background information on the behavior of interfaces in solutions
of problem (1).

We are concerned with the study of the interface dynamics and regularity. In the one-dimensional case,
the study of the interface regularity was performed in [3, 4] but the method proposed and developed in these
papers does not directly apply to the multidimensional case.
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Let u(x, t) be a continuous solution of problem (1) andΩ(t) = {x ∈ Rn : u(x, t) > 0}. For the sake
of presentation we assume that the setΩ(0) is one-connected inRn, which means that the solution only has
the outer interface. Our arguments extend without any change to the case when the set∂{Ω(0)} consists of
a finite number of simple-connected components.

SinceΩ(0) is one-connected inRn and the solution is continuous,Ω(t) is also one-connected fort ∈
(0, T+) with someT+. The solutionu(x, t) is strictly positive inside

⋃
t∈(0,T+] Ω(t), which allows us to

take a setD ⊂ Ω(0) with the smooth boundaryγ such thatD × (0, T+] ⊂
⋃

t∈(0,T+] Ω(t) andu ≥ δ on
Σ = γ× [0, T+] with someδ > 0. Adopt the notationD = Rn \D, ω(t) = Ω(t) \D, ω = ω(0). The weak
solution to the Cauchy problem (1) solves the initial-and-boundary value problem

ut = ∆um − up in E = D × (0, T+], u(x, 0) = u0 in D, (∇um,n)|Σ = φ(x, t) (2)

with a prescribed functionφ; n denotes the unit vector of outer normal toΣ. Notice that since the solution
u of the Cauchy problem (1) is smooth inside its support, we haveφ ∈ C∞(Σ).

Definition 1 A functionu(x, t) is said to be a weak solution of problem(2) if u is bounded, nonnegative
and continuous inE, ∇um ∈ L2(E), and for every test-functionη ∈ C1

(
E
)
, vanishing fort = T+ and

all x large enough∫
E

(u ηt −∇ η · ∇um − η up) dx dt+
∫

D

u0 η(x, 0) dx+
∫

Σ

η φ dS = 0. (3)

Let us consider the following auxiliary mechanical problem: the flow of the politropic gas with density
u, pressurep = m/(m− 1)um−1, and velocityv through the porous medium that occupies the regionD.
It is assumed that the surfaceΣ is immobile and that the total mass of the gas is constant. We will describe
the gas flow usingLagrangian coordinates[6]. In this description all characteristics of the motion are
considered as functions of the initial positions of the particles and timet. Let us denote byX(ξ, t) the
position of the particle that initially occupied the positionξ ∈ ω, and byU(ξ, t) the density at this particle.
The flow is described by the following relations:

Xt(ξ, t) = v[X(ξ, t), t] in Q = ω × (0, T ], T ≤ T+, (equation of the trajectories) (4)

U det [∂X/∂ξ] = u0 in Q (the mass conservation law). (5)

These equations are endowed with the initial and boundary conditions:X(ξ, 0) = ξ, U(ξ, 0) = u0(ξ)
in ω (the initial data),v|Σ = 0 (the surfaceΣ is immobile),U(ξ, t) = 0 on Γ = ∂ω × [0, T ] (the free
boundary). Let us assume that for a prescribed vector-fieldv(X, t) ∈ L2(Q) and a given set of the initial
and boundary data we can construct a solution(X, t), U) of problem (4)–(5). This solution generates the
mapξ 7→ x = X(ξ, t), which we assume to be such that|J | = det [∂X/∂ξ] is separated away from zero
and infinity. Consider the function

u(x, t) =

{
U(ξ, t) for x = X(ξ, t), (ξ, t) ∈ Q,
0 elsewhere.

(6)

For any test-functionη(x, t) satisfying the conditions of Definition 1 the following equality holds:

−
∫

D

η(x, 0)u0 dx =
∫ T

0

d

dt

(∫
ω(t)

η u dx

)
dt =

∫ T

0

∫
D

(ηtu+ u∇xη · v) dxdt. (7)

Comparing (7) with (3) we see that the functionu(x, t) is a weak solution of problem (2) if
v = −m/(m− 1)∇xu

m−1 +∇xΠ, whereΠ is a weak solution of the degenerate elliptic problem
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divx (u∇xΠ) = −up in ω(t), Π|∂ω(t) = 0, u(∇Π,n)|Σ = −φ. (8)

Gathering conditions (4)–(5) with (8), and writing the latter in Lagrangian coordinates, we arrive at the the
Lagrangian counterpart of problem (2): it is requested to find a solutionX = I+Y ,P = m/(m− 1)Um−1,
andπ(ξ, t) = Π(x, t) of the system of nonlinear equations{

(I +∇∗Y )Yt +∇ (P − π) = 0, P |J |m−1 − P0 = 0 in Q,

div
(
u0J

−1
(
J−1

)∗∇π
)

+ up
0|J |1−p = 0 in ω

(9)

under the initial and boundary conditionsY (ξ, 0) = 0, P (ξ, 0) = P0 ≡ m/(m− 1)um−1
0 in ω, P = 0,

π = 0 onΓ, P 1/(m−1)(∇π,n) = −φ (m/(m− 1))1/(m−1), Y (ξ, t) = 0 onΣ.

Theorem 1 Let (Y, P, π) be a solution of problem(9) such that∇P, ∇π ∈ L2(Q) and |J | is separated
away from zero and infinity. If for everyt ∈ (0, T ] the mapξ 7→ I + Y (ξ, t) is a bijection betweenω and
ω(t), then formula(6) defines a weak solution of problem(2). The interface of this solution is given by(4).

2. The function spaces

Adopt the notationd ≡ dξ = dist(ξ, ∂ω), dξ,η = min (dξ, dη),
∣∣Dkv

∣∣ =
∑

|β|=k

∣∣Dβv
∣∣, (β is a multi-

index.) Given a setG ⊆ Q and a numberα ∈ (0, 1), we define the seminorms and norms:|u|(0)G =
supG |u|,

{u}(α)
G = sup

G, ξ 6=η

{
dα

ξ,η

|u(ξ, t)− u(η, t)|
|ξ − η|α

}
+ sup

G, t6=τ

{
dα/2 |u(ξ, t)− u(ξ, τ)|

|t− τ |α/2

}
,〈

u
〉
0,G

= |u|(0)G + {u}(α)
G ,

〈
u
〉
1,G

= |u|(0)G + |Du|(0)G + {Du}(α)
G ,

〈
u
〉
2k+1,G

=

=
k∑

2r+|β|=0

∣∣Dr
tD

βu
∣∣(0)
G

+
2k+1∑

2r+|β|=k+1

∣∣∣d|β|−k+rDr
tD

βu
∣∣∣(0)
G

+
∑

2r+|β|=2k+1

{dk+1Dr
tD

βu}(α)
G .

Let P0 ∈ C1(ω), P0 = 0 on ∂ω, and |∇P0| + P0 ≥ κ > 0 in ω. Then the(n − 1)-dimensional
manifold∂ω can be parametrized as follows: 1) given an arbitrary pointξ0 ∈ ∂ω we may introduce a local
coordinates inRn with the originξ0 so that the axisξn coincides with the inner normal to∂ω atξ0; 2) there
existsρ > 0 such that for everyξ0 ∈ ∂ω the setBρ(ξ0) ∩ ∂ω is defined by the formulasξi = yi if i 6= n,
yn = P0(y′, ξn), y′ = (y1, . . . , yn−1) ∈ Bρ(ξ0) ∩ {ξn = 0}. We setωρ = ω \ ∪ξ0∈∂ωBρ(ξ0), denote
D = Bρ(ξ0)× (0, T ], and define

‖u‖W2k+1(D) =
〈
u
〉
2k+1,D

+
∑

0≤2r+|β|≤k−1

∑
i 6=N

∣∣∣d−α/2Dr
tDξi

(
Dβu

)∣∣∣(0)
D

+
∑

0≤2r+|β|≤k−2

∑
i,j 6=N

∣∣∣d−αDr
tD

2
ξiξj

(
Dβu

)∣∣∣(0)
D

+
∑

k≤2r+|β|≤2k

∑
i 6=N

∣∣∣d−α/2+r+|β|−k+1Dr
tDξi

(
Dβu

)∣∣∣(0)
D

+
∑

k−1≤2r+|β|≤2k−1

∑
i,j 6=N

∣∣∣d−α+r+|β|−k+2Dr
tD

2
ξiξj

(
Dβu

)∣∣∣(0)
D

k ≥ 1.
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The Banach spacesV (k,Q) are defined as completion of the spaceC∞ (Q) in the norms‖u‖V (k,Q) =
supξ0∈∂Ω ‖u‖W (k,Bρ(ξ0)×(0,T )) +‖u‖Hk+α,(k+α)/2(Q\{ωρ×(0,T ]}), where‖ ·‖Hk+α,(k+α)/2 denotes the stan-
dard Ḧolder norm. If a functionw does not depend ont, we consider the functioñw(ξ, t) ≡ w(ξ) with
the dummy variablet and use the notation‖w‖V (2k+1,ω) = ‖w̃‖W (2k+1,Q). The Banach spacesΛi are

defined as completion ofC∞ (Q) with respect to the norms‖u‖Λi
=
∑∞

k=0

1
k!Mk

‖tkDk
t u‖V (i,Q). In

this definitionM is a finite number which will be specified later. The elements ofΛi, viewed as func-
tions of the variablet depending onξ ∈ Ω as a parameter, are real analytic. The norms of the func-
tions defined on the surfaceΣ ⊂ Q are given by‖g‖V (2k,Σ) = inf

{
‖G‖V (2k+1,Q) : (∇G,n)|Σ = g

}
,

‖g‖Λ2k(Σ) = inf
{
‖G‖Λ2k+1 : (∇G,n)|Σ = g

}
.

3. Assumptions and results

Let {
P0, u

m+p−2
0 ∈ V (2k + 1, ω) with somek ≥ 2, α ∈ (0, 1), P0 ∈ C1(ω),

P0 + |∇P0| ≥ κ > 0 in ω, P0 > 0 in ω, P0 = 0 on∂ω.
(10)

Theorem 2 Letn = 1, 2, 3 and conditions(10) be fulfilled. There existsε∗ < 1, M andT ∗ such that for
every‖P0‖V (2k+1,ω) < ε∗ problem(9) has in the cylinderQ with T < T ∗ a unique solution(X,P, π).
The functionP is strictly positive insideω andP = 0 on∂ω. The vectorX(ξ, t) is represented in the form
X = ξ +∇ v + rot s, (X = ξ + vξ if n = 1). The solution(X,P, π) satisfies the estimate

‖π‖Λ2k+1 + ‖v‖Λ2k+3 +
n∑

i=1

‖si‖Λ2k+3 + ‖P‖Λ2k+1 ≤ C
(
‖P0‖V (2k+1,ω) + ‖φ‖Λ2k(Σ)

)
with a finite constantC independent ofX, π, andP .

Theorem 3 Under the conditions of Theorem2, there existsT ∗ such that

1. for everyt ∈ [0, T ∗] mapping

X(ξ, t) = ξ −
∫ t

0

(J−1)∗∇ξ(P − π)(ξ, τ) dτ (11)

is a bijection ofω ontoω(t) and the setX(∂ ω, t) is a (n− 1)-dimensional manifold inRn;

2. the weak solutionu(x, t) of problem(2) is defined by formulas(6) and (11) and is continuous in
Rn × [0, T ∗]; moreover, for everyt ∈ [0, T ∗] we have∂ (suppu(x, t)) = X(∂ ω, t);

3. the setsuppu(x, t) is defined by formula(11), where∇Π|Γ(t) = 0 if m+ p > 2.

Theorem 4 Under the conditions of Theorem2, the functionp(x, t) satisfies conditions(10) in ω(t), and
p−Π ∈ V (2k+3, ω(t)), p, Π ∈ V (2k+1, ω(t)). Moreover, for every fixedξ ∈ ω the functionsx = X(ξ, t),
P (ξ, t) = p(x, t), π(ξ, t) = Π(x, t) are real analytic function of the variablet and‖P‖Λ2k+1 +‖π‖Λ2k+1 ≤
K ‖P0‖V (2k+1,ω).

Remark 1 It is easy to show that the regularity results stated in Theorem4 remain true until the moment
when the surface∂ω(t) changes the topology i.e when∂{supp p(x, t)} ceases to be a(n− 1)-dimensional
manifold and there appears a point of auto-intersection.
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Corollary 1 The Cauchy problem for the porous medium equationut = ∆um withm > 1 can be viewed
as a partial case of problem(1). Passing to the Lagrangian coordinates we arrive at problem(9) with
Π ≡ 0. It follows from Theorems3, 4 that the interface velocity is defined by the Darcy law,v = −∇ p,
and that the inclusionp(x, 0) ∈ V (2k+ 1, ω) implies the inclusionp(x, t) ∈ V (2k+ 3, ω(t)). By iteration
we have that the solutionp(x, t) and its interface are infinitely differentiable with respect to the spatial
variables and analytic int. This recovers recent results of[2, 5].

4. Solution of problem (9). The linear model

Problem (9) is considered as the nonlinear equationF(v, s, P, π) = 0, whereY = ∇ v + rot s. Denote by
G the Fŕechet derivative ofF at the initial statev = 0, rot s = 0, P0, andπ0, whereπ0 is the solution of
the degenerate elliptic problem

div (u0∇π0) + up
0 = 0 in ω, (∇ (π0 + P0),n)|Σ∩{t=0} = 0, π = 0 onΓ ∩ {t = 0}. (12)

The solution of the equationF(v, s, P, π) = 0 is obtained as the limit of the sequence of solutions of

the linear problemsxn+1 = xn − G−1
〈
F(xn)

〉
, n = 0, 1, 2, . . ., with xn = (vn, sn, Pn, πn), x0 =

(0, 0, P0, π0) (the modified Newton method). Construction of the operatorG−1 reduces to solving the
following problem: given the functionsΦ, Ψ,H, one has to find a solution(Y, P, π), Y = ∇ v + rot s, of
the linear system

{
Yt +∇ (P − π) = Φ, P + (m− 1)P0 div Y = Ψ in Q,

div (u0∇π − u0 D(v) · ∇π0) + (1− p)up
0∆ v = H in Q, [D(v)]ij = 2D2

ξiξj
v,

(13)

under the initial and boundary conditionsY (ξ, 0) = 0, P (ξ, 0) = 0, π(ξ, 0) = π0 in ω, P = 0, π = 0 onΓ,
Y = 0, u0 [(∇π,n) + P/((m− 1)P0)(∇π0,n)] = ψ (m/m− 1)1/(m−1) on Σ. Separating the potential
and divergence-free parts of the prescribed vectorΦ = ∇ f+rotσ we may split problem (13) into separate
problems for definingv, π, P , ands. The vectors is found from the first equation in (13) by integration in
t, P is defined from the second equation in (13). The scalar functionsv andπ are defined as the solutions
of the parabolic and elliptic equations, coupled in the right-hand sides:

vt − (m− 1)P0∆ v = π + f −Ψ in Q, (∇ v,n) = 0 onΣ, v = 0 onΓ and fort = 0,
div (u0∇π) = div (u0 D(v) · ∇π0) + (p− 1)up

0∆ v +H in ω,

u0 [(∇π, ∂n)− (∆ v −Ψ/((m− 1)P0)) (∇π0, ∂n)]|Σ = ψ, π = 0 onΓ, π = π0 for t = 0.
(14)

Existence of a solution to the linear parabolic-elliptic system (14) is proved by application of the Contraction
Mapping Principle. To this end, we separately study the degenerate elliptic and parabolic problems:

(1)

{
div (u0∇π) = h in ω,

π = 0 onΓ, (∇π,n) = g onΣ,
(2)

{
vt − (m− 1)P0∆ v = F in Q,

(∇ v,n) = 0 onΣ, v = 0 onΓ, v(ξ, 0) = 0.
(15)

Lemma 1 1) Let um−2
0 h ∈ Λ2k+1, g ∈ Λ2k,Σ with k ≥ 1. Then problem(15)1 has a unique classical

solution that satisfies the estimate‖π‖Λ2k+1 ≤ K (1 + ‖P0‖)
(
‖w‖+ ‖g‖+

∥∥um−2
0 h

∥∥).
2) If F ∈ Λ2k+1 with a sufficiently large constantM andP0 ∈ V (2k+ 1, ω) with k ≥ 1, then problem

(15)2 has a unique classical solutionv satisfying the estimate‖v‖Λ2k+3 ≤ L‖F‖Λ2k+1 .
3) Letm + p ≥ 2 andP0, f, u

p−1
0 Ψ, um−2

0 H ∈ Λ2k+1, ψ ∈ Λ2k,Σ with k ≥ 2. Then there exists
T > 0 such that for everyT ∈ (0, T ) problem(14) has a unique solution(v, π) ∈ Λ2k+3 × Λ2k+1.
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Once problem (9) is solved, the regularity of the solution to problem (2) easily follows provided that
the bijectivity of the mappingω 7→ ω(t) is established. In the one-dimensional case, the last condition is a
byproduct of the second equation in (9) (the functionX(ξ, t) is bounded and monotone inξ). The situation
is not that simple in the multidimensional case where the topology of the setω(t) may change with time. To
establish bijectivity of the mappingω 7→ ω(t) amounts to proving thatX(∂ ω, t) = ∂ ω(t) for everyt > 0.
The inclusionX(∂ ω, t) ⊂ ∂ ω(t) follows from the second equation in (9). To prove the inverse inclusion
we take two arbitrary pointsξ, η ∈ ∂ ω, ξ 6= η, the pointξ0 ∈ Rn such that|η − ξ0| = 1 andcos (ξ −

η, η− ξ0) = 0. We consider the functioncos (X(ξ, t)−X(η, t), X(η, t)) =
(X(ξ, t)−X(η, t), X(η, t))
|X(ξ, t)−X(η, t)||X(η, t)|

.

Using representation (11) and the estimates on the solution(v, π) of the problem posed in Lagrangian
coordinates we check that there existsT ∗, independent of the choice ofξ andη, such thatcos (X(ξ, t) −
X(η, t), X(η, t)) < 1/2 for t < T ∗, which means that the particles initially located at the pointsξ andη
do not belong to the same ray and, thus, their trajectories cannot hit one another within the time interval
[0, T ∗].
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