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Interfaces in solutions of diffusion-absorption equations

S. Shmarev

Abstract. We study the properties of interfaces in solutions of the Cauchy problem for the nonlinear
degenerate parabolic equation = Au™ — «” in R™ x (0, 7] with the parameters. > 1, p > 0
satisfying the conditiomn + p > 2. We show that the velocity of the interfat¥t) = 9{supp u(z,t)}

wherell is the solution of the degenerate
r'(t)
elliptic equationdiv (uV II) + u? = 0, II = 0 onT'(¢). We give explicit formulas which represent the
interfacel'(¢) as a bijection fronT’(0). It is proved that the solution and its interfacd’(¢) are analytic
functions of timet and that they preserve the initial regularity in the spatial variables.

is given by the formular = —%Vum* n VH}

Interfaces en soluciones de las ecuaciones de absorci on-difusi 6n

Resumen. Se estudian las propiedades de las interfaces de las soluciones del problema de Cauchy
para ecuaciones par@iras no lineales degeneradas= Au™ — «” enR™ x (0,7] con paémetros
m > 1, p > 0 que satisfagan la cond@ m + p > 2. Se demuestra que la velocidad de la interface

S v L I v H} , dondell es

m—1 It

la solucbn de la ecuabin elptica degeneraddiv (uV II) + u? = 0, II = 0 sobrel“(gt)). Se deducen
las formulas que representan dgjiamente la interfacE(¢) como una biyedn del’(0). Se demuestra
que la soludn v y su interfacel'(¢) son andticas como funciones del tiempgoy que conservan la
regularidad inicial respecto de las variables espaciales.

I'(t) = d{suppu(z,t)} viene dada por ladrmulav =

1. Lagrangian coordinates

We study the Cauchy problem
up =Au™ —u? inS=R"x(0,T), u(x,0) = up(x) >0 in R™ (1)

with the parameters: > 1, p > 0 subject to the conditiom + p > 2. Itis known that in the casexs > 1,
p € (0, 1) the initially compact support can split into several components and that the solution vanishes in a
finite time. We refer to [1, Ch.3] for the background information on the behavior of interfaces in solutions
of problem (1).

We are concerned with the study of the interface dynamics and regularity. In the one-dimensional case,
the study of the interface regularity was performed in [3, 4] but the method proposed and developed in these
papers does not directly apply to the multidimensional case.
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Let u(x,t) be a continuous solution of problem (1) aAdt) = {z € R™ : u(x,t) > 0}. For the sake
of presentation we assume that the(3@1) is one-connected iR"™, which means that the solution only has
the outer interface. Our arguments extend without any change to the case whero1e(6¢} consists of
a finite number of simple-connected components.

Since2(0) is one-connected iR™ and the solution is continuoug(t) is also one-connected fore
(0,T4) with someT,.. The solutionu(z, t) is strictly positive inside J, , 1, ; €2(¢), which allows us to
take a seD C (0) with the smooth boundary such thatD x (0, 7] C U,e (7, €2(t) andu = 6 on
¥ = x [0, T4] with somes > 0. Adopt the notatiorD = R™ \ D, w(t) = Q(t) \ D, w = w(0). The weak
solution to the Cauchy problem (1) solves the initial-and-boundary value problem

u=Au" —uPinE=Dx(0,Ty], u(z,0)=uoinD, (Vu" n)ly=d¢x,t) 2

with a prescribed functiom; n denotes the unit vector of outer normalXo Notice that since the solution
u of the Cauchy problem (1) is smooth inside its support, we khageC > (X).

Definition 1~ A functionu(z, t) is said to be a weak solution of proble(®) if v is bounded, nonnegative
and continuous irE, Vu™ € Ly(E), and for every test-function € C* (E), vanishing fort = T and
all x large enough

/ (uny = Vn-Vu™ —nuP) dmdt—i—/
E

uon(x,O)dx+/77¢dS:0. 3)
D )

Let us consider the following auxiliary mechanical problem: the flow of the politropic gas with density
u, pressure = m/(m — 1)u™~*, and velocityv through the porous medium that occupies the redion
It is assumed that the surfa&kis immobile and that the total mass of the gas is constant. We will describe
the gas flow usind.agrangian coordinate$6]. In this description all characteristics of the motion are
considered as functions of the initial positions of the particles and timeet us denote byX (¢, t) the
position of the particle that initially occupied the positiore w, and byU (¢, t) the density at this particle.
The flow is described by the following relations:

X:(&,t) = v[X (& 1),t] INnQ=wx(0,T], T<T,, (equation ofthe trajectories) 4)
U det [0X /O€] = ug inQ (the mass conservation law)  (5)

These equations are endowed with the initial and boundary conditi§iiig;0) = &, U(£,0) = ug(§)
in w (the initial data),v|y, = 0 (the surfacex is immobile),U({,t) = 0 onT' = Jdw x [0, T (the free
boundary). Let us assume that for a prescribed vector<igki, t) € L,(Q) and a given set of the initial
and boundary data we can construct a solufint), U) of problem (4)—(5). This solution generates the
map¢ — z = X (§,t), which we assume to be such thdt = det [0X/0¢] is separated away from zero
and infinity. Consider the function

(e t) = {U(w fore = X(&.1), (1) € Q. -

0 elsewhere

For any test-functiom(z, t) satisfying the conditions of Definition 1 the following equality holds:

T T
7/ n(x,0)ug dx = / a4 / nudx | dt = / / (muw +uVyn - v) dadt. (7)
D o dt \Juw o Jp

Comparing (7) with (3) we see that the functiof, ¢) is a weak solution of problem (2) if
v =-m/(m—1)V,u™" ! + V,II, wherell is a weak solution of the degenerate elliptic problem
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divy (uV,Il) = —u? inw(t), Iy, =0, w(VILn)y=—¢. (8)

Gathering conditions (4)—(5) with (8), and writing the latter in Lagrangian coordinates, we arrive at the the
Lagrangian counterpart of problem (2): itis requested to find a soltfien I+Y, P = m/(m — 1)U™ 1,
andn (¢, t) = II(z, t) of the system of nonlinear equations

{ (I+V*Y)Y,;+V (P—-7)=0, PlJ™'-P,=0 inQ, -

div (uo " (7)) + I =0 inw
under the initial and boundary conditiod ¢, 0) = 0, P(£,0) = Py = m/(m — Lu* ' inw, P = 0,
m=00onT, PY/m=D(V 7 n)=—¢ (m/(m—1)"""Y v t)=00nX.

Theorem 1 Let (Y, P, ) be a solution of problenf9) such thatvV P, V& € Lo(Q) and|J| is separated
away from zero and infinity. If for everye (0, 7] the mapS — I + Y (&, ¢) is a bijection betweew and
w(t), then formula(6) defines a weak solution of problg®). The interface of this solution is given bY).

2. The function spaces

Adopt the notation! = d¢ = dist(¢, dw), de , = min (dg, dy), [D*v| = 37,5, [DPv], (8 is a multi-
index.) Given a set¢ C @ and a numbern € (0,1), we define the seminorms and nomjaig) =
supg |ul,

(W = sup {dgnllt(f,t)—uwt)}+ sup {dmlu(&,t)—u(f,r)l}’

G, £ € —nl> G, t#r |t — 7|/2
0 «@ 0 0 @
<“>0,G = |“|(G) + {“}(G)’ <“>1,G = |u‘(G) + ‘D“|(G) + {D“}(G) ) <u>2k+1,G =
k (0) 2k+1 (0)
= Y Dl + Y [P DiD| v YD {d T DD,
2r+|8|=0 2r+|B|=k-+1 2r+|B|=2k+1

Let Py € C'(w), Py = 0 ondw, and|VP| + Py > £ > 0in ©. Then the(n — 1)-dimensional
manifold dw can be parametrized as follows: 1) given an arbitrary pGirg¢ dw we may introduce a local
coordinates irR™ with the origin&, so that the axig,, coincides with the inner normal tw atéy; 2) there
existsp > 0 such that for every, € dw the setB, (&) N dw is defined by the formulag§ = y; if i # n,
Yn = Po(v, &) ¥ = (Y1, Yn—1) € Bo(&o) N {& = 0}. We setw, = w \ Ug,ecawB,(§o), denote
D = B,(&) x (0,T], and define

(0)
lllwarr ) = (W p+ D D |[42DiDg, (DPu)|
0<2r+|8|<k—1 i#N
(0)
Y X i (D)
0<2r+]|<k—2 1.JZN p
(0)
+ Z Z ‘d*a/2+r+|5|*k+lD:D& (Dﬁu) ’D
E<2r4|8|<2k i#£N
(0)
+ Z Z ‘d_a+r+w|_k+2DtrD§iEj (Dﬁu)‘ E>1.

D
k—1<2r+|B|<2k—1 i,j#N
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The Banach spacés(k, Q) are defined as completion of the sp&c® (Q) in the norms|ul|y (x,0) =
Supgoeaﬂ Hu||W(k,Bp(§0)><(07T)) =+ Hu||Hk+a,(k+a)/2(Q\{wpX(oﬁT]}), Where|| . ||Hk+cy,(k+a)/2 denotes the stan-
dard Hblder norm. If a functionw does not depend oh we consider the functiom(&,t) = w(§) with
the dummy variableé and use the notatiofw||v (2x+1,.) = ||@0|lw2k+1,0)- The Banach spaces; are
defined as completion af> (Q) with respect to the normul[s, = Y7 7 1" Dfullv(i,q)- In

this definition M is a finite number which will be specified later. The elements\prIewed as func-
tions of the variable depending orf € 2 as a parameter, are real analytic. The norms of the func-
tions defined on the surface C @ are given byi|g|lvex,s) = inf {||Gllvar+1.0) 1 (VG,n)ly =g},

||g||A2k(Z) = inf{HG”Aszrl : (V G’ n)‘Z‘ = g}'

3. Assumptions and results

Let

{ Py, ul"t?7% € V(2k 4 1,w) with somek > 2, a € (0,1), Py € C'(@), (10)

P0+|VP0|2m>Oinw, P0>0inw, Py =00no0w.

Theorem 2 Letn = 1,2,3 and conditiong10) be fulfilled. There exists® < 1, M andT™ such that for
every|| Pollv zk+1,w) < € problem(9) has in the cylindeQ with T < 7™ a unique solution( X, P, ).
The functionP is strictly positive insidev and P = 0 on dw. The vectorX (¢, t) is represented in the form
X =6+ Vou+rots, (X =€+ v if n=1). The solution( X, P, 7) satisfies the estimate

||7r||A2k+1 + ”’UHA%-H; + Z HsiHA2k+3 + HPHA21~:+1 <C (||P0||V(2k+1,w) + ||¢||A2k(2))
=1

with a finite constan€ independent ok, 7, and P.

Theorem 3 Under the conditions of Theoretthere existd™* such that

1. for everyt € [0, T*] mapping

X(En=¢- / —m)(E7) dr 1)
is a bijection ofw ontow(t) and the sefX (dw, t) is a (n — 1)-dimensional manifold iR™;

2. the weak solutiom(z, t) of problem(2) is defined by formulast) and (11) and is continuous in
R™ x [0,T*]; moreover, for every € [0, 7*] we have) (supp u(z,t)) = X (0w, t);

3. the setupp u(z, t) is defined by formulél1), where VII|. ) = 0if m +p > 2.

Theorem 4 Under the conditions of Theoretthe functiorp(x, t) satisfies condition§10) in w(t), and
p—II € V(2k+3,w(t)), p, I € V(2k+1,w(t)). Moreover, for every fixe¢l € @ the functions: = X (&, t),
P(&,t) = p(x,t), n(&,t) = I(z, t) are real analytic function of the variableand | P|| a,, , , + [|7[| A5y, <

K ”R)”V(2k+1,w)-

Remark 1 It is easy to show that the regularity results stated in Theareemain true until the moment
when the surfacéw(t) changes the topology i.e whésupp p(x,t)} ceases to be @ — 1)-dimensional
manifold and there appears a point of auto-intersection.
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Corollary 1 The Cauchy problem for the porous medium equatipa- A +™ with m > 1 can be viewed
as a partial case of probleml). Passing to the Lagrangian coordinates we arrive at probi@nwith

IT = 0. It follows from Theorem§, 4 that the interface velocity is defined by the Darcy law= —V p,
and that the inclusiop(z, 0) € V(2k + 1, w) implies the inclusiom(z, t) € V(2k + 3, w(t)). By iteration
we have that the solutiop(xz,¢) and its interface are infinitely differentiable with respect to the spatial
variables and analytic in. This recovers recent results (@ 5.

4. Solution of problem (9). The linear model

Problem (9) is considered as the nonlinear equation, s, P, 7) = 0, whereY = V v + rot s. Denote by
G the Fichet derivative ofF at the initial statey = 0, rots = 0, Py, andng, wherer, is the solution of
the degenerate elliptic problem

diV(UOVWO)+ug:0 inw, (V (7T0+P0),Il)|zﬁ{t:0} =0, ﬂ':OOﬂFﬁ{t:O}. (12)

The solution of the equatiof (v, s, P,7) = 0 is obtained as the limit of the sequence of solutions of
the linear problems;,,. 1 = z, — g—1<f(xn)>, n =0,1,2,..., with z, = (v,sn, Pn,T), To =
(0,0, Py, m) (the modified Newton method). Construction of the opergtot reduces to solving the

following problem: given the function®, ¥, H, one has to find a solutiofY, P, 7), Y = Vv + rot s, of
the linear system

13
div (ugV 7 —ugD(v) - V) + (1 —p)ufAv=H in@, D)= 2D§i§jv, (13)

{ Y,+V (P-m)=®, P+(m-1)PdivY =¥ inQ,
under the initial and boundary conditiori4¢,0) = 0, P(£,0) = 0, w(£,0) = mpinw, P =0,7 =00nT,
Y =0,u[(Vm,n)+ P/((m—1)Py)(Vme,n)] = (m/m— 1)1/(’”’1) on X. Separating the potential
and divergence-free parts of the prescribed ve@ter V f +rot o we may split problem (13) into separate
problems for defining, =, P, ands. The vectos is found from the first equation in (13) by integration in
t, P is defined from the second equation in (13). The scalar functiarsd 7 are defined as the solutions
of the parabolic and elliptic equations, coupled in the right-hand sides:

vp—(m—1)PAv=n+f—-T inQ, (Vo,n)=00nX, v=0onT and fort = 0,
div (uoV ) = div (ug D(v) - Vo) + (p — DubAv+ H  inw, (14)
up [(Vm,0n) — (Av—V/((m —1)P)) (Vm,0n)]|ly, =¢, wm=00nT, m=mfort=0.

Existence of a solution to the linear parabolic-elliptic system (14) is proved by application of the Contraction
Mapping Principle. To this end, we separately study the degenerate elliptic and parabolic problems:

W { div (uoV 71) = hinw, - { v — (m—1)PyAv=FinQ, (15)

m=0onT, (Vm,n)=gonk, (Vu,n)=00n%,v=00nT,v(&0)=0.

Lemmal 1) Letu{)”*Qh € Aoky1, g € A x With & > 1. Then problen(15); has a unique classical
solution that satisfies the estimdte|x,,,, < K (1 + | Bol)) (lw]l + llg]l + ||uf~2A])-

2) If F € Asp4q with a sufficiently large constamt/ and Py € V(2k + 1,w) with & > 1, then problem
(15)2 has a unique classical solutiansatisfying the estimatgy||a,, ., < L||F||a. -

- 3) Letm 4+ p > 2 and P, f,ﬁg—lxy, ugL_ZH € Aopy1, ¥ € Mgy With k£ > 2. Then there exists
T > 0 such that for every” € (0,T") problem(14) has a unique solutiofu, 7) € Agg+s X Aoggy1.
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Once problem (9) is solved, the regularity of the solution to problem (2) easily follows provided that
the bijectivity of the mapping — w(t) is established. In the one-dimensional case, the last condition is a
byproduct of the second equation in (9) (the functio(t, ¢) is bounded and monotone§). The situation
is not that simple in the multidimensional case where the topology of thesetnay change with time. To
establish bijectivity of the mapping — w(¢) amounts to proving thaX (0w, t) = d w(t) for everyt > 0.

The inclusionX (Qw, t) C dw(t) follows from the second equation in (9). To prove the inverse inclusion
we take two arbitrary point§,n € dw, £ # n, the point§, € R"™ such thatn — &| = 1 andcos (§ —

: ; (X(§7t) _X(nvt)’X(nvt))
17,7? &) =0. We -conS|der the funcuom-os (X (1) X(n,t),-X(n,t)) X6, 1)~ X(n, OIX(n.0) .-
Using representation (11) and the estimates on the solgtion) of the problem posed in Lagrangian
coordinates we check that there exigts independent of the choice gfandy, such thatos (X (¢,t) —
X(n,t),X(n,t)) < 1/2fort < T*, which means that the particles initially located at the pojrasdn
do not belong to the same ray and, thus, their trajectories cannot hit one another within the time interval
[0, T*].
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