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Christophe Muller 

 
 

ABSTRACT 
 

 Anti-poverty transfer schemes are one of the main way of fighting 

poverty. Under perfect observation of incomes, designing such scheme boils 

down to solving an optimisation program under constraints, which can be 

achieved with well-defined methods. In contrast, when incomes cannot be 

perfectly observed, the schemes are usually based on predictions of living 

standards using ancillary regressions and household survey data to predict the 

unobserved living standards of households. In this paper, we study the poverty 

minimisation program under imperfect information. We show why using 

predictions of living standards helps to deal approximately with an otherwise 

intractable problem. Then, we propose a new approach to the practical 

optimisation procedure based on improved predictions of living standards in 

terms of the targeting problem to be solved. Our new empirical methodology to 

target direct transfers against poverty is based on observable correlates and on 

estimation methods that can focus on the poor: the quantile regressions. We 

illustrate our results using data from Tunisia. 
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1. Introduction

Anti-poverty transfer schemes (APTS) are one of the main way of fighting

poverty. The aim of such schemes is to minimize poverty under budget and in-

formation constraints by transferring positive monetary amounts to the poor. In

the absence of the observation of the living standards of all households, they are

constructed from predictors of living standards based on ancillary regressions es-

timated from household survey data. These living standard predictors are used to

assess the unobserved living standards of households in the population of interest.

In this paper, we first study the minimisation program of poverty under bud-

get constraint and imperfect information. We show why using predictions of liv-

ing standards helps to deal approximately with an otherwise intractable problem.

Then, we propose a new approach to the practical optimisation procedure based

on improved predictions of living standards in terms of the targeting problem to be

solved. Our new empirical methodology to target direct transfers against poverty

is based on observable correlates and on estimation methods that can focus on the

poor : the quantile regressions.

We illustrate our method by using data from Tunisia, from which we estimate

‘focused’ transfer schemes that improve anti-poverty targeting performances. Post-

transfer poverty can be substantially reduced with the new estimation method.

How to optimize anti-poverty transfers? A theoretical approach to this question

is to solve the minimisation program of poverty under budget constraint. How-

ever, availing oneself of such theoretical framework is insufficient. Indeed, people’s

incomes are generally unobserved. Then, what is needed is a way to implement

the APTS when only limited information is available: (1) complete information
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on living standards and household characteristics for a sample of households ex-

tracted from a household survey, and (2) observations of individual characteristics

for the whole population, while living standards are not observed.

Another related question is: How to assess the consequences of the proposed

targeting scheme on poverty? This involves estimating poverty, or other welfare

criteria, using the household survey data and applying the transfers formula ob-

tained at the previous stage to calculate post-transfer living standards. Thus, in

all cases the method for determining the optimal transfer is crucial.

There is a growing economic literature on empirical implementation of anti-

poverty transfer schemes, which compensates for the absence of related mathe-

matical literature1. In these papers, OLS predictions of incomes and the survey

data are used to derive some numerical solution to the transfer problem, generally

with a quasi-Newton method for solving the first-order conditions of the optimi-

sation problem. In these cases researchers often assimilate the observed sample

to the whole population to simplify the calculus. Thus, the extrapolation issue is

not fully dealt with. Moreover, the obtained targeting efficiency of such transfer

schemes is weaker than desired. In particular, monetary leakages and exclusion

of poor households are important issues, and unpalatable negative transfers may

occur. In these conditions, one could wonder if better methods could not be de-

signed to deal with the anti-poverty targeting problem. The object of this paper

is to expose how such method can be theoretically investigated, and to propose a

better practical solution than the ones currently in force.

Little theoretical investigation of the properties of the associated optimisation

program has been carried out. Besley and Kanbur (1988) study optimal food

subsidies against poverty, characterising the first-order conditions for FGT in-
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dicators with parameter α as implying the equalization of FGT indicators with

parameter α − 1 2. Kanbur et al (1991) deal with the optimisation problem by

implementing numerical simulations, for the case of nonlinear income taxation.

A salient contribution is that of Bourguignon and Fields (1990, 1997), from now

B&F, who determine, under perfection information, the optimal formula to allo-

cate anti-poverty budgets by using positive transfers for FGT poverty indicators.

Chakraborty and Mukherjee (1998) derive the optimal subsidies to the poor as a

function of the density function of incomes and the derivative of the kernel func-

tion of the considered poverty indicators, albeit only under a priori conditions on

the subsidy function.

There are several shortcomings in the theoretical results reached so far. First,

the fact that transfers should be positive must be respected. Indeed, it is much

harder to have people pay than to have them receive money. Nonetheless, many

theoretical results correspond to transfers that are allowed to be negative and the

crucial positivity constraints are omitted. Second, the issue of statistical extrapo-

lation from an observed sample to the global population is not accounted for. We

shall fully treat this aspect. Third, the central issue that only imperfect informa-

tion is available, and notably incomes are generally not observed, is usually not

dealt with in the theoretical literature. What would be needed is an optimisation

program accounting for characteristics that can be observed. Fourth, even under

perfect information, the optimisation programs are generally presented in discrete

form and solved by simple intuitive rules without making explicit the mathemati-

cal features of the problem. Allowing for continuous specifications and using the

calculus of variations, we shall exhibit the fundamental structure of the poverty

minimisation problem under perfect information. Fifth, the link between the theo-
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retical optimisation program and the statistical estimates used for the predictions

of living standards is missing. Sixth, the passage from the optimisation program

under perfect information to the optimisation program under imperfect informa-

tion is missing. Seventh, the choice of stochastic treatment has not been fully

discussed.

We discuss the optimisation problem in Section 2. In Section 3, we present

the theoretical solution under imperfect information. In Section 4, we explain the

chain of statistical treatment for our new method. In Section 5, we discuss a few

illustrative results using Tunisian data. Finally, Section 6 concludes.

2. The Optimisation Problem

2.1. The perfect information case

Most of the poverty indices used in applications are additively decomposable

and can be written in the following form

Z z

0

f(y, z)dµ(y) (1)

where µ is the probability distribution function of real living standards y, and

z is the poverty line. Function f is denoted the ‘kernel function’ of the poverty

index. We consider now the most popular of these indices in applied work3.

The Foster-Greer-Thorbecke (FGT) poverty indices with α, the poverty aver-

sion parameter of the public planner, is defined as

Z z

0

(1− y/z)αdµ(y) (2)
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Foster, Greer and Thorbecke (1984) discuss the economic properties of these

indices. In these formulae, the kernel function, indicated by (1− y/z)α, describes

the contribution to aggregate poverty of an household of living standard y for

y < z (poor households).

The Watts’ poverty index (Watts, 1968) is

Z z

0

− ln(y/z) dµ(y) (3)

Let us first consider the case of perfect information where incomes can be ob-

served from the whole population of individuals. In practice, APTS are organised

around households rather than around individuals. Also, living standard variables

are used instead of income variables. This enables researchers to account on the

one hand for differences in household composition, and on the other hand for the

heterogeneity of individual and environment characteristics (through price indices

for example). It is easy to translate all the methods and results of this paper to

the case of households and living standards instead of individuals and incomes.

However, to simplify the notations, we present most of them only for individu-

als and incomes. A theoretical APTS program based on transfers under perfect

information can be written as follows

min
t(.,.)

Z z

0

P (z, y + t(z, y)) dFy+t(y + t(z, y))

subject to :
Z +∞

0

t(z, y)dF̈ (y) = B (4)

and t(z, y) ≥ 0 for all y and z,
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where P is the kernel function of the poverty index, y is the income variable,

y+ t(z, y) is the post-transfer income of which cumulative density function (cdf) is

Fy+t(y), z is the poverty line. Function t(z, y) is the transfer function that defines

the value of the monetary transfer to an individual of income y when the poverty

line is z. B is the available budget for the APTS.

In the economic literature, this type of problem has been studied with the

FGT poverty measures and a finite population of n individuals. In this case the

optimisation program is discrete and can be written as follows.

min
{ti}

nX
i=1

½
z − yi − ti

z

¾α

1[yi+ti<z]

subject to:
nX
i=1

ti = B and ti ≥ 0 for all i,

where index i is the index of the individual and 1[yi+ti<z] is the dummy variable

defining the poor after transfer.

In this framework, B&F show that perfect targeting minimizing the headcount

index (FGT index with α = 0) would award transfers so as to lift the richest of

the poor out of poverty (‘r-type transfer’): ti = z − yi if yi < z, ti = 0 otherwise,

ranking the individuals to be served from the richest poor to the poorest poor that

can be served with the available budget. In contrast, if the aim is to minimize a

FGT poverty index with α > 1, it is optimal to allocate the anti-poverty budget to

the poorest of the poor (‘p-type transfer’). A mathematical proof of these results

can be obtained by considering the right-hand-side derivative of the objective

function with respect to a small positive transfer to an individual i, and noting for

which income this right-hand-side derivative is the more negative. In that case,
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the APTS would be: ti = ymax − yi if yi < ymax; t
i = 0 otherwise, including the

individuals from the poorest poor to the richest poor, where ymax is the highest

cut-off income allowed by the budget. As the anti-poverty budget rises, ymax

increases up to the poverty line, z, and perfect targeting would permit to lift all

the poor out of poverty if enough funding is available.

Analysing closely what supports the results of the r-type and p-type transfer

characterisations in B&F reveals that they are based on: (1) first-order conditions

that are intuitive in the discrete case, and (2) the cumulative total of transfers

to such a level so as to exhaust the available budget. We now translate these

intuitions in the continuous case by using the calculus of variations, starting from

Euler equations, and we extend them to any objective function that can be written

as an integral over the income distribution as in eq. (4). The domains of concavity-

convexity of the kernel function and its slopes will guide the re-ranking of incomes

in order to sequentially implement the transfers. The sequential treatment of

transfers will allow us to avoid the issue of the positivity constraints for transfers.

Differentiating the Euler equations is the key to the interpretation. Indeed,

looking at what happens marginally to the Euler equations informs us about what

the individual to serve first is if one additional currency unit is available. Mean-

while, it is necessary to check when the sum of transfers hits the budget constraint

and to stop the transfers at this stage. To simplify the presentation we assume that

the considered distributions are continuous with a well defined density function,

implying that Riemann integrals can be employed instead of Lebesgue integrals.

We therefore place ourselves in the typical context of the calculus of variations.

Let us forget about z and instead consider a general objective function under

the form of a Riemann integral:
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bZ
a

k(y)dF (y),

where a is the lower bound of integration, b is the upper bound, k is a derivable

kernel function and F is the cdf of the living standards y. The optimisation

program is

max
t(y)

−
bZ
a

k(y + t(y))dF (y)

subject to:

bZ
a

t(y)dF (y) = B and t(y) ≥ 0, for all y,

Assume that the transfer function is continuously differentiable. The corre-

sponding Euler necessary condition can be calculated. A convexity condition in-

volving on the kernel function and function t(.) can make the Euler conditions

sufficient.

Typically, kernel function k is differentiable in the classical calculus of varia-

tions, which implies that it must be continuous. In the case of a poverty index, the

kernel is the product of a function P (y, z) and the dummy for the poor 1[y+t(y)<z].

Although, the latter dummy variable is likely to introduce discontinuities in the

kernel function (perhaps far from y = z because of the presence of t(y)), this is not

necessarily the case if P is continuous at y = z (often P (z, z) = 0 for usual poverty

indices) and if the transfer function satisfies regularity properties (as t(z) = 0 and

t(y) continuously monotonous for example). If t(y) is not monotonous, it may be

possible to examine separately the intervals where it is increasing or decreasing.
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In these simple cases the usual results of the calculus of variations apply and we

discuss them now. In order to incorporate the budget constraint in the objective

function, we use the following change in variables:

Let y be the ‘control variable’, and x(y) ≡ R y
a
t(u)dF (u) be the ‘state variable’,

i.e. the budget spend for individuals of income below the level y. Then, x(a) = 0

and x(b) = B. By derivation we obtain ẋ(y) ≡ t(y). The optimisation program

becomes

max
{x(y)}

−
bZ
a

k(y + ẋ)dF (y)

subject to x(a) = 0 and x(b) = B and ẋ ≥ 0.

The necessary Euler conditions are therefore, forgetting for the moment the

positivity constraint: x(a) = 0, x(b) = B and −kx = d(kẋ)
dt .

Since the kernel function does not depend on x, the later equation can be

rewritten as kẋ = c a constant, that is k0(y + ẋ) = k0(y + t(y)) = c.

A condition of convexity or strict-convexity (for strict optimum) of k is all that

is needed to ensure that the Euler conditions are necessary and sufficient (since

the argument of k is y + ẋ).

When instead a discrete optimisation program is considered (as in B&F), with a

finite population perfectly observed, the problem can be dealt with Kuhn-Tucker

conditions and marginal transfers small enough to avoid re-ranking of incomes.

This is not true in the continuous case of which distribution modelling suggests
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that the researcher already approximates the true distribution, i.e. that something

is not perfectly known in the problem. In a sense this can be considered as a first

step in the direction of imperfect information problems.

Let us look at the Euler equation when there are only two individuals i = 1, 2.

We obtain: k0(y1 + t(y1)) = k0(y2 + t(y2)). All the issues are concentrated in this

simple equation. This is the shape of function k that allows us to deduce the

priority ranking for serving individuals, and this ranking is the inverse of that the

k0(y).

The rule to adopt is therefore the following:

(1) One ranks the k0(yi), for observed yi, i = 1, . . . , n;

(2) One identifies the individual i, with income yi corresponding to the highest

k0(yi), and the following individual j corresponding to the next highest k0(yj);

(3) One transfers positive amounts of money t(yi) and t(yj), respectively to

individuals i and j, so that yi + t(yi) = yj + t(yj). The transfer can start with

an amount yj − yi given to individual i (the first to be served, with the lower

income), and then continue by adding marginal monetary transfers until reaching

yi + t(yi) = yj + t(yj);

(4) the procedure can go on in this fashion, sweeping all the individuals until

reaching an individual of income level equal to or just below the poverty line,

or until the whole budget has been spend. For objective functions that are not

poverty indices, the whole population of individuals can be served if there is enough

funding.

For FGT poverty indices with α > 1, when the k function is convex (α > 1), and

therefore the above algorithm is based on the Euler equation, which is sufficient in

this case. This is the most relevant case for economists as it gives more importance
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to the poorest of the poor. The ‘p-type’ rule is applied to the case of the head-count

index (FGT index with α = 0). In that case, ‘p-type’ transfers just express that it

is least costly to start transferring from the poorest of the poor and sweeping up

the income distribution, if the aim is merely to reduce the number of the poor.

For the economically most interesting cases (k convex), the above algorithm

depends on Euler conditions, including the budget condition. No negative transfer

is necessary and the condition of positive transfers is never binding under perfect

targeting. We shall show how to implement a similar procedure under imperfect

targeting and even with X multivariate.

2.1.1. The imperfect information case

Unfortunately, perfect targeting is not feasible because incomes cannot be per-

fectly observed. Nevertheless, since the household living standard is correlated

with some observable characteristics, it is possible, as in Glewwe (1992), to think

about minimizing an expected poverty measure subject to the available budget

for transfers and conditioning on these characteristics. In practice, the approach

followed in the literature falls short from such a lofty ambition. Practitioners, in-

cluding Glewwe, design the APTS by merely replacing unobserved living standards

with OLS predictions based on observed variables and working with the observed

sample as if it was the global population. We shall refine this approach.

Under perfect information, the social planner needs to use observed charac-

teristics X rather than unobserved incomes y to implement the transfers. We

therefore consider the following optimisation program.

min
{t(X)}

Z +∞

−∞

Z +∞

−∞
P (z, y + t(X)) dF (y,X)
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subject to :
Z +∞

0

t(X)dFX(X) = B

and t(X) ≥ 0, for all X,

where y is the individual income, X is the vector of individual characteristics

used in the APTS. P is the kernel function of the objective function, perhaps a

poverty index depending on a poverty line z. Function t(X) defines the value of the

monetary transfer to an individual of characteristics X. To simplify the notations

we eliminate the dependence of this function with z. Typically, the transfers do

not directly depend on individual’s statements about their income y become such

statements are believed to be totally unreliable. Thus, y+t(X) is the post-transfer

income. The expectation in the objective to minimise is over the joint distribution

of y and X, of which cdf is denoted F (y,X). The marginal pdf of characteristics

X is denoted FX . Three simple but important changes have been performed from

the optimisation program characterising perfect targeting: (1) the introduction of

correlates X; (2) the incorporation of the poverty line in the kernel function P

instead of as an argument of an integral (case b = z); (3) the use of the joint cdf

of y and X instead of the cdf of y or that of y + t(y).

3. The Theoretical Solution under Imperfect Targeting

3.1. The general situation

The previous optimisation problem under imperfect targeting can be trans-

formed by using a change in variable so as to integrate the budget constraint in

the objective function. Then, the necessary Euler conditions can be derived. They
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lead to integral equations that are implicit in t(X). At this stage several difficulties

need to be tackled. First, the transfers must be positive, which potentially implies

a large number of inequality constraints in the optimisation program. Second, if

several characteristics are used to define vector X, the Euler equations are multidi-

mensional and may be numerically intractable. Finally, to be practically useful the

theoretical solution must correspond to a convenient statistical estimation method.

To simplify the notations we dealt with the case where the X is unidimensional

and take values from 0 to +∞, as well as y. We start from

max
{t(X)}

Z +∞

0

Z +∞

0

−P (z, y + t(X))1[y+t(X)<z]dF (y,X)

subject toZ +∞

0

t(X)dFX(X) = B and t(X) ≥ 0,∀X.

We now change the variables in order: (1) to adopt the usual notations of the

calculus of variations, and (2) to integrate the budget constraint in the objective

function. Let v ≡ X be the ‘control variable’, which is the characteristic used to

assess the income level, and x(v) ≡ R v
0
t(u)dFX(u) be the ‘state variable’, here the

budget spend for individuals such that the control variable is below the level X.

This yields the derivative ẋ(v) = t(v)[= t(X), the transfer function with the initial

notations].

By conditioning on the control variable, we can define the kernel function in

the integral of the objective function as

f0(x, ẋ, v) ≡ R +∞
0
−P (z, y + ẋ)1[y+ẋ<z]fy|v(y|v)dy.fv(v)

=
R z−ẋ
0
−P (z, y + ẋ)dFy|v(y|v).fv(v),
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where Fy|v (respectively fy|v) is the cdf (respectively density) of y conditioning

on v, and fv is the density of v, assuming the density functions exist and are well

defined.

Conditioning on income correlate X is also interesting in that it naturally

introduces the general notion of regression of y on X, embodied in the conditional

density Fy|X . In economic applications, characteristicsX are bounded (with upper

bound X̄), and we denote the corresponding upper bound for v as v̄.

Then, the optimisation problem can be rewritten as

max
{x(.)}

Z v̄

0

f0(x, ẋ, v)dv (5)

subject to x(0) = 0 and x(+∞) = B (the transfer budget constraint)

and ẋ(v) ≥ 0,∀v (the transfer positivity constraint)

Therefore, the poverty minimising problem can be put in the form of a problem

of calculus of variations. In favourable situations, a typical necessary condition is

the Euler condition, which is f0x(x, ẋ, v) =
d[f0ẋ(x(v),ẋ(v),v)]

dv , for all v ∈ [0, v̄]. In our
case, f0 does not depend on x, and the Euler condition simplifies to

f0ẋ = c

where c is a constant.

Several difficulties are to be considered at this stage to be able to obtain this

Euler condition and use it for applied work. First, f0 has to be differentiable with

respect to ẋ. Second, in practice correlates X should be multivariate, which leads

to a system of Euler equations to solve. Third, the distribution is assumed to

be described by a well defined pdf fv(v), which does not cancel on the interval
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of interest, for future convenient discussion of the integration calculus. This may

be an issue when some characteristics X are discrete. Fourth, how to deal with

positivity constraints is not obvious. Potentially, the latter issue could correspond

to a NP-hard optimisation program if the positivity does not straightforwardly

result from the considered functional forms. We avoid these difficulties, assuming

them away, to simplify the presentation of the issues and focus on the core of

the economic problem at hand. We shall deal later with the issue of positivity

constraints.

Reverting to our initial notations, the set of equations to solve are as follows,

assuming that we are in the case where P (z, z) = 0, an usual situation for the

poverty indices used in practice:

Z z−t(X)

0

∂P (z, y + t(X))

∂y
fy|X(y)dy = −c/fX(X)

Z X̄

0

t(X)dFX(X) = B and t(X) ≥ 0,∀X.

In general these equations in t(X) can only be solved numerically, sometimes

with a lot of difficulty, notably if one wants to extend to cases where X is mul-

tivariate. In the multivariate case, the first equation corresponds to a gradient

vector of dimension the number of considered income correlates, and the second

equation incorporates a multivariate integral. We therefore turn to a practical

approach involving a sequence of statistical estimations.
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4. The Chain of Statistical Treatment

4.1. The practical approach based on predictions of incomes

Typically in the applied programs, the transfers are based on ‘proxy-means

tests’ that are supposed to identify the poor by some observable characteristics

such as geographical location, household size, type of accommodation. Such proxy-

means tests are generally calculated by running OLS (Ordinary Least-Squares)

regressions of living standards based on the household survey data in order to

investigate the household characteristics correlated with poverty. A prediction of

the household living standard is then obtained, based on the regressions, that can

be compared with a poverty line to assess how poor the considered household is.

Then, some assistance would be delivered to households identified as poor and

not to others. However, this empirical approach has always lacked clear theoret-

ical basis. We propose a practical approach to link means tests to the poverty

minimisation problem.

The optimisation program used to define the empirical transfers corresponds

to using the predictions ŷ as if they were the actual incomes and apply the above

optimisation procedure to derive the transfers t(ŷ). Thus, we obtain a simple rule

to calculate the transfers. Moreover, using ŷ instead of X in the definition of

transfers helps us to deal easily with the use of multidimensional X and to avoid

multivariate Euler equations. These reasons that we elicit justify the use of proxy-

means tests as part of an approximate optimisation technique.

In this framework, the algorithm used for perfect targeting can be employed as

well with imperfect targeting and multivariate X, provided the living standards

y are replaced in the algorithm by predictions ŷ. Hopefully, if the predictions
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are accurate enough, the result of the algorithm should be close to the optimal

solution.

If P is the kernel function of a poverty index, incorporating the dummy func-

tion of the post-transfer poor (1[y+t(X)<z]), the criterion to minimise under im-

perfect information, where the y have been replaced by their predictors ŷ plus

the corresponding transfer can be considered as defining a post-transfer poverty

estimator, EempP (ŷ+t(y)), based on an observed sample of individuals with Eemp

the empirical expectation operator.

In a second step, in order to estimate the impact of the transfers on poverty, the

transfers t(ŷ) are applied to a sample of individuals characterised by the observed

incomes y (rather than using the predictions ŷ for approximating their income).

In another practical approach adopted in some empirical papers, the positivity

of transfers is not imposed a priori. What is done is just calculating the optimal

transfers according to a rule and truncating them to zero to eliminate the possibly

negative transfers. This is not valid since the allocated budget is overcome in that

case. Else, one should explain where do come from the additional resources, or

which poor households are not served to meet the budget. In contrast, when the

above sequential allocation method is applied based on predictors ŷ, all transfers

are automatically positive or null.

We now discuss the sequence of calculus carried out in the case of an APTS

for Tunisia. We discuss the data in Section 5.

4.2. The chain

The chain of treatment applied in the case of Tunisia has four stages:
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1. Calculus of living standard indicators:

The living standard indicators are calculated and denoted yi for household i

in the surveyed sample, i = 1, ..., n4. In this paper, we use the per capita nomi-

nal total consumption value as our living standard indicator for each household’s

member.

2. Estimation of the predictions of the living standards: ŷi.

Using the survey data, we replace the observed incomes yi by statistical pre-

dictions based on correlates Xi for the same individual i. Typically OLS are used

to generate the predictions. In contrast, we shall also use quantile regressions.

One important ingredient of the practical calculus of the optimal transfer so-

lution is the choice of the statistical prediction method for living standards. The

most popular method is that of the Ordinary Least-Squares (OLS) applied to an

equation where the living standard variable is a linear combination of correlates.

The predictor of living standards is searched in the linear form Xi0β with Xi a

vector of correlates for given surveyed household i. This functional form is an

additional approximation, although it is little restrictive since polynomials of cor-

relates can be generated. The equation to estimate is therefore yi = Xi0β + ui,

where ui is a stochastic error term assumed of null expectation, which is ensured

by entering a constant term in Xi. The variance of ui is assumed to be finite.

In practice, most of the prediction inaccuracy comes from the unobservable error

term ui. We obtain the following optimisation program that delivers the OLS

estimator.

min
β

nX
i=1

¡
yi −Xi0β

¢2
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Its solution is easy to calculate: β̂ = (X 0X)−1X 0Y , where X is the matrix

composed of the Xi0 as vectors line, and Y is the vector of which coordinates are

the yi. One problem with the OLS method is that it is likely to predict well the

mean living standards (because E(ŷ|X) = E(Xβ̂|X) = ȳ, the population mean of

the living standards), but not necessarily the living standards of the poor, nor the

living standards of the households close to the poverty line.

Our approach is to use instead quantile regressions for generating the predic-

tions of the living standards. Such method, centered on a given quantile θ ∈]0, 1[
ensures that the conditional expectation of the θth quantile of the predictor is Xβ

(E(qθ(ŷ|X)) = Xβ, where qθ(.|X) is the conditional quantile function centered on
the θth quantile. The predictions of living standards around the θth quantile of

living standards should be better determined than with OLS. To be able to predict

well the living standards of the poor or the near poor, a good choice of parameter

θ seems therefore such that the θth quantile of y is close to the poverty line. In

that way, the targeting scheme can be said to ‘focus on the poor’.

Quantile regression estimates can be obtained as solutions to the following

optimisation program.

min
β

nX
i=1

¡
yi −Xi0β

¢ £
θ − 1[yi−Xi0β<0]

¤
(6)

where θ ∈]0, 1[ is the quantile on which the quantile regression is centered. The
numerical solution is obtained by solving a linear programming problem, using the

performing algorithms in Barrodale and Robers (1973, 1974). Indeed, the previous

optimisation program has a linear programming representation, which is obtained

by redefining the predicting regression as: yi =
nX
i=1

Xi0 ¡β1 − β2
¢
+ (εi− vi), with
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β1 ≥ 0, β2 ≥ 0, εi ≥ 0, vi ≥ 0 for all i = 1, ..., n:

min
z

c0z subject to Az = y, z ≥ 0, (7)

where A = (X,−X, In,−In), y = (y1, ..., yn)0, z = (β10, β20, u0, v0),
c = (00, 00, θl0, (1 − θ)l0)0, In is a n-dimensional identity matrix. 00 is a K × 1

vector of zeros, and l is an n× 1 vector of ones, K is the number of regressors in

X.

The dual problem of the primal problem (7) is approximately the same as the

first-order-conditions of the quantile regression optimisation program. It is:

max
w

w0y subject to w0A ≤ c0 (8)

given that matrix X is assumed full column rank, the dual and primal problems

have simultaneous feasible solutions.

The numerical solution can be obtained by using simplex iterations after a

finite but possibly substantial number of iterations. However, using the improved

LP algorithm in Barrodale and Robers (1973), the number of simplex iterations

becomes small enough to be useful for typical sample sizes. The algorithm can

start with an initial value based on preliminary OLS estimates where the intercept

estimate is replaced by the [nθ]th order statistics of the OLS estimates.

This method has not only the advantage of predicting well the living standard

around the quantile θ of the living standard distribution, but also to be robust to

outliers. Powell (1983, 1986) and Buchinsky and Hahn (1998) discuss the proper-

ties of these estimators.
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An interest of focused targeting with living standard predictions based on quan-

tile regressions is that it can be related to the theoretically optimal transfer schemes

under perfect information in which the transfers should be first implemented for

the poorest of the poor, the richest of the poor, or both (Bourguignon and Field,

1997). Since, what need to be accurately determined are the transfers to these

sub-populations, focused predictions for the living standards of the poor and near

poor may produce more efficient transfer schemes than using OLS predictions.

3. Calculus of the transfers: t(ŷi).

To calculate the transfers we solve the following minimisation program of FGT

poverty index based on the sample for which yi and Xi have been jointly observed,

and predictions ŷi have been estimated:

min
{t(ŷi)}

nX
i=1

½
z − ŷi − t(ŷi)

z

¾α

1[ŷi+t(ŷi)<z] (9)

subject to :
nX
i=1

t(ŷi) = B and t(ŷi) ≥ 0 for all i

We use the ‘r-type transfer rule’ for α = 0 and ‘p-type transfer rule’ for α = 1

and α = 2. Thus, we obtain an approximate rule for the transfers as a function of

X. In the case of unidimensional X, this rule could be described as a correlation

curve nonparametrically estimated with the observed sample.

4. Estimation of poverty indicators and targeting efficiency criteria:

The final stage consists of assessing the targeting efficiency of the APTS by

using, for example, the following Horwitz-Thompson estimator of FGT poverty

indicators:
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nX
i=1

Si
πi

½
z − yi − t(ŷi)

z

¾α

1[yi+t(ŷi)<z],

where πi is the inclusion probability of household i in the sample and Si is its

household size. Thus, levels of poverty reached with different APTS based on the

same budget can be estimated and compared. This is our main criterion to judge

of the quality of the poverty minimisation process with the APTS. Other criteria

are also useful. The leakage is the proportion of the budget that could be saved

since it is spend on non-poor households or to lift poor households well above the

poverty line instead of just up to the poverty line. The exclusion is the percentage

of the poor who do not benefit at all from the APTS.

In the next section, we illustrate our theoretical approach by discussing at an

APTS proposed for Tunisia (Muller and Bibi, 2005).

5. Illustration for Tunisian Data

We use data from the 1990 Tunisian consumption survey conducted by the INS

(National Statistical Institute of Tunisia). This household survey provides infor-

mation on expenditures for food and non-food items for 7734 households. Other

usual information from household surveys is available such as about education,

housing, region of residence, demographic information, and economic activities.

We assume that the per capita total consumption expenditure is an adequate

living standard indicator of each household member. The APTS we investigate are

based on the following predictors: OLS predictor with geographical dummies used

as regressors, quantile regression prediction with geographical dummies, OLS pre-

dictor with geographical dummies and information on dwelling and demographic
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characteristics as regressors, quantile regression prediction with geographical dum-

mies and information on dwelling and demographic characteristics. We use quan-

tile regressions centered on the first and the third deciles.

The considered budget is the one in force for the food price subsidies in Tunisia

at the time of the survey, which corresponds to the main anti-poverty policy in

Tunisia. A poverty line of TD 280 per capita per year without subsidies is used,

consistently with The World Bank (1995). We compare the implementation of the

APTS with the main anti-poverty program in Tunisia, which consists of the food

price subsidies.

Table 1 presents estimation results of the APTS for (1) two measures of target-

ing accuracy (leakage and exclusion), and (2) the impacts on poverty. We first look

at the estimation results when only regional dummies are used as correlates (Set

I). The results show that typical targeting schemes based on OLS can improve on

food subsidies in terms of the number of the poor remaining after the implemen-

tation of the program. The percentage of the poor shifts from slightly below 13

percent down to slightly above 10 percent. The transfers based on quantile regres-

sions centered on the third decile provide the best scheme among the considered

options, if the aim is to reduce the number of the poor (reaching 10.24 percent),

while it remains very close to results with OLS (10.73 percent). In contrast, if the

aim is to reduce poverty described by the poverty gap (FGT with α = 1) or the

poverty severity measure (FGT with α = 2) , the scheme leading to the smallest

poverty level is based on quantile regressions centered on the first decile. For ex-

ample, in the case α = 2, this APTS leads to an adjusted poverty level equal to

0.65, much better that the level of 1.26 obtained with price subsidies. Moreover,

leakages and exclusion are smaller with this method too, except for exclusion with
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subsidies that is zero since all households consume subsidized products.

This picture of the APTS efficiency slightly varies when the set of regressors

used in the prediction equations is extended (Set II). By taking advantage of in-

formation on dwelling and demographic characteristics, substantial improvements

can be reached whether in terms of poverty statistics, leakage or exclusion. The

quantile regressions centered on the first quantile remain the best approach for

reducing FGT with α = 2 and exclusion (except for subsidies). For the poverty

severity index, the APTS based on OLS regressions reduces poverty down to 0.39,

while the APTS based on quantile regressions centered at the first decile yields a

lower poverty level of 0.31, a notable improvement. The improvement on exclusion

is still more substantial, passing from 21 percent of excluded poor with OLS, with

only 10 percent with quantile regressions centered at the first decile.

As it happens, these two criteria may often be considered as the most important

ones for poverty specialists. In particular, FGT with α = 2 gives a stronger weight

to the poorest of the poor, a generally admitted requirement for normatively valid

poverty measures. Moreover, exclusion is related to critical political conditions.

Indeed, policies leaving aside a large proportion of the poor are unlikely to be

politically and socially implementable in Tunisia. However, if the aim is merely

to diminish the number of the poor, OLS based transfers would provide better

results, while if the aim is to reduce FGT with α = 1 or leakage, the quantile

regressions centered on the third decile would be preferable.

6. Conclusion

In this paper, we discuss the theoretical difficulties of designing optimal anti-

poverty schemes. We first describe the mathematical bases of the optimisation
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program defining an anti-poverty scheme. Then, we propose an approximative

solution to this problem based on the use of quantile regressions which allow us

to ‘focus’ the estimation of such schemes on the poor and near poor, consistently

with theoretical insight stemming from the poverty minimisation program. An

illustration based on Tunisian data shows the efficiency gain obtained with such

refining of the poverty minimisation procedure.

[Insert Table 1]
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