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ABSTRACT 
 

 This paper looks at the endogenous formation of airline alliances by 

means of a two-stage game where first airlines decide whether to form an 

alliance and then fares are determined. We analyze the profitability and the 

strategic effects of airline alliances when two complementary alliances, 

following different paths, may be formed to serve a certain city-pair market. 

The formation of a complementary alliance is shown to hurt outsiders and that 

fares decrease in the interline market. Contrary to what might be expected, we 

find that complementary alliances are not always profitable, even in the 

presence of economies of traffic density. The interplay between market size, the 

degree of product differentiation and the intensity of economies of traffic 

density determines whether the market equilibrium entails no alliances, a single 

alliance or a double alliance. 

 

JEL classification: L13, L2, L93. 

Keywords:  complementary airline alliances, economies of traffic density, product 
differentiation. 
 



1 Introduction

The air transportation sector has witnessed a number of changes since the deregu-

lation processes of the US industry (in the 1980s) and of the European industry (in

the 1990s). These changes include the substantial decline in the number of major

carriers, the intensified reorganization of routes into hub-and-spoke networks and,

still taking place, the formation of strategic alliances among international carriers.1

In particular, a formal explanation to the rise of international airline alliances seems

to be lacking. The present paper identifies conditions under which airline alliances

are strategically advantageous, examines the effects on carriers outside the alliance

and studies how travel volumes and fares are affected.

Airline alliances are designed to offer passengers a seamless service in order to

minimize some of the inconveniences of interline multi-carrier trips. They allow the

carriers to rely on a partner to provide flight to destinations where they lack route

authority. Cooperation adopts several forms - which in many instances come close

to effective merger - and includes codesharing agreements, the coordination of flight

schedules and the joint use of frequent flyer programs. Collaboration between airlines

can be traced as far back as the 1940s when, for instance, Air France was involved

in setting up the operations of many African airlines, such as Air Afrique, Royal Air

Maroc and Tunisair. The first major multi-partner alliance was that between Delta

Air Lines, Singapore Airlines and Swissair in the early 1990s. At present, almost

every major airline belongs to a big international alliance: Oneworld, Star Alliance,

and The Sky Team.2 The structure of the industry is constantly changing as with the

recent merger (September 2004) between Air France and KLM, and the announced

agreement to merge between America West Airlines and US Airways (May 2005).

Since the major alliances enjoy antitrust immunity, another advantage of an al-

liance is related with cooperative pricing in interline trips. It seems that IATA’s

1See Morrison and Winston (1995) for an overview of developments in the industry.
2The Oneworld Alliance includes British Airways, American Airlines, Iberia, Lan Chile, Aer

Lingus, Qantas, Cathay Pacific and Finnair among others. The most important airlines in the

Star Alliance are Lufthansa, United Airlines, US Airways, Air Canada, All Nippon Airways,

Thai Airways, Singapore Airlines, Air New Zealand, Varig Brasil, SAS, the Austrian Group and

British Midland. Finally, The Sky Team is mainly composed of Air France, Delta Air Lines, KLM,

Northwest, Continental Airlines, Alitalia, Korean Air, CSA and Malaysian Air System.
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(International Air Transport Association) influence over negotiations on interline

fares has declined and there is evidence that, after the deregulation processes both

in the US and in Europe, airline cooperation has pushed fares down whereas travel

volumes have increased.3 In a sense, this is what theory would predict since joint

pricing of complementary flights through a hub airport internalizes the negative ef-

fect of separate pricing. An airline alliance is an agreement within a network which

involves multiproduct competition and, since the airline industry shows evidence of

increasing returns to traffic density, this means that competition transmits across

routes through costs, a feature that becomes particularly relevant in an environ-

ment with strategic interaction. It therefore suggests that antitrust treatment on

this issue should be carefully looked at. Although alliances can be beneficial to firms

and/or consumers (for instance by enhancing efficiency and service quality), they

can as well significantly reduce or eliminate competition on routes where the allied

companies were former competitors. In Europe, competition rules (i.e. Articles 81

and 82 of the EU Treaty) are fully applicable to air transport. Indeed the parties,

in their seeking for authorization, try and offer arguments so that the Commission

gives an individual exemption based on Article 81(3).4 The Commission clears or

prohibits airline mergers on the basis of Merger Regulation 4064/89, amended by

Regulation 1310/97. In the United States, the Department of Transportation (DOT)

had the authority over airline mergers until 1989. Since then, the Antitrust Division

of the Department of Justice reviews airline mergers and acquisitions, although the

DOT retains authority over some matters. Thus, the Antitrust Division has chal-

lenged agreements in violation of section 2 of the Sherman Act and/or section 7 of

the Clayton Act. Overall, there are no clear guidelines but many airline alliances

receive antitrust immunity subject to conditions, which range from the surrender

of take-off and landing slots and the guarantee that partners do not increase fre-

quencies to obstruct entry, to the limitation or the extension in the use of frequent

3Brueckner (2003), using data from the U.S. Department of Transportation’s Passenger Origin-

Destination Survey, concludes that airline alliances lead to lower interline fares. His analysis shows

that, when combined codesharing and antitrust immunity, airline cooperation leads to a reduction

in interline fares between 17% and 30%.
4Article 81(1) prohibits agreements between firms that encompass fixing prices, sharing markets

and so on. However, paragraph 3 allows for an exemption on the application of paragraph 1 if the

proposed agreements satisfy certain requirements such as the promotion of technical progress to

the consumers benefit.
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flyer programs. One way or the other, the partners receive a lenient treatment by

antitrust authorities since they can determine fares for interline trips in a way that

would not otherwise be possible.5 By now, close cooperation between European

and US authorities has been intensified regarding transatlantic alliance cases; with

regard to "open skies" agreements, the EU and the US are relaunching negotiations

to create a common air space.

To illustrate our analysis let us consider the following simple network structure.

Suppose that a passenger wishes to travel from Madrid to Washington. She can fly

via Chicago O’Hare International or via Amsterdam Schiphol. In the former case,

Madrid - Chicago is provided by Iberia (e.g. IB6275) and Chicago - Washington R.

Reagan National is operated by American Airlines (e.g. AA1730). In the latter, the

passenger can fly with KLM/AF from Madrid to Amsterdam (e.g. KL1708) and

then make the trip between Amsterdam and Washington Dulles International with

Northwest (e.g. NW8651). As it turns out, Iberia and American Airlines belong to

the Oneworld alliance. On the other hand, KLM/AF and Northwest are partners in

The Sky Team. Alternatively, a passenger travelling from Frankfurt to Minneapolis

may fly either with Lufthansa (e.g. LH4670) and Northwest (e.g. NW0041) via

Amsterdam Schiphol; or with Delta Airlines (e.g. DL0027) and Airtran Airways

(e.g. FL857) via Atlanta Hartsfield-Jackson.6 As it turns out, these four firms are

independent carriers. We will provide a theoretical explanation to this type of ob-

served phenomena as a result of strategic behavior.

Travellers perceive a composite trip using two or more airlines as a differentiated

product from other substitute composite trips. That differentiation can be explained

by a number of reasons such as brand loyalty, frequent flyer programs, frequency of

services, quality considerations and so on. In addition, there is empirical evidence

5The reader might like to look at "Airline Alliances and Mergers - The Emerging Commis-

sion Policy" (2001) by J. Stragier; the statement by R. Hewitt Pate from the Antitrust Division

concerning "International Aviation Alliances: Market Turmoil and the Future of Airline Compe-

tition" (2001); and the report "Entry and Competition in the US Airline Industry: Issues and

Opportunities" (1999), by the Transportation Research Board.
6The reader can access www.airwise.com and find plenty of examples where a passenger must

change planes on their way to final destination where carriers belong to the same alliance or not;

trips can be made through different hubs.
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that the airline industry, after deregulation, exhibits increasing returns to traffic

density (see Brueckner and Spiller, 1994, and Creel and Farell, 2001). The model

that we propose will consider a network structure to capture competition between

routes through different hubs. It is our purpose to evaluate the role played by market

size, the degree of product differentiation and the intensity of economies of traffic

density as factors that cause strategic airline alliances to show up. We will look at

the endogenous formation of airline alliances by means of a two-stage game where

first airlines simultaneous and independently decide whether to form an alliance

and then, given the inherited outcome of the first stage, fares are simultaneous and

independently determined. Specifically, the aim of our paper is to analyze the prof-

itability and the strategic effects of two complementary alliances, following different

paths, that may be formed to serve a certain city-pair market. We wish to answer

the following questions: when are alliances profitable for the potential partners?,

what are their effects on outsiders?, what is the outsiders’ optimal response? and

how are fares and travel volumes affected?

Our main findings can be summarized as follows. Firstly, the formation of a

complementary alliance is shown to hurt outsiders and that fares will decrease in

the interline market. Secondly, in contrast to what might be expected, the for-

mation of two alliances (double alliance) is not always the equilibrium outcome.

This is a particularly remarkable result because integration of complementary goods

together with the presence of economies of traffic density are elements that favor

the profitability of alliance agreements. Thus, a sufficiently high degree of prod-

uct differentiation is enough to ensure the double alliance equilibrium, regardless of

market size and the size of the economies of traffic density, since the intensity of

competition is weak. At the other extreme, if product differentiation is low enough

then no alliance will occur in equilibrium. This may also occur for small economies

of traffic density when a low enough degree of product differentiation is combined

with high enough market size. Interestingly enough, asymmetric equilibrium with a

single alliance may arise as the degree of product differentiation increases. Broadly

speaking, the single alliance equilibrium shows up for intermediate values of market

size together with economies of traffic density that are not too significant. This

result provides an explanation about why some carriers decide to remain non-allied
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(e.g. Japan Airlines) and in several routes only one alliance offers interline tickets.7

Furthermore, the market equilibrium can be a double alliance and yet the carriers

be better off in a no alliance situation for a sufficiently low degree of product dif-

ferentiation.

The existing literature on airline alliances is sparse. A number of papers have

focused on providing reasons and conditions under which hub-and-spoke networks

are equilibrium structures.8 There only exist a few theoretical contributions on

airline alliances, first initiated by Brueckner and Spiller (1991) who developed a

hub-and-spoke model where an airline is considered as a multiproduct firm with

cost complementarities. These theoretical analyses include Park (1997), Brueckner

(2001), Brueckner and Whalen (2000), Hassin and Shy (2004) and Bilotkach (2005).

The latter three references assume product differentiation although only Brueckner

and Whalen (2000) considers economies of traffic density. It is Park (1997) who

examined the consequences of parallel and complementary alliances on output lev-

els, profits and welfare. Complementary alliances are analyzed by Brueckner and

Whalen (2000) and Brueckner (2001) under different network structures. We will

also address this type of alliances where emphasis is put on the strategic ratio-

nale for alliance formation. Brueckner (2001) considers two airlines to study the

effect of alliances on traffic levels and fares both in the inter-hub and the domes-

tic markets. Hassin and Shy (2004) also examine codesharing agreements among

airlines competing on international routes and show that codesharing including all

carriers is welfare improving. Brueckner and Whalen (2000) contemplate that an

international passenger may normally opt between several carrier pairs when mak-

ing an interline trip. They develop a particular example where aggregate demand

does not vary either with the degree of substitutability or the number of products.

This is a satisfactory property when dealing with more than two firms but there

may be some routes that are better accounted for when total travel volumes are

not fixed. Brueckner and Whalen (2000) consider the no alliance, the symmetric

and the asymmetric alliance situations where domestic markets are operated by two

competing carriers; their focus is on the theoretical and empirical price effects of

7For instance, most of the one-stop routes between Italy and France are only served by The Sky

Team (e.g. the route Rome Fiumicino - Nantes Atlantique).
8See Oum et al. (1995), Berechman et al. (1998), Hendricks et al. (1999), Barla and Constan-

tatos (2000) and Brueckner (2004).
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international airline alliances.9 Our paper is also related with Bilotkach (2005), who

develops a model of price competition among four carriers where two alliances are

possible to examine their effects on fares and travel volumes with assuming constant

returns to scale; unlike Brueckner and Whalen (2000), this author includes routes

between hub airports. Our analysis complements these earlier contributions and

takes a game theoretical approach to examine strategic alliance formation. A com-

plete characterization of the different equilibria is provided in terms of market size,

the degree of product differentiation and the intensity of economies of traffic density.

The paper is structured as follows. Section 2 introduces the model presenting

the pre-alliance equilibrium and the equilibria arising from the situations with a

single and a double alliance, respectively. The effects on fares and travel volumes

are analyzed in Section 3. A simultaneous two-stage game of airline alliances is then

presented in Section 4. A brief concluding section closes the paper.

2 The model

Basic Assumptions

The model’s network structure is shown in Figure 1.

Figure 1: The Network

Airline 1 operates route AH, airline 2 serves route HB, airline 3 provides the

flight AK and airline 4 operates route KB and all of them enjoy monopoly power

9The effect of airline alliances has also been empirically investigated by Oum et al. (1996), Park

and Zhang (1998) and Brueckner (2003), among many others. These studies provide evidence that

international alliances lead to lower fares, increases in the number of passengers on the relevant

routes and that airline cooperation generates important benefits for interline passengers.
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in their respective routes. They face standard linear demand functions qi = α− pi,

where qi represents the travel volume, pi denotes the fare charged by airline i for

i = 1, 2, 3, 4 and α is a positive parameter that measures market size.10 In addition,

there are travellers wishing to fly from city A to city B (interline market) either

through airport H or through airport K. We assume there are no travellers willing

to fly between H and K.11 In this case, travellers must fly by either combining

airlines 1 and 2 or by combining airlines 3 and 4 so that routes AH and HB are

regarded as complementary products (just as routes AK and KB together). How-

ever, the trips through airportH and airportK are viewed by travellers as substitute

trips. There is no direct flight connecting cities A and B so that passengers have to

interline at the hubs H and K. The proposed network structure is the simplest pos-

sible configuration including rivalry between two composite one-stop trips. It aims

at capturing the particular aspect of alliances that enjoy antitrust immunity, where

two different carriers may cooperate to offer interline trips in which passengers need

to travel with both of them. We consider that cooperation is full, which implies that

the alliance will behave as a single carrier in the market for which it is formed at

the eyes of the passengers.

We will assume that demand functions for air travel between cities A and B are

linear as follows,

Q12 = α− (p1 + p2) + d(p3 + p4) (1)

Q34 = α− (p3 + p4) + d(p1 + p2),

where Q12 and Q34 represent the travel volumes on the two interline flights in the

market and d, that ranges between 0 and 1, captures the degree of product differen-

tiation taking value 0 when products are independent and 1 when they are perfectly

homogeneous. This demand system for differentiated products follows from solving
10Note that, for low and medium density routes, the proportion of monopolist city-pair markets

is very important. For the case of the low density routes, this proportion in Europe and the US

accounts for 90% and 77% on short routes and for 79% and 94% on medium-haul routes, respec-

tively. For the case of the medium density routes, this proportion in Europe and the US accounts

for 87% and 86% on short routes and for 35% and 71% on medium-haul routes, respectively. See

the IATA report "Air Transport Markets in Europe and the US, a comparison" (2001).
11In considering an inter-hub demand each carrier would operate in three markets. Then, the

effects of alliances would be more complex because a complementary alliance in an interline market

would have effects in all the three markets for each carrier.
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the optimization problem of a representative passenger with a quasi-linear utility

function a la Dixit (1979)12 and it reflects that composite products are substitutes

for one another up to some extent.13

Brueckner and Whalen (2000) provide an interesting interpretation of this kind

of demand functions in terms of brand loyalty, since an increase in price of one

composite product permits the competitor to "steal" a certain amount of traffic

volume (total travel volume is constant) but both competitors remain in the market.

A and B are assumed equidistant to H and K and a common cost function

C(qi+Qxy) applies to each of the four links in the network where qi+Qxy accounts

for the total traffic volume using a particular link with xy = 12 for i = 1, 2 and

xy = 34 for i = 3, 4. As in Brueckner and Spiller (1991), we assume linear marginal

cost functions of the form:

C 0(qi +Qxy) = 1− θ(qi +Qxy), (2)

that reflect increasing returns to traffic density,14 which is a required assumption in

airline markets.15 The intensity of the economics of traffic density is measured by

12A representative passenger maximizes U(Q12,Q34) = ( α
1−d)(Q12 + Q34) − Q2

12+2dQ12Q34+Q
2
34

2(1−d2) .

This type of utility function has been used by Singh and Vives (1984) and by Economides and Salop

(1992). We are therefore assuming an equal size of the market (α) both for the interline and for the

short markets. A natural extension of the model would be to introduce asymmetric market sizes

by supposing larger short markets. This extension complicates the presentation without offering

any additional insights. Results are qualitatively similar as long as the difference between the two

market sizes remains sufficiently small.
13As in other papers in the literature, we assume that the interline fare is the sum of the fares

for markets AH and BH (or AK and BK). Such an assumption implies that a carrier gives

equal treatment to all passengers on its flight. In contrast, it seems closer to reality to consider

that a carrier sets a fare for passengers stopping at the hub and a "subfare" for those doing the

interline trip, as done by Brueckner and Whalen (2000) and Brueckner (2001). This practice,

which would lead to different constraints on the parameters, entails some degree of coordination

between carriers even under the pre-alliance situation. We keep the former pricing behavior for

analytical reasons and to better capture the move from a purely non-cooperative setting to others

involving cooperation.
14For instance, the cost function corresponding to link AH is: C(q1 + Q12) = (q1 + Q12)(1 −

θ(q1+Q12)
2 ).

15Brueckner et al. (1992) and Park (1997) also use this marginal cost function, suggested by

Brueckner and Spiller (1991), to model economics of traffic density that can be considered as a

stylized fact of the airline industry as showed in the empirical literature on airlines. See for instance

Brueckner and Spiller (1994) or Creel and Farell (2001).
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θ ≥ 0 where constant returns correspond to θ = 0.

The pre-alliance equilibrium

We begin by characterizing the pre-alliance solution. Airlines choose non-cooperatively

their respective profit-maximizing fares. In this situation the fare to travel fromA to

B (either through H or throughK) is just the sum of the fares of the two short mar-

kets (either p1+p2 or p3+p4). The profit functions are πi = pi(qi+Qxy)−C(qi+Qxy)

again with xy = 12 for i = 1, 2 and xy = 34 for i = 3, 4. The system of first order

conditions is given by ∂π1/∂p1 = 0, ∂π2/∂p2 = 0, ∂π3/∂p3 = 0 and ∂π4/∂p4 = 0.

Fulfillment of the second order conditions require that θ < 1. The equilibrium price,

which is symmetric across markets (hence we omit subscripts i and xy), is given by,

pna =
2(α(1− 2θ) + 1)
5− 2d− 6θ + 4dθ ,

where superscript na denotes the no-alliances scenario. Equilibrium travel volumes

and profits are the following:

qna =
α(3− 2d− 2θ)− 2
5− 2d− 6θ + 4dθ , Qna =

α(1 + 2d− 4θd+ 2θ)− 4(1− d)

5− 2d− 6θ + 4dθ ,

πna = (pna − 1 + θ(qna+Qna)

2
)(qna +Qna). (3)

The equilibrium profits consist of the margin (price minus average cost) times

the travel volume in both the short and the interline markets. Clearly, there exist

some conditions regarding market size, α, the degree of product differentiation, d,

and the size of economies of traffic density, θ, for which positive prices, positive

travel volumes, positive margins and positive marginal costs are obtained.

The single alliance equilibrium

With a single alliance, either airlines 1 and 2 set the fare for flight from A

to B through hub H cooperatively while competition with flight through hub K

remains, or it is airlines 3 and 4 that set cooperatively the fare through hub K

while competition with flight through hub H remains. Denote by Pp the fare of the

interline flight established jointly by the partners in the alliance. The alternative

interline flight is priced separately, po1 + po2, where subscripts o1 and o2 stand for
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the two outsiders. Both alliance partners are symmetric and both outsiders too.

The demand functions for the short markets do not change but, in market AB

they now take the form: Qp = α − Pp + d(po1 + po2) for the alliance partners and

Qo = α − (po1 + po2) + dPp for outsiders. Thus, alliance partners choose two fares

since they price separately the short and the interline market in which they operate.

The joint profit function for the partners, p1 and p2, becomes πp = pp1qp1+pp2qp2+

PpQp−C(qp1+Qp)−C(qp2+Qp) and for the outsiders are the same as before. Solving

the system formed by ∂πp/∂pp1 = 0, ∂πp/∂pp2 = 0, ∂πo1/∂po1 = 0, ∂πo2/∂po2 = 0

and ∂πp/∂Pp = 0 yields, given symmetry, the following equilibrium prices,

pap =
4dθ(1 + α− 2αθ) + 2d2(2θ − 1)(α(3θ − 1)− 1)− (6θ − 5)(α(5θ − 2)− 2)

54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) ,

pao =
4(2− 3θ)(α(2θ − 1)− 1) + d(1− 2θ)(α(7θ − 2)− 4)

54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) ,

P a
p =

4d(2− 5θ)(α(2θ − 1)− 1) + (5− 6θ)(α(7θ − 2)− 4)
54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) ,

where superscript a identifies the single alliance scenario.16 The second order con-

ditions for a maximum now require that θ < 2
3
. This condition follows from the

negativity of the Hessian matrix corresponding to the optimization problem of the

allied carriers. Equilibrium travel volumes are,

Qa
p =

4d2(1− 2θ)(αθ − 2) + (5− 6θ)(4− α(2 + θ))− 4d(2− θ)(1− α(2θ − 1))
54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) ,

Qa
o =

2(3θ − 2)(α+ 2αθ − 4)− 2d2(5θ − 2)(α(2θ − 1)− 2)− d(2θ − 3)(α(7θ − 2)− 4)
54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) ,

qap =
4dθ(α(2θ − 1)− 1)− (2 + α(θ − 2))(6θ − 5) + 2d2(2θ − 1)(1 + α(2θ − 1))

54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) ,

qao =
d(2θ − 1)(α(7θ − 2)− 4)− 2(3θ − 2)(2 + α(2θ − 3)) + 2d2α(2 + θ(10θ − 9))

54θ − 20− 36θ2 + 2d2(2 + θ(10θ − 9)) .

The equilibrium profits for each of the two outsiders are given by:

πao = (p
a
o − 1 +

θ(qao+Q
a
o)

2
)(qao +Qa

o). (4)

16It is important to know that, when the long market is priced jointly, the stability of the

network requires non-arbitrage conditions to apply. These conditions are of two types. The first

type prevents passengers willing to do a short market trip (AH or BH) from buying an interline

ticket (AB ticket) and then get off at the hub airport (H airport). The second type of conditions

ensure that nobody would buy an interline ticket if breaking down the trip into two parts were

cheaper.
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However, the joint equilibrium profits for the allied carriers are now:

πap = (p
a
p − 1 +

θ(qap+Q
a
p)

2
)2qap + (P

a
p − 2 + θ(qap+Q

a
p))Q

a
p. (5)

The alliance "partially unbundles" the interline from the short markets since the

interline market is priced separately. Nevertheless, partners are not able to extract

monopoly profits because markets remain connected through the link-dependent

cost function. One can observe that (3) and (4) have the same structure whereas

(5) is different. In (5) there are two margins: one corresponding to the short mar-

ket (price minus the average cost) and another one corresponding to the interline

market (price minus twice the average cost) since the interline market needs to use

two links of the network while the short market just needs to use one link.

The double alliance equilibrium

We now characterize the situation when two interline alliances are formed, that

is, when airlines 1 and 2 behave cooperatively in setting fares and so do airlines

3 and 4. Denote by P12 and P34 the fare of the interline flight through hub H

and hub K, respectively. The interline market demands are now given by Q12 =

α − P12 + dP34 and Q34 = α − P34 + dP12. Joint profit maximization results in the

following symmetric equilibrium prices (hence we omit subscripts):

P aa =
4 + 2α− 7αθ

4− 2d− 6θ + 5dθ , paa =
(3d− 5)αθ + (1 + α)(2− d)

4− 2d− 6θ + 5dθ
and we employ superscripts aa for the case where both alliances occur. As in the

single alliance equilibrium, the second order conditions for a maximum impose that

θ < 2
3
. The corresponding travel volumes and profits are given by,

Qaa =
(2 + θ)α− 4 + d(4− 2αθ)

4− 2d− 6θ + 5dθ , qaa =
(2d− 1)αθ − (α− 1)(d− 2)

4− 2d− 6θ + 5dθ
and the equilibrium profits can be written as follows:

πaa = (paa − 1 + θ(qaa+Qaa)

2
)2qaa + (P aa − 2 + θ(qaa+Qaa))Qaa. (6)

Before characterizing the effects of alliances and the Nash equilibrium in alliance

formation, there are a number of restrictions that must be borne in mind. This

amounts to comparing a number of bounds on market size α.
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Assumption 1 A market in our model is defined by a triple {d, θ, α}. We re-
strict attention to markets {d, θ, α} ∈ R where R is the relevant region in our

analysis, i.e., the region ensuring positive prices, quantities, marginal costs,

margins and the compliance with non-arbitrage conditions are guaranteed in

the three scenarios under consideration (pre-alliance, single alliance and double

alliance). See Appendix 1 for the details.

3 Effects on Fares and Travel Volumes

We will begin by comparing the changes in firms’ fares and travel volumes in a

move from the pre-alliance situation to the single alliance situation. Then, we will

establish the corresponding variations when two alliances are formed rather than a

single one.

Proposition 1 For any market {d, θ, α} ∈ R, the formation of a complementary

alliance has the following effects:

i) For the partners, the fare P a
p is lower than the pre-alliance fare pna + pna and

travel volume increases, i.e. Qa
p > Qna (direct effect).

ii) Outsiders’ fares and travel volumes are lower, i.e. pao < pna and Qa
o < Qna

(outsider effect).

iii) As for the short markets, since pao < pna, we observe that qao > qna. For the

allied carriers, the effects on pp and qp are unclear.

Proof. See Appendix 2.

The above results partially confirm Cournot’s (1838) model of complementary

duopoly. Cournot considered the merger of two monopolists that produce comple-

mentary goods (zinc and copper) into a single (fused) monopolist that produces the

combination of them (brass). The price of the composite good is lower than un-

der independent ownership (direct effect). The alliance between airlines that offer

complementary services internalizes the externality that arises when they set fares

independently thus ignoring the effects on their individual markups. This result,

part i) above, has already been suggested by earlier theoretical work by Brueckner

(2001) and Brueckner and Whalen (2000) although under somewhat different mod-

eling and network structures. Indeed empirical evidence in Brueckner and Whalen
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(2000) and Brueckner (2003) find that alliance partners charge interline fares that

are below those charged when they were non-allied.

To see the intuition, note that the first order conditions in the single alliance sit-

uation implicitly define the corresponding reaction functions in prices.17 Whenever

θ < 1
2
, which is almost always the case, the effects implied by the reaction functions

are Pp = f(pp
+

, po
+
), pp = f(Pp

+

, po
−
) and po = f(Pp

+

). Therefore, the decrease in the

interline fare induced by the alliance leads to a reduction in the fares set by outsiders

since Pp and po are strategic complements. Rather obviously a lower interline fare

permits partners to capture a higher travel volume and this occurs at the expense

of a lower interline traffic by the rivals. On the other hand, since the outsiders’

fares are lower than under the pre-alliance situation it follows that there is a gain

in travel volumes for short trips.

Besides, the decrease in the interline fare induces a reduction in the fare pp but

this fare increases due to the indirect effect via the decrease in the fare of outsiders.

The final effect on partners’ fare and travel volumes for their short trips depend on

market size, the degree of product differentiation and the intensity of economies of

traffic density. Although allied carriers are monopolists in their short markets, they

cannot extract monopoly profits because the equilibrium prices and quantities are

linked through the cost function because costs are link-dependent and not market

dependent. Therefore, there is an output reallocation effect affecting the partners in

their short market equilibrium values causing a non-monotonic relationship of prices

and quantities when an alliance to serve the interline market is formed.

An interesting by-product of the previous analysis is that, for outsiders, the

revenue in the interline market decreases since both the fare and the travel volume

are lower in a move to a single alliance setting (outsider effect). Further, revenue in

the short market is unclear because the variation in fare goes in the opposite direction

to the one in travel volume. Finally, as total travel volume by the outsiders decreases

this means that average costs are larger; the output reallocation makes carriers to

take less profit from the presence of economies of traffic density. Consequently,

outsiders will very likely be harmed by the formation of an alliance. Boyer (1992)

17These are the three reaction functions for the single alliance case:

Pp =
2+α(1−4θ)+2(1−2θ)dpo+2θpp

2(1−θ) , pp =
1+α(1−2θ)+θPp−2θdpo

2−θ and po =
2+2α(1−2θ)+(1−2θ)dPp

5−6θ . These

functions are not always upward or downward sloping since they depend on whether θ is higher or

lower than 1
2 .
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suggests that non-participating firms in a merger may be harmed by a merger. He

argues that this is more likely to occur if there are inter-market connections. This is

the case in the current setting where markets are linked through the cost function.

The next proposition summarizes the comparison of firms’ fares and travel vol-

umes involved in the single and double alliance equilibria. Notice that the term

outsiders will now allude to the airlines that had previously formed an alliance.

Proposition 2 For any market {d, θ, α} ∈ R, the formation of two complementary

alliances as opposed to a single alliance has the following effects:

i) For the new partners, the fare P aa is lower than their single alliance fare 2pao and

travel volume increases, i.e. Qaa > Qa
o (direct effect).

ii) Outsiders’ fares and travel volumes are lower, i.e. P aa < P a
p and Qaa < Qa

p

(outsider effect).

iii) We observe that paa > pap (and q
aa < qap), which is the opposite to the move from

the no alliance to the single alliance situation, in the outsiders’s short markets. For

the new allied carriers, the effects on po and qo are unclear.

Proof. See Appendix 2.

Again, the alliance of the new partners results in lower fares for their interline

market. Given that prices set by the new partners and by outsiders in the interline

market are strategic complements (upward sloping reaction functions), it follows that

the interline fare of the already allied carriers (now outsiders) goes down. Thus, the

direct and the outsider effects work in the same way as in Proposition 1. However,

the effect on the outsiders’ short markets is now different. In the case of Proposition

1(iii) above, the decrease in the price in the short market was a consequence of the

outsider effect since the price on the interline market was the sum of the price of

two short markets. Now this is not the case anymore and the outsiders react to the

alliance by increasing their short market fares.

As in the move from no alliance to single alliance, there is an output realloca-

tion effect affecting the new allied carriers in their short market equilibrium values

causing a non-monotonic relationship of prices and quantities when moving from a

single to a double alliance scenario.

To sum up, concerning outsiders’ interline market, alliance formation is disad-

vantageous in terms of revenue no matter they set fares cooperatively (Proposition

2) or non-cooperatively (Proposition 1) in the interline market. Hence, a setting
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with interline alliances leads to lower fares, which is consistent with some observed

facts in the airline industry, as found by Brueckner (2003).

4 A simultaneous game of airline alliances

The foregoing analysis suggests that airline alliances are profitable only under some

circumstances. The formation of airline alliances is endogenously obtained as a

result of the following two-stage game. In the first stage airlines 1 and 2 and airlines

3 and 4 decide simultaneously and independently whether to form an alliance. In

stage two, given the inherited outcome from the first stage, airlines set fares.

Given the symmetry in the model it suffices to study the best-response of the

potential partners (either airlines 1 and 2, or alternatively 3 and 4) i) when the

rivals decide not to form a complementary alliance, and ii) when the rivals decide

to form a complementary alliance. Let us define

Ψa(d, θ, α) =
πap
2
− πna. (7)

Therefore Ψa(d, θ, α) > 0 defines when airlines 1 and 2 (alternatively 3 and 4)

will form an alliance given that the rivals do not.18 The following lemma results from

the analysis of this unilateral incentive to form an alliance. Sufficient conditions are

given in parenthesis.

Lemma 1 For any market {d, θ, α} ∈ R, whenever the rivals decide not to form an

alliance, two potential partners:

i) will form an alliance either for a sufficient degree of product differentiation (d ≤
da ≡ 0.802) or for a sufficiently high intensity of economies of traffic density (θ >

θ
a ≡ 0.08);
ii) will not form an alliance whenever the two routes are close enough substitutes

(d > d
a ≡ 0.856);

iii) will either form or not form an alliance for values of d ∈ (da, da]. In this case,
an alliance will not be formed for high values of α combined with low values of θ.

Proof. See Appendix 2.
18It is assumed that profits are equally shared by partners once they decide to ally and set up a

complementary alliance.
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This lemma states that a sufficiently high degree of product differentiation guar-

antees at least one alliance in equilibrium. On the other hand, when products are

close substitutes, which supposes that competition intensity is strong, it is preferable

to remain non-allied given that the rivals do not form an alliance. In this case, it is

strategically profitable for carriers not to cooperate. For values between the speci-

fied thresholds, either strategy might be the best-response (BR) depending on the

specific value of the parameters. Figure 2 below constitutes a representative example

for d ∈ (da, da],19 where α(θ) is obtained from solving Ψa(d = 0.835, θ, α) = 0.

Figure 2: BR when rivals do not form an alliance

Values below (above) the function α(θ) identify those cases where, as long as

both the lower and the upper bounds on α are respected, the best-response is (not)

to form an alliance. One can observe that larger values of θ create incentives for

alliance formation since they foster efficiency gains. In fact, as stated in the lemma,

a sufficiently high θ ensures a single alliance for any market {d, θ, α} ∈ R. On the

other hand, it seems that carriers operating in large markets (α) are less willing to

form alliances when the rivals do not do it. Furthermore, as the degree of product

differentiation decreases (higher values of d), the function α(θ) shifts downwards,

thereby enlarging the region for no alliance to be the best-response.

19As stated in Assumption 1, markets {d, θ, α} ∈ R require to respect some bounds on θ and α.

Following the notation in Appendix 1, θ(d) = L2, α(d, θ) = B2 and α(d, θ) = B3 when d = 0.835.
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To see the intuition note that the change in a carrier’s profits when moving to

a single alliance setting can be decomposed in three terms. The first one is related

with the variation in revenue from the interline market (∆RI); the second one comes

from the difference in revenue in the short market (∆RS); and the third one has to

do with the change in costs due to the reallocation in travel volumes. Only the latter

variation has got an unambiguous sign. It happens that total travel volume by the

allied carriers increases (Qa
p + qap > Qna + qna). Since we have already argued that

the joint cost function exhibits increasing returns to traffic density in the supply of

interline and short trips, higher travel volumes imply a better exploitation of these

economies of traffic density. Concerning the first term, it has been shown above

that the interline fare goes down while travel volume goes up (direct effect). It can

be proven that ∆RI = f(d
−
, θ
−
, α
+
), i.e. the fare effect is more likely to dominate the

travel volume effect, other things equal, the higher the market size; the higher the

degree of product differentiation; or the smaller the intensity of economies of traffic

density. As for the second term, the variation associated with the revenue from the

short market cannot be neatly established since it involves non-monotonic effects,

but numerical examples indicate that ∆RS is more likely to increase when d does

not take intermediate values.

To sum up, there is a positive effect coming from the efficiency gains due to cost

savings, that may be offset by possible revenue losses (either in the short or in the

interline market). Lemma 1 states that typically, but not always, the positive effects

outweigh negative ones, this meaning that there is a unilateral incentive to form a

complementary alliance given that the rivals do not form an alliance.

The interesting conclusion from our analysis is that, contrary to what one might

expect for an alliance with complementary trips in presence of economies of traffic

density, it is not necessarily optimal for carriers to create an alliance when the other

potential partners remain non-allied. If there were no competition from a substitute

flight, then the alliance would always turn out profitable - as in Cournot’s example.

However, the presence of other airlines serving the interline market unveils that the

alliance will be profitable only under certain circumstances. Therefore, when the

two possible one-stop interline trips are "sufficiently substitutes" at the eyes of the

traveller, the best-response for two potential partners is not to form an alliance when

the other carriers remain non-allied (e.g. Japan Airlines).

Next we study the best-response of the potential partners when the rivals form a
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complementary alliance. Thus, let us define

Ψaa(d, θ, α) =
πaa

2
− πao. (8)

Hence, Ψaa(d, θ, α) > 0 defines when airlines 1 and 2 (alternatively 3 and 4) will

form an alliance given that the rivals do. The analysis of Ψaa(d, θ, α) leads to the

following result.

Lemma 2 For any market {d, θ, α} ∈ R, whenever the rivals decide to form an

alliance, two potential partners:

i) will also form an alliance either for a sufficient degree of product differentiation

(d ≤ daa ≡ 0.707) or for a sufficiently high intensity of economies of traffic density
(θ > θ

aa ≡ 0.195);
ii) will not form an alliance whenever the two routes are rather close substitutes

(d > d
aa ≡ 0.828);

iii) will either form or not form an alliance for values of d ∈ (daa, daa]. In this case,
an alliance will not be formed for intermediate values of α combined with low values

of θ.

Proof. See Appendix 2.

Again, a sufficiently high degree of product differentiation makes alliances strate-

gically profitable. On the other hand, when products are loose substitutes, double

alliance is not an equilibrium. For values between the specified bounds, either strat-

egy might be the best-response. Figure 3 below displays a representative example

for d ∈ (daa, daa],20

20As stated in Assumption 1, markets {d, θ, α} ∈ R require to respect some bounds on θ and α.

Following the notation in Appendix 1, θ(d) = L2, α(d, θ) = B2 and α(d, θ) = B3 when d = 0.750.
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Figure 3: BR when rivals form an alliance

where we observe, as in Lemma 1, that larger values of θ create incentives for

alliance formation. In this case, a larger market size seems to foster alliance forma-

tion. The functions α1(θ) and α2(θ) are the ones that solve Ψaa(d = 0.750, θ, α) = 0.

Thus, values between these two functions indicate that a single alliance is the best-

response. As the degree of product differentiation decreases (higher values of d), the

functions α1(θ) and α2(θ) move far apart thereby enlarging the region where single

alliance is the best-response.

Although the interpretation of Lemma 2 is as before, it is important to notice

that the sufficient conditions to ensure a double alliance are now more stringent,

i.e. either a higher degree of product differentiation (daa < da) or a higher intensity

of economies of traffic density (θ
aa

> θ
a
) is required. Therefore, we can anticipate

that there will be cases in which the best-response can be to form an alliance if

the rivals do not; but not to form an alliance if the rivals decide to do so, i.e.

Ψa(d, θ, α) > 0 and Ψaa(d, θ, α) < 0. The fact that a setting with two alliances may

not always be privately profitable, certainly opens the door to asymmetric equilibria

which is sometimes a real issue in the airline industry; in fact, there is an important

number of routes where only one international alliance provides interline services

(e.g. most of the one-stop routes between Italy and France are only served by The

Sky Team). Nevertheless, it must be noted that Ψa(d, θ, α) < 0 is not compatible

with Ψaa(d, θ, α) > 0 so that multiple equilibria cannot arise.
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In the double alliance setting, total travel volume for the new partners increases,

that is, Qaa + qaa > Qa
o + qao . This means that the alliance produces an output

reallocation effect which allows the new partners to take advantage of the economies

of traffic density. Besides, a similar analysis to the previous lemma unveils that

revenues in the interline market are higher for a sufficient degree of product differ-

entiation or for small enough economies of traffic density, other things being equal.

On the other hand, the variation in revenues from the short market is negative for

intermediate values of product differentiation or for large enough economies of traffic

density, other things equal. Thus, the above result states that the gains stemming

from travel volume restructuring and interline earnings more than compensate the

losses originated from lower revenues in the short market as long as competition

intensity be sufficiently weak, no matter the size of the economies of traffic density.

Nevertheless, the losses may be more important than the gains as either competition

intensity becomes stronger, or if economies of traffic density are not too significant

or market size is large enough.

In the light of the best-responses studied above, we can easily identify the sub-

game perfect equilibrium of the game. The next proposition combines the results

stated in the previous two lemmas and singles out sufficient conditions under which

the three possible scenarios are an equilibrium of the game in alliance formation.

In particular, it addresses the corresponding equilibrium for the whole range of the

values of the degree of product differentiation. It should nonetheless be kept in mind

that θ > θ
a
ensures at least one alliance and that θ > θ

aa
ensures two alliances.21

Since we have daa, da, d
aa
and d

a
, there are five regions to be considered.

Proposition 3 For any market {d, θ, α} ∈ R, the equilibrium in alliance formation

is:

i) no alliance for d > d
a
;

ii) either no alliance or single alliance for d ∈ (daa, da]. No alliance will be the
equilibrium for high values of α combined with low values of θ;

iii) no alliance, single alliance or double alliance may be the equilibrium for d ∈
(da, d

aa
] depending on the joint effect of α and θ;

iv) either single alliance or double alliance for d ∈ (daa, da]. Single alliance will be
for intermediate values of α combined with low values of θ;

21This means that the no alliance equilibrium in the next proposition, can only arise for markets

{d, θ, α} ∈ R with θ < θ
a
.
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v) double alliance for d ≤ daa.

The proof is straightforward. We conclude that a setting with complementary

alliances arises when the two possible interline trips are strongly differentiated,

whereas alliances will not take place in equilibrium when trips are viewed by trav-

ellers as close substitutes. It is worth mentioning that, for intermediate values of

the degree of product differentiation, an asymmetric equilibrium in which only one

alliance occurs is possible in the current setting. Moreover, the transition from the

region where the equilibrium is no alliance to the one where the equilibrium is dou-

ble alliance is parsimonious since in part ii) above the single alliance equilibrium is

a possibility, in part iii) anything may happen, and in part iv) no alliance is not a

possibility anymore.

The following contention may be useful to illustrate the above proposition. Let

us fix values for market size and economies of traffic density and let the degree of

product differentiation open. Now a pair of carriers have to decide whether to form

an alliance. As argued before, total travel volume by the potential partners increases

when they form an alliance, allowing for a better exploitation of economies of traffic

density. However the effects coming from the interline and short market revenues are

not straightforward. Suppose that d is close to one so that competition intensity is

strong. In this case, the internalization of competition that occurs under cooperation

when setting fares results in greater revenues in the short market since the increase

in short trip traffic is larger than the decrease in fares; the opposite happens to

revenues from the interline market. In this framework, the latter negative effect

outweighs the other two positive effects and the carriers are better off not forming

an alliance.

However, as the degree of product differentiation increases and competition in-

tensity softens, carriers also obtain gains in the interline market thus making the

alliance privately profitable.22 Concerning the rivals, their equilibrium travel vol-

umes go down and the corresponding cost inefficiency incurred suffices to offset any

likely revenue gains so that alliance formation hurts outsiders. This occurs both in

a move to the single alliance equilibrium and from this one to the double alliance

equilibrium. Finally, a sufficiently large degree of product differentiation ensures an

22Although there might be losses in the short market for intermediate values of d, these are offset

by the efficiency gains due to traffic reallocation and the revenue gains from the interline market.
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equilibrium with airline alliances.23

A deeper analysis of carriers’ profits in the no alliance and the double alliance

settings reveals that the agents may well get engaged in a prisoner’s dilemma situ-

ation. Specifically, let us define

Ψpd(d, θ, α) = πna − πaa

2
, (9)

where superscript pd stands for prisoner’s dilemma. Hence, Ψpd(d, θ, α) < 0 con-

cludes that the double alliance is profitable per se; and Ψpd(d, θ, α) > 0 means that

the double alliance leads to a prisoner’s dilemma situation as long as forming an

alliance is a dominant strategy. The fact that outsiders end up worse off when the

rivals form an alliance is behind this possibility. Therefore, the double alliance can

be the equilibrium outcome and yet the four airlines might indeed find themselves

earning lower profits had neither alliance occurred. This can in some sense be con-

sidered as an outcome stemming from a "war of alliances".24 The next corollary

summarizes this discussion.

Corollary 1 For any market {d, θ, α} ∈ R , whenever double alliance is the equi-

librium in alliance formation, airlines get engaged in a prisoner’s dilemma situation

for a sufficiently low degree of product differentiation (d > dpd ≡ 0.355).

Proof. See Appendix 2.

We will finish this section with presenting the case of constant returns to traffic

density, i.e. when θ = 0. The previous analysis discloses the difficulties in the char-

acterization of the equilibrium due to the interplay between market size, economies

of traffic density and the degree of product differentiation. The particular solution

for θ = 0 allows us to illustrate the results when the travel volume reallocation effect

is not present.

23A similar reasoning can be made by letting θ or α vary while keeping the other two variables

fixed.
24A recent reference by Fridolfsson and Stennek (2005) distinguishes mergers that are profitable

per se from those which these authors call "defensive" mergers. The latter would correspond with

a prisoner’s dilemma situation in the current setting.
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When θ = 0, a market is characterized by {d, θ = 0, α} and region R is defined

accordingly. There is no upper bound on market size α but there remains a lower

bound α(d).25 Figure 4 below depicts region R.

Figure 4: Region R when θ = 0

The next proposition illustrates the complete characterization of the equilibrium

in the formation of airline alliances as a function of the degree of product differenti-

ation and market size. The functional forms of the expressions α1(d), α2(d), α3(d)

and α4(d) are conveniently specified in Appendix 2. Subscript 0 identifies values

corresponding to the case of constant returns to traffic density.

Proposition 4 Suppose θ = 0. Then, for any market {d, θ = 0, α} ∈ R , the equi-

librium in alliance formation is:

i) no alliance for d > d
a

0;

ii) either no alliance or single alliance for d ∈ (da0, d
a

0]. No alliance will be the equi-

librium for α ≥ α1(d);

iii) single alliance for d ∈ (daa0 , da0];

iv) either single alliance or double alliance for d ∈ (daa0 , d
aa

0 ]. Single alliance for

α ∈ (max{α(d), α2(d)}, α3(d));
v) double alliance for d < daa0 .

Note that d
a

0 ≡ 0.829, da0 ≡ 0.817, d
aa

0 ≡ 0.725, daa0 ≡ 0.707.

25This is because the upper bound for α comes from positivity of marginal costs. Since now

marginal costs are constant and positive, such a condition is not required. Following the notation

in Appendix 1, α(d) corresponds to B1 for d < 1
2 and to B3 for d > 1

2 . At d =
1
2 there is a

discontinuity and B1 = B3 = 1.
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Proof. See Appendix 2.

As we did when there exist economies of traffic density, a detailed analysis of the

double alliance case allows us to classify them in the following corollary.

Corollary 2 Suppose θ = 0. Then, for any market {d, θ = 0, α} ∈ R , whenever

double alliance is the equilibrium in alliance formation, these alliances can be clas-

sified as follows:

i) double alliance involving a prisoner’s dilemma for d > 0.5;

ii) either double alliance involving a prisoner’s dilemma or double alliance profitable

per se for d ∈ (dpd0 , 0.5]. In particular, double alliance involving a prisoner’s dilemma
will be the equilibrium for α ≥ α4(d);

iii) double alliance profitable per se for d < dpd0 ;

Note that dpd0 ≡ 0.355.

Proof. See Appendix 2.

Figure 5 summarizes the above proposition and corollary representing the rele-

vant regions for different values of the degree of product differentiation.

Figure 5: Equilibrium when θ = 0

In this particular case, one can observe that asymmetric equilibria (with just

one alliance) arise. Notice too the previously mentioned parsimonious nature of the
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transition from the region where the equilibrium is no alliance to the one where

it is the double alliance.26 This result highlights the positive relationship between

product differentiation and strategic complementary integration in our setting. The

simplification θ = 0 results in a fairly easy comparison when analyzing Ψa(d, θ =

0, α) and Ψaa(d, θ = 0, α). It amounts to checking the gains or losses in the interline

market vis-à-vis those in the short market. As competition intensity gets stronger

it is more likely to find an equilibrium with just one alliance. Eventually, if the

degree of product differentiation is rather low and market size is rather large one

can find the no alliance equilibrium. Furthermore, and as happened in the presence

of economies of traffic density, carriers may get involved in a prisoner’s dilemma

situation unless the degree of product differentiation be sufficiently large.

5 Concluding Remarks

We have developed a formal model to illustrate how factors such as market size,

the degree of product differentiation and the intensity of economies of traffic den-

sity, may explain that (complementary) airline alliances do not always emerge in a

strategic environment. Specifically, alliances allow carriers to benefit from product

complementarities, which together with the presence of increasing returns to traffic

density would make one expect them to be privately profitable. Our findings indicate

that this is not necessarily so and it seems consistent with some of the observed facts

in the industry. This paper raises an interesting empirical question as it suggests

to study the significance of the above mentioned factors in assessing the incentives

of carriers to form strategic alliances. On the other hand, total travel volumes are

higher when either a single or a double alliance arises as long as there is a minimum

degree of economies of traffic density, regardless of market size and the degree of

product differentiation. In the current framework, such an increase in travel vol-

umes would account for a greater consumer surplus. Competition authorities should

therefore favor complementary alliances since consumers would otherwise be worse

off. Furthermore, our model has identified parameter conditions under which al-

26For positive values of θ, the relevant region R has a similar shape but it is bounded from above

because positivity of marginal costs requires lower values of α when θ increases. In addition, the

regions on the right side in Figure 5 reduce as θ takes higher values since increases in the intensity

of economies of traffic density favor alliance formation.

27



liances are privately profitable and, consequently, they would lead to higher welfare

levels.

In addition to the proliferation of airline alliances, there are many other features

that help to characterize the current and future status of the air transportation

landscape such as the surge of low cost carriers, the closing of old hubs and the

development of new ones, the expected evolution of regional operators to join net-

works and so on. Nevertheless, our results are realistic suggesting that the model

captures some important aspects of the airline industry. An interesting question

to be addressed is to endogenize network formation where the structure herein is a

possibility. Further work should explore whether the presence of a low cost carrier

in the network facilitates or hinders the profitability of strategic alliances.
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Appendix 1: Definition of the relevant region R.

A number of restrictions on the parameters d, θ and α have to be observed to

ensure positive prices, quantities, marginal costs, margins and the compliance with

non-arbitrage conditions are guaranteed in the three scenarios under consideration.

Markets defined by a triple {d, θ, α} ∈ R guarantee comparable results.

• Bounds on α. Positivity and non-arbitrage conditions in the three considered

scenarios lead to several bounds in α. After comparing all these bounds and se-

lecting the most stringent ones, we obtain α ∈ (α(d, θ), α(d, θ)) with α(d, θ) =
min(B1, B2) and α(d, θ) = max(B1, B3, 1)whereB1 ≡ 4(4−6θ+d(2θ−3+d(5θ−2)))

d(2θ−3)(7θ−2)+2(2+θ−6θ2)+2d2(2+θ(10θ−9)) ,

B2 ≡ 4θ((d−1)d−3)−2(d2−5)
θ(10−12θ+(d−4)d(2θ−1)) and B3 ≡ 4d(3θ−2+d(2θ−1))

4d(2+d)−10+27θ−4d(7+5d)θ+6θ2(4d(1+d)−3) .
27

Specifically, B1 comes from ensuring positive equilibrium travel volume in the

interline trip for outsiders in the single alliance situation; B2 from positive

marginal cost for partners in the single alliance situation; B3 from the fulfill-

ment of a non-arbitrage condition for partners in the single alliance situation.

Notice that B1 can be either a lower or an upper bound.

• An illustrative representation can be displayed in space (θ, d) - see Figure 6.
To this end, we can compute the bounds on θ that come from the difference

between α(d, θ) and α(d, θ), i.e., the bounds ensuring the existence of a positive

α such that we can find markets {d, θ, α} ∈ R. We obtain θ ∈ (0, θ(d)) with

θ(d) =


L1 for d < 1

2

L3 for d ∈ (1
2
, 0.618]

L2 for d > 0.618

where L1 ≡ 2+3d+2d2

2(2+3d+d2)
, L2 ≡ 2d(2+d)−5

2(d−3+2d2) and L3 ≡ 4+d
6+4d

. The case d = 1
2
is a par-

ticular case: there is a discontinuity and α is bounded below by B1 = B3 = 1

27There are 20 bounds on α to take into account. Let us denote them by B(·), putting in the
argument the equilibrium condition that gives rise to the bound. The precise expressions can be

derived from the equilibrium values provided in the main text. Pre-alliance: B(qna > 0), B(Qna >

0) B(1−θ(qna+Qna) > 0), and B(pna−1+ θ(qna+Qna)
2 > 0); Single alliance: B(qap > 0), B(qao > 0),

B(Qa
p > 0), B(Qa

o > 0), B(1 − θ(qao+Q
a
o) > 0), B(1 − θ(qap+Q

a
p) > 0), B(pao − 1 + θ(qao+Q

a
o)

2 > 0),

B(P a
p −2+θ(qap+Qa

p) > 0), B(p
a
p > 0), B(p

a
o > 0), B(P

a
p > 0), B(2pap−P a

p > 0) and B(P a
p −pap > 0);

Double alliance: B(qaa > 0) B(1− θ(qaa+Qaa) > 0), and B(P aa − 2 + θ(qaa+Qaa) > 0). One can

observe that B(pap − 1 + θ(qap+Q
a
p)

2 > 0) and B(paa − 1 + θ(qaa+Qaa)
2 > 0) simply reduce to α > 1.

After comparing all these bounds and selecting the most stringent ones, we are left with B1, B2

and B3 where B1 ≡B(Qa
o > 0), B2 ≡B(1− θ(qap+Q

a
p) > 0) and finally B3 ≡B(2pap − P a

p > 0).
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and above by B2 = 38−52θ
47θ−62θ2 > 1.

Figure 6 below represents L1, L2 and L3. We claim that, for any pair {d, θ} in
the region delimited by L1, L2 and L3, there exist values of α ∈ (α(d, θ), α(d, θ))
such that we can find markets {d, θ, α} ∈ R.

Figure 6: Bounds for d and θ in region R

More precisely,

• For d < 1
2
and θ < L1, there exist values of α ∈ (B1, B2) such that we can

find markets {d, θ, α} ∈ R.

• For d ∈ (1
2
, 0.618] and θ ∈ [L1, L3), there exist values of α ∈ (B3, B1) such

that we can find markets {d, θ, α} ∈ R.

• For d > 1
2
and θ < min(L1, L2), there exist values of α ∈ (B3, B2) such that

we can find markets {d, θ, α} ∈ R.

In addition, we know that θ < 2
3
from the second order conditions. This means

that economies of traffic density cannot be too high. This makes sense because

otherwise marginal costs would become negative.
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Appendix 2: Proofs.
Proof of Proposition 1.

The difference P a
p − 2pna yields an expression whose denominator is negative for

{d, θ, α} ∈ R. The numerator is positive for α > α∗ ≡ 4(dθ−1)
4d+9θ+12dθ2−6−14dθ−6θ2 . We

now compare α∗ with the corresponding lower bounds in R. Thus, for d < 1
2
, the

difference B1− α∗ is positive and, for d > 1
2
, the difference B3− α∗ is positive too.

Therefore, α > α∗ is always verified in R. It is straightforward to check that α > α∗

also implies Qa
p > Qna, pao < pna, Qa

o < Qna and qao > qna.

As for the fares and travel volumes for the partners’ short markets, the difference

qap − qna yields an expression whose denominator is negative for {d, θ, α} ∈ R. The

sign of the numerator depends on whether market size α is greater or smaller than
φ1(d,θ)
φ2(d,θ)

. The function φ1(d, θ) is positive for θ ∈ (θ−(d), θ+(d)), where θ+(d) > 2
3
and

θ−(d) = 3−11d−d2+4d3+√9−6d−5d2−6d3+17d4
4d(2d2−3) . The function φ2(d, θ) is positive for values

of θ above θ̃(d), which is a decreasing function in d, it is discontinuous at d = 1
2
and

it lies above 2
3
for d > 1

2
. When θ < θ̃(d) the numerator in qap − qna is positive; when

θ > θ̃(d) the numerator in qap − qna is positive for α < φ1(d,θ)
φ2(d,θ)

. We have the following

cases.

• Case d < 1
2
. For every {d, θ, α} ∈ R,

i) for θ < θ̃(d) the numerator in qap−qna is positive and therefore qap−qna < 0.

ii) for θ > θ̃(d), φ1(d,θ)
φ2(d,θ)

is positive and greater than B1. If α < φ1(d,θ)
φ2(d,θ)

the

numerator in qap − qna is positive and hence qap − qna < 0; if α > φ1(d,θ)
φ2(d,θ)

, then

qap − qna > 0.

• Case d = 1
2
. For every {d, θ, α} ∈ R, the lower bounds on α are B1 = B3 = 1

and the upper bound is B2 = 38−52θ
47θ−62θ2 > 1. Since the numerator in qap − qna is

negative for every α < 38−52θ
47θ−62θ2 , which is always the case, q

a
p − qna is positive.

• Case d > 1
2
. For every {d, θ, α} ∈ R,

i) for θ < θ−(d) the numerator in qap−qna is negative and therefore qap−qna > 0.
ii) for θ ∈ (θ−(d), θ+(d)), φ1(d,θ)

φ2(d,θ)
is positive but smaller than 1. Therefore, for

α > φ1(d,θ)
φ2(d,θ)

, the numerator in qap − qna is negative and qap − qna > 0.
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The difference pap − pna follows exactly the opposite pattern.

Proof of Proposition 2.

The difference P aa− 2pao yields an expression whose denominator is negative for
{d, θ, α} ∈ R. The numerator is positive for α > α∗, as previously defined, and it

follows straightforward that Qaa > Qa
o, P

aa < P a
p , Q

aa < Qa
p, p

aa > pap and q
aa < qap .

As for the fares and travel volumes for the partners’ short markets, the difference

qaa − qao yields an expression whose denominator is negative for {d, θ, α} ∈ R. The

sign of the numerator depends on whether market size α is greater or smaller than
φ1(d,θ)
φ2(d,θ)

. The function φ1(d, θ) is positive for θ ∈ (θ−(d), θ+(d)), where θ+(d) > 2
3

and θ−(d) = 6−23d+9d3+√36−84d+49d2−52d3+82d4+d6
4d(5d2−6) . The function φ2(d, θ) is positive for

values of θ above θ̃(d), which is a decreasing function in d, it is discontinuous at

d = 1
2
and it lies above 2

3
for d > 1

2
. When θ < θ̃(d) the numerator in qaa − qao is

positive; when θ > θ̃(d) the numerator in qaa − qao is positive for α < φ1(d,θ)
φ2(d,θ)

. We

have the following cases.

• Case d < 1
2
. For every {d, θ, α} ∈ R,

i) for θ < θ̃(d) the numerator in qaa− qao is positive and therefore q
aa− qao < 0.

ii) for θ > θ̃(d), φ1(d,θ)
φ2(d,θ)

is positive and greater than B1. If α < φ1(d,θ)
φ2(d,θ)

the

numerator in qaa−qao is positive and hence qaa−qao < 0; if α > φ1(d,θ)
φ2(d,θ)

then qaa−qao > 0.

• Case d = 1
2
. For every {d, θ, α} ∈ R, the lower bounds on α are B1 = B3 = 1

and the upper bound is B2 = 38−52θ
47θ−62θ2 > 1. Since the numerator in qaa − qao

is negative for every α < 38−52θ
47θ−62θ2 , which is always the case, then qaa − qao is

positive.

• Case d > 1
2
. For every {d, θ, α} ∈ R,

i) for θ < θ−(d) the numerator in qaa−qao is negative and therefore qaa−qao > 0.
ii) for θ ∈ (θ−(d), θ+(d)), φ1(d,θ)

φ2(d,θ)
is positive but smaller than 1. Therefore, for

α > φ1(d,θ)
φ2(d,θ)

, the numerator in qaa − qao is negative and qaa − qao > 0.

The difference paa − pao follows exactly the opposite pattern.
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Proof of Lemma 1.

The denominator in Ψa(d, θ, α) =
πap
2
−πna is positive for any {d, θ, α} ∈ R. The

numerator can be written as α2K1(d, θ)+αK2(d, θ)+K3(d, θ) whereK1(d, θ)may be

either positive or negative. Solving K1(d, θ) = 0 for θ yields several solutions, from

which only one is relevant inR. Denote this root by eθ(d) which is increasing in d. For
any {d, θ, α} ∈ R, if θ > eθ(d), the function K1(d, θ) is positive and the numerator in

Ψa(d, θ, α) is a convex function in α. On the other hand, if θ < eθ(d), the function
K1(d, θ) is negative and the numerator in Ψa(d, θ, α) is a concave function in α.

Solving the numerator in Ψa(d, θ, α) for α results in α−(d, θ) and α+(d, θ). Thus,

there are two constraints on α to be met to have a positive numerator in Ψa(d, θ, α):

α /∈ (α−(d, θ), α+(d, θ)) ifK1(d, θ) is positive; and α ∈ (α−(d, θ), α+(d, θ)) ifK1(d, θ)

is negative.

• If K1(d, θ) is positive (θ > eθ(d)), the functions α−(d, θ) and α+(d, θ) are either
non real or yield an interval outside region R. Hence if α /∈ (α−(d, θ), α+(d, θ))
then the numerator in Ψa(d, θ, α) is positive and hence Ψa(d, θ, α) > 0.

One can check that d = 0.802 when eθ(d) = 0. Consequently, since eθ(d) is
increasing in d, d < 0.802 is sufficient to ensure Ψa(d, θ, α) > 0.

• IfK1(d, θ) is negative (θ < eθ(d)), it is unclear whether α belongs to (α−(d, θ), α+(d, θ)).
Nevertheless, one can check that Ψa(d, θ, α) is decreasing in α for d > 0.849.

Therefore, we study Ψa(d, θ, α = α = B3) for d > 0.849. Solving Ψa(d, θ, α) =

0, we obtain a function bθ(d, α) that is increasing in d as can be seen in Figure
7 below (since there is an upper bound for θ in region R , θ(d) ≡ L2 following

the notation in Appendix 1, we include it in the figure):
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Figure 7 Proof of Lemma 1

For θ > bθ(d, α), Ψa(d, θ, α) > 0 and then Ψa(d, θ, α) > 0 for any α in R. Since

solving bθ(d, α) = θ(d) yields θ = 0.08, it is sufficient to require θ > 0.08 to guarantee

Ψa(d, θ, α) > 0 for any {d, θ, α} ∈ R.

The value d = 0.856 is obtained by a numerical method when Ψa(d, θ, α = α =

B2) since for d > 0.849 the function Ψa(d, θ, α) is decreasing in α. Hence, for

d > 0.856, Ψa(d, θ, α = α) < 0 and then Ψa(d, θ, α) < 0 for any {d, θ, α} ∈ R.

Proof of Lemma 2.

The first part of the proof is similar to Lemma 1. As for the sufficient conditions,

for any {d, θ, α} ∈ R, one can check that Ψaa(d, θ, α) = πaa

2
− πao is increasing in

α for low values of d in the interval d ∈ (0.707, 0.870] and decreasing in α for high

values of d in this interval. Solving Ψaa(d, θ, α = α) = 0 and Ψaa(d, θ, α = α) = 0

yields two functions, bθ(d, α) and bθ(d, α) that are increasing in d as can be seen in

Figure 8 below.
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Figure 8̇: Proof of Lemma 2

Therefore for low values of d in the interval, θ > bθ(d, α) implies Ψaa(d, θ, α =

α) > 0 and hence Ψaa(d, θ, α) > 0 for any α in R. Solving bθ(d, α) = 0 we obtain the
value d = 0.707. Hence, for d < 0.707, θ > bθ(d, α), we have that Ψaa(d, θ, α = α) > 0

and then Ψaa(d, θ, α) > 0.

In happens to be case that bθ(d, α) = bθ(d, α) = θ(d) at d = 0.828 and θ = 0.195

andΨaa(d, θ, α) = 0 for any α inR. Therefore, for θ > 0.195, both bθ(d, α) and bθ(d, α)
are positive, then both Ψaa(d, θ, α = α) and Ψaa(d, θ, α = α) are also positive, and

hence Ψaa(d, θ, α) > 0. Similarly, for d > 0.828 both bθ(d, α) and bθ(d, α) are negative,
then both Ψaa(d, θ, α) and Ψaa(d, θ, α) are also negative, and hence Ψaa(d, θ, α) < 0.

Proof of Corollary 1.

One can check thatΨpd(d, θ, α) is decreasing in α for any {d, θ, α} ∈ R. Therefore

we study Ψpd(d, θ, α = α). Solving Ψpd(d, θ, α) = 0, we obtain a function eθ(d, α)
that is decreasing in d as can be seen in the figure below.
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Figure 9: Proof of Corollary 1

For θ < eθ(d, α), Ψpd(d, θ, α) < 0 and then Ψpd(d, θ, α) < 0 for any α in R. Since

solving eθ(d, α) = 0 yields d = 0.355, it is sufficient to require d < 0.355 to guarantee
Ψpd(d, θ, α) < 0 for any {d, θ, α} ∈ R.

Proof of Proposition 4 and Corollary 2.

For any market {d, θ = 0, α} ∈ R, α > α(d) and d ∈ (0, 1), where α(d) = B1 for

d < 1
2
and α(d) = B3 for d > 1

2
.

1. We first analyze Ψa(d, θ = 0, α) =
πap
2
− πna and observe that:

(a) For d ∈ (0, 0.8017], Ψa(d, θ = 0, α) > 0.

(b) For d ∈ (0.8017, 0.829], the sign of Ψa(d, θ = 0, α) depends on the value

of α in the following way: Ψa(d, θ = 0, α) > 0 for α < α1(d), and

Ψa(d, θ = 0, α) < 0 for α > α1(d),

where α1(d) =
100−√10

√
((1−2d)2(5−2d)2(d2−5)2(8d2−5))+2d(2d−5)(40d−10−5d3+2d4)
275+2d(d(20+d(120+d(−15+4(−5+d)d)))−250) .

1. (a) For d ∈ (0.829, 870], Ψa(d, θ = 0, α) < 0.

2. The analysis of Ψaa(d, θ = 0, α) = πaa

2
− πao yields that,

(a) For d ∈ (0, 0.707], Ψaa(d, θ = 0, α) > 0.

(b) For d ∈ (0.707, 0.7105], the sign of Ψaa(d, θ = 0, α) depends on the value

of α in the following way: Ψaa(d, θ = 0, α) > 0 for α /∈ (α2(d), α3(d)),
and Ψaa(d, θ = 0, α) < 0 for α ∈ (α2(d), α3(d)), where
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α2(d) =
8+8d−39d2+20d3+2d4−4d5+d6−√2

√
(500d−100−585d2−700d3+1796d4−780d5−445d6+380d7−18d8−40d9+8d10)
22−36d−11d2+32d3−6d4−4d5+d6

and α3(d) =
8+8d−39d2+20d3+2d4−4d5+d6+√2

√
(500d−100−585d2−700d3+1796d4−780d5−445d6+380d7−18d8−40d9+8d1
22−36d−11d2+32d3−6d4−4d5+d6

1. (a) For d ∈ (0.7105, 0.7249], the sign of Ψaa(d, θ = 0, α) depends on the

value of α in the following way: Ψaa(d, θ = 0, α) > 0 for α > α3(d), and

Ψaa(d, θ = 0, α) < 0 for α < α3(d). For these values of d, we do not need

to consider α2(d) since α(d) > α2(d) and α is always higher than α(d) in

R.

(b) For d ∈ (0.7249, 0.870], Ψaa(d, θ = 0, α) < 0.

2. Next we study the sign of Ψpd(d, θ = 0, α) = πna − πaa

2
.

(a) For d ∈ (0, 0.355], Ψpd(d, θ = 0, α) < 0.

(b) For d ∈ (0.355, 0.5], the sign of Ψpd(d, θ = 0, α) depends on the value

of α in the following way: Ψpd(d, θ = 0, α) > 0 for α > α4(d), and

Ψpd(d, θ = 0, α) < 0 for α < α4(d),

where α4(d) = 8−40d+41d2−20d3+4d4+√2√980d−100−3561d2+6204d3−5592d4+2688d5−656d6+64d7
22−92d+97d2−36d3+4d2 .

1. (a) For d ∈ (0.5, 0.725], Ψpd(d, θ = 0, α) > 0.

The combination of the above analysis characterizes the Nash equilibrium (NE)

in alliance formation:

1. (a) For d ∈ (0.829, 0.870], the NE is no alliance because Ψa(d, θ, α) < 0.

(b) For d ∈ (0.817, 0.829], with α < α1(d), the NE is single alliance because

Ψa(d, θ = 0, α) > 0 and Ψaa(d, θ = 0, α) < 0; and with α > α1(d), the

NE is no alliance because Ψa(d, θ = 0, α) < 0.

(c) For d ∈ (0.7249, 0.817], the NE is single alliance because Ψa(d, θ =

0, α) > 0 and Ψaa(d, θ = 0, α) < 0.

(d) For d ∈ (0.7105, 0.7249], with α > α3(d), the NE is double alliance be-

cause Ψa(d, θ = 0, α) > 0 and Ψaa(d, θ = 0, α) > 0; and with α < α3(d),

the NE is single alliance because Ψa(d, θ = 0, α) > 0 and Ψaa(d, θ =

0, α) < 0.
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(e) For d ∈ (0.707, 0.7105], with α /∈ (α2(d), α3(d)), the NE is double alliance
involving a prisoner’s dilemma because Ψa(d, θ = 0, α) > 0, Ψaa(d, θ =

0, α) > 0 and Ψpd(d, θ = 0, α) > 0; and with α ∈ (α2(d), α3(d)), the NE
is single alliance because Ψa(d, θ = 0, α) > 0 and Ψaa(d, θ = 0, α) < 0.

(f) For d ∈ (0.5, 0.707], the NE is double alliance involving a prisoner’s

dilemma because Ψa(d, θ = 0, α) > 0, Ψaa(d, θ = 0, α) > 0 and Ψpd(d, θ =

0, α) > 0.

(g) For d ∈ (0.355, 0.5], with α < α4(d) the NE is double alliance profitable

per se because Ψa(d, θ = 0, α) > 0, Ψaa(d, θ = 0, α) > 0 and Ψpd(d, θ =

0, α) < 0; and with α > α4(d) the NE is double alliance involving a

prisoner’s dilemma because Ψa(d, θ = 0, α) > 0, Ψaa(d, θ = 0, α) > 0 and

Ψpd(d, θ = 0, α) > 0.

(h) For d ∈ (0, 0.355] the NE is double alliance profitable per se because
Ψa(d, θ = 0, α) > 0, Ψaa(d, θ = 0, α) > 0 and Ψpd(d, θ = 0, α) < 0.
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