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Abstract

This paper offers an algorithmic solution to the problem of obtaining “economical” formulae for
some maps in Simplicial Topology, having, in principle, a high computational cost in their evaluation.
In particular, maps of this kind are used for defining cohomology operations at the cochain level. As
an example, we obtain explicit combinatorial descriptions of Steektiogowers exalsively in
terms of face operators.
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1. Introduction

In this paper we deal with problems in the field of Combinatorial Topology. We work
with simplicial sets, which provide comtatorial descriptions of topological spaces. A
simplicial set (sedlay, 1967 is a gragd setk = {Kq}q=0 Whoseg-dimension&*build-
ing blocks” areq-simplices and whose “mortar” is fac (: Kq+1 — Kg) anddegeneracy
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(s : Kq = Kgy1) opeators. It is an elementary fact that any composition of face and
degeneracy operators of a simplicial 8etan be expressed in the “normalized” form:

Sjt .. 'Sjlail - ais’

wherej; > --- > j1 > 0 andis > --- > i1 > 0, due to cert@m commutativity properties.
Roughly speaking, we are interested hereardy in “normalizing” some compositions of
face and degeneracy operators, but also in determining which of them involve exclusively
face operators. In particular, we simplify compositions that are used for defining important
cohomology operations such as Steenrod squ&tee(rod1947, Steenrodkth powers
(Steenrod1952 or Adem secondary cohomology operatioAd€m 1952 1958. In fact,

from a simplicial viewpoint and taking into account that we deal with homological informa-
tion given in terms of explicit chain homotopy equivalend@ed| 200Q Gonzalez-Diaz
2000, the description of invariants in Algebraic Topology can be reduced to the study
of compositions of certain specific maps givessentially in terms of face and degener-
acy operators. The fundamental maps involved aréAteEML and SHI operators given

in the Eilenberg—Zilber Theorenk{lenberg and Zilber1959. This theorem states that
there is a chain hootopy equivalencéAW, EML, SHI) from the normalized chain com-
plexCN (K x L) of the cartesian product & andL to the tensor produdE™(K)®CN(L)

of the normalized chain complex€$' (K) andCN(L). Whereas the number of summands

in the formula forAW grows linearly, the number of summands in the formulaesiL
andSHIgrow exponentially, then in order to define “computable” algebraic—combinatorial
invariants, it seems that thigght strategy is reduced to determine compositions of maps
in which themorphismAW is involved. For example, the cup product on cohomology is
essentially determined at the cochain level by the morp#éhand the diagonal map. All

of this fits well with the results of KristenseiK(istensen1963 Kristensen and Madsen
1967, where a representation result for stable primary and secondary cohomology opera-
tions in terms of coleain maps is given; and that of Klauslaus 2001, 2003, extending
Kristensen’s results to prove that any cohomology operation mogudan be described

in terms of polynomials of coface operators at the cochain level. This approach is also
corroborated irReal (1996, Gonzalez-Diaz and Reél999 andGonzalez-Diaz and Real
(20023 where Seenrod squares, Steenrkith powers and Adem secondary cohomology
operations are seen at the cochain level essentially as compositions of the type

H = AWt SHipytr 1 - - - SHIpy t1SHIpy : CV(K*P) — CN(K)®P 1)

wheret; are permutations op factors andA\W,,) andSHl ) are, respectively, th&Wand
SHI operators given by the Eilenberg—Zilber Theorem fosimplicial sets. It is evident
that an algorithm for computing these cohomology operations based on the previous
formulation shows extremely high comptitanal costs. Because of this, a normalization
of compositions of face and degeneracy opasaand a following step of the elimination
of those summands of the normalized formula Fobrwith a factor having a degeneracy
operator in its expression are done in ordeisThimplification” process allows us to reach
a conbinatorial description foH having the minimum number of face operators involved.
In this paper, we work with a general simplicial expression of tyfe Where thet;
can be any permutation. We have developed a software Matlgematicahat deduces its
“minimal” simplicial formulation. In particular, the solution to this combinatorial problem
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provides a way to design an efficient algorithm for computing any Steenrod cohomology
operation on any cohomology class of any degree. This work has been presented in
Gonzalez-Diaz and Re&2002h).

The paper is organized as follows: 8ection 2we review the necessary theoretical
background. InSection 3 we develop simplification echniques for obtaining an
“economical” formulation for operations of the typ#)(Findly, Section 4is devoted to
showing an gpplication of our method: an algorithm for computing the Steektbgower
P'lg on the cohomology of any locally finite simplicial set is developed.

2. Preliminaries

In this section we introduce the notation and terminology used throughout this paper.
Refaences for this material appeariay (1967 andMac Lane(19995.

A simplicial set Kis a gaded set indexed by the non-negative integers together with
faceanddegeneracy operatorg : Kq — Kgq_1 ands : Kq — Kgy1, 0 < i < q,
satisfying the following identities:

(i) 90; =0j-13;, i<

(i) ssj =sj418, i <J;

(iii) 9isj = sj—10i, i<
9iSj = Sjoi—1, i>j+1

9jsj = 1Kq = 0j41Sj.

The elements oKq are calledg-simgdices A simplexx is degeneratéf x = s (y) for

some simplexy and degeneracy operat®r otherwise x is non-degeneratd_et K andL

be two $mplicial sets. Amapf = ) fq : Kq — Lq of degree zero is simplicial mapif

it commutes with face and degeneracy operators, fig@;, = 9 fqr1 and fqgs =g fq_1.
Thecartesian product Kk L is a simplicial set whose sintipes and face and degeneracy

operators are given by

(K x L)g =Kqg x Lg, 3 (X, y) = (3iX, diy), S(X,y) = (8X,5Y).

Let R bea commuative ring with identity 14 0. Thechain complexof a simpicial set

K with coefficients inR, denoted byC, (K), is constructed asdlows. LetC,,(K) denote
the free R-module on the seKn. The face operatorg; linearly extend to module maps
0i : Ch(K) — Cp_1(K). The dternating sum

n .
dh =) (=13 : Ca(K) > Cn-1(K)
i=0

is an R-module endomorphism of degred. such hatd,d, 1 is null for everyn > 0; itis
called thedifferentialon C,.(K). Thenormalized chain compleg) (K) is definedby the
guotient

Ch(K) = Cn(K)/S(Ch_1(K)),

wheres(C,,—1(K)) denotes the fre®-module on the set of all the degeneratsimpices
of K. Since wealways work with normalized chain complexes, we simplify notation
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and write C,(K) instead ofC}(K). Zn(K) = kerd, is the module of n-cyclesin
C«(K); Br(K) = Imdp41 is the nodule of n-boundariesin C,(K); the quotient
Hn(K) = Zp(K)/Br(K) is the nth homology modul®f K. The homology class of a
cyclea € Zy(K) is denoted byfa].

Given an abkan groupG, form the abelian group

C"(K; G) = Homgr(Cn(K), G)

for eachn; the elements oE"(K) are called th@-cochainsof C*(K ; G). Thedifferential
d on C,(K) induces a codifferential : C*(K; G) — C**1(K; G) of degree+1 via
8¢ = cd; thecohomologyf K is the family of abelian groups

H"(K; G) = kers"/Im " 2.

B"(K: G) = Im "1 is the module ofn-coboundariesZ"(K; G) = kers" is the module
of n-cocycles. Furthermore, & is a ring,H*(K; G) is an algebra with respect to tkap
product

< H(K;G)® HI(K;G) - HITI(K; G)
defined forfc'] € HI(K; G) and[cl] € HI(K; G) by [c'] — [c]] = [c' — cl], where
(ci vcj) (X) = (€ (Bi41--- 81X ®C (Do - - 3 _1X))

for x € Ci4j (K); hereu is the multiplication orG.

Wheneer two graded objects andy of degreep andq are interchanged we apply
the Koszul's conventiorand introduce the sigii—1)P9. The tensor productof chain
complexesC,(K) and C,(L) is the chain complexC,(K) ® C.(L) with differential
dC*(K)®C*(L) = dC*(K) ® 1C*(L) + 1C*(K) ® dC*(L)- Thus |pr € Cp(K) and yq € Cq(L),
an application of the Koszul convention gives

e, rsc ) (Xp ® Yq) = (de,io) @ Loy + Lewiw) ® Ao, 1) (Xp ® Yg)
= de, ) (Xp) ® Ygq + (—1)¥%p ® de, 1, (Yg)-

A module homomorphisnf : C,(K) — C,(L) of degree zero such thdif = fd is
achainmap If f : C,(K) — C,(L) andg : C4(K’) — C,(L’) are chain maps, so is
f ®9:Ci(K)® Ci(K) — Ci(L) ® Ci(L"). Examples of hain maps are:

e Thediagonal mapA : C,(K) — C,(K*") defined byA(x) = (x, "fimes x),
e Thecyclic permutations

t: Co(K*M) = Co(KXM) and T : C.(K)®" — C,(K)®"
suchthat

t(X1, X2, ..., Xn) = (X2, ..., Xn, X1)
and

TXL® X2 ® -+ ® Xn) = (—DPXalelr—Fxab(x, @ ... @ Xy ® x1).
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A contraction from G(K) to C.(L) is a tripke of homomorphisms = (f, g, ¢),
respectively referred to as thgojection inclusion and homotopy operatgrwith the
following properties:

o f:Ci(K)— C,(L) is asurjectie chainmap,

e g: C,(L) — Ci(K) is an injective chain map,

e ¢ : Ci(K) — C,;1(K) isan endomorphism of degreel,
e de. )@ + ¢dc. ) = le,) — 9f.

Furthemore, f, g and¢ satisfy the following identities:
¢g =0, f¢o=0 and ¢¢ =0.

A contraction will be denoted by = (f,g,¢) : C.(K) = C,(L). Two contractions
r=(f0 ¢): CiK) = CilL)andr’ = (', g, ¢) : Ci(K') = Ci(L') can be
canonically combined to form new contractions in the following ways:

e Thetensor product contractiogiven by
ror'=(fef.g8d.¢0df' +18¢"): Ca(K) ® Ci(K')
= Ci(L) ® Ci (L.
e If L = K’, thecomposition contractiogiven by
r'r = (f'f,9d. ¢ +9¢'f) : Cu(K) = Ci(L).
Let p andqg be non-negative integers. &, q)-shuffle(a, 8) is a partition

{a1< <ap} U {ﬁ1< <ﬂq}
of the set{0, 1, ..., p+ q — 1}. The sgnature of(«, 8) is given by
sigle. p) = D ai —( — D).
1<i<p

Let y = {y1,...,y} be a set of integers. Thes) denotes the composition of the
degeneracy operatoss - - - Sy;.

An Eilenberg-Zilber contractiofEilenberg and Zilberl959 from the chain complex
C«(K x L) to the tensor product of chain complex&s, (K) and C,(L) is a triple
rez = (AW, EML, SHI) suchas:

e The Alexander—Whitney operat@V: C,(K x L) — C,(K) ® C,(L) is defired by
AW(Xm, Ym) = D i1 ImXm @ 00+ -~ di—1Ym.
0<i<m

where(Xm, Ym) € Cm(K x L).
e The Eilenberg—Mac Lane operat6ML : C,(K) ® C,(L) — C,(K x L) is defined

by
EML(Xp ® Yq) = > (—D)S9A) (55X, SuYq)
(o, B){(p,q)-shuffleg
wherexp ® Yq € Cp(K) ® Cq(L).
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e And the ShihoperatoiSHI: C,.(K x L) — C,41(K x L) is defired by

SHI(xo, Yo) =0,
SHI(Xm, Ym)
= > (=D“P) (S5, mdm g1+ dmXm. Sutmdim -+ Om—q-1Ym).
T(m)
where

Tm={0<p<m-g-1<m-1, (a,pB) € {(p+ 1, q)-shuffles},
m:m_p_qs

q+m={a1+m,...,ap+1+m},
B+m={Mm—1p1+m... Aq+mMm]}

e(a, B) = M — 1+ siga, B).

A recursive formula for th&HIl operator appears iilenberg and Mac Lan€l954. The
explicit formula given hee was stied by Rubio in Rubio (1991 andproved by Morace
in the appeadix of Real (19989. It is evident that théAW operator has a polynomial nature
(concretely, the number of face optmes involved in its formula iSO(m?)). However,
the EML and SHI operator have an essential “exponential” character, because shuffles
of degeneracy operators are involved in their respective formulatiorf2rouné (1983,
Prouté detemines thaEML is unique and there are only two possibilities £, both of
its formulae being bthe same complexity. ConcerningH], all the posdile formulae have
in common their exponential nature.

There is a contraction froi@,. (K ") to C,.(K)®" obtained by appropriately composing
Eilenberg-Zilber contractions. For any positive integeks n, let usdenote byrgzns =
(AWn,s), EML(n s), SHIn,s)) the contraction

lezns ® 19571 = (AW® 19571 EML ® 18571, SHI® 19571)

from Cu(K*" S x K) ® C.(K)®5 1 to C.(K*"5) ® C,(K) ® C,(K)®1 Then, the
COMPOSItioNrezn_1) - - - TeznalEzny IS @ contraction fronC, (K ") to C,(K)®". We
denote it by

lezm = (AWn), EML(n), SHIp)) : C.(K*™) = C.(K)®".
Observe thethe expression oAWp) is:
AWM X) = AWnn-1y AWnn-2) - AWn,2AWn,1) (X)
= Z 8i1+1"'3mxl

0<iy---<ip_1<m

®00- - 0i;—10i,+1 - - OmX2 2)

®00- - 0ip_p—10i,_141 " - OmXn—1
®do- - di_1—1%n

wherex = (X1,...,%n) € Cn(K*™). Thenumber of face operators taking part in this
formulaisO(n - m™).
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On the othethand, the expression &Hln) in terms of the component morphisms of
the prevous Eilenberg—Zilber contractions is:

> EMLgy - EMLgy SHhn e AW g - - - AWy
1<t+1<n
= SHI(n,l)
+ EMLn.1)SHIn 2 AW 1

+ EML(n,l) e EML(n,n—Z)SHI(n,n—l)AVV(n,n—Z) ctt AVV(n,l)'

Observe that Wwereas the number of summands in the formula Ag, grows in
polynomial time (fixech), the number of summands in the formulaeliL ) andSHIp)
grow exponentially.

3. Simplification techniques
Let us recall that our motivation here is to simplify any composition of the type
AWyt SHIpytr -1 - - SHipy tiSHKpy = >~ AW tr ESAp g, - - - t1ESAp.ey)
where every; is any kind of permutation op factors,
ESAp.o) = EML(p,1) - - - EML(p,)SHIp,e+-0)AW(p,¢) - - - AW(p,1)

and the sumis taken overthe $gt<i <r,0<¢ <p—2,1<k < p—1}.
We will use the followingbasic properties:

e Any composition of face and degeneracy operatorKoftan be put in a unique
“normalized" form:

Sj; - -~ Sjydig - -+ i »

wherej; > --- > j1 >0 andig>--- >i1 > 0.
e Any summand on the tensor product nfcopies ofC,(K) having a factor (in the
normalized form) with degeneracy openatin its expression, is degenerate.

Leti, j, mbe inegers suchthat& i < j < m. The irterval[i, j) denotes the set of
consecutive integers fromo j — 1.

Theface-intervaldj j), denotes the compositiod - - - 9 —19j4+1 - - - Im.
If i =0thendgj)y=0dj41---Om.

If j = mthend;m =3do---di-1.

Inthe case = j thendj iy =90 - i—10i+1- - - Om.

The notationd;j j, must be iterpreted as the intervél, j) representing the indexes
O0<{¢=<m-1,suchthabo---dj ;-10i;+1 - ImS is degenerate, wheregs < i define
the following“composition”:

iz, jp) Oiz.j2) = 00 - - i3 —19j1+1 - - - i—10jp41 - - Im.

This composition can be extended without problems to the compositiofeae-intervals.
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With the new notation, we carewrite the expression @\, given in pagel213as:

AW (X) = Z I[1X1 ® d21X2 - - - ® d[nyXn,
P(m.n)

where [¢] represents the intervdl,_1,i¢) and P(m, n) is the set of dlthe possible
patitions of [0, m + 1) in n intervals.

First, in order to gradually show our technique, let us simplify the composition
AWy tXESAn,0)(X) = AWy t“SHIn.1)(X), where 1< k < n — 1:

AWn) tKESAn,0) (X)

= Y D D@ dyyspimidmogra e ImXkia
P(m+L,n) T(m)

® Jn—k—11S+mIm—q+1 - - - ImXn—1 (3)
® On—k|Se+mm - * - Im—q—1X%n
® O[n—k+11S+mOm—q+1 - - - ImX1

® I Sp+mOm—q+1 * - * ImXk-

Onone hand,

@+mU@B+m=[M-1m+1) and m—1leB+m
Onthe aher hand, the non-degenerate summand8)a$disfy that

(@ +mM) Nin-k-1,in—k) =¥ and (B+mM) N ([0,in—k-1) U[in-k, M+ 1)) = 0.
We immediately obtain that

B+ M C [in—k-1, in—k) and a+mcC[0,in_k_1) Ulin_k, m+ 1),
therefordp_k—1 <m-—1, ip_xk =m—p,

B+m=[m-—1ink) and o+ m=[in_k, m+1).

Now, wedenote

i 0<j<n-—k,
”: ij—q—1 n—-k<j<n,
m ji=n+1

and we can rewrite3d) as:

(=)™ F1Xk+1 ® - -+ ® In—k—11%n—1 ® In—k]dn+1]Xn
P(Mn+1)

® In—k+11X1 @ - - - @ )Xk
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where
ro=mM—-1+(P+Dg=iy_, + Gy —ip_ )l —1ip)
=1+---+n=K+(n—k+1+---+n)hin+1|,
|€| beingiy —i;_;.
In the same way, the expressionAW(n t“ESAn 1)(X) is:
Z (_1)sig(a,b)+e(a,ﬁ)

0<i<m
P(m+1,n), T()
(a,b)e{(t+1,m—1)—sh}

0[1190S8+10:—q+1 * * * ImXk+1

® On—k—210Sp+i0:—q+1 - - - ImXn—2 4)
® On—k-11Su+i07 - - - 0—q—10i+1 - - - OmXn—1

® On—kjSado - - - 0,—1Xn

® On—k+11%S+i0i—q+1  * * ImX1

® O SHSE+10—q+1* - - ImXk-

Onone handauUb = [0, m + 1) and on the other hand, the non-degenerate summands
satisfy that

an[in—k—1,in-k) =¥ and bN ([0, in—k-1) Ulin—k, m+ 1)) =4,
thenb = [in_k_1, in—k) anda = [0, in—_k—1) U [in_k, M+ 1). We denote

., { i 0<j<n—k,

= lijsi-m+: n—k<j<n-2

Therefore 4) becomes

Yo (—)VIRADE@R) Gisp 8, g1 Xk

0<t<m
P(+1.n-1), T(1)

® On—k—2188+10,—q+1 " * - ImXn—2

® In—k—11Su+707 * * + D—q—101+1 * * - ImXn—1 (5)
®3d0- - d—1Xn

® I[n—k1Sp+10i—q+1 * * - ImX1

® On—1)S8+10,—q+1 - - - OmXk-

and siga, b) is(m — )t +1—1i/_, ;). Now, we can obsrve that ifk + 1 = n then the
composition above is degenerate, else

ir/1—k—2 S[—l, ,8+Z= [Z_lvlr/1—k—2) and (X+Z= [if/1—k—1’L+1)'
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We denote

A O0<j<n—k-1,
i'’—q—1 n—-k—-1<j<n-2

ij=1 ¢t—q j=n-1,
t j=n,
m j=n+1

therefore §) is
Z (D™ 91 Xk+1 ® - - - ® dn—k-21Xn—2 ® In—k—1]9n1Xn—-1 ® d[n+1)%n
P(m,n+1)
® -k X1 ® - - - ® In—11Xk

and the sign:

n=M-0¢+1-i, 4, p+r—14+(p+10q
= (ing —i(n+1-i i —ig—1
+in g1+ (g =ik (n —ig_p)
=in_kor + Gy =i Dng —iny)
=+--+n—k=1+(n—Kk +---+[n=1D(n| + [n+ 1)).

Now, let us study the general case. As we said before, we are interested in simplifying
any composition of the form

AWty ESAn ¢ - - - 11ESAn ¢y). (6)

Wewill do it inductively. Leth : C,(K*") — C,(K)®" be a morphism of degreewhose
normalized expression is:

hoo = Y (=DSIMH- I g 00 @ 0 )i -+ ® 01,
P(m,n+r)

suchthat (X, ..., Xk,) = t(X1,...,Xn) Wheret, : C.(K*") — C.(K*") is any
permutation and each; ; denotes a composition of non-consecutive elements of the set
{011, 9121, - - -, On4ry} Where{[1],[2], ..., [n+r]} € P(m,n 4+ r); moreover, eacldjj,

1 < j <n+r, appears exactly once in the expressiorhgf). Ourgoal is to simplify the
compositionH = h ESAn ¢), where 0< £ <n — 2.

Proposition 1. If one of the following conditions holds on h:

e There is no face-interval preceding for 1 < j < n;

e There exists a factor in (x) with more than one face-interval precedingp_ for
somel <u < ¢;

e The face-intervad;j; immedately before ¥_, in h(x) satisfies that
j = max{v suchthat dj,; appears preceding somg for 1 < u < n— ¢};

then all the summands of H are degenerate.
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From now on, let us suppose thiatx) does not satisfy any of the conditions of the
proposition above. Let us denote By, the unique face-interval precedimg.1—y for
l<u<d.

Lemma 2. If the compositiordj,—119;j,+1) appears in the expression of h for some u,
1 < u < ¢, then all the summands of H are degenerate.

Theorem 3. SIMPLIFICATION ALGORITHM.

INPUT: The morphism h: Cy,(KX") — C,(K)®" of degree r described
above such that it does not satisfy either Proposition 1
or Lemma 2.

OUTPUT: The simplified expression of H(X) =hESAn(X).

For u=1to u=~¢£do
replace 90[j,] preceding Xni1-u by Omniri2-u]-
End for.

Let{dvy], - - - Ounir_el)s V1 < - -+ < Ungr—¢, denote the set of the face-intervals preceding
xgforl<u<n-—¢.

For s=1to s=n+r —{do
replace d[y by 9s]-

End for.

Replace Xn—¢ by Ontr—e+11Xn—¢-

Starting from the sign of h of degree1, weobtain the sign of H of degree m as follows.
Step 1:

For u=1to u=~¢£do
replace |jy| by In4+r —u+1]+ 1.
For j=juy+1to j=n+r—-u+1do

replace |j| by |j —1].
End for;
add (IN+r —u+1+D(jul+---+In+r—u)

End for.

Letdp,) be the face-interval immediately beforgx. Stating from the nodified sign of
H do

Step 2:

For j=n+4+r—£+4+2to j=n+r do
replace |j| by |j + 1.
End for;
replace IN+r —£+1] by [n+r —¢+2|—1;
replace |v| by [n4+r —£¢+1]+1;
add |1+ -+ |+ (v+1+---FIn+r —€Dn+r —£+1].
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Proof. For the sake of simplicity but without loss of generality, we consider that the
expression oh(x) is

Z (=SNG ) @ - 3 1Xn—e ® ®D [l Xn—e4+1 ® - - - O[j11%n;
P(m,n+r)
consequently, the expressiontafx) is:
Z (—1)SIGNIL].... [} +8ig(@g. by)+---+-sig@g,be)+e (. B)

P(M+1.n+r), T(ep)
O<yy<tp_1<-<13=m
{@j.bpeltj+Lm—j)-sh}: 1<j=<t)

O 180y -+ Sb S+ —q+1 - - - OmX1

Q0 1%, -+ - Sy Sﬁ+53z57q+1 < OmXn—g—1 )
®8[]331 Sf)gS)ng (7 al( —q— laL(+l amxnfe
® 91501+ Sop_1Sa 90"+ ip—101, 141+ - - ImXn—e+1

® 3[j2]9015a230 T 8[2—1atl+l te 3an—1
® 3[11]353130 T 311—1Xn-

The non-degenerate summanddHofx) satisfy that

ap =[0,ij;—1)Ulij;, m+1) and by =[ij—1.ij,)-
Then,
=ij for0<j < ja,

=ijpr—m4uforji<j<n4r-—1,

Therefore, we have that

i :ijlforOgj <L

i :ijl_l—i-irlprr —i,}+r_1+1 forji<j<n+4+r—1,

ingr =i, + 1.
So, insigri[1],...,[n+r]}, |j1| isreplaced byn +r |+ 1, |j| is replaced byj — 1| for
j1<j<n+4rand

sigar, by) = M— ) +1—ij,-1) = (i} Ar — rl,+, 1+ Dk Air—1— 11,1)

=(n+r{+D(jal+---+In+r —=1),

is added.
In general, fixeds, 1 < u < ¢, we hae that

a=[0 i) Uit wa+1)  and by =[in it

Ju
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Then,
i =i " for0<j < ju,
|J¥‘ T+l wer1+w forju<j<n+r—u,
in-',-r—u =w+1,
u
I-|-r u+l = tu-1.
Therefore,
T‘lzi}lfor0§j<ju andn+r —u+2<j<n+r,
cu—1
']

- i$fl+iﬁ+r7u+l_iﬁ+r—u +1forju<j<n+r—u,

su—1 __iu
In-',-r—u-i-l - In-',-r—u-i-l +1

So, insigri[1],...,[n+r]}, |jul isreplaced byn +r —u+ 1| + 1 and|j]| is replaced by
[j —1for ju<j <n+r —u+ 1. Also,
sig(@ay, bu) = (tu—1 — tw)u+1— 11 1)
=(n+r—u+1+D(jul+---+In+r —u),
is added. Therefore, the expression @ is:
Z (—1)SIGNIL],....[N+T)+€ (e, B)

P(g+1n+r—20), T(y)
O<tp<tp_1=<--<tg<m

O 18p+77 9 g1+ + - ImXa

® 3[ ]Sﬁ+nazrq+1 - OmXn—g—1
- S)t+£g (7 al( qflaLg+l te amxnfe
® 30 0,,—10, 141" - OmXn—g+1

®30 12 10,441 - - - OmXn-1
®do - - - 0 —1Xn.

Now, @ + 17 = [i%, 10+ 1) andp + 17 = [i7 — 1,1), then

if“:if for0<j<v-—1, if“:if—q—lforvgj5n+r—£—1,

41 S04 _ 41

pre =te =0 s gy =te, i3 =1j fforn+r—¢+1<j<n+r.
That is,

0 041 ¢ _

if =it foro<j<v-1, if =i +q+1lforv<j<ntr—e—1

¢ e+1 ¢ _jetl
ner—e =lpir—py1 t 1 ij=ijypforn+r—£+1<j=<n+r.
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So, insigd[l],...,[n+r]},|jlisreplacedbyj + 1| forn+r —£4+2<j <n+4r, |v]
isreplacedbyn+r — ¢+ 1|+ 1andn+r — ¢+ 1|isreplaced byn+r — ¢ + 2| — 1.
Finally,

€la,fp)=1u—-1+(p+1)q

N L 041
el D ol (PR M [ PSR I P

=1 +-- +|v|+(|v+1|+~~+|n+r—z|)|n+r—z+1|
is added. OO

Theorem 4. The number of face operators taking part in the normalized formula for
AW p)t; SHIp) - - - tiSHIp is, in the wast case, @p' F1mP++1),

Proof. Onone hand, the number of summands of the foénig (p — 1)". On theother
hand, the number of summands in the simplified formula for each morpt6$ns (
O(mP*™) and the number of face operators in each summar@(ism). Therdore the
number of face operators taking part in the normalized formul@Wp,t SHI )t 1 -
SHI(p)t1SHIp) is O((p — D' mP*" pm) that isO(p" FimPH+1). O

4. An example: Algorithm for computing P;,‘

In this section we study the computation of the cohomology operations Stekittrod
powersP'g (Steenrod1952 as an applicdon of the £chnique given in the section above.
First, we give the definition of these operations at the cochain level d&eenrod
(1952. We next show explicit formulae developed@onzalez-Diaz and Reé1999 for
these operations in terms of Eilenberg—Zilber contractions at the cochain level. Finally,
we develop anlgorithm for computinng at the cohomology level on any locally finite
simplicial set.

An infinite sequene of mophisms{D}" : C,(K) — C,(K)®"};>0 of degreer such
that:

DJ = AWmA;  de,genDP + (=1 DPde, k) = D! 4, T > 0; (8)
wherea; : Cy(K)®" — C,(K)®" is defired by

. T-1 if r odd,
Y14+ T 4T ifr even,

called a higher diagonal approximation(Steenrod 1952 “measures” the lack of
commutativity ofAW, .

In the particular case gb = 2, it is possible to define cochain mappings catteg-i
product

—i: CY(K; G) ® CP(K; G) — CIP7(K; G)

byc—i ¢ =ucxc) Diz. Observe tht the expression af —q ¢’ coincides with that of
the aup product given in page211 Taking[c] € H! (K; Z5), the cohomology operations
Steenrod squarg$teenrogd1947 are ddined bySd[c] = [c —j_i c] € HI T (K; Z).



1222 R.Gonzalez-Diaz, P. Real / Journal of Symbolic Computation 40 (2005) 1208-1224

Now, let p > 2 be a primenumber. Starting from the sequen@, (the Steenrod kth
power F : HA(K; Zp) — HITX(P-D(K; 7)), q > 2k, is defined athe cachain level as
follows. If c € Z9(K; Zp), then

Ps(c) =R Mc®pD(%_2k)(p_1) € Z0F&P-D (K. 7,), (9)

: Z1\\ 2k—a
wherep is the ratural product oiZ , andR = (—1)(P-D(k+3a@-1) ==Y .

The acyclic model methodeflenberg and Mac Lanel953 is used forguaranteeing
the existence ofhe mophismsD|' (n andr being non-negative integers). An alternative
to the prevous method is to obtain the morphisrBg' using dgebraic fibrations with
a cartesian product oh copies of a given simplicial se as the base space and a
subgroup of the symmetric grou®, as the fiber space. This last point of view has been
established ifReal (1996 andGonzalez-Diaz and Reél999 for Steenrod operations, in
Gonzalez-Diaz and Re&20023 for secondary cohomology operations and generalized in
Gonzalez-Diag2000 for any cohomology operation. lBonzalez-Diaz and Re&1999
we obtain explicit formulae for a higher diagonal approximation in terms of the component
morphisms of a given Eilenberg-Zilber contraction. kgt: C,.(K*") — C,(K*") be
defined by

o t if j odd
M=t 4+ 4t"1 if j even.
then
D7 = AW SHny - - 1SHIm A = >~ AWt ESAn g, ) -+ - tESAng;) A

where the sum is taken over all the possible Z; + 1, k; < n, wherek; = 1ifi +r odd;
foralll<i <r.

Observe that an gbrithm based on these formulae fOf' is not useful in practice,
due to the exponential nature of the morphisms involved. Nevertheless, we can apply
the Simplification Algorithm explained befe in order to obtain a pure combinatorial
definition of D" only in terms of face operators. Notice that for obtaining a normalized
expression oD!", we have goply Theorem 3n—1)L'/2l(n —1)" times in the worst case.
However, taking into accounProposition 1the non-degenerate summand®@fcan only
appear wherk; + ¢i < nforl <i <r. Moreover, ifki + ¢; < nandk; < ¢j4+1 then
the non-degenerate summandsjt can only appear whelk + ¢ < ¢ip1forl <i <r.
Examples of the simplification process are:

DI = D (~D™ 9uX® - ® dn—e-21X ® dn-e-1dn-e+1X
P(m,n+1)
®On—t421X @ - - - @ In+11X ® In—eX,

wherety = |1+ -+ n—¢—1+|n—¢|(In—¢+ 1+ ---+|n+ 1)) and
DI (x) = Z (=D HuX ® -+ ® dn—k—1-11X ® dn—k—£119n—1+11X

O<ly+1l<tq<n-1

O<k<n
P(m,n+2)

® n—e,421X ® * -+ @ In—e,—1 X ® I[n—r,]9[n—r4+2]X



R.Gonzalez-Diaz, P. Real / Journal of Symbolic Computation 40 (2005) 1208-1224 1223

® On—e2431X @ * + + @ In+21X ® In—+11X
® On—k;—;+1X ® « -+ @ On—gq]X

= D DB X ® - @ dn—k-t-2X ® Yn—k-t-1dn-e+2X

0<¢+1,k<n
P(m,n+2)

® On—e431X Q - - - ® I n+21Xn @ In—k—e]19n—e+11X
® In—k—t+1]X ® - -+ ® In—g]X

whereto = (In—ky — €14+ 1+ ---+In—£1D(n —L1 4+ 1+ ---+|n— €2 — 1]
+n—Lo+1+1+---+In+L+D+In—kg—L1+ 1 +---+|n— L2
+in—Ly+1(In—€2+2|+1+ -+ |n+2/+1)

andrz = In—k—£—1/+(n—k—£+1+n—¢4+1)(n—£0+2|+ 1) +n—£+3|+1+
et IN+ 2|+ 14+ (In—k—€+1+-- -+ In—2P(In—L+ 1+ |In—L+4+- -+ |n+1)).

Taking into account the sign and organization of the intervals in a general summand
of the normalized expression @] and D3, it should be possible to obtain a general
expression of anyD;" but this study exceeds the scope of this paper.

On the other had, bearing in mind the expression at the cochain level of the Steenrod
power operatiorPg(c) wherec € Z9(K, Zp), sincec is aqg-cochain, we only consider
those summands in the normalized formulam%_Zk)(p_l) with exactly X(p — 1) face
operators in each factor.

Since he explicit formulae for the Steenrod power operati(ﬁi‘ﬁ are given at the
cochain level, in order to design an algorithm for computing them at the cohomology
level, we first compute an explicit contractigm, g, ¢) from C,(K) to H.(K), K being
a dmplicial set finite in each degree ag, being the ground ring. This contraction can
be constructed using thdassical matrix algorithmMunkres 1984 basd on reducing
certain matrices (corresponding to the diffietial at each degree) to their Smith normal
form (Gonzalez-Diaz and Re&@003. The complexityof this method isO(M?3) whereM
is the number of simplices df .

Since the ground ring is a field, then the homology and cohomology are isomorphic.
Moreover, if « is a generator dfiomology of degreq, thena™ : Hgq(K) — Z suchthat

o [0 ifa#p e Hg(K)
“(’3)—{1 it

is a generator of cohomology of degrege For fixed k, suppose that the normalized
description of the morphisrii(IO —2K)(p—1 obtained usingrheorem 3 and a ontraction
(f, g, ¢) from C,(K) to H.(K) using the algorithm described above, are given. Th@n, (
becomes at the cohomology level

u
K/ *x * *
PR =3 R(“(“ f)®pD(%ka>(pfl>g(Vi)> i

=1

where{y, ..., yu} is a basis oHg 2k(p-1)-
Summing up, we have designed an algorithm for computing any Steenrod rekiiiced
powers on any class of cohomology for any locally finite simplicial set.
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