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Abstract

This paper offers an algorithmic solution to the problem of obtaining “economical” formulae for
some maps in Simplicial Topology, having, in principle, a high computational cost in their evaluation.
In particular, maps of this kind are used for defining cohomology operations at the cochain level. As
an example, we obtain explicit combinatorial descriptions of Steenrodkth powers exclusively in
terms of face operators.
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1. Introduction

In this paper we deal with problems in the field of Combinatorial Topology. We work
with simplicial sets, which provide combinatorial descriptions of topological spaces. A
simplicial set (seeMay, 1967) is a graded setK = {Kq}q≥0 whoseq-dimensional “build-
ing blocks” areq-simplices and whose “mortar” is face (∂i : Kq+1 → Kq) anddegeneracy

∗ Corresponding address: Universidad de Sevilla, Departamento de Matematica Aplicada I, Avda. Reina
Mercedes, 41012 Sevilla, Spain. Tel.: +34 54554386; fax: +34 54557878.

E-mail address:rogodi@us.es (R. Gonzalez-Diaz).
URL: http://www.us.es/gtocoma.

0747-7171/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2004.04.008

Journal of Symbolic Computation 40 (2005) 1208–1224

http://www.elsevier.com/locate/jsc
http://www.us.es/gtocoma


R.Gonzalez-Diaz, P. Real / Journal of Symbolic Computation 40 (2005) 1208–1224 1209

(si : Kq → Kq+1) operators. It is an elementary fact that any composition of face and
degeneracy operators of a simplicial setK can be expressed in the “normalized” form:

sjt · · · sj1∂i1 · · · ∂is,

where jt > · · · > j1 ≥ 0 andi s > · · · > i1 ≥ 0, due to certain commutativity properties.
Roughly speaking, we are interested here notonly in “normalizing” some compositions of
face and degeneracy operators, but also in determining which of them involve exclusively
face operators. In particular, we simplify compositions that are used for defining important
cohomology operations such as Steenrod squares (Steenrod, 1947), Steenrodkth powers
(Steenrod, 1952) or Adem secondary cohomology operations (Adem, 1952, 1958). In fact,
from a simplicial viewpoint and taking into account that we deal with homological informa-
tion given in terms of explicit chain homotopy equivalences (Real, 2000; Gonzalez-Diaz,
2000), the description of invariants in Algebraic Topology can be reduced to the study
of compositions of certain specific maps given essentially in terms of face and degener-
acy operators. The fundamental maps involved are theAW, EML andSHI operators given
in the Eilenberg–Zilber Theorem (Eilenberg and Zilber, 1959). This theorem states that
there is a chain homotopy equivalence(AW, EML, SHI) from the normalized chain com-
plexCN(K × L) of the cartesian product ofK andL to the tensor productCN(K )⊗CN(L)

of the normalized chain complexesCN(K ) andCN(L). Whereas the number of summands
in the formula forAWgrows linearly, the number of summands in the formulae forEML
andSHIgrow exponentially, then in order to define “computable” algebraic–combinatorial
invariants, it seems that theright strategy is reduced to determine compositions of maps
in which themorphismAW is involved. For example, the cup product on cohomology is
essentially determined at the cochain level by the morphismAWand the diagonal map. All
of this fits well with the results of Kristensen (Kristensen, 1963; Kristensen and Madsen,
1967), where a representation result for stable primary and secondary cohomology opera-
tions in terms of cochain maps is given; and that of Klaus (Klaus, 2001, 2003), extending
Kristensen’s results to prove that any cohomology operation modulep can be described
in terms of polynomials of coface operators at the cochain level. This approach is also
corroborated inReal(1996), Gonzalez-Diaz and Real(1999) andGonzalez-Diaz and Real
(2002a) where Steenrod squares, Steenrodkth powers and Adem secondary cohomology
operations are seen at the cochain level essentially as compositions of the type

H = AW(p)tr SHI(p)tr−1 · · · SHI(p)t1SHI(p) : CN(K ×p) → CN(K )⊗p (1)

whereti are permutations ofp factors andAW(p) andSHI(p) are, respectively, theAWand
SHI operators given by the Eilenberg–Zilber Theorem forp simplicial sets. It is evident
that an algorithm for computing these cohomology operations based on the previous
formulation shows extremely high computational costs. Because of this, a normalization
of compositions of face and degeneracy operators and a following step of the elimination
of those summands of the normalized formula forH with a factor having a degeneracy
operator in its expression are done in order. This “simplification” process allows us to reach
a combinatorial description forH having the minimum number of face operators involved.

In this paper, we work with a general simplicial expression of type (1), where theti
can be any permutation. We have developed a software usingMathematicathat deduces its
“minimal” simplicial formulation. In particular, the solution to this combinatorial problem



1210 R.Gonzalez-Diaz, P. Real / Journal of Symbolic Computation 40 (2005) 1208–1224

provides a way to design an efficient algorithm for computing any Steenrod cohomology
operation on any cohomology class of any degree. This work has been presented in
Gonzalez-Diaz and Real(2002b).

The paper is organized as follows: InSection 2we review the necessary theoretical
background. In Section 3 we develop simplification techniques for obtaining an
“economical” formulation for operations of the type (1). Finally, Section 4is devoted to
showing an application of our method: an algorithm for computing the Steenrodkth power
Pk

p on the cohomology of any locally finite simplicial set is developed.

2. Preliminaries

In this section we introduce the notation and terminology used throughout this paper.
References for this material appear inMay (1967) andMac Lane(1995).

A simplicial set K is a graded set indexed by the non-negative integers together with
faceanddegeneracy operators∂i : Kq → Kq−1 andsi : Kq → Kq+1, 0 ≤ i ≤ q,
satisfying the following identities:

(i) ∂i ∂ j = ∂ j −1∂i , i < j ;
(ii) si sj = sj +1si , i ≤ j ;

(iii) ∂i sj = sj −1∂i , i < j ;
∂i sj = sj ∂i−1, i > j + 1;
∂ j sj = 1Kq = ∂ j +1sj .

The elements ofKq are calledq-simplices. A simplex x is degenerateif x = si (y) for
some simplexy and degeneracy operatorsi ; otherwise,x is non-degenerate. Let K andL
be two simplicial sets. A mapf = ∑

fq : Kq → Lq of degree zero is asimplicial mapif
it commutes with face and degeneracy operators, i.e.,fq∂i = ∂i fq+1 and fqsi = si fq−1.

Thecartesian product K×L is a simplicial set whose simplices and face and degeneracy
operators are given by

(K × L)q = Kq × Lq, ∂i (x, y) = (∂i x, ∂i y), si (x, y) = (si x, si y).

Let R bea commutative ring with identity 1�= 0. Thechain complexof a simplicial set
K with coefficients inR, denoted byC∗(K ), is constructed as follows. LetCn(K ) denote
the free R-module on the setKn. The face operators∂i linearly extend to module maps
∂i : Cn(K ) → Cn−1(K ). The alternating sum

dn =
n∑

i=0

(−1)i ∂i : Cn(K ) → Cn−1(K )

is anR-module endomorphism of degree−1 such thatdndn+1 is null for everyn ≥ 0; it is
called thedifferentialon C∗(K ). Thenormalized chain complexCN∗ (K ) is definedby the
quotient

CN
n (K ) = Cn(K )/s(Cn−1(K )),

wheres(Cn−1(K )) denotes the freeR-module on the set of all the degeneraten-simplices
of K . Since wealways work with normalized chain complexes, we simplify notation
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and write C∗(K ) instead ofCN∗ (K ). Zn(K ) = kerdn is the module of n-cycles in
C∗(K ); Bn(K ) = Im dn+1 is the module of n-boundariesin C∗(K ); the quotient
Hn(K ) = Zn(K )/Bn(K ) is the nth homology moduleof K . The homology class of a
cyclea ∈ Zn(K ) is denoted by[a].

Given an abelian groupG, form the abelian group

Cn(K ; G) = HomR(Cn(K ), G)

for eachn; the elements ofCn(K ) are called then-cochainsof C∗(K ; G). Thedifferential
d on C∗(K ) induces a codifferentialδ : C∗(K ; G) → C∗+1(K ; G) of degree+1 via
δc = cd; thecohomologyof K is the family of abelian groups

H n(K ; G) = kerδn/Im δn−1.

Bn(K ; G) = Im δn−1 is the module ofn-coboundaries; Zn(K ; G) = kerδn is the module
of n-cocycles. Furthermore, ifG is a ring,H ∗(K ; G) is an algebra with respect to thecup
product

�: H i (K ; G) ⊗ H j (K ; G) → H i+ j (K ; G)

defined for[ci ] ∈ H i (K ; G) and[cj ] ∈ H j (K ; G) by [ci ] � [cj ] = [ci � cj ], where(
ci � cj

)
(x) = µ(ci (∂i+1 · · · ∂i+ j x) ⊗ cj (∂0 · · · ∂i−1x))

for x ∈ Ci+ j (K ); hereµ is the multiplication onG.
Whenever two graded objectsx and y of degreep andq are interchanged we apply

the Koszul’s conventionand introduce the sign(−1)pq. The tensor productof chain
complexesC∗(K ) and C∗(L) is the chain complexC∗(K ) ⊗ C∗(L) with differential
dC∗(K )⊗C∗(L) = dC∗(K ) ⊗ 1C∗(L) + 1C∗(K ) ⊗ dC∗(L). Thus if xp ∈ Cp(K ) and yq ∈ Cq(L),
an application of the Koszul convention gives

dC∗(K )⊗C∗(L)

(
xp ⊗ yq

) = (dC∗(K ) ⊗ 1C∗(L) + 1C∗(K ) ⊗ dC∗(L))(xp ⊗ yq)

= dC∗(K )(xp) ⊗ yq + (−1)qxp ⊗ dC∗(L)(yq).

A module homomorphismf : C∗(K ) → C∗(L) of degree zero such thatd f = f d is
a chain map. If f : C∗(K ) → C∗(L) andg : C∗(K ′) → C∗(L ′) are chain maps, so is
f ⊗ g : C∗(K ) ⊗ C∗(K ′) → C∗(L) ⊗ C∗(L ′). Examples of chain maps are:

• Thediagonal map∆ : C∗(K ) → C∗(K ×n) defined by∆(x) = (x, n times. . . , x).
• Thecyclic permutations

t : C∗(K ×n) → C∗(K ×n) and T : C∗(K )⊗n → C∗(K )⊗n

suchthat

t (x1, x2, . . . , xn) = (x2, . . . , xn, x1)

and

T(x1 ⊗ x2 ⊗ · · · ⊗ xn) = (−1)|x1|(|x2|+···+|xn|)(x2 ⊗ · · · ⊗ xn ⊗ x1).
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A contraction from C∗(K ) to C∗(L) is a triple of homomorphismsr = ( f, g, φ),

respectively referred to as theprojection, inclusion and homotopy operator, with the
following properties:

• f : C∗(K ) → C∗(L) is a surjective chainmap,
• g : C∗(L) → C∗(K ) is an injective chain map,
• φ : C∗(K ) → C∗+1(K ) is an endomorphism of degree+1,
• dC∗(K )φ + φdC∗(K ) = 1C∗(K ) − g f .

Furthermore, f, g andφ satisfy the following identities:

φg = 0, f φ = 0 and φφ = 0.

A contraction will be denoted byr = ( f, g, φ) : C∗(K ) ⇒ C∗(L). Two contractions
r = ( f, g, φ) : C∗(K ) ⇒ C∗(L) andr ′ = ( f ′, g′, φ′) : C∗(K ′) ⇒ C∗(L ′) can be
canonically combined to form new contractions in the following ways:

• Thetensor product contractiongiven by

r ⊗ r ′ = ( f ⊗ f ′, g ⊗ g′, φ ⊗ g′ f ′ + 1 ⊗ φ′) : C∗(K ) ⊗ C∗(K ′)
⇒ C∗(L) ⊗ C∗(L ′).

• If L = K ′, thecomposition contractiongiven by

r ′r = ( f ′ f, gg′, φ + gφ′ f ) : C∗(K ) ⇒ C∗(L ′).

Let p andq be non-negative integers. A(p, q)-shuffle(α, β) is a partition{
α1 < · · · < αp

} ∪ {
β1 < · · · < βq

}
of the set{0, 1, . . . , p + q − 1}. The signature of(α, β) is given by

sig(α, β) =
∑

1≤i≤p

αi − (i − 1).

Let γ = {γ1, . . . , γr } be a set of integers. Thensγ denotes the composition of the
degeneracy operatorssγr · · · sγ1.

An Eilenberg–Zilber contraction(Eilenberg and Zilber, 1959) from the chain complex
C∗(K × L) to the tensor product of chain complexesC∗(K ) and C∗(L) is a triple
r E Z = (AW, EML, SHI) suchas:

• The Alexander–Whitney operatorAW : C∗(K × L) −→ C∗(K ) ⊗ C∗(L) is defined by

AW(xm, ym) =
∑

0≤i≤m

∂i+1 · · · ∂mxm ⊗ ∂0 · · · ∂i−1ym,

where(xm, ym) ∈ Cm(K × L).
• The Eilenberg–Mac Lane operatorEML : C∗(K ) ⊗ C∗(L) −→ C∗(K × L) is defined

by

EML(xp ⊗ yq) =
∑

(α,β)∈{(p,q)-shuffles}
(−1)sig(α,β)(sβ xp, sα yq),

wherexp ⊗ yq ∈ Cp(K ) ⊗ Cq(L).
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• And the ShihoperatorSHI : C∗(K × L) −→ C∗+1(K × L) is defined by

SHI(x0, y0) = 0,

SHI(xm, ym)

=
∑
T(m)

(−1)ε(α,β) (sβ̄+m̄∂m−q+1 · · · ∂mxm, sα+m̄∂m̄ · · · ∂m−q−1ym),

where

T(m) = {0 ≤ p ≤ m − q − 1 ≤ m − 1, (α, β) ∈ {(p + 1, q)-shuffles}},
m̄ = m − p − q,

α + m̄ = {α1 + m̄, . . . , αp+1 + m̄},
β̄ + m̄ = {m̄ − 1, β1 + m̄, . . . , βq + m̄, },
ε(α, β) = m̄ − 1 + sig(α, β).

A recursive formula for theSHI operator appears inEilenberg and Mac Lane(1954). The
explicit formula given here was stated by Rubio in Rubio (1991) andproved by Morace
in the appendix of Real(1996). It is evident that theAWoperator has a polynomial nature
(concretely, the number of face operators involved in its formula isO(m2)). However,
the EML and SHI operator have an essential “exponential” character, because shuffles
of degeneracy operators are involved in their respective formulations. InProuté (1983),
Prouté determines thatEML is unique and there are only two possibilities forAW, both of
its formulae being of the same complexity. ConcerningSHI, all the possible formulae have
in common their exponential nature.

There is a contraction fromC∗(K ×n) to C∗(K )⊗n obtained by appropriately composing
Eilenberg–Zilber contractions. For any positive integerss < n, let usdenote byr E Z(n,s) =
(AW(n,s), EML(n,s), SHI(n,s)) the contraction

r E Z(n,s) ⊗ 1⊗s−1 = (AW⊗ 1⊗s−1, EML ⊗ 1⊗s−1, SHI⊗ 1⊗s−1)

from C∗(K ×n−s × K ) ⊗ C∗(K )⊗s−1 to C∗(K ×n−s) ⊗ C∗(K ) ⊗ C∗(K )⊗s−1. Then, the
compositionr E Z(n,n−1) · · · r E Z(n,2)r E Z(n,1) is a contraction fromC∗(K ×n) to C∗(K )⊗n. We
denote it by

r E Z(n) = (AW(n), EML(n), SHI(n)) : C∗(K ×n) ⇒ C∗(K )⊗n.

Observe that the expression ofAW(n) is:

AW(n)(x) = AW(n,n−1) AW(n,n−2) · · · AW(n,2)AW(n,1)(x)

=
∑

0≤i1···≤in−1≤m

∂i1+1 · · · ∂mx1

⊗ ∂0 · · · ∂i1−1∂i2+1 · · · ∂mx2
...

⊗ ∂0 · · · ∂in−2−1∂in−1+1 · · · ∂mxn−1
⊗ ∂0 · · · ∂in−1−1xn

(2)

wherex = (x1, . . . , xn) ∈ Cm(K ×n). The number of face operators taking part in this
formula isO(n · mn).
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On the otherhand, the expression ofSHI(n) in terms of the component morphisms of
the previous Eilenberg–Zilber contractions is:∑

1≤	+1<n

EML(n,1) · · · EML(n,	)SHI(n,	+1)AW(n,	) · · · AW(n,1)

= SHI(n,1)

+ EML(n,1)SHI(n,2)AW(n,1)

...

+ EML(n,1) · · · EML(n,n−2)SHI(n,n−1)AW(n,n−2) · · · AW(n,1).

Observe that whereas the number of summands in the formula forAW(n) grows in
polynomial time (fixedn), the number of summands in the formulae forEML(n) andSHI(n)

grow exponentially.

3. Simplification techniques

Let us recall that our motivation here is to simplify any composition of the type

AW(p)tr SHI(p)tr−1 · · · SHI(p)t1SHI(p) =
∑

AW(p)tr ESA(p,	r ) · · · t1ESA(p,	1)

where everyti is any kind of permutation ofp factors,

ESA(p,	) = EML(p,1) · · · EML(p,	)SHI(p,	+1)AW(p,	) · · · AW(p,1)

and the sum is taken over the set{1 ≤ i ≤ r , 0 ≤ 	i ≤ p − 2, 1≤ ki ≤ p − 1}.
We will use the followingbasic properties:

• Any composition of face and degeneracy operators ofK can be put in a unique
“normalized" form:

sjt · · · sj1∂i1 · · · ∂ir ,

where jt > · · · > j1 ≥ 0 and i s > · · · > i1 ≥ 0.
• Any summand on the tensor product ofn copies ofC∗(K ) having a factor (in the

normalized form) with degeneracy operators in its expression, is degenerate.

Let i , j , m be integers such that 0≤ i ≤ j ≤ m. The interval[i , j ) denotes the set of
consecutive integers fromi to j − 1.

• Theface-interval∂[i, j ), denotes the composition∂0 · · · ∂i−1∂ j +1 · · · ∂m.
• If i = 0 then∂[0, j ) = ∂ j +1 · · · ∂m.
• If j = m then∂[i,m) = ∂0 · · · ∂i−1.
• In the casei = j then∂[i,i ) = ∂0 · · · ∂i−1∂i+1 · · · ∂m.

The notation∂[i, j ) must be interpreted as the interval[i , j ) representing the indexes	,
0 ≤ 	 ≤ m− 1, such that∂0 · · · ∂i j −1−1∂i j +1 · · · ∂ms	 is degenerate, whereasj1 ≤ i2 define
the following“composition”:

∂[i1, j1)∂[i2, j2) = ∂0 · · · ∂i1−1∂ j1+1 · · · ∂i2−1∂ j2+1 · · · ∂m.

This composition can be extended without problems to the composition ofn face-intervals.
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With the new notation, we canrewrite the expression ofAW(n) given in page1213as:

AW(n)(x) =
∑

P(m,n)

∂[1]x1 ⊗ ∂[2]x2 · · · ⊗ ∂[n]xn,

where [	] represents the interval[i	−1, i	) and P(m, n) is the set of all the possible
partitions of [0, m + 1) in n intervals.

First, in order to gradually show our technique, let us simplify the composition
AW(n)tkESA(n,0)(x) = AW(n)tkSHI(n,1)(x), where 1≤ k ≤ n − 1:

AW(n)tkESA(n,0)(x)

=
∑

P(m+1,n)

∑
T(m)

(−1)ε(α,β) ∂[1]sβ+m̄∂m−q+1 · · · ∂mxk+1

...

⊗ ∂[n−k−1]sβ+m̄∂m−q+1 · · · ∂mxn−1

⊗ ∂[n−k]sα+m̄∂m̄ · · · ∂m−q−1xn

⊗ ∂[n−k+1]sβ+m̄∂m−q+1 · · · ∂mx1

...

⊗ ∂[n]sβ+m̄∂m−q+1 · · · ∂mxk.

(3)

Onone hand,

(α + m̄) ∪ (β + m̄) = [m̄ − 1, m + 1) and m̄ − 1 ∈ β + m̄.

Onthe other hand, the non-degenerate summands of (3) satisfy that

(α + m̄) ∩ [i n−k−1, i n−k) = ∅ and (β + m̄) ∩ ([0, i n−k−1) ∪ [i n−k, m + 1)) = ∅.

We immediately obtain that

β + m̄ ⊂ [i n−k−1, i n−k) and α + m̄ ⊂ [0, i n−k−1) ∪ [i n−k, m + 1),

thereforei n−k−1 ≤ m̄ − 1, i n−k = m − p,

β + m̄ = [m̄ − 1, i n−k) and α + m̄ = [i n−k, m + 1).

Now, wedenote

i ′j =



i j 0 ≤ j < n − k,

i j − q − 1 n − k ≤ j ≤ n,

m j = n + 1.

and we can rewrite (3) as:∑
P(m,n+1)

(−1)τ0 ∂[1]xk+1 ⊗ · · · ⊗ ∂[n−k−1]xn−1 ⊗ ∂[n−k]∂[n+1]xn

⊗ ∂[n−k+1]x1 ⊗ · · · ⊗ ∂[n]xk
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where

τ0 = m̄ − 1 + (p + 1)q = i ′n−k + (i ′n − i ′n−k)(i
′
n+1 − i ′n)

= |1| + · · · + |n − k| + (|n − k + 1| + · · · + |n|)|n + 1|,
|	| beingi ′	 − i ′	−1.

In the same way, the expression ofAW(n)tkESA(n,1)(x) is:∑
0≤ι≤m

P(m+1,n), T (ι)

(a,b)∈{(ι+1,m−ι)–sh.}

(−1)sig(a,b)+ε(α,β)

∂[1]sbsβ+ῑ∂ι−q+1 · · · ∂mxk+1
...

⊗ ∂[n−k−2]sbsβ+ῑ∂ι−q+1 · · · ∂mxn−2
⊗ ∂[n−k−1]sbsα+ῑ∂ῑ · · · ∂ι−q−1∂ι+1 · · · ∂mxn−1
⊗ ∂[n−k]sa∂0 · · · ∂ι−1xn

⊗ ∂[n−k+1]sbsβ+ῑ∂ι−q+1 · · · ∂mx1
...

⊗ ∂[n]sbsβ+ῑ∂ι−q+1 · · · ∂mxk.

(4)

On one hand,a ∪ b = [0, m + 1) and on the other hand, the non-degenerate summands
satisfy that

a ∩ [i n−k−1, i n−k) = ∅ and b ∩ ([0, i n−k−1) ∪ [i n−k, m + 1)) = ∅,

thenb = [i n−k−1, i n−k) anda = [0, i n−k−1) ∪ [i n−k, m + 1). We denote

i ′j =
{

i j 0 ≤ j < n − k,

i j +1 − m + ι n − k ≤ j ≤ n − 2.

Therefore (4) becomes∑
0≤ι≤m

P(ι+1,n−1), T(ι)

(−1)sig(a,b)+ε(α,β) ∂[1]sβ+ι∂ι−q+1 · · · ∂mxk+1

...

⊗ ∂[n−k−2]sβ+ι∂ι−q+1 · · · ∂mxn−2
⊗ ∂[n−k−1]sα+ι∂ῑ · · · ∂ι−q−1∂ι+1 · · · ∂mxn−1
⊗ ∂0 · · · ∂ι−1xn

⊗ ∂[n−k]sβ+ι∂ι−q+1 · · · ∂mx1
...

⊗ ∂[n−1]sβ+ι∂ι−q+1 · · · ∂mxk.

(5)

and sig(a, b) is (m − ι)(ι + 1 − i ′n−k−1). Now, we can observe that ifk + 1 = n then the
composition above is degenerate, else

i ′n−k−2 ≤ ῑ − 1, β + ῑ = [ῑ − 1, i ′n−k−2) and α + ῑ = [i ′n−k−1, ι + 1).
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We denote

i ′′j =




i ′j 0 ≤ j < n − k − 1,

i ′j − q − 1 n − k − 1 ≤ j ≤ n − 2,

ι − q j = n − 1,

ι j = n,

m j = n + 1

therefore (5) is∑
P(m,n+1)

(−1)τ1 ∂[1]xk+1 ⊗ · · · ⊗ ∂[n−k−2]xn−2 ⊗ ∂[n−k−1]∂[n]xn−1 ⊗ ∂[n+1]xn

⊗ ∂[n−k]x1 ⊗ · · · ⊗ ∂[n−1]xk

and the sign:

τ1 = (m − ι)(ι + 1 − i ′n−k−1) + ῑ − 1 + (p + 1)q

= (i ′′n+1 − i ′′n)(i ′′n + 1 − i ′′n−k−1 + i ′′n−1 − i ′′n − 1)

+ i ′′n−k−1 + (i ′′n−1 − i ′′n−k−1)(i
′′
n − i ′′n−1)

= i ′′n−k−1 + (i ′′n−1 − i ′′n−k−1)(i
′′
n+1 − i ′′n−1)

= |1| + · · · + |n − k − 1| + (|n − k| + · · · + |n − 1|)(|n| + |n + 1|).
Now, let us study the general case. As we said before, we are interested in simplifying

any composition of the form

AW(n)tr ESA(n,	r ) · · · t1ESA(n,	1). (6)

Wewill do it inductively. Leth : C∗(K ×n) → C∗(K )⊗n be a morphism of degreer whose
normalized expression is:

h(x) =
∑

P(m,n+r )

(−1)sign{[1],...,[n+r ]}∂[ ]xk1 ⊗ ∂[ ]xk2 · · · ⊗ ∂[ ]xkn

such that (xk1, . . . , xkn ) = tλ(x1, . . . , xn) where tλ : C∗(K ×n) → C∗(K ×n) is any
permutation and each∂[ ] denotes a composition of non-consecutive elements of the set
{∂[1], ∂[2], . . . , ∂[n+r ]} where{[1], [2], . . . , [n + r ]} ∈ P(m, n + r ); moreover, each∂[ j ],
1 ≤ j ≤ n + r , appears exactly once in the expression ofh(x). Ourgoal is to simplify the
compositionH = h ESA(n,	), where 0≤ 	 ≤ n − 2.

Proposition 1. If one of the following conditions holds on h:

• There is no face-interval preceding xj for 1 ≤ j ≤ n;

• There exists a factor in h(x) with more than one face-interval preceding xn+1−u for
some1 ≤ u ≤ 	;

• The face-interval∂[ j ] immediately before xn−	 in h(x) satisfies that
j = max{v suchthat∂[v] appears preceding some xu for 1 ≤ u ≤ n − 	} ;

then all the summands of H are degenerate.
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From now on, let us suppose thath(x) does not satisfy any of the conditions of the
proposition above. Let us denote by∂[ ju] the unique face-interval precedingxn+1−u for
1 ≤ u ≤ 	.

Lemma 2. If the composition∂[ ju−1]∂[ ju+1] appears in the expression of h for some u,
1 ≤ u ≤ 	, then all the summands of H are degenerate.

Theorem 3. SIMPLIFICATION ALGORITHM.

INPUT: The morphism h : C∗(K ×n) → C∗(K )⊗n of degree r described
above such that it does not satisfy either Proposition 1
or Lemma 2.

OUTPUT: The simplified expression of H (x) = h ESA(n,	)(x).

For u = 1 to u = 	 do
replace ∂[ ju] preceding xn+1−u by ∂[n+r+2−u].

End for.

Let {∂[v1], . . . , ∂[vn+r−	]}, v1 < · · · < vn+r−	, denote the set of the face-intervals preceding
xu for 1 ≤ u ≤ n − 	.

For s = 1 to s = n + r − 	 do
replace ∂[vs] by ∂[s].

End for.
Replace xn−	 by ∂[n+r−	+1]xn−	.

Starting from the sign of h of degree m+1, weobtain the sign of H of degree m as follows.

Step 1:

For u = 1 to u = 	 do
replace | ju| by |n + r − u + 1| + 1.
For j = ju + 1 to j = n + r − u + 1 do

replace | j | by | j − 1|.
End for;
add (|n + r − u + 1| + 1)(| ju| + · · · + |n + r − u|)

End for.

Let∂[v] be the face-interval immediately before xn−	. Starting from the modified sign of
H do

Step 2:

For j = n + r − 	 + 2 to j = n + r do
replace | j | by | j + 1|.

End for;
replace |n + r − 	 + 1| by |n + r − 	 + 2| − 1;
replace |v| by |n + r − 	 + 1| + 1;
add |1| + · · · + |v| + (|v + 1| + · · · + |n + r − 	|)|n + r − 	 + 1|.
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Proof. For the sake of simplicity but without loss of generality, we consider that the
expression ofh(x) is∑

P(m,n+r )

(−1)sign{[1],...,[n+r ]}∂[ ]x1 ⊗ · · · ∂[ ]xn−	 ⊗ ⊗∂[ j	]xn−	+1 ⊗ · · · ∂[ j1]xn;

consequently, the expression ofH (x) is:∑
P(m+1,n+r ), T(ι	)

0≤ι	≤ι	−1≤···≤ι1≤m
{(aj ,bj )∈{(ι j +1,m−ι j )–sh.}: 1≤ j ≤	}

(−1)sign{[1],...,[n+r ]}+sig(a1,b1)+···+sig(a	,b	)+ε(α,β)

∂[ ]sb1 · · · sb	sβ+ι	∂ι	−q+1 · · · ∂mx1
...

⊗ ∂[ ]sb1 · · · sb	sβ+ι	∂ι	−q+1 · · · ∂mxn−	−1
⊗ ∂[ ]sb1 · · · sb	sα+ι	∂ι	 · · · ∂ι	−q−1∂ι	+1 · · · ∂mxn−	

⊗ ∂[ j	]sb1 · · · sb	−1sa	∂0 · · · ∂ι	−1∂ι	−1+1 · · · ∂mxn−	+1
...

⊗ ∂[ j2]sb1sa2∂0 · · · ∂ι2−1∂ι1+1 · · · ∂mxn−1
⊗ ∂[ j1]sa1∂0 · · · ∂ι1−1xn.

(7)

The non-degenerate summands ofH (x) satisfy that

a1 = [0, i j1−1) ∪ [i j1, m + 1) and b1 = [i j1−1, i j1).

Then,

i 1
j = i j for 0 ≤ j < j1,

i 1
j = i j +1 − m + ι1 for j1 ≤ j < n + r − 1,

i 1
n+r−1 = ι1 + 1,

i 1
n+r = m.

Therefore, we have that

i j = i 1
j for 0 ≤ j < j1,

i j = i 1
j −1 + i 1

n+r − i 1
n+r−1 + 1 for j1 ≤ j ≤ n + r − 1,

i n+r = i 1
n+r + 1.

So, in sign{[1], . . . , [n + r ]}, | j1| is replaced by|n + r | + 1, | j | is replaced by| j − 1| for
j1 < j ≤ n + r and

sig(a1, b1) = (m − ι1)(ι1 + 1 − i j1−1) = (i 1
n+r − i 1

n+r−1 + 1)(i 1
n+r−1 − i ′j1−1)

= (|n + r | + 1)(| j1| + · · · + |n + r − 1|),
is added.

In general, fixedu, 1 ≤ u ≤ 	, we have that

au =
[
0, i u−1

ju−1

)
∪

[
i u−1

ju
, ιu−1 + 1

)
and bu =

[
i u−1

ju−1, i u−1
ju

)
.
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Then,

i u
j = i u−1

j for 0 ≤ j < ju,

i u
j = i u−1

j +1 − ιu−1 + ιu for ju ≤ j < n + r − u,

i u
n+r−u = ιu + 1,

i u
n+r−u+1 = ιu−1.

Therefore,

i u−1
j = i u

j for 0 ≤ j < ju and n + r − u + 2 ≤ j ≤ n + r,

i u−1
j = i u

j −1 + i u
n+r−u+1 − i u

n+r−u + 1 for ju ≤ j ≤ n + r − u,

i u−1
n+r−u+1 = i u

n+r−u+1 + 1.

So, in sign{[1], . . . , [n + r ]}, | ju| is replaced by|n + r − u + 1| + 1 and| j | is replaced by
| j − 1| for ju < j ≤ n + r − u + 1. Also,

sig(au, bu) = (ιu−1 − ιu)(ιu + 1 − i u−1
j1−1)

= (|n + r − u + 1| + 1)(| ju| + · · · + |n + r − u|),
is added. Therefore, the expression of (7) is:∑

P(ι	+1,n+r−	), T (ι	)

0≤ι	≤ι	−1≤···≤ι1≤m

(−1)sign{[1],...,[n+r ]}+ε(α,β)

∂[ ]sβ+ι	∂ι	−q+1 · · · ∂mx1
...

⊗ ∂[ ]sβ+ι	∂ι	−q+1 · · · ∂mxn−	−1
⊗ · · · ∂[v]sα+ι	∂ι	 · · · ∂ι	−q−1∂ι	+1 · · · ∂mxn−	

⊗ ∂0 · · · ∂ι	−1∂ι	−1+1 · · · ∂mxn−	+1
...

⊗ ∂0 · · · ∂ι2−1∂ι1+1 · · · ∂mxn−1
⊗ ∂0 · · · ∂ι1−1xn.

Now, α + ι	 = [i 	v, ι	 + 1) andβ + ι	 = [ι	 − 1, i 	v), then

i 	+1
j = i 	j for 0 ≤ j ≤ v − 1, i 	+1

j = i 	j − q − 1 for v ≤ j ≤ n + r − 	 − 1,

i 	+1
n+r−	 = ι	 − q, i 	+1

n+r−	+1 = ι	, i 	+1
j +1 = i 	j for n + r − 	 + 1 ≤ j ≤ n + r.

That is,

i 	j = i 	+1
j for 0 ≤ j ≤ v − 1, i 	j = i 	+1

j + q + 1 for v ≤ j ≤ n + r − 	 − 1,

i 	n+r−	 = i 	+1
n+r−	+1 + 1, i 	j = i 	+1

j +1 for n + r − 	 + 1 ≤ j ≤ n + r.
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So, in sign{[1], . . . , [n + r ]}, | j | is replaced by| j + 1| for n + r − 	 + 2 ≤ j ≤ n + r , |v|
is replaced by|n + r − 	 + 1| + 1 and|n + r − 	 + 1| is replaced by|n + r − 	 + 2| − 1.
Finally,

ε(α, β) = ι	 − 1 + (p + 1)q

= i 	+1
v + (i 	+1

n+r−	 − i 	+1
v )(i 	+1

n+r−	+1 − i 	+1
n+r−	)

= |1| + · · · + |v| + (|v + 1| + · · · + |n + r − 	|)|n + r − 	 + 1|
is added. �

Theorem 4. The number of face operators taking part in the normalized formula for
AW(p)tr SHI(p) · · · t1SHI(p) is, in the worst case, O(pr+1mp+r+1).

Proof. On one hand, the number of summands of the form (6) is (p − 1)r . On theother
hand, the number of summands in the simplified formula for each morphism (6) is
O(mp+r ) and the number of face operators in each summand isO(pm). Therefore the
number of face operators taking part in the normalized formula forAW(p)tr SHI(p)tr−1 · · ·
SHI(p)t1SHI(p) is O((p − 1)r mp+r pm) that isO(pr+1mp+r+1). �

4. An example: Algorithm for computing Pk
p

In this section we study the computation of the cohomology operations Steenrodkth
powersPk

p (Steenrod, 1952) as an application of the technique given in the section above.
First, we give the definition of these operations at the cochain level due toSteenrod
(1952). We next show explicit formulae developed inGonzalez-Diaz and Real(1999) for
these operations in terms of Eilenberg–Zilber contractions at the cochain level. Finally,
we develop an algorithm for computingPk

p at the cohomology level on any locally finite
simplicial set.

An infinite sequence of morphisms{Dn
r : C∗(K ) → C∗(K )⊗n}r≥0 of degreer such

that:

Dn
0 = AW(n)∆ ; dC∗(K )⊗n Dn

r + (−1)r−1Dn
r dC∗(K ) = αr Dn

r−1, r > 0; (8)

whereαr : C∗(K )⊗n → C∗(K )⊗n is defined by

αr =
{

T − 1 if r odd,
1 + T + · · · + Tn−1 if r even,

called a higher diagonal approximation(Steenrod, 1952) “measures” the lack of
commutativity ofAW(n).

In the particular case ofp = 2, it is possible to define cochain mappings calledcup-i
product,

�i : Cq(K ; G) ⊗ Cp(K ; G) → Cq+p−i (K ; G)

by c �i c′ = µ(c ⊗ c′)D2
i . Observe that the expression ofc �0 c′ coincides with that of

the cup product given in page1211. Taking[c] ∈ H j (K ; Z2), the cohomology operations
Steenrod squares(Steenrod, 1947) are defined bySqi [c] = [c � j −i c] ∈ H j +i (K ; Z2).
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Now, let p > 2 be a primenumber. Starting from the sequence (8), theSteenrod kth
power Pk

p : H q(K ; Zp) → H q+2k(p−1)(K ; Zp), q ≥ 2k, is defined at the cochain level as
follows. If c ∈ Zq(K ; Zp), then

Pk
p(c) = Rµc⊗pDp

(q−2k)(p−1) ∈ Zq+2k(p−1)(K ; Zp), (9)

whereµ is the natural product onZp andR = (−1)(p−1)(k+ 1
2q(q−1))

((
p−1

2

)
!
)2k−q

.

The acyclic model method (Eilenberg and Mac Lane, 1953) is used forguaranteeing
the existence ofthe morphismsDn

r (n andr being non-negative integers). An alternative
to the previous method is to obtain the morphismsDn

r using algebraic fibrations with
a cartesian product ofn copies of a given simplicial setK as the base space and a
subgroup of the symmetric groupSn as the fiber space. This last point of view has been
established inReal(1996) andGonzalez-Diaz and Real(1999) for Steenrod operations, in
Gonzalez-Diaz and Real(2002a) for secondary cohomology operations and generalized in
Gonzalez-Diaz(2000) for any cohomology operation. InGonzalez-Diaz and Real(1999)
weobtain explicit formulae for a higher diagonal approximation in terms of the component
morphisms of a given Eilenberg–Zilber contraction. Letγ j : C∗(K ×n) → C∗(K ×n) be
defined by

γ j =
{

t if j odd
t + · · · + tn−1 if j even.

then

Dn
r = AW(n)γr SHI(n) · · · γ1SHI(n)∆ =

∑
AW(n)t

kr ESA(n,	r ) · · · tk1ESA(n	1)∆

where the sum is taken over all the possible 1≤ 	i + 1, ki < n, whereki = 1 if i + r odd;
for all 1 ≤ i ≤ r .

Observe that an algorithm based on these formulae forDn
r is not useful in practice,

due to the exponential nature of the morphisms involved. Nevertheless, we can apply
the Simplification Algorithm explained before in order to obtain a pure combinatorial
definition of Dn

r only in terms of face operators. Notice that for obtaining a normalized
expression ofDn

r , we have to apply Theorem 3(n−1)�r/2�(n−1)r times in the worst case.
However, taking into accountProposition 1, the non-degenerate summands ofDn

r can only
appear whenki + 	i < n for 1 ≤ i ≤ r . Moreover, if ki + 	i < n andki < 	i+1 then
the non-degenerate summands ofDn

r can only appear whenki + 	i < 	i+1 for 1 ≤ i < r .
Examples of the simplification process are:

Dn
1(x) =

∑
P(m,n+1)

(−1)τ1 ∂[1]x ⊗ · · · ⊗ ∂[n−	−2]x ⊗ ∂[n−	−1]∂[n−	+1]x

⊗ ∂[n−	+2]x ⊗ · · · ⊗ ∂[n+1]x ⊗ ∂[n−	]x,

whereτ1 = |1| + · · · + |n − 	 − 1| + |n − 	|(|n − 	 + 1| + · · · + |n + 1|) and

Dn
2(x) =

∑
0<	2+1≤	1<n−1

0<k<n
P(m,n+2)

(−1)τ2 ∂[1]x ⊗ · · · ⊗ ∂[n−k−	1−1]x ⊗ ∂[n−k−	1]∂[n−	1+1]x

⊗ ∂[n−	1+2]x ⊗ · · · ⊗ ∂[n−	2−1]x ⊗ ∂[n−	2]∂[n−	2+2]x
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⊗ ∂[n−	2+3]x ⊗ · · · ⊗ ∂[n+2]x ⊗ ∂[n−	2+1]x
⊗ ∂[n−k1−	1+1]x ⊗ · · · ⊗ ∂[n−	1]x

−
∑

0<	+1,k<n
P(m,n+2)

(−1)τ3 ∂[1]x ⊗ · · · ⊗ ∂[n−k−	−2]x ⊗ ∂[n−k−	−1]∂[n−	+2]x

⊗ ∂[n−	+3]x ⊗ · · · ⊗ ∂[n+2]xn ⊗ ∂[n−k−	]∂[n−	+1]x
⊗ ∂[n−k−	+1]x ⊗ · · · ⊗ ∂[n−	]x

whereτ2 = (|n − k1 − 	1 + 1| + · · · + |n − 	1|)(|n − 	1 + 1| + · · · + |n − 	2 − 1|
+|n − 	2 + 1| + 1 + · · · + |n + 1| + 1) + |n − k1 − 	1 + 1| + · · · + |n − 	2|
+|n − 	2 + 1|(|n − 	2 + 2| + 1 + · · · + |n + 2| + 1)

andτ3 = |n−k−	−1|+ (|n−k−	+1|+ |n−	+1|)(|n−	+2|+1)+|n−	+3|+1+
· · ·+ |n+2|+1+ (|n−k−	+1|+ · · ·+ |n−	|)(|n−	+1|+ |n−	+4|+ · · ·+ |n+1|).

Taking into account the sign and organization of the intervals in a general summand
of the normalized expression ofDn

1 and Dn
2, it should be possible to obtain a general

expression of anyDn
r but this study exceeds the scope of this paper.

On the other hand, bearing in mind the expression at the cochain level of the Steenrod
power operationPk

p(c) wherec ∈ Zq(K , Zp), sincec is a q-cochain, we only consider
those summands in the normalized formula forDp

(q−2k)(p−1) with exactly 2k(p − 1) face
operators in each factor.

Since the explicit formulae for the Steenrod power operationsPk
p are given at the

cochain level, in order to design an algorithm for computing them at the cohomology
level, we first compute an explicit contraction( f, g, φ) from C∗(K ) to H∗(K ), K being
a simplicial set finite in each degree andZp being the ground ring. This contraction can
be constructed using the classical matrix algorithm (Munkres, 1984) based on reducing
certain matrices (corresponding to the differential at each degree) to their Smith normal
form (Gonzalez-Diaz and Real, 2003). The complexityof this method isO(M3) whereM
is the number of simplices ofK .

Since the ground ring is a field, then the homology and cohomology are isomorphic.
Moreover, if α is a generator ofhomology of degreeq, thenα∗ : Hq(K ) → Zp suchthat

α∗(β) =
{

0 if α �= β ∈ Hq(K )

1 if β = α,

is a generator of cohomology of degreeq. For fixed k, suppose that the normalized
description of the morphismDp

(q−2k)(p−1) obtained usingTheorem 3, and a contraction
( f, g, φ) from C∗(K ) to H∗(K ) using the algorithm described above, are given. Then, (9)
becomes at the cohomology level

Pk
p(α∗) =

u∑
j =1

R
(
µ(α∗ f )⊗pDp

(q−2k)(p−1)g(γ j )
)

· γ ∗
j

where{γ1, . . . , γu} is a basis ofHq+2k(p−1).
Summing up, we have designed an algorithm for computing any Steenrod reducedkth

powers on any class of cohomology for any locally finite simplicial set.
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