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Classification of obstructions for separation of
semialgebraic sets in dimension 3f,
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Abstract

Applying general results on separation of semialgebraic sets
and spaces of orderings, we produce a catalogue of all possible ge-
ometric obstructions for separation of 3-dimensional semialgebraic
sets and give some hints on how separation can be made decidable.

Introduction

In the last years different applications have shown the theory of spaces
of orderings to be a very useful tool for the study of semialgebraic sets.
Probably the best well known of them is the application of spaces of or-
derings to the question of determining the minimal number of functions
needed to describe semialgebraic sets, see [Bré3], [Sch}, [AnBréRz]. An-
other very important instance, which is our main concern in this note,
has to do with the problem of separation of semialgebraic sets. In both
cases the basic idea behind the scenes is that the theory of spaces of or-
derings allows to translate the geometrical problem into a combinatorial
one, since it reduces the question to deal with a finite space and a finite
number of functions.
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In particular, Brécker's characterization of separation (see [Bré2])
roughly states that two semialgebraic sets A, B in an algebraic variety
M cannot be separated by a polynomial if and only if there exists a
finite subspace X of the space of orderings of the field K of rational
functions of M, in which A and B cannot be separated. Moreover it
gives an upper bound for the chain length of that subspace so that we
actually have an upper bound for the number of elements of X. Since
the number of isomorphism classes of finite spaces of orderings with
bounded chain length and stability index is finite, we can even list (up
to isomorphism) all the spaces that must be tested in order to conclude
whether the separation of A and B is possible.

However, still an infinite number of subspaces exist for each isomor-
phism class and, also, spaces of orderings can be quite weird objects, so
that the question of deciding whether A and B can be separated is, at
this point, far away from being decidable.

On the other hand, in [AcBgFo|, without any reference to spaces of
orderings, there is a geometric criterion that characterizes the separation
of A and B when dim M = 3, in terms of the separation of their traces
or shadows on the walls (i.e., the irreducible components of the common
boundary) of A and B. This strongly suggests the possibility of working
recursively, lowering the dimension, so that one could give an algorithmic
answer to the separation problem.

The aim of this paper is to conciliate both approaches. On the one
hand we will show how to use the theory of spaces of orderings to prove
the quoted geometric criterion, as well as illustrate the geometry carried
by (or behind of) the spaces of orderings. On the other hand, closing
the loop, we will show how, in case A and B cannot be separated, the
geometric criterion produces finite spaces of orderings in which separa-
tion already fails. Thus we will produce a catalogue of all geometric
configurations that obstruct separation in three dimensional spaces.

The key point to extract geometric information from abstract spaces
of orderings is to consider a special class of them, which we call geo-
metric. Roughly speaking, these are spaces of orderings associated to
discrete valuations of K and therefore, after possibly blowing-up M ,
they are centered at geometric subvarieties. Moreover, geometric spaces
of orderings turn out to be dense among all spaces of orderings, so that
whatever we can decide by means of abstract spaces of orderings we can
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also decide by geometric ones.

One main purpose of this work is to be enlightening, specially for
those not familiar with spaces of orderings. That is the reason why we
restrict ourselves t6 dimension three, where geometrical intuition works
and pictures can be drawn. We also skip some proofs (which are often
rather complicated and technical) which will appear for arbitrary dimen-
sion in the forthcoming paper [AcAnBg]. In section 1 we recall briefly
the notions of spaces of orderings required to understand the paper, in-
tending to be as much down-to-earth as one can possibly be. In section
2 we prove the equivalence between Brocker's separation result in terms
of spaces of orderings and the geometric criterion of [AcBgFo]. Finally,
in section 3 we produce the announced catalogue of configurations that
give rise to non-separable semialgebraic sets.

1 Geometric spaces of orderings: some recalls
and definitions

Let K be a finitely generated extension of R of trascendence degree n,
that is, K is the field of rational functions K (M) of some irreducible
real algebraic variety M with dim M = n. We denote by Spec, K the
real spectrum of K, i.e., the space of orderings of K.

Given E C K* and Y C Spec, K, one can define

E' = {0 € Spec, K| f(¢) > 0, Vf € E}

Yi={feKk*|fle)>0,VoeY}= )0
ageY

if we identify ¢ with the cone of its positive elements. A subset ¥ C
Spec, K is called a subspace if it verifies Y1+ = ¥.

If we identify an ordering of Spec, K with the element of & =
Hom (G, Z3) which sends each function to its sign, Spec, K becomes an
abstract space of orderings in the sense of [Ma] (see alse [AnBréRz|) by
considering the couple (Spec, K, G) where G = K*/X, and ¥ represents
the set of sums of squares of K. Of course, a subspace Y of Spec, K is
also a subspace in the sense of [Ma}, namely, (¥, G/¥Y1).

Examples 1.1. Any singleton E = {¢}, ¢ being an ordering, is a
subspace which is called atomic. A set of 3 orderings {o1,02,03} is
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a subspace if and only if the product oy0203 is not an ordering of K
(which is mainly the case). if o4 = 10203 happens to be an ordering
then {¢1,02,03,04} is a finite subspace (in fact the subspace spanned by
o1,0%,03) which is called a {-element fan. More generally a finite fan
F is a finite subset such that F2 C F. Fans are very special subspaces.

Two operations are defined between abstract spaces of orderings to
build new ones.

(1) the sum: (Y1,G1)+ (Yo, G2) = (Y, G), where Y is the disjoint union
of Y1 and Yo, G = G; X Go and Y acts on G by

o1, g2) = c(g}ife et
91,92} = a(ge) ifo €Yy

(2) the estension: if H is a group which is a Zs—module the exten-
sion is defined as (X', G}[H] = (X' x H,G x H) where H =
Hom (H, Z3) and (o, h){g, h) = o(g) - h(h)

In the context of the space Spec, K of orderings of a field, the ad-
dition corresponds to the union of disjoint “independent”. families X,
X2 of orderings of K in the sense that (X;)* - (X2)* = K*. Extension
corresponds to consider the family of orderings compatible with a real
valuation and specializing to a given subspace X' of the residue field.
This is also called the pull-back of X' Fo]lowmg this idea, if X = X '[H]
is an extension and ¢ = (¢’,}) € X, 0’ € X', h € H, we will say that
o specializes to o', and we will refer to the fiber {0} x H as the set of
generizations of a'.

Now, the following fundamental theorem explains the structure of
finite spaces of orderings in terms of the operations just described.

Theorem 1.2. (Marshall, see [Ma], [AnBréRz, Theorem IV.5.1]) Any
finite space of orderings can be built in a unique way (up to isomorphism)
by @ finite sequence of sums end extensions, starting from a finite number
of atomic spaces.

Thus, to any finite space of orderings, we may attach a weighted tree,
constructed as follows.

(1) The bottom pointé of the tree (Le. points not connected to any
lower point) represent atomic spaces.
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(2) The sum X; + Xo is represented by the upper point of the tree
with two branches whose lower points stand for X; and Xs.

AN L

(3) The extension X |[ZT] is represented by the upper point of the
tree consisting of a vertical edge with weight m over the point
representing X; if m = 1, m is omitted.

Thus, for instance, the tree

corresponds to the space
(QE[ZZ"]) + E)Z57] + 2E)[Z3"

To any finite space X there are associated two invariants which can be
read directly from its tree:

(1) the stability indez s(X), which is the maximum of the sum of
weights along a path joining a bottom vertex to the top vertex
plus 1;
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(2) the chain length, which is the number of bottom points.

The key point about considering the trees of finite spaces of orderings
is that they allow us to work (either to define properties or to prove
them) by induction along the tree. The notion of geometric spaces of
orderings (GSO for short in the sequel), which is at the core of this
paper, is a nice example of it.

Definition 1.3. Let (X, ) be a finite subspace of Spec, K. We say
that it is geometric (or GSO for short) if:

(1) X is atomic, say X = {_a}, and the convex hull W, of R with
respect to o is a discrete valuation ring of rank n (remember that
dim M = n); or

(2) X is a sum (X,G) = (X1,G1) + (X9,G2) and both (X;,G;) and
(X2, G2) are geometric; or

(3) X is an extension (X,G) = (X1,G1)[H] of weight a and there is
a discrete valuation ring V of K of rank a (hence its residue field
kv is a finitely generated extension of R of dimension n —a), such
that (X1,G1) is a geometric subspace of Spec, ky and (X,G) is
the pull-back of (X),G;) by V.

For instance, a fan F C Spec, K is geometric if and only if, according

to the definition in [AnRz], it is centered at a real prime divisor.
Assume that X = X'[H] is a geometric space of orderings and let V
be the valuation associated to the extension so that X’ is a geometric
space of orderings of the residue field kyy. We can talk about the center
of X in M as the center of V, that is, the zero set M’ of the prime
ideal p = R(M) N DMy, where R(M) is the ring of regular functions on
M and My is the maximal ideal of V. In particular M’ has dimension
less than or equal to the trascendence degree of ky, and X’ induces (by
restriction) a space of orderings on M’, which may be smaller than X'.
" In general, if we denote by By the family of all valuation rings of K
compatible with some element of a geometric space of orderings X, it
follows from the definition that all the valuations of Bx are discrete and
with finitely generated residue field. Note that the definition of GSO is
given in terms of valuations and therefore it might happen that a GSO
is not realized in a particular model M. To be more precise, we say that
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a geometric subspace of orderings X is realized in an open semialgebraic
subset S of a model M of K if any 0 € X specializes in Spec, R(M)
through a chain of length n: o = 6 — 6 — | & oM = {z} € 5.
We have:

Proposition 1.4.

(a) Any finite space of orderings of stability index s is isomorphic to
a geometric subspace realized in an open semialgebraic subset S of
dimension 5 of a model M of K.

(b) Let X be a geometric space of orderings of K. Then there is a
compact model of K in which X is realized. 'Moreover, for any
compact model M of K there is a sequence of bloiuz'ngs-up of M,
My —= Mz 1 —...> Mo= M, such that X is realized in M,.

Proof. Part (a) is [Brol, Proposition 3.3]. For part (b) it is enough
to blow up M till a model in which all valuations (which are a finite

number) of By have a center of dimension equal to the dimension of
their residue field.

We consider the Harrison topology on the space Spec, K, ie., the
topology generated by the sets U(f) = {a € Spec, K;f >4 0}, where
fEK.

In a similar way as discrete valuation rings are proved to be dense in
the set of all valuations, we have the following density result for GSOs.

Theorem 1.5. Let K be o funclion field of dimension n and M a
compact model of K. Let X C Spec. K be a finite subspace with s ele-
ments. Then X can be arbitrarily approrimated in the Harrison topology
of (Specy K')? by a geometric subspace isomorphic to X.

Proof. {AcAnBg].

In other words, given a finite space of orderings X = {o1,...,0%}
and functions f;; such that for each i, fi;{0:) > 0, we can always find
a GS8O Y = {n,..., 7%} isomorphic to X and such that f;;(r;} > 0 for
each i. Roughly speaking, this implies that GSOs form a distinguished
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subclass of spaces of orderings that suffices to check properties defined
in terms of the whole collection of spaces of orderings and involving only
finitely many polynomials. This is the case for separation as we will see
below.

2 Spaces of Orderings and separation of Semi-
algebraic Sets

Now, fix a compact non-singular model M of K. Remember that we
have a tilde map which assigns to any semialgebraic set § C M the
constructible subset S C Spec, K defined by the same equations as S.
Two semialgebraic sets have the same tilde image if and only if they are
generically equal, i.e. they are equal up to a subset of codimension at
least one, {BoCoRy, Proposition 7.6.3]. Thus the study of constructible
subsets of Spec, K translates into generic properties of semialgebraic
sets, that is, what happens up to a set of smaller dimension.

Now, let A, B be disjoint open semialgebraic sets in M. For simplic-
ity, whenever no confusion is possible, we shall denote also by 4 and B
their tilde images in Spec, K.

We say that A and B are genericelly separable if there exist a proper
algebraic subset ¥ C M and a regular function f € R{M) such that

f(A\Y)>0 and f(B\Y)<0.

We say that A and B are separable if we can chose Y to be the set

AnB.
i.e., the smallest set it can be.

Now, a remarkable theorem of Bricker ([Bré2|, [AnBréRz] Theorem
IV.7.12) states that A and B are generically separable if and only if
their tildes are separable in all finite subspaces of orderings (with chain
length bounded, see below) of Spec, K. Using the density Theorem 1.5,

this result can be rewritten using only geometric spaces of orderings as
follows:;

Theorem 2.1. A and B are generically separable in M if and only if
for every geometric subspace of orderings X C Specy K of chain-length
<21 ANX and BN X are separable in X.
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Since any subspace of Spec, K has stabity index < n, there are only
a finite number of isomorphism types of spaces to be tested.

(2.2) Walls. Now, we are interested in' the possibility of testing the
separation in termis of the boundaries of A and B. To that end, we define
the walls of A and B as the irreducible (n — 1)-dimensional components
of the Zariski closure 84 - U8B ~ of the boundary of A and B. From
now on we assume that all the walls of A and B are normal crossing
and non-singular (which can always be achieved by desingularization).
Under this assumption separation and generic separation coincide.

Then, the main idea here is that A and B can be separated if and
only if they can be separated in a neighbourhood of each wall. This can
be seen from a pure geometric point of view by means of Lojasiewicz’s
inequality (see [AcBgFo]), or as an application of Theorem 1.5 above.
Indeed, suppose that A and B cannot be separated. Then, there exists
a finite geometric space of orderings X in which A and B cannot be
separated. Take it with #(X) minimal. Then, taking into account that
if X = X1 + X2 then A and B can be separated in X if and only if
they can be separated in X; and X9, the minimality hypothesis implies
that X is an extension X = X'[Z2] and we may assume (up to some
blowings-up)} that X is centered at a hypersurface W (in other words,
X'"is a GSO of W).

We claim that W is a wall. For let A’, B’ be the set of specializations
of A and B to X'. First note that A’ and B’ cannot be separated, since
otherwise A and B could be separated in X. Now, if W is not a wall
then for any o' € A’ U B’ the two generizations of o/"in X would lie
both either in A or B. But then X’ x {1}, where we write Zy = {1,i},
is a subspace of X in which A and B cannot be separated (since the
projection defines an isomorphism onte X ' taking A and B to A’ and
B/ respectively). This contradicts the minimality of X and we are done.

(2.3) Shadows and counter-shadows. Next we want to characterize
the separation of A and B in terms of their shadows on the walls. To
be precise, we define the shedows of A and B on a wall W as the sets
Int(ANW) and Int(BNW). Note that if X = X'[Zo] is 8 GSO centered
at a wall W, the shadows of A and B correspond to the specializations
A' and B’ of A and B, respectively, in X’. As explained above, if all the
shadows can be separated, then A and B can be separated. However
the converse is not true as the following simple example shows: take
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A={z>0,y+1>0} and B={z < 0,1l —y > 0}. Their shadows
in z = 0 cannot be separated, but the function =z separates A from
B. To control this phenomenon we introduce the following device: for
each wall W consider a polynomial gy which changes its sign across W,
for instance a generator of the ideal Z(W )R(M)z(w), and consider the
semialgebraic sets

Agw = (ANn{gw > 0}) U (BN {gw < 0})
Bgw = (AN {gw < 0}) U (B n{gw > 0})

It is easy to verify that A and B are generically separated if and only if
the same is true for Ay, and Bg,,. Thus, we define the counter-shadows
of A and B in W as the shadows of the sets Ag, and B,,.

The corresponding notion in the context of geometric spaces of order-
ings of the form X = X'[Z1] can be defined by taking as counter-shadows
the specializations to X' of the sets:

‘= (AN(X' x (1IN U (BN X x{i})
B*=(An(X'x {i))u (BN (X' x {1}))

The nice thing about the counter-shadows is that one can prove that
A and B are separable in X = X'[Z,] if and only if either their shadows
or their counter-shadows are separable in X’. In particular, if A and
B are open disjoint semialgebraic subsets of M and W is a wall, their
tildes A and B are not separated in X'|Zs)], X' = Spec, K (W), if and
only if neither the shadows nor the counter-shadows of A and B in W
are separable. This yields to the following resulit:

Theorem 2 4. (Separation criterion) Let A and B be as above: Y =
A UAB” has non- singular irreducible components which are normal
crossings. Then A and B can be separated if, and only if, for every
wall W C Y either the shadows or the counter-shadows of A and B are
separable in W.

Proof. A purely geometric proof in dimension 3 can be found in
{AcBgFo|]. Here we just outline the proof of the general case, which
will appear in [AcAnBg]. Assume that A and B are not separable.
Then, by Theorem 2.1, we find a finite GSO X in which A and B can-
not be separated. Moreover, if we take #(X) minimal we may assume
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that X = X'[Z5) and X' is a GSO at some wall W', possibly after some
blowings-up. Now, neither the shadows nor the counter-shadows of A
and B are separable in X, which implies that neither the shadows nor
the counter-shadows of A and B in W are separable. Finally, since the
walls were already at normal crossings, we can trace back the blowings-
up to get an original wall W where also neither the shadows nor the
counter-shadows are separable.

Conversely, if W is a wall ip which neither the shadows nor the
counter-shadows are separable then A and B are not separablein X'[Z],
X' = Spec, K(W), which in particular implies that A and B are not
separable,

Remark 2.5. In the next section we will see how to construct ex-
plicitely, from a wall in which the separation criterion fails, a GSO in
which the separation of A and B is not possible.

As a consequence of the separation criterion we get

Theorem 2.8. The separation problem is decidable.

Proof. Again we refer to [AcAnBg] for a complete proof. The main
ideas behind are: given A and B, first desingularize the walls to make
them normal crossings (this can be done in a constructive way, see
[BiMi]}; then apply the criterion to lower the dimension. After a finite
number of steps we are in dimension 1 where two open semialgebraic
sets are separable if and only if they are disjoint. Also, one can stop in
dimension 2 and apply the arguments and algorithms in [AcBgVe| and
[Ve].

3 Catalogue of 3-dimensional non-separable
configurations
In this section we will apply the above results to produce a catalogue

of all configurations that make impossible the separation of two open
semialgebraic subsets of a non-singular 3—dimensional variety.
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Let A and B be two open disjoint semialgebraic subsets of M,
dim M = 3. We assume M to be compact, non-singular and the compo-
nents of ¥ = 9A- UBB - be non-singular normal crossings. We know
from Theorem 2.1 that separation of A and B is possible if and only if it
is so in all finite geometric spaces of orderings of Spec, K ‘of chain length
< 4. Thus, we may produce (and in fact it is a good exercise to do it)
a complete list of all possible trees of spaces with chain length < 4 and
stability < 3, and check in every one the possible configurations of A and
B which cannot be separated. Rather than doing it here (which might
be very tedious) we will use the geometric criterion to find all minimal
geometric spaces of orderings X and the configurations of A and B in
them which are not separable. In particular note that X being minimal
we are resiricted to extensions.

Recall that by the ultrafilter theorem, cf. [Bro3], orderings coincide.
with ultrafilters of open semialgebraic sets, so that, as it is becoming
customary, we will depict the orderings as small parallelepipeds in M
(we use cubes in the three space). This way o € A means that A con-
tains the parallelepiped corresponding to o. Moreover, to keep a graphic
image in mind, we will asign the white color to the set A and the black
to B, and our discussion will always be up to reversing colors, that is,
reversing the roles of A and B. Also we will look for the “essentially
different” configurations in the following sense: given a non-separable
configuration, in a space X, its image by any automorphism of X pro-
duces another one which is also non-separable and which will be consid-
ered equivalent to the previous one, so that our description will be up
to isomorphism. However we will not enter into the precise description
of all isomorphisms of X. Let us just say that since we will be dealing
with extensions X = X'[Z2], where X' is a geometric space defined in a
wall W, we will consider the automorphism group Aut(X’) x Aut(Zy),
that is, either automorphims of X’ or compositions of them with the
automorphism of X consisting in turning it up-side down, which geo-
metrically corresponds to take the “symmetry” with respect to W.

We start by recalling that in the two—dimensional case, Theorem 2.1
just says that A and B are separable if and only they are so in any
finite geometric subspace of orderings of chain length < 2. Since spaces
of orderings of chain length 2 are fans and the stability index is < 2,
we have that A and B are separable if and only if they are so in any
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geometric 4-element fan of the surface. Now, if the components of the
border of A U B are normal crossings, these fans can be taken centered
at a curve, and will be depicted as in Figure 3.1 (in fact the height of the
rectangles should be infinitesimal with respect to the width, but that is
irrelevant in our context).

Fig. 3.1 Fig. 3.2

Thus, the only configuration for disjoint A and B so that they cannot
be separated consists of three of the elements being in A (white) and
the fourth in B (black) or viceversa, so that, up to isomorphism and
reversing colors, we get the pattern of Figure 3.2 above. Note in this
case the automorphism group of F is the Klein group generated by the
two symmetries with respect to the = and y axis, which move the black
square to any position.

Let us turn to the 3—dimensional case. Take A and B as in the
statement of Theorem 2.4, and assume that they are not separable.
Applying Theorem 2.4, this means that there is a wall W in which
neither the shadows A’ and B’ nor the counter—-shadows A” and B” can
be separated. We will distinguish several cases, but before entering into
their discussion we need to introduce one more convention. Consider
the wall W (represented by a plane) and fix a generator g for I(W),
so that we may talk (at least in a Zariski open subset of M) of the
positive half-space and the negative half-space defined by W (where the
equation is positive and negative respectively). We will also depict in
white the sets A’ and A”, and in black the sets B and B”. The spaces
we are to construct are extensions of subspaces of Spec, K (W), so that
all configurations will consist of cubes (white and black) with one face
on W.

We know from 2.3 that given a non—separable configuration for A and
B, the sets Ay and B, give another non-separable configuration. Now,
Ag and By are produced by reversing colors in the negative halfspace of
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W, that is, turning the white cubes in the negative halfspace of W into
black, and the black cubes in the negative halfspace of W into white. We
will denote this operation of reversing colors in the negative halfspace
as chess-coloring. Thus, we say that two configurations are eguivalent if
one can be obtained from the other by a sequence of automorphisms and
chess-coloring, and we will determine all minimal configurations which
obstruct separation up to equivalence.

Now, consider in W a pattern like the one shown in figure 3.2 corre-
sponding to a fan F centered at curve v with three white and one black
element which cannot be separated and which represents the shadows
A’ and B'. Thus, a minimal configuration of 4 and B producing these
shadows is obtained by considering 4 elements (cubes) in the extension
F|Z5), three white (i.e. in A) and one black (i.e. in B) projecting onto
A’ and B', respectively. Moreover, each of these cubes can be in any
of its two possible positions. We will call any of these configurations a
shadows—cube. Thus, we have a total of 16 possible configurations for the
shadows—cube. Since for each of them also its symmetric with respect
to W belongs to the family, they reduce to 8 up to isomorphism. The
following picture depicts four of them wich will be of special relevance
later. The other four appear in Figures 3.6 and 3.7 below:

AL

Consider now the chess-colored configuration of a shadows—cube. Notice
that it produces as counter—shadows in W the shadows of the original
one, where now the white squares stand for A” and the black one for
- B”. This way we get the 16 possible configurations (8 after equivalence)
for the counter-shadows-cube over the given 3 white, 1 black pattern on
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the fan F as counter-shadows. Picture 3.4 below represents the chess-

colored configurations of the ones of Figure 3.3.
¥
w

/.:

Fig. 3.4

Note that, differently to what happens in the shadows—cubes, where we
always have three elements in A and only one in B, in the counter—
shadows-cubes we may have any number of elements (from zero to four)
in A and B. Our job will basically consist in combining these “elemen-
tary” shadows and counter-shadows—cubes.

We are now ready for the discussion of the 3—dimensional case. Recall
that we have a wall W in which neither the shadows A’ and B’ nor the
counter-shadows A” and B” can be separated. We distinguish several
cases.

Case 3.1 A'NB #£0, A"NnB" £0.

Take ' € A’N B’ and ¢"” € A" N B". Since AN B = §, we get that
o' # o" and we have a configuration of the type

[ —
Y

Fig. 3.5

where the pair of adjacent white cubes lie over o and the white and
black pair lie over o’. This corresponds to a 4-element fan of M centered
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at W. As was pointed out before, its antomorphism group is the Klein
group generated by the symmetry with respet to W and the one which
interchanges de roles of ¢’ and ¢” and therefore this configuration is
unique up to equivalence.

Case 3.2 A'NnB' =0, A"nB"#0.

Since the boundaries of A’ and B’ are normal crossing, there is a
geometric 4-element fan F in W, centered at a curve v, in which A’ and
B’ cannot be separated. Assume that on W we have a configuration
for A’ and B’ as in Figure 3.2. Then 4 must be in the intersection of
W with another wall T of A and B which we depict as an orthogonal
surface to W. Then one of the 8 (up to isomorphism) configurations of
the shadows—cube must be contained in AU B. Let us take a closer look
at some of them.

Note that when the two pairs of adjacent cubes are in the same side
of W, cf. Figure 3.6 below, they produce a 4-element fan of M as the
one already considered in Case 3.1, see Figure 3.5, but this time centered
at the vertical wall T

Fig. 3.6

Therefore we discard these two cases, which reduces to 6 the number of
non-isomorphic configurations to be considered. Next, when the pairs of
adjacent cubes are “symmetrically” displayed with respect to the curve
v, cf. Figure 3.7 below, they also build a geometric 4-element fan of
M (this time centered at v) in which separation is not possible, so that
no further work is needed. In fact, notice that in this case taking the
counter-shadows we get also that, in the fan F on W, A” and B” are
not separable and A” N B” = §. Thus, we are in the situation (3.4.1)
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below and we also discard these configurations here.

| 45 i

Fig. 3.7

Altogether (always up to isomorphism) we are reduced to consider the 4
possible configurations for the shadows—cube shown in Figure 3.3 above.
Now take & geometric ordering o’ € A” N B" such that ¢” ¢ F, which
is always possible since A” N B" is an open set: just take any ordering
centered at a point not in the curve v. Since ¢” € A” N B, its two
generizations in Spec, K are both in 4 or both in B. Now, the minimum
geometric space 6f orderings of W which contains {¢”} and F is the sum
{¢"} + F, and we may combine independently the patterns over each
summand in the extension X = ({¢'} + F)[Z3] whose structural tree is
shown in Figure 3.12 a) below. Moreover, the automorphism group of
X is generated by the one of F and the up-side down symmetry on X,
so that we get 8 possible non-separable minimal configurations obtained
by combining each of the 4 configurations of Figure 3.3-with a pair of
white or black boxes over ¢”. The figure 3.8 below just shows these
combinations for the first pattern of Figure 3.3.

' w

Fig. 3.8
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Case 3.3 A'NB' #0, AN B"= .
This case is precisely the chess-colored version of the previous one.
Thus, we get the 8 chess—colored configurations of the ones in Case 3.2.

Case 3.4 A'NB' =0, AN B" = .

Note that in particular this implies that over any ordering o’ €
Specy K (W) there is at most one generization in A U B. Now, as above,
there are geometric 4-element fans Fy and Fo in W such that A’ and B’
cannot be separated in F; and A” and B” cannot be separated in Fb.
Let «; be the curve at which F; is centered. We have to deal simulta-
neously with a shadows-cube (which produces the shadows A’ and B’
on F1) and one of its chess-colored configurations (which produces the
counter—shadows A” and B” on F3). We distinguish several subcases:

(3.4.1) FL=Fy=F

Here we get one of the configurations described in Figure 3.7 in which the
adjacent blocks of the shadows—cube over F' are symmetrically displayed
with respect to 4. Notice that strictly speaking these configurations are
not equivalent since they lie in different geometric 4-element fans so
that they cannot be automorphic images of each other. However there
is an isomorphism between both fans taking one to the other. Note also
that these fans are centered at the curve v instead of at the wall W, and
therefore are not extensions of a space centered at W. If we want them
to be centered at a wall we must blow—up M, retrieving the patterns of
Figure 3.6. Alternatively we may see them as subfans of the 8-element
fan F{Zo]; centered at W.

(3.4.2) Fy # Fp but Fy N F # 0.

Then v; = v and F; N F7 is a trivial fan with 2—elements so that in W
we have, for instance, patterns like

/“*// /
//ﬁB//A/

Fig. 3.9
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Since any ordering ¢’ € Spec, K (W) has at most one generization in
AUB, this forces the configurations over I} and Fy to share their building
block over Fy) N Fo. The pictures below give an example over each one
of the patterns of Figure 3.9. The four cubes on the left stand for the
shadows—cube while the four on the right are the counter-shadows one.

'

Fig. 3.10

A direct and easy inspection shows that we always get a configuration
which actually includes either a 4—element fan centered at the wall T
(cf. Figure 3.5 above) or a symmetric configuration along « as the one
considered in (3.4.1). Therefore this case does not produce any new
minimal configuration.

(3.4.3) i NFy =0 but Fy UFy # Fy + Fa.

This means that the orderings of F; and Fy are not independent, which
implies that ¥; = v5. Thus in W we have a pattern of the type:

224

Fig. 3.11

An easy computation shows again that this case is redundant, since, for

instance, we can replace one of the Fy’s so that we are in the case just
treated in (3.4.2).

(3.4.4) iNFo=0and FLUF; = F) + Fa.
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In particular this implies that v; and ~5 are different and the configura-
tions over F; and Fo can be combined independently. Thus, we are in
the space X = (Fy + Fa){Z2] with structural tree as in Figure 3.12 b)

Fig. 3.12a) Fig. 3.12b)

and whose automorphism group is generated by the ones of F), Fy, the
up-side down symmetry and the “symmetry” which interchanges F and
F2 (the symmetry along the axis of the tree). Thus, up to equivalence
we get the 16 configurations obtained by combining the 4 patterns of the
shadows-cubes with their 4 chess—colored ones. The following picture
just shows some examples of them. Moreover, note that if we chess—color
one of these 16 configurations, we get another one of the family, up to
change the roles of F; and Fz. Thus, up to equivalence we only get 8
different configurations in X.

........

Fig. 3.13
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Altogether we get 19 essential configurations, which we summarize
in the following

Proposition 3.5. Up to equivalence and reversing the roles of A and B,
A and B cannot be separated if and only for some wall W they contain
one the following configurations in the corresponding GSO:

i) the one of Case 3.1 (Fig. 8.5); here the GSO is the {-element fan
QE[ZQI.

it) the 8 of Case 2.2 (Fig. 3.8); here the GSO is (F + E)[Z2] =
(2E[Z3) + E)|Za.

#i) the two of Case 3.4.1 (Fig. 8.7); here the GSOs are {-element fans
2E|ZJ).

iv) the 8 of Case 3.4.4 (fig. 3.13); here the GSO is (Fy + F2)[Zy] =
(2E(Z2] + 2E{Z2})[Z2].-

Remark 3.6. a) Note that in Case 3.2, sometimes it might be possible
to take o” € F, getting a space X with smaller cardinal in which the
separation is not possible. In this situation X = F[Zg], the fan of 8-
elements, and we get apparently different patterns, as the ones shown
in Figure 3.14. However, this case produces a 4—element fan centered at
the vertical wall T and therefore is not minimal.

&iy i

Fig. 3.14

b) Also note that in Case 3.2, if we do not take ¢” independent
from F (for instance we take " specializing to the same curve ¥), then
the minimal subspace containing F and ¢” is not their union, but has a
sixth element: the "symmetric” order to o” with respect to 4. The space
spanned by F and o is the union of two non-disjoint 4-element fans of
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W which has structural tree 3E|Zs|. Geometrically this corresponds to
place the pair of cubes in 4 or B over " attached also to the curve ~,
getting the different versions of Brocker’s example of basic semialgebraic
sets in a 3-dimensional space which cannot be separated, see [Bro2).
Again, this space is not minimal, since it is always possible to take
o” € A" N B" which does not specialize to the curve v. Thus this
situation is already included in the ones considered above.
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