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Multivariate Sturm—Habicht sequences: real
root counting on n-rectangles and triangles.

Laureano GONZALEZ-VEGA® and Guadalupe TRUJILLO!

Abstract

The main purpose of this note is to show how Sturm—Habicht
Sequence can be generalized to the multivariate case and used to
compute the number of real solutions of a polynomial system of
equations with a finite number of complex solutions. Using the
same techniques, some formulae counting the number of real solu-
tions of such polynomial systems of equations inside n—dimensional
rectangles or triangles in the plane are presented.

Sturm-Habicht Sequence is one of the tools that Computational Real Al-
gebraic Geometry provides to deal with the problem of computing the
number of real roots of an univariate polynomial in Z[z] with good spe-
cialization properties and controlled complexity (see [GLRR123]). The
purpose of this note is to show how Sturm—Habicht Sequence can be eas-
ily generalized to the multivariate case and used to compute the number
of real solutions of a polynomial system of equations with a finite num-
ber of complex solutions. Using the same technics it will be showed how
to count real solutions of such polynomials systems of equations inside
n-dimensional rectangles or in triangles in the plane. These counting
algorithms will work only when.the considered polynomial system of
equations has a finite number of complex solutions.
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The paper is divided in two sections. In the first one, the defini-
tions and main properties of Sturm—Habicht Sequence are showed and
the second one is devoted to present the notion of Multivariate Sturm-
Habicht Sequence and to present how it can be used to deal with the
Real Root Counting Problem. The main tool to achieve this goal is the
generalization of the “Volume Function” introduced in [Milne] which is
based in the early work of C. Hermite on this topic (see {Hermite] and
[KN]). Similar formulae to the ones to be presented in the second section
were also obtained in {Pedersen].

Sturm—-Habicht Sequence

Let K be an ordered field and IF a real-closed field with i € F. This
section is devoted to introduce the main properties of Sturm-Habicht
Sequence to be used in what follows. The proof of the theorems quoted

in this section, related to properties of Sturm—Habicht sequence, can be
found in [GLRR:[,Q,;}].

Definition. Let P be a polynomial in K|z} with p = deg{P). If we
write
k(k+1)

bp=1(-1)"2

for every integer k, the. Sturm-Habicht sequence associated to P is de-
fined as the list of polynomials {StHa;(P)};=0,.. p where StHap(P) =
P, StHa, 1(P) = P’ and for every j € {0,...,p — 2}:

StHa;(P) = bp_j_1Sres;(P, P')

where Sres;(P, P') denotes the subresultant of index j for P and P’.
For every j in {0,...,p} the principal j-th Sturm-Habicht coéfficient,
stha;(P), is defined as the coefficient of z7 in StHaj;(P).

Next definitions introduce several sign counting functions that we
shall use to relate the polynomials in the Sturm-Habicht Sequence of P
with the number of real roots of P in an open interval.

Definition. Let {ag,e1,...,an} be a list of non zero elements in IF.
We define:

e V({ag,a1,...,an}) as the number of sign variations in the list

{@0,81,...,an}, that is the number of consecutive signs {+, —} or

{_7 +}?
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o P({ap,a1,--.,an}) as the number of sign permanences in the list
{ag, a1,...,a,}, that is the number of consecutive signs{+,+} or

{—’ _}'
Definition. Let P be a polynomial in K{z| and « € F with P(a) # 0.

We define the integer number Wgina(P;a) in the following way:

e we construct a list of polynomials {gg, ..., g;} in K |[z] obtained by
deleting the polynomials identically 0 from {StHa;{P)};=0,..p,

o Wgia(P;a) is the number of sign variations in the list
{go(e), ..., gs(a)} using the following rules for the groups of 0’s:

* we count 1 sign variation for the groups:
[_! 0! +]! {+s 0$ _]s [+1 Oa 0= _] and [_’ 0) 01 +]
* we count 2 sign variations for the groups:

[+1 01 0! +] and [__! 01 03 "]

The Sturm-Habicht Structure Theorem (see {GLRR3])) implies that
it is not possible to find more than two consecutive zeros in the sequence
{g90{e), ..., gs(a)} and that the sign sequences [+, 0, +], [-, 0, ~] can not
appear.

Definition. Let P be a polynomial in K[z} and a,8 € F with a < 8.
We define

Wsina(P:a, 8) = Wgina(P; a) — Wsina(P; )

Next theorem shows how to use the Sturm—Habicht sequence of P
and the function Wgiy. to compute the number of real roots of P inside
an open interval.

Theorem. Let P be a polynomial in K[r| and a,8 € F with o <
and P(a)P(8) # 0. Then:

wStﬁa(P;a» ,6) = #({7 € (a! ﬂ) : P(7) = 0})
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This section is finished showing how to use Sturm-Habicht sequence
to compute the total number of real roots (in F) of a polynomial in
K|[z]. First the definition of a new sign counting function is introduced.

Definition. Let ag,ay,...,a, be elements in F with ag # 0 and we
suppose that we have the following distribution of zeros:

{GO, ai, .- -1‘11'1} -
ky
N —
= {a'Oa'--7a'i1:01'--107ail+k1+1a---1
ka ke
S ~—
@ig, 0, .., 0, @44 ky 415+ -, G4, 0y oL 20 @4 14k i 41,0504, 0,...,0

where all the a;’s that have been written are not 0. We define ip+ko+1 =
0 and:

i
C({ao, L3 PR a"ﬂ-}) = Z(P({a‘ia—1+ka—1+lv IERE aia})
8=1

t—1
—-v({ais—l‘*'k.ml"f'l? reny ai,})) + ZE{.
§=1

where:
0 if kg is odd

Eis =

(—1)%"sign(i‘ﬂ$’='i') if k, is even
Theorem. If P is a polynomial in K[z] with p = deg(P) then:

C({sthay(P),...,sthao(P)}) = #({y € F : P(y) = 0})

Volume Functions and Real Root Counting

Let K C F C L be a field extension with K ordered, I real closed
and L algebraically closed. If J is a zero dimensional idesl in IK|z] =
Klzi,...,zq] and Vi, (7) = {Ay,...,A,} is the set of zeroes in L™ of J,
the main questions to be considered in this section are the computation
of the number of A;'s in F™ and the number of A;’s inside a prescribed
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n-dimensional rectangle in ™. The main tool to solve these two Real
Root Counting Problems will be the Volume Function which is presented
in the next definition. The term “Volume Function” was introduced by
P. Milne in [Milne] in order to compute the number of real solutions of
J inside a prescribed n-dimensional rectangle.

Definition. Let ¢ be a polynomial in K[z, y] = K{z1,...,Tn, y1,- .-, ¥n]-
The volume function associated to £ and J is the polynomial in K[U, y|
defined by the following equality:

Ve Uy = [l (U-ay)
AEVL()

where, in the previous product, the multiplicities are taken into account.

Clearly, if D is the dimension of K[z]/J as K-vector space (ie the
sum of the A;’s multiplicities) then the degree of V¢ s, as polynomial in
U, is equal to D. The Volume Function V;j can be determined by com-
puting a lexicographic Grobner Bases of (J, U — £(z,y)) by considering
any monomial ordering verifying x > y > U. Another more efficient way
is based on the using of any Grobner Bases of J to compute the traces
of the powers of #(z,y) (with respect the extension K C K|[zl/J),

Trace((f(g:_,g)k)z Z f(AaE)k
Aevy ()

and, in the application of the Newton Identities to recover the coefficients
of V¢ 5. Next theorem shows how the Volume Function is useful for the
Real Root Counting Problem.

Theorem. Let a be a point in F™ and £ a polynomial in K|z, y| veri-
fying that '

itk <= C(Aj,g) # Z(Ak, g_)
Then the number of real solutions of J (solutions in F") is equal to the
number of real roots (roots in IF ) of V¢ 4(U, a):

#(Vr (7)) = C({stha;(V,,s(U, e)) }o<j<D)
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Proof. The proof is very easy since the condition imposed to £ and g
allows to assure that there are no solutions of J, A, in L™ — F™ making
£(A, a) an element of F:

C({stha;j(Vs(U,a))}ocjcp) = #({B € F : Vo 5(8,a) = 0}) =
=#({BeF :3i B=1{(As0)})=#VF(J))+
+#({A; e L™ —~F":¢(A;,0) € F}) = #(VF(J))

as we wanted to show.

The previous condition on £ and g can be replaced by the following
two conditions described only in terms of the real solutions:

AA €eVR(J) A#A <= A0) # A\ a)
AeVp(J) = {Aa)eF

In general, the quantity C({stha;(V, ;(U, a))}o<j<p) provides an upper
bound for the number of real solutions. Next proposition shows how the
Sturm-Habicht principal coefficients of V, ;(U, 2)‘ are related to £ and
the zeros of J,

Proposition. Let ¢ be a polynomial in K|z,y|. Then, for every j in
{0,..., D} the following identity holds:

stha;(Ve (U, y)) = Z H (£(As,y) — (A, ¥))
PE(IDJ_—J']) s<tel

where [D] = {1,...,D} and ([?]) denotes the set of all the subsets in
|D] with j elements.

Proof. It is enough to apply the explicit description of Sturm-Habicht
principal coeflicients in terms of the roots of the polynomial Ves(U,y)
(as presented in [GLRR3)).
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In the case of one variable, J = (P(z)), and using £(z,y) = y — =,
the Sturm-Habicht principal coefficients of V¢ 7(U,y) are exactly the
Sturm-Habicht principal coefficients of P(z). Thus, it seems natural to
call “£-Multivariate Sturm-Habicht Sequence” the Sturm-Habicht Se-
quence of Vy j(U,y) (with respect U).

The “Volume Function” used by P. Milne in [Milne] to compute the
number of real solutions of J inside a prescribed n-dimensional rectangle
was;

ez, y) = [](ws — =)
=1

Next theorem shows how to use the Volume Function associated to this
concrete £, to deal with such problem but avoiding any assumption on
V¢ in [Milne] the same result is proven but under the additional
hypothesis that the Sturm sequence of V¢ ;(U, y) and its derivative with
respect U must be normal (the degrees in the considered Sturm sequence
decrease one by one).

Theorem. Let
n
R = H[ai, bi|, ai < by

=1

be a n-dimensional rectangle in IF™ and
n
£z, y) = [[@w — =5
=1

verifying the following conditions. with respect the set Vg (J):

e there are no points of Vg (J) on any hyperplane in F™ containing
a face of R,

x if v1,...,uy (N = 2") are the vertices of R then for any i €
{1,...,N}:

i#Fk = LA;v)# LAk, vi)

If we denote
sfvi) = WaHa{Ve,a(U, w); —oc, 0}
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then the following equality holds:

N

#(VE(J)OR) = Eﬁ-l: 3 (= 1) %ol

i=1

where:
e R — I
(=1)% = (_1)#('!:’) a ; "l — ag
Ty=-vy n) — Z_
-Erb'l;a-k

Proof. For simplicity the proof is done for the case n = 2. The general

case follows exactly the same strategy. Let A; (1 < i < 9) be one of the

nine open regions in IF2 determined by the lines z) = a1, z1 = b1, z2 =

ag and zg = b (ordered from the most negative to the most positive),
Ar Ag Ag

Ay Ag Ag

Al Ag As
B; = #(V]F(J) ﬂA,-) and F{Ui] = #({A € VL(J) - IF2 : E(A,U.i) < 0}),

for any vertex v;. Then the value of s{(a1, az)] can be described in the
following terms:

s[(a1, a2)] = Wsina(Ve,s(U, a1, a2); —00,0) =
= #({ﬂ eF: Vf,J(ﬂ, ai, 0'2) = 0,,6 < 0}) =
= #({ﬁ eF:3A ¢ vL(‘I),ﬁ = C(A,alaﬂz)aﬁ < 0}) =
=#({A € VL(J) : £(A, a1,a2) < 0}) =
=#({A € Vr(J): £(A,a1,a2) < 0})+
+#{A e VL(J) — F2: 4(A,a3,a9) < 0}) =
= Ba + B3 + B4 + Br + I'[(a1, a2)]

In the same way, the following equalities are obtained:

s[(e1,b2)] = By + B + Bs + Bs + Br + ['{(a1, b2)]
s[(br,a2)} = Ba+ B4+ Bs + By + Bg + T'[(b, a2)]
Sl(bl, b2)] = B3 -+ BG + B7 + BS + F[(bh 52)]
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The condition imposed to £ in (x) allows to assure that there are no
solutions of J, A, in L™ — F™ making £(A,v;) less than zero (ie an
element in F) and thus I'y;] = 0 (1 <4 < 4). Thus solving the linear
system of equations

s{(a1,a2)] = B2 + B3+ Ba+ Br
s{(a1,b2)] = Bo+ Ba+ Bs+ Bg+ By
3[(51, a.g)] = Bs + Bs+ Bs+ Br + Bg
s((b1,b2)] = Ba+ Bg+ Br + Bs

for Bg, it is obtained that:

By = 5 (sl(a,b2)] — sl(ax, az)] + sl(b1, )] — s{(o1,ba))

as we wanted to show,
[ ]

The section is finished by showing how the Multivariate Sturm—
Habicht Sequence can be used to determine the number of real solutions
of a polynomial system of equations inside a triangle in the plane. Sim-
ilar formulae can be derived for simplices but for sake of simplicity only
the case of the triangle in the plane is presented.

Theorem. Let T be a K—triangle in F2 with vertices v1, v2 and v3
and Hi(z1,z2) (i € {1,2,3}) the equation of the line defined by v; and
vg with Hy(vi) < 0. Let ¢ be the polynomial in K|z, y]

£z, y) = Hi(z)Ho(z)Ha(y) + Hi(z)Ho(y) Ha(z) + Hi(y) Ho(z) Ha(z)
verifying the following conditions with respect the set Vg (J):

e there is no points of Vg(J) on any line in F? containing an edge
- of T,

= forany i € {1,2,3}:

iFk = UAj i) # Dy, vi)

If we note
s[vi] = WeiHa(Vie,7(U, vi); —00, 0}
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then the following equality holds:

stort =+t +—stost—=5

#Vr()NT) = :

where S is the cardinal of Vi (J):

S = C({stha;(V, s(U, v1)) }o<j<pn)

Proof. Let A; (1 < i < 7) be one of the seven open regions in IF?
determined by the lines H; = 0, Hy = 0 and H3 =0

Ai=[H1>0,Ho<0,H3>0] Ag=[H,>0,H; <0, H3 < 0]
As=[H1>0,H;>0,H3< 0] Ay=|H  <0,Hy<0,Hs> 0
Ag=[H1 <0, Ho < 0,Hy < 0] Ag=|[H1<0,Hy>0,H3<0)

A7 =|H1 < 0,Hs > 0, Hz > 0]

and B; = #(Vp(J) N'4;). Then the assumptions (e) and (x) allow to
describe the integers s{v;] in the following way:

slvi)]) = Ba+ Bs + By
slve] = B1 + Bs + Bsg
slvs) = B3 + B4+ Bs

Adding these three equations, the following equality is obtained:
slo1] + slvo} + slva] =2Bs + S
as desired since By = #£(Vg (J) N T).

One important advantage of the previous two theorems is found in
the fact that once the £-Multivariate Sturm-Habicht Sequence is deter-
mined then it can be used for solving the Real Root Counting Problem in
any n-rectangle or triangle satisfying the regularity hypothesis in such
theorems. In contrast to the formulae in [Pedersen), these two theo-
rems do not require computing a characteristic polynomial and, once
the “Volume Function” is determined, the complexity of the computa-
tions is quadratic in D.
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