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Abstract

Let V be a paracompact connected real analytic manifold of
dimension 1 or 2, i.e. a smooth curve or surface. We consider
it as a subset of some complex analytic manifold Vg of the same
dimension. Moreover by a prime divisor of V we shall mean the
irreducible germ along V of & codimension one subvariety of Vg
which is an invariant of the complex conjugation. This notion
is independent of the choice of the complexification Vg. In the
one-dimensional case prime divisors are just points, in the two-
dimensional - analytic curves or elliptic points (intersections of two
conjugated complex analytic curves). Every such divisor induces a
discrete valuation on the field M of meromorphic functions on V -
the order of the zero or minus the order of the pole of the function.
Therefore it induces the so called residue homomorphisms (first
and second) of the Witt group of the field M to the Witt group
of the residue field - the function field of the divisor.

The main goal of this paper is to show that the intersection of
kernels of all second residue homomorphisms associated to prime
divisors is isomorphic to the Witt group of the Riemannian bundles
onV.

As an example of an application of this result we provide the
new proof of the Artin-Lang property for one and two dimensional
real analytic manifolds (both compact and noncompact), which
is neither based on the description of all posible orderings of the
field of meromorphic functions nor on the compactification of the
variety.
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1 Introduction

Let V be a paracompact connected real analytic manifold of dimension
1 or 2, i.e. 8 smooth curve or surface. We consider it as a subset of
_some complex analytic manifold Vg of the same dimension. Moreover
by a prime divisor of V we shall mean an irreducible germ of codimen-
sion one subvariety of V¢ along V which is invariant under the complex
conjugation. This notion is independent of the choice of the complex-
ification V. In one-dimensional case prime divisors are just points, in
two-dimensional - analytic curves or elliptic points (intersections of two
conjugated complex analytic curves). Every such divisor induces a dis-
crete valuation on the field M of meromorphic functions on V - the order
of the zero or minus the order of the pole of the function. Therefore it
induces the so called residue homomorphisms (first and second) of the
Witt group of the field M to the Witt group of the residue field - the
function field of the divisor.

The main goal of this paper is to show that the intersection of the
kernels of all second residue homomorphisms associated to prime divisors
is isomorphic to the Witt group of the Riemannian bundles on V.

As an example of an application of this result we provide a new proof
of the Artin-Lang property for one and two dimensional real analytic
manifolds.
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2 Notation

2.1 Preliminaries

We consider in this paper the Witt rings over integral domains and over
ringed spaces as defined by Knebusch (see [11, 17] or [13]). The Witt ring
is a Grothendieck ring of nondegenerated bilinear forms on projective
modules or respectively of Riemannian bundles modulo the metabolic
(split) ones.

Let aj,...an be nonzero elements of a field K. We recall that
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{a1,...an) denotes the class corresponding to the following quadratic
form:

alT]_z +...+ GnTE.

The tensor products

(La) ®...0 {1, an)

are called n-fold Pfister forms and are denoted in the abbreviated form

{{a1,-..an)}.

2.2 Witt rings of vector bundles

Let £ be an analytic vector bundle over a connected real analytic man-
ifold V. We say that E is Riemannian if it is provided with an analytic
inner product i.e. an analytic section b of the bundle E* ® E* such that
for every point z € Vb, is a symmetric regular bilinear form. b is called
positive definite or respectively negative definite if such is b, for every
point x.

For example if (E,b) is positive definite then (E,—b) is negative
definite. We shall abbreviate (E, —b) to —E.

We remark that, in contrast to the complex analytic category, every
real analytic vector bundle of finite rank is generated by finite number
of global sections. Therefore there is an isomorphism between the Witt
ring of Riemannian vector bundles on V and the Witt ring of regular
bilinear forms on projective modules over the ring of global real analytic
functions on V. We shall denote both objects by W(O(V)).

The Riemannian bundle (E,b) is called
e hyperbolic if it splits, i.e. there exists an analytic bundle E; such that

E=FE1 8 Ey, b({a,B) (en, 1)) = B(a1) + Bifa),

e metabolic if it is stable hyperbolic i.e. there exit such hyperbolic
bundles (H1, k1) and (Ha, ko) that

ELH) = Hy, h2({a, ), (a1,51)) = b, e1) + k1 (B, B1).
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2.3 Homomorphisms of Witt rings

We recall the basic facts.
Every ring homomorphism

i: K — L
induces the ring homomorphism of Witt rings
it : W(K) — W(L),
i*(M,b) = (M @ L,iob), iob({a®a),{a; ®a1}) = aa - i(bla, a1)).

Analogically, if (E,b) is a Riemannian vector bundle, which is gener-
ated by global sections, and i is an inclusion of the ring -O(V) into
its field of quotients (the field of meromorphic functions) M (V) then
i*(B, b) = (T(E) ®op) M(V),i o b).

The so called residue homomorphisms are other examples of map-
pings of Witt rings. Let
v: K - TU{oc}
be a discrete valuation on a field K. Then
R={a€K :Iv(a) >0}
is a discrete valuation ring with the maximal ideal
m = {a € K :v(a) > 0}.

Any generator 7 of the ideal m is called the uniformizer of the valuation.
Every element of the field K may be uniquely written as product n*a,
wherek € Z, and a € R\m. The first and second residue homomorphism
are defined as follows:

o W(K)— W(R/m), i=12
gt ay= [ (@ ifk+iisodd
- otherwise .

where @ is an image of a in the residue field R/m.

We remark that the residue homomorphisms commute with the multi-
plication by elements from W (R) and furthermore their keroels do not
depend on the choice of the uniformizer =.
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3 Main results

Let V be a paracompact connected real analytic manifold of dimension
1 or 2 and let P be the set of all its prime divisors

Theorem 1. The following sequence of Will groups is ezact
i* @8?
0— W(O(V)) = W(M(V) =" D W(M(p))
pEP

where 8, is a second residue homomorphism associaled lo the prime
divisor p and M(p) is the field of meromorphic functions on p.

We remark that AM(p) is isomorphic to
e the field of real numbers if p is a point,
o the field of convergent Laurent series in one variable over the field of
complex numbers if p is an elliptic point (see lemma 4),
e the field of global meromorphic functions on the real line or on the
circle if p is an analytic curve.

Let hdim V be the homotopical dimension of ¥ i.e. the minimum of
the dimensions of CW-complexes which are homotopicaly equivalent to
V. HV is one-dimensional then

[0 ¥ V=R,
hd”’"v_{l i V=S

If V is two-dimensional but noncompact then

o 0 if v =IR?
hdim V = { 1 otherwise.

If V is two-dimensional and compact then hdim V = 2.

Theorem 2. Let f1,..., fr be a set of real analytic functions on V.

o Ifk > hdimV and the equivalence class of the Pfister form {(f1,..., fx)}
belongs to i*(W(O(V))) then either it is hyperbolic or it is equivalent to
the form 2F(1).

e I[fV=1R or k > dim V and the equivalence class of the Pfister form
{{f1,.-., f&)) is a torsion element of W(M(V)) then it is hyperbolic.
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Corollary 1. Let f1,...,fk, k¥ = hdim V, be a set of real analytic
functions on V such that in every point of V at least one of them is
nonpositive, then the Pfister form ({1, f1,..., fx)} i hyperbolic. More-
over if V.=1R or k> dim V then also ({f1,..., fx}} i3 hyperbolic.

We remark, that if a Pfister form {({aj,...,er)} is hyperbolic then
there exist such T}, . j that

—1= T gai+ Tdh,..002 .- + T 161 ak

i.e. -1 belongs to the preordering generated by a;’s. Therefore it follows
immediately from the corollary that if in every point of V at least one of
fi’s is nonpositive then -1 belongs to the preordering generated by f;'s
hence in every ordering of the field M at least one f; is negative. Thus
we obtain, as a direct consequence, Artin-Lang property for the ring of
global real analytic functions on V. For other proofs of this fact, which
are based on quite different ideas, the reader is referred to [9, 15} for V
compact and [1, 4] for V noncompact.

Corollary 1 gives also some estimations on the number of squares
necessary to represent a positive definite analytic function. For more
exact calculations which are also based on the theory of vector bundles
the reader is referred to [8].

The above results are proved in sections 7 (theorem 1), 8 (theorem
2) and 9 (corollary 1). The proofs are based on "tools” developed in
sections 4,5 and 8,

Next we draw some more consequences of the above theorems and
describe the structure of the W (O(V)) in more detail. Let sgn(E, ) be
the signature of the bilinear form &, for any given point z € V.

Corollary 2. If hdim V = 0 then the mapping
sgn :W(O(V)) — Z

i8 6 ring isomorphism.

Let |det(E, b)] be the absolute value of the determinant of the bilinear
form i o b. We introduce the ring structure on the direct sum of Z and
the factorgroup of the multiplicative group of nonzero functions that are
locally squares and the multiplicative group of functions that are squares
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(O(V);SQ/O(V)Q) (the subscript Isq stands for locally ¢ square) by the

rules
(m,a) + (n,b) = (m + n, ab),

(m,a) - (n,b) = (mn, al™pl™y,

(Compare the construction of the ring V (Q) and the ring homomorphism
r in [5] 5.1.)

Corollary 3. If hdim V = 1 then the mapping

(sgn, ldet|) : W(O(V)) — Z & (O(V)ioe/ O(V)?)
is @ ring 1somorphism.
Corollary 4. If hdim V = 2 then the mapping

(sgn, |det]) : W(O(V)) — Z & (O(V ),/ O(V)?)

i8 a ring epimorphism, which kernel consists of all Riemannian bundles
E, such that either the equivalence class of i*(FE) contains a Pfister form
{{(1, —g)), where g is a positive definite analytic function which cannot
be represented as a sum of two squares, or it is hyperbolic.

4 Splitting Lemma

We start with the following fact (compare [13] §V.2).

Lemma 1. Every analytic vector bundle E over the paracompact con-
nected real analytic manifold M. with a indefinite Riemannian product is
an orthogonal direct sum of two vector bundles ET and E~ with definite
Riemannian products.

Proof. Let £1,...,&mn be a set of global sections of E which generate
each stalk.
We consider the corresponding Gram matrix:

A = ({6, €5))ig=1,cms

where (., .} is the Riemannian product i.e. the bilinear form on sections.
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The coefficients of the matrix A are analytic functions on the mani-
fold M. We denote by A(z) the matrix which coefficients are their values
at the point € M. M is connected hence the rank and the signature of
A(z} do not depend on'the point z. Indeed, they are equal respectively
to the rank of the bundle E and to the signature of the Riemannian
product. Furthermore, since A(z) is symmetric hence its eigenvectors
span the whole space R™ and the above is valid also for the number
of positive and negative eigenvalues (counted with multiplicities). Thus
the characteristic polynomial P()\) = det{A — AI) is a product of three
polynomials with continuous coefficients

P(A)=PTA)P~(M)X*, k=m —rank E,

where P¥()) (resp. P~())) has only positive (resp. negative) roots.
Furthermore, using Weierstrass preparation theorem -[7] s5.4.1 {(or just
Hensel lemma -(7] 5.5.6), one can show that the coefficients of both
P*()) and P7()) are analytic at every point of V.

Let W%(z), W *(z) and W ~(z) be the linear subspaces of IR™ spanned
by the eigenvectors corresponding respectively to zero, positive and neg-
ative eigenvalues. They give rise to the decomposition of the trivial
bundle over M:

MxR"=wlawtow .

Indeed, WO W and W~ are kernels of endomorphisms of the trivial
bundle M x IR™ induced respectively by A, P*(A) and P~ (A) (since
for every z A(z) has a diagonal Jordan form hence ker A* = ker A).

Furthermore our Riemannian bundle F is isomorphic to bundle W &
W~ with the product given by the matrix A. We remark that W+ is or-
thogonal to W~ because the eigenvectors corresponding to the distinct
eigenvalues are orthogonal :

Lemma 2. If the menifold M has a homotopical type of a point then
every Riemannian bundle E over M is either hyperbolic or an orthogonal
sum of a hyperbolic bundle H and a trivial bundle E, with the definite
Riemannian product given either by the ideniity or by minus identity
maltriz,

E=H1E,;.
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Proof. If the analytic manifold is contractible to a point then every
analytic vector bundle is trivial i.e. it is generated by nowhere vanishing
global analytic sections. Furthermore if the vector bundle has a definite
Riemannian product then a square of a nowhere vanishing global ana-
lytic section is a nowhere vanishing global analytic function. Therefore
we can choose an orthonormal set of global sections for both compo-
nents E* and E~, £f,...,& and &1,...,£ . The sections £ and &,
i = 1,...,min(k,l), generate the hyperbolic bundle while the rest of
them generate the trivial bundle with a definite product.

Lemma 3. If the manifold M has a homotopical type of a 1-dimensional
CW-complez then for every Riemannian bundle E over M with nonneg-
ative signature there exist hyperbolic bundles Hy and Hy such that

ELH,=HolTI1L,

where T is a trivial bundle with the Riemannian product given by the
identity matriz, and L is a negatively defined one-dimensional Rieman-
nian bundle.

Proof. If the analytic manifold is contractible to a one dimensional
CW-complex then every analytic vector bundie of dimension greater
than 1 has a nowhere vanishing global analytic section. Thus, using
the same arguments as above, we obtain that the component E* has a
decomposition into orthogonal sum of two positive definite Riemannian
bundles E+ = EY L Ef, where E{ is trivial and E; one-dimensional,

We put Hy = Ef L(~EZ) which obviously is hyperbolic. We note
that the orthogonal sum EF L EJ is a trivial bundle. Indeed the rank
of the bundle is 2 bence it has a nowhere vanishing global analytic sec-
tion £ = [€1,£2]- The section &* = [€2, —€1} is also nowhere vanishing.
Moreover it is orthogonal to &:

(£,€") = (&1,62) + (€2, —61) = 0.

Thus £ and £* are linearly independent in every point and give the
trivialization of EJ LEJ.

Therefore EY L EF is a trivial bundle. On the other hand E~1(—EJ)
is a negative definite Riemannian bundle hence it splits

E”L(-Ef) = By 1E;,
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where E| is trivial and F, one-dimensional. We put L = E;. The
rank of E* LEJ is greater than the rank of E] hence we may put

Hy = E{ L(-E]), ETLES = (-E[)LT.
It is easy to check that

E1H)=(EY1E)L(E"L(~E§)) = HoLlT1L.

5 Injectivity of i*

If V is compact then the ring of global analytic functions is a regular
domain and the injectivity of i* follows from the results of Ojanguren
(see [14] th.17).

If V is noncompact then due to lemma 3 it is enough to consider a
bundle £ = Et1E~ where both E= are one-dimensional and the posi-
tive definite component is trivial. Assume that ['(E} ® M is hyperbolic
then the bundle £ has a global nonzero analytic section 5 of "length”
zero. Let 5t and 5~ be the components of  in E* and E~. E7 is
trivial hence 5t = f - £ where f is a nonzero analytic function and £ is
& nonvanishing global section of length 1. Thus

0= =00 +E0) =12+,

and }n— is a meromorphic section of square -1. Since E£7 _is one-
dimensional Riemannian bundle hence }n_ is analytic and nowhere-
vanishing. Therefore E~ is trivial and E is hyperbolic.

6 Prime divisors

We recall that we consider the real analytic manifold V' as a subset of
- some complex analytic manifold Vg of the same dimension, and that a
prime divisor is a germ along V of a codimension one subvariety of Vg
which is invariant under the complex conjugation and irreducible over IR.
If V is one-dimensional then every codimension 1 irreducible subvariety
is just a point hence all prime divisors are (real) points of V. If V is two-
dimensional then every codimension 1 subvariety is a curve. It might
be either a real analytic curve or two complex conjugated curves. In
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the second case the subvariety has only one real point - the intersection
point of the branches. Therefore we call divisors of such type elliptic
points.

Lemma 4. The function field of an elliptic point p is isomorphic to
the field of eonvergent Laurent series in one variable over the field of
compler numbers.

Proof. Let z be the only real point of the divisor p. Thus p is a germ of
two conjugated curves at x. Since V possesses the fundamental system
of Stein neighbourhoods in Vi (compare [3, 6]) hence every germ of an
analytic function at = can be extended modulo the ideal Iz(p) consisting
of all germs vanishing at the prime divisor p to a global analytic function.
Therefore

O(V)/I(p) = Oa:/I'.t(P)-

Next we apply the theory of Puiseux expansions and obtain that the
field of quotients of O,/I,(p) is isomorphic to the field of convergent
Laurent series in one variable over the field of complex numbers.
Namely, let f € O, be a generator of the ideal Ix(p). Over C f is a
product of two conjugated germs f = f1f2 i.e.

£ = (Re fi)%+ (Im f)%

If 4(t) is a local analytic parametrization of the complex branch f; =0
of p then a mapping g ~+ g(1(t)) induces a homomorphism of fields of
quotients

U : Q(Oz/1x(p)) — Q(C{{t}}).

We show that V¥ is onto.
We have

0= fi(#(t)) = (Re A1)H(1)) +i(Im £1)(w(t))

hence ¥((Re f1)/(Im f1)) = —i. Furthermore for every Laurent series
B(t) there exists a germ of complex meromorphic function g such that
g(¥(t)) = B(t). We remark that
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is a germ of a real meromorphic function and g(¥(t)) = B(t) too. Hence
¥ is an isomorphism.

The other way to prove this fact leads through the normalization of
the divisor p. Indeed its normalization over € consists of two germs of
conjugated smooth complex curves. Hence over IR it is just one germ of
a smooth complex curve. See also [10] 5.6 for similar results concerning
formal power series.

7 Proof of Theorem 1

It is well-known that for every Riemannian bundle E, every second
residue homomorphism associated to & prime divisor is. vanishing on
i*(E) = T'(E) ® M (compare [13] §4.1 lemma 1.3). Therefore to finish
the proof of theorem 1 we have to describe the intersection of kernels of
second residue homomorphisms.

Let W be a linear space over the field A with a bilinear symmetric
product (.,.}.

Proposition 1. If for every prime divisor p the corresponding second
residue homomorphism is vanishing on the equivalence class of W in
W (M) then there ezists a Riemannian bundle E, such that W = I'(E)®
M.

Proof. We generalize the method used in {13] §IV.3. Letey,...,en bean

orthogonal basis of W. We assumé that a; = (es, i), i = 1,...,n, are an-
alytic functions. Let L denote the sublattice of W spanned by-e;, ..., e,
over the ring @ and L.* the dual sublattice spanned by al_lel, ceraglen.

Lemma 5. For every prime divisor p there is a sublattice Wy of W over
the local ring Oy, such that:

i. the bilinear form (.,.) restricted to Wy is regular;

. L @0[0,) CW,CL*'® o](p);

i#i. if none of the a;’s is vanishing onp then Wy = L®O ) = L*@O (p);
iv. for every finite set of prime divisors py,...p; there exists an analytic
function f such that (:}‘;L) C Wy for p+# pi and Wy, C (}lrL) ® Orp,)-

Proof. We apply {13] ch.4 theorem 3.1 for the local ring Oy, and
construct a sublattice W, which fulfills the condition from point i. The
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second point follows from the construction used in the proof of this
theorem.
The third point is an obvious consequence of the second one. Indeed,
if none of the a;'s is vanishing on p then L* is a subset of L @ Q).
To prove the last point notice that for every prime divisor p; there
exists an analytic function f; which vanishes only on p; and for all j the
quotients ;E;— belong to the local ring Oy,,). Thus

1 .
(EL) @ Opfp;) O L @ Opp;) D Wy,

On the other hand, let p be any prime divisor different from p; then
}}; € Oj(y) hence i_—L C Wp.
Obviously the product f;-...- f; is the required function f.

Lemma 6. The bilinear form (.,.) restricted to the @ module

Q=an

peEP

is regular and moreover Q is a module of global sections of ¢ Riemannian
bundle.

Proof. If V is compact then the ring of global analytic functions O is

a Krull domain and we may apply [2] §VI.4 theorem 3 to show that @

is reflexive. Next since V is two dimensional hence Q is projective.
The proof of the general case is only a bit more complicated.

Step 1. For every prime divisor pg we have Qp, = Q ® Oripe) = Wpy-
Indeed, there is an inclusion:

Qpo = (n Wplpe C n (Wp)po = Wpo N n W = Wy,
peP peP P#Po

On the other hand, there is a function f such that Wy, C (-}-L) ® Or(py)
and (}L) C Wy, for p 3¢ pg, hence (%L)rﬂpr0 C Q and Wy, C Q. Thus
Qpo = Wpe.

Step 2. The bilinear form (.,.) restricted to the © module Q is reg-
ular, i.e. @} is self-dual.

Let & be any @ functional on Q. Since o can be extended to a M
functional on W, hence there exists n € W such that for every z € W

a(z) = (n,z).
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But on the other side a can be extended to a Oy, functional on
Qp = Wy, for every prime divisor p. Wp is regular hence n belongs to
Wp. Since 5 belongs to each Wy, hence it belongs to their intersection,
ie. to Q.

Step 3. If m is a mazimal ideal consisting of all analytic functions
vanishing at certain point x € V then Qm = Q® Oy, is a free O, module
of rank n.

In the one-dimensional case the maximal ideal m is a prime divisor
and step 3 follows directly from step 1.

Let us assume that V is two-dimensional. There is only a finite
number of prime divisors containing point z and contained in the zero

set of at least one a;. Thus repeating the arguments from step 1 we
obtain that

Qm= [] Wy
zepeP

Indeed, there is an inclusion:

Q-m=(an)mC n(Wp)mz n‘annW= ﬂ Wp.
peP

pEP zepeP afp zepeP

On the other hand, there exists a function f such that W, C (:}L)@O P
forx € p € P and (—}-L) C W, otherwise. Hence (%L) N epep Wp C Q
and Nyepep Wp C @m. Moreover Qm is selfdual (repeat the arguments
from step 2) hence reflexive (compare (2] ch.VII §4.3). But a reflexive
module over the regular local ring of dimension 2 is free (see for example
[16]).

Furthermore, the rank n lattice L is contained in Qp, hence its rank
is equal to n too.

Step 4. The construction of the vector bundle E.

Q is a submodule of the free module L*. Thus every element of Q
gives us a section of a free sheaf Of. Let F be a subsheaf generated by
these sections. From step 3 we have that F is locally free hence it is a
sheaf of sections of certain vector bundle E on V of rank n. From step
2 it follows that E is Riemannian.
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8 Proof of Theorem 2

Let (E,b) be a Riemannian bundle such that i o b= ({f1,..., fr}). We
have two possibilities to consider either the signature of & is equal to
0 or to 2. Indeed, the signature of b is equal to the signature of
({(f1(x), ... fe(z))) at any point = € V, at which no f; is vanishing.

We start with the first case. The signature of E is 0, thus

1
dimEt =dimE~ = §dim E = 2515 hdim V.

Hence both vector bundles £+ and E~ have nonvanishing global sec-
tions, say 5t and n~. We have b(n*,n~) = 0, b(n*,n™) is positive in
every point, b(n~, 7" ) is negative in every point. Hence we may put

b(nt,nT)=gf, b(n",n") = —g3,

where ¢) and go are analytic functions.
n = gon* + g17~ is & nonzero section of E which is self-orthogonal,
b(n,n} = 0. But a Pfister form which has a nontrivial zero is hyperbolic.

In the second case we may restrict ourselves to the case hdim V =1
or 2, since the case Adimn V = 0 is obvious. We have

E = EglE,

where both Eg and E; are positively defined Riemannian vector bundles
and moreover the first one is trivial while the dimension of the second

one is not greater than hdim V.
Therefore in the Witt ring W (M) we have

25(1) = (1, [1)) = 25(1) —i* (Eo) —i*(B) = rank(By)- (1) —i*(Ey).

The dimension of the anisotropic part of the form rank(E;) - (1) —
i*(E)) is not greater than 2rank(E;) < 2hdim V. But it belongs to
the k£ power of the fundamental ideal of W (M), where ¥ > hdim V
hence due to the Arason-Pfister theorem (see [12] th.3.1 ch.10) it must
be hyperbolic. Thus

((fl: . wfk)) = 2k(1)
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Now let o = ((f1,..., fx))} be a torsion element. Then for every
prime divisor p dpa also is torsion.

If dim V = 1 then for each p the residue field is isomorphic to the
field of real numbers hence its Witt ring is torsion free. Thus a belongs
to the image of i* and 'we may apply the first part of the theorem to
show that it is hyperbolic.

IfdimV = 2 and k > 2 then we base on the fact that dper is equivalent
to k — 1-fold Pfister form multiplied by a rank one form.

If p is an elliptic point then the residue field is a field of Laurent series
in one variable and every two- and more-fold Pfister form is hyperbolic.
If p is a real curve then the field of meromorphic functions on p is the
field of meromorphic functions on its normalization i.e. on IR or on §*.
But we have already proved that any two- and more-fold Pfister form
which is torsion in the Witt ring of the field of meromorphic functions
of one-dimensional manifold then it is hyperbolic.

Therefore a belongs to the image of i* and we may once more apply the
first part of the theorem to show that a is hyperbolic.

9  Proof of Corollary 1

Let o denotes the equivalence class of the Pfister form {(f1,..., fi)} in
the Witt ring W (M ). Then the class 2« contains {1, 1} {{f1,..., fx)) =
(L 1y S8

Basing on theorems 1 and 2, and the fact that the signature of o is
0 (in every point z where it is defined), it is enough to show that every
second residue homomorphism associated to a prime divisor maps 2a to
zero.

If p is an elliptic point then the corresponding residue field is a field
of convergent Laurent series over the field of complex numbers. Thus
every element of the Witt ring has order 2, and

3p(2a) = 28y(a) = 0.

In the following we shall consider only the "real” case; p is either a point
or an analytic curve. In general we have a decomposition for: =1,...,%

fi=n4-gi
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where 7 is a uniformizer of the ring Oy, and g; has neither a pole nor
a zero at p. We have to consider three cases:

» all ¢; are even,

¢ exactly one t; is odd, say i3,

e more than one ¢; are odd, say ¢1,...,tm.

In the first case we obtain directly from definition that 8p(a) = 0.

In the second one

Fp(a) = {g1){{92,-- -, 9&))-

Since 7 being an uniformizer is changing the sign at p hence in very
point of p at least one of g;, i = 2,...k, is nonpositive (if p is a curve
then they may have also a pole).

In one-dimensional case this finishes the proof since p consists of just
one point and g; are real numbers.

In the two-dimensional case p is a real curve and we take the normal-
ization of p. Then we multiply the coefficients of the form by squares of
denominators and apply the corollary for dimension 1.

In the third case we replace the Pfister form {{fi,..., fx)) by an equiv-
alent one

{{f1, f1f2, .-+ F1ifms Ffm+1 - - - . f&)) which belongs to the case 2.

The second estimate follows directly from the second part of theorem,
2 since « is a torsion element.

10 The structure of W (O(V))
Corollary 2 follows directly from lemma 2.
Corollary 3 from lemma 3 and the fact the determinant of any bilinear

form i o b is locally a square or minus square.

To prove the last corollary we need the following lemma.

Lemma 7. If the variety V is two-dimensional and compact then for ev-
ery Riemannian bundle E over M with signature 0 there exist hyperbolic
bundles Hy and Hy such that

ElHy =HeAT1L,
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where T' is a irivial bundle with the Riemannian product given by the
identity mairiz, and L is a negatively defined one or two-dimensional
Riemannian bundle.

Proof. We decompose the bundle E into the direct sum of a positive
and negative definite parts. We consider the positive definite part E*.
The diagonal form of i*(E™) consists only of positive definite functions
g1y---39m

_i'(E"-) = {g1,.-.,9m)-
Thus due to corollary 1 we have in W{(M(V))

4m - (1) - 4-*(E1)y = ((1,1,—91)) +... (1,1, —gm:)) =0.

Thus having added the proper hyperbolic bundle to £ we may assume
that the positive part is trivial. The dimension of V is two hence the
negative definite part is trivial too except may be some one or two di-
mensional component.

~ To finish the proof of corollary 4 it is enough to notice that if det of
rank one bundle is equal to minus square then the bundle is trivial and
that if det of rank two negative definite bundle is equal to square then
it corresponds to the form (—g, —g} where g is positive definite.
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