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Separating ideals in dimension 2.

James 3. MADDENt and Niels SCHWARTZ

Abstract

Experience shows that iii geometric situations the separating
ideal associated with two orderings of a ring ¡neasures the degree
of tangency of the corresponding ultrafilters of semialgebraic sets.
A related notion of separating ideals is introduced for pairs of
valuations of a ring. Tbe comparison of both types of separating
ideals helps te understand how a point on a surface is approached
by different half-branches of curves.

lix this paper we stud>’ the geometry of separating ideals. Let A
be a Noetherian ring with real spectrum Sper(A) (cf. [2], Chapitre 7;
[6], Kapitel III). For aix>’ two orderings a, fi E Sper(A), the separating
ideal <a, fi> was defined by Madden un [8]. This is the ideal generated
by the s>rmnxetric difference (a\i3) U (fi\a). Alternativel>’, it can als¿ be
characterized as the smallest ideal ¡ C A that is coixvex with respect to
both a and fi and for which a and fi induce the same total order on A/I
([8]). The separating ideal was flrst jixtroduced as a tool for workiixg
at the Pierce-Birkhoff Conjecture ([8]; [10]).By its definition it is en
algebraic artifact. Rut experience shows that un a ring arising from a
geometric context, e.g. the coordinate ring of aix algebraic variety over
a real closed fleid, separating ideals carry geometric information. For
example, snppose that a,fi E Sper(H[X, Y]) are defined by germs of
half branches of curves at O E R2. Then <a, fi> measures the degree of
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tangency of the hall branches. This leads us to study the relationship
betweeix tangent spaces and orderings.

The classical notion of valuations can be generalized from fields to
rings (cf. [3], Chapitre VI, §3, No. 1, [4]; [9]). Suppose that y A
U U {oo} is a valuation. Aix ideal 1 C A is called a y—ideal if

1 = ja E A Bb El: y(a) =v(b)}.

Ever>’ ordering a E Sper(A) defines a valuation y0 of A. The v0—ideals
are the same as the idesís that are convex with respect to a. Similar
to separating ideals of orderings, it is possible to introduce separating
ideals of valuations. If y and w are valuations of A then <y, vi> denotes
the smallest ideal 1 C A such that 1 is both a y—ideal and a vi—ideal and
the chains of y— and w—ideals containing ¡ are identicaL Basic properties
of <y, vi> are discussed in section 2. We are particularí>’ interested in the
relationship between the separating ideals <a, fi> aid <y0, y0> (where
a,fi E Sper(A)). It is obvious that always <vn,vs> ~ <a,fi>. The
question of when these ideals are equal is much more subtle.

The language needed to talk about the geometry of the differerxt
separating ideals is developed lix section 1. Suppose that M C A is a
maximal ideal and that y is a valuation having M as a y—ideal. There
is a largest u ideal Mv contained un M. Since M

2 C Mv, the factor
module M/MV can be considered as a factor space of the cotangent
space M/M2. If y = y

0 for sorne a c Sper(A) then M/MV cardes a
total order. The transiation of these structures unto the Zariski tangent
space provides a geometric way of looking at the situation. (Related
concepts have also been introduced by Marshall — see [10], p. 1265.) Of
particular interest is the question of what it means that a separating
ideal is maximal. lix section 2, Theorem 1 and Theorem 2 juxtapose the
geometric meanings of this condition for separating ideals of valuations
and for separating ideals of orderinga.

lix section 4 we consider our general concepts of separating ide-
als un the rather benign environment provided by a regular local ring
(A,vn, le) of dimension 2. The reason is that separating ideala are com-
plete (or integrail>’ closed) ideals, as are all v—ideals for aix>’ valuation u
(cf. [14], Appendix 4). For two—dimensional regular local rings there ex-
ists a highly satisfactory theory of complete ideals, largel>’ due to Zariski
(cf. [13); [14], Appendix 5). The most importaixt tool un this theory are
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quadratic transformations. Therefore, lii preparation for section 4, we
discuss the behavior of separating ideals imder quadratic transforma-
tions in section 3. For orderings and valuations there is a notion of
strict transforms. Under hypotheses which are not too restrictive for ge-
ometric applications we show that the strict transform of the separating
ideal of two valuations is the separating ideal of the strict transforms. A
corresponding result for orderings is known from [11. lix section 4, after
excluding a few trivial cases, we deal with orderings a, fi E Sper(A)
such that <a, fi> is vn—primar>’. Finitel>’ man>’ quadratic transformations
transform <a, fi> into the maximal ideal of en iterated quadratic trans-
form of (A,m, le). This means that the tangent directions of a and fi
become separated after finitel>’ man>’ transformations. This can come
about in two different ways: Either the tangent spaces are distinct; or
there is a cominon tangent space and oní>’ inside this space the directions
differ. We show in Theorem 3 that these two cases can be distinguished
in the ring (Á,m, le), without doing an>’ quadratic transformations, by
comparing the separating ideals <a, fi> and <y

0, yo>. FYom a conceptual
point of view it is interesting that at least this piece of information can
be obtained without leaving the ring A.

Notation and termtnology. Throughout, all rings other than val-
uation rings are Noetherian. II A is a ring then Sper(A) is its real
spectrum. General references for the real spectruin are (2], Chapitre 7,
and (6], ¡Capitel III. The points of the real spectrun are called orderings.
If a E Sper(A) then the prime ideal supp(a) = a fl —a is its support.
Similarí>’, if y: A —. FU {oc} is a valuation then {a E A ¡ u(a) = o4 is
a prime ideal which is also called the support of y. General references
for valuations of rings are [31,Chapitre VI, §3, No 1; [4]; [9]. Ir analog>’
to the usage for valuations of fields, we cail {a E A y(a) =0} the
valuation ring of u. But, of course, this subring of A does not have the
properties one is used to from the valuation theory of fields. If ¡ C A is
aix ideal then «1) denotes the smallest value of en>’ element of 1. This
is well—defined since A is Noetherian. lf a E Sper(A) then A/supp(a)
is a domain which is totail>’ ordered with positive cone a/supp(a); the
totalí>’ ordered quotient fleld is tc(a). We denote the canonical image
of a E A in i4a) by a(a). Aix ideal 1 C A is aix a — ideal (or is con-
vez with respect te a) if a E 1 whenever O =a(a) =b(a) and b E 1.
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With a we associate a valuation y0: Let y(a) c ic(a) be the convex
subring of tc(a) generated by the image of A. This is a valuation ring.
If v~ ¿‘«a) —.. FU {oc} is the corresponding valuation then y0 is defined
tobe

A —~ nt(a) t FU{oc}.

Let y: A—. FU{oo} be anyvaluationafA. Then anideallc A isa
y — ideal if there is sorne -y E FU {oo} such that

1 {a E A y(a) =4.

The support of y is a y—ideal; it ma>’ be the oní>’ one. Given a or y
there are a largest a—ideal and a largest y—ideal un A. They are called
the center of a and the center of u. The center is a prime ideal, sa>’ p,
and a (or y) extends uniquel>’ to A~. As A is Noetherian, the totalí>’
ordered set of a—ideajs or y—ideáis is anti—wellordered by inclusion. Ihe
iminediate successor of 1 is denoted by 1” or Iv: it is the biggest a—ideal
or u—ideal properí>’ contained un 1.

1 Tangents

Ihe (Zariski) tangent space of a maximal ideal vn in a ring A is the
dual (m¡vn

2)V of the le—vector space tu/vn2 (with le = A/ni). If u is a
valuation of A with center vn then it is obvious that vn2 C vn”. Therefore
we can consider the subspace vn”/m2 of the cotangent space at vn. The
set

T~= {pE (vn/vn2)V jf(p)srrO forail ¡ Evn”/m2}

is a subspace of (vn/vn2)V which is canonicail>’ isomorphic to (vn/vn~>)V.
We shall calI 2’,, the tangent space of u. If a E Sper(A) is centered in vn
we define the tangent space of a to be T<, = T,,~. hom the definitions
it is clear that vn/mVú — vn/tu0 is a totail>’ ordered vector space over
the totail>’ ordered fleld le and that vn/ma is archimedean relative le.
To study the connectiona of T

0 with this total order we consider the
followiixg more general situation:

Let le be a totail>’ ordered fleid, y a finite dimensional totail>’
ordered vector space over le. The positive cone of V is the union of a
set 1’ of closed convex polyhedral eones in V. With each P E P one
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associates the dual cone pV iii VV (cf. [12], Appendix 1). It is defined
as

pV = {f E VV j Vv E P : 1(v) =0}.

It is well—known that pv is a closed convex polyhedral cone ha VV. Such
a cone lii VV will be called a P—cone, a cone Q ~ VV is aix N—cone if
—Q is a P—cone. Ever>’ P—cone can be represented un the form

where ~ , y8 > O in V. flom this it is clear that ever>’ convex polyhe-
dral cene un VV is theintersection of a P—cone with en K—eone. Emite
intersections of P—cones are P—cones. Every P—cone is fu]] dimensional.

Lemma 1. A finite union of convez pol¡¡hedral cortes norte of which is
a P—cone contajus no P—cone.

Proof. Aix>’ inclusion
P§U(PíflIVí)

(where P and the P~ are P—cones, the IV1 are W—cones and P~ ~ P~ fl IVj)
yields the inclusion

Fn (fl—N1) ~ u —IV1).
e e

For ever>’ i the intersection Nc fl —Nc is a proper linear subspace of VV.
A finite union of such subspaces cannot contain a fuil dimensional cone.
However, P u (fl —IV1) is a P—cone, hence 18 fuil dimensional, and is

e
contained lix U(Ne fl —Ne). This contradiction ends the proof.

e
u

Lemma 2. Leí £ be tite lattice of subsets of VV gerterated b¡¡ tite set of
alí closed convez pol¡¡hedral cortes. lix £ tite P—cones are a basis for a
prime filter.

Proof. We must show that the set L’ of elements of L containing sorne
P—coixe has the following properties:
(1) {O} ~
(2) ifQ EL’ aixd Q GP then .P E L’;
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(3) ifP,Q EL’ then PflQ E L’;
(4) ifPUQ EL’ then FE L’ or QE L’.
Conditions (1), (2), (3) are evident, (4) is immediate from Lemma 1.

a
We have shown that a total order on y defines a prime filter un £

which has a tasis consisting of fulí dimensional eones. Conversel>’, let L’
be a prime filter ha L having a basis 8’ which consists of fuil dimensional
closed convex polyhedral cones. Then ¿1 defines a total order for y. To
prove this pick aix>’ cone pV E 13’ and consider its dual cone P C y. It
is claimed that the union 2’ of these dual coixes is the positive cone of a
total order of V. First we check that 2’ u —T = {0}. So, suppose that
y C Tu —2’. Then there are pV, QV E 13’ such that y E P and —y E Q,
te.,

pV flQV ~ {f E V”’ ¡¡(y)=0}.

Since the tasis 13’ consists of fuil dimensional eones this implies that
y = O. Next we prove TU —T = V: If y E V then

— {f E yV ¡ ¡(y) =01, H = {f E VV ¡(y) =0}

are both closed convex polyhedral un VV. Their union is yV, hence
belongs to L’. B>’ primality of L’ one of H~ and H belongs to £‘,
hence contains some pV E 13’, sa>’ pV c H+. Then ¡(y) > O for ever>’
¡ E pv, i.e., y E P. Finally we have to check the algebraic properties
of the prospective positive cone 2’: Pick y, vi E 2’, sa>’ y E P, w E Q
with pV QV E 13’, and O < A, p E k. There is sorne RV E 13’ contained
inPVnQV. Butthenv,weRand

¡(Ay + pw) = >f(v) + 4(w) =O

for ever>’ ¡ E RV. This proves >iv+pw FR C 2’.
It is obvious that the two constructions of assigning a prime fliter

of cones to a total order and of assigniixg a total order to a prime filter
of coixes are inverse to each other. We summarize the result8 obtained
so far in

Proposition 1. Let V be a finite dimensional vector space over the
totall¡¡ ordered field le. Leí L be tite laitice of subsets of VV generated
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b¡¡ tite set of closed convez polyhedml eones. Titen tit ere is a bijective
correspondence between tite total orders of y and tite prime filÉ ers itt £
generated by ¡viii dimensional closed convez pol¡¡hedral cones.

u

Tite situation whiéh is most interesting for the discussion of vn/vn0
is tite one un which tite total order of y is archimedean relative le. This
case can be characterized un the following way:

Proposition 2. Tite order o¡V is archimedean relative le i¡ and only if
{O} is tite only proper subspace 1V of yV such thai <1V fl PV> = W for
every pV c 8’. (Notation: <X> is tite linear subspace generated by X;
L, L’ and 8’ are as irt tite proo¡ of Propositiort 1.)

Proof. First suppose that y is arcitinedean and assume (by way of
contradiction) that W = <W u PV> for ever>’ pV e 8’, where {0} c
W c yV Let

14 = {v eV 1 ¡(y) = O ‘df E W}.

Then {O} G 1~1 C y. It suffices to show titat 14 is convex. So, pick
0<v=ví,vCV, y

1EV1. Nowpicko=v2,...,vsinvsuchthat
,v8 generateafulldúneixsionalconein y andlet pV E yV

be ita dual. There is a basis, say f’ fi, of 1V which is contained’in
pV lix particular, ¡e(ví) = 0, f~(v) =O, ¡e(v1 —y) =O for all i = 1,..., t.
But this implies fe(v) = O for all i, itenceu E y1. Titis is a contradiction,
and the flrst part of the proof is complete. — Now snppose that y is
nonarchimedean. Let {O} G Vi C V be the largest convex subspace. un
VV consider the subspace

W = {¡ e yV ¡(vi) = O W1 E Vil.

It is obvious that {0} c W c yV~ Pick u1 y8 ~ O un V generating
a cone p and Iet pV be its dual. Let ~ =O be the images iii
y/Vi, let A be tite cone in V/Ví generated b>’ these elementa. As P
contains no nontrivial linear subspace tite dual cone AV c (y/y1)V is
fuildimensionaL The subspace ~ ~ yV ma>’ be ideixtified with (V/vijV.

Thexx AV coixtains a basis of W and is obviously contained ~ pV Tbk
shows that <1V u PV> = W for each such cone P.

u
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We return to the original setup stemming from an ordering a E
Sper(A) centered at vn:

Definitian. Tite tangent direction D0 of a is tite prime filter of poí¡¡-
itedral coites itt T<, defined bg, tite arcitimedean (over le) total order of
vn/vn

0.

u

Example. Let A = R[X, Y] and consider the irreducible polynomial
Y2 — X2(X + 1). There are four orderings a

1, a2, a~, a~ of A having
support (Y

2 — X2(X + 1)) which are centered at (X, Y). For example,
a
1 can be described as

aí={PEA ¡ 20<eeE.:

(0< z,y <e & u
2—x2(z+ 1) =0

—+ P(x,y) =0) 1~
a2, a~ and a

4 are given un the same way, only with “0 c x, ~¡ < e”
replaced by “0 .c —a’,y ~c e”, ~ c —a’,—y .c e” aud “0 < z,—y c e”,
respectivel>’. One finds that ~ = ~ is the luxe X = Y and T02 =

is the Une X = —Y. Qn these Unes the mil>’ fuil dimensional pol>’hedral
cones are half Unes. Thus, ever>’ tangent direction must be a hall Une
011 the appropriate tangent Une. Por a1, a~, a~ and a~ these are the half
Unes lying un the flrst, second, third and fourth quadrant, respectivel>’.

u

2 Separating ideals

Separating ideáis of orderings have been treated extensivel>’ iii 18] and
[11. Here we will flrst discuss sorne basic properties of separating ideals
of valuations.

Lernma 3. ¡¡y is a valuation of A titen everg properv—ideal itas a prime
ideal os ita radical. Itt panicular, ~,/<V~}la alwa¡¡s a prime ideal.

Proof. Let F be the value gronp of y and suppose that ¡ = {a E A 1
y(a) =-4 is aix ideal, where ~¡E rtJ {oo}. Then 1 is proper if ami onl>’ if
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-y> 0. Let A E F be the largest convex subgroup that does not contain
‘y. One checks that

Vi = {a E A [Vb E A : 6 < v(a)}.

Now it is ob&ious that ‘.17 is a prime ideal.

u
From the definition of the support and the center of a valuation it

is clear that we always have supp(v) § center(v).
Let A c F be the convex subgronp of the value gronp of y gener-

ated by the set

{j~ E 171 ~¡< O & Ba EA: y(a) = -y}.

Then a coarsening ji of y is defined by composing y with the canonical
map F —. F/A. The valuation ring of ji un A is A itself. Both y and ji
define exactí>’ the same valuation ideáis, and

centerQi) = certter(v) {a E A ¡ Vb E A : 6 < v(a)}

(recall that A is Noetherian). Denote the center of y and ji by p. Next we
stndy the behavior of the y— and ji—ideals under localization st p. Note
that both y and ji extend uniquel>’ to valuations y>, and u1, of A,, and
that Ii,, defines the trivial valuation on the residue fleid. Ifa E Sper(A)
then y0 = i3~ by definition of y0.

Lemma 4. Mutuall¡¡ inverse maps betvieert tite seta of v—ideals asid
v>,—ideals are defined b¡¡

¡—.14, J—*JflA.

Proof. Suppose that 1 is a y—ideal and that ~ E 14 with a E 1,s ~ p.
a

Pick ~ E A,, such that v, (~) =v, (~). This implies v(bs) =v(at). Since
s E A½there is sorne r E A\p such that v(r) =—y(s). Then

y(b) =v(brs) > v(atr).

Since atr E 1 we see that b E 1k and ~ E ¡A,,. This proves that ¡A,,
is indeed a v,,—ideal. Qn the other hend, it is trivial that J rl A is a
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y—ideal for an>’ y>,—ideal J G A,,. To prove that lA,, rl A = 1 we pick
b=~E lA,, rl A (with a E I,s E A\p). Again, choosing r E A\p with
v(r) =—y(s) we have

v(b) =v(brs) = y(ar)

with arE!. It follows that bel. Finalí>’, it is a general property of
localizations that (JnA)A,, = J.

u
The Lemimna also applies to u, of course. So the v—ideals, u—Ideals,

v,,—ideals and iY,,—ideals are essentially the same thing. This makes it pos-
sible to replace y by ti un man>’ places and to use localization tecliniques.
lix particular, for aix>’ y and w we have <y, w> = <ji, to>.

The separating ideal <y, to> of aix>’ two valuations is the entire ring
if center(v) # centey4w). Since this la a rather unexciting separating
ideal we will restrict our attention entirel>’ to the case that center(v) =

center(w). Denoting this center by p again it is a consequence of the
foregoing considerations that the separating ideal is well—behaved under
localization:

Proposition 3. ¡fu,, asid vi~ are tite unique extensiosis of u and vi to
A,, titen <yp, w,,> = <y, w>A,, asid <u, vi> = <u,, vi,,> rl A.

u
The next resnlt gives us a set of generators for <y, vi>:

Proposition 4. Let y, w be valuatiosis of A itavirtg a common center,
asid aseume that u = 13, vi = i~5. Titen either y asid vi are both trivial
asid <v,vi> = supp(v) = supp(w) nr <v,w> la generated b¡¡ tite set

M = {¡ E A 29 EA: za(s) < u(g) & w(f) =zv(g)
nr 2g E A : v(f) =v(g) & vi(f) <vi(g)}.

Proof. Since the case of trivial valuatioixs is clear we suppose that y la
non—triviaL Suppose that ¡ E M and v(f) .cv(g), w(f) =w(g). Then

I={aEA Iv(a)>v(f)}
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is a za—ideal which contains y, but not ¡. Hence, 1 is not a w—ideal.
This implies that 1 cE <t’,w>, i.e., y(f) =v(<y,w>). This proves that
M ~ <za, to>. Conversel>’, <y, w> is obviously generated by the set

IV = {f E A 1 za(f) = za(<v,w>)}.

Now pick ¡ E IV and suppose that also

vi(f) = w(<v,vi>).

By definition of <iz, vi> the ideals

I={aEA y(a)> y(f)}

and
J={aEA¡vi(a)>w(f)}

do ixot coincide. Thus, there is sorne a E 1\J or sorne a E J\1. lix eitber
case this element a shows that the condition defining M holds for f, i.e.,
¡ C M. Next suppose that

w(f) > w(g) = w(<v,w>)

with sorne suitable y E <y, w>. Then there exist a E A such that

v(f + ag) = y(<y,w>), w(¡ + ay) = w((y,w>).

E>’ the first case discussed aboye we see that f + ay E M. Also, since
y E <za,w> it is clear that za(y) =za(f). The definition of M shows that
g E M. But then ¡ E (M). Altogether this proves that N § (M), and
we conclude that (M) = <v,w>.

u

The description of <za, vi> in Proposition 4 is ver>’ much reminiscent
of the defluition of <a, fi> (a, fi E Sper(A)) un [8~). Instead of using
functions changing sigix between a and fi, now we consider functioixs
which are of different order of magnitude with respect to y and vi. If
za = za0 and vi = za0 then, obviously, this is a much coarber approach
than Madden’s.
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To show the geometric significance of separating ideals we will now
establish a connection with the tangent spaces and tangent directions of
§1.

Theorem 1. Let (A,m, le) be a local ring and suppose tital tite valuationa
za asid w are botit cesitered al vn asid have support properl¡¡ cortíained itt
vn. Titen <v,vi> =vn i¡asidonlyitT,,#T~.

Theorem 2. Leí (A,rn,le) be a local ring asid suppose thaI a,fi E
Sper(A) are both centered at vn, induce tite sarne total order oit le ami
have support properl¡¡ cositained itt vn. Titen <a, fi> = vn if and onl¡¡ if
tite tangení directiosis of a asid /3 are different.

Proof of Thearem 1. From the definitions it is obvious that vn”/vn2 #
vnW/vn2 in vn/vn2 if and oní>’ if T,, ~ Tw in (vn/vn2)V. It is also clear
that <za,w> =m ifandonl)rifvn~~!=vnw.

u

Proaf of Theorem 2. First suppose that <a, fi> = vn. If <a, fi> =

<za
0, vn> then Theorem 1 implies that T~ ~ ~“n~B>’ the definition of P—

cones, T~ is spanned b>’ every cone belonging to the tangent direction
of a and To 15 spanned b>’ ever>’ cone belonging to the tangent direction
of fi: Thus, the tangent directions must be different. U <a, fi> D <y0, za0>
then vn

0 — vn~3, i.e., T<, = fF
0, but a and fi define different total orders

on vn/vn
0 = tu/m0. The tangent directions of a and /3 must be differ-

ent since Proposition 1 shows that the>’ determine the total orders of
vn/vn0 = vn/vn0. Finail>’ suppose that <a, fi> C vn. Then vn0 = vn~ and
a and fi define the same total order on vn/vn0 = vn/tu0. Therefore the
tangent directions agree.

u

Returning to the example at the end of §1 wesee that all separating
ideals between aix>’ two of the orderings a

1, a~, a~, and a4 are equal to the
maxhnal ideal (X, Y). But the separating ideáis <v0~, za01> (with i # 5)
are equal to vn if i +5 1(vnod 2) or different from m if i +5 0(vnod 2)
as the tangents are differeixt or equal ha these two cases.

From [14], Appendix 4, it is clear that valuation ideals and convex
ideals un a ring A are always complete (= integralí>’ closed). Among the
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complete ideals the simple complete ideals pía>’ a particular role. These
are the ideals which cannot be represented nontrivialí>’ as a product of
other ideals. They are of great importance for the theory of complete
ideals in 2—dimensional rings (cf. [13]; [14], Appendix 5; [7]). Ftom
Noetherianity it is clear that ever>’ complete ideal in A cen be factored
into a product of simple complete ideals. For y—ideals it is imxnediately
clear that they can even be factored unto simple v—ideals (cf. the discus-
sion following Proposition 2.1 un [1]). It is shown un [1~,Proposition 2.2,
that under a suitable hypothesis the separating ideal <a, fi> is simple.
Note that 1~ D ¡vn if (A,m, le) is a local ring and 1 cE A is an a—ideal,
hence ¡/0 is a le—vector space. Ir this situation the hypothesis is that
dúnle I/I~ = 1. Using en obvious variation of this hypothesis it can also
be shown that separating ideals of valuations are simple:

Propositian 5. Leí (A, vn, le) be a local ring, leí y, vi be valuatiosis
cesitered al vn. If dim 1/1” = 1 for alí y—ideals properly containiny
<y, to> titen <y, vi> is simple.

Proof. Without loss of generality one ma>’ assume that y and vi induce
the trivial valuation on le. II <za, vi> is not simple then it can be written
as <y, vi> = 1J where 1, J cE vn are both v—ideals and vi—ideals. Note
that the hypothesis applies to 1 and J. It is clear that

y(I) + y(J) = za(<za, vi>), w(í) + w(J) = vi(<y, u,>).

Since <za,vi>” is not a vi—ideal or <za,vi>’” is not a za—ideal the syrnmetric
difference of the two ideals is not empty. Without loss of generality,
assume that there exists c E <y, vi>”\<v, vi>”’. Then c E <za’ vi> = IJ and
w(c) = vi(<v, vi>). There are a’1,... ~ E 1, y~,... ,LIk E J such that
c = a’1~/i +... + XkYk. Suppose that the enumeration is such that

w(zl) = ... vi(a’1) = vi(1),
vi(yi) = ... w(y¡) = vi(J)

and, for ever>’ i = 1 + 1,..., k, w(a’1) > w(1) or w(yí) > vi(J). The
same relations hold if vi is replaced b>’ za. Since vi(c) = vi(IJ) we must
have 1 =1. By hypothesis, dim ¡/1” = 1 = dim J/J». Hence there are

z2~p2zl, ..., X573¡X1 mod 1”= ¡~,
y2~q2yb ..., yi =qwí mcd JI½JW.
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This yields
c=(1±p2q2± ...+p¿q9a’lyl+z

with v(z) > y(<v, vi>) end w(z) > vi(<za, vi>). Now vi(1 + p2q2 + ... +
p¡q¿) = O implies that also v(1 +p2q2 + .. . +p¿qz) = 0. But then

v(c) = za(a’i) + v(yi) = za(<y, vi>),

a contradiction.

u
It was mentioned before that for a, fi E Sper(A) the separating

ideal of the corresponding valuations is contained un the separating ideal
of the orderings. Assundng the hypotheses of Proposition 5 we take a
closer look at this relationship. To do so define

= ~{a E A j siyn a(a) = siyn a(fi)},
= {a E A ¡ siyn a(a) # siyn a(fi)}.

Thus, <a, fi> ~ the ideal of A generated by A. UF0 is the value group
of y0 (including oc) then we set

= va(A), U — za0(A~), F~ = y0(Aj.

If oc is deleted then F~ is a submonoid of F0. By the definition of u0,
F~ is contained un the positive cone of F0. Now we associate a sign with
each element of F,. For ‘y E r~ set

—~ if ‘rE r~\F5{ ~0 if ‘yCF\Fif -yEF~n1’5 or y=oc.

Lemnia 5. I¡ <a, fi> C vn thert ~¡= v0(<v0, vn>) la tite emallesí elemení
o¡F viith signO.

Proof. Suppose that a(6) = O and that 6 < -y. Then there are a E
A~, b E A— (sa>’, a(a) > O, b(a) > 0, a(fi) > O, b(fi) c O) with zan(a) =

yo(b) = 6. The a—ideal

¡ = {x E A 1 Vo(x) =6}
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properí>’ contarns <Va, zas>, hence dim 1/JO = 1 and there is sorne c E A
such that za0(a+bc) > 6. Ihis iinplies e(a) <O and (since a and fi define
the same total order on le) c(fi) < 0. We conclude that za0(a) =za0(a+bc)
and hence, by Proposition 4, a E <y0, v,s>, a contradiction. It remains
to show that o(’y) a 0. If ‘y = oc the claim is clearí>’ true. So assume
that ‘y < oc. Pick a E M (the generating set of <Va, za0> discussed un
Proposition 4) with ~0(a) = ‘y. First suppose that there is sorne b E A
with

zaa(a) <Va(b), y0(a) =V0(b).

We ma>’ assmne that a(a) > O. A fi—ideal is defined by

1 = {z E A ¡ vn(a’) =V13(b)}.

As the total order induced by /3 on I/I~ is archimedean over le there
la sorne e E A such that (a + cb)(P) < O. Since (a + cb)(a) > O it
follows that a + cb E A. Similarí>’, there is sorne d E A such that
(a + db)(fi) > 0. Since (a + db)(a) > O we see that a + db E A~.
Altogether this proves a(’y) = 0. Finalí>’ suppose that there is sorne
b E A such that

v0(a) =V0(b),V$(a) .cv0(b).

Interchanging the roles of a and fi lii the foregoing discussion one proves
o}’y) = 0.

u

The well—ordered monoid F~ has a unique minimal set 1’~ of gener-
ators. To determine the sign of ever>’ ‘y < za0(<za0, vn>) it is oixly necessary
to know the signs of the elements of

— {6 E FZ 6< V«(<Va,zafl>)}.

lix particular, if <va, v$> c <a, fi> then za0(<a, /~>) E r4t. (This strength-
ens the resnlt of [1], that <a,fi> has to bea simple ideal.) So, whenever

is finite (Uds is the case, for example, u za0 is discrete ot finite rank)
and dli» 1/la = 1 for every a—ideal and /3 ranges un Sper(A) then there
are oní>’ finitel>’ man>’ possiblities for <a, fi> with <a, fi> D <~0, Vn>.
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3 Quadratic transformations

One of the most important tools un the investigation of complete ideals in
regular local domaina of dimension 2 are qnadratic traixsformatioixs (cf.
[13]; [14], Appeixdix 5; [5]). Since we afro wish to emplo>’ this technique
we will have to clarifr the behavior of separating ideals under qnadratic
transformations. The setup is as follows: Let (A, vn, le) be a regular
local ring of diinension si. Let K be the quotient fleid of A. A quadratie
transforination of A is a regular local subring A’ of K dominating A
which is obtained un the followiixg way: A’ is the localization of an
extension A[C’vnJ of A (wlierex E m\m2) ata prime ideal restrictingto
vn tu A. The properties of the morphism Spec(A’) —> Spec(A) of schemes
corresponding to the canonical inclusion A —* A’ are well—known. The
properties of the functorial map Sper(A’) -. Sper(A) are discussed lix
[1]. Working in the same vein we will look at the extension of valuations
from A to A’ now.

Let V be valuation of A with center vn aid support p. First suppose
that p = vn, i.e., za is essentiall>’ the trivial valuation of the residue fleld le.
For ever>’ a’ E m\m2 the prime ideal mA[2r~1m] = zA[z’m] ~ A[z’vn]
has dimension n — 1. Aix>’ valuation of A[c’m] whose support contains
a’A[m§’m] is aix extension of V. So, za is alwa>’s extendible to a valuation
of a quadratic tranaformation A’ — A[C’mlq, where q A[z’m] is
a prime ideal containing a’. In general there are man>’ diffetent such
extensions. Now suppose that supp(v) cE vn. II a’ E supp(za) then for
aix>’ extension w of y to a valuation of A[a’’m] the support contains
zA[z’ml = mA[z<’m], Le., supp(vi) rl A = vn. But this is impossible.
So y ~ extendible on]>’ if a’ ~ supp(za). II this condition holds then
A’ = Atz’mJ~ (with qflA = vn) is contained ha Anp.t). Since za extends
uniquel>’ to a valuation of Ast*,,) it is clear that V extends uniquel>’ to
A’. This extension of za is called the transform of za and is deixoted by
V’. Similarí>’, if a E Sper(A) la centered at vn and if a’ ~ supp(a) then
the unique extension of a to aix ordering of A’ is denoted b>’ a’ and is
called the transform of a. Finail>’, for an ideal 1 the strict transform
is denoted b>’ 1’. Lix (1], §3, the notion of a quadratic transfornrntion
of A along a valuation or along an ordering is explained. It is shown
there (loc. cit., Lemma 3.1) that <a’,P’> ~ <a,fi>’ ifa la ceixtered at vn,
su pv(a) c vn amI <a, fi> c vn. We shall deal exelusivel>’ with quadratic
traixsformations aloixg a valuation or aix ordering. If a E Sper(A) and



Separating ideáis in dimension 2 233

.4’ is the quadratic transformation of A along a then it is clear that
u0’ = (Va)’. Similar to [1], Lemma 3.1, we prove

Praposition 6. Leí y,vi be valuatione ofA, centered atm, <za,vi> Cm.
Leí A’ be tite quadratie trart4orm of A along V. Titen tite transforma za’
ami vi’ are both defined asid <za’, vi’> 2 <za, vi>’

Proof. Tite ring A’ is obtained as a localization AjC
tvnlq where y(a’) =

y(vn), i.e., a’ E vn\vn”. Since we are assurning <za,vi> c vn it follows that
<za, vi> cE vn~» = vn~. Therefore supp(vi) ~ vn and a’ ~ supp(vi), and this
shows that both za’ and vi’ are defined. Let r be the order of <y, vi> (cf.
[14], p. 362). TIen

and this ideal is generated by the set {~ a E M} (with M as un Propo-
sition 4). It suffices to show that eva>’ 4, acM, belongs to <za’,w’>.
For example, suppose that there is sorne b E A with za(a) <v(b), vi(a) =
vi(b). Since A’ cE A~,,,,(,,) and A’ cE ~ it follows immediately that

vi’
a

Le., F E <za’, vit>.

u
lix [1], Example 3d, it is shown that un the case of orderings the

containment <a’, ¡a’> 2 <a’, fi’> can be proper for 3-dimensional rings.
Similar examples can be constructed to show tite same phenomenon for
separating ideals of valuations.

4 Two-dimensional regular local rings

Now we leave the general discussioix of separating ideals and tun to the
case tliat (A, vn, le) is a regular local ring of dimension 2. Since we are
aizning particularí>’ at a geometric understanding of separating ideáis of
orderings on a smooth real algebraic surface defined over a real closed
fleid we also assuine that tite residue field le is real closed. The theory
of complete ideáis is ver>’ well developed un this situation; titis allows
us to obtain more speciflc results about separating ideals titan un tite
precediixg sections.
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Usually the investigation of complete ideals un a regular local ring
is concerned mostí>’ with m—primary ideals. We will first see that these
are also the most iixteresting ideáis from the point of view of separatiixg
ideals. So, pick a, fi E Sper(A), a ~ fi, having a cominon center p cE A.
If heiyht(p) =1 titen we can localize at p to obíain a regular local ring
of dmmension at most 1. Since separating ideals are cas>’ to handie un
sucit a setting we will not concern ourselves with this situation here.
So we assume that tite ceixter of a and fi is vn. II <a,fi> = (0) then
a = fi contrar>’ to tite choice of a and fi. If heiyitt(<a, fi>) = 1 then q =

‘./~S35 is a prime ideal of iteight one. Again we can localize at q to get
unto a one—dimensional situation. Therefore we shall now assume titat
<a, fi> is aix vn—primar>’ ideal. The additional assuxnption at snpp(a) cE
vn ,supp(fi) cE vn serves to exclude trivial cases.

The radical r of <zaa, zan> is a prime ideal (Lemma 3). Whenever
titere is a prime zaa—.or za0—ideal q of height 1 containing r then a + q
and fi + q are specializations of a and fi and (since <a, fi> is vn—primar>’)
<a, fi> = <a + q, fi + q>. Iherefore, to study the separating ideal <a, fi>
is essentially tite same problem as to study tite separating ideal of the
orderings d and fi induced un A/q by a and fi. With A/q we are un a
1—dimensional situation again, although un this case the ring A/q la not
necessarily regular. However, the investigation of 1-dimensional rings is
not our main concern here. So we only ment ion titat related situations
were considered un [10] and that tite separating ideal ha A/q can be
aixalyzed by looking at the integral closure A/q un q¡(A/q) witich is a
Dedekind domain.

We are left with two cases now: Either r = (0) and (O) and m are
tite oní>’ prime za«—aixd v0—ideals, or r = vn. lix tite first case we have
y0 = za0, anda and fiare total orders of A. Moreover, by [1], Lemnia 4.5,
dim l/1~ = 1 for ever>’ a—ideal 1 j <a, fi>, hence <a, fi> is simple. In the
second case we shaw that both <a, fi> end <za0, za0> are simple. First note
that [11,Lemnia 4.5, is applicable, heixce <a, fi> is simple. For <za.,, v¡~>,
consider the sequences Pi = vn D P2 D ... of simple v«—ideals and

= vn D q~ 2) ... of simple za0—ideals. Since tite sequences of za0—ideals
and za¡j—ideals diverge after finitel>’ man>’ steps it follows from Zariski’s
titear>’ of complete ideals (cf. [14],Appendix 5) that titere must be some
n such that p,. is not a zarideal or q,, is not aza.,—ideal. (Strictly spealcing,
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to be able to apply Zariski’s titeor>’ we need to work with valuations of
tite field q¡(A) and not oní>’ with valuations of A. However, if, for
example, za., is not a valuation of qf(A), i.e., if supp(za,,) # (O) titen
one can replace y0 b>’ tite valuation obtained as the composition za of
tite valuatjon belonging to the discrete valuation ring A~,,,,(,,0) and tite
valuation of q¡(A/supp(~a)) defining y0. The separating ideal of za and
za., is supp(za.,). II we are oní>’ interested ha a finite initial part of the
sequence of za., we can titerefore work equally well witit za as witit za.,.) So
<y0, zan> properí>’ containa a simple za.,—ideal or a simple zarideaL But if
1 ja aix>’ v.,—ideal (or za,r-ideal) properí>’ containing a simple V0—ideal (or
za0—ideal) titen dim 1/JO = 1 (or divn 1/10= 1).

Wehave shown so far that <a, fi> is alwa>rs simple and that <za.,, zas> =

o or <za.,, zan> is simple. For the furtiter analysis of the separating ideals
we will use (iterated) quadratic transformations. As we saw un §3, we
always itave

<a,fi>’ £ <a’,fi’>,
£

un tite present setting this can be improved. It is shown in [1], Propo-
sition 4.7, that <a,fi>’ = <a’,fi’> if <a,fi> cE vn. For valuations the
correspondiñg result la abnost immediate from [14], p. 390 ff. For, if
<za0,zas> = (O) titen it is clear that <za~,y> = (O) = <zaa,zan>’, afid if
<za.,, za~> is m—primar>’ titen <za0, za0>’ is a simple zaL— and za~—ideal, itence
the sequence of zaL—ideals preceding <za0, zan>’ and tite sequence of
ideals preceding <za.,, zap>’ both agree. But titen <zaL, za~> C <za<,, zan>’ whicit
proves the transformation formula for separating ideals of valuationa. (It
la clear that tite same argumeixt works for any two valuationa za, vi of A
such that <y, vi> is simple and nl—primar>’.>

If A cE A’ cE A” cE ... is tite sequence of iterated quadratic trana-
formations of A aloixg a titen we denote tite r—th iterated transforma of
a, /3,... b>’ 00i, /3(r) Suppose that r la minimal sucit that

<a,fi>(r> — ~~(r) c A(r).

Using tite termiixology of tangent directions introduced un §1, this meana
that A(r) is tite flrst quadratic transform ¡ix which tite tangent directions
of a(r) and /3(r) are separated (Theorem 2). Now titere are two possible
cases: Either <a, fi>fr> — <v<,, y~)(r) (which meaixs that even tite tangents
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have been separated — cf. Theorem 1) or <a, fi>(r) 2) <za.,, y
0>(r) (which

means that the tangents of a(r) and /3(r) agree, but a(r) and /3(r) ap-
proach tite common center from different directions along the tangent).
Titis proves

Thenrem 3. ¡¡A<’~) la tite firsí quadratic trasisform of A alony Va zintit
<a(r), /3(r)> — vn(r) titen .,(r) asid /3(r) have different tan.gents or differertt
tangení directione along tite same tangení accordiny as <a, /3> = <za0, za0>
or <a,/3> 2) <y.,,za0>.

u
Tite paper concludes with a couple of remarks.

E.emark 1. Snppose that a E Sper(A) is given and that F~ is defined
as at tite end of section 2. Let ¡ be aix>’ simple vn—primary a—ideal and
let J be aix>’ simple m—primar>’ a—ideal of tite form

J = {a E A 1 Va(a) =y}

where O c -y E F~. Titen using tite tecitnique of qnadratic transforma-
tions it is possible to sitow that titere exist sorne z~, O E Sper(A) such
that ¡ = <a, ‘i> = <y.,, za,1> and J = <a, 0> 2) <za0, v,~>.

u
Remark 2. flere is >‘et anotiter way to distinguisit tite two wa>’s how
tite iterated transforms .,(r) amI /3(r) are separated. It involves tite notion
of minimal reductions (cf. {11J). Every m—primar>’ ideal 1 cE A has
man>’ minimal reductions, each of witich is generated by a s>’stem of
parameteis (i.e., it>’ two elements which generate aix vn—primar>’ ideal).
1 is tite integral closure of each such minimal reduction. First snppose
that <a,fi> 2) <za.,, zan> and pick a minimal reduction (a,b) of <a,/3>. As
(a,fi>~ = <a,fi>

0 and dim<a,fi>/<a,fi>~ 1 we see that one geixerator,
sa>’ a, of the minimal reduction itas value za.,(<a, /3>) and, after replacing
b it>’ a linear combination ca + b with e E A if necessary, za<«b) >
zaa(<a,fi>). Since <za.,,za

0> C <a,fi>
0 = <a,fi>” we alio have za

0(a) =

zaa(<a,fi>), zaA.4b) > zao(<a,fi>). Now suppose titat <a,fi> = <za.,,zas> and
titat (a, b) is a minimal reduction of <a, fi> again. We will show that
eltiter za.,(a) = za0(<a,/3>) and za0(b) = zas(<a, fi>) or za.,(b) = za0(<~, fi>)
and zan(a) = zap(<a, /3>).
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To prove titis assume that za.,(b) > za.,(<a, fi>) and za0(b) > zaa(<a, fi>).
It is eas>’ to show that if s = ord(<a, /3>) the transform <a,fi>’ under a
quadratic transformation A cE A’ = A[z’mlq has (~, ~)as a minimal

reduction. lix particular za0 (~.-) c za., (~) and y0 (~) < V/3 ~ Now

apply quadratic transformations along a to transfonn <a, /3> unto vn<r).

Tben (a, b) is transforrned unto a minimal reduction (a(r), b(r)) of m(r)
with za.,(a(r)) < za.,(b(r)), V0(b(r)) < za0(b(r)). Rut vn(r) is basic (i.e., it
has no proper reductions), itence vn(r) — (a(r) b(r)). It is obvious that
vn(r)

2 cE mfr» rl mfr>fl. Moreover, b(r) E m(r» rl m(r)a. But then

(m(r>2, b(r)) ~ ~(r» rl

Since dim m(r)/(vn(rfl, b(r)) = 1 this implies that

m<r» — (tu(r)2,b(r)) — m(r)$.

Since tite order of titis ideal is 1 it is a simple complete ideal. Also it is
a v.,—ideal and a zarideat Therefore it is tite transform of sorne simple
za.,— and za

0—ideal ¡cE A. Since ¡(‘9 ~ <a,fi>(r) = <y y0>(r) we see that
1 cE <za.,, zas>. Titus, titere la a simple za.,— and zarideal un A witicit is
properí>’ coixtained ha <u.,, zas>. But titen tite sequences of za.,— and ‘za~~—
ideals agree up to 1. Titis contradicts tite definition of <za.,, v,s>, and the
proof of tite claim is complete.

u
E.emark 3. Suppose that le is a totalí>’ ordered fleid. Let A = le[X, Y]
be tite polynomial ring in two variables, K tite quotient fleld of A. Let
a be a total order of A itaving center p = (X, Y). lix Sper(A) tite
closed specialization of a is deixoted by /3. Refering to a, suppose that
O < Y < X. Set Y’ — ~‘ and consider A’ = A[YI. Ir Sper(A’) titere—x
is a imique point a’ restricting to a un Sper(A). Let fi’ be tite closed
specialization of a’ in Sper(A’). Under suitable itypotheses a directional
form was associated with the valuation za., un {14], p. 364, Definition 1.
The purpose of this remark is to point out a connection between titis
directional form aud our tangeixt directiona introduced in section 1.

Tite exceptional divisor of the quadratic transformation A —~* A’
is represented b>’ tite factor ring A’/X A’. Thla ring is isomorphic to
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the polynomial ring B = le[Y’]. In K let 1/., be tite valuation ring of
za.,, let M., be tite maximal ideal. Titere is a canonical itomomorphism
E —* y.,/M.,. II tSÉ is injective then y., is tite valuation ring of tite order
valuation of A belonging to tite maximal ideal p. Ir titis case there is no
directional form, so titere is notiting to do.

Now suppose that E .-.~ y.,/M., is not injective. Tite kernel is
generated by sorne irreducible polynomial 7 un the variable Y’. This
is essentiall>’ tite directional form of [141. lix A let L be the le—vector
space of linear forms. Tite total order a of A restricts to a total order of
It Tite Zarisku cotangent space p/p2 can be identifled canonucail>’ with
L, the Zariski tangent space (p/p2)V can be identified witit le2. Given

P(li, . . . ,lr) = ja’ Ele2 Vi: i~(z) =O}.

The set of alt titese eones un le2 defines a tangent direction according
to section 1. Eacit one of titese eones corresponds to a closed interval
on tite exceptional divisor of the quadratie transformation. Tite set of
titese intervals is tite basis of a ifiter on le. Tite following conditions are
equivalent:

(1) Tite directional form 7 is linear.

(2) Tite totail>’ ordered vector space L is not arcitimedean over le.

(3) /3’ defines a le—rational point on tite exceptional divisor.

(4) The intersection of the intervals contains a le—rational point.

If these conditions itold titen tite unique nontrivial convex subspace
of L is generated by a linear form ¡ witit proper transform ¡‘ E A’ such
that tite residue of f’ un E is tite directional form. Tite le—rational point
of (4) is unique and is the same as tite le—rational pount of (3) and tite
same as tite point defined it>’ tite linear directional form lii (1).

For tite discussion of the general case let R be tite real closure of
le. Tite total order of V<,/M., restricts to a total order of B/(7). Since
B/(f) is aix algebraic extension of le titere is a unique embedding unto
R. Let z E R be tite image of Y’+ (7). Titen, identifying the R—rational
points on tite exceptional divisor witit R, z belongs to tite intersection
of the s>’stem of intervais determined aboye. Clearí>’, z is one of tite
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roots of the directuonal form. Tite total order of B/(f) gives enougit
information to distinguisit z among tite different roots of 7. Thus, it
is legitimate to consider z as tite R—rational point on tite exceptional
divisor determining tite tangent for tite total order a. Of course, tite
total order of L contajus less information titan tite total order of B/(f).
Titerefore, the intersection of tite intervals will, un general, contain more
roots of 7 than just z. So tite directional form offers a citoice of tangents
for a. Witit tite information corning from tite total order of L tite field
of candidates is narrowed down, bnt not necessarily down to 1. If tliere
is only one candidate left then, of course, titis is tite true tangent.

Finail>’, to mention one particularly irnportant special case, sup-
pose that le is real closed, i.e., le = R. Titen z is a k—rational point and
tite equivalent conditions (1) — (4) appl>’.

u
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