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The Cauchy-Riemann Operator in Infinite
Dimensional Spaces

ROBERTO LUIZ SORAGGI*

ABSTRACT. In this survey article we present a sketch of the techniques which
allowed to advance into the problem of solving the d-probiem in infinite dimensional
spaces. As an example we show how the d-problem for a holomorphic (0,2)-form on
a D.F.N. space can be solved by using the solution of the dJ-problem for a
holomorphic (0,2)-form on a separable Hilbert space. For further details we refer to
SORAGGI [16].

The solution ol the —Neumann problem by J. J. Kohn in 1963 and the
publication in 1966 of L. Hérmander’s book on several complex variables
were the beginning of a reapproachment between several complex variables
and analysis. The interaction between several complex variabies and the
theory of partial differential equations during the 1960s, and the study of 9
through integral representations during the 1970s, have proved to be a fruitful
source of ideas for the development of Mathematics. So the relevance of
the d —operator to the theory of several complex variables is a good reason
for studying it on infinite dimensional spaces. On the other hand, the
existence of a nice theory of holomorphic functions on nuclear spaces (due to
the work of Boland, Dineen, Meise and Vogt) justifies the study of din such
spaces.

The study of partial differential operators with an infinite number of
independent variables has encountered formidable difficulties. Apart from
the absence of local compactness, there are three basic difficulties in studying
partial differential operators on infinite dimensional spaces: the non-
existence of Lebesgue measure for infinite dimensional spaces, the non-exis-
tence of %> partitions of unity and the non-existence of a powerful genera-
lization of Schwartz’ distribution theory to infinite dimensional spaces.
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We refer to the article of Thompson[17] for further details and references
on the literature on partial differential operators in infinite dimensional
spaces.

In order to develop the theory of partial differential operators in infinite
dimensional spaces we must have an appropriate definition of such an
operator as well as an appropiate notion of differentiability. The standard
notions of differentiable mappings coincide on the strong duals of Fréchet
nuclear spaces (DFN spaces). We refer to Colombeau (j2], [5]) and Colom-
beau-Meise [4] for a systematic discussion on this direction.

Concerning the d—operator, the counterexamples of Coeuré[l] and
Dineen[8] showed that we have to impose some restrictions on the spaces
where the forms are defined, as well as, on the forms themselves. Henrich [9],
in 1972, was the first to obtain a positive result in infinite dimensional spaces.
Henrich’s solution produced a phenomena, particular to infinite dimensions,
the solution is only defined on a dense subspace. Afterwards, Raboinfl1],
[12] and Colombeau-Perrot[3], [6] studied the problem du=w when w is a
¥ differential (0,1) form on a Hiibert space and on DFN spaces. In 1981,
Mazet[10], in a very elegant way, using a generalized Cauchy-integral
representation and standard Functional Analysis arguments, showed that the
solutions which were constructed by Raboin and Colombeau-Perrot were .
We refer to Soraggi[16] for further comments on the d-operator in infinite
dimensional spaces.

We have studied the d-operator in infinite dimensional spaces when  is
a (0,q) form, g>>1. The aim of this note is to present the results we have
obtained. We refer to Soraggi[14], [15], [16] for terminology and notation, as
well as for details and proofs of the results.

Complete results we only obtained when w was a holomorphic{0,2) form
and we restrict ourselves to this. case.

First of all we make some comments on the definition of the d-operator.

Definition 1

Let E be a complex locally convex space. Let q= 1. Let AQY(E} be the
space of continuous alternating g anti-linear forms on E, endowed with the
topology of uniform convergence on the bounded subsets of E. A €%
{(differential) (0, q) form is a mapping w: ) — A® 3 —() an open subset of E—
such that for every a€ (), there exist a continuous semi-norm o on E and an
open subset () of E, (the semi-normed space (E, o) } with a€ (' C ) such that
w Y —ACY(E )isa ™ mapping in (V.
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It i§ easily seen that a > differential (0, g) form in the sense of definition
1 is a 7" mapping in the sense of Sebastiio e Silva[I3].

Consider the underlying space Eg and differentiability in the sense of
Sebastifio ¢ Silva. Let k=1 and let F be a complex locally convex space.
Denote by 7-*({), F) the vector space of k-times differentiable mappings
from Q into F. As usual, 7 ({; F) denotes the vector space of continuous
mappings from {} into F. Suppose E and F are complex normed spaces. Let
ue?' ({4, F) and let & : Q— /R (E F) be its derivative. (/¢ (E; F) denotes
the vector space of continuous K-linear mappings from £ into /). For xe(Q,
ye E we have.

Definition 2
@luco)= ) [w ()OI +iw(x) @)

‘ U_E denotes the conjugate space of E, [d] u(x)e FUE;F)= .
—f/c (E; F)=¢(E: F)is the anti-linear component of u_'(x)eyp (E; F). So
we have defined an operator [3]: ¢/ ({V; F)—'¢ (§3. /¢ (E; F)).

Definition 3 (Mazet [10])

Let E; F be complex Banach spaces. Given w:Q) — ¢ (E, F). We say that
u:Q — F is a weak solution of [d]u= w if for every fixed z€ Q and x<€ E the
mapping g:h —u(z+ Ax) is continuous on a disc A= A (0, r})C € and satisfies
in the sense of distribution.

— (A)= ;X Uzt Ax)=w(z+ Az}(x)

Hence for every ¢r< D (A) we have

ay
f_\ o (A)u(z-f—)\x)d/\:—f_\v,b()\)w(z-l-)\x)(x)d:\,

where the F-vector valued integral is the Bochner integral.

We note that

(1) :X ufz+rx)=[du(z+ Ax)(x).
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_ A result of Mazet [10] states that every locally bounded weak solution of
[d] u= w has the same regularity properties as w, provided w and its derivaties
are locally bounded.

Definition 4

Let E be a complex Banach space. Let w:Q— AC9(E) be a £ 00, q)
form on an open subset Q) of E. Define for each x€ Q and for y,,..., v+ € E,
g=1

_ ! +17 o
(F0) () Frrn Ygr1) = S (= IF (B0 (V) (V1 oo Firs Vi 1)
g+1 «=

where ¥, indicates that y; has been omitted.

If we denote by £ (Q)) the vector space of (0, g) forms on Q, an
operator : 0.4 (Q))— E0.aTD) '()) has been defined. We note that dw(x)is
the alternating component of [8] w(x)eLe (E AOI(E)). When dealing with
a function u: E — € we set [d]u= du.

When w: Q—. Y (E)=Y¢(E,€)=Y5(E) is aZ=(0,1) form on O, we
observe that [3] u(x)e”(2E) and dw (x)e A0V (E} is the anty-symmetric
component of [d]u (x). Hence, we may write.

[@]u=3du+ G(u) where G (u)(x) is the symmetric component of [3] u(x).
(2)

_ The expression (2) leads to two basic difficulties when trying to solve
du=w on the whole space for a (0,2) form. The first difficulty concerns the
integral representatlons On the whole space we only have Cauchy integral
representations and it is easily seen that such a representation envolves (]
and not d. (See expressmn (1)). The second difficulty concerns Mazet’s result
which involves again [d] and not d. So the following question arises: when is
[d]u= du? In Soraggi[15], we showed that even if u is the canonical solution
of du=uw, w a holomorphic (0, 2) form on €7, it may happen that [d] u du
and hence it is necessary to provide a correction to the solution u. We
obtained the following fundamental Lemma.

Lemma 5

Let w: C©F = AQ2¢C") be a (0,2) form on C" with holomorphic
coefficients. Suppose the coefficient functions are in L? (T, ) [the vector
space of square integrable functions with respect to the Ee strictly
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plurisubharmornic (with constant h=1/2) weight ¢). Let u be the canonical
solution of du=w. There exists a X0, 1) form uy on € satisfying du,=0
such that wy=u—u; is a €= (0, 1) form satisfying

[Blu,= du,=wand ||u,| <8 ||w| 2.
n
Here for u(z)=3, a;(z)d:,and w(z)=3, au(z)dz; A d3, forms with
=1 i<k
coefficient functions in L2{C", ¢), we let

n

||u||fa=2]fc" la;(z) ]2 e @)

i= (2m)"
dVv

2 — n . 2 p—wlz}
ol =3 forlap(z)2e et

We first construct a solution of du=w when w is a holomorphic
G — analytic and continuous) (0,2) — form which 1s bounded on the bounded
subsets of a separable complex Hilbert space H. Our construction of a
solution u of bounded type on a dense subspace H, follows Raboin’s
construction. This construction is obtained in three steps. The first step
consists of projecting the d — problem onto finite dimensional subspaces and
choosing a good solution £, on these subspaces by applying Lemma 5. The
second step consists of constructing cylindrical solutions u, on H {from the
solutions &,. The last step consists of constructing a weak solution on H, and
then applying Mazet’s result to show that uis a 7 * solution.

We obtained the following result.

Theorem 6

Let w; H— A2 (H) be a holomorphic (G — analytic and continuous) (0,2)
Jorm which is bounded on the bounded subsets of H. There exists
u:H,— /7 H,) where H,is a dense subspace of H, such that uisa v (0, I)
Jorm bounded on the bounded subsets of H, moreover the derivatives of u
are locally bounded and du=cw.

We observe that the subspace H, of H is defined by H,= TH, where T is
an injective, self-adjoint Hilbert-Schmidt operator and the tnner product on
H, 1s defined by

(x; ¥}y, = (T~ 'x; T-'y)y where (-;-) 1s the inner product of #.

Now, the J — problem can be studied on a scale of Hilbert spaces with
nuclear injections by using Theorem 6 and following an argument of
Colombeau-Perrot[6]. (See also Colombeau{5]).
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Theorem 7

Let H,C H, be separable, complex Hilbert spaces with a nuclear injection.
Let &:H,—~AM™2(H,) be a holomorphic (0.2) form on H, There exisis
w:H,— % (H,) such that u is a £ (0, 1) form, bounded on the bounded
subsets of H,, its derivatives are locally bounded and du= .

(a: H,— A®2) (H }) is the restriction of @; to H,).

Now, we can study the d-problem on a D.F.N. space. Let us observe that,
since £ is a D.F. space, the space .Z“(4£) of continuous q anti-linear forms-
endowed with the topology of uniform convergence on the bounded subsets
of E— is a metrizable locally convex space. Since £ is a nuclear and dual
nuclear space, .2 (4E) is also nuclear. Hence A 09 (E}is a Fréchet-Schwartz
space. Let w: (1— A©9(FE) be a holomorphic (G-analytic and continuous)
mapping. Since E is the strong dual of a Fréchet-Schwartz space, w is locally
bounded. By applying a result of Colombeau-Mujica[7] we can show that
there exists a convex, balanced, open subset V' of £ such that w factors as in
the following diagram,

E 2 > A2 (E)
F
v @ .
Ey ‘ » AOD (EQ)
Diagram 1

where @, is a holomorphic mapping.

Now, since Eis nuclear, there exist convex, balanced, open subsets W and
VvV, WCVC Usuchthat £, =222 Ey, Ey 1, E,, E—Ey, are nuclear mappings.
By extending the mappings from £y to £, and observing that
AQD (F )=A02 (E,), we have the following diagram
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F w » AO2(E)

} _ P

3 w1 , 02 (Fy)
. ' P

E, twr > AUDCE )

|

Er w, p A0 (El)

Diagram 2

Now, by considering quotient mappings and spaces, if necessary, we can
suppase without loss of generality that the following diagram commutes.

E w N _\lt}.ZI(E)
! : P
oy w y AOD(Ey)
i f
Ey d » AOD(E,)
Diagram 3

Where E,, K, are separable Hilbert spaces, i is an injective nuclear
mapping and w, dnd ¢ are holomorphic mappings. By applving Theorem 7,
there exists fi: £y — [Fu)such thatuisa 7 * (0.1)—form. bounded on the
bounded subscts of h, its derivatives are locally bounded and dii=d@. By
taking a convex balanced open subset W, C H such that E”l—-EH is nuclear,
we can deline &,: Ew. e (Ew.) such that &, is a '™ {0,1) form of uniform
bounded type (&, and all its derivatives are bounded on bounded subsets) and
At =@* (@*: Ey, — AW (Ey,)). Hence u: E— ¢ (£) can be defined such
that u factors through &,. This implies that w1s a '/ ™ (0,1) form of uniform
bounded type and we write Ju=w.

So we have obtained the following.

Theorem 8

Let I he a D.F.N. space and let w: E—~ N"(E) be a holomorphic (0.2)
form. There exists a 7 < 0,1) form u of uniform bounded type on E such that
du = w.
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