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ABSTRACT

In this article we examine necessary and sufficient conditions for the predual
of the space of holomorphic mappings of bounded type, Gb(U), to have the ap-
proximation property and the compact approximation property and we consider
when the predual of the space of holomorphic mappings, G(U), has the com-
pact approximation property. We obtain also similar results for the preduals of
spaces of m-homogeneous polynomials, Q(mE).
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1. Introduction

Several authors have studied the connections between approximation properties on
a space E and approximation properties on the spaces of holomorphic functions on
open subsets of E and their preduals. We mention R. Aron and M. Schottenloher
[3], M. Schottenloher [30], J. Mujica [26], [27], C. Boyd [9], C. Boyd, S. Dineen and
P. Rueda [10], S. Dineen and J. Mujica [13], and the author [11]. The aim of this
work is to investigate the relationships between the approximation property and the
compact approximation property on a space E and approximation properties on the
spaces of holomorphic mappings H(U ; F ) and H∞(U ; F ).
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This paper is organized as follows. In Section 2 we establish several properties of
the locally convex space H∞(U ; F ) and the predual G∞(U), which will be useful in
subsequent sections.

In Section 3 we show that a Banach space E has the approximation property if
and only if G∞(U) has the approximation property if and only if every f ∈ H∞(U ; F )
can be approximated by holomorphic mappings of finite rank for the topology τγ

introduced in Section 2. This gives a new proof and also improves a result of J. Mujica
[27, Theorem 4.2].

Section 4 is devoted to the study of the compact approximation property in locally
convex spaces.

In Section 5 we show that a Banach space E has the compact approximation
property if and only if G∞(U) has the compact approximation property if and only if
every f ∈ H∞(U ; F ) can be approximated by holomorphic mappings with relatively
compact range for the topology τγ .

Finally in Section 6 we show that a Fréchet space E has the compact approximation
property if and only if (H(U), τc) has the compact approximation property if and only
if G(U) has the compact approximation property. This parallels a result of C. Boyd [9].

2. The spaces H∞(U ; F ) and G∞(U)

The letter C denotes the field of all complex numbers, N denotes the set of all positive
integers, and N0 = N ∪ {0}.

Unless stated otherwise E and F denote locally convex spaces, always assumed
complex and Hausdorff. The letter U will always denote a nonvoid open subset of E.
V0(E) denotes the collection of neighborhoods of zero in E. Γ(A) denotes the convex,
balanced hull of a set A ⊂ E.

Given a topology τ on a set E, N
τ

denotes the τ -closure of a set N ⊂ E.
Let H(U ; F ) denote the vector space of all holomorphic mappings from U into F ,

and let H∞(U ; F ) denote the space of all f ∈ H(U ; F ) such that f(U) is bounded
in F . Hb(U ; F ) denotes the space of all f ∈ H(U ; F ) such that f(A) is bounded in F
for each U -bounded set A. We recall that a set A ⊂ U is said to be U -bounded if A
is bounded and there exists V ∈ V0(E) such that A + V ⊂ U .

Let U = (Un)n∈N be an increasing countable open cover of U . Let H∞(U ; F )
denote the locally convex space

H∞(U ; F ) = { f ∈ H(U ; F ) : f(Un) is bounded in F for every n },
endowed with the topology of uniform convergence on all the sets Un.

It is clear that Hb(U ; F ) = H∞(U ; F ) if U = (Un)n∈N is a fundamental sequence of
open U -bounded sets. If F = C then we denote H(U ; C) (resp. H∞(U ; C), Hb(U ; C),
H∞(U ; C)) by H(U) (resp. H∞(U), Hb(U), H∞(U)).

One can readily see that the space H∞(U ; F ) is canonically topologically isomor-
phic to the projective limit of the spaces H∞(Un; F ). Likewise, if τc denotes the
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compact open topology, then the space (H∞(U ; F ), τc) is canonically topologically
isomorphic to the projective limit of the spaces (H∞(Un; F ), τc). In each case the
isomorphism is given by the mapping

f ∈ H∞(U ; F ) −→ (f |Un
)∞n=1 ∈ proj

n∈N

H∞(Un; F ).

We refer to [12] and [25] for the properties of holomorphic mappings in infinite
dimensional spaces, to [17], [18], [19] and [20] for the theory of locally convex spaces,
and to [5], [12], [17], [18] and [19] for the properties of projective and inductive limits.

We now introduce a very useful intermediate topology.

Definition 2.1. Let E and F be locally convex spaces, and let U be an open subset
of E.

(i) We denote by τγ the locally convex topology on H∞(U ; F ) generated by all the
seminorms of the form

p(f) = sup
j

αjq(f(xj)), f ∈ H∞(U ; F )

where (xj)∞j=1 varies over all sequences in U , (αj)∞j=1 varies over all sequences
of positive numbers tending to zero, and q varies over all continuous seminorms
on F .

(ii) If U = (Un)n∈N is an increasing, countable open cover of U then we denote by
τγ the locally convex topology on H∞(U ; F ) generated by all the seminorms of
the form

p(f) = sup
j

αjq(f(xj)), f ∈ H∞(U ; F )

where (xj)∞j=1 varies over all sequences in U which are contained in some Un,
(αj)∞j=1 varies over all sequences of positive numbers tending to zero, and q
varies over all continuous seminorms on F .

When F is a Banach space, the topology τγ on H∞(U ; F ) coincides with the
topology τγ introduced by J. Mujica in [26]. One can also prove that the space
(H∞(U ; F ), τγ) is canonically topologically isomorphic to the projective limit of the
spaces (H∞(Un; F ), τγ) with the same isomorphism as above.

Let P(E; F ) denote the vector space of all continuous polynomials from E into F
and let P(mE; F ) denote the subspace of all m-homogeneous members of P(E; F ) for
every m ∈ N0. In case F = C we denote P(mE; C) by P(mE).

Proposition 2.2. Let E be a Banach space, let F be a complete locally convex space,
let U be an open subset of E, and let U = (Un)n∈N be an increasing countable open
cover of U such that every Un is bounded and balanced. Then

(i) τγ ≥ τc on H∞(U ; F ).
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(ii) τγ = τc on P(mE; F ) for every m ∈ N.

Proof. (i) As remarked above τc is the weakest topology on H∞(U ; F ) such that
each restriction Rn : (H∞(U ; F ), τc) −→ (H∞(Un; F ), τc) is continuous. Let us
consider the following commutative diagram:

(H∞(U ; F ), τγ)
Id� (H∞(U ; F ), τc)

�
�

�
�

�

Rn ◦ Id

�
(H∞(Un; F ), τγ)

R′
n

� Idn� (H∞(Un; F ), τc)

Rn

�

where Id and Idn are identity mappings on H∞(U ; F ) and H∞(Un; F ), respec-
tively. By the definition of τγ and by [26, Proposition 4.9] and by the fact that a
complete locally convex space is the projective limit of Banach spaces, for every
n ∈ N the composition Idn ◦ R′

n is continuous. Since Rn ◦ Id = Idn ◦ R′
n, then

Rn ◦ Id is continuous for every n ∈ N. Hence Id is continuous. Thus τγ ≥ τc on
H∞(U ; F ).

(ii) Let m ∈ N. From (i) we have that τγ ≥ τc on P(mE; F ). Now we show that
τγ ≤ τc on P(mE; F ). Let n ∈ N and let us consider the following commutative
diagram:

(P(mE; F ), τc) ⊂I� (H∞(U ; F ), τγ)

�
�

�
�

�
R′

n
�
(H∞(Un; F ), τγ)

Rn

�

Let q be continuous seminorm on (H∞(Un; F ), τγ). For every P ∈ P(mE; F )
we have

q ◦ R′
n(P ) = q(P |Un

) = sup
j

αjp(P |Un
(xj)) = sup

j
p(P ((αj)

1
m xj)),

where (xj)∞j=1 ⊂ Un, (αj)∞j=1 is a sequence of positive numbers tending to zero
and p is a continuous seminorm on F . Let βj = m

√
αj for every j ∈ N and let

K = {βjxj : j ∈ N} ∪ {0}. Since Un is bounded, limj→∞ βjxj −→ 0. Thus K
is compact in Un. Therefore supj p(P (βjxj)) defines a continuous seminorm on
(P(mE; F ), τc). Hence R′

n is continuous. Since for every n ∈ N, R′
n = Rn ◦ I,

then the inclusion mapping I is continuous. Thus τγ ≤ τc on P(mE; F ).
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Let L(E; F ) denote the vector space of all continuous linear mappings from E
into F . We say that T ∈ L(E; F ) is a compact mapping if there is some neigh-
borhood V of zero in E such that T (V ) is relatively compact in F . We denote by
Lk(E; F ) the vector subspace of all compact mappings of L(E; F ).

P. Galindo, D. Garcia and M. Maestre [15] constructed a complete (LB)-space
Gb(U) and a mapping δU ∈ Hb(U ; Gb(U)) with the following universal property: For
each Banach space F and each mapping f ∈ Hb(U ; F ), there is a unique mapping
Tf ∈ L(Gb(U);F ) such that Tf ◦ δU = f . J. Mujica [27] generalized this result as
follows:

Theorem 2.3 ([27, Theorem 2.1]). Let U be an open subset of a locally convex
space E, and let U = (Un)n∈N be an increasing countable open cover of U . Then
there are a complete (LB)-space G∞(U) and a mapping δU ∈ H∞(U ; G∞(U)) with
the following universal property: For each complete locally convex space F and each
mapping f ∈ H∞(U ; F ), there is a unique mapping Tf ∈ L(G∞(U);F ) such that Tf ◦
δU = f . This property characterize G∞(U) uniquely up to a topological isomorphism.

The space G∞(U) is defined in the following way: For every sequence α = (αn) of
strictly positive numbers, let Bα

U = { f ∈ H∞(U) : ‖f‖Un ≤ αn for every n }. Then
we define G∞(U) = {u ∈ H∞(U)′ : u|Bα

U is τc-continuous for every α }, endowed
with the topology of uniform convergence on all the sets Bα

U . The evaluation mapping
δU : x ∈ U −→ δx ∈ G∞(U) is defined by δx : f ∈ H∞(U) −→ f(x) ∈ C for
every x ∈ U . As in the case of bounded holomorphic mappings the evaluations δx,
x ∈ U , generate a dense vector subspace of G∞(U) (see [27, Theorem 2.1] and [28,
Theorem 2.1].

Proposition 2.4. Let E be a Banach space, let U be an open balanced subset of E,
and let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U such that
U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N. Then we have the

following algebraic isomorphisms:

(i) L(G∞(U); F ) ∼= projn∈N L(G∞(Un);F ) for every locally convex space F .

(ii) Lk(G∞(U);F ) ∼= projn∈N Lk(G∞(Un);F ) for every Fréchet space F .

Proof. (i) It follows from [27, Theorem 3.2] and [23, §1, Satz 3].

(ii) If T ∈ Lk(G∞(U);F ), then there is a V ∈ V0(G∞(U)) such that T (V ) is rel-
atively compact in F . Thus i−1

n (V ) ∈ V0(G∞(Un)), where for every n ∈ N,
in : G∞(Un) ↪→ G∞(U) is the inclusion mapping. Hence for the corresponding
mapping (T |G∞(Un))n∈N ∈ projn∈N L(G∞(Un); F ) we have T |G∞(Un)(i−1

n (V )) ⊂
T (V ) for every n ∈ N, which shows that

(T |G∞(Un))n∈N ∈ proj
n∈N

Lk(G∞(Un); F ).
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Conversely let (Tn)n∈N ∈ projn∈N Lk(G∞(Un);F ). We show that there is a
W ∈ V0(G∞(U)) such that T (W ) is relatively compact in F , where the corre-
sponding mapping T is defined by T (x) = Tn(x) for every x ∈ G∞(Un). By
the hypotheses for every n ∈ N there is Un ∈ V0(G∞(Un)) such that Tn(Un) is
relatively compact in F . Hence by [24, Lemma 7.8] there is a sequence (cn)n∈N

of strictly positive numbers such that
⋃∞

n=1 cnTn(Un) is relatively compact in F .
By [27, Theorem 3.2] the set W := Γ(

⋃∞
n=1 in(cnUn)) is a neighborhood of zero

in G∞(U) (see, for example, [17, pg. 157]), and we have that

T (W ) = Γ
( ∞⋃

n=1

T ◦ in(cnUn)
)

= Γ
( ∞⋃

n=1

Tn(cnUn)
)

⊂ Γ
( ∞⋃

n=1

cnTn(Un)
)

Since Γ(
⋃∞

n=1 cnTn(Un)) is relatively compact in F , so is T (W ).

Proposition 2.5. Let E be a Banach space, let F be a complete locally convex space,
let U be an open balanced subset of E, and let U = (Un)n∈N be a sequence of bounded,
balanced, open subsets of U such that U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1,

for every n ∈ N. Then

(i) (L(G∞(U);F ), τc) is topologically isomorphic to projn∈N(L(G∞(Un);F ), τc).

(ii) (H∞(U ; F ), τγ) is topologically isomorphic to (L(G∞(U);F ), τc).

Proof. (i) By Proposition 2.4, L(G∞(U);F ) and projn∈N L(G∞(Un);F ) are alge-
braically isomorphic. Since, by [27, Theorem 3.2], the inductive limit
indn∈N G∞(Un) is boundedly retractive, it is compactly regular. Hence every
compact set of G∞(U) is contained and compact in G∞(Un) for some n ∈ N.
Conversely, since every G∞(Un) is a vector subspace of G∞(U), and the inclu-
sion G∞(Un) ↪→ G∞(U) is continuous, then for every n ∈ N, every compact set
of G∞(Un) is a compact set of G∞(U).

(ii) By the fact that a complete locally convex space is a projective limit of Ba-
nach spaces and by [26, Theorem 4.8] (H∞(Un; F ), τγ) ∼= (L(G∞(Un);F ), τc)
for every n ∈ N, we have topological isomorphism projn∈N(H∞(Un; F ), τγ) ∼=
projn∈N(L(G∞(Un);F ), τc). As (H∞(U ; F ), τγ) ∼= projn∈N(H∞(Un; F ), τγ), by
(i) we have the isomorphism.

If X is a set and Y is a vector space, then a mapping f : X −→ Y is said to
have finite rank if the subspace 〈f(X)〉 generated by f(X) is finite dimensional. The
subspace of all mappings of finite rank of H(U ; F ) can be canonically identified with
H(U) ⊗ F . Hence H∞(U) ⊗ F denotes the subspace of all members of H∞(U ; F )
which have finite rank.

We denote by H∞
K (U ; F ) the subspace of all members of H∞(U ; F ) which have

relatively compact range, and by H∞
K (U ; F ) the subspace of H∞(U ; F ) defined by

H∞
K (U ; F ) = { f ∈ H(U ; F ) : f(Un) is relatively compact in F for every n }.
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Proposition 2.6. Let E be a Banach space, let U be an open connected subset of E,
and let U = (Un)n∈N be an increasing countable open cover of U . Then we have the
following algebraic isomorphisms:

(i) H∞(U)⊗F ∼= [projn∈N H∞(Un)]⊗F ∼= projn∈N[H∞(Un)⊗F ] for every locally
convex space F .

(ii) H∞
K (U ; F ) ∼= projn∈N H∞

K (Un; F ) for every locally convex space F .

Proof. Since (ii) is trivial we will prove (i). If f ∈ H∞(U) ⊗ F then clearly

(f |Un
)n∈N ∈ proj

n∈N

[H∞(Un) ⊗ F ].

To show the converse let (fn)n∈N ∈ projn∈N[H∞(Un) ⊗ F ]. Then the corresponding
mapping f , defined by f(x) = fn(x) for every x ∈ Un, belongs to H∞(U)⊗F . Indeed,
since f(U1) ⊂ 〈f1(U1)〉, by [25, Exercise 5.F] we have that f(U) ⊂ 〈f1(U1)〉. Thus
dim〈f(U)〉 = dim〈f1(U1)〉 and hence f ∈ H∞(U) ⊗ F .

Proposition 2.7. Let E be a Banach space, let U be an open balanced subset of E,
and let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U such that
U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N. Then we have the

following algebraic isomorphisms:

(i) H∞(U ; F ) ∼= L(G∞(U);F ) for every complete locally convex space F .

(ii) H∞(U) ⊗ F ∼= G∞(U)′ ⊗ F for every complete locally convex space F .

(iii) H∞
K (U ; F ) ∼= Lk(G∞(U);F ) for every Banach space F .

(iv) G∞(U)′⊗F ∼= [projn∈N G∞(Un)′]⊗F ∼= projn∈N[G∞(Un)′⊗F ] for every Banach
space F .

Proof. (i) It follows from [27, Proposition 2.2].

(ii) By Theorem 2.3 we have that f ∈ H∞(U)⊗F if and only if dim〈Tf ◦δU (U)〉 < ∞
if and only if Tf ∈ G∞(U)′ ⊗ F .

(iii) If f ∈ H∞
K (U ; F ) then by Proposition 2.6 we have that (f |Un)n∈N ∈

projn∈N H∞
K (Un; F ). Therefore by the part (i) and by [26, Proposition 3.4]

we have the corresponding mapping (Tf |Un
)n∈N ∈ projn∈N Lk(G∞(Un); F ) and

by Proposition 2.4 the corresponding mapping Tf belongs to Lk(G∞(U);F ). By
the same argument we can also show the converse.

(iv) By [27, Theorem 3.2] and [14, §26, Satz 1.2, pg. 142] we have that

G∞(U)′ ⊗ F ∼= [proj
n∈N

G∞(Un)′] ⊗ F.
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Now we show that

proj
n∈N

[G∞(Un)′ ⊗ F ] ∼= G∞(U)′ ⊗ F.

Since by (i) projn∈N L(G∞(Un);F ) ∼= projn∈N H∞(Un; F ), then by [26, Propo-
sition 3.1] we have that projn∈N[G∞(Un)′ ⊗ F ] ∼= projn∈N[H∞(Un) ⊗ F ]. Fur-
thermore, by Proposition 2.6, we have projn∈N[H∞(Un) ⊗ F ] ∼= H∞(U) ⊗
F , and by (ii), we have H∞(U) ⊗ F ∼= G∞(U)′ ⊗ F . Hence it follows that
projn∈N[G∞(Un)′ ⊗ F ] ∼= G∞(U)′ ⊗ F .

A polynomial P ∈ P(nE; F ) is called of finite type if it is generated by linear
combination of functions φn ⊗ y (φ ∈ E′, y ∈ F ), where φn ⊗ y(x) = φn(x)y for all
x ∈ E. Let Pf (nE; F ) denote the subspace of all members of P(nE; F ) which are of
finite type, for every n ∈ N0, and let Pf (E; F ) denote the subspace of all P ∈ P(E; F )
of the form P = P0 + · · · + Pm, with Pj ∈ Pf (jE; F ) for every j.

Proposition 2.8. Let E be a Banach space, let U be a balanced open subset of E,
and let U = (Un)n∈N be an increasing, countable open cover of U .

(i) If (H∞(U ; F ), τγ) = H∞(U) ⊗ F for every Banach space F , then we have that

(H∞(U ; F ), τγ) = H∞(U) ⊗ F

for every locally convex space F .

(ii) If (H∞(U ; F ), τγ) = Pf (E; F ) for every Banach space F , then we have that

(H∞(U ; F ), τγ) = Pf (E; F )

for every locally convex space F .

Proof. We only will prove (i), and since Pf (E; F ) = Pf (E)⊗F the same proof works
for (ii). Suppose that (H∞(U ; G), τγ) = H∞(U) ⊗ G for every Banach space G. Let
F be a locally convex space and let V ∈ V0(F ), V open, balanced and convex. Let PV

be the Minkowski funcional of V , let FV be the normed space FV = (F, PV )/P−1
V (0)

and let F̃V be its completion. Then by hypothesis we have that (H∞(U ; F̃V ), τγ) =

H∞(U) ⊗ F̃V . Let p be a continuous seminorm on (H∞(U ; F̃V ), τγ). Without loss of
generality we may assume that

p(f̃) = sup
i

αi‖f̃(xi)‖ for all f̃ ∈ H∞(U ; F̃V )

where (xi)i∈N ⊂ Un for some n ∈ N, and (αi)i∈N is a sequence of positive numbers
tending to zero. Let f ∈ H∞(U ; F ), let ε > 0 and let P be a continuous seminorm on
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2004, 17; Núm. 2, 411–434

418
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(H∞(U ; F ), τγ). We want to find g ∈ H∞(U) ⊗ F such that P(f − g) ≤ ε. Without
loss of generality we may assume that

P(f) = sup
i

αiPV (f(xi)) for all f ∈ H∞(U ; F ).

Let ΠV ∈ L(F ; FV ) be the canonical mapping

ΠV : F −→ FV ⊂ F̃V .

Since ΠV ◦f ∈ H∞(U ; F̃V ), then there is a g̃ ∈ H∞(U)⊗F̃V with g̃(x) =
∑k

j=1 ϕj(x)bj

for every x ∈ U , where ϕj ∈ H∞(U) and bj ∈ F̃V , such that

p(ΠV ◦ f − g̃) = sup
i

αi‖ΠV ◦ f(xi) − g̃(xi)‖ <
ε

2
.

Furthermore for each j ∈ N there is a aj ∈ F such that

‖ΠV (aj) − bj‖ <
ε

2k supi αi|ϕj(xi)| .

Thus for every i ∈ N we have that

‖ΠV (αif(xi) − αi

k∑
j=1

ϕj(xi)aj)‖ = ‖αiΠV ◦ f(xi) − αi

k∑
j=1

ϕj(xi)ΠV (aj)‖

≤ ‖αiΠV ◦ f(xi) − αi

k∑
j=1

ϕj(xi)bj‖ + ‖αi

k∑
j=1

ϕj(xi)(bj − ΠV (aj))‖ < ε.

Hence for each i ∈ N we have that ΠV (αif(xi) − αi

∑k
j=1 ϕj(xi)aj) ∈ εΠV (V ) since

ΠV (V ) = UFV
, where UFV

is the unit open ball of FV . Thus we get αif(xi) −
αi

∑k
j=1 ϕj(xi)aj ∈ εΠ−1

V (ΠV (V )) = εV for each i ∈ N. Hence defining a mapping

of finite type g : U −→ F with g(x) =
∑k

j=1 ϕj(x)aj for each x ∈ U , we obtain
αi(f(xi) − g(xi)) ∈ εV for each i ∈ N, or equivalently, αiPV (f(xi) − g(xi)) ≤ ε for
each i ∈ N. Thus P(f − g) = supi αiPV (f(xi) − g(xi)) ≤ ε, as we desired.

3. H∞(U ; F ) and the Approximation Property

We say that a locally convex space E has the approximation property (AP for short)
if for every convex compact and balanced subset K of E and every neighborhood of
zero V in E there is a finite rank mapping T ∈ L(E; E) such that Tx− x ∈ V for all
x ∈ K. It is well known that each complemented subspace of a locally convex space
with the AP has the AP.

By [26, Proposition 5.2] we have the following:
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Remark 3.1. Let E and F be Banach spaces, let U be an open subset of E, and
let U = (Un)n∈N be an increasing countable open cover of U such that every Un is
bounded and balanced. If (σmf)m∈N denotes the sequence of Cesàro means defined in
Proposition 5.2 of [26], then one can readily prove that σmf −→ f in (H∞(U ; F ), τγ)
for each f ∈ H∞(U ; F ).

In [27], by using a result of K. D. Bierstedt and R. Meise [6, Satz 1.2], J. Mujica
proves that a Banach space E has the AP if and only if the complete (LB)-space
G∞(U) has the AP. The following result, whose proof is based on a technique of J.
Mujica [26, Theorem 5.4], improves this result by presenting new equivalences. The
symbol Λ denotes a directed set.

Theorem 3.2. Let E be a Banach space, let U be an open balanced subset of E,
and let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U such that
U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N. The following are

equivalent:

(i) E has the AP.

(ii) H∞(U ; F ) = Pf (E; F )
τγ for every Banach space F (equivalently for every locally

convex space F ).

(iii) H∞(U ; F ) = H∞(U) ⊗ F
τγ for every Banach space F (equivalently for every

locally convex space F ).

(iv) δU ∈ H∞(U) ⊗ G∞(U)
τγ .

(v) G∞(U) has the AP.

(vi) For every Banach space F , and for every open, balanced subset V ⊂ F ,
H∞(V; E) = H∞(V) ⊗ E

τγ , where V = (Vn)n∈N is a sequence of bounded, bal-
anced, open subsets of V such that V =

⋃∞
n=1 Vn and ρnVn ⊂ Vn+1, with ρn > 1,

for every n ∈ N.

(vii) IU ∈ H∞(U) ⊗ E
τγ .

Proof. (i) =⇒ (ii): Let F be a Banach space, let f ∈ H∞(U ; F ) and let p be a
continuous seminorm on (H∞(U ; F ), τγ). Then by Remark 3.1 there is a P ∈ P(E; F )
such that p(P − f) < ε

2 . Let P = P 0 + P 1 + . . . + Pn, where P j ∈ P(jE; F ) for
every j = 0, 1, . . . , n. By Proposition 2.2 τγ = τc on P(kE; F ) for every k ∈ N0.
Hence, by [26, Lemma 5.3] there are Qj ∈ Pf (jE; F ) such that p(Qj − P j) < ε

2(n+1)

for every j = 0, 1, . . . , n. Note that Q0 + · · · + Qn = Q ∈ Pf (E; F ), and since
p(Q − P ) ≤ p(Q0 − P 0) + · · · + p(Qn − Pn) < ε

2 , then p(Q − f) < ε. Hence we
have (ii).
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(ii) =⇒ (iii): Since Pf (E; F ) ⊂ H∞(U)⊗F ⊂ H∞(U ; F ), and F is a Banach space,
then it follows from (ii) that H∞(U ; F ) = Pf (E; F )

τγ ⊂ H∞(U) ⊗ F
τγ ⊂ H∞(U ; F ),

and we have (iii).
The fact that each of the conditions (ii) or (iii) for every Banach space F is

equivalent to the corresponding condition for every locally convex space F follows
from Proposition 2.8.

(iii) =⇒ (iv): By (iii) and by Proposition 2.8, we get

H∞(U ; G∞(U)) = H∞(U) ⊗ G∞(U)
τγ

.

Since by Theorem 2.3 δU ∈ H∞(U ; G∞(U)) we have (iv).

(iv) =⇒ (v): From (iv) there is a net (gα)α∈Λ⊂H∞(U)⊗G∞(U) such that gα
τγ−→

δU . By Proposition 2.7 we have a corresponding net (Tgα
)α∈Λ ⊂ G∞(U)′ ⊗ G∞(U).

By Theorem 2.3 the identity mapping I : G∞(U) −→ G∞(U) corresponds to δU .
Since by Proposition 2.5 (H∞(U ; G∞(U)), τγ) � L(G∞(U);G∞(U)), τc) then we have
that Tgα

τc−→ I, i.e., I ∈ G∞(U)′ ⊗ G∞(U)
τc . Hence G∞(U) has the AP.

(v) =⇒ (i): Since, by [27, Proposition 2.4], E is topologically isomorphic to a
complemented subspace of G∞(U), then by (v) E has the AP.

(iii) =⇒ (vii): From (iii) we have that H∞(U ; E) = H∞(U) ⊗ E
τγ . Since the

identity mapping I : U −→ U ⊂ E is bounded on each Un, then I ∈ H∞(U ; E), and
we have (vii).

(vii) =⇒ (i): Suppose that I ∈ H∞(U) ⊗ E
τγ , where I is the identity mapping

on U . We will show that I|Un
∈ H∞(Un) ⊗ E

τγ for each n ∈ N. By hypotheses
there is a net (gα)α∈Λ ⊂ H∞(U) ⊗ E such that gα

τγ−→ I. By Proposition 2.6 for
each α ∈ Λ, gα corresponds to a sequence (gn

α)n∈N in projn∈N[H∞(Un) ⊗ E], where
gn

α = gα|Un
∈ H∞(Un) ⊗ E for every n ∈ N. Hence we have gα|Un

τγ−→ I|Un
for each

n ∈ N. Then I|Un
∈ H∞(Un) ⊗ E

τγ , and by [26, Theorem 5.4] E has the AP.
(i) =⇒ (vi): Let V be an open, balanced subset of F , and let V = (Vn)n∈N

be a sequence of balanced, bounded, open subsets of V such that V =
⋃∞

n=1 Vn

and ρnVn ⊂ Vn+1, with ρn > 1, for every n ∈ N. Then by (i) we have that
(L(G∞(V);E), τc) = G∞(V)′ ⊗ E. (See [16, §5, Proposition 35], or [20, §43, 1. (1)].)
Hence by Propositions 2.5 and 2.7 we have that (H∞(V; E), τγ) = H∞(V) ⊗ E.

(vi) =⇒ (i): From (vi) we have that (H∞(V; E), τγ) = H∞(V) ⊗ E. Thus
by Propositions 2.5 and 2.7 we have that (L(G∞(V);E), τc) = G∞(V)′ ⊗ E. We
will prove that F ′ ⊗ E is τc-dense in L(F ; E) for each Banach space F . Let A ∈
L(F ; E). Then by [27, Proposition 2.4] there are mappings S ∈ L(F ; G∞(V)) and
R ∈ L(G∞(V); F ) such that R◦S(y) = y for all y ∈ F . Then A◦R ∈ L(G∞(V);E) and
hence there is net (Bα)α∈Λ ⊂ G∞(V)′⊗E such that Bα

τc−→ A◦R in (L(G∞(V);E), τc).
Thus, (Bα ◦S)α∈Λ ⊂ F ′⊗E and Bα ◦S

τc−→ A◦R◦S = A in (L(F ; E), τc). Therefore
we showed that L(F ; E) = F ′ ⊗ E

τc . Then by [21, Theorem 1.e.4] E has the AP.
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From the previous theorem and by [27, Proposition 7.1], we obtain the following
result for the holomorphic mappings of bounded type.

Corollary 3.3. Let E be a Banach space, let U be an open balanced subset of E. The
following are equivalent:

(i) E has the AP.

(ii) Hb(U ; F ) = Pf (E; F )
τγ for every Banach space F (equivalently for every locally

convex space F ).

(iii) Hb(U ; F ) = Hb(U) ⊗ F
τγ for every Banach space F (equivalently for every

locally convex space F ).

(iv) δU ∈ Hb(U) ⊗ Gb(U)
τγ .

(v) Gb(U) has the AP.

(vi) For every Banach space F , and for every open, balanced subset V ⊂ F ,
Hb(V ; E) = Hb(V ) ⊗ E

τγ .

(vii) IU ∈ Hb(U) ⊗ E
τγ .

4. The Compact Approximation Property in locally convex spa-
ces

Let (L(E; F ), c) denote the vector space L(E; F ), endowed with the topology of uni-
form convergence on all compact, convex, balanced subsets of E, i.e, the topology
which admits as the base of neighborhoods of zero the sets of the form W (K; V ) =
{T ∈ L(E; F ) : T (K) ⊂ V }, where K varies over compact convex and balanced sub-
sets of E, and V varies over neighborhoods of zero of F , which are convex, balanced
and closed. In case F = C we will denote (L(E; F ), c) by E′

c.
We denote by A◦ the polar of a set A ⊂ E. Let Lε(E′

c; F ) denote the vector space
L(E′

c; F ), endowed with the topology of uniform convergence on the equicontinuous
subsets of E′, i.e, the topology which admits as the base of neighborhoods of zero the
sets of the form W (U◦; V ) = {T ∈ L(E′

c; F ) : T (U◦) ⊂ V }, where U and V varies
over neighborhoods of zero of E and F respectively, which are convex, balanced and
closed.

The following proposition is well known, and is easy to prove anyway.

Proposition 4.1. Let E and F be locally convex spaces.

(i) The inclusion
J : (L((E; F ), c) ↪→ Lε((E′

c)
′
c; F )

is always an imbedding. If (E′
c)

′
c = E, then J is surjective.
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(ii) The identity
I : (L(E′

c; F ), c) −→ Lε(E′
c; F )

is always continuous. If (E′
c)

′
c = E, then I is a homeomorphism.

In the preceding proposition (E′
c)

′
c = E holds, in particular, if E is a Mackey

space, or, if E = F ′
c with F a Mackey space.

For locally convex spaces E and F the ε-product of E and F was introduced by
L. Schwartz as the locally convex space EεF := Lε(E′

c; F ); see L. Schwartz [31, 32].
Variants of the ε-product EεF have been considered by other authors; see K. D. Bier-
stedt [4], H. Jarchow [18, p. 344] and G. Köthe [20, p. 242]. All these variants coincide
when E is complete.

Proposition 4.2 ([31, Exposé no. 8]). Let E and F be locally convex spaces. Then
FεE is topologically isomorphic to EεF .

Proposition 4.3. Let E and F be locally convex spaces. Then T ∈ L(F ′
c; E) is

compact if and only if the adjoint operator T ′ ∈ L(E′
c; F ) is compact.

A locally convex space E is said to have the compact approximation property
(CAP for short) if for every convex, compact and balanced subset K of E and every
neighborhood of zero V in E there is a compact mapping T ∈ L(E; E) such that
Tx − x ∈ V for all x ∈ K. If a locally convex space E has the CAP, then each
complemented subspace of E has it. The proof of the following proposition follows
from an argument in [20, §43, 4.(2) and (3)].

Proposition 4.4. (i) The locally convex direct sum E =
⊕

α∈Λ Eα of locally con-
vex spaces Eα has the CAP if and only if each Eα has the CAP.

(ii) The topological product E =
∏

α∈Λ Eα of locally convex spaces Eα has the CAP
if and only if each Eα has the CAP.

The following result is similar to the characterization of the AP due to A. Gro-
thendieck [16, Chapitre I, no. 5] and L. Schwartz [31, Exposé no. 14].

Proposition 4.5. Let E be a locally convex space. Let us consider the following
conditions:

(i) E has the CAP.

(ii) (L(E; E), c) = Lk(E; E).

(iii) (L(E; F ), c) = Lk(E; F ) for every locally convex space F .

(iv) (L(F ; E), c) = Lk(F ; E) for every locally convex space F .

(v) FεE = Lk(F ′
c; E) for every locally convex space F .
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(vi) EεF = Lk(E′
c; F ) for every locally convex space F .

Always we have

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) =⇒ (v) ⇐⇒ (vi),

and moreover (v) implies

(iv’) (L(F ; E), c) = Lk(F ; E) for every locally convex space F such that (F ′
c)

′
c = F .

Proof. Let F be a locally convex space. If E has the CAP, then there is a net
(Tα)α∈Λ ⊂ Lk(E; E) such that Tα

c−→ IE . Hence for any T ∈ L(E; F ) we have that
T ◦Tα

c−→ T , which shows that (i) implies (iii), and for any T ∈ L(F ; E) we have that
Tα ◦T

c−→ T , which shows that (i) implies (iv). While the equivalence of (v) and (vi)
is a consequence of Propositions 4.2 and 4.3, it follows from (iv) that (L(F ′

c; E), c) =
Lk(Fc

′; E) for every locally convex space F , and hence, by Proposition 4.1 (ii) we
have (v). If conversely (v) holds we have that Lε((F ′

c)
′
c; E) = Lk((F ′

c)′c; E) for every
locally convex space F , and if (F ′

c)
′
c = F , then by Proposition 4.1 (i) we have (iv’).

Since the another implications are trivial, the proof is complete.

We do not know in the previous proposition if in general (v) implies (iv), and we
do not know if each of the conditions (iii), (iv), (v) or (vi) for every Banach space F
is equivalent to the corresponding condition for every locally convex space F .

Corollary 4.6. Let E be a locally convex space such that (E′
c)

′
c = E. Then E has

the CAP if and only if E′
c has the CAP. In particular a reflexive locally convex space

E has the CAP if and only if E′
c has the CAP.

In [10] C. Boyd, S. Dineen and P. Rueda have proved that if {En}∞n=0 is an S-
absolute decomposition of a locally convex space E (for the definition see [12, §3.3]),
then E has the AP if and only if each En has the AP [10, Proposition 1]. The same
proof works also in the case of the CAP.

Proposition 4.7. If {En}∞n=0 is an S-absolute decomposition of a locally convex space
E, then E has the CAP if and only if each En has the CAP.

If E = projα∈Λ Eα is such that each locally convex space Eα has the AP, then E
has the AP. (This follows from the arguments of the proofs of two results of the book
of G. Köthe [20, §43, 1, (2) and (3)]). But we do not know if the same is true in the
case of the CAP, i.e., if E = projα∈Λ Eα is such that each locally convex space Eα

has the CAP, does E have the CAP?

5. H∞(U ; F ) and the Compact Approximation Property

We say that the polynomial P ∈ P(E; F ) is compact if every x ∈ E has a neighbor-
hood Vx ⊂ E such that P (Vx) is relatively compact in F . If E and F are Banach
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spaces, we conclude from [3, Proposition 3.4] that a polynomial P ∈ P(E; F ) is com-
pact if and only if P (B) is relatively compact in F for every bounded set B in E.
We denote by Pk(E; F ) the subspace of all compact polynomials in P(E; F ), and by
Pk(mE; F ) the subspace of all polynomials in P(mE; F ) which are compact, for every
m ∈ N0.

A function f : E −→ F is called weakly continuous on the bounded sets of E if for
each bounded set B ⊂ E, ε > 0, x0 ∈ B, and each continuous seminorm p on F there
are ϕ1, . . . , ϕk ∈ E′ and δ > 0 such that if x ∈ B, |ϕi(x0 − x)| < δ, (i = 1, . . . , k),
then p(f(x0) − f(x)) < ε.

A function f : E −→ F is called weakly uniformly continuous in the bounded
sets of E if for each bounded set B ⊂ E, ε > 0, and each continuous seminorm p
on F there are ϕ1, . . . , ϕk ∈ E′ and δ > 0 such that if x, y ∈ B, |ϕi(x − y)| < δ,
(i = 1, . . . , k), then p(f(x) − f(y)) < ε.

Let Pw(E; F ) (resp. Pwu(E; F ) ) denote the subspace of all members of P(E; F )
which are weakly (resp. weakly uniformly) continuous in the bounded sets of E and
let Pw(mE; F ) (resp. Pwu(mE; F ) ) denote the subspace of all members of P(mE; F )
which are weakly (resp. weakly uniformly) continuous in the bounded sets of E, for
every m ∈ N0. We refer to [1] and [2] for the properties of Pw(E; F ) and Pwu(E; F )
on infinite dimensional spaces.

If E is a Banach space, for each m ∈ N, we let Q(mE) be the space of all linear
forms on P(mE) which when restricted to each locally bounded set are τc-continuous.

In [8] C. Boyd gave an S-absolute decomposition of G(U), the predual of H(U), U
an open balanced subset of a locally convex space E. By a modification of the proof
of [8, Proposition 4], it is possible to prove a similar result for G∞(U).

Proposition 5.1. Let U be an open, balanced subset of a Banach space E, and let
U = (Un)n∈N be an increasing countable open cover of bounded, balanced, open subsets
of U . Then {Q(nE)}∞n=0 is an S-absolute decomposition for G∞(U).

Now we give the main result of this section which asserts that a Banach space
E has the CAP if and only if the complete (LB)-space G∞(U) has the CAP. To
obtain this result, in the place of the technique of the proof of Theorem 3.2 (whose
application does not seem to be possible), we have used the S-absolute decomposition
of G∞(U).

Theorem 5.2. Let E be a Banach space, let U be an open balanced subset of E,
and let U = (Un)n∈N be a sequence of bounded, balanced, open subsets of U such that
U =

⋃∞
n=1 Un and ρnUn ⊂ Un+1, with ρn > 1, for every n ∈ N. The following are

equivalent:

(i) E has the CAP.

(ii) H∞(U ; F ) = Pw(E; F )
τγ for every Banach space F (equivalently for every com-

plete locally convex space F ).
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(iii) H∞(U ; F ) = Pk(E; F )
τγ for every Banach space F (equivalently for every com-

plete locally convex space F ).

(iv) H∞(U ; F ) = H∞
K (U ; F )

τγ for every Banach space F (equivalently for every
complete locally convex space F ).

(v) δU ∈ H∞
K (U ; G∞(U))

τγ .

(vi) G∞(U) has the CAP.

(vii) For every Banach space F , and for every open, balanced subset V ⊂ F ,
H∞(V; E) = H∞

K (V; E)
τγ , where V = (Vn)n∈N is a sequence of bounded, bal-

anced, open subsets of V such that V =
⋃∞

n=1 Vn and ρnVn ⊂ Vn+1, with ρn > 1,
for every n ∈ N.

(viii) IU ∈ H∞
K (U ; E)

τγ .

Proof. Firstly we will show the implications for Banach space F .
(i)=⇒(ii): In the proof of implication (a) =⇒ (b) of [11, Theorem 5] using Remark

3.1 and Proposition 2.2 we obtain (ii).
(ii)=⇒(iii): Let F be a Banach space. It follows from [1, Theorem 2.9] and

[2, Lemma 2.2] that Pw(E; F ) = Pwu(E; F ) ⊂ Pk(E; F ) ⊂ H∞(U ; F ). Then from (ii)
we get (iii).

(iii)=⇒(iv): Since Pk(E; F ) ⊂ H∞
K (U ; F ) ⊂ H∞(U ; F ), for F Banach, by (iii) we

have (iv).
(iv)=⇒(viii): It follows from the argument in the implication (iii) =⇒ (vii) of

Theorem 3.2.
(viii)=⇒(i): By the proof of the implication (vii) =⇒ (i) in Theorem 3.2, we get

I|Un
∈ H∞

K (Un; E)
τγ for each n ∈ N. Thus by [11, Theorem 5] E has the CAP.

(i)⇐⇒(vi): By [11, Corollary 7] E has the CAP if and only if Q(nE) has the CAP
for every n ∈ N. Therefore by Propositions 4.7 and 5.1 for every n ∈ N, Q(nE) has
the CAP if and only if G∞(U) has the CAP.

(i)=⇒(vii): It follows from Propositions 2.5 and 2.7.
(vii)=⇒(i): From (vii) we have that (H∞(V; E), τγ) = H∞

K (V; E). Thus by Propo-
sitions 2.5 and 2.7 we have that (L(G∞(V);E), τc) = Lk(G∞(V);E). From this point
on the proof is similar to the proof of the implication (vi) =⇒ (i) in Theorem 3.2.

Now we show that the condition (ii) for every Banach space F is equivalent to
the same condition for every complete locally convex space F , and the same proof
will also work for (iii). Since Pk(E; F ) ⊂ H∞

K (U ; F ), as F locally convex space, then
by (iii) the same equivalence follows for (iv).

Suppose that H∞(U ; F ) = Pw(E; F )
τγ for every Banach space F . Let f ∈

H∞(U ; F ), as F complete locally convex space, let ε > 0 and let p̃ be a continu-
ous seminorm on (H∞(U ; F ), τγ). We may assume that

p̃(f) = sup
j

αjp(f(xj)) for all f ∈ H∞(U ; F ),
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where (xj)j∈N ⊂ Um for some m ∈ N, (αj)j∈N is a sequence of positive numbers
tending to zero, and p is a continuous seminorm on F . The subset Um is bounded, then
B = Γ(f(Um)) is bounded in F . Since F is a complete locally convex space, the vector
subspace generated by B, i.e., FB =

⋃∞
n=1 nB, is a Banach space, normed by the

Minkowski functional pB , such that the injection iB : FB ↪→ F is continuous. Since,
by hypotheses and the previous equivalences, E has the CAP, then by [11, Theorem 5]
we have that H∞(Um; FB) = Pw(E; FB)

τγ . As f |Um
∈ H∞(Um; FB) then there is a

P ∈ Pw(E; FB) such that

sup
j

αjpB(P (xj) − f |Um(xj)) <
ε

c
,

where c > 0 is such that p(y) ≤ c · pB(y) for all y ∈ FB . Hence we have that

p̃(P − f) = sup
j

αjp(P (xj) − f(xj))

= sup
j

αjp(P (xj) − f |Um
(xj))

≤ sup
j

αjcpB(P (xj) − f |Um
(xj)) ≤ ε.

Therefore, since P = iB ◦ P ∈ Pw(E; F ), we have that H∞(U ; F ) = Pw(E; F )
τγ

for every complete locally convex space F .
Using the above observation we show the equivalence of (v) with the previous

conditions.
(iv)=⇒(v): Since G∞(U) is a complete locally convex space, then by (iv) and by

the above observation we obtain that H∞(U ; G∞(U)) = H∞
K (U ; G∞(U))

τγ . Since, by
Theorem 2.3, δU ∈ H∞(U ; G∞(U)), then we have (v).

(v)=⇒(viii): By (v) there is a net (gα)α∈Λ ⊂ H∞
K (U ; G∞(U)) such that gα

τγ−→ δU .
Let us consider the inclusion IU : U −→ U ⊂ E. Since IU ∈ H∞(U ; E) then by
Theorem 2.3 there is a TIU

∈ L(G∞(U);E) such that TIU
◦ δU = IU . Therefore we

have that TIU
◦ gα

τγ−→ TIU
◦ δU = IU . Since (TIU

◦ gα)α∈Λ ⊂ H∞
K (U ; E), we have

(viii), and now the proof of the theorem is complete.

We do not know if the method used in Theorem 3.2, to prove that G∞(U) has
the AP when E has it, works in the case of the CAP (because we do not know if
Tf ∈ Lk(G∞(U); G∞(U)) whenever f ∈ H∞

K (U ; G∞(U))). But observe that using the
S-absolute decomposition of G∞(U), it is possible to give another proof that G∞(U)
has the AP when E has it (using [10, Proposition 1], and [26, Corollary 5.5]).

Let Hc(U ; F ) denote the subspace of H∞(U ; F ) defined by

Hc(U ; F ) = { f ∈ H(U ; F ) : f(A) is relatively compact in F

for each U -bounded set A }.

427 Revista Matemática Complutense
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Note that Hc(U ; F ) = H∞
K (U ; F ) if U = (Un)n∈N is a fundamental sequence of

open U -bounded sets.
Analogously to the case of the AP (in Corollary 3.3) from Theorem 5.2 in particular

we obtain the following result for the holomorphic mappings of bounded type.

Corollary 5.3. Let E be a Banach space, let U be an open balanced subset of E. The
following are equivalent:

(i) E has the CAP.

(ii) Hb(U ; F ) = Pw(E; F )
τγ for every Banach space F (equivalently for every com-

plete locally convex space F ).

(iii) Hb(U ; F ) = Pk(E; F )
τγ for every Banach space F (equivalently for every com-

plete locally convex space F ).

(iv) Hb(U ; F ) = Hc(U ; F )
τγ for every Banach space F (equivalently for every com-

plete locally convex space F ).

(v) δU ∈ Hc(U ; Gb(U))
τγ .

(vi) Gb(U) has the CAP.

(vii) For every Banach space F , and for every open, balanced subset V ⊂ F ,
Hb(V ; E) = Hc(V ; E)

τγ .

(viii) IU ∈ Hc(U ; E)
τγ .

6. H(U ; F ) and the Compact Approximation Property

In this section using the S-absolute decomposition of H(U ; F ) and H(K; F ), due to
S. Dineen [12], and S-absolute decomposition of G(U) and G(K), due to C. Boyd [8],
we obtain necessary and sufficient conditions for G(U), U balanced open subset of a
locally convex space (in particular of a Fréchet space) E, to have the CAP.

Let U be an open subset of a locally convex space E and let F be a normed space.
A seminorm p on H(U ; F ) is said to be ported by the compact set K of U if, for
each neighborhood V , K ⊂ V ⊂ U , there is CV > 0 such that p(f) ≤ CV ‖f‖V ,
for all f ∈ H(U ; F ). The τω-topology on H(U ; F ) is the topology generated by all
seminorms ported by compact subsets of U .

Let U be an open subset of a locally convex space E and let F be a normed space.
A seminorm p on E is called τδ-continuous, if for each countable increasing open
cover {Un}∞n=1 of U there are an integer n0 and C > 0 such that p(f) ≤ C‖f‖Un0

,
for all f ∈ H(U ; F ). The τδ-topology on H(U ; F ) is the topology generated by all
τδ-continuous seminorms.
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Let K be a compact subset of a locally convex space E and let F be a locally
convex space. We denote by H(K; F ) the space of holomorphic germs from K into F .

From Proposition 4.7, and [12, Propositions 3.36 and 4.29] we obtain the following:

Proposition 6.1. Let E be a locally convex space and let F be a Banach space. The
following are equivalent:

(i) (P(mE; F ), τc) has the CAP for every m ∈ N.

(ii) (H(U ; F ), τc) has the CAP for one (hence for every) balanced open subset U
of E.

(iii) (H(K; F ), τc) has the CAP for one (hence for every) balanced compact subset
K of E.

Proposition 6.2. Let E be a locally convex space and let F be a Banach space. The
following are equivalent:

(i) (P(mE; F ), τω) has the CAP for every m ∈ N.

(ii) (H(U ; F ), τω) has the CAP for one (hence for every) balanced open subset U
of E.

(iii) (H(U ; F ), τδ) has the CAP for one (hence for every) balanced open subset U
of E.

(iv) (H(K; F ), τω) has the CAP for one (hence for every) balanced compact subset K
of E.

In [22] P. Mazet shows that for an open subset U of a locally convex space E
there is a complete locally convex space G(U) and a mapping δU ∈ H(U ; G(U)) with
the following universal property: For each complete locally convex space F and each
mapping f ∈ H(U ; F ) there is a unique Tf ∈ L(G(U);F ) such that f = Tf ◦ δU . In
particular, taking F = C we see that G(U) is a predual of H(U). In [28] J. Mujica and
L. Nachbin gave another proof of this result, where G(U) is defined in the following
way: If U = (Uj)j∈N is a countable open cover of U , and α = (αj)j∈N is a sequence of
strictly positive numbers, then we set Bα

U = { f ∈ H(U) : ‖f‖Uj ≤ αj for every j },
and define G(U) = {u ∈ H(U)′ : u|Bα

U is τc-continuous for each α} , endowed with
the topology of uniform convergence on all the sets Bα

U .
While H(U) has a predual, the spaces P(nE), for each n ∈ N, and H(K) also

have preduals. In [29] R. Ryan shows that for each locally convex space E and
each n ∈ N there is a polynomial δn ∈ P(nE;

⊗̂
s,n,πE) with the following universal

property: Given a complete locally convex space F and P ∈ P(nE; F ) there is a
unique TP ∈ L(

⊗̂
s,n,πE; F ) such that P = TP ◦δn, where

⊗̂
s,n,πE is a completion of

n-fold symmetric tensor product of E with itself, endowed with the projective topology
or the π topology (for the definition see [12, pgs. 18-19]). In [7] C. Boyd adapting the
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proof of [28, Theorem 2.1] gave an alternative proof of this result, where
⊗̂

s,n,πE is
substituted by Q(nE) which is defined in the following way: Let α be a seminorm
on E and let Bn

α = {P ∈ P(nE) : |P (x)| ≤ 1 for x ∈ E with α(x) ≤ 1 }. Then we
define Q(nE) = {φ ∈ P(nE)′ : φ|Bn

α
is τc-continuous for each α }, endowed with the

topology of uniform convergence on all the sets Bn
α. Then

⊗̂
s,n,πE is topologically

isomorphic to Q(nE) [7, Corollary 2.11], and using this description of Q(nE), C. Boyd
[7] (see also [8]) gave an S-absolute decomposition for G(U) with U open balanced
subset of E. Furthermore he proved the existence of a complete locally convex space
G(K), with K compact in E, such that H(K) = G(K)′i, where G(K)′i denotes the
inductive dual of G(K), and gave also an S-absolute decomposition for G(K), where
K is a compact balanced subset in E. We refer to [7], (see also [8]) for the properties
of G(K) and to [5] for the definition of the inductive dual of a locally convex space.

From Proposition 4.7, and [8, Propositions 4 and 5] we get immediately the fol-
lowing:

Proposition 6.3. For a locally convex space E the following are equivalent:

(i) Q(mE) has the CAP for every m ∈ N.

(ii) G(U) has the CAP for one (hence for every) balanced open subset U of E.

(iii) G(K) has the CAP for one (hence for every) balanced compact subset K of E.

Theorem 6.4 ([30, Theorem 2.3]). Let U be an open subset of an k-space E and
let F be a quasi-complete locally convex space. Then the mapping

f ∈ (H(U ; F ), τc) −→ Sf ∈ Lε(F ′
c; (H(U), τc))

is a topological isomorphism, where for every f ∈ H(U ; F ), Sf : F ′
c −→ (H(U), τc) is

defined by Sf (ϕ) = ϕ ◦ f if ϕ ∈ F ′
c. The inverse mapping is given by

S ∈ Lε(F ′
c; (H(U), τc)) −→ S′ ◦ ε ∈ (H(U ; F ), τc),

where S′ is the adjoint mapping of S, and ε : U −→ (H(U), τc)′c is the evaluation
mapping defined by ε(x) : g ∈ H(U) −→ g(x) ∈ C for every x ∈ U and g ∈ H(U).

Let E and F be locally convex spaces and let U be an open subset of E. Following
R. Aron and M. Schottenloher [3] we say that a mapping f ∈ H(U ; F ) is compact if
each x ∈ U has a neighborhood Vx ⊂ U such that f(Vx) is relatively compact in F .

Proposition 6.5. Let E be a metrizable space and let F be a quasi-complete locally
convex space.

(i) If U is an open subset of E, then f ∈ H(U ; F ) is compact if and only if Sf ∈
L(F ′

c; (H(U), τc)) is compact.
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(ii) Let n ∈ N, then P ∈ P(nE; F ) is compact if and only if SP ∈ L(F ′
c; (P(nE), τc))

is compact.

Proof. We will prove only the part (i) since the same proof works for (ii).
(=⇒) Let us consider the mapping

f ∈ H(U ; F ) −→ Sf ∈ L(F ′
c; (H(U), τc))

Let f ∈ H(U,F ) be a compact map and let a ∈ U . Then a has a neighborhood Va in
U such that f(Va) is relatively compact in F . Let K = f(Va). Then K◦ ∈ V0(F ′

c),
and Sf (K◦) is locally bounded. Therefore, by [12, Lemma 3.25] Sf (K◦) is relatively
compact in (H(U), τc). Hence Sf is a compact mapping.

(⇐=) Now we consider the inverse mapping

S ∈ L(F ′
c; (H(U), τc)) −→ S′ ◦ ε ∈ H(U ; F ),

where S′ is the adjoint mapping of S, and ε : U −→ (H(U), τc)′c is the evaluation
mapping defined in Theorem 6.4. Let S ∈ L(F ′

c; (H(U), τc)) be compact. Then by
Proposition 4.3, the adjoint mapping S′ ∈ L((H(U), τc)′c; F ) is also compact. There-
fore there is a compact set K ⊂ (H(U), τc) such that S′(K◦) is relatively compact
in F , where K◦ ∈ V0((H(U), τc)′c). Since K is bounded in (H(U), τc) the proof of
[25, Proposition 9.15] shows that K is locally bounded. Then for each a ∈ U there is a
neighborhood Va in U and ca > 0 such that |g(x)| ≤ ca for all x ∈ Va and g ∈ K, i.e.,
1
ca
|ε(x)(g)| = | 1

ca
ε(x)(g)| ≤ 1 for all x ∈ Va and g ∈ K. Since 1

ca
ε(x) ∈ (H(U), τc)′ for

every x ∈ Va, then 1
ca

ε(Va) ⊂ K◦. Therefore 1
ca

S′ ◦ ε(Va) = S′( 1
ca

ε(Va)) ⊂ S′(K◦).
Thus S′ ◦ ε(Va) is relatively compact in F . Then S′ ◦ ε is a compact mapping.

By combining Propositions 6.1 and 6.3, for Fréchet spaces we obtain the following
result, which is similar to a result of C. Boyd in [9].

Proposition 6.6. Let E be a Fréchet space. Then the following are equivalent:

(i) (H(U), τc) has the CAP for one (hence for every) balanced open subset U of E.

(ii) (H(K), τc) has the CAP for one (hence for every) balanced compact subset K
of E.

(iii) (P(mE), τc) has the CAP for every m ∈ N.

(iv) Q(mE) has the CAP for every m ∈ N.

(v) G(U) has the CAP for one (hence for every) balanced open subset U of E.

(vi) G(K) has the CAP for one (hence for every) balanced compact subset K of E.

(vii) E has the CAP.
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Erhan Çalışkan Approximation of holomorphic mappings on infinite dimensional spaces

(viii) (P(mE; F ), τc) = Pk(mE; F ) for every locally convex space F (equivalently for
every Fréchet space F ) and for every m ∈ N.

Proof. The equivalence of (i) ⇐⇒ (ii) ⇐⇒ (iii) follows from Proposition 6.1 and the
equivalence of (iv) ⇐⇒ (v) ⇐⇒ (vi) follows from Proposition 6.3.

(iii)⇐⇒(iv): Since E is a Fréchet space then, for every m ∈ N, Q(mE) also is a
Fréchet space (see [29, pg. 50]). Thus by Corollary 4.6, Q(mE) has the CAP if and
only if Q(mE)′c has the CAP, for every m ∈ N. Hence, by [29, Corollary 2.2], Q(mE)′c
has the CAP if and only if (P(mE), τc) has the CAP, for every m ∈ N.

(iii)=⇒(vii): Since, by (iii), E′
c has the CAP, then by Corollary 4.6 E has the

CAP.
(vii)=⇒(viii): Let m ∈ N, let F be a locally convex space and let p be a continuous

seminorm on F . Let P ∈ P(mE; F ), let K be a compact subset of E and let ε > 0.
Then there is δ > 0 such that p(P (x) − P (y)) ≤ ε whenever x ∈ K and d(y, x) < δ,
where d is the metric on E. Let T ∈ Lk(E; E) such that d(Tx, x) < δ for all x ∈ K.
Then p(P (T (x)) − P (x)) ≤ ε for all x ∈ K. Since P ◦ T ∈ Pk(mE; F ) we have (viii).

(viii)=⇒(iii): Let m ∈ N. As pointed out in [3] (after Proposition 1.1), we have
the topological isomorphism (P(mE; F ), τc) ∼= Lε(F ′

c; (P(mE), τc)). Hence from this
and by Proposition 6.5, and by (viii) we obtain

Fε(P(mE), τc) = Lk(F ′
c; (P(mE), τc))

for every quasi-complete locally convex space F.
(1)

By [29, Proposition 3.3] and [7, Corollary 2.11] we have that (P(mE), τc)′b = Q(mE),
where b indicates the topology of uniform convergence on all bounded subsets of
(P(mE), τc). Since (P(mE), τc) is a semi-Montel space, then we have that
(P(mE), τc)′c = (P(mE), τc)′b = Q(mE), which is a Fréchet space. Thus by (1) we
have that

(P(mE), τc)′cε(P(mE), τc) = Lk(((P(mE), τc)′c)′c; (P(mE), τc)).

By [29, Corollary 2.2] and [7, Corollary 2.11] we have that (P(mE), τc) = Q(mE)′c.
Since ((P(mE), τc)′c)

′
c = Q(mE)′c = (P(mE), τc), by Proposition 4.1 (i) we have that

(L((P(mE), τc); (P(mE), τc)), c) = Lk((P(mE), τc); (P(mE), τc)).

Then by Proposition 4.5 (P(mE), τc) has the CAP.
The fact that the condition (viii) for every Fréchet space F is equivalent to the

same condition for every locally convex space F follows from the fact that, for m = 1,
E has the CAP by Proposition 4.5.

Corollary 6.7. Let E be a Fréchet-Montel space such that G(E) is Montel and let U
be a balanced open subset of E. Then E has the CAP if and only if (H(U), τδ) has
the CAP.
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