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Introduction

The history of astronomy is the history of a growing awareness of our position in
the universe. Observing, exploring, and ultimately understanding our solar system
is the first step towards understanding the rest of the universe. The key discovery
in this process was Newton’s formulation of the universal law of gravitation; this
made sense of the orbits of planets, satellites, and comets, and their future motion
could be predicted [MD99].

If Newton’s laws were a fundamental milestone in our understanding of the
universe, technological advances in the construction of new optical devices to
explore outer space have produced a never ending succession of discoveries that
have enlarged our view of the solar system. Every new object discovered is a piece
of an astonishing puzzle that scientists try to reconstruct, and Newton’s laws help
this process. One of the first questions scientists tried to solve was the stability of
the solar system; will the trajectories followed by the planets remain stable over
time or will the planets escape or fall into the Sun? Many of the best astronomers
and mathematicians have tackled this question and have produced a plethora of
results in many directions, helping to solve another more interesting question: the
formation and evolution of the solar system or what was the history of solar system
objects before they came to occupy their present positions. This general problem
yields to partial questions concerning the main bodies of the solar system, namely
the planets, and the minor bodies, such as satellites, asteroids, comets, and Kuiper
belt objects. Our goal is to study a particular piece of this problem: the capture of
minor bodies by a planet, giving some clues about how an object can end up in a
different place than other similar objects, belonging to the same family.

The solar system contains eight planets that astronomers have divided into
two groups: the inner and the outer planets. The inner planets are Mercury, Venus,
Earth and Mars and they are the closest to the sun. The outer solar system contains
the planets Jupiter, Saturn, Uranus and Neptune. The inner and outer planets are
separated by a belt containing hundred of thousands of small irregular bodies, the
largest one being Ceres having a diameter of approximately 950 Km. This belt is
referred to as the main asteroid belt and the total mass of the asteroid belt has been
calculated to be about 4% the mass of the Moon; in fact the four largest asteroids
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xii Introduction

constitute more than half of the total mass. As did the rest of the components of
the solar system, the asteroid belt formed from the small precursors of the planets,
known as planetesimals, which were the main components of the primordial solar
nebula. Gravitational perturbations of Jupiter prevented the formation of a planet
in between Mars and Jupiter by scattering the planetesimals from this area of the
solar system.

The inner and outer planets are not only separated by the main belt, they ex-
hibit very different features. Indeed, the inner planets are referred to as the rocky
or terrestrial planets. All of them are similar to the Earth in composition and size;
they have a solid surface and are composed of heavy metals, such as nickel and
iron. In addition, they have few or no moons. Only the Earth and Mars have
moons; Earth has one and Mars two. Moreover, the inner planets spin relatively
slowly when compared to the outer planets which are much larger in size. The
Earth is the quickest of the inner planets taking 23 hours, 56 minutes and 4 sec-
onds to rotate around its axis.

The outer planets are also called the Jovian planets or gas giants, as they are
similar to Jupiter. They are mainly made of gas and are thought not to have a solid
surface, while the core is thought to be liquid. They are large in size and they
make up 99% of the mass of all the bodies orbiting the sun. Despite their size,
they spin around their axis much quicker than do the inner planets. Even Uranus,
the slowest of the outer planets, takes only 17 hours and 14 minutes to complete
a revolution about its axis. Opposed to the inner planets, the outer planets have a
large number of moons. Indeed, Jupiter has 67 known moons, Saturn 62, Uranus
27 and Neptune 14. These differences between the terrestrial and Jovian planets
can be summarized by collecting some data, as it is done in Table for the Earth
and Jupiter, the two representative planets in the inner and outer solar system.

Basic data Jupiter Earth
Equatorial radius 71 492 km 6 378 km
Density 1.326 kg/m3 5.514 kg/m3

Spin period 9.84 hours 23.93 hours
Surface temperature −120oC 15oC
Known moons 67 1

Table 1: Basic data for a comparison between Jupiter and the Earth.

Focusing on the moons of the planets, none of them – with the obvious ex-
ception of the Moon itself – was known up to the appearance of the telescope,
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as none of them is visible to the naked eye. In 1610, using a very basic tele-
scope with a 20× magnification power, Galileo observed for the first time moons
around a planet other than the Earth. These moons, known as Galilean moons,
are the four largest ones of Jupiter: Io, Europa, Ganymede and Callisto. Af-
ter Galileo’s discovery, almost three centuries passed until a new moon around
Jupiter was spotted by Edward Emerson Barnard, on 9 September 1892, using the
36 inch refractor telescope at Lick Observatory. This was the last satellite dis-
covered by direct visual observation. All the moons discovered since them were
found photographically or, more recently, with the aid of space probes. In fact,
before the launch of exploration missions to the outer solar system, only 11 moons
were known to be orbiting around Jupiter. As of now this number has increased
substantially to a total of 67. It is almost unnecessary to say that the recent dis-
covered moons are very small in size compared to the Galilean moons. Indeed,
the Galilean moons are similar in size to Mercury, the smallest of the terrestrial
planets, with Ganymede being even larger that Mercury, while Callisto is roughly
the same size. The rest of Jupiter’s moons are less than 250 km across, with the
largest one being Amalthea, precisely the one discovered in 1892 by Barnard.

A similar story can be told about the moons of the other giant planets, although
with some differences. For instance, Saturn has only one large moon, Titan, which
is larger than Mercury, but smaller than Ganymede. The rest are smaller, but eight
of them are quite large with sizes ranging from 200 to 1500 Km across; the rest
are about 10 km across in average. In the case of Uranus, the largest satellite is
Titania, about 1500 Km across together with other four satellites with diameters
above 500 km. The rest of the moons are small, but larger than the smallest ones of
Jupiter and Saturn. The last of the giant planets, Neptune, has Triton as its largest
moon which is about 80% the size of the Moon, while the rest of the satellites are
smaller, but very similar in size to the lesser Uranian moons.

Size is not the only difference among the moons of giant planets, a close look
at other relevant physical parameters, in this case the orbital elements, reveals a
very different dynamical behavior. In Tables 2-4 some relevant data of the 67
known satellites of Jupiter are presented, where the satellites have been classified
according to the direction of their orbital motion, setting aside recently discovered
and as yet unnamed satellites.

If we pay attention to the size, the semimajor axis and inclination, we can have
a picture of the spatial distribution of the Jovian moons which give us some clues
about differences in their nature. This is depicted in Figure 1, where the Galilean
moons are clearly distinguished from the rest because of their size. These moons,
together with the inner lesser satellites, exhibit low inclinations with respect to
the equatorial plane of Jupiter. On the contrary, the rest of the moons have high
inclinations, at the same time they are of small size. Among these satellites there
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Name a Period I e Radius Discovery date
(Jup. radius) (days) (deg) (Km)

Small Inner Regular Satellites
Metis 1.79 0.29 0.06 0.0002 20 1979

Adrastea 1.80 0.30 0.03 0.0015 8.2 1979
Amalthea 2.54 0.50 0.40 0.0030 83.5 1892

Thebe 3.11 0.68 0.80 0.0180 49.3 1979

Galilean Satellites
Io 5.91 1.77 0.04 0.0040 1821.6 1610

Europa 9.40 3.55 0.47 0.0101 1560.8 1610
Ganymede 14.97 7.16 0.21 0.0015 2631.2 1610

Callisto 26.33 16.69 0.51 0.0070 2410.3 1610

Themisto Prograde Irregular Group
Themisto 105.00 130.02 45.67 0.2420 4 1975/2000

Himalia Prograde Irregular Group
Leda 156.20 240.92 27.47 0.1640 9 1974

Himalia 160.30 250.57 27.63 0.1620 85 1904
Lysithea 163.90 259.22 27.35 0.1120 18 1938

Elara 164.20 259.65 24.77 0.2170 40 1905
Dia 175.70 287.00 28.20 0.2480 2 2000

Carpo Prograde Irregular Group
Carpo 237.60 456.10 51.40 0.4300 1.5 2003

Table 2: Physical and orbital data for Jupiter’s prograde satellites.



Introduction xv

Name a Period I e Radius Discovery date
(Jup. radius) (days) (deg) (Km)

Retrograde Irregular Group
Euporie 271.20 553.10 147.00 0.1560 1.0 2001
Orthosie 289.80 622.60 145.90 0.2810 1.0 2001
Euanthe 290.90 620.60 148.90 0.2320 1.5 2001
Thyone 292.90 627.30 148.50 0.2290 2.0 2001
Mneme 294.70 620.00 148.60 0.2270 1.0 2003

Harpalyke 295.30 623.30 148.70 0.2270 2.2 2000
Hermippe 295.60 633.90 150.70 0.2100 2.0 2001
Praxidike 295.80 625.30 148.70 0.2200 3.4 2000
Thelxinoe 296.00 628.10 151.40 0.2210 1.0 2003

Helike 297.40 634.80 154.80 0.1560 2.0 2003
Iocaste 297.50 631.50 159.70 0.2180 2.6 2000
Ananke 297.70 629.80 148.90 0.2440 14 1951

Eurydome 319.60 717.30 150.30 0.2760 1.5 2001
Arche 320.70 723.90 165.00 0.2590 1.5 2002

Autonoe 322.30 762.70 152.90 0.3340 2.0 2001
Herse 323.10 715.40 164.20 0.2000 1.0 2003

Pasithee 232.10 716.30 165.40 0.2880 1.0 2001
Chaldene 324.20 723.80 165.40 0.2380 1.9 2000

Kale 324.80 729.50 165.00 0.2600 1.0 2001
Isonoe 324.80 725.50 165.00 0.2610 1.9 2000
Aitne 324.90 730.20 165.10 0.2640 1.5 2001

Erinome 325.60 728.30 164.90 0.2700 1.6 2000
Taygete 326.70 732.20 165.20 0.2510 2.5 2000
Carme 327.30 734.20 164.90 0.2530 23 1938
Sponde 328.60 748.30 151.00 0.3120 1.0 2001
Kalyke 329.80 743.00 165.20 0.2430 2.6 2000

Pasiphae 330.40 743.60 151.40 0.4090 29 1908
Eukelade 330.90 746.40 165.50 0.2720 2.0 2003
Megaclite 333.00 752.80 152.80 0.4210 2.7 2000

Sinope 334.90 758.90 158.10 0.2500 19 1914
Hegemone 335.00 739.60 155.20 0.3280 1.5 2003

Aoede 335.40 761.50 158.30 0.4320 2.0 2003
Kallichore 336.30 764.70 165.50 0.2640 1.0 2003
Callirrhoe 337.10 758.80 147.10 0.2830 4.0 1999
Cyllene 340.60 737.80 149.30 0.3190 1.0 2003

Kore 343.30 779.20 152.40 0.3250 1.0 2003

Table 3: Physical and orbital data for Jupiter’s retrograde satellites.
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Name a Period I e Radius Discovery date
(Jup. radius) (days) (deg) (Km)

Unnamed Satellites
S/2003J2 399.60 982.50 151.80 0.3800 1.0 2003
S/2003J3 256.50 504.00 143.70 0.2410 1.0 2003
S/2003J4 325.40 723.20 144.90 0.2040 1.0 2003
S/2003J5 336.80 759.70 165.00 0.2100 2.0 2003
S/2003J9 313.90 683.00 164.50 0.2690 1.0 2003

S/2003J10 339.20 767.00 164.10 0.2140 1.0 2003
S/2003J12 265.80 533.30 145.80 0.3760 1.0 2003
S/2003J15 307.70 668.40 140.80 0.1100 1.0 2003
S/2003J16 293.70 595.40 148.60 0.2700 1.0 2003
S/2003J18 289.50 606.30 146.50 0.1190 1.0 2003
S/2003J19 318.90 701.30 162.90 0.3340 1.0 2003
S/2003J23 336.50 759.70 149.20 0.3090 1.0 2003
S/2010J1 326.10 723.20 163.20 0.3200 1.0 2010
S/2010J2 284.00 588.10 150.40 0.3070 1.0 2010
S/2011J1 281.90 580.70 162.80 0.2960 1.0 2011
S/2011J2 326.30 726.80 151.90 0.3870 1.0 2011

Table 4: Physical and orbital data for Jupiter’s unnamed satellites.
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Figure 1: Spatial distribution of Jupiter moons, according to the semimajor axis
and inclination. In the x axis the logarithm of the mean distance to the planet,
measured in Jupiter’s radii, and in the y axis the inclination of the orbital plane,
measured in degrees.

are basically two groups, the group of prograde moons, with Temisto, the Himalia
family and Carpo, and the retrograde moons which can also be divided into dif-
ferent subgroups represented by the largest moons Ananke, Carme and Pasiphae.

In this sense, the satellites of Jupiter can be roughly classified into two groups:
the regular and the irregular moons. The group of regular moons are the set of
closer satellites that ends at Callisto, the farthest Galilean moon. Beyond Callisto,
we find the irregular moons, with small sizes, high inclinations and also high
eccentricities. But, the most remarkable fact is that, among the irregular moons,
most of them have inclinations above 90◦, that is to say they move in a retrograde
sense around Jupiter.

All the previous considerations suggest a different origin for regular and ir-
regular moons. The regular ones resemble a solar system in miniature and even
the ratio of their masses, especially the Galilean moons, is very similar to the ra-
tio of the planets with respect to the Sun. In this sense, the formation process of
regular satellites is not very different from that of the solar system. That is, the
regular satellites originated at roughly the same time as the planet from an accre-
tion disk, present around the protoplanet at a late stage of its formation [ME03a].
In contrast, irregular moons are, almost surely, captured objects. This fact was
suggested by Kuiper [Kui51a, Kui56], who pointed out that satellite accretion in a
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circumplanetary disk is unable to produce the extreme orbits of the irregular satel-
lites, in particular the retrograde motions. So, it is assumed they were formed in
a different part of the solar system and were captured by Jupiter as a result of its
gravitational influence in combination with other forces. In fact, a simple chain
of reasoning yields to this conclusion and, even more, to argue that the irregu-
lar moons were mainly captured in the early stages of the formation of the solar
system [JS04, JH07]. We can summarized all of these facts in the following key
points:

1. The orbits of irregular satellites cannot be explained as a result of accre-
tion in circumplanetary disks because they have very large sized orbits and
high inclinations, difficult to match with an origin in a circumplanetary disk
[CW02, CW06]. This is more evident in the case of retrograde satellites,
which seems to be incompatible with a prograde cricumplanetary disk.

2. As a result of the first item, the more likely scenario is that irregular satel-
lites formed in other place of the solar system and later been captured from
heliocentric orbits into their current orbits around their host planets [JH07].

3. It is not difficult to achieve a temporary capture. However, a permanent
capture from heliocentric orbit needs energy dissipation.

4. In the present state of the solar system energy dissipation can be a rare phe-
nomenon and, therefore, the captures must have occurred, mainly, during
an earlier epoch.

On this basis, different models have been proposed to explain the capture
mechanism of irregular moons and all of them have to account for the obser-
vational facts:

• They are well separated from the circumplanetary disk that originated regu-
lar moons. Indeed they are located far from the centrifugal radius [ME03b]

• Their eccentricities are large in comparison to the regular satellites, which
have orbits that are nearly circular.

• Many of them have retrograde orbital motion (i > 90◦), while the orbits of
regular satellites are exclusively prograde.

Among the models proposed in the literature we highlight the following ones:

1. Capture of irregular moons during the migration of the giant planets

This model is based on the so-called Nice model (after the city of Nice in
France where the model was developed). The Nice model holds that the
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Jovian planets formed closer to the Sun and then migrated within the plan-
etesimal disk to their current positions. The capture process of irregular
satellites was due to three-body gravitational reactions during planetary en-
counters, when nearby planetesimals could be deflected into planet-bound
orbits. In [NVM07], it is said that it is likely that the efficiency of this
capture mechanism is sufficient to produce populations of observed irreg-
ular satellites for the Saturn, Uranus and Neptune systems. However, for
the case of Jupiter, different mechanisms are necessary to explain its large
population of irregular moons [NVD14].

2. Capture of a binary asteroid that is disrupted in the vicinity of Jupiter

In this model [PHA10, GWN11, GWN13], it is proposed that the planet
captures a binary asteroid which is then disrupted through tidal interactions.
The energy loss from disruption may be sufficient for capture of one mem-
ber of the binary. However, this mechanism seems not to be enough to
place the bodies in the actual observed orbits and an interaction with a tenu-
ous circumplanetary gas disk is necessary. Nevertheless, in [GWN13], it is
demonstrated that the capture mechanism of a binary asteroid can produce
permanent captures of objects by itself, which have very similar orbits to
irregular Jovian satellites. Some of the captured objects without aid of gas
drag or other mechanisms yield semi-major axes, eccentricities and inclina-
tions, which are similar to the known irregular Jovian moons.

This model cannot account for the totality of irregular moons, as it cannot
account for all the observed groups of irregular satellites by the simulations
[GWN13], and also because the population of binary asteroids is not so
great as to give rise to a number of favorable situations [RW06]. Therefore,
this model, as a feasible scenario for capture, must be complemented with
other models that facilitate permanent captures.

3. Chaos assisted capture

In fact, this is a very general model that is in the basis of almost every
other one (although the mechanism was elucidated only relatively recently
[ABWF03, AF04]). In this model, the capture of irregular moons by gi-
ant planets occurs by a process in which, after they are temporarily trapped
inside the planet’s Hill sphere in very long living orbits, an unknown mech-
anism, for instance gas drag [ABWF03, PBT79, Kor05], produces a loss of
energy in such a way the moon is permanently trapped in a bounded orbit.

The key point in this model is that incoming potential satellites get trapped
in chaotic orbits close to sticky KAM tori in the neighborhood of the planet,



xx Introduction

possibly for long times, so that the chaotic layer largely dictates the final
orbital properties of the captured moons [AF04].

It is clear that different models are able to explain the capture of irregular
moons by giant planets and it is also clear that all of them could happen in the past.
In this way, it is very likely that more than one mechanism is responsible of the
capture process. Thus, taking as a starting point the chaotic assisted capture, the
aim of this work is to develop a good model that produces long living orbits inside
the Hill sphere, that can be further conducted to permanently trapped orbits by gas
drag, tidal forces or other mechanisms. In this sense, we will consider a restricted
2+2 body problem in the planar case, in which two small intruders interact inside
the Hill sphere interchanging energy. To this end, we will follow the main ideas
stated in [ABWF03], based on Monte Carlo simulations and Poincaré surfaces of
section. Besides, we will also analyze the population of Kuiper belt objects, as
they are potential parent bodies of our model. In this way, a statistical study is
done in order to better understand the distribution of these objects and the main
observational biases. These aspects are treated in different chapters of this report.

In chapter 1, we present the basics of the restricted there-body problem and
its Hill approximation, we will use as a corner stone of our further study. We
also introduce the concept of zero velocity curves and the Hill sphere. Besides,
Levi-Civita regularized coordinates are presented as a very useful tool to avoid
singularities that take place at collisions and also to prevent instabilities while
numerical integration of the equations of the motion. Finally, Poincaré surfaces of
section show the behavior of the orbits as a function of the Jacobi constant, giving
a clear idea of those orbits well disposed to escape.

Chapter 2 is devoted to the description of the restricted 2+2 body problem,
the model proposed as the cause of the existence of very long living orbits. This
model can be viewed as the sum of two restricted three-body problems coupled
by an interacting term of the two small bodies. Due to its structure, it admits also
a Hill approximation and the problem turns to be, as expected, the sum of two
Hill problems coupled by the interacting term of the two small bodies. If the two
bodies are supposed to have equal masses, the resulting model only depends on
the mass ratio of the small bodies and the planet. The chapter concludes with the
introduction of Waldvogel regularized coordinates, suitable for numerical integra-
tion of the equations of the motion.

In chapter 3, we present the results of the numerical simulations. There, it
is explained how the isotropic set of test particles was originated inside the Hill
sphere to conduct the Monte Carlo simulation. This set is obtained on the basis of
the Hill approximation of the restricted three body problem and then used to select
a pair of objects that interact in our restricted 2+2 body model. Then, a statistical
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analysis is done of the results obtained. Firstly, we pay attention to the capture
rate for different mass ratios and afterwards we focus on a details analysis of one
of the cases, for a mass ratio µ = 10−6, where we pay attention to the energy
change, the interaction time and the type of captured orbits, among other things.

Chapter 4 is devoted to the statistical analysis of the Kuiper belt objects. We
pay attention to the distribution of the main orbital elements, which give rise to
the classification of these objects into different dynamical groups with particular
characteristics. The information obtained from here gives clues about the forma-
tion and evolution of the solar system and could be relevant to identify the possible
parent bodies of the proposed capture model. To conclude this chapter, we focus
on the biases of the observed population and we give an interesting approach to
the role played by the argument of the periapsis on the pointing bias.

This report ends with an appendix where the theoretical background of the
Monte Carlo method is treated, as our main results are based on this technique.
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Chapter 1

The three-body, restricted
three-body and Hill problems

The publication in 1672 of the Principia Mathematica, by Isaac Newton, marked
a milestone in the understanding and description of many physical phenomena
in nature. Thanks to the universal gravitation law, the motion of two spherical
bodies, mutually attracting each other, could be completely solved, recovering
the known Kepler’s laws about the planetary motion. The success in describing
the two-body problem allowed consideration of the motion of the planets in the
solar system, with special attention to the stability of their orbits. Since large bod-
ies (e.g., planets, dwarf planets) in the solar system are approximately spherical
and their dimensions extremely small when compared with the distances between
them, they can be regarded as point masses. This simplification gives rise to the
so called n-body problem, that aims to describe the motion of n-mass points un-
der their mutual gravitational attraction. Despite the simple formulation it is clear
that, to have a complete solution, we need to solve a system of 3n coupled dif-
ferential equations of second order. All the attempts to do this analytically failed
and only special solutions could be derived. Due to the difficulty in facing the
n-body problem, astronomers, mathematicians and physicists focused on the sim-
plest case, after the already solved two-body problem: the three-body problem.
This is a classical problem that well serves to describe a wide range of astronom-
ical situations, as it is the motion of an asteroid or a comet under the influence of
Sun and Jupiter and also the mutual motion of the Moon and the Earth as perturbed
by the Sun.

Over the years the three-body problem caught the attention of the most out-
standing physicists and mathematicians, such as Euler, Lagrange, Jacobi, Hadam-
ard, Hill, Poincaré, Levi-Civita, Birkhoff, Szebehely and Deprit. Their contribu-
tions can be divided into two general categories: those which were concerned with
finding general theorems about the motion (global dynamics), and those searching

1
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for good approximations for solutions that would hold for a given period of time
starting from an instant at which data was available (local dynamics).

Newton was the first to achieve results in both the global and local dynam-
ics. On the one hand, he proved that the centre of mass of the bodies moves at
uniform speed following a straight path. On the other hand, using essentially a
geometric approach of the variation of parameters method, he applied perturba-
tion theory to describe the motion of moon. However, the calculations caused him
great difficulties, especially with the motion of the lunar apsides [BG97]. These
difficulties ended in further simplifications in the statement of the problem and, as
a consequence, in a simplification of the equations which govern the motion. To
arrive to the first simplification, let us consider the trajectory of a comet under the
gravitational influence of the Sun and Jupiter. We acknowledge that the mass of
the comet is negligible compared with those of the Sun and Jupiter. In this way,
no effect of the gravitational attraction of the comet on the motion of Jupiter and
the Sun can be supposed. In addition, the orbit of Jupiter around the Sun is not
very different from a circular one, so that we also can assume this is the case.
These assumptions lead to the circular restricted three-body problem, describing
the motion of a test particle moving under the gravitational forces of two princi-
pal bodies or primaries, which move in a circular mutual orbit. The mass of the
test particle is negligible, in such a way that it does not exert any influence on the
motion of the two primaries.

The second simplification was proposed by Hill [Hil78] when studying the
motion of the Moon, by considering the effect of the Sun’s gravity field. The
main idea is that we are only interested in the motion of the test particle around
the smallest primary but perturbed by the large body [PH86, HP86]. If the mass
ratio of the primaries is a small quantity and the distance of the test particle to
the smallest primary is also small compared to the distance of the primaries, a
simplified version of the restricted three body problem is obtained.

1.1 The restricted three-body problem and equations
of motion

Let us consider the restricted three body problem and denote by m1, m2 and m3

the masses of three bodies, where m1 and m2 correspond to the masses of the
primaries and m3 to the mass of the last particle. Now we consider an inertial
frame (ξ, η, ζ) with the origin at the center of mass of the primaries. The ξ axis
lie along the line from m1 to m2 at time t = 0 with the η axis perpendicular to
it and in the orbital plane of the two masses and the ζ axis perpendicular to the
ξ − η plane, along the angular momentum vector, in such a way that we have a
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ζ ≡ z
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1− µ

Figure 1.1: The restricted three body problem in the inertial and rotating reference
frames.

right-hand system (see Fig. 1.1).
Let the coordinates of the two masses and the test particle, in this reference

frame, be (ξ1, η1, ζ1), (ξ2, η2, ζ2) and (ξ, η, ζ) respectively. We chose the unit of
mass in such a way that m1 + m2 = 1, and we assume m1 > m2 . In a similar
way, we choose the unit of distance so that the constant distance between the
two primaries is unity and, also, the unit of time is chosen in order to make the
gravitational constant equal to one. In this set of units, the mean motion of the
two primaries n = 2π/T = 1, where T is the period of the circular motion. Let
us consider now the mass parameter

µ =
m2

m1 +m2

that stands for the ratio between the mass of the smaller primary to their total
mass. Note that in our system of units we have

m1 = 1− µ, m2 = µ, 0 < µ < 1/2.

Now it is easy to derive the equations of the motion of the test particle, which are
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given by 

ξ̈ = (1− µ)
ξ1 − ξ
r31

+ µ
ξ2 − ξ
r32

,

η̈ = (1− µ)
η1 − η
r31

+ µ
η2 − η
r32

,

ζ̈ = (1− µ)
ζ1 − ζ
r31

+ µ
ζ2 − ζ
r32

,

where
r21 = (ξ1 − ξ)2 + (η1 − η)2 + (ζ1 − ζ)2,

r22 = (ξ2 − ξ)2 + (η2 − η)2 + (ζ1 − ζ)2.

It is worth noting that these equations depend explicitly on the time, as the coordi-
nates of the primaries change with it, but in a known way. This fact motivates the
introduction of a new reference frame (x, y, z), rotating with the same angular ve-
locity as the primaries, in order to fix their position. Thus, we define the following
coordinate transformation

ξ = x cos t− y sin t, η = x sin t+ y cos t, ζ = z. (1.1)

Differentiating twice these equations we obtain
ξ̈ = (ẍ− 2ẏ − x) cos t− (ÿ + 2ẋ− y) sin t,

η̈ = (ẍ− 2ẏ − x) sin t+ (ÿ + 2ẋ− y) cos t,

ζ̈ = z̈.

(1.2)

Note that the switch to a rotating reference frame has introduced terms in ẋ and
ẏ, accounting for the Coriolis acceleration, and in x and y, that accounts for the
centrifugal acceleration. Now, using (1.1) and (1.2), and, after a straightforward
manipulation, the equations of motion become

ẍ− 2ẏ − x = −(1− µ)
x− x1
r31

− µx− x2
r32

,

ÿ + 2ẋ− y = −(1− µ)
y − y1
r31

− µy − y2
r32

,

z̈ = −(1− µ)
z

r31
− µ z

r32
.

(1.3)

It is possible to choose the direction of the x axis in such a way that the two
primaries lie on it. In this case, we set y1 = y2 = 0 and, by virtue of the choice of
units and taking into account that the origin of the reference frame is at the centre
of mass, we can take

x1 = −µ, x2 = 1− µ.
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Thus, the equations (1.3) reduce to
ẍ− 2ẏ = x− (1− µ)

x+ µ

r31
− µx− 1 + µ

r32
,

ÿ + 2ẋ = y − (1− µ)
y

r31
− µ y

r32
,

z̈ = −(1− µ)
z

r31
− µ z

r32
,

(1.4)

where

r1 =
√

(x+ µ)2 + y2 + z2, r2 =
√

(x− 1 + µ)2 + y2 + z2.

These equations can be written in terms of the so called effective potential func-
tion, U(x, y, z), defined as

U =
1

2
(x2 + y2) +

1− µ
r1

+
µ

r2
, (1.5)

so that (1.4) become

ẍ− 2ẏ =
∂U

∂x
, ÿ + 2ẋ =

∂U

∂y
, z̈ =

∂U

∂z
.

Multiplying the first equation by 2ẋ, the second one by 2ẏ and the third one by 2ż
and adding together, we find

2ẋẍ+ 2ẏÿ + 2żz̈ = 2
∂U

∂x
ẋ+ 2

∂U

∂y
ẏ + 2

∂U

∂z
ż.

Integrating respect to time results

ẋ2 + ẏ2 + ż2 = 2U − C,

where C is a constant that is known as the Jacobi constant or integral. Sometimes
the Jacobi constant is referred as the energy integral. However, this is not correct,
since the Jacobi constant does not express the conservation of the energy. Indeed,
what is constant is the energy of the two body system constituted by the two
primaries, but not the energy of the test particle, so that the total energy is not
conserved. The Jacobi constant serves to introduce the Hamiltonian formalism to
the equations of the motion. Let us consider the function

H = −C
2

=
1

2
(ẋ2 + ẏ2 + ż2)− U,
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and let us introduce the momenta px, py, pz by means of the relations

px = ẋ− y, py = ẏ + x, pz = ż, (1.6)

so that the Hamiltonian function H becomes

H =
1

2
(p2x + p2y + p2z)− (xpy − ypx)−

µ

r1
− 1− µ

r2
.

Then, the system (1.4) of three differential equations of second order can be writ-
ten as a system of six differential equations of first order given by

ẋ =
∂H

∂px
, ẏ =

∂H

∂py
, ż =

∂H

∂pz
, ṗx = −∂H

∂x
, ṗy = −∂H

∂y
, ṗz = −∂H

∂z
.

This form of the equations is more convenient and we will make use of them
instead of the equations (1.4).

It is worth noticing that the plane z = 0 is invariant. That is to say, if at the
initial time z(t0) = pz = t0, then z(t) = pz(t) = 0 for all t ∈ R, as it follows
from the third equation in (1.4). This fact leads to the planar restricted three-body
problem, which is simpler to manage than the spatial one. In what follows we will
consider this case and we will not take into account the z coordinate. Thus our
system of differential equations reduces to

ẋ =
∂H

∂px
= px + y,

ẏ =
∂H

∂py
= py − x,

ṗx = −∂H
∂x

= py − µ
x+ µ

r31
− (1− µ)

x− 1 + µ

r32
,

ṗy = −∂H
∂y

= −px − µ
y

r31
− (1− µ) y

r32
.

(1.7)

1.1.1 The Jacobi integral and zero velocity curves
For the planar case, the Jacobi integral gets reduced to

C = x2 + y2 + 2
1− µ
r1

+ 2
µ

r2
− ẋ2 − ẏ2, (1.8)

where
r1 =

√
(x+ µ)2 + y2, r2 =

√
(x− 1 + µ)2 + y2.

The Jacobi constant serves to determine the so called zero-velocity curves, which
are those curves where the velocity of the small mass is equal to zero. They can
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also be viewed as the level contours of twice the Hamiltonian function, when the
velocity is equal to zero. That is to say, the level contours of the function

−
(
x2 + y2 + 2

1− µ
r1

+ 2
µ

r2

)
= −2U.

They determine the regions where the motion of the small particle can take place.
The shape of the zero velocity curves depends on the value of the mass parameter
µ. In Figure 1.2 we show different situations for three different values of µ. In
the top left panel is depicted the extreme case µ = 0.5, known as the Copenhagen
case. The other two cases consider smaller values of the mass parameter, being
the smallest one that corresponding to Jupiter.

We note that the movement of the small particle takes place in the region where
−2U is not greater than the initial value. Otherwise it means that the particle could
take negative kinetic energy. In this way, the colored curves play an important role,
as they separate bounded from unbounded motion. These curves are homoclinic
loops connecting critical points of the effective potential. The equilibrium points
are named L1, L2 and L3. The first one is located in between the two primaries.
L2 is located in the positive part of the x axis, to the right of the small primary,
and L3 is located in the negative part of the x axis, to the left of the big primary.
Besides these three critical points, there are two other critical points, L4 and L5,
forming an equilateral triangle with the primaries. These two points correspond
to stable positions, where a numerous set of asteroids have been found in the case
of Jupiter, like the Trojan asteroids that go ahead and behind Jupiter in its orbit
around the Sun.

The homoclinic loops evolve with the mass parameter and, if it is small enough,
the loops attached to L1 and L2 are almost the same, and also their Jacobi con-
stant. Moreover, the location of L1 and L2 is approximately symmetric respect to
the small primary and all of these facts suggest a new approximation of the prob-
lem, if we are considering the motion in a neighborhood of the small primary.
This yields Hill’s approximation.

1.2 Hill approximation

The Hill approximation describes the most relevant features of the dynamics of the
infinitesimal particle around the small primary, when the mass parameter is small
enough. The idea comes from a seminal paper of G. H. Hill [Hil78] published
in 1878 about the motion of the Moon. Curiously, this idea was used in Hill’s
previous work, published in 1877, to explain the motion of the Lunar perigee
[Hil86]. The result is a simplified version of the three-body problem.
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Figure 1.2: Zero velocity curves for different values of the mass parameter µ. For
the left bottom panel a magnification of the boxed area is depicted in the right.
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In the Hill approximation, the first step is a change of the reference frame,
moving the origin to the center of mass of the small primary. This is done by a
translation along the x axis, in such a way that we introduce a new x coordinate
by means of

x→ x̄+ 1− µ.
For the sake of simplicity, we maintain the name of the variables, so that after the
change of coordinates x̄ is replaced by x. Now, the distance of the particle to the
two primaries is given by

r1 =
√

(x+ 1)2 + y2, r2 =
√
x2 + y2,

while the derivatives remain the same for the old and new variables. In this way,
the only affected terms in the equations of the motion (1.4) are those coming from
the potential

U =
1

2
((x+ 1− µ)2 + y2) +

1− µ
r1

+
µ

r2
.

Now we take advantage of the fact that x and y are small when moving in the
vicinity of the small primary, so that we can expand U in power series of x and y.
In this way, neglecting terms of third order and higher we arrive to

U =
1

2

[
µ2 + 3(1 + x2)− µ(4 + 2x2 − y2)

)
] +

µ

r2
.

We note that µ is also small and that the constant terms in U do not affect the
equations of the motion, so that we can suppress both constant terms and terms
of the form µx2 and µy2, provided we are neglecting powers of third order and
higher. Thus, the potential function for the Hill approximation is given by

UH =
3

2
x2 +

µ

r2
, r2 =

√
x2 + y2, (1.9)

and the equations of the motion by

ẍ− 2ẏ =
∂UH
∂x

= 3x− µ x
r32
,

ÿ + 2ẋ =
∂UH
∂y

= −µ y
r32
.

(1.10)

As in the case of the restricted three body problem these equations admit a Hamil-
tonian formalism. Introducing again the conjugate momenta, by means of (1.6),
we obtain a system of four differential equations of first order from the Hamilto-
nian function

H =
1

2
(p2x + p2y)− (xpy − ypx) +

1

2
(x2 + y2)− 3x2

2
− µ√

x2 + y2
. (1.11)
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Figure 1.3: Zero velocity curves for the Hill approximation in scaled coordinates.
In the right panel the colored regions are those where the small body can move,
for a prescribed value of the Hamiltonian function. The Hill’s sphere is the dashed
red circle.

Indeed, H is a constant of motion, related with a new Jacobi constant which helps
to define the zero velocity curves, as in the case of the planar restricted three body
problem. These curves are the level contours of UH , that possesses two saddle
points, L1 and L2, located on the x axis, symmetric with respect to the origin, at a
distance

rH = 3

√
µ

3
. (1.12)

Here, rH is known as the Hill’s radius and define an imaginary sphere around the
small primary which can be viewed as its gravitational sphere of influence. At the
saddle points, as the velocity is zero, the Hamiltonian function (1.11) takes the
value

HrH = −3

2
3
√

3µ2.

It is worth noting that, if the value of the Hamiltonian function for an infinitesimal
mass is less than HrH , then the particle of infinitesimal mass cannot escape the
Hill’s sphere. However, if the value of the Hamiltonian is greater than HrH the
mass can escape the influence of the small primary and move far from it. The
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escape takes place through a gate around the saddle points. This is depicted in
Figure 1.3, where in the left panel several zero velocity curves are plotted. High-
lighted is the loop connecting the two saddle points that separates the bounded
and unbounded motions.

In Figure 1.3 the value of the mass parameter does not appear. In fact, Hill’s
approximation is independent of it, if convenient scaled variables are used. In this
way, let us introduce the new coordinates and momenta by means of

x = µ1/3 x̄, y = µ1/3 ȳ, px = µ1/3 p̄x, py = µ1/3 p̄y.

This is a canonical change of variables with multiplier λ = µ−2/3. Therefore, the
new Hamiltonian function (1.11) becomes [MHO09]

H = λµ2/3

(
1

2
(p̄2x + p̄2y)− (x̄p̄y − ȳp̄x) +

1

2
(x̄2 + ȳ2)− 3x̄2

2
− 1√

x̄2 + ȳ2

)

Taking into account that λ = µ−2/3, and omitting the bars for the new variables,
we get a Hamiltonian system independent of the mass parameter, defined by the
function

H =
1

2
(p2x + p2y)− (xpy − ypx) +

1

2
(x2 + y2)− 3x2

2
− 1√

x2 + y2
. (1.13)

Thus, we do not need to consider different values of the mass parameter to have a
description of the Hill’s approximation. All we can say for the Hamiltonian (1.13)
can be said for the Hamiltonian (1.11). In particular, to have a qualitative picture
of the motion, for different values of the Hamiltonian function, Poincaré surfaces
of section can be used. They provide useful information about the trapped and
escape dynamics for both prograde and retrograde motions.

1.2.1 Poincaré surfaces of section for the Hill’s approximation
Let us consider the orbits in the phase space of the Hamiltonian system defined
by (1.13). Due to the fact that the Hamiltonian function H is an integral of the
motion, fixing its value to h, all the orbits lie on the three dimensional surface
defined by

H(x, y, px, py) = h, (1.14)

which is embedded into the four dimensional phase space R4. In this way, we can
consider the orbits in the phase space (x, y, px), provided py is obtained from the
constrain (1.14).

Now, we define a Poincaré surface of section as a hyperplane, S, that is
transversal to the orbits of the Hamiltonian system. As S intersect every orbit,



12 Chapter 1. The three-body, restricted three-body and Hill problems

we can consider the first return or Poincaré map P : S → S in such a way that
P (p0) = p1, where p1 is the point for which the orbit with initial value p0, when
t = 0, intersects S for the first time. The sequence of points P n(p0) represents the
successive intersections of a given orbit with the surface S and some properties of
the Hamiltonian system and their orbits can be deduced from the Poincaré map.

The importance of the surface of sections is that the Hamiltonian system gets
reduced to a map that it turns to be two dimensional if the system is two degrees
of freedom, as it is the case of our problem. In this case, the hyperplane is just a
plane and it is easy to visualize the main topological properties of the system. As
H is even in px, the plane px = 0, that is the plane (x, y), is a surface of section,
provided that, by means of the constrain (1.14), once the Hamiltonian function is
fixed to h, we obtain py as

py = x±
√

2h+ 3x2 − y2 +
2√

x2 + y2
.

Indeed, it can be seen that almost every orbit starting inside the zero velocity curve

UH =
3

2
x2 +

1

r
= −h

with ẏ > 0 intersects px = 0 with ẏ > 0 an infinite number of times, if the
corresponding zero velocity curve is closed. That is to say if

h < HrH = −3 3
√

3

2
.

In this way, the limit of the Poincaré surface of section is given by the zero velocity
curve corresponding to UH = −h.

One of the main characteristics of a Poincaré surface of section is that an or-
bit lying on a toroidal surface, defined by the Hamiltonian function H , and by
other formal integral Φ(x, y, px, py) = c, intersects the section in a sequence of
points lying on a curve, called an invariant curve. Many of these curves surround
fixed points, that correspond to periodic orbits, while the invariant curves repre-
sent quasi periodic motions. Irregular or chaotic motions appear in the Poincaré
surface of section as a collection of points filling an area of nonzero measure
[Con02].

Let us now turn to our particular case, and consider the surfaces of section for
different values of the Hamiltonian function. Concretely, we fix four values of h,
the first one below HrH and the other three above this value. This sections are
depicted in Figure 1.4 where the the section is given by px = 0 and the points
are those returning to the surface of section with py > 0. The red color stand
for those orbits in prograde motion when crossing the surface, while green color
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Figure 1.4: Poincaré surfaces of section in the Hill problem for four different
values of the Hamiltonian function. The sections defined as px = 0, with ẏ > 0.
The color for the points is assigned depending on the angular momentum as the
orbits intersect the section. The red color stands for prograde motion, while green
color stands for retrograde one.
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stands for retrograde motion. We can see that, for h = −2.167 the motion is
bounded, but retrograde orbits are mostly confined to invariant curves. However,
prograde orbits, especially those located in the right side of the section are irregu-
lar and oriented in the x direction towards the position of the saddle point. When
h is slightly above HrH prograde orbits oriented to the right saddle point start to
escape. As the value of h increases, most of the prograde orbits in the right side
of the section escape, but the retrograde ones still remain in stable quasi periodic
motions. It is worth noticing that orbits in the leftmost part of the section are not
always retrograde nor prograde, but of mixed type (see the last right panel of Fig-
ure 1.4). For high values of hmost of the prograde orbits have disappeared, which
indicates that objects temporally trapped into the Hill sphere are most likely to be
in retrograde morion around the primary. This can be an indicator of why there is
a preference of irregular satellites for retrograde orbits.

1.2.2 Regularization of the Hill problem
The differential equations derived from Hamiltonian (1.13) provide an adequate
description of the motion of the small body when it does not collide with the
primary. If a collision takes place, the corresponding Hamiltonian and the equa-
tions of the motion are singular. To overcome this situation, a transformation of
both the space and time variables, called a regularization, is performed. This idea
goes back to Euler, but it was Levi-Civita who introduced the basic ideas of this
technique [LC20] for the planar case, generalized later on by Kustaanheimo and
Stiefel [KS65] for the spatial one. Historically, regularization was conceived for
the treatment of singularities in the Keplerian motion as well as for the descrip-
tion of collisions of two masses, as well as for the improvement of the numerical
integration of collision and near-collision orbits. It is this last aspect that we are
interested in, as a huge number of orbits are going to be considered and close
encounters are very likely to take place.

The Levi-Civita regularization is based in three steps, following the Waldvogel
terminology

• First step: Slow motion movie. Instead of the physical time t a new inde-
pendent variable τ , the ficticious time, is introduced in such a way that the
movie is run in slow motion when the bodies are close.

• Second step: Conformal squaring. In this step, the complex physical co-
ordinates x = x+ iy are represented as the square z2 of a complex variable
z = u+ iv.

• Third step: Fixing the energy. In the final step, only orbits of fixed Jacobi
constant are considered.
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In practice, the first and second steps are performed in the reverse order, that
is, we first do the coordinate transformation, followed by the time scaling. In this
way, we consider the position of the particle of infinitesimal in the plane case, by
the complex vector

x = x+ iy,

where x, y are the cartesian coordinates with respect to a coordinate system cen-
tered at the small primary. In a similar way, we introduce the complex momentum

P = px + ipy,

being px, py the conjugate momenta.

Now, we define the new coordinates u, v, by the conformal transformation

x = z2, (1.15)

where z = u + iv. In order to preserve the canonical form of the equations of
motion, new momenta U , V and a complex variable Π = U + iV are introduced
such that the transformation to the new variables is canonical. To this end, we
define the new momenta by considering the conformal transformation x = x(u, v)
or z = z(x, y), where x(u, v) is an analytic function. Now, by means of the
generating function G(x, y, U, V ), we obtain

u =
∂G

∂U
, v =

∂G

∂V
, px =

∂G

∂x
, py =

∂G

∂y
. (1.16)

Integration of the first two of these equations yields

G = Uu(x, y) + V v(x, y), (1.17)

and the last two equations in (1.16) become

px = U
∂u

∂x
+ V

∂v

∂x
, py = U

∂u

∂y
+ V

∂v

∂y
, (1.18)

which, in terms of the complex notation, can be written as

P = Π
dz

dx
, (1.19)

where the bar denotes complex conjugate. Note that, by means of equation (1.15),
we can write

P =
Π

2z
. (1.20)
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Equations (1.15) and (1.20) defines a completely canonical transformation (multi-
plier λ = 1). However, we will consider a canonical transformation of multiplier
λ = 1/4 used in the literature [SS00, LR11] given by

P = 2
Π

z
, (1.21)

that in explicit form reads as

x = u2 − v2, y = 2uv, px = 2
uU − vV
u2 + v2

, py = 2
uV + vU

u2 + v2
. (1.22)

Substitution in Hamiltonian (1.13) gives

H =
2(U2 + V 2)− 1

u2 + v2
− 2(uV − vU)− (u2 − v2)2 + 2u2v2.

In a non rigorous way, we perform an overall multiplication by (u2 + v2)/4 in
order eliminate the denominator. By doing so, we arrive to

u2 + v2

4
H =

U2 + V 2

2
− 1

4

(
2(uV − vU) + u4 − 4u2v2 + v4

)
(u2 + v2)− 1

4
.

This is, in fact, the first step of Levi-Civita regularization, when a fictitious time
is introduced by means of

dτ = 4
dt

r
,

where r =
√
x2 + y2 = u2 + v2.

To complete the regularization process, we set the value of the Hamiltonian to
be h and we arrive to the pseudo-Hamiltonian

K =
U2 + V 2

2
−
(

1

2
(uV − vU) +

1

4
(u4 − 4u2v2 + v4) +

h

4

)
(u2 +v2), (1.23)

where K has a constant value equal to 1/4. Now the equations of the motion, in
the regularized variables and time, are

du

dτ
=
∂K

∂U
,

dv

dτ
=
∂K

∂V
,

dU

dτ
= −∂K

∂u
,

dV

dτ
= −∂K

∂v
, (1.24)

which are not singular when a collision takes place.

It is possible to arrive to a more simplified Hamiltonian and equations of the
motion by means of a new canonical change of variables. Indeed, let h = −2c
and consider the scaling

u = 2c1/4û, v = 2c1/4v̂, U = 2c3/4Û , V = 2c3/4V̂ .
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The simplified Hamiltonian becomes

H = H2 +H4 +H6, (1.25)

where

H2 = 1
2
(u2 + v2 + U2 + V 2),

H4 = 2(u2 + v2)(vU − uV ),

H6 = −4(u6 + v6 − 3u4v2 − 3u2v4).

We note that this expression for the regularized Hill Hamiltonian is free of param-
eters, as it was the departure one. Moreover, the new Hamiltonian is no longer
constant and it is related with the original one through the multiplier of the canon-
ical transformation λ = 1

4
c−3/2. In this way, if h is the value of the Hamiltonian

function in cartesian variables, then the value of the Hamiltonian function in the
fully regularized form is

hR =
1

2

(
|h|
2

)−3/2
=

1

2
|cH |−3/2,

where cH = −2h is the value of Jacobi constant for the Hill problem. Although
(1.25) is preferable to study periodic orbits and other invariant structures [SS00],
we will consider (1.23) for the numerical computations. This is because it is the
more convenient way to go from cartesian to regularized coordinates and back.
Indeed, equations (1.22) give us the change from regularized to cartesian coor-
dinates. This transformation is a mapping, provided that, for a given quadruplet
(u, v, U, V ), there is a unique quadruplet (x, y, px, py) through the action of the
transformation. However the mapping is not injective, because of (1.15). As
a consequence, for each pair (x, y) of cartesian coordinates there are two pairs
(u, v) of regularized ones, so that the Levi-Civita regularization makes a double
covering. This can be viewed in Figure 1.5. The argument of x is halved and each
quadrant in the complex plane (x, y) is mapped onto two octants in the complex
plane (u, v), symmetric respect to the origin. For instance, the first quadrant goes
to the first and fifth octants and analogously for the other three quadrants. The
direct transformation can be written as
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1

43

2

x

y

L1L2

L-C regularization

2

3

1

4 1

4

2

3

u

v

L1L′
1

L2

L′
2

Figure 1.5: The double covering of the Levi-Civita regularization. Each point in
cartesian variables transforms into two points in regularized coordinates.



u = ± y

|y|

√
x+

√
x2 + y2

2
,

v = ± |y|√
2x+ 2

√
x2 + y2

,

U = ±

√
x+

√
x2 + y2

(
ypx − py(x−

√
x2 + y2

)
2
√

2|y|
,

V = ±

√
x+

√
x2 + y2

(
ypy + px(x−

√
x2 + y2

)
2
√

2|y|
,

(1.26)

where the ± sign is the consequence of the double covering, both in coordinates
and momenta.

The apparent inconvenient of equations (1.26) is the choice of sign. Indeed,
we use the switch from cartesian to regularized coordinates for numerical integra-
tion purpose, so that initial values of an orbit in cartesian variables are transformed
into regularized coordinates and then integrated numerically. At the end, we go
back to the cartesian variables through the mapping (1.22). However, is there any
difference between the orbits if we choose different sign for the first transforma-
tion? The answer is not and, it does not matter the sign we choose in (1.26), the
final orbit is the same. As an example, we consider an orbit with initial conditions
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Figure 1.6: Two copies of the same orbit in regularized coordinates.

in cartesian variables given by

x = −0.744249, y = −0.027428, px = 0.209091, py = 0.206899.

In regularized coordinates, we obtain the two starting points

(u1, v1, U1, V1) ≡ (−0.015894, 0.862845, 0.087599,−0.091851),

(u2, v2, U2, V2) ≡ (0.015894,−0.862845,−0.087599, 0.091851),

given rise to two copies of the same orbit in cartesian variables, as it is depicted
in Figure 1.6.



20 Chapter 1. The three-body, restricted three-body and Hill problems



Chapter 2

The Restricted 2+2-Body Problem

The restricted three-body problem, in the Hill approximation, is a good model
to describe the motion of a small object in the vicinity of a planet. However,
this description is not enough to account for a permanent capture of an object. It
is necessary that there also exists a mechanism that forces the object to change
its energy in such a way it can be trapped in a stable island or even more, it
loses enough energy (below the energy of the saddle point) to become permanent
trapped in the Hill sphere. This can be achieved by means of the interaction with
another body in a close encounter, as it is illustrated in Figure 3.8.

P

m2

m1

Hill sphere

Figure 2.1: Close encounter of two minor bodies in the vicinity of a planet as a
model of a capture mechanism.

In order to model this situation we consider a particular case of the restricted
n+ ν problem, described by Whipple and Szebehely [WS84], that Whipple used
later on to study the stability of binary asteroids [Whi84, WW85]. In particular,

21
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ξ

η

ζ ≡ z

x

y

µ1

µ2

µ

1− µ

Figure 2.2: The restricted problem of 2 + 2 bodies in a synodic reference frame.

we consider the restricted problem of 2+2 bodies, where two primaries of masses
M1 � M2 revolve in a circular orbit about their center of mass. Two small
bodies, m1,2 � M2, move under the attraction of the primaries, and their mutual
attraction, in such a way that they do not exert any influence on the primaries.

Let us consider a synodic reference frame and appropriate units of length and
time, as it was done in the restricted three body problem, and let us introduce the
mass parameters

µ =
M2

M1 +M2

, µi =
mi

M1 +M2

, i = 1, 2, (2.1)

In this reference system the two primaries are fixed located on the x axis (see
Figure 2.2) and the equations of the motion of the two small bodies are given by
[Whi84]

ẍi − 2ẏi =
1

µi

∂U

∂xi
, ÿi + 2ẋi =

1

µi

∂U

∂yi
, z̈i =

1

µi

∂U

∂zi
, i = 1, 2, (2.2)

where the effective potential function U is defined as

U =
2∑
i=1

µi

(
x2i + y2i

2
+

1− µ
r1i

+
µ

r2i
+
µ3−i

2r

)
, (2.3)
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being

r1i =
√

(xi + µ)2 + y2i + z2i , r2i =
√

(xi − 1 + µ)2 + y2i + z2i , i = 1, 2,

r =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

Proceeding in the same way as in the restricted three-body problem, we find a
generalized Jacobi integral [SW84]

C = −
2∑
i=1

µi

[
(ẋ2i + ẏ2i + ż2i )− (x2i + y2i )− 2

1− µ
r1i

− 2
µ

r2i
− µ3−i

r

]
.

After introducing the conjugate momenta

ẋi =
pxi
µi

+ yi, ẏi =
pyi
µi
− xi, żi =

pzi
µi
, i = 1, 2. (2.4)

we obtain the Hamiltonian function, H = −C/2, given by

H =
2∑
i=1

[
1

2µi
(p2xi + p2yi + p2zi) + yipxi − xipyi − µi

(
1− µ
r1i

+
µ

r2i

)]
− µ1µ2

r
,

which can be viewed as the sum of two independent restricted three body problems
coupled by the last term. This term is negligible if the two minor bodies are far
away and only contributes, or even dominates, when they come close enough.

2.1 Hill’s approximation
The structure of the Jacobi constant and the Hamiltonian function suggests a simi-
lar approach to Hill’s original treatment of the planar problem. Indeed, the orbital
plane of the two primaries is invariant. In fact, if the two minor bodies start in
the orbital plane with ż1 = ż2 = 0 they will remain there for every time. In this
sense, to simplify the problem, we will restrict ourselves to the planar case, when
z1 = z2 = ż1 = ż2 = 0. Therefore, the Jacobi constant becomes

C = −
2∑
i=1

µi

[
(ẋ2i + ẏ2i )− (x2i + y2i )− 2

1− µ
r1i

− 2
µ

r2i
− µ3−i

r

]
, (2.5)

where

r1i =
√

(xi + µ)2 + y2i , r2i =
√

(xi − 1 + µ)2 + y2i , i = 1, 2,

r =
√

(x1 − x2)2 + (y1 − y2)2.
(2.6)
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Now we follow step by step the sequence of transformations and approximations
that led us to the Hill’s Hamiltonian (1.13). First of all we move to a reference
frame with the origin at the center of mass of the small primary by means of the
translation

x→ x̄+ 1− µ.

For the sake of simplicity, we maintain the name of the variables, so that after the
change of coordinates x̄ is replaced by x, while the derivatives remain the same
for the old and new variables. In this way, the only affected terms in the Jacobi
constant (2.5) are those coming from twice the effective potential (2.3) that, after
the translation becomes

U =
2∑
i=1

µi

[
1

2
((xi + 1− µ)2 + y2i ) +

1− µ
r1i

+
µ

r2i
+
µ3−i

2r

]
,

where the distances (2.6) are given by

r1i =
√

(xi + 1)2 + y2i , r2i =
√
x2i + y2i , i = 1, 2,

r =
√

(x1 − x2)2 + (y1 − y2)2.

Now, we acknowledge that xi and yi are small when moving in the vicinity of the
small primary, so that we can expand r−11i in power series of xi and yi and neglect
terms of third order and higher. In this a way, we have

r−11i ≈ 1− xi + x2i −
1

2
y2i , i = 1, 2.

Finally,

1

2
((xi + 1− µ)2 + y2i ) +

1− µ
r1i

≈ 3

2
− 2µ+

µ2

2
+

3

2
x2i , i = 1, 2.

where he have neglected the products µx2i and µy2i , by considering these terms of
third order, due to the smallness of µ. If we drop the constant terms, the trans-
formed effective potential takes the following form

U =
2∑
i=1

µi

[
3

2
x2i +

µ

r2i
+
µ3−i

2r

]
, (2.7)

and the Jacobi constant

C = −
2∑
i=1

µi

[
(ẋ2i + ẏ2i )− 3x2i − 2

µ

r2i
− µ3−i

r

]
.
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Thus, the Hamiltonian function in Hill’s approximation, after introducing the con-
jugate momenta by means of equations (2.4), becomes

H =
2∑
i=1

[
1

2µi
(p2xi + p2yi) + yipxi − xipyi + µi

(
1

2
(y2i − 2x2i )−

µ

r2i

)]
− µ1µ2

r
.

Let us now perform a series of canonical transformations in order to give a more
convenient form of the Hamiltonian function. To begin with, we scale the mo-
menta by a factor µ1,

pxi = µ1p̄xi , pyi = µ1p̄yi , i = 1, 2,

which gives rise to a canonical transformation with multiplier λ = µ−11 . Accord-
ing to the theory of canonical transformations [MHO09], and suppressing the hats
after transformation, we arrive to the new Hamiltonian

H =
1

2
(p2x1 + p2y1) + y1px1 − x1py1 +

1

2
(y21 − 2x21)−

µ

r21

+
µ1

2µ2

(p2x2 + p2y2) + y2px2 − x2py2 +
µ2

2µ1

(y22 − 2x22)−
µµ2

µ1r22
− µ2

r
.

A new scale of variables is introduced by

xi = µ1/3x̂i, yi = µ1/3ŷi, pxi = µ1/3p̂xi , pyi = µ1/3p̂yi , i = 1, 2.

This is a canonical transformation with multiplier λ = µ−2/3, so that the trans-
formed Hamiltonian takes the form

H =
1

2
(p2x1 + p2y1) + y1px1 − x1py1 +

1

2
(y21 − 2x21)−

1

r21

+
µ1

2µ2

(p2x2 + p2y2) + y2px2 − x2py2 +
µ2

2µ1

(y22 − 2x22)−
µ2

µ1r22
− µ2

µr
.

Finally, we set µ1 = µ2 = µp, and we get the Hamiltonian function we will use
for our capture model

H =
2∑
i=1

[
1

2
(p2xi + p2yi) + yipxi − xipyi +

1

2
(y2i − 2x2i )−

1

r2i

]
− µ

r
, (2.8)

where µ is in fact the mass ratio µp/µ.
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2.2 Regularization of the 2 + 2 Hill problem
As in the case of the restricted three-body problem in the Hill approximation, we
have to consider the occurrence of singularities. For the case of the Hamiltonian
system defined by (2.8), three different singularities can take place and they cor-
respond to the three possible collisions (we exclude the case of a triple collision).

The two first possible collisions are those involving a minor body and the
planet. As it will be explained later, this case will not be considered in the frame-
work of the 2 + 2 Hill problem. So, we are left with the singularity due to the
collision of the two minor bodies. To overcome this situation we will perform
a regularization in the same style we did in section 1.2.2. To this end, we will
adopt the procedure described by Waldvogel [Wal72]. This procedure follows the
same ideas of the classical Levi-Civita regularization scheme. To begin with, we
introduce a complex set of variables to account for the positions and the momenta

X1 = x1 + iy1, X2 = x2 + iy2,

P1 = px1 + ipy1 , P2 = px2 + ipy2 .
(2.9)

Note that, with this notation,

|X1| =
√
x21 + y21, |X2| =

√
x22 + y22.

Let us introduce two complex variables

z1 = u1 + iv1, z2 = u2 + iv2, (2.10)

playing the role of new positions, related to the old positions by means of

X1 = X1(z1, z2), X2 = X2(z1, z2).

We choose the change of variables in such a way that

X1 = a(z1, z2)
2, X2 = c(z1, z2)

2, X2 −X1 = b(z1, z2)
2, (2.11)

where the functions a, b and c are chosen to satisfy the relation

a2 + b2 = c2.

Although a, b and c are complex functions and not integer numbers, we can view
them as they as forming a Pythagorean triplet. There are different ways to obtain a
Pythagorean triplet and, among them, Waldvogel chooses the classical one given
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in Proposition 28 of Book X of Euclid’s Elements [Euc96] (see also [Sha78]). In
this way we choose, for the functions a, b and c, the expressions

a =
z2
1 − z2

2

2
, b = z1z2, c =

z2
1 + z2

2

2
, (2.12)

and consequently

X1 =
1

4
(z2

1 − z2
2)

2, X2 =
1

4
(z2

1 + z2
2)

2, X2 −X1 = z2
1z

2
2. (2.13)

Taking into account (2.9) and (2.10) we have

x1 = 1
4
(u21 − u22 + 2u1v1 − v21 − 2u2v2 + v22)(u21 − u22 − 2u1v1 − v21 + 2u2v2 + v22),

y1 = (u1v1 − u2v2)(u21 − u22 − v21 + v22),

x2 = 1
4
(u21 + u22 − 2u1v1 − v21 − 2u2v2 − v22)(u21 + u22 + 2u1v1 − v21 + 2u2v2 − v22),

y2 = (u1v1 + u2v2)(u
2
1 + u22 − v21 − v22).

And for the distance between the masses we have

R1 = |X1| =
√
x21 + y21 = 1

4
((u1 − u2)2 + (v1 − v2)2)((u1 + u2)

2 + (v1 + v2)
2),

R2 = |X2| =
√
x22 + y22 = 1

4
((u1 + v2)

2 + (u2 − v1)2)((u1 − v2)2 + (u2 + v1)
2),

R0 = |X2 −X1| =
√

(x1 − x2)2 + (y1 − y2)2 = (u21 + v21)(u22 + v22).

To complete the transformation, we introduce the new momenta

Π1 = πu1 + iπv1 , Π2 = πu2 + iπv2 ,

in such a way that the transformation is canonical. We do that by means of the
generating function

G =
2∑

k=1

(πukuk(x1, x2, y1, y2) + πvkvk(x1, x2, y1, y2)) , (2.14)

and then

uk =
∂G

∂πuk
, vk =

∂G

∂πvk
, pxk =

∂G

∂xk
, pyk =

∂G

∂yk
, k = 1, 2. (2.15)

It follows, from (2.14) and (2.15), that

pxk =
2∑
j=1

(
πuj

∂uj
∂xk

+ πvj
∂vj
∂xk

)
, pyk =

2∑
j=1

(
πuj

∂uj
∂yk

+ πvj
∂vj
∂yk

)
, k = 1, 2.
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Taking into account that the change of variables is analytic, and by virtue of the
equations of Cauchy-Riemann, we arrive at

P1 = Π1
∂z1

∂X1

+ Π2
∂z2

∂X1

, P2 = Π1
∂z1

∂X2

+ Π2
∂z2

∂X2

, (2.16)

where the bar means complex conjugation. Differentiating (2.13) respect to X1

we obtain

(z2
1 − z2

2)

(
z1
∂z1

∂X1

− z2
∂z2

∂X1

)
= 1, (z2

1 + z2
2)

(
z1
∂z1

∂X1

+ z2
∂z2

∂X1

)
= 0,

and the solution of the above linear system yields

∂z1

∂X1

=
1

2z̄1(z̄2
1 − z̄2

2)
,

∂z2

∂X1

= − 1

2z̄2(z̄2
1 − z̄2

2)
.

Analogously, for the derivatives respect to X2, we obtain

∂z1

∂X2

=
1

2z̄1(z̄2
1 + z̄2

2)
,

∂z2

∂X2

=
1

2z̄2(z̄2
1 + z̄2

2)
.

Finally, substitution in (2.16) results in

P1 =
Π1z̄2 −Π2z̄1

2z̄1z̄2(z̄2
1 − z̄2

2)
, P2 =

Π1z̄2 + Π2z̄1

2z̄1z̄2(z̄2
1 + z̄2

2)
, (2.17)

that completes, together with (2.13), the transformation from the old variables to
the new ones.

To get the expression of the Hamiltonian in the new variables, we introduce
the shorthands

Q1 = |Π1z̄2 −Π2z̄1|2, Q2 = |Π1z̄2 + Π2z̄1|2, (2.18)

and we also take into account that the distances are given by

R0 = |z1z2|2, R1 =
1

4
|z2

1 − z2
2|2, R2 =

1

4
|z2

1 + z2
2|2.

Then, the Hamiltonian can be written, in terms of a new variables, as

H =
1

32

Q1

R0R1

+
1

32

Q2

R0R2

+
1

4
=
[
z1Π1 + z2Π2

]
+

1

2
(R2

1 +R2
2)

− 3

32

(
<[(z2

1 − z2
2)

2]
)2 − 3

32

(
<[(z2

1 + z2
2)

2]
)2 − 1

R1

− 1

R2

− µ

R0

,

(2.19)
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where <[z] and =[z] stand for the real part and imaginary part of the complex
variable z.

To complete the regularization procedure, we introduce a new independent
variable τ as

dt = R0R1R2dτ

If we fix the value of the Hamiltonian to be E and perform an overall multiplica-
tion by R0R1R2 we get the pseudoHamiltonian

K = R0R1R2(H − E) (2.20)

which is free of singularities and it reads as

K =
Q1R2 +Q2R1

32
+
R0R1R2
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−R0R1 −R0R2 − µR1R2 − ER0R1R2.

(2.21)

Now, the canonical equations of motion can be written as follows
dzjl
dτ

=
∂K

∂Πjl

,
dΠjl

dτ
= − ∂K

∂zjl
, (2.22)

where j = 1, 2 and l = 1 stands for the real part and l = 2 for the imaginary part.

2.3 Summary
As a summary of this chapter we list the main features of the model proposed. We
consider a hierarchical restricted four-body problem with two primaries revolving
in a circular orbit about their center of mass and two small bodies moving under
their gravitational influence. The model results in the sum of two independent
circular restricted three-body problems coupled by the interaction between the
two small bodies. Being this term µ/r, where r stands for the distance between
the minor bodies and µ the mass parameter, with a typical value less than 10−6, it
only matters if the two small masses are too close. Assuming that the minor bodies
are temporally trapped by the small primary, Hill’s approximation is considered,
simplifying the model, but retaining the main characteristic of the full problem, as
it is the sum of two Hill approximations of the restricted three body problem for
each of the small masses, coupled by their mutual interaction. This final model has
different singularities due to double or triple collisions. In this way, we consider
the avoidance of collision between the small bodies, for computational purposes,
by means of Waldvogel regularization in the planar case, that is to say, when all
the objects move in the orbital plane of the primaries.
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Chapter 3

Numerical simulations and results

The two previous chapters constitute the theoretical framework for the numerical
simulations of the capture model. As it was explained, at the beginning of chap-
ter 2, it is the interaction of two small bodies in the vicinity of the planet that is
responsible of a possible capture. The question now is how to simulate this situ-
ation. To this end, we take advantage of the model proposed, i.e., the restricted
2 + 2 body problem in its Hill approximation. As it is deduced from equation
(2.8), this model can be viewed as two independent Hill problems coupled by the
term µ/r, which only matters if the two bodies are close enough. This suggests
to divide the simulation into two parts. The first part, based on the Hill approxi-
mation of the restricted three-body problem, is used to select the initial conditions
of the two parents bodies of a potential capture. The second one, based on the
Hill approximation of the restricted 2 + 2 body problem, is used to account for the
interaction of the two bodies, while in the Hill sphere of the planet.

3.1 Selection of the initial conditions

The selection of the initial conditions is based on Monte Carlo methods, de-
scribed in Appendix A. This method has been extensively used to simulate similar
problems to the one in touch. Hénon was the pioneer in this kind of simula-
tions [Hén71a, Hén71b], considering the dynamical evolution of spherical stel-
lar systems, whose ideas are still in use in million-body star cluster simulations
[RMW+16]. Later on, Petit and Hénon focused on numerical model of plane-
tary rings in which particles interact through gravitational and inelastic collisions
[PH87a, PH87b]. Recently, Monte Carlo methods have been used to theoretical
predict the presence of a nine planet in the most outer part of the solar system
[dlFMdlFM16]. In our case, the basic idea is to get a large number of potential
objects going into the Hill sphere from outside and that leave it after a minimum

31
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Figure 3.1: The starting set of initial conditions, selected at random inside the Hill
sphere with a Hamiltonian value above the saddle point.

time around the planet. In this way, we choose randomly a value for the Hamilto-
nian (1.13) in the interval (

−3 3
√

3

2
,−1.3

)
in order to guarantee that the object is a potential escape object. We note that
the model we are using does not depend on the mass of the small body. Thus, it
applies to every object, regardless its mass. Once the energy is selected, initial
conditions are chosen at random inside the Hill sphere. In fact, we choose the
coordinates and one of the momenta and the other one is fixed according to the
value of the Hamiltonian. Doing this, we get a random collection of potential
initial conditions, as it is depicted in Figure 3.1.

These initial conditions are transformed into regularized coordinates (1.22),
and integrated numerically, by means of a linear multistep method of 12th order.
The aim of this numerical integration is to find those initial conditions that give
rise to orbits temporally trapped in the Hill sphere, but not permanently. We also
impose that they are trapped a minimum time of 50 planet’s periods in regularized
time, which is longer than the real time. To this end, every initial condition is
propagated forward in time. If it leaves the Hill sphere, in a time less than 5 000
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planetary periods, it is integrated backward in time to see if it also leaves the
Hill sphere. If this is the case, and the total time inside the Hill sphere is longer
than 50 planetary periods and less than 10 000, the initial conditions, in cartesian
variables, together with the energy and the distance to the planet, as well as the
regularized lifetime, are recorded. We note that orbits passing through the planet
are also considered, as the problem is treated in regularized coordinates, avoiding
the singularity. At a first glance, these orbits should be discarded. However, these
collision orbits are also possible candidates to exchange energy with other object,
if the interaction is previous to the collision, and so they are not discarded. A
typical record is as follows,

x 0.58720916388491650740
px -0.24191109520516448916
y -0.43197534153720662520
py 0.34756953833837311851
r 0.72898374319775405270
H -1.63321956653858779700

lifetime 81.62839793791843590000

where the initial conditions are recorded at a distance r = 0.729, that is to say
outside the Hill sphere, with a radius rH = 3−1/3 = 0.693361. It can also be seen
that the value of the Hamiltonian is greater than that corresponding to the saddle
point HrH = −2.16337 and that the regularized lifetime is greater than 50, but
less than 10 000.

It is worth noting that, from a departure set of 200 000 initial conditions, only
2054 are finally recorded, i.e., only 2054 objects satisfy the above requirements.
In this way, the final set of initial conditions is that depicted in Figure 3.2, where
the initial uniform distribution seems to be lost, as the points appear grouped
around the saddles. This is because the initial positions are recorded at the moment
the body enters the Hill sphere, and that is the reason why all of them are close
to the saddle point, which is located in the middle of the escape gate of the Hill
sphere, for a given value of the Hamiltonian. Also interesting is to look at the
distribution of the value of the Hamiltonian function. From a more or less uniform
distribution we arrive to another distribution with a clear peak just above the value
of the Hamiltonian at the saddle point, as it can be seen in Figure 3.3. This is easily
understood as a consequence of the escape dynamics. Indeed, the higher the value
of the Hamiltonian function the more likely the object escapes the Hill sphere in
a short time. As a consequence, the Hamiltonian H is not evenly distributed and
there is an accumulation just above the value of the Hamiltonian at the saddle
point. The mean value of this parameter is −1.825, which is 15% higher than
the corresponding to the saddle point. However, the median is a little bit higher,
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Figure 3.2: The final set of initial conditions, composed by temporally trapped
orbits in the Hill sphere and selected from the departure set of initial conditions.

equal to −1.797 and it indicates that almost half of the initial conditions have a
Hamiltonian value 20% greater than the corresponding value of the saddle point.
However, the mean lifetimes for the selected objects, according to the energy,
show a marked pick for those objects with a Hamiltonian value around −2 as it
can be seen in Figure 3.3.

Regarding lifetime, although it is recorded as a regularized time, all of the
orbits live a shorter period inside the Hill sphere. This is a consequence of the
slow motion movie, that implies the time slows down when the two bodies are
close. For instance, the regularized mean lifetime is 293.239, but there are some
few orbits with very long lifetimes (as long as 9854 periods), and half of them
lives less than 75 periods. If we take into account the real time counterpart, the
numbers are always smaller. Now, the mean lifetime is 76.305 and the longest
living orbit is inside the Hill sphere for 2641 periods, and half of the orbits lives
less than 27 periods. This is summarized in Figure 3.4, where the orbits living
more than 1000 periods are not considered, as they represent less than the 6% of
the total. It is clearly seen that the majority of the orbits are inside the Hill sphere a
moderate time. However, these times are, very likely, too long for a real situation
in the solar system. It is known that Jupiter has temporally captured some comets
in the recent past. For instance, comet 147P/Kushida-Muramatsu was captured in
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Figure 3.3: Distribution of the value of the Hamiltonian function for the set of
selected initial conditions. The dashed line corresponds to the value of the Hamil-
tonian at the saddle point. In the bottom panel, superimposed, the mean lifetimes
for the objects in each bar.
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the mid of the last century for about 12 years, just one Jupiter’s period [OIY+08].
Nevertheless, the idea of our simulation is just to prove that the interaction of two
bodies exchanging energy can lead to a permanent capture. For this reason, we
consider a scenario where the probability of an interaction is high enough to be
observed, and the lifetime is one of the parameters that increases this probability.
In other case, may be millions of trials would be needed to observe a permanent
capture, yielding a dramatic increase in the computation time.

Real lifetime Regularized lifetime
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Figure 3.4: Lifetime of the initial set of potential captured objects in real and
regularized time.

3.2 Capture simulation
Once the set of initial conditions has been selected, to search for a capture we use
the following strategy: We choose two of the stored initial conditions as well as
a mass ratio. Then, the cartesian coordinates of the two bodies are transformed
into Waldvogel regularized coordinates (2.13) and (2.17) and the differential equa-
tions (2.22) are integrated numerically with the same method used in the previous
section. The integration is carried out until one of the bodies has exited the Hill
sphere and has departed sufficiently far, to be assumed it has escaped. At this
point, we switch to cartesian coordinates and then to regularized Levi Civita co-
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ordinates to continue the integration for the body that remains in the Hill sphere,
using the differential equations (1.24). If this particle also exits the Hill sphere
before 30 000 units of time, then no capture has occurred; otherwise, a capture is
recorded. Besides, very close approaches to the primary are also considered and
the integration is stopped if one of the small bodies is too close to the primary.

The strategy above described should be applied to every pair of the stored
initial conditions. However, this amounts to more than two millions trials, yielding
a very large computation time. Thus, instead of considering the whole set of pairs,
we select a random sample of pairs of initial conditions, large enough to ensure
we can catch the main features of the capture process, as capture rates, energy
change or the type of captured orbits.

3.2.1 Capture rate
The interaction of two bodies inside the Hill sphere will not always gives rise a
capture, but only in favorable cases. To measure the success rate, we consider
the capture rate: the ratio between the number of effective capture trials and the
total number of trials, as this number goes to infinity. It can be also viewed as
the probability a given interaction ends in a capture. In this sense, every trial can
be regarded as a Bernoulli one, with success probability p and failure probability
1 − p, assuming a given trial is statistically independent of every other one. If
the number of trials is n, we have the sum of n Bernouilli distributions, giving
rise to a Binomial distribution B(n, p). Moreover, if n is large, by means of
the central limit theorem [Bil95], we can take as a reasonable approximation of
B(n, p) a normal distribution N(np,

√
np(1− p)). Using this approximation, we

can establish a confidence interval for the expected value of the capture rate. If
the confidence is set to be 95%, the usual value, we obtain that the observed value
of p, we denote by p̂, will lie in the interval[

p− 1.96

√
p(1− p)

n
, p− 1.96

√
p(1− p)

n

]
, (3.1)

with probability equal to 0.95. However, this interval is not always good enough,
especially for small samples or if p is close to 0 or 1. A frequently cited rule of
thumb [Bro01] is that the normal approximation is a reasonable one as long as
n ≥ 30, np ≥ 5 and n(1− p) ≥ 5.

The confidence interval (3.1) shows that the larger the value of n the sharper
the expected estimation is. But, on the other hand, the value of p is not known
because we are using the sample to estimate it. Usually, in textbooks [Ros07], the
value of p is replaced by p̂ in (3.1), in such a way that the resulting interval is a
confidence interval for the value of p at the 95% confidence level. However, if the
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value of p is small, as we suppose to be in this case, this interval is not satisfactory,
even if n is large [BCD01, Wal13]. This is a consequence of a frequent misun-
derstanding, that is assuming that the normal distribution of the errors in the true
population is also normal in the observed one. An alternative confidence interval
is preferable and we will consider the Agresti-Coull interval, as it is recommended
in [BCD01]. In this sense, let be X = np̂ and

X̃ = X +
z2α/2

2
, ñ = n+ z2α/2,

being α the significance level1 and zα/2 the value of a random variable in aN(0, 1)
distribution such that P (|z| > zα/2) = α. Let be now

p̃ =
X̃

ñ
,

then the Agresti-Coull confidence interval is given by[
p̃− zα/2

√
p̃(1− p̃)

ñ
, p̃+ zα/2

√
p̃(1− p̃)

ñ

]
. (3.2)

It is worth noting that the expression (3.2) is exactly the same than the expression
for the classical interval, substituting p̂ by p̃ and n by ñ.

As it was said previously, the accuracy in the estimation of the capture rate
strongly depends on the number of trials performed, n. However, the numerical
complexity of the interaction simulation yields a big amount of computation effort
and we have to satisfy ourselves considering a large enough sample of trials, but
not too much. In this sense, we have considered a sample of 50 000 pairs of
objects, recording the estimation for the capture rate for different values of the
mass parameter, following the Agresti-Coull confidence interval. For instance,
for a mass ratio µ = 10−9, after 50 000 trials, we have observed 67 captures and
the estimated probability is, with a 95% confidence level,

p = 0.00137831± 0.000325183.

For other mass ratios, the results are summarized in Figure 3.5 and Table 3.1,
where five different values of µ are considered. The main conclusion derived
is that the probability of capture increases very fast as soon as the mass ratio is
bigger than 10−7, in the limit of the observed values for irregular satellites around
the giant planets. The capture rate is specially high for a mass ratio µ = 10−5.
However, this is not a real situation and the reason why this increment appears

1If the significance level is 5%, then zα/2 = 1.96.
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Figure 3.5: Capture rates for different mass ratios in the range µ = 10−9 and
µ = 10−5.

is due to the contribution of the coupling term in the Hamiltonian function (2.8).
In this sense, it is not necessary for a very close encounter to occur in order to
modify the energy of the minor bodies. As a result, the number of capture objects
increases.

3.2.2 Energy change
As it was said at the end of the previous section, one of the important questions
in the capture mechanism is the variation of the energy of both the captured and
escaping objects. At the beginning of the simulation, the value of the Hamiltonian
of the 2 + 2 problem is roughly equal to the sum of the values of the Hamiltoni-
ans of the restricted Hill three body problem for each of the interacting objects,
provided the coupling term µ/r is negligible. On the other hand, at the end of the
capture simulation, we also have the 2 + 2 problem as a sum of two independent
Hill problems and we can measure the energy change as the difference between
the value of the Hamiltonian of the Hill problem2 at the end and at the beginning
of the simulation.

2From here on, we refers to this value as the energy.



40 Chapter 3. Numerical simulations and results

188

15
20

4
1 1 1

7
3 5 3

6

14

2

-2.2 -2.0 -1.8 -1.6 -1.4

0

50

100

150

200

Initial energy distribution

1 1
3

1 2

10

126

46

16

21

2
6

3
5

15

10

1

-2.5 -2.0 -1.5

0

20

40

60

80

100

120

140

Final energy distribution

Figure 3.6: Distribution of the energy at the initial and final states for the captured
orbits when µ = 10−6. The dashed line corresponds to the energy at the saddle
point in the Hill problem.
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Mass ratio Number of captures Capture rate
10−9 67 0.00137831± 0.000325183
10−8 69 0.00141831± 0.000329861
10−7 113 0.00229824± 0.000419713
10−6 270 0.00543800± 0.000644599
10−5 1376 0.02755630± 0.001434820

Table 3.1: Capture rates for different mass ratios in the range [10−9, 10−5] and the
Agresti-Coull interval.

We have chosen to consider in detail the sample of captured objects corre-
sponding to µ = 10−6, because it is large enough and, as a consequence, the
statistics we are going to perform, more significant. In this case, we have ob-
served 270 captured objects after 50 000 trials. The distribution of the energy at
the initial state is depicted in the upper panel of Figure 3.6. The accumulation of
objects with energy close to the saddle point is clearly apparent, as it was observed
for the distribution of the whole set of initial conditions (see Figure 3.3). How-
ever, there is an important gap of energies in the interval (−1.91,−1.66), where
only three objects lie. This is an unexpected fact, because the gap was not present
in the original distribution and it can suggest that the initial energy of the object
conditions the probability of capture. Looking at the distribution of the energy
at the end, once the object has been captured, we also make another interesting
observation. This can be seen in lower panel of Figure 3.6, where the gap is still
present. Even more, the most energetic objects at the final state, in the right side
of the gap, come from the objects with the highest initial energies. Besides, a
large number of objects have an energy below that of the saddle point, that is to
say they are objects that cannot leave the Hill sphere. They are 144 objects, 53%
of the total number of them. In other words, 53% of the objects have lost enough
energy to be permanently captured. The rest are trapped in KAM islands and they
can survive there for very long times or even forever.

The mean initial energy is found to be −2.0343, while the final one is equal to
−2.06065. Thus, the mean energy is lower at the end, but still above the energy
of the saddle point (−2.16337). However, this fact does not mean that the energy
always diminishes. Indeed, we find some objects increase their energy in the
capture process, as it is clearly seen from Figure 3.7, where the distribution of
the increment of the energy is depicted. It is observed that most of the objects
lose a small fraction of their energy and that around 40 objects increases their
energy by a small amount. Nevertheless, there are objects that modify its energy
significantly. The largest change corresponds to an object that loses around 30%
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Figure 3.7: The increment of the energy after the capture process.

of its initial energy, going fromH = −2.16301 toH = −2.8211. We can see how
the change in energy takes place as a result of close encounters, as it is depicted
in Figure 3.8, where in the upper panel the distance between the two objects is
recorded, while in the lower panel it is the energy what it is represented. It is clear
that when the distance between the two objects is small, there is a change in the
energy and the objects modify their orbits. The variation of the energy can be the
consequence of a unique close encounter or also of multiple encounters with small
changes in the energy, in such a way that the orbits are slightly modify every time,
before a definitive encounter produces the final orbits.

3.2.3 Type of captured orbits

The previous section served to highlight the mechanism of capture, that is to say
the exchange of energy between the objects interacting. Even more, we observed
how the common rule is that the final captured object loses energy, although there
are exceptions. Besides, more than half of the captured objects lose enough en-
ergy to be permanently trapped inside the Hill sphere, as their final energy is lower
than the energy of the saddle point. However, beyond these interesting observa-
tions, there remains an important issue as it is the type of orbit we find after the
capture process. In this sense, we are interested in the fraction of prograde and ret-
rograde orbits produced. Those orbits that do not belong to these categories will
be regarded as mixed orbits, that is to say, orbits that revolve around the planet
sometimes in direct motion and sometimes in retrograde one. Nevertheless, these
orbits can be mainly prograde or retrograde, but we are not going to consider this
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Figure 3.8: The modification of the energy as a consequence of a close encounter.

aspect in depth.
From the 270 of pairs, giving rise to a capture, we see that the number of dif-

ferent objects involved is not twice this number. In fact, some objects are present
in several captured pairs, either contributing to the capture or as a trapped body.
As a result, only 397 different objects interact and the type of orbit they follow is
summarized in the left panel of Figure 3.9. The predominant type of orbit is the
mixed one, representing almost 75% of the total. The prograde orbits represent
almost 15% and the retrograde ones barely a 10%. After the interaction between
the two objects, the type of captured orbits is given in the right panel of Figure
3.9. The mixed type is still the most frequent, 63%, but 12% less frequent than
at the beginning. This decrement is, mainly, in favor of prograde orbits, that now
represent 26% of the total. The retrograde orbits also increase in proportion, but
as few as 1%. This distribution seems to be in opposition of the observed scenario,
where most of the irregular satellites follow a retrograde orbit. However, this sim-
plify model is a planar one and we can not expect a complete agreement with the
real situation. Thus, we have to be cautious and satisfy ourselves with a statistics
about the final type of obits and not to see the small proportion of retrograde orbits
as a failure of the model.

For more details about this issue, in Table 3.2, we present the interaction be-
tween all the objects taking part in the capture process with the type of orbits
before and after the capture. We can see that the most frequent interaction in-
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Retrograde Mixed Prograde
9 R 15 R 0 R

Retrograde 9 0 M 21 5 M 3 2 M
0 P 1 P 1 P

3 R 0 R
Mixed 160 120 M 65 39 M

37 P 26 P
0 R

Prograde 8 3 M
5 P

Table 3.2: Summary of the type of orbits involved in each interaction. In each
square, the first number stands for the total number of interactions involving a
concrete pair of orbits and the numbers in the right side represent the type of the
captured orbit. The letters R, M and P refer to retrograde, mixed and prograde,
respectively.

volves two mixed orbits, 59% of the total pairs. However, the result is not always
a mixed one. Indeed, it can be appreciated that 23% of these interactions end in
a prograde orbit and it is here where we find the increment in the number of pro-
grade orbits. Nevertheless, it is also clear that, when a retrograde orbit is present
in an interaction, the final orbit is most of the times retrograde, which roughly
happens three of every four times. In the table, there are four missed pairs, cor-
responding to interactions with a collision object. In these cases, the final orbit
results to be retrograde three of them and mixed the other one.
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3.2.4 Some numerical examples
In this section we present some numerical examples to highlight some of the previ-
ous considerations. In this way, we provide a kind of atlas of different interactions
where we account for fast and slow interactions, switching in the type of orbits or
interaction with collision objects.

To begin with, we consider the interaction of two objects, one of them fol-
lowing a retrograde orbit and the other one a mixed orbit. If the final orbit is
retrograde, the captured object is the one revolving initially in retrograde motion,
with the exception of two cases, whose initial conditions are listed below

O1 O2

x 0.64559937218167895430 0.709766176438565654650
px −0.01395042340969841234 −0.192219694263215307200
y 0.19141594183214888369 0.021441979888050660685
py −0.53831714118789530940 −0.385314901681693078310

O1 O2

x 0.73077522712189801890 0.668492710465412143300
px −0.10100432467929444660 −0.107527164232370325840
y 0.06977824037591601192 −0.009360975690703637192
py −0.27563864681801214520 −0.584881291687888826800

In these two cases the object initially in a mixed orbit changes to a retrograde
one. The situation is depicted in Figure 3.10, where the captured object is the one
in mixed motion, although mostly retrograde. The upper panel corresponds to the
first set of initial conditions and it is also an example of a fast interaction. The two
objects interchange energy at the initial stages and one of them escapes very fast,
while the other object modifies its orbit to a more or less regular orbit, but with
energy above to that of the saddle point. It is also interesting to note that, in the
example in the upper panel, the trapped object loses energy, while in the example
of the lower one, corresponding to the second set of initial conditions, the trapped
object increases its energy. Furthermore, at the beginning of the simulation pro-
cess, in both cases the two objects are more or less at the same distance, but closer
in the example in the lower panel, when the final exchange of energy takes place
after different close encounters.

In the example above, we see how the time the two objects are interacting is
variable. In this sense, the typical time the two objects are inside the Hill sphere
before one of them escapes is about 90 planetary periods, although the median
is about 60. These values are longer than the mean lifetime values of the initial
sample. In this sense, we find that the longest interaction between two bodies
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before the final capture is about 10 000 planetary periods. Moreover, this is an
interesting case, because in the first stages one of the objects loses enough energy
to be trapped into the Hill sphere. This situation holds for around 6000 periods,
when a close encounter reverse the situation, and the trapped object with low
energy is the other one. However, after 2000 more periods, the situation flips
again and the body increasing its energy escapes definitively. This behavior is
depicted in Figure 3.11 and the initial conditions for these two objects are the
following

O1 O2

x −0.83513854992218916620 0.8305202363681372102
px 0.45838484246070954060 −0.4252326804018940476
y −0.03826833437887983830 0.1141285712750616521
py −0.72580368057833322130 0.6349106209507919818

Some times, the same object takes part in several capture processes with dif-
ferent results. In Figure 3.12 we present two interactions. In the first one (upper
panel) the captured object is the same that escapes in the lower panel. Moreover,
it is interesting to note how the interaction of the two objects, in the second case,
takes place in several successive encounters, modifying the energy of the bodies
in a slow fashion during a very long time. Also note that, in the first situation, the
captured object loses enough energy to be permanently inside the Hill sphere, but
in the second case there is an increment of the energy. Here we give the initial
conditions for this example; the first set of initial conditions corresponds to the
orbits in the upper panel of Figure 3.12, while the other set to the lower one.

O1 O2

x 0.82903194445659067480 0.83652433974131934490
px −0.41399644476762986760 −0.41375156662944506669
y 0.11813449868395373140 0.05960310396107033892
py 0.60043391449890848310 0.64800881180364999780

O1 O2

x 0.82903194445659067480 −0.832677408822296794000
px −0.41399644476762986760 0.355840848239207030450
y 0.11813449868395373140 0.004642412373044127113
py 0.60043391449890848310 −0.532791149350312465100

There exists also the possibility that two objects in a collision orbit with the
primary interact before they collide, giving rise to a capture. This is an interesting
situation as it can resemble the interaction of two comets, or the fragments of one
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of them, in route to the planet. There are numerous observations of collisions of
comets with Jupiter, the last one in March 2016. However, the most documented
is the collision of comet Shoemaker-Levy 9 in July 1994. After its discovery in
1993, astronomers soon realized that it was orbiting Jupiter and it is thought it
was captured from a solar orbit in the middle of the 1960s [Lan94]. Numerical
tracking back of the orbit shows that it is likely it was a short-period comet with
an aphelion close to Jupiter’s orbit, and a perihelion interior to the asteroid belt
[BM94]. Thus, collision orbits also matters in the capture process, as well as
objects following a close path. This is exemplified in Figure 3.13 where, in the
upper panel, two objects in collision orbits interact, resulting a captured object
in retrograde motion, with a gain in energy. In the lower panel, only one of the
objects follow a collision trajectory and the final trapped orbit is of mixed type,
after a decrement of the initial energy. The initial conditions for these examples
are the following

O1 O2

x 0.69087448353671443430 0.705330587006421594300
px −0.18794114211357135230 −0.255686671583379765400
y −0.01470398149204942342 0.001885680147246733291
py −0.47090312331193329150 −0.392634835085558242530

O1 O2

x 0.8121542190037903675000 0.73717351515301909881
px −0.4505099953780116184000 −0.25646704204387538170
y −0.0075096564236472700127 0.15318174208316748250
py 0.3917109382335868251000 −0.15231959233862960024

Regarding objects that follow a close path, we can see in Figure 3.14 that
a capture is also possible. The two objects follow a very close orbit during six
periods, before they start to diverge in their trajectories. However, during this time
they are interchanging energy in such a way that, at the end, one of the objects is
trapped in a prograde orbit permanently, as its final energy is below that of the
saddle point. It is worth noting that the final orbit of the trapped object differs too
much from the initial one. The initial conditions for these objects are listed below

O1 O2

x 0.83223318637832610630 0.83272290509813684520
px −0.42770891634288343841 −0.41693471367544537864
y 0.07901525730959398086 0.07979190981918202197
py 0.60217241903475360320 0.59663137244206132520



48 Chapter 3. Numerical simulations and results

It is interesting to see, for this example, how the capture process is modify with
the mass ratio µ. Indeed, the final result is very sensitive to it, in such a way that
sometimes the captured object is the other one, but also both of then can escape or
collide. Moreover, if µ < 10−7 no capture takes place and the two objects escape.
Similarly, if µ > 10−5 there is no capture, but now the two objects collide very
fast. For µ ∈ [2 × 10−7, 5 × 10−6], we show in Figure 3.15 the results for 100
different simulations. A blue line indicates O1 object is captured; a red one is for
the capture of O2 object; a yellow line stands for a mutual collision, while a green
one for escape of the two bodies. As it can be seen, there is not a regular pattern
and sometimes the final result is almost at random. A similar situation is observed
for other objects that follow close trajectories.

Objects that do not follow a close path do not exhibit this complex behavior
and, in general, they have a narrow window of mass ratio values ending into a
capture. Outside this window, the two bodies escape. As an example, we consider
the objects with initial conditions

O1 O2

x 0.781767766254677698430 −0.811840060076070457700
px −0.774242927752655907300 0.388451836263363048400
y 0.008885887238714064440 0.005992392475120278221
py 1.002887580661794508800 −0.328384074426652683400

If 8 × 10−7 < µ < 2 × 10−6 the second object is captured, otherwise both of
them exit the Hill sphere. This situation is depicted in Figure 3.16, where in
the upper panel we have a capture for µ = 10−6, while for a greater mass ratio,
µ = 1.5 × 10−6, the lower panel shows the escape of the two bodies. It is worth
noting how the coupling term affects the variation of the energy and, consequently,
the final state of the two bodies, even if the mass ratio is slightly modified.

This scenario is similar for other objects, but with variations in the pattern, as
it happens for the the bodies with initial conditions

O1 O2

x −0.813195828743553783550 −0.62106447761786476300
px 0.475275117179143891110 0.15754157601081469897
y 0.014857545874043982803 0.39856754993622578450
py −0.443690027101813433400 −0.16211224451121722390

If µ ≈ 10−6 the second object is captured. However, this body collide with the
primary if the mass ratio is below this value. On the contrary, if µ ≈ 1.16× 10−6

the two small masses collide and, above this value, if a capture takes place, it is
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the first object that is captured. In Figure 3.17 the two captures and the collision
with the primary are depicted. Note that the values of the mass ratio are very close
between them and the final state is completely different. Even more, in the case
µ = 1.64× 10−6 the final energy is below that of the saddle point, and the object
can not leave the Hill sphere, being permanently trapped.

As we can see, this model yields a very rich casuistic in the capture process.
However, the final orbits are, in general, very eccentric, although we cannot speak
in a rigorous sense of a proper eccentricity, due to the irregular behavior of the
orbits. Nevertheless, once the capture has occurred, we can define a pseudo-
eccentricity by means of the equation

e =
D − d
D + d

,

where D and d are the maximum and minimum distances to the primary, respec-
tively, in a time interval corresponding to 10 periods of the planet. Due to the
non regular motion of the trapped object, this eccentricity can vary, depending on
the interval considered, but, for the sake of conciseness, we will take the same
interval for all of the orbits, except for those with a very long interaction time. We
observe that the mean value of the eccentricity is equal to 0.900277. However,
the median, a more representative value in this case, is equal to 0.930694, while
the first quartile is equal to 0.854279. This indicates that most of the orbits get
too close to the primary. The upper panel of Figure 3.18 shows the distribution
of the eccentricities for the captured orbits. The lowest eccentricity observed in
our simulation is 0.415 and corresponds to a prograde orbit with very low energy,
equal to −2.82111, well below that of the saddle point. The orbit is depicted in
lower panel of Figure 3.18, and comes from two objects with initial conditions

O1 O2

x −0.68978070575289796020 0.83512378695144173780
px 0.09031935421541271991 −0.41439305812614879443
y −0.02853686130135112825 0.07963046923057529036
py 0.48953706368281119100 0.63956041988580758510

3.3 Main results of the simulation
The main conclusion we extract from the numerical simulation is that the model
proposed is able to account for the capture process. The mechanism is simple and
it relies on the interchange of energy between the small objects when encounters
take place. Also, a large variety of interactions can happen, making the scenario
very interesting, because we cannot discard any initial situation. All of them are
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suitable for a potential capture. This is, for instance, the case of two objects, may
be coming from the disruption of a parent body, following a close path.

In general, the captured object loses energy, but we have shown examples
where this is not the case, and objects increasing its energy are finally trapped.

In the capture process, the mass ratio plays an important role. On the one
hand, the capture rate increases with the mass ratio, as it was expected. On the
other hand, some pairs are very sensitive to the mass ratio and the final state of the
interaction is very hard to predict.

Although the mechanism is satisfactory in some aspects, there are some other
aspects that deserve more insight, as it is the lack of retrograde orbits and the high
eccentricities of the final orbits. This suggests that other factors must be taken into
account, as it can be the presence of drag or the influence of large regular moons
around the planet.
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Figure 3.10: Example of interaction between an object in retrograde orbit and
other one in a mixed one (almost retrograde) with a final retrograde orbit, coming
from the mixed one. In the upper panel a fast interaction takes place and the
trapped object looses energy. The lower panel shows a middle time interaction
where the trapped object increases its energy.
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Figure 3.11: Example of a very long interaction between two objects with a life-
time in the Hill sphere of about 10 000 planetary periods. During the interaction
two major energy changes occur.
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Figure 3.12: Interaction of an object in two different scenarios. In the upper panel
the object following the mixed red orbit is captured, while in the lower one (in
blue) it escapes, while the other object is trapped.
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Figure 3.13: In the upper panel the interaction of two objects in collision orbits.
In the lower panel the interaction of an object in a collision orbit (in blue) with a
temporally trapped object in mixed orbit.
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Figure 3.14: The interaction of two objects following almost the same path.
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Figure 3.15: The result of the interaction of two close objects as a function of
the mass ratio µ. In the upper panel, blue color stands for the capture of the first
object and red one for the capture of the second one. Green color indicates escape
of the two objects and yellow one, mutual collision. In the lower panel the same
objects as in Figure 3.14, but µ = 5× 10−7. The object captured is the other one.
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Figure 3.16: The interaction of two bodies for close values of the mass ratio. In
the upper panel, for µ = 10−6, the first object is captured. In the lower panel, for
µ = 1.5× 10−6, the two objects escape.
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Figure 3.17: Three different final states for close values of µ. In the upper panel,
for µ = 8 × 10−7 one of the objects escape, while the other collides with the
primary. In the middle, for µ = 10−6, the second object is trapped. In the lower
panel it is the first object the captured one, for µ = 1.64× 10−6.
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Figure 3.18: Distribution of the eccentricity of the captured orbits (upper panel).
The lowest eccentric object captured. The mean eccentricity is equal to 0.415 and
corresponds to an object in prograde motion (lower panel).
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Chapter 4

Statistical study of the Kuiper belt
objects

The study of the populations of astronomical objects is one of the topics in mod-
ern and classical astrophysics. The information derived from statistical aspects of
the population helps to select the plausible dynamical models that give rise to the
actual distribution of the observed population. In this sense, the construction of
a dynamical model for a given population starts with a statistical analysis of the
relevant data. What is the relevant data is also an interesting question, because
there are multiple observed parameters that serve to characterize the population
and one have to select those that give as much information as possible for the de-
sired objective. Another relevant question is related to the biases of observational
data. In fact, the data is not an unbiased sample of the total population as there
are limitations imposed by the observational techniques and by some other con-
straints. These facts must be taken into account in order to perform a statistical
analysis free of biases.

The population analyzed here is that corresponding to the objects in the Kuiper-
Edgeworth belt, located beyond the orbit of Neptune. They are usually designed
as KBO (Kuiper Belt Objects), and there are more than a thousand known KBOs.
Our interest in this population is because it is thought that the irregular satellites
could have been captured from some source regions in the Kuiper belt [JH07,
NCS+08]. Following the Nice model [TGML05], interactions with the migrating
planets cleared objects from the young Kuiper belt, giving rise to the possibility of
captures [MLTG05, TGML05]. Nevertheless, the source regions for the irregular
satellites remain unknown and can be roughly divided into two possible regions:
local and nonlocal. Local regions include those objects moving in a neighbor-
hood of the growing giant planets, no ejected or absorbed by collisions. But, for
capture processes, the nonlocal regions are the most interesting ones, as they sup-
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ply the objects that enter into the Hill sphere where the capture mechanisms take
place. In this way, it is suggested that the Trojan asteroids of Jupiter could be
captured objects from the Kuiper belt in a late stage of the Solar system formation
[MLTG05]. Even more, it is also thought that Triton could enter the Neptune’s
Hill sphere from a source region in the Kuiper belt and tidal dissipation further
converted the temporarily captured retrograde orbit into a permanent stable one
[ML95].

The physical parameters for KBOs are compiled in a database by the Minor
Planet Center (responsible for the collection, computation, checking and dissem-
ination of astrometric observations and orbits for minor planets, comets, and nat-
ural satellites) and can be obtained from its website [mpca]. For each object 15
different fields are provided. Among them, we find its designation and the facts of
its discovery. The rest of the fields, a total of 11, refers to physical parameters, as
they are the orbital elements and the absolute magnitude. For our statistical study
we will consider those parameters that provide as much information as possible
of the dynamical features of KBO population. These parameters are basically the
semi major axis of the orbit (a), the eccentricity (e) and the inclination of the or-
bital plane (i), which proved to be the most relevant in the study of the main belt
asteroid population. Nevertheless, we will also take into account the argument of
the periapsis (ω), the absolute magnitude (H) and the number of observed oppo-
sitions (n).

4.1 Dynamic groups

It was speculated for a long time that the outermost part of the solar system was
populated by small icy primordial particles – the residuals of the protoplanetary
solar nebula. Based on theoretical considerations, Edgeworth and Kuiper, in the
fifties of the last century, gave consistent arguments for this and conjectured the
existence of a belt of objects between 40 and 50 AU that could be the origin of
short period comets [Edg49, Kui51b]. This idea was strongly supported by other
theoretical studies based on the frequency and on the total number of observed
short period comets [Fer80]. Even more, an estimation of the number of objects,
the total mass, the size of the objects and the characteristics of the orbits were
inferred. Based on this, Fernandez [Fer80] established the magnitude of one of
the largest hypothetical objects and concluded that, although detectable, it would
be a very difficult task to observe it.

On the other hand, the study of the anomalous orbit of Pluto caused other au-
thors to speculate about the existence of such region of bodies, beyond Neptune
[Mal95]. An important role played the assumption of the migration of giant plan-
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ets, especially Neptune, trapping Pluto’s orbit in a 3:2 mean motion resonance1.
The migration of planets is nowadays a central issue of the Nice model, one of the
most plausible scenarios of the formation of the solar system [TGML05], which
also predicts the existence of a belt of planetsimals beyond Neptune’s orbit.

The theoretical considerations were the prelude to the first discovered object,
aside from Pluto, in the Kuiper belt, by D. Jewitt and J. Luu [JL93]. This object,
named 1992 QB1, fitted all the theoretical considerations of an expected KBO,
that is, almost circular orbit with low inclination and at a mean distance of 43.734
AU. However, the next discovery showed a very different situation. It was the
object 15789 (1993 SC) [WFOM95], that follows a similar orbit to that of Pluto,
that is to say in 3:2 mean motion resonance with Neptune, with high inclination
and eccentricity. Since then, much effort has been made to the search of trans
Neptunian bodies through different specific surveys [EKC+05, PKG+11] and the
dedication of the Hubble Space Telescope [CLSD95, BAB+03]. Nowadays more
than a thousand trans Neptunian objects are known. At the beginning a trans
Neptunian object (TNO) was the same as a Kuiper belt object (KBO), but the in-
creasing number of them showed soon that their orbits exhibit different behaviors.
This easily follows from a very basic statistical study.

Let us start with the distribution of the number of objects according to their
semi major axis a, that is their mean distance to the Sun. The corresponding
histogram is plotted in Figure 4.1. In this Figure, only objects with semi major
axis in the interval [34,50] are considered, excluding a few of them with large
semimajor axis, and they correspond to the objects listed in the database of the
Minor Planet Center classified as trans Neptunian in January 2015. It can be seen,
that the majority of the objects accumulates at distances between 39 and 48 AU.
These limits are close to the mean motion resonances 3:2 and 2:1. There is a
large population of objects trapped in the 3:2 mean motion resonance followed
by a gap. Then, the objects are almost normally distributed up to the 2:1 mean
motion resonance, where we observe again a lack of objects. Taking into account
this distribution, a common belief is that the Kuiper belt is the part of the Solar
System delimited by the two dashed lines in the Figure 4.1, in the band of the 3:2
and 2:1 mean motion resonance with Neptune [SCC01]. However, the structure
of the outer Solar System is more intricate, and that can be proved if we take
into account other relevant orbital elements, as they are the inclination and the
eccentricity.

Before doing that, the information provided by Figure 4.1 gives a very inter-
esting insight about the dynamical history of the trans Neptunian objects. The

1We say that two objects are in mean motion resonance when the ratio of their orbital periods is
a rational number and, the most important ones, are those represented by the quotient of two small
integers. For instance, Neptune and Pluto satisfy a 3:2 resonance, that means Neptune completes
three orbits around the sun in the time it takes Pluto to complete just two.
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Figure 4.1: Distribution of the number of trans-Neptunian objects, according to
the semi major axis. Dashed lines stand for a mean motion resonance 3:2 and 2:1
with Neptune.

first important thing is the gap 40 ≤ a < 43 AU, just after the 3:2 mean mo-
tion resonance. In [JWM05], it is explained that objects in this area would had
had close encounters with Neptune and were scattered to the outer Solar Sys-
tem. However, objects trapped in the 3:2 mean motion resonance would had
evolved into stable orbits avoiding close encounters with Neptune thanks to the
resonance. On the other hand, if a > 43 AU, objects in the classical Kuiper
belt, with low inclinations and moderate eccentricities, could not have had close
encounters with Neptune and remained in stable orbits. This is a plausible ex-
planation for the observed distribution and it is supported by different numerical
simulations [JWM05, DLB95, MDL00].

Now, let us take a look at the dispersion diagram of semi major axis and ec-
centricity, depicted in Figure 4.2. Here, it is clear the population of objects in the
3:2 mean motion resonance with moderate and high eccentricities. Besides, it is
also appreciated that objects in the populated region between 43 < a < 48 exhibit
a great range of eccentricities and part of them goes into the inner region of Nep-
tune’s orbit. These objects are potentially affected by close encounters and can
be scattered, in such a way that their dynamical history is completely different to
those objects with low eccentricities. Moreover, most Neptune crossers seems to
be trapped in mean motion resonances with Neptune. Another interesting feature
observed in Figure 4.2 is the gap after a = 47.5 AU. The population decreases in
the number of objects towards the location of the 2:1 resonance, but it is not re-
covered for greater distances. This is an unexpected behavior that deserves further
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Figure 4.2: A plot of eccentricity against semi-major axis for observed Kuiper belt
objects between 32 and 50 AU. Objects above the dashed red line are Neptune
crossers. Also, the main mean motion resonances with Neptune are highlighted
by blue dashed lines.

investigation.

The discussion above can be complemented by the dispersion diagram of the
semimajor axis and the inclination, depicted in Figure 4.3. The presence of ob-
jects in high inclined orbits is a signal of different dynamical behavior among the
objects in the Kuiper belt. In this case, we observe, not only the groups trapped in
mean motion resonances, but a numerous population of objects, in the range from
42 to 48 AU, with low or moderate inclination. Based on this observations, the ob-
jects in the Kuiper belt, in a first attempt, can be roughly classified as resonant or
non resonant and the last ones into different groups according to their eccentricity
and inclination. However, even this simply classification is not an easy task. In
fact, the first thing we have to solve is to decide when an object can be said that is
trapped in a mean motion resonance with Neptune. In this way, the issue of stabil-
ity plays an important role in the nature of the different populations, and this fact
has to be taken into account, as it is done for the classification of small comets
[Lev96]. In this way, following Gladman et al. [GMV08], the classification of
a TNO must be based upon its current short-term dynamics rather than upon its
long-term history and future evolution. Based on this idea and, by a balance of
different points of view and taking into account that stability must be a criterion, a
classification scheme has been proposed [GMV08]. It is a process of elimination
based on the comparison of the current observed orbital elements of an object and
its orbital elements after ten million years.
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Figure 4.3: A plot of inclination against semi-major axis for observed Kuiper belt
objects between 32 and 50 AU. The main mean motion resonances with Neptune
are highlighted by blue dashed lines.

4.1.1 Resonant objects

The first objects to be classified are the resonant ones. They are important for the
structure of the Kuiper belt, because they are allowed to exhibit large eccentric
orbits that can survive for time lapses as long as the age of the Solar System,
even if they approach Neptune or cross its orbit. Also, the chaotic nature of the
resonance borders allows temporary trapping of scattered objects near the border
of the resonance. Moreover, the relative population of the resonant objects can
give clues about the rate of planet migration [HM05].

Resonant or near resonant objects can only be confirmed by a direct numer-
ical calculation of the orbital evolution, because a period near a rational ratio of
Neptune’s is not at sufficient condition to be classified as resonant. To this end,
the most likely orbit of the object is considered and also the two most extreme
orbits than can match the actual path of the object. The three orbits are followed
for ten million years and mean motion resonances with Neptune are examined.
If the three orbits behaves in a resonant fashion, then the object is classified as
resonant. If two of the three orbits present a resonant pattern then the object is
classified as insecure resonant and further observations are needed to a definitive
classification. If only one of the three orbits is resonant after ten million years, the
object is termed as non resonant.

After classification, it is seen that a large number of objects is trapped in 3:2
mean motion resonance with Neptune at a distance of a = 39.5AU , as it is ob-
served in Figures 4.1-4.3. These objects have similar characteristics to Pluto and
they are called Plutinos. Some other families of resonant objects, trapped at dif-
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ferent resonances, have been also classified. In principle, there is no limitation
on the order of the resonance, having observed objects in the resonances 4:3, 5:3,
7:4, 2:1, 5:2 that can be seen in Figures 4.2 and 4.3.

4.1.2 Nonresonant objects

If an object is not classified as resonant, it is said to be nonresonant. However,
among these objects some different populations are considered, according to the
orbital elements, in particular eccentricity and inclination. Basically, they are
subdivided into two groups the scattered disc and the classical belt. A very sim-
ple criterion takes into account the perihelion distance q = a(1 − e), in such
a way that every Neptune crosser is classified as scattered and the rest as clas-
sical. However, this simple criterion does not take into account the dynamical
evolution of the objects and a finer classification is desirable. The correct identi-
fication of the scattered objects is of great interest for the knowing of the source
regions of comets, that are also potential objects to be captured as irregular moons
[NCS+08]. A study of the dynamical evolution of thousands of test bodies of
the Kuiper belt shows an intricate boundary between scattered and non scattered
objects [DLB95], so that the simple argument of the perihelion distance is not
enough for a precise classification.

Scattered disc objects

The term scattered disc was originally intended for trans Neptunian objects scat-
tered to high eccentric orbits with perihelion close to Neptune and semimajor axes
greater than 50 AU [DL97]. The objects in this population are, in general, unstable
and their orbital elements change with time, in particular the semimajor axis. This
feature is then used to identify the population in the scattered disc. In this way,
following Morbidelli et al. [MEL04], if the semi major axis of the more likely or-
bit, and those of the two extremal orbits, suffer a variation of 1.5 AU or more in a
time lapse of ten million years, the object is classified as scattered. According this
definition, these objects should be termed scattering objects rather than scattered,
as their past evolution is not considered.

The scattered disc extends to objects not only with a > 50 AU, but also to
objects with semimajor axes as small as 30 AU, in the limit with the Centaurs
population. However, a cutoff must be set for the eccentricity, because high values
of e yield coupling with Jupiter, and then the objects no longer belong to the
Kuiper belt. On the other hand, objects with very large semimajor axes can be
externally influenced and then there is also a cutoff to separate them from the
objects in the inner Oort cloud [GMV08].
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Detached trans-Neptunian objects

The discovery of objects like Sedna, with a perihelion distance of about 76 AU,
initially classified as members of the scattered disc, led astronomers to introduce
a new subpopulation in the Kuiper belt. Indeed, it is very unlikely these objects
can be emplaced there by an encounter with Neptune, as its perihelion distance
is clearly decoupled from the planet [GHG+02]. This circumstance makes these
objects to be only moderately affected by Neptune and the other known planets
and makes them appear to be detached from the Solar System. For this reason
they are termed detached [EAB03, DJ06, GMV08]

Numerical integration allows to separate the detached objects from the scat-
tered objects. But it remains the problem about where the detached population
should end at low eccentricity. In principle, it is possible to term all nonreso-
nant, non scattered trans-Neptunian objects as classical objects of the Kuiper belt.
However, it has not too much sense to consider in the same group objects like
Sedna and objects in a circular orbit at the same perihelion distance. In this way, a
lower bound for the eccentricity must be considered. It can be chosen arbitrarily,
as Elliot et al. do [EKC+05], taking e = 0.2. However, e = 0.24 seems to be
preferable, because at moderate inclinations (10◦ - 20◦) there are stable orbits in-
terior to the 2:1 resonance that are better thought to be classical objects rather than
detached. Moreover, this value introduce a symmetry respect to the eccentricity,
in such a way that two stable objects with the same eccentricity on either side of
the 2:1 resonance are classified as classical [GMV08].

Classical belt

By elimination, the objects not classified as resonant, scattered or detached are
said to belong to the classical belt. We note that the classical belt is not confined
to the interval between the 3:2 and the 2:1 resonance and includes objects outside
these limits both in the inner and outer directions of the solar system. This yields
to divide the classical belt into an inner classical belt, for those nonresonant ob-
jects with a < 39.4 UA, an outer classical belt, with a > 48.4 UA , e < 0.24
and nonresonant, and the main classical belt. The objects in the main belt are also
known cubewanos, after the first discovered trans-Neptunian object 1992 QB1.

The objects in the classical belt were though to follow orbits with low incli-
nation, but there are objects (e.g. 2004 DG77) with inclinations as high as 47.6◦.
Thus, the inclination does not help to decide if an object belongs or not to the
classical belt, but serves to divide the objects as hot or cold based on the orbital
inclination. In this way, an inclination of 5◦ is sometimes taken to separate cold
and hot objects. However, this cut reflects no dynamical separation.
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4.2 Biases in the distribution of the observed object
The population of the observed Kuiper belt objects is not an unbiased sample
of the total population, due to different factors that distort it. For instance, the
main classical belt is mostly constituted by cold objects, as a consequence of the
surveys, mainly confined to the ecliptic [Bro01]. Also, an additional population
of cold objects is expected in the inner and outer discs [KJG+08], but a lack
of them is clear in Figure 4.3. As surveys for the search of new Kuiper belt
objects continue, researchers are aware about the great importance of having an
assessment of all the observational bias in order to draw, as correct as possible, the
true distribution of the material in the outer solar system beyond Neptune. We are
not giving all the possible sources of bias, but we are going to mention the most
obvious: the flux bias and the pointing bias, paying special attention to the second
one, for which we will derive a theoretical approach.

4.2.1 Flux Bias
The most obvious bias is due to the limiting magnitude a survey is able to reach.
In this way, brighter objects are easier to detect. For instance, two similar objects
in size, but placed at different distances, do not have the same probability to be
observed. In the same way, given two objects at a similar distance, the biggest
one is more likely to be detected. Also the albedo, the fraction of radiation a body
reflects, is a source of difference in the brightness. Thus, distance, size and albedo
condition the probability of detection giving rise to the so called flux bias that
makes up a disproportionate detected population.

Kuiper belt objects are discovered in the optical via reflected solar light. As-
suming the same albedo for all of them, it is not difficult to see that the flux is
proportional to the following expression [KJG+08]

flux ∝ D2

∆2R2
,

whereD is the object’s diameter, ∆ the distance to the Earth and R the distance to
the Sun. This simple expression is enough to have an idea of the bias. For instance,
if an object is 10 times larger than other one, it will be approximately 100 times
brighter, which implies a difference of 5 magnitudes. On the other hand, for two
objects of the same size, one of them situated at 30 AU and the other one at 60
UA, the first one is about 16 times brighter, that is a difference of 3 magnitudes.
This can be readily seen from the expression for the apparent magnitude of a solar
system body reflecting the solar light [KKO+07]

m = m� − 5 log
D

2
+ 2.5 log

∆2R2

p(χ)A
, (4.1)
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where m� is the apparent magnitude of the sun, A the object’s albedo, p(χ) the
phase integral, which can be taken the same for all objects, and D, R and ∆
are given in astronomical units. From (4.1) it follows that if the albedo of an
object is increased by a factor 2.5, it will be one magnitude brighter, and such
differences in albedo are present in the Kuiper belt [LFL+14]. For instance, a 100
Km across object at 40 AU with a typical albedo A = 0.15 [LFL+14], will be
observed with an apparent magnitude m = 24.5. The same object at a distance of
80 AU will have an apparent magnitude m = 27.5. In this sense, the knowledge
of the true population of the Kuiper belt strongly depends on the flux limits of the
survey, most of them with limiting magnitude around 24/25 [EKC+05, KJG+09,
PKG+11]. As a consequence, it is found that Plutinos represent a large fraction
of the observed population, as they can be observed in the interior of Neptune’s
orbit and then easily to detect than objects in circular orbit at a distance of 40 UA.
Besides, not too much is known about the population of small objects, say with
a diameter of 10 Km or less, and also not too much about objects further than 50
AU.

4.2.2 Pointing Bias
This kind of bias is due to the design of the surveys conducted to the search of
Kuiper Belt Objects. As a consequence, the inclination distribution of observed
Kuiper Belt Objects is not representative of the real distribution. This is due to
the fact that the majority of observations take place around the ecliptic and then
the probability of detection of low-inclined objects is higher. Nevertheless, obser-
vation far from the ecliptic fails in detection of objects with inclinations less than
the ecliptic latitude, and this is the reason why the surveys focus on a narrow band
around the ecliptic [EKC+05, KJG+09, PKG+11]. Taking these facts in mind,
Brown [Bro01] developed a method to determining the unbiased distribution of
Kuiper Belt Objects, that different authors have been used to study the dynamics
of these objects [JWM05, VM11].

The method used by Brown has some limitations, as it is based upon the hy-
pothesis of circular orbits. A discussion is made about the influence of the ec-
centricity in the inclination distribution and it is concluded that it does not affect
significantly the total distribution. This conclusion follows from a Monte Carlo
simulation, where it is assumed that orbital parameters, other than inclination and
eccentricity, can be randomly chosen. However, the argument of perihelion also
contributes to the observed distribution, because the time an object spends in the
band around the ecliptic, where the survey is conducted, depends on both the
eccentricity and the argument of perihelion. Thus, any bias in the inclination dis-
tribution yields a bias in the argument of perihelion distribution.

In this way, the distribution of the argument of perihelion should show some
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Figure 4.4: Histogram of the argument of perihelion for the known Kuiper Belt
Objects, obtained from the data of Minor Planet Center in January of 2015.

deviations from the expected distribution, in this case a uniform one, as it is the
case for the asteroids in the main belt (see [mpcb]). However, from the data avail-
able in Minor Planet Center [mpca], it can be readily seen that there is a cumula-
tive number of objects around perihelion close to 0 and 180 degrees (see Figure
4.4). Even more, statistical tests show that the distribution is significantly far from
a uniform one. Moreover, for the outermost objects, periapsis around 0◦ are the
most frequent and there are no objects with ω ≈ 180◦, as it should be expected.
This fact is thought to be a signaling of the presence of trans-Plutonian planets
[TS14, dlFMdlFM14].

Let us compute the probability to detect an object at an ecliptic latitude −δ ≤
β ≤ δ. It is proportional to the time the object spends in a band of width 2δ. In
order to obtain this time, we recall that the ecliptic latitude of an object in elliptic
orbit around the Sun is given by

sin β = sin i sin(ω + f), (4.2)

where ω is the argument of perihelion and f the true anomaly of the object. If the
orbit is circular, equation (4.2) reduces to

sin β = sin i sinM,

where M is the mean anomaly. In this simple case, due to the symmetry, it is
enough to consider M ∈ [0, π/2]. Thus, we have that the inequality 0 ≤ β ≤ δ
holds if

0 ≤ sin β = sin i sinM ≤ sin δ.
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Consequently, the object has an ecliptic latitude less than or equal to δ if

0 ≤M ≤ π

2
, i ≤ δ, 0 ≤M ≤ arcsin

sin δ

sin i
, i > δ.

Taking into account that the mean anomaly is proportional to time, we have

P (δ, i) =
2

π
arcsin

[
min

(
sin δ

sin i
, 1

)]
, (4.3)

being P (δ, i) the probability to observe an object, in circular orbit inclined i de-
grees, in a 2δ wide band around the ecliptic. We can also obtain P (δ, i), by Monte
Carlo simulations, taking a uniform time distribution of points along the orbit. Let
be N the number of points in the distribution and m the number of points such
that their corresponding ecliptic latitude belongs to the interval [−δ, δ]. Then, the
probability P (δ, i) is given by

P (δ, i) = lim
N→∞

m

N
. (4.4)

This expression is general and can be used to estimate P (δ, i) for either circular
and eccentric inclined orbits. In this sense, numerical simulations show that the
probability of detection of an object in an inclined elliptic orbit is greater if the
argument of the perigee is close to 0 or 180 degrees, as it is seen in Figure 4.5,
where a density plot of the simulated probability is depicted for an orbit inclined
15◦ and δ = 6◦. Indeed, the probability is maximum at ω = 0◦ or ω = 180◦

and minimum if ω = 90◦. The differences between the maximum and minimum
probabilities increase with the eccentricity. Moreover, in average, the probability
is almost constant and equal to the circular case. To show this fact, we take a nu-
merical simulation of the probability function fixing a value of e = 0.3 and taking
a uniform sample of 50 values of ω in the interval [0, π/2]. We find that the differ-
ence between the average probability and the corresponding to the circular orbit
is less than 10−5 (see Figure 4.6). This fact is in agreement with the simulations
of Brown [Bro01].

We can conclude, from the numerical simulations, that the number of objects
with argument of perihelion close to 0◦ and 180◦ must be greater than the number
at any other angles. This is in agreement with Figure 4.4, but it seems that the big
differences observed in the histogram cannot be explained by the observational
bias.

To better understand the observational bias, we will give a theoretical deriva-
tion of the probability function using the asymptotic expansions of the elliptic
motion.



4.2. Biases in the distribution of the observed object 73

Figure 4.5: Density plot of the probability function to detect an object in a 15◦

inclined elliptic orbit in a 12◦ width band around the ecliptic, as a function of the
eccentricity and the argument of perihelion.

Let us assume that the object follows an orbit with orbital elements i, e and ω,
and let be

α = arcsin
sin δ

sin i
.

Thus, from equation (4.2), the values of f delimiting the arcs of the orbit where
the ecliptic latitude is less than or equal to δ are

f1 = −α− ω, f2 = α− ω, f3 = π − α− ω, f4 = π + α− ω. (4.5)

By means of the expansions of the elliptic motion [BC61, MD99], we have

M = f−2e sin f+
3

4
e2 sin 2f−1

3
e3 sin 3f+

1

32
e4(4 sin 2f+5 sin 4f)+. . . (4.6)

Substituting the values f1, f2, f3 and f4 in (4.6), we have that the total time the
object spends in a band of width 2δ around the ecliptic is approximately given by

M2 −M1 +M3 −M4
∼= 4α + (3e2 +

1

2
e4) sin 2α cos 2ω +

5

8
e4 sin 4α cos 4ω,

where the terms of the powers of the eccentricity greater than four have been
neglected. Finally, the probability of detection, for the given orbital elements,
results to be

P (δ, i, ω, e) ∼=
2

π
α+ (

3

2π
e2 +

1

4π
e4) sin 2α cos 2ω+

5

16π
e4 sin 4α cos 4ω, (4.7)
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Figure 4.6: Numerical evaluation of the probability function when e = 0.3, i =
15◦, δ = 6◦ and ω ranging from 0 to π/2. The horizontal straight line corresponds
to the average value and also to the probability function for a circular orbit. To the
scale of the picture the two lines appear superposed.

provided i > β. In other case, this probability is equal to one. From this expres-
sion we can obtain some interesting facts. On the one hand, taking the derivative
respect to ω we find

dP (δ, i, ω, e)

dω
= −6 + e2(1 + 10 cos 2α cos 2ω)

2π
e2 sin 2α sin 2ω.

As a consequence, the maximum and minimum probabilities of detection take
place when sin 2ω = 0, that is at ω = 0, π/2, π, and 3π/2. By computing
the second derivative, the probability is maximum at ω = 0 and ω = π and
minimum at the other two values. This confirms the results observed by numerical
simulations. On the other hand, if we take the average of the probability function
(4.7) over ω we obtain

P̄ (δ, i, ω, e) =
1

2π

∫ 2π

0

P (δ, i, ω, e) dω =
2α

π
.

This means that, in average, we can take every orbit circular, a result we observed
numerically.

It is also interesting to note that the function (4.7) is four fold symmetric re-
spect to ω. Indeed, it is verified

P (δ, i, ω, e) = P (δ, i, ω − π, e) = P (δ, i, ω + π, e) = P (δ, i,−ω, e), (4.8)

and we can restrict the study to periapsis in the interval [0, π/2]. In order to
quantify the bias in the distribution, we focus on the ratio of the extreme values of
the probability function given by

Pmax
Pmin

=
32α + 4e2(6 + e2) sin 2α + 5e4 sin 4α

32α− 4e2(6 + e2) sin 2α + 5e4 sin 4α
.
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Averaging over the eccentricity in the range 0 ≤ e ≤ 0.3 we find that this ratio
is close to 1.1, when δ = 6◦ and the inclination is grater than 10◦. So, this is the
ratio we should have to find in the distribution of known objects. To check this
aspect, we reduce the argument of perihelion of the known Kuiper Belt Objects in
January 2015 to the interval [0, π/2], making use of the four fold symmetry (4.8).
We find this ratio to be very close to 2. As a consequence, there must be more
reasons that affect the distribution of the argument of perihelion.

The effect of the distance

In order to find another factor that influence the distribution, we take into account
the mean distance of the object to the Sun, while it is in the band around the eclip-
tic, where the survey is conducted. It is expected that the probability of detection
of the object diminishes as the distance increases. We start from the equation

D =
1− e2

1 + e cos f
, (4.9)

that can be expanded in powers of the eccentricity

D = (1− e2)(1− e cos f + e2 cos2 f − e3 cos3 f + · · · ).

Taking into account the limits of the true anomaly that gives the intersection points
of the orbit and the band around the ecliptic, given in equation (4.5), we obtain for
the mean distance

D̄ =
1

(f2 − f1)

∫ f2

f1

Ddf +
1

(f4 − f3)

∫ f4

f3

Ddf,

and finally

D̄ =
1− e2

4α
(4α + e2(2α + cos 2ω sin 2α) + · · · ).

Contrary to what happened for the time spent in the band around the ecliptic, the
mean distance is maximum at ω = 0◦ and ω = 180◦ and minimum at ω = 90◦ and
ω = 270◦. Assuming that the probability is inversely proportional to the distance,
the ratio of the maximum and minimum probability is around 1.02, when δ = 6◦

and i > 10◦. Thus, the ratio between the number of objects with periapsis around
0◦ and periapsis around 90◦ must be corrected. In this way, taking into account the
distance, this ratio should must be, approximately, 1.1/1.02 ≈ 1.08, which shows
the predominance of the argument of the perihelion effect. As a result, there must
be, approximately, a 8-10% more objects accumulated at perihelions of 0◦ and
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Figure 4.7: Histogram of the argument of perihelion of Kuiper Belt Objects re-
covered in two or more oppositions.

180◦, but this is not observed in Figure 4.4, where this percentage appears to be
clearly greater. In order to find an explanation to this deviation, we note that
the argument of perihelion is one of the orbital elements of a Kuiper Belt Object
determined with less accuracy [GMV08], even if the object has been recovered at
several oppositions. If we restrict ourselves to those objects observed in two or
more oppositions, we observe that the distribution of the argument of perihelion
does not present so high concentrations around 0◦ and 180◦, as it it seen in Figure
4.7. Indeed, a Kolmogorov-Smirnov test leads to the conclusion that we cannot
reject the hypothesis of a uniform distribution at a 10% confidence level, as the
p-value obtained is p = 0.141585. Even more, the theoretical deviation is not
observed clearly, although accumulations around 0◦ and 180◦ are more or less
evident. Nevertheless, some peaks are attained at values of ω ≈ 65◦ and ω ≈ 215◦.
While the second one is close to 180◦, the other value would deserve a more
detailed examination, that is out of the scope of this dissertation.

If we now pay attention to the distribution of the objects with a poorly deter-
mined orbit, that is those observed only in one opposition, we can observe a clear
accumulation of ω values around 0◦ and 180◦, as it can be seen in Figure 4.8. From
this, we can conclude that preliminary orbits assigned to Kuiper Belt Objects are
biased to give a value of ω near 0◦ and 180◦. Indeed, this fact is related to another
of the important bias, as it is ephemeris bias. For instance, for an object observed
for a few days, only its distance and the inclination of its orbit can be estimated
with some accuracy [KJG+08]. The rest of the elements cannot be determined
in a precise way an most of the times a circular orbit is assumed. As a result of
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Figure 4.8: Histogram of the argument of perihelion of Kuiper Belt Objects ob-
served one time.

a poorly determined orbit, it is difficult to predict the future positions and some
objects are lost, causing a distortion in the distribution of the orbital elements.

There is still another important bias, related to the detection of the Kuiper belt
objects from the images obtained in the survey. The method used is a blinking
process, that compares two images in order to detect moving points. However,
the arcs covered by objects at large distances are very short and thus these objects
are hardly to pick up, especially those beyond a distance of 75 AU [KJG+08]. In
summary, if we consider all the biases mentioned, it is very unlikely that objects
in very inclined orbits, with diameters less than 500 Km and at a distance greater
than 50 AU can be detected. Therefore, the observed population is no more than
a biased sample of the real population of the Kuiper belt and every conclusion
derived from the known population must be properly corrected.
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Conclusions and further work

The main conclusions reached in the development of this thesis can be summa-
rized in the following items

• The planar circular restricted 2 + 2 body problem is a suitable model to
account for a capture mechanism in the vicinity of giant planets by an en-
ergy exchange process, when close encounters between the minor bodies
take place. This model can be seen as a system of two independent circular
restricted three-body problems, coupled by a term that only matters when
the minor bodies are close.

• As we are only interested in the motion of the small bodies around the
planet, Hill approximation has been introduced. In this way, we have ar-
rived at a simplified model that retains the main characteristics of the full
problem. In particular, it is the sum of two Hill approximations of the re-
stricted three body problem for each of the small masses, coupled by their
mutual interaction.

• Due to the presence of collisions, the model has different singularities that
are a source of problems and instabilities when the equations of the motion
are numerically integrated. In order to avoid these singularities, we have
considered two different regularizations: the Levi-Civita regularization for
close encounters between a minor body with small primary and the Wald-
vogel regularization for close encounters between the two minor bodies. A
specific code for the numerical integration of the equations of the motion
has been developed, switching from one set of regularized coordinates to
the other one through cartesian coordinates.

• A synthetic population of initial conditions for those objects suitable for a
capture has been produced on the basis of the Monte Carlo method. Starting
from a uniform distribution of objects inside the Hill sphere with uniform
distributed energy, only objects that enter and leave the Hill sphere and live
inside it a minimum prefixed time are considered. About 1% of the quarter
million initial population was selected at the end.
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• Every pair of the synthetic initial population is a candidate to give a capture
object, which is considered trapped if it lives more than 20 000 planetary
periods inside the Hill sphere. However, provided that the number of po-
tential pairs is more than two millions, and checking all of them we have
considered samples of 50 000pairs to perform a basic statistic study of the
capture rate and other important features. In this way, we have showed that
the mass ratio plays an important role. In fact, the capture rate depends on
it, in such a way that it increases when the mass ratio also increases. Be-
sides, the final result of the interaction of two bodies is very sensitive to the
mass ratio, being in some cases almost unpredictable.

• We have also showed that, in general, the trapped objects lose energy, and
almost half of them lose enough energy to be permanently confined inside
the Hill sphere, as their final energy is below that of the saddle point. We
have also showed that about 63% of the captured objects follow a mixed
type orbit, nor prograde, nor retrograde and that only about 11% move in a
retrograde orbit.

• One of the most interesting facts we have showed is that the capture process
works in a great variety of situations. Particularly relevant are the captures
corresponding to objects in collision trajectory with the planet or to objects
that follow a close path.

• Finally, we have performed a statistical study of Kuiper belt objects, as a
source region for the irregular satellites. We have focused in the pointing
bias and we have established a theoretical probability function for the de-
tection of KBO depending on the inclination, eccentricity, argument of per-
ihelion and ecliptic latitude, in accordance to the Monte Carlo simulations
conducted by other authors. Also, a bias in the assignment of the argument
of perihelion for preliminary orbits is detected.

Although the model proposed here is able to account for captured objects, it
fails to give a predominant population of retrograde captured satellites and also
the final eccentricity of the orbits are too high, in contrast with the observed one.
These facts motivate us to further investigate this model by considering the lines
of a future work we highlight in the following points:

• The model considered is just a planar one and it is strictly necessary to study
the spatial case if we want to contrast the model with the real observations.
In this way, it is possible that the spatial case can be able to account for a
predominate number of retrograde objects.
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• Another important issue that deserves further investigation is the selection
of the initial population of objects. The cutoffs for the lifetime and energy
fixed in this dissertation have to be reconsidered.

• Although the model predicts captured objects, these follow very eccentric
orbits. To have moderate eccentricities we need to introduce drag forces or
the interaction with the regular moons of the planets.

• It is necessary to conduct a statistical study to link the population of irreg-
ular moons with the objects in the Kuiper belt, specially those classified as
scattered.
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Appendix A

Monte Carlo Methods

Monte Carlo method is a numerical tool for solving mathematical problems by
random sampling. In the form it is known nowadays, it is attributed to Enrico
Fermi, John von Neumann, Nicholas Metropolis and Stanislaw Ulam [MU49]. It
was Ulam who developed it to solve a problem related to neutron transport, during
the secret research at Los Alamos for the construction of the atomic bomb in world
war II. The name of the method was the code given by Metropolis, inspired by the
gambling casinos at the city of Monte Carlo in Monaco.

After the publication of the seminal paper by Metropolis and Ulam in 1949
[MU49], the method became popular in the fields of physics, physical chemistry,
and operations research and then it began to find a wide application in many differ-
ent areas. The typical Monte Carlo approach tries to simplify problems as much
as possible. However, the use of computers allows to generate modern Monte
Carlo codes that require fewer approximations and provide more accurate solu-
tions. This opens the possibility to cope with problems that could not be solved
before entailing a large number of new applications. It can be said that Monte
Carlo method is a very general mathematical tool, that includes a large and still
growing collection of simulation methods, designed to obtain approximate solu-
tions of different problems, by playing games of chance. Besides, those algo-
rithms that make use of pseudorandom numbers are generally called Monte Carlo
algorithms or methods. They are usually divided into two major groups. The first
one consists on direct simulations of systems that are already statistical in their
nature. In such cases, it is not even necessary to have well defined mathematical
equations describing the behavior of the system. The second group, on the con-
trary, are devised for the solution of well defined mathematical equations. In such
cases the methods are used to solve the equations that describe the problem of
interest.

Originally, Monte Carlo method was not a simulation method, but a mathe-
matical approach aimed to solve a multidimensional integro-differential equation
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by means of a stochastic process. The equation itself did not necessarily refer to a
stochastic process. However, when the method is applied to a physical stochastic
process, such as neutron diffusion, the model could be identified with the process
itself. Under those circumstances, the Monte Carlo method represents a simula-
tion technique, since every step of the model is aimed to mimic an identical step
in the physical process. This is precisely the approach we used in Chapter 3.

A.1 Sampling: the basic idea

The main idea of the method relies on the generation of random variables. This is
usually exemplified by one of the main applications of Monte Carlo method, as it
is the computation of integrals. In this way, let us suppose we want to obtain the
area of a quarter of circle of unit radius. We can inscribe it into a square of side
one and then proceed in the following way:

1. Select at random N points, (xj, yj), j = 1, . . . , N , inside the square. This
can be done by selecting random numbers in the interval [0, 1].

2. Check for each point if the inequality x2j + y2j ≤ 1 holds and let NI the
number of points satisfying the inequality.

3. The approximate value of the area is given by A = NI

N
.

The procedure is depicted in Figure A.1 and it seems clear that the quotient NI/N
is an approximation of the ratio between the area we want to find and the area of
the unit square. Being this area equal to one, NI/N is just what we are looking
for. If we take N = 1000 we find, in one run, A = 0.783, while the true value is
A = π/4 ≈ 0.7854. Note, that this method could serve to estimate the value of
the constant π.

The above example is no more than a particular case of the so called Monte
Carlo integration. In the simple case, the aim is to get the value of the integral

I =

∫ b

a

f(x) dx.

To this end, let us choose N random numbers, xj (j = 1, . . . , N ), in the interval
[a, b]. Then, a crude approximation of I is given by

I = (b− a)

∑N
j=1 f(xj)

N
=

N∑
j=1

f(xj)
b− a
N

. (A.1)
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Figure A.1: The Monte Carlo method to approximate the area of a quarter or circle
of unit radius. The area is approximately the ratio between the red dots and the
total number of dots.

The above equation (A.1) can be viewed as an expectation value of a random
variable uniformly distributed in the interval [a, b]. Indeed,

I = (b− a)

∫ b

a

f(x)
1

b− a
dx = (b− a)E[f(x)],

being E[f(x)] the expected value of f(x) under a uniform distribution. In this
way, the Monte Carlo method serves to solve one or both of the following more
general problems:

• To generate samples {xj}Nj=1 from a given probability distribution P (x).1

• To obtain the expected value of a function f under this distribution:

E[f(x)] =

∫
χ

f(x)P (x)dnx,

where χ is the support of the random variable x, or the set where it takes val-
ues. Moreover, x will be generally assumed to be an n-dimensional vector
with real components, although the discrete case can also be considered.

If the first problem is solved, then, by using the random sampling {xj}Nj=1, we
have the estimate

f̂ =
1

N

N∑
j=1

f(xj).

1Here the concept of sample is not the usual one, but a single realization of the random variable
with density function P (x).
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It is clear that, if each xj is generated from P (x), then the expected value of f̂ is
E[f(x)]. Moreover, if σ2 is the variance of f under the density function P (x),

σ2 =

∫
χ

(f(x)− E[f(x)])2P (x)dnx,

then the variance of f̂ will be σ2/N , which proves the convergence of f̂ to the
true value of the integral.

A.2 The Law of Large Numbers and the Central
Limit Theorem

The convergence suggested above relies on the Law of Large Numbers, which is
stated as follows [Bil95].

Theorem 1 (Law of Large Numbers) LetX1, X2, . . . , XN be an independent tri-
als process, with finite expected value µ = E(Xj) and finite variance σ2 =
V (Xj). Let SN = X1 +X2 + · · ·+XN . Then for any ε > 0,

P

(∣∣∣∣SNN − µ
∣∣∣∣ ≥ ε

)
→ 0

as N →∞. Equivalently,

P

(∣∣∣∣SNN − µ
∣∣∣∣ < ε

)
→ 1

as N →∞.

The proof is based on the well known Chebyshev inequality: If X is a random
variable with expected value µ = E(X) and ε > 0 is any positive real number,
then

P (|X − µ| ≥ ε) ≤ V (X)

ε2
.

The other important result for the Monte Carlo method is the Central Limit
Theorem that gives more insight about the distribution of a sum of independent
random variables that describes the size and distribution of the stochastic fluc-
tuations around the deterministic number µ during this convergence. Here, we
state the Central Limit Theorem for N independent random variables identically
distributed, which is know as the Lindeberg-Lévy theorem [Bil95].
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Theorem 2 (Central Limit Theorem) Let X1, X2, . . . , XN be independent and
identically distributed random variables with common mean µ and finite positive
variance σ2 and let Tn = X1 + · · ·XN . Then, for all a ∈ R

P

(
TN −Nµ
σ
√
N

≤ a

)
− Φ(a)→ 0

as N → ∞, where Φ(a) = P (z ≤ a), being z a normal distributed random
variable with mean 0 and variance 1.

The application of the Monte Carlo method can be understood as the calcula-
tion of some unknown quantity µ. To this end, we look for a random variable X
such that its expected value, or mean, is equal to µ. Moreover, we will assume that
the variance is equal to σ2. Now, let us consider N independent random variables
X1, X2, . . . , XN identically distributed, with the same distribution as X . If N is
large enough, the Central Limit Theorem ensures that that the distribution

XN = X1 +X2 + · · ·+XN

is approximately normal with mean Nµ and variance Nσ2. Taking into account
the three sigmas rule [Sob94] it follows that

P
(
Nµ− 3σ

√
N < XN < Nµ+ 3σ

√
N
)
≈ 0.997

or, equivalently,

P

(∣∣∣∣∣ 1

N

N∑
j=1

Xj − µ

∣∣∣∣∣ < 3σ√
N

)
≈ 0.997. (A.2)

This relation is of great importance for Monte Carlo method, giving us both the
way to calculate µ and an error estimate. On the one hand, µ is obtained by
choosingN independent variables which is equivalent to selectN different values
ofX . This is the sampling mentioned in section A.1. From (A.2) it is clear that the
arithmetic mean of Xj converges to µ as N goes to infinity and an error bound is
given by 3σ/

√
N . However, this error is not convenient in practical computations

and it is more convenient to use the probable error [Sob94] given by

rN = 0.6745
σ√
N
, (A.3)

which is a characterization of the absolute error∣∣∣∣∣ 1

N

N∑
j=1

Xj − µ

∣∣∣∣∣ .
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A.3 Peculiarities of Monte Carlo Method
We can summarize the most important features of Monte Carlo method in the two
following items

• The algorithm has a very simple structure. As a rule, it consists on a pro-
gram for performing a random test. After this test is repeated N times, so
that each experiment is independent of the remaining, the mean of the re-
sults of all experiments is taken. For this the reason sometimes Monte Carlo
method is called a statistical test.

• The error is, as a rule, proportional to the magnitude
√
D/N , where D is a

constant and N is the number of tests. From this formula we can see that to
reduce the error by a factor 10, the number of tests, N , must be increased
by a factor 100. This shows that not always high accuracy is achieved and
Monte Carlo proves to be especially effective in solving problems when not
too much accuracy (5 to 10 percent) is required. However, different variants
of the Monte Carlo method significantly increase the accuracy by choosing
a method which corresponds to a much lower values of D

These two peculiarities can be observed in the example given in section A.1,
where we aimed to calculate the area of a quarter of circle of unit radius. In fact,
the algorithm is very simple and the error can be estimated taking into account
that the random value NI is given by the sum

NI = X1 +X2 + · · ·XN

where Xj = 0 if the jth point is inside the circle and 0 otherwise. Each Xj is
independent of the rest of random variables and all them have a common distribu-
tion

X ∼
(

1 0
A 1− A

)
,

where A is the area of the quarter of circle, which is the also the probability that a
random selected point lies inside it. Thus, we obtain

µ = E(X) = A, σ2 = V (x) = A(1− A),

and the variance of the estimate NI/N is equal to

V (NI/N) = V (X)/N = A(1− A)/N.

Finally, the probable error (A.3) is now

rN = 0.6745
√
A(1− A)/N.
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Taking into account that in our simulation A = π/4 and N = 1000, we obtain for
the probable error rN = 0.00875676, which is close to the observed error

|0.783− π/4| = 0.00239816.

It is worth noting that the theoretical error indicates that we can get the area with
accuracy of one decimal figure. If we want to increase the accuracy to three dec-
imal figures it will be necessary to perform a simulation with approximately ten
millions of pints.
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