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Introduction

In this thesis we study the reliability of multi-state systems using an
algebraic approach based on monomial ideals.

We consider a system to be a set of components together with a structure
function. Both the components and the system are said to be binary if they
can reach only two levels of performance: 0 for failure and 1 for working;
whereas we call them multi-state if they can take more than two states of
performance. The state or level of performance of the system is determined
by the state of the components by means of the structure function of the
system.

The reliability (respectively unreliability) of a system is defined as the
probability that the system is in a working (respectively failing) state,
where each component of the system has an associated probability for each
level that it can reach. For binary systems, it represents the probability that
the system is in state 1 (0) while in multi-state systems we have different
reliability levels, depending on the number of states of the system.

The study of system reliability is a branch of engineering that has
turned into a very important topic in the last decades. Indeed, the first
studies about multi-state systems were published in the late 70s [40, 70]
and, since then, the methods for computing system reliability have ad-
vanced. This increase on system reliability interest is due to the fact
that knowing the probability of a system failing or working has a huge
importance in engineering, networks, biology, etc. Some examples of its
applications are the followings:

• Network Reliability. Let us have a network in which we select one
or more vertices as source vertices and one or more vertices as target
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Introduction

vertices. Each of the connections between the vertices of the network
has a probability to be working. The problem consists in computing
the probability that there exists at least a working path between
the source and the target vertices. Some references that include
algorithms developed for computing network reliability are [9, 54,
56, 146].

• Power generation. The safety and reliability of power systems is an
essential component of energy security and it is becoming more
important due to global warming. Considering that a national elec-
tricity net has many sources of supply and different components
are in different states, this represents a multi-component multi-state
network reliability problem. Some references are [87, 108, 128].

• k-out-of-n systems are systems that work (respectively fail) whenever
at least k of its n components work (respectively fail). These systems
and their variants are some of the most relevant types of systems
studied in reliability theory due to their theoretical interest and wide
range of applications. There exist efficient and particular methods to
compute their reliability. Some references on k-out-of-n systems are
[69, 75, 43].

This thesis is focused in studying multi-state system reliability from an
algebraic approach based on monomial ideals. The main advantages of
this approach are the following:

• The algebraic method provides useful information about the structure
of the system such as the importance of the components, i.e. which is
the component whose deterioration implies the higher devaluation
of the system reliability, or the minimal working/cut paths.

• The generality respect to the structure of the system and the probability
distribution of the probability of failing or working of the components of
the system. The applicability of the algebraic method for computing
system reliability is not affected by the structure of the system,
i.e. it works for every kind of system, although it might not be
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the most efficient one for some particular systems, if compared
to other ad-hoc methods. Furthermore, it is able to compute the
reliability either if the probabilities of the components are equal
or different, independent or dependent, taking into account the
differences between dependent and independent ones.

• The algebraic method presented in this thesis is an enumerative one
which means that the list of all minimal working or failing states
of the system needs to be computed. This in some cases represents
a disadvantage. However, there exist implemented algorithms on
algebraic computational systems such as Macaulay2 or CoCoA which
make the computations efficient.

The relation between algebra and reliability theory is provided by
monomial ideals: square-free monomial ideals in the binary case and
monomial ideals with exponents in the multi-state case. Each level of
performance of a system has associated a path ideal, which allows to
compute the reliability of the system, and a cut ideal, which gives the
unreliability of the system.

With respect to algebraic reliability, in [116, 118, 119, 120] the authors
study the reliability of binary systems. The results of these investigations
are the basis for this thesis.

In this thesis we are going to go forward on the algebraic approach
based on monomial ideals to compute system reliability. In particular, our
research is focused on multi-state systems. We need to investigate the
relationship between squarefree monomial ideals and monomial ideals
with exponents. To look into this relationship, we are going to study the
operations polarization and depolarization, and support posets. Once
the relation of monomial ideals is treated, we are going to be able to
start working on the analysis of multi-state system reliability. There exist
different methods to compute the reliability of a system and there are
some that are really efficient for specific systems. The algebraic method
that we are going to investigate for multi-state system is general (such as
Markov’s chains or Inclusion-Exclusion method, cf. [69, 75]) and provides a
good performance, although it is not as fast as some of the specific ones.
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We are going to check, in some situations, how the algebraic method
based on monomial ideals behaves in computational terms. To do that,
we developed a C++ class within the computer algebra library CoCoALib.
Not only is this class going to allow us to perform some computational
experiments, but it is also available for everyone who needs to use it.

These goals can be summarized as:

• Research on polarization and depolarization of monomial ideals.

• Investigate the application of polarization and depolarization opera-
tions for the analysis of multi-state system reliability.

• Study different kinds of multi-state systems and its associated alge-
braic structures.

• Development of algorithms to implement algebraic reliability.

Taking into account the objectives that we have just presented, we can
summarise the contributions of this thesis as:

• Polarization and depolarization operations. Polarization is an operation
that transforms a monomial ideal into a squarefree one. For each
monomial ideal there is a unique polarization. Depolarization is the
inverse operation but the resulting monomial ideal with exponents
is not unique. In order to find all possible depolarizations of a
monomial ideal (Theorem 2.3.8), we develop a combinatoric tool:
support posets. Polarization and depolarization are interesting because
the original ideal and its polarization or depolarization share some
important properties such as the Betti numbers and the Hilbert
series in the sense that the Hilbert series of the polarization is the
polarization of the Hilbert series of the monomial ideal. However,
it is easier to compute them for the square-free monomial ideal.
In this thesis we investigate more properties shared between both
ideals (Lemma 2.3.12 shows that the lcm-lattices of two ideals sharing
the same polarization are isomorphic and Theorem 2.3.13 says that
the width of the support poset of a monomial ideal is an upper
bound of the projective dimension of the ideal). Furthermore, we
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investigate the conditions needed by a poset for being a support
poset of a monomial ideal. Although we have not characterized
which posets are support posets of a monomial ideal, Proposition
2.3.1 provides a sufficient condition for building a monomial ideal
with a given poset (under certain conditions), and in Proposition
2.3.14, a sufficient condition needed by a poset for being the support
poset of a 0-dimensional monomial ideal is given. Finally, we have
shown some families of posets (lines, diamonds, trees and forest)
which are support poset for some monomial ideal (Proposition 2.3.18,
Proposition 2.3.23, Proposition 2.3.27 y Theorem 2.3.30). For those
ideals, Betti numbers have been computed.

• Algebraic Reliability of Multi-state systems. In this area we made a
generalization of the work started by Eduardo Sáenz-de-Cabezón
and Henry P. Wynn for binary systems and show how the algebraic
method works for multi-state systems. Moreover, we thoroughly
study multi-state k-out-of-n systems for which we have reviewed
the different definitions given in literature. For all of them, we gave
an algebraic definition based on monomial ideals (Proposition 3.2.4,
Definition 3.2.13 and Proposition 3.2.13). For some variants of k-out-
of-n systems (binary k-out-of-n systems with multi-state components,
multi-state consecutive k-out-of-n, sparsely connected homogeneous
multi-state k-out-of-n and weighted multi-state k-out-of-n systems)
we give algebraic structures associated to them and explicit formulas
for computing their Betti numbers.

• Algorithms to compute reliability of multi-state systems. We develop a
C++ class within the open source computer algebra library CoCoALib

which allows to compute the reliability of a multi-state systems. The
class is presented in
http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/

The structure of this thesis is the following: in Chapter 1 we explain the
algebraic and reliability theory background required for the next chapters.
Chapter 2 shows the relationship between squarefree monomial ideals and
monomial ideals with exponents by analyzing thoroughly polarization
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and depolarization operations and support posets. In Chapter 3 we study
multi-state systems and compute their reliability using the algebraic ap-
proach based on monomial ideals. Chapter 4 is focused on computacional
algorithms for the reliability of multi-state systems.
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Introducción

Esta tesis se centra en el estudio de la fiabilidad de sistemas multi-estado
con un acercamiento algebraico basado en el uso de ideales monomiales.

Consideramos un sistema como un conjunto de componentes junto
con una función de estructura. Tanto las componentes como el sistema se
dicen binarios si únicamente pueden alcanzar dos niveles o estados de
funcionamiento diferentes: 0 es fallo y 1 es funcionamiento; mientras que
se dicen multi-estado si pueden alcanzar más de dos estados diferentes.
El estado o nivel de funcionamiento de un sistema está determinado por el
estado de sus componentes por medio de su función de estructura.

La fiabilidad (respectivamente no fiabilidad) de un sistema se define
como la probabilidad de que el sistema se encuentre en un estado de
funcionamiento (o en un estado de fallo, respectivamente), donde cada
componente del sistema tiene asociada una probabilidad para cada uno
de los estados que puede alcanzar. Para sistemas binarios, la fiabilidad
representa la probabilidad de que el sistema se encuentre en estado 1,
mientras que para los sistemas multi-estado tenemos diferentes niveles de
fiabilidad dependiendo del número de estados del sistema.

El estudio de fiabilidad de sistemas es una rama de la ingenierı́a que
ha cobrado gran relevancia en las últimas décadas. De hecho, los primeros
artı́culos relacionados con sistemas multi-estado fueron publicados a fi-
nales de los años 70 [40, 70] y, desde entonces, los métodos para calcular la
fiabilidad de un sistema han avanzado notablemente. Este interés creciente
en la fiabilidad de sistemas es debido a que conocer la probabilidad de
que un sistema funcione o falle es de gran relevancia en campos como la
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Introducción

ingenierı́a, redes, biologı́a, etc. Algunos ejemplos de sus aplicaciones son
los siguientes:

• Fiabilidad de redes. Imaginemos que tenemos una red en la que
seleccionamos uno o más vértices como vértices fuente y uno o más
vértices como vértices objetivo. Cada una de las conexiones entre los
vértices de la red tiene un probabilidad de funcionar. El problema
de la fiabilidad de redes consiste en calcular la probabilidad de que
exista al menos un camino entre los vértices fuente y los vértices
objetivo. Algunas referencias con algoritmos actuales desarrollados
para calcular la fiabilidad de redes son [9, 54, 56, 146].

• Generación de energı́a. La seguridad y la fiabilidad de sistemas de
energı́a es una componente esencial de la seguridad energética y se
está volviendo más y más importante debido al calentamiento global.
Considerando que una red eléctrica nacional tiene muchas fuentes de
suministro y que diferentes componentes están en diferentes estados
de funcionamiento, esto es un problema de fiabilidad de redes multi-
estado. Algunas referencias en las que se aborda este problema son
[87, 108, 128].

• Los sistemas k-entre-n son sistemas que funcionan (o fallan) cuando al
menos k de sus n componentes funcionan (o fallan). Estos sistemas
y sus variantes son uno de los tipos de sistemas más relevantes y
más estudiado en el campo de la fiabilidad algebraica debido a su
interés teórico y su amplio rango de aplicaciones. Existen métodos
particulares y eficientes para calcular la fiabilidad de este tipo de
sistemas. Algunas referencias de sistemas k-entre-n son [69, 75, 43].

Esta tesis está centrada en estudiar la fiabilidad de sistemas multi-
estado desde un punto de vista algebraico basado en ideales monomiales.
Las ventajas principales de este acercamiento algebraico son las siguientes:

• El método algebraico proporciona información relevante sobre la
estructura del sistema como puede ser la importancia de las compo-
nentes (cual es la componente cuyo deterioro implica una mayor
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Introducción

devaluación en la fiabilidad del sistema) o los caminos y cortes
mı́nimos.

• La generalidad respecto a la estructura del sistema y a la distribución
de probabilidad de las probabilidades de fallo o funcionamiento de las com-
ponentes del sistema. La aplicabilidad del método algebraico para
calcular la fiabilidad de un sistema no se ve afectado por la estruc-
tura del sistema, es decir, funciona para cualquier sistema, aunque
puede no ser el más eficiente. Además, es capaz de calcular la fiabili-
dad de un sistema en el que las probabilidades de las componentes
son iguales o diferentes o incluso si las probabilidades de las compo-
nentes son dependientes, teniendo en cuenta alguna diferencia con
el modo de calcular la fiabilidad cuando son independientes.

• El método algebraico presentado para calcular la fiabilidad de un sis-
tema es un método enumerativo, es decir, es necesario calcular todos
los caminos o cortes mı́nimos. Este hecho suele ser una desventaja
cuando hablamos de cálculos computacionales. Sin embargo, existen
algoritmos implementados en sistemas computacionales algebraicos
tales como Macaulay2 o CoCoA que hacen estos cálculos eficientes.

La relación entre algebra y teorı́a de la fiabilidad viene dada por los
ideales monomiales: ideales libres de cuadrados en el caso binario e
ideales monomiales con exponentes en el caso multi-estado. Cada nivel
de funcionamiento del sistema tiene asociado un ideal de caminos, el cual
nos permite calcular la fiabilidad del sistema, y un ideal de cortes, con el
que podemos calcular la no fiabilidad del sistema.

Con respecto a la fiabilidad algebraica basada en ideales monomiales,
en [116, 118, 119, 120] los autores realizan un estudio de fiabilidad de
sistemas binarios. Los resultados de esas investigaciones son la base de
esta tesis.

En esta tesis vamos a avanzar en el acercamiento algebraico basado
en ideales monomiales para calcular la fiabilidad de un sistema. En
particular, nuestro estudio está centrado en sistemas multi-estado. Por
ello, necesitamos estudiar con detenimiento la relación existente entre los
ideales monomiales libres de cuadrados y los monomiales con exponentes.
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Introducción

Para investigar esta relación, vamos a explorar las operaciones polarización,
depolarización y los support posets.

Una vez tratada la relaciones entre los ideales monomiales citados,
podremos comenzar a analizar la fiabilidad de un sistema multi-estado.
Existen diferentes métodos para calcular la fiabilidad de un sistema, in-
cluso los hay que son muy eficientes para sistemas especı́ficos y bajo ciertas
condiciones. El método algebraico que vamos a investigar para calcular la
fiabilidad es general (como pueden serlo las cadenas de Markov o el método
de Inclusión-Exclusión cf. [69, 75]) y ofrece un buen rendimiento, aunque
no es tan rápido como algunos de los métodos especı́ficos. Además, vamos
a comprobar cómo se comporta, en algunos casos, el método algebraico
basado en ideales monomiales en términos computaciones. Para ello,
hemos desarrollado una clase en C++ con la librerı́a de álgebra computa-
cional CoCoALib. La clase no solo nos va a permitir realizar experimentos
computacionales con ella, si no que, además, está disponible para cualquier
persona que la necesite.

Estos resultados quedan resumidos en los siguientes puntos:

• Estudio de la polarización y depolarización de ideales monomiales.

• Definir la aplicabilidad de las operaciones polarización y depolar-
ización al análisis de la fiabilidad de un sistema.

• Estudio de los distintos tipos de sistemas multi-estado y sus estruc-
turas algebraicas asociadas.

• Implementación de algoritmos.

Teniendo en cuanta los objetivos que acabamos de presentar, el resumen
de las contribuciones de esta tesis es:

• Operaciones polarización y depolarización. La polarización es una op-
eración que transforma un ideal monomial con exponentes en un
ideal monomial libre de cuadrados. Para cada ideal monomial existe
una única polarización. La depolarización es la operación inversa,
pero el resultado no es único: al depolarizar un ideal monomial
libre de cuadrados podemos obtener más de un ideal monomial

10



Introducción

con exponentes. Con el objetivo de encontrar todas las posibles
depolarizaciones de un ideal monomial (Teorema 2.3.8), hemos de-
sarrollado una herramienta combinatoria llamada support posets. Las
operaciones polarización y depolarización son interesantes porque
los ideales originales y su polarización o depolarización comparten
algunas propiedades importantes como pueden ser los números de
Betti o la serie de Hilbert (no es exactamente la misma, pero es
sencillo calcular una a partir de la otra) y, en muchas ocasiones, es
más sencillo calcular estas propiedades en un caso determinado, es
decir, a veces es más sencillo calcularlas en el caso libre de cuadrados
y, otras, en un caso monomial con exponentes. En esta tesis hemos
visto qué otras propiedades se comparten entre ambos ideales (en el
Lema 2.3.12 mostramos que los lcm-lattice de dos ideales copolares
son isomorfas y en el Teorema 2.3.13 que la anchura del support
poset de la polarización de un ideal es una cota superior de la di-
mensión proyectiva del ideal monomial original). Además, hemos
investigado bajo qué condiciones un poset es support poset de un ideal
monomial. Aunque no hemos podido caracterizar cuáles lo son y
cuales no, la Proposición 2.3.1 nos proporciona una condición sufi-
ciente para construir un ideal monomial dado un poset que cumpla
ciertas condiciones y la Proposición 2.3.14 se da una condiciones
suficiente para que un poset sea support poset de un ideal monomial
0-dimensional. Finalmente, hemos mostrado ciertas familias de posets
(lı́neas, diamantes, árboles y bosques) que son el support poset de un
ideal monomial (Proposición 2.3.18, Proposición 2.3.23, Proposición
2.3.27 y Teorema 2.3.30). Para todos los ideales que tienen este tipo
de support poset hemos encontrado sus números de Betti.

• Fiabilidad algebraica de sistemas multi-estado. En este área hemos re-
alizado una generalización del trabajo iniciado por Eduardo Sáenz-
de-Cabezón y Henry P. Wynn para sistemas binarios y mostramos
cómo funciona el método algebraico para sistemas multi-estado.
Además, estudiamos con especial detalle los sistemas multi-estado
k-entre-n, para los que revisamos las diferentes definiciones que se
han dado en la literatura y las interpretamos en términos de ide-

11



Introducción

ales monomiales (Proposición 3.2.4, Definición 3.2.13 y Proposición
3.2.13). Para ciertas variantes de los sistemas k-entre-n multi-estado
(sistemas binarios k-entre-n con componentes multi-estado, sistemas
multi-estado k-entre-n consecutivos, sistemas homogéneos sparsely
conectados k-entre-n y sistemas multi-estado k-entre-n con pesos)
damos sus estructuras algebraicas asociadas y fórmulas explı́citas
para calcular sus números de Betti.

• Algoritmos para calcular la fiabilidad de sistemas multi-estado. Se ha
desarrollado una clase de C++ con la librerı́a libre de álgebra com-
putacional CoCoALib que permite calcular la fiabilidad de sistemas
multi-estado. La clase está disponible en
http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/

La estructura de esta tesis es la siguiente: en el Capı́tulo 1 se presentan
los conceptos preeliminares algebraicos y de teorı́a de la fiabilidad necesar-
ios en los capı́tulos posteriores. El Capı́tulo 2 se centra en la relación exis-
tente entre ideales monomiales libres de cuadrados e ideales monomiales
con exponentes, analizando en profundidad las operaciones polarización y
depolarización y el support poset. En el Capı́tulo 3 se estudian los sistemas
multi-estado y se calcula su fiabilidad mediante el método algebraico
basado en ideales monomiales. Terminamos con el Capı́tulo 4, donde
mostramos los algoritmos computacionales desarrollados para calcular la
fiabilidad de sistemas multi-estado.
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Chapter 1

Background

In this thesis concepts from two different areas are going to take part:
Commutative Algebra (in particular, monomial ideals) and Reliability
Theory. This chapter is devoted to collect the notions and results that are
going to be used in the following chapters.

For readers interested in the algebraic background we recommend
[62, 31, 114]. For the ones interested in a deeper study of Reliability
Theory than the presented here, we recommend [27, 75] and [116, 117, 118,
119, 120, 99], for an algebraic point of view.

1.1 Monomial ideals

Monomial ideals have been deeply studied due to their relevance in
Commutative Algebra or in the intersection between Algebra and Combi-
natorics. See for example [23, 62, 94] and references therein. Monomial
ideals can be used to encode the information of simplicial complexes, to
reduce problems from polynomial ideals to monomial ideal ones or to
connect them to combinatorial objects due to their combinatorial struc-
ture. Some computer algebra systems such as CoCoA or Macaulay2 have
developed fast algorithms to work with monomial ideals.

Monomial ideals are the ones who relate algebra and reliability theory:
a coherent system has one (or more) monomial ideal associated. This topic

13



1.1. Monomial ideals

is extensively covered in Section 1.2.2 for binary systems, and in Chapter 3
for multi-state ones.

Let k be a field and R = k[x1, . . . , xn] the polynomial ring in n variables
over k. Let a = (a1, . . . , an) ∈ Nn

0 . A monomial in R is a product u =

xa1
1 . . . xan

n , denoted by u = xa, and we say that a is the multidegree of the
monomial u. If all the components of a are 0 or 1, we say that u is a
squarefree monomial.

The set of monomials in R, Mon(R), is a k-basis of R and the monomi-
als u ∈ Mon(R) correspond biyectively to the lattice points in Nn

0 . They
satisfy that xa · xb = xa+b, where the sum is componentwise.

Definition 1.1.1. An ideal I ⊆ R generated by (squarefree) monomials is
called (squarefree) monomial ideal.

Let I = 〈g1, . . . , gm〉 be a monomial ideal. The set {g1, . . . , gm} is a set
of generators of I if every g ∈ I can be written as g = ∑m

i=1 aigi, where
ai ∈ R. An interesting and important question is how can one know
when a polynomial f ∈ R belongs to I. In the case of working with
polynomial ideals, this question is not easy to answer. However, in the
case of monomial ideals it is. Firstly, we start answering an easier question:
when does a monomial belong to a monomial ideal?

Proposition 1.1.2. Let I = 〈u1, . . . , uk〉 be a monomial ideal. Then the monomial
v ∈ I if and only if there exists a monomial w such that v = wui, for some
i ∈ {1, · · · , k}.

Proof. ⇒) Let v ∈ I. We know, by the definition of set of generators
of I that v = a1u1 + · · · + akuk, where ai ∈ R. Then, we have that
v ∈ ⋃k

i=1 supp(aiui), where supp(f) = {gi ∈ Mon(R) s.t. bi �= 0}, for
f = b1g1 + · · · + bmgm ∈ R and bi ∈ k. v ∈ ⋃k

i=1 supp(aiui) implies
that v ∈ supp(aiui) for some i ∈ {1, . . . , k}. Hence, v = uiw for some
w ∈ supp(ai).
⇐) We have that v = wui. By definition, v ∈ I.

Remark 1.1.3. A monomial ideal is uniquely determined by its monomials.
Therefore, two monomial ideals I and J are equal if and only if both
contain the same monomials.
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Chapter 1. Background

As a Corollary, we have the answer to our question.

Corollary 1.1.4. If f is a polynomial in R = k[x1, . . . , xn] then f ∈ I if and
only if every monomial in f lies in I, i.e., if and only if f is a k-linear combination
of the generators of I.

We know that ideals always have a set of generators. A natural question
is if there exists a generating set better than the others and if this one is
unique. The following proposition gives us an answer for the monomial
ideal case:

Proposition 1.1.5. Each monomial ideal has a unique minimal monomial set
of generators. More precisely, let G(I) denote the set of monomials in I which
are minimal with respect to divisibility. Then G(I) is the unique minimal set of
monomial generators.

From this point, we denote by G(I) (or just G, when there is no
possibility of mistake), the unique minimal set of monomial generators
of I.

For monomial ideals, Dickson’s Lemma assures that a monomial ideal
is always finitely generated.

Lemma 1.1.6 (Dickson’s Lemma.). Let I = 〈xa s.t. a ∈ A〉 ⊆ k[x1, . . . , xn]

be a monomial ideal. Then I can be written in the form I = 〈xa(1), . . . , xa(s)〉,
where a(1), . . . , a(s) ∈ A. In particular, I has a finite set of generators.

For any monomial ideal I, we saw that it is possible to know which
monomials are in the ideal and which not. An important concept related
to monomial ideals are maximal standard pairs, which tells us how is the
boundary of the monomials belonging to the ideal and the ones that not:

Definition 1.1.7. Let I be a monomial ideal in R = k[x1, . . . , xn] and
σ ⊆ {1, . . . , n}. The pair (xμ, σ) is a standard pair for I if it satisfies:

- supp(xμ)∩ σ = ∅, where supp(xμ) is the set of indices i ∈ {1, . . . , n}
such that xi divides xμ.

- for all monomials xν such that supp(xν) ⊆ σ we have that xμxν /∈ I.
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- (xμ, σ) �⊆ (xν, τ) for any other (xν, τ) satisfying the two previous
conditions.

We say that (xμ, σ) is a maximal standard pair if there is no other standard
pair (xν, σ) such that xμ divides xν.

Another advantage about monomial ideals is that some relevant opera-
tions between them behave well in the sense that the property of being a
monomial ideal is preserved.

Let I and J be two monomial ideals whose unique minimal sets of
monomial generators are G(I) = {g1, . . . , gm} and G(J) = { f1, . . . , ft} re-
spectively. We have that G(I + J) = G(I) ∪ G(J) and G(I J) = G(I)G(J) ={

gi fj s.t. gi ∈ G(I) and fj ∈ G(J)
}

.
The following proposition shows how to compute the set of generators

of the intersection of two monomial ideals:

Proposition 1.1.8. Given two monomial ideals I and J in the polynomial
ring R = k[x1, . . . , xn], then I ∩ J is a monomial ideal which is generated
by {lcm(u, v) s.t. u ∈ G(I), v ∈ G(J)}.

Proposition 1.1.9. Let I and J be two monomial ideals in the polynomial ring
R = k[x1, . . . , xn]. The colon ideal, I : J = { f ∈ R s.t. f g ∈ I, ∀g ∈ J}, is a
monomial ideal and

I : J =
⋂

v∈G(J)

I : 〈v〉.

Moreover, a set of generators of I : 〈v〉 is {u/ gcd(u, v) s.t. u ∈ G(I)}.

Now we define the radical and the saturation of a monomial ideal,
which are, in particular, homogenoeous.

Let I ⊂ R = k[x1, . . . , xn] be a graded ideal and m = 〈x1, . . . , xn〉 the
graded maximal ideal of R.

The saturation Ĩ of I is the ideal I : m∞ =
⋃∞

k=1 I : mk.
The radical ideal of I is the ideal

√
I =

{
f ∈ R s.t. f k ∈ I for some k

}
.

We say that an ideal I is radical if I =
√

I.
The proposition below says that the radical and the saturation of a

monomial ideal are, again, monomial ideals.
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Chapter 1. Background

Proposition 1.1.10. The saturation and the radical of a monomial ideal are
monomial ideals.

Let u = xa be a monomial. We have
√

u = ∏i,ai �=0 xi. The following
proposition gives us a generating set of the radical of a monomial ideal.

Proposition 1.1.11. Let I be a monomial ideal. Then, a set of generators of
√

I is{√
u s.t. u ∈ G(I)

}
.

When working with polynomial ideals, it is relevant to know if the ideal
is decomposable into prime, primary or irreducible ideals. Although this
task is difficult for polynomial ideals, it is not in the monomial ideal case.

Proposition 1.1.12. A monomial ideal I is a prime ideal if and only if it is
generated by some set of variables, that is I = 〈xi1 , . . . , xim〉, for some subset
{i1, . . . , im} of {1, . . . , n}.

Definition 1.1.13. A monomial ideal I is called irreducible if it cannot be
written as proper intersection of two other monomial ideals i.e. there not
exists monomial ideals Q1 and Q2 such that I = Q1 ∩ Q2.

A characterization of an irreducible monomial ideal is the following:

Proposition 1.1.14. A monomial ideal I is irreducible if and only if I is gener-
ated by pure powers of the variables, i.e., I can be written as I = 〈xa1

1 , . . . , xam
m 〉,

for ai ≥ 1, ∀i and m ≤ n.

Definition 1.1.15. An ideal I is a primary ideal if, whenever xy ∈ I one has
x ∈ I or yn ∈ I for some n ∈ N.

Proposition 1.1.16. A monomial ideal I is a primary ideal if and only if every
variable appearing in I has some power in I,i.e.,

I = 〈xa1
1 , . . . , xam

m , xb1 , . . . , xbr〉,

for ai ≥ 1, ∀i and
⋃r

i=1 supp xbi ⊂ {1, . . . , m}, m ≤ n.

Example 1.1.17. (A) The monomial ideal I1 = 〈x1, x2〉 ⊂ k[x1, x2] is prime,
primary and irreducible.
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1.1. Monomial ideals

(B) The monomial ideal I2 = 〈x2
1, x1x2, x2

2〉 ⊂ k[x1, x2] is primary but it is
not prime or irreducible.

�

Proposition 1.1.18. A monomial ideal I ⊂ R is squarefree if and only if any of
the following conditions hold:

1.
√

I = I

2. I is an intersection of prime ideals.

3. A monomial u is in I if and only if x1 · · · xr ∈ I, where supp u = {xi}r
i=1

Once we know how to characterize an squarefree monomial ideal, we
are going to work with minimal prime ideals and presentations.

Definition 1.1.19. Let I ⊂ R be an ideal. A prime ideal P is called minimal
prime ideal of I, if I ⊂ P and there is no prime ideal containing I which is
contained in P. We denote by Min(I) the set of minimal prime ideals of I.

Definition 1.1.20. Let
⋂m

i=1 Qi be a primary decomposition of an ideal I.
This descomposition is called irredundant primary if none of the Qi can
be omitted.

The following theorem shows that a monomial ideal always has an
irredundant presentation in terms of irreducible ideals.

Theorem 1.1.21. Let I ⊂ R be a monomial ideal. Then I =
⋂m

i=1 Qi, where each
Qi is of the form 〈xa1

1 , . . . , xam
m 〉. Moreover, an irredundant presentation of this

form is unique.

Lemma 1.1.22. Suppose that I has irredundant presentation I = P1 ∩ · · · ∩ Pm

as an intersection of prime ideals. Then Min(I) = {P1, . . . , Pm}.

The following corollary describes an squarefree monomial ideal as an
intersection of minimal prime ideals:
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Corollary 1.1.23. Let I ⊂ R be a squarefree monomial ideal. Then

I =
⋂

P∈Min(I)

P,

and each P ∈ Min(I) is a monomial prime ideal.

Example 1.1.24. (A) Let I = 〈x2
1x2

2, x2
2x3, x2

3〉 be a monomial ideal.Then,
one has

I = 〈x2
1, x2

2x3, x2
3〉 ∩ 〈x2

2, x2
3〉

= 〈x2
1, x2

2, x2
3〉 ∩ 〈x2

1, x3〉 ∩ 〈x2
2, x2

3〉

By Theorem 1.1.21 we have that the presentation above is unique.

(B) Let I be the squarefree monomial ideal I = 〈x1x2x3, x2x3x4, x4x5〉.
Then, we have the following presentation in terms of minimal prime
ideals:

I = 〈x1x2x3, x4〉 ∩ 〈x1x2x3, x2x3x4, x5〉
= 〈x1, x4〉 ∩ 〈x2, x4〉 ∩ 〈x3, x4〉 ∩ 〈x1x2x3, x2x3x4, x5〉
= 〈x1, x4〉 ∩ 〈x2, x4〉 ∩ 〈x3, x4〉 ∩ 〈x1, x2x3x4, x5〉 ∩ 〈x2, x5〉 ∩ 〈x3, x5〉
= 〈x1, x4〉 ∩ 〈x2, x4〉 ∩ 〈x3, x4〉 ∩ 〈x2, x5〉 ∩ 〈x3, x5〉

Furthermore, by Lemma 1.1.22 we have that

Min(I) = {〈x1, x4〉, 〈x2, x4〉, 〈x2, x5〉, 〈x3, x4〉, 〈x3, x5〉} .

�

1.1.1 Resolutions and Hilbert series

1.1.1.1 Resolutions

Every ideal I ∈ R, where R is a ring, has a natural structure as a module
with the product of R. There are modules which are not free i.e. there
exist relations between their generators. The relations satisfied by their
generators are quite interesting. The set of relations of the generators of
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a module M = 〈 f1, . . . , fm〉 ⊆ R = k[x1, . . . , xn] is called first syzygies and
is denoted by Syz( f1, . . . , fm). Syz( f1, . . . , fm), in turn, is a module over
Rm itself. If this module is not free, one is able to find relations among its
generators. As a result, the second syzygy module is obtained. Iterating
the process, we can obtain the i-syzygy modules, for i ∈ N. The set of
the modules M and its Syzygies are the key objets to describe an exact
sequence called free resolution of M.

Once the main idea behind resolutions is known, we give the tools
needed to define it firmly.

Definition 1.1.25. Let M = 〈 f1, . . . , fm〉 be an R-module. A presentation
for M is a set of generators { f1, . . . , fm} together with a set of generators
for the syzygy module Syz( f1, . . . , fm).

In terms of exact sequences, we have the surjective homomorphism
ϕ : Rm → M. As the homomorphism is surjective, we obtain the exact se-
quence

Rm ϕ−→ M → 0,

where ϕ(g1, . . . , gm) = ∑m
i=1 gi fi ∈ M. It follows that the syzygies on the

set of generators are the elements of ker(ϕ), i.e.

Syz( f1, . . . , fm) = ker(ϕ).

Choosing a set of generators of Syz( f1, . . . , fm) corresponds to choosing a

homomorphism θ of Rt surjective (over Syz( f1, . . . , fm)) θ : Rt θ−→ Rm and
that means im(θ) = ker(ϕ). Then, we have the exact sequence

Rt θ−→ Rm ϕ−→ M → 0

The homomorphism θ is defined by the presentation matrix for M, i.e.,
the matrix whose columns are the generators of Syz( f1, . . . , ft).

Definition 1.1.26. The exact sequence

Rt θ−→
A

Rm ϕ−−−−→
( f1... fm)

M → 0
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is the presentation for the R-module M, where θ is the homomorphism
defined by the presentation matrix A for M, and ϕ is defined by the
matrix whose columns are the generators of M.

The presentation for the module M can be extended. If we continue
with the process of finding relations between generators of Syz( f1, . . . , fm)

- second syzygy module-, the exact sequence turns into

Rl φ−→
B

Rt θ−→ Rm ϕ−→ M → 0,

where B is the presentation matrix for the first syzygy module Syz( f1, . . . , fm).
This process can be continued -with the third, fourth and higher syzygy
modules- leading to a free resolution:

Definition 1.1.27. Let M be an R-module. A free resolution of M is an
exact sequence of the form

· · · → F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ M → 0,

where Fi
∼= Rmi is a free R-module ∀i. If there exist s such that Fs �= 0 but

Fs+1 = Fs+2 = · · · = 0, then we call the resolution finite of length s.

When we have a finite resolution of length s we write

0 → Fs → Fs−1 · · · → F2 → F1 → F0 → M → 0.

Theorem 1.1.28 (Hilbert Syzygy Theorem). Let R = k[x1, . . . , xn]. Then
every finitely generated R-module has a finite free resolution of length at most n.

1.1.1.2 Graded resolutions

When we add a grading to a polynomial ring, the notions we have de-
fined in Section 1.1.1.1 vary and some new ones appear, like the notion
of minimality.

Definition 1.1.29. A graded module over R is a module M with a family
of subgroups {Mt : t ∈ Z} of the additive group of M. The elements of
Mt are called homogeneous elements of degree t in the grading. The Mt

must satisfy
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1. M =
⊕

t∈Z Mt.

2. RmMt ⊆ Mm+t.

If one has a module M with two different gradings, the following
proposition allows to produce modules isomorphic matching their grad-
ings:

Proposition 1.1.30. Let M be a graded R-module, and let d be an integer. Let
M(d) be the direct sum

M(d) =
⊕
t∈Z

M(d)t,

where M(d)t = Md+t. Then M(d) is also a graded R-module.

Remark 1.1.31. The modules satisfying (Rm)(d) = R(d)m are called twisted
graded free modules over R. The standard basis {e1, . . . , em} is still a module
basis for (Rm)(d). The basis vectors ei are homogeneous elements of
degree −d in the grading.

Equivalent to module homomorphisms, graded homomorphisms are
needed for working with graded resolutions:

Definition 1.1.32. Let M,N be graded modules over R. A homomorphism
ϕ : M → N is said to be a graded homomorphism of degree d if ϕ(Mt) ⊆
Nt+d for all t ∈ Z.

Example 1.1.33. Suppose that M is a graded R-module generated by the
homogeneous elements f1, . . . , fm of degrees d1, . . . , dm. Then we get a
graded homomorphism

ϕ : R(−d1)⊕ · · · ⊕ R(−dm) → M,

which sends the standard basis element ei to fi ∈ M.

�
Remark 1.1.34. A graded homomorphism of degree zero

R(−d1)⊕ · · · ⊕ R(−dp) → R(−c1)⊕ · · · ⊕ R(−cm)

is defined by and m × p matrix A where the entry aij ∈ R is homogeneous
of degree dj − ci for all i, j. The matrix A is called graded matrix over R.
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Definition 1.1.35. If M is a graded R-module, then a graded resolution of
M is a resolution of the form

· · · → F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ M → 0,

where each Fi is a twisted free graded module R(−d1)⊕ · · · ⊕ R(−dp)

and each homomorphism ϕi is a graded homomorphism of degree zero.

Example 1.1.36. Let I be the monomial ideal which minimal generating
set is G(I) =

{
x2, xy, y2}. A resolution for this ideal is

0 → R1 ϕ2−→ R3 ϕ1−→ R3 ϕ0−→ I → 0,

where the homomorphisms ϕi for i = 0, 1, 2 are defined as

ϕ0 =
(
x2 xy y2

)
, ϕ1 =

⎛⎝ y y2 0
−x 0 y
0 −x2 −x

⎞⎠ , ϕ2 =

⎛⎝ y
−1
x

⎞⎠ .

One can easily check that ϕ0ϕ1 = 0 and ϕ1ϕ2 = 0.
The resolution can be written as Example 1.1.36 is

0 → R(−4)
ϕ2−→ R(−3)⊕ R(−4)⊕ R(−3)

ϕ1−→ R(−2)3 ϕ0−→ I → 0.

�

Theorem 1.1.37 (Graded Hilbert Syzygy Theorem). Let R = k[x1, . . . , xn].
Then every finitely generated R-module has a finite graded resolution of length at
most n.

Definition 1.1.38. Suppose that

0 → Fs
ϕs−→ Fs−1 · · ·

ϕ3−→ F2
ϕ2−→ F1

ϕ1−→ F0
ϕ0−→ M → 0

is a graded resolution of M. Then the resolution is minimal if for every
s ≥ i ≥ 1, all the nonzero entries of the graded matrix of ϕi have positive
degree (i.e. there are no constants in the graded matrix).
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Example 1.1.39. As one can check in Example 1.1.36 we have that ϕ2

has a non zero element of degree zero. So that, the resolution we have
computed is not minimal. If one looks at the differentials carefully, then
can check that ϕ1 has a column which is a linear combination of the other
two (2ndcol=y · 1st col + x · 3rd col). It means that second column can
disappear. Then, a minimal graded resolution for the ideal I = 〈x2, xy, y2〉
is the following

0 → R(−3)2 ϕ1−→ R(−3)3 ϕ0−→ I → 0,

where the homomorphisms ϕi for i = 0, 1 are the ones defined below.

ϕ0 =
(
x2 xy y2

)
, ϕ1 =

⎛⎝ y 0
−x y
0 −x

⎞⎠ .

�

A set of generators of a module is minimal if no proper subset generates
the module. Minimal resolutions can be characterized as follows:

Proposition 1.1.40. The resolution

· · · → Fs
ϕs−→ Fs−1 · · ·

ϕ1−→ F0
ϕ0−→ M → 0

is minimal if and only if for each s ≥ 0, ϕs takes the standard basis of Fs to a
minimal generating set of im(ϕs).

When we work with minimal resolutions, we have that

Fs =
⊕

a∈Nn

Rβi,a(−a).

Each rank appearing in a minimal resolution, βi,a = βi,a(M), is an invari-
ant called the i-th Betti number of the multigraded module M in multidegree a

or multigraded Betti number, where a R-module M is called multigraded if
M ∼= ⊕Mj, with Mj = Mj1,...,jd , and RiMj ⊂ Mi+j.
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Remark 1.1.41. When a is not a multidegree but just a degree, βi,a are called
graded Betti numbers.

Betti numbers always satisfy that βi,a ≤ γi,a, where γia are the ranks
of Rγia in a non minimal resolution. When M is a graded module, in
particular, if M is a monomial ideal, then βi,a(I) measures the number of
minimal generators required in multidegree a for the i-th syzygy module
of I.

Other important invariants related to a graded ideal and defined in
terms of its minimal free resolution are

• The projective dimension of I, defined as

projdim(I) = max
{

i s.t. βi,j(I) �= 0 for some j
}

,

where i, j ∈ N.

• The Castelnuovo-Mumford regularity of I, defined as

reg(I) = max
{

j s.t. βi,i+j(I) �= 0 for some i
}

,

where i, j ∈ N.

We finish this section with the result below

Theorem 1.1.42. Any two minimal resolutions of M are isomorphic.

1.1.1.3 Some free resolutions for monomial ideals

Resolutions are essential objects in commutative algebra. One of the main
problems related to resolutions is to find the minimal one, even in the
case of monomial ideals which, as we have seen in this chapter, are easy
to treat. In the literature, there have been two different strategies for
studying resolutions. The first one is to study the explicit minimal free
resolution for particular families of monomial ideals. The result obtained
by Eliahou and Kervaire [41], an explicit description of the minimal free
resolution of stable ideals, is the main result of this strategy. The second
approach consists on the development of general procedures to obtain
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free resolutions, even if they are not minimal. The well-known Taylor
[131] resolution is the main result from this approach, together with the
Lyubeznik resolution.

Taylor resolution. One of the best known resolutions of monomial
ideals is the Taylor resolution [131] which, in general, is nonminimal.

Let I be a monomial ideal and {m1, . . . , mr} a generating set of I. For
any subset J = {j1, . . . , js} ⊆ {1, . . . , r}, let us denote mJ = lcm

{
mj1 , . . . , mjs

}
and Ji = {j1, . . . , ji−1, ji+1, . . . , js}. A resolution for R/I can be constructed
in the following way:

• Let Ts, s ≥ 0 be a free R-module generated by{
eJ s.t. |J| = s, ∀J ⊆ {1, . . . , r}

}
,

where J are all the subsets of {1, . . . , r} .

• Let consider the R-linear differential

d(eJ) = ∑
i∈J

(−1)i−1 mJ

mJi
eJi .

Observe that d2 = 0 and it is exact at each module, so it is a resolution
of R/I. This resolution is due to Taylor and is denoted by T. The length
of Taylor’s resolution is given by the number of elements in the given
generator set and the rank of the i-th free module Ti is ( r

i+1), with 0 ≤ i < r.

Example 1.1.43. Let I be the monomial ideal which generator set is G(I) ={
x3, x2y, xy2, y4}. The Taylor resolution for this ideal is

0 → R1 ϕ3−→ R4 ϕ2−→ R6 ϕ1−→ R4 ϕ0−→ I → 0,

where the homomorphisms ϕi for i = 0, 1, 2, 3 are defined as

ϕ0 =
(
x3 x2y xy2 y4

)
, ϕ1 =

⎛⎜⎜⎜⎝
y y2 y4 0 0 0
−x 0 0 y 0 y3

0 −x2 0 −x y2 0
0 0 −x3 0 −x −x2

⎞⎟⎟⎟⎠ ,
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ϕ2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

y 0 y3 0
−1 y2 0 0
0 −1 −1 0
x 0 0 y2

0 x2 0 x
0 0 x −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, ϕ3 =

⎛⎜⎜⎜⎝
y2

1
−1
−x

⎞⎟⎟⎟⎠ .

�

Some characterizations of monomial ideals for which the Taylor’s
resolution is minimal are given in [15, 48, 63].

Lyubeznik resolution. A subresolution L of T was given in [89] and it
is known as Lyubeznik resolution. It is defined as

• For a given subset J ⊆ {1, . . . , r} and an integer 1 ≤ s ≤ r, define
J>s = {j ∈ J : j > s}.

• L generated by those uJ such that for all 1 ≤ s ≤ r one has that
ms � |mJ>s .

Lyubeznik resolution is, in general, also not minimal but smaller than
the Taylor resolution. It depends on the order of the generators.

Eliahou-Kervaire resolution. The Eliahou-Kervaire resolution is a
minimal free resolution in the case of stable monomial ideals [41].

Definition 1.1.44. A monomial ideal I is stable if for every monomial xa ∈ I

xa xi

xmax(xa)
∈ I for all index i < max(xa),

where max(xa) denotes the index of the last variable that divides xa.

Examples 1.1.45.

A) The monomial ideal I = 〈x2
1, x1x2〉 ⊆ k[x1, x2] is a stable mono-

mial ideal.
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B) Let I = 〈x3
1, x1x2〉 ⊆ k[x1, x2] be a monomial ideal. Observe that

max(x1x2) = 2. We have that

x1x2
x1

x2
= x2

1 �∈ I.

Therefore, the ideal I is not stable.

�

For describing the Eliahou-Kervaire resolution, we need the follow-
ing fact:

Proposition 1.1.46. Let I be a monomial ideal and xa a monomial belonging to
I. Then there exists a unique generator g and monomial xb such that xa = gxb

and, for every xi dividing xb we have that i ≥ max(g).
We say that g is the beginning of xa and we denote it as beg(xa). We

represent as end(xa) the end of xa which is the monomial xb .

Definition 1.1.47. Let I be a stable monomial ideal. An EK-symbol for I
is a pair of the form [ f , u] where f is a minimal generator of I and u is a
square-free monomial satisfying max(u) < max( f ).

The Eliahou-Kervaire resolution of I is of the form

0 → · · · → El → El−1 → · · · → E0 → I → 0,

where each of the modules Ej is a free module generated by the set of
EK-symbols [ f , u] such that deg(u) = j. The differential of the resolution
is given by

ϕ([ f , u]) = ∑
xi|u

sgn(xi, u)xi

[
f ,

u
xi

]
− ∑

xi|u
sgn(xi, u)end(xi f )

[
beg(xi f ),

u
xi

]
,

where sgn(xi, u) = 1 if the cardinality of
{

xj s.t. xj|u and j ≤ i
}

is odd,
and −1 otherwise.

Example 1.1.48. Let I = 〈x, y2, yz〉 ⊆ k[x, y, z] be a stable ideal. The
Eliahou-Kervaire resolution for this ideal is

0 → R1 ϕ2−→ R3 ϕ1−→ R3 ϕ0−→ I → 0.
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We use the formula from Definition 1.1.47 for computing the explicit form
of the differentials:

ϕ0([x]) = x, ϕ0([y2]) = y2, ϕ0 ([yz]) = yz,

ϕ1([y2; x]) = x[y2]− y2[x],

ϕ1 ([yz; x]) = x[yz]− yz[x],

ϕ1 ([yz; y]) = y[yz]− z[y2],

ϕ2 ([yz; xy]) = x[yz; y]− y[yz; x] + z[y2; x].

Organizing the data computed in matrix form we have that ϕi for
i = 0, 1, 2 are:

ϕ0 =
(
x y2 yz

)
, ϕ1 =

⎛⎝−y2 −yz 0
x 0 −z
0 x y

⎞⎠ , ϕ2 =

⎛⎝ z
−y
x

⎞⎠ .

�

1.1.2 Hilbert series

In this section we present the definition and some useful results about
Hilbert series, which allows us to enumerate the monomials that are in a
monomial ideal.

Definition 1.1.49. Let M be a finitely generated graded R-module. The
numerical function

HFM(·) : Z −→ Z, a �→ HFM(a) := dimkMa

is called the Hilbert function of M.
The formal series

HSM(x) = ∑
a∈Z

HFM(a)xa

is the Hilbert series of M.
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Let
0 → Mk → · · · → M0 → 0

be an exact sequence of graded R-modules. Then, we have that

HSMk(x) =
k−1

∑
i=0

(−1)iHSMi(x).

We are working with multigraded modules. For this reason, we need
to define the multigraded version of the Hilbert series.

Definition 1.1.50. The multigraded Hilbert series of a finitely generated
multigraded R-module M is the formal series

HSM(x) = ∑
a∈Nn

0

dimk(Ma)x
a,

where dimkMa is the number of elements of degree a in Ma and, in our
particular case, dimkMa < ∞.

Remark 1.1.51. Remember that monomial ideals are, in particular, finitely
generated multigraded R-modules.

Remark 1.1.52. In the ring Z [[x1 . . . , xn]] we have that the element 1− xi has
an inverse and it is the series 1

1−xi
= 1 + xi + x2

i + · · · . The multigraded
Hilbert series of R = k[x1, . . . , xn] is an element of Z [[x1 . . . , xn]], which
is the formal sum of all monomials in R. Then, we have that HSR =

∏n
i=1

1
1−xi

.
Let denote by R(−a) the free module generated in multidegree a, so

R(−a) ∼= 〈xa〉 as multigraded modules. The multigraded Hilbert series of
that Nn

0-graded translation of R is just

HSR(−a)(x) = xa · HSR(x) =
xa

∏n
i=1 1 − xi

.

Remark 1.1.53. If I is a monomial ideal, then the multigraded Hilbert series
of R/I is the sum of all monomials not in I.
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Remark 1.1.54. The multigraded Hilbert series of monomial ideals and
R-modules of the form I can be expressed as

HSM(x) =
KM(x)

∏n
i=1 1 − xi

,

where KM(x) is known as the K-polynomial of M or numerator of the
Hilbert series. To reach our goal of computing the reliability of a system,
the numerator of the Hilbert series of a monomial ideal I is going to be
essential.

One can check that if I is a monomial ideal, then KR/I(x) = 1 −KI(x).

Example 1.1.55. Let I = 〈x2, xy, y2z〉 ⊆ R = k[x, y, z]. We have that

HSI(x) =
KI(x)

(1 − x)(1 − y)(1 − z)
,

where KI(x) = x2 + xy + y2z − x2y2z − xy2z − x2y + x2y2z.

�

A good way to compute multigraded Hilbert series of ideals is using a
free resolution of the ideal. We have seen that a multigraded free resolution
of an ideal I is a collection of modules Fi, i > 0 together with morphisms
∂i : Fi → Fi−1 that express the structure of the ideal. For any resolution
of a monomial ideal I, we have

HSI(x) =
d

∑
i=0

(−1)iHS(Fi; x),

where Fi, for i = 0, . . . , d are the modules in the resolution of I.
The resolutions we are working with are multigraded, so each Fi =

⊕a∈Nn R(−a)γi,a for some scalars γi,a. Then, we have

HSI(x) =
∑d

i=0(−1)i
(

∑a∈Nn
0

γi,axa
)

∏n
j=1(1 − xj)

.
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Remark 1.1.56. From Section 1.1.1.1 we know that, if the resolution is
minimal, then the Betti numbers, βi,a always satisfy that βi,a ≤ γi,a, ∀i.
The multigraded Hilbert series then has the form

HI(x) =
∑d

i=0(−1)i
(

∑a∈Nn
0

βi,axa
)

∏n
j=1(1 − xj)

.

Betti numbers are really important in our work due to the fact that they
provide the tighest bounds for reliability by suppressing redundant terms
in KI(x) as we will see in Section 1.2.2.

1.1.3 Mayer-Vietoris Trees

Mayer-Vietoris trees (MVT) are a tool that can be considered as a descrip-
tion of an ideal together with the relevant part of its lcm-lattice or as
an algorithm that helps us to compute the homological invariants of the
ideals. In this section we present how to use the MVT of a monomial
ideal to compute bounds for its Betti numbers without computing the
(minimal) free resolution of such ideal. Monomial ideals for which the
bounds provided by the MVT for the Betti numbers are sharp are called
Mayer-Viertories ideals.

Each MVT of a monomial ideal provides a resolution for the ideal (see
Section 3.1.2.1 of [114] for more details). In particular, it provides the
multigraded Hilbert series.

Let I ⊆ R = k[x1, . . . , xn] be a monomial ideal whose minimal gener-
ating set is G(I) = {m1, . . . , mr}. Let us define I′ = 〈m1, . . . , mr−1〉 and
Ĩ = I′ ∩ 〈mr〉 = 〈m1,r, m2,r, . . . , mr−1,r〉, where mi,j = lcm(mi, mj).

From this point, we use the following notation: for each 1 ≤ s ≤ r, we
denote by Is = 〈m1, . . . , ms〉 and Ĩs = Is−1 ∩ 〈ms〉.

Definition 1.1.57. Given a monomial ideal I ⊆ R = k[x1, . . . , xn] minimally
generated by G(I) = {m1, . . . , mr}, we define the (recursive) Mayer-Vietoris
exact sequence of I in the following way:
For each 1 ≤ s ≤ r we have the following exact sequence of ideals:

0 → Ĩs → Is−1 ⊕ 〈ms〉 → Is → 0.
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The Mayer-Vietoris sequence relates the homology of two spaces, their
intersection and their union by means of a short exact sequence of com-
plexes. These sequences were used in [114] to develop an algorithm for
homological computations on monomial ideals.

Remarks 1.1.58.

1. The Mayer-Vietoris sequence associated to a monomial ideal is not
uniquely defined: it depends on how the minimal generators have
been sorted.

2. The MVT of a monomial ideal is related with the so called cone
resolution [66] in the sense that the MVT provides the ranks and the
generators of the iterations of the cone resolution.

We have said that MVTs can be used to compute homological invariants
of a monomial ideal. To compute the MVT of a given monomial ideal I,
we have that the initial ideal I is the root of the tree. Each node J has
a child J̃ on the left and a child J′ on the right (if J is generated by r
monomials, then J̃ represents J̃r and J′ denotes Jr−1). This is what we call
the Mayer-Vietoris tree of the ideal I and is denoted by MVT(I).

Remark 1.1.59. The construction of the MVT depends on how we choose
the distinguished monomial used to split the ideal, which is called (mono-
mial) pivot.

For a given ideal I and an ordering of the generators we have several
trees depending on the way we choose the pivot.

Some strategies to choose the pivot are

1. Select the pivot according to some term order τ, taking the pivot as
the biggest term. We call this kind of MVT as τ − MVT. This trees
are unique given τ and I.

2. Keep or reach some property of the ideals of the nodes in the tree. For
example, choose a monomial in which appears one unique variable
to obtain an ideal with one less variable.

3. Select as pivot the one having the biggest exponent in some of the
variables. Then, the generators of J̃ will have the same exponent

33



1.1. Monomial ideals

on this variable. This pivot provides smaller trees in which the left
branch has, at most, length n + 1, where n is the number of variables.

The strategy to choose the pivot can change at each node.

By definition, every father node in an MVT(I) has two children. We
can assign position indices to every node, which is useful for reading
hidden information in the MVT, in the following way:

• I has position 1.

• If J has position p, then J̃ has position 2p and J′ has position 2p + 1.

We denote that as MVT1(I) = I, MVTp(I) = J, MVT2p(I) = J̃ and
MVT2p+1(I) = J′.

Given a monomial ideal I, all the multidegrees a ∈ Nn such that
βi,a(I) �= 0, are present as exponents of generators in some of the nodes
of any MVT(I). The only multidegrees appearing on an MVT(I) which
are relevant to the homology computation of I are those in position 1 (for
which we obtain H0) or even. The degree of the homology to which they
contribute can be read from their position in the tree. To do that, let us
assign a dimension to every node in the MVT(I) in the following way:

• dim (MVT1(I)) = 0.

• If dim
(
MVTp(I)

)
= d, then

dim
(
MVT2p(I)

)
= d + 1 and dim

(
MVT2p+1(I)

)
= d.

The dimension d of a node in position p is just the number of zeros
in the binary expansion of p. The generators of each relevant node con-
tribute to the homology modules in the homological degree given by the
dimension of the node.

For reading Betti numbers from an MVT, we have that βi,a is the
number of monomials in dimension i and position 1 or even on the tree
and with (multi)degree a.
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Example 1.1.60. Let us consider Mayer-Vietoris trees of the ideal

I = 〈x1x2, x2x3, x3x4, x4x5〉 ⊆ k[x1, . . . , x5].

The Mayer-Vietoris tree of I is the one displayed below, where the relevant
nodes are the ones in black color, and each node is of the form (position,

dimension) generators.

(1, 0) x1x2, x2x3, x3x4, x4x5

(2, 1) x1x2x4x5, x3x4x5

(4, 2) x1x2x3x4x5 (5, 1) x1x2x4x5

(3, 0) x1x2, x2x3, x3x4

(6, 1) x2x3x4 (7, 0) x1x2, x2x3

(14, 1) x1x2x3 (15, 0) x1x2

From this tree we obtain that the graded Betti numbers are β0,2(I) = 4,
β1,3(I) = 3, β1,4(I) = 1 and β2,5(I) = 1. Moreover, the numerator of the
Hilbert series of this ideal is

HNI2,5 = (x1x2 + x2x3 + x3x4 + x4x5)

− (x1x2x4x5 + x3x4x5 + x2x3x4 + x1x2x3)

+ x1x2x3x4x5

We can also read the multigraded Betti numbers which are the follow-
ings

β0,(1,1,0,0,0)(I) = β0,(0,1,1,0,0)(I) = β0,(0,0,1,1,0)(I) = β0,(0,0,0,1,1)(I) = 1,

β1,(1,1,1,0,0)(I) = β1,(0,1,1,1,0)(I) = β1,(0,0,1,1,1)(I) = β1,(1,1,0,1,1)(I) = 1,

β2,(1,1,1,1,1)(I) = 1.

�
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We know that the main object expressing the homological structure
of a monomial ideal is its minimal free resolution but it is not trivial to
compute it.

Let I be a monomial ideal and MVT(I) a Mayer-Vietoris tree of I. Let
a ∈ Nn and let

• βi,a(I) = 1, if a is a multidegree of a generator of a relevant node of
dimension i in MVT(I) which does not appear as a generator of any
relevant node.

• βi,a(I) = 0, in other case.

Let β̂i,a(I) be the number of times that a appears as the multidegree of
some generator of dimension i in some relevant node in MVT(I).

The generators of the relevant nodes of MVT(I) provide upper and
lower bounds for the Betti numbers of the ideal without actually comput-
ing the resolution. These bounds can be improved using several criteria
and are sharp in several families of ideals, see [115] for details. A simple
useful criterion is the following:

Proposition 1.1.61. Let μ be a multidegree such that there are generators of
multidegree μ in relevant nodes of MVT(I) of dimensions d1 . . . dk such that no
two of them are consecutive, then

βdi,μ(I) = #MVT(I)di,μ ∀i = 1, . . . , k

Then, for all a ∈ Nn we have that

βi,a(I) ≤ βi,a(I) ≤ β̂i,a(I).

We have that the equality holds in the cases above

Definition 1.1.62. Let I be a monomial ideal.

• We say that I is a Mayer-Vietoris ideal of type A if there exists a Mayer-
Vietoris tree of I such that there is no repeated generators in the
ideals of the relevant nodes. In this case we have

βi,a(I) = βi,a(I) = β̂i,a(I).
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• If βi,a(I) = βi,a(I) for all i ∈ N, a ∈ Nn then I is a Mayer-Vietoris
ideal of type B1.

• If βi,a(I) = β̂i,a(I) for all i ∈ N, a ∈ Nn then I is a Mayer-Vietoris
ideal of type B2.

Examples 1.1.63. 1. Every ideal in two variables is an MVTA.

2. Generic monomial ideals are MVTB1.

3. Ideals minimally resolved by the Taylor resolution are MVTB2.

�

1.2 Reliability Theory

Reliability Theory has been a source of interest since the World War II
although it is not until 1952 in a series of lectures given by R. S. Pierce,
where the topic started to be developed. The main ideas of these lectures
were published in [138] by J. von Neumann. The author considered the
problem of constructing reliable binary circuits using redundancy of non-
reliable components. Furthermore, thanks to the previous work of A. M.
Turing [134] and W. S. McCulloch and W. Pitts [92], the author showed
that logical propositions could be represented as networks or (idealized)
nervous systems which means that logical propositions can be treated as a
box that receives a finite number of inputs and returns a finite number of
outputs that are determined by some specific rules.

E. F. Moore and C. E. Shannon, developed different methods in [101]
that did not require to assume good reliability in the components of
the circuit neither that much redundancy as was required in [138] by
von Neumann. Even though there were some examples of series and
parallel systems, this research was not focused on the application but in
introducing the problem of reliability from a theoretical and mathematical
point of view and provided bounds for reliability.

The concepts and results presented by Moore and Shannon were gen-
eralized in [26] by Birnbaum, Esary, and Saunders. In that research, the

37



1.2. Reliability Theory

authors continued studying reliability of binary systems, which was re-
ferred to as dichotomic reliability. The authors gave proper definitions of
structure function, (minimal) paths and cuts, essential and not essential
components, and (semi-)coherent systems. Furthermore, parallel and
series systems (and the mix of both) and k-out-of-n systems were cov-
ered. The authors realized that binary reliability was not enough to study
the systems that appeared in practice and, thereby they proposed a new
branch of investigation: reliability of systems that were not binary.

The authors of [45] studied the case of binary independent components
with different probabilities i.e. independent but non-identical components:
they obtained convenient bounds for the reliability of the structures, gener-
alized statistical properties obtained in a previous research ([26]) and then
they generalized a differential equation (introduced in [101]) that allowed
to relate the reliability of the components and the structure. The research
was quite theoretical and had no illustrative examples.

To see a review of some different models for computing reliability
we refer to [14, 75]. In [144] there is a systematic review of the different
approaches that have been used to compute reliability of a system, which
is summarized below:

• An extension of binary models to the multi-state case. Some binary
methods have been employed to compute the reliability of multi-state
systems, such as the reliability classical block diagram method which
was extended to a repairable multi-state system [83] or the Fault
Trees, employed by Caldarola in [29] to study multi-state systems
after turning them into binary one using Boolean variables.

• The stochastic process approach. The first time this approach was used
to compute the reliability of a system was by Natvig and Streller
[103]. Nowadays, the stochastic approach allows to compute more
properties of the system other than the reliability.

• The Universal Generating Function (UGF) approach. Since the introduc-
tion of the UGF in 1986 [135], this approach has been greatly studied
[86, 79, 77].
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• Monte-Carlo simulation. This method has been used in combination
with other ones such as enumerative techniques, to compute the
reliability of multi-state systems in different ways [25, 149, 150].

• Recursive algorithms. The use of recursive algorithms for computing
the reliability of a system has been developed for different kind of
systems such as the k-out-of-n or the series-parallel [151, 82, 126, 78].

1.2.1 Binary systems and Reliability. Definitions

This section is an introduction to reliability theory. We explain the basic
definitions needed along this thesis and give several examples to help the
reader understand the concepts introduced.

1.2.1.1 Binary systems

Definition 1.2.1. A binary system S = (C, φ) is a set of components C =

{c1, . . . , cn} so that each component ci can be in two different states Si =

{0, 1}, together with a structure function φ : S1 × · · · × Sn → S , where
S = {0, 1} is the set of states of the system. The set

D = {a = (a1, . . . , an) s.t. ai ∈ Si, ∀i ∈ {1, . . . , n}}

is call the state space of S and each a is a component’s state.

When there is no opportunity of misunderstanding, we simply refer to
the system S = (C, φ) as S.

The structure function receives as input an n-tuple of the states of
the components and outputs the global state of the system. That means
that the states of the components determine the overall performance of
the system. Along this thesis, we consider that a system (respectively
a component) in state j represents better performance than the system
(respectively a component) in state i, whenever j > i. Furthermore, we say
that a tuple a is greater (lower) than the tuple b, and denoted by a > b

(a < b), whether ai ≥ bi (ai ≤ bi) for every i and there is at least one index
i such that ai > bi (ai < bi).
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Definition 1.2.2. We say that he system S = (C, φ) is coherent if φ(a) ≥ φ(b)

whenever a > b. Conversely, φ(a) ≤ φ(b) whenever a < b.

The coherence property tells us that given a state for which the system
works, if one component improves its level of performance, then the
system cannot fail. Coherency can also be defined in failure states: let S
be a system that is failing for a given components’ state, if one component
decreases its level of performance, then the system continues failing.

Examples of coherent systems include electrical and transport networks,
biological and industrial systems among many others [75]. During this
work, unless explicitly stated otherwise, every system is assumed to
be coherent.

Example 1.2.3. (A) Let S1 = (C, φ) be a binary system with binary com-
ponents such that C = {c1, c2} and φ(x1, x2) = max{x1, x2}. Given
the components’ state x = (0, 1) we obtain that φ(x) = 1 and, if we
improve the level of performance of component 2, i.e., x = (1, 1) we
still have φ(x) = 1.

(B) Let S2 = (C, φ) be a binary system with binary components such
that C = {c1, c2, c3} and φ(x1, x2, x3) = min{x1, x2, x3}. Given the
components’ state x = (0, 1, 1) we obtain that φ(x) = 0 and, if we
decrease the level of performance of component 2, i.e., x = (0, 0, 1) we
still have φ(x) = 0.

�

Definition 1.2.4. Let S = (C, φ) be a binary system with n components
and a an n-tuple of component’s states. We say that a is a path of S (or
working state) if φ(a) = 1. We say that a is a minimal path of S (or minimal
working state) if any decrease on the level of any of the components implies
that the level of performance of the system decreases. We denote by F P

S

and F P
S the set of paths and minimal paths of the system S, respectively.

Definition 1.2.5. Let S = (C, φ) be a binary system with n components
and a an n-tuple of component’s states. We say that a is a cut of S (or

40



Chapter 1. Background

failure state) if φ(a) = 0. We say that a is a minimal cut of S (or minimal
failure state) if an increase in one of the components implies that the level
of performance of the system improves. We denote by FC

S and FC
S the set

of cuts and minimal cuts of the system S, respectively.

We use the notation :G for systems defined by their paths and :F for
systems defined by their cuts.

c1 c2

(a) Series system

c1

c2

c3

(b) Parallel system

c1

c2

c3

(c) Series-parallel system

Figure 1.1: Systems of Example 1.2.6 (A), Example 1.2.6 (B) and Exam-
ple 1.2.6 (C)

Example 1.2.6. (A) Let S = (C, φ) be the system given by C = {c1, c2},
Si = {0, 1} , ∀i ∈ {1, 2}, S = {0, 1} and

φ(a) = min {(a1, a2) s.t. ai ∈ Si, ∀i ∈ {1, 2}} .

The paths, minimal paths, cuts and minimal cuts of this example are
shown in Table 1.1.

Paths Minimal paths Cuts Minimal cuts

(1,1) (1,1)
(0,0)
(1,0)
(0,1)

(1,0)
(0,1)

Table 1.1: Paths, minimal paths, cuts and minimal cuts of Example 1.2.6 (A)
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(B) Let S = (C, φ) be the system given by C = {c1, c2, c3}, Si = {0, 1} , ∀i ∈
{1, 2, 3}, S = {0, 1} and

φ(a) = max {(a1, a2, a3) s.t. ai ∈ Si, ∀i ∈ {1, 2, 3}} .

The paths, minimal paths, cuts and minimal cuts of this example are
shown in Table 1.2

Paths Minimal paths Cuts Minimal cuts
(1,0,0)
(1,1,0)
(1,0,1)
(0,1,0)
(0,1,1)
(0,0,1)
(1,1,1)

(1,0,0)
(0,1,0)
(0,0,1)

(0,0,0) (0,0,0)

Table 1.2: Paths, minimal paths, cuts and minimal cuts of Example 1.2.6 (B)

(C) Let S = (C, φ) be the series-parallel system given by C = {c1, c2, c3},
Si = {0, 1} , ∀i ∈ {1, 2, 3}, S = {0, 1} and

φ(a) = min {(a1, max {(a2, a3)}) s.t. ai ∈ Si, ∀i ∈ {1, 2, 3}} .

The paths minimal paths, cuts and minimal cuts of this example are
summarized in Table 1.3.

�

Remark 1.2.7. When there is no possibility of misunderstanding between
paths or cuts, we just denote by FS and FS the set of paths or cuts and
minimal paths or minimal cuts of the system S, respectively.
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Paths Minimal paths Cuts Minimal cuts

(1,1,0)
(1,0,1)
(1,1,1)

(1,1,0)
(1,0,1)

(0,0,0)
(1,0,0)
(0,1,0)
(0,0,1)
(0,1,1)

(1,0,0)
(0,1,1)

Table 1.3: Paths, minimal paths, cuts and minimal cuts of Example 1.2.6 (C)

1.2.1.2 Reliability

In this section we provide the definition of reliability for a binary system.
All definitions related with multi-state systems can be found in Chapter 3.

Let us S = (C, φ) be a binary system given by C = {c1, . . . , cn}, with
Si = {0, 1} for all i ∈ {1, . . . , n}. Each of the components has a probability
of failing and working. We will denote by pi,0 and pi,1 the probability
of component i of being in state 0 and 1, respectively. The probabilities
associated to each components are the ones which will allow us to compute
the reliability of the system:

Definition 1.2.8. Let S be a binary system. The reliability of system S,
denoted by RS, is the probability that the system works i.e. the probability
of being in state 1.

Definition 1.2.9. Let S be a binary system. The unreliability of system S,
denoted by US, is the probability that the system fails i.e.the probability of
being in state 0.

Remark 1.2.10. The reliability and the unreliability of a binary system S are
related by the following formula

RS = 1 − US. (1.2.1)

To compute the (un)reliability of a system S is necessary to know the
probability of working or fail of each component of the system. We say
that the components of a systems S are
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• Independent and identical distributed (i.i.d.) when all of them have
the same probability of failing/working and their states are not
dependent on the state of the other components.

• Independent and non identical distributed when the components have
different probabilities of failing/working and their state are not
dependent on other component.

• Dependent and identical distributed when all of them have the same
probability of failing/working and their state are dependent on the
state of one or more components.

• Dependent and non identical distributed when the components have dif-
ferent probabilities of failing/working and their state are dependent
on the state of one or more components.

The reliability of any system can be computed with the algebraic
method based on monomial ideals by making few assumptions on the
given system.

Bonferroni bounds. Sometimes, rather than the exact (un)reliability
of a system S, bounds are preferred. For computing the exact reliability
of the system one needs to have the probabilities of working/failing of
all the components of the system which is a not an easy engineering
process. The difficulty of this process becomes even more evident in the
case of dependent components. When there is not chance of having all the
information needed, the exact reliability cannot be computed. Yet, one is
able to get bounds although it is clear that the more information one has,
the better the bounds will be.

The Inclusion-Exclusion method is an enumerative method which allows
to obtain the reliability of a system. Given a binary coherent system
S = (C, φ) and its set of paths F P

S = {a1, . . . , as}, one is able to compute
the reliability of S using the Inclusion-Exclusion method as follows:
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RS =P(a1 ∪ · · · ∪ as)

= [P(a1) + P(a2) + · · ·+ P(as)] +

− [P(a1 ∩ a2) + P(a1 ∩ a3) + · · ·+ P(as−1 ∩ as)] + . . .

=
s

∑
i=1

(−1)i−1 ∑
|σ|=i

⋂
j∈σ

aj.

The so called Bonferroni-Fréchet bounds [37] are obtained by truncating
at each summand of the Inclusion-Exclusion equation as follows:

RS ≤
k

∑
i=1

(−1)i−1 ∑
|σ|=i

⋂
j∈σ

aj for k odd,

RS ≥
k

∑
i=1

(−1)i−1 ∑
|σ|=i

⋂
j∈σ

aj for k even.

In the next section we show how the algebraic method allows to
compute tight bounds for (un)reliability for binary systems in a more
efficient way because it avoids some redundancy (the multi-state case is
explored in Chapter 3).

1.2.2 The algebraic method

The relation between Algebra and System Reliability, which is given by
a correspondence of a monomial for each state of the coherent system,
was established in [55]. Then, a monomial ideal with the monomials
representing the working (or failing) states of the system is associated to
it. In order to obtain the reliability (unreliability) of the system, we need
to compute the Hilbert series of the monomial ideal. For computing the
Hilbert series, there are different methods, such as the one presented in
[22]. However, these methods do not allow us to compute bounds, which
are really interesting in reliability. As a result of this fact, we work with
free resolutions. The main problem is to find a free resolution for the
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monomial ideal that does not make the Hilbert series too redundant, i.e.
we need to compute the closest free resolution to the minimal one. By
truncating Hilbert series we obtain upper and lower bounds for reliability.
We know that minimal free resolutions allow us to write the Hilbert series
in the most compact form between the ones coming from resolutions (and
it also make the bounds as tight as for any other resolution), but it is not
easy, in general, to find it. In this article the authors presented a way to
compute a resolution for a monomial ideal, with not guarantee of being
minimal, nevertheless it is quite good (it improves results obtained with
Taylor resolution). To obtain that resolution, they used the so called Scarf
Complex.

Some years later, Sáenz-de-Cabezón and Wynn ([114, 116, 117, 118],
all of them reviewed on [119]) showed that (minimal free) resolution is
not necessary to be computed to obtain the Hilbert series, it is enough to
calculate the Betti numbers which can be computed using Mayer-Vietoris
trees. Some special and important kind of system such as binary k-out-of-n
systems and some variants or networks are thoroughly analysed during
their research.

When it comes to system reliability theory, the design of optimal
systems is a topic of high importance. An advantage of the algebraic
method is that it provides information about the structure of the system
and it can be useful in designing optimal systems due to it provides
information about the structure of the system[120]. Furthermore, the
improvement of computational algebra systems (such as CoCoA, Macaulay2
or Singular) make the algebraic method an useful tool for designing
optimal systems (and for computing its reliability too).

We have said before that the link between the algebraic approach and
reliability theory are monomial ideals.

The relation is the following: given a system S and its state space D,
we can represent each tuple a ∈ D in a grid of non-negative and integer
coordinates. Due to the coherent property of the systems and the fact that
monomials satisfy that

xa|xb whenever a ≤ b (1.2.2)
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for each a ∈ D we can construct a monomial xa = xa1
1 · · · xan

n that represents
a state of the system.

The visual relation between the state space of Example 1.2.6 and our
algebraic approach to reliability theory is given in Figure 1.2.

(0, 0) (1, 0) states c1

(0, 1)

states c2

(1, 1)

(a) State space representation

1 x1

x2
x1x2

(b) Monomial representation

Figure 1.2: Monomial representation of the states of the system in Exam-
ple 1.2.6

Remember from Remark 1.2.7 that F and F are the set of paths and
minimal paths, respectively. In Figure 1.3 we can notice that if we take the
monomials generated by the minimal paths, all the paths of the system are
included in the shadow area and satisfy the coherence property translated
to monomials (if xa belongs to a monomial ideal, then all the monomials
xb such that xa|xb belong to the monomial ideal too). This area represents
the monomials in a monomial ideal whose minimal generators are exactly
the minimal paths of the system.

Remark 1.2.11. Observe that there exist monomials in the ideal which
are not representing any state of the system. Indeed, in the binary case,
every monomial with an exponent greater than 1 does not represent any
state of the system. These monomials are not going to influence in the
computations of the reliability because we have into account that their
probability is 0 i.e. as the components only reach states 0 and 1, we have
that pi,j = 0 for all i and for all j ≥ 2.

Definition 1.2.12. The ideal generated by the set of minimal paths of the
system S, denoted by IFP

S
, is called path ideal of system S.
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x1

x2

x1x2

Figure 1.3: Monomials belonging to the the path ideal of the system from
Example 1.2.6 (A)

Following the same idea of the minimal paths but with the minimal
cuts of a system, one can define:

Definition 1.2.13. The ideal generated by the set of minimal cuts of the
system S, denoted by IFC

S
, is called cut ideal of system S.

Remark 1.2.14. When working with cut ideals, we are focused on the failure
of the system. In this case the levels of the system indicates growing levels
of failure i.e. 0 means that the system works and 1 that the system is failing.
Being in the cut ideal means failure.

Example 1.2.15 (Continuation of Example 1.2.6). (A) The path ideal of the
system of Example 1.2.6 (A) is IFP

S
= 〈x1x2〉 and the cut ideal is

IFC
S
= 〈x1, x2〉.

(B) The path ideal of the system of Example 1.2.6 (B) is IFP
S
= 〈x1, x2, x3〉

and the cut ideal is IFC
S
= 〈x1x2x3〉.

(C) The path ideal of the system of Example 1.2.6 (C) is IFP
S
= 〈x1x2, x1x3〉

and the cut ideal is IFC
S
= 〈x1, x2x3〉.

�

Once we have computed the path or cut ideal, we need to compute the
numerator of the Hilbert series, NHS(I) (see Section 1.1.1), which counts
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how many monomials are in the ideal, and substitute the probabilities of
the components: each xi appearing in the numerator of the Hilbert series
is replaced by pi,j.

Remark 1.2.16. If we compute the path ideal, in the numerator of the Hilbert
series one has to substitute each xi for pi,1. However, if we work with the
cut ideal one has to take into account that the higher the exponent of the
monomial, the higher the failing i.e. the monomials inside the cut ideal
are failing states which are not minimal. Then, when substituting the
probabilities we must be careful and now substitute each xi for 1 − pi,1.

Sometimes, rather than the exact probability of working or failing,
bounds are preferred. The algebraic method provides bounds by truncat-
ing the summands of the numerator of the Hilbert series:

• If one truncates the numerator of the Hilbert series in an odd step,
then one get upper bounds, denoted by u.

• If, otherwise, the truncation is done in an even summand, lower
bounds are obtained. Lower bounds are denoted by l.

Depending on the number of summands of the numerator of the
Hilbert series, a different number of bounds can be obtained. The more
summands one use, the tightest the bounds are.

Example 1.2.17 (Continuation of Example 1.2.6).

(A) The numerator of the Hilbert series of the path ideal of the system
of Example 1.2.6 (A) is NHS(IFP

S
) = x1x2 and the numerator of the

Hilbert series of the cut ideal is NHS(IFC
S
) = x1 + x2 − x1x2.

(B) The numerator of the Hilbert series of the path ideal of the system
of Example 1.2.6 (B) is NHS(IFP

S
) = x1 + x2 + x3 − (x1x2 + x1x3 +

x2x3) + x1x2x3 and the numerator of the Hilbert series of the cut ideal
is NHS(IFC

S
) = x1x2x3.

(C) The numerator of the Hilbert series of the path ideal of the system
of Example 1.2.6 (C) is NHS(IFP

S
) = x1x2 + x1x3 − x1x2x3 and the
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numerator of the Hilbert series of the cut ideal is NHS(IFC
S
) = x1 +

x2x3 − x1x2x3.

�

Example 1.2.18 (Double bridge structure). In this example we are going to
work with the system represented in Figure 1.4, which is a network called
double bridge structure.

c1

c2

c3

c4

c5

c6

c7

c8

Figure 1.4: Double bridge network from Example 1.2 in [118]

The probabilities of each component for failing are

p1,0 = 0.01, p2,0 = 0.03, p3,0 = 0.05, p4,0 = 0.05

p5,0 = 0.05, p6,0 = 0.01, p7,0 = 0.03, p8,0 = 0.02

If we observe Figure 1.4, one can check that the minimal cuts are the
ones in Table 1.4. Remember that once we know the minimal cuts of a
system, one can compute the ideal associated to it. In this case, we have
that the ideal is

I = 〈x1x2x3, x1x2x5x8, x1x3x4x5x7, x1x4x7x8,

x2x3x4x6, x2x4x5x6x8, x3x5x6x7, x6x7x8〉.

To compute the numerator of the Hilbert series associated to I, we use
the MVT, although this process is not included here due to its large size.
We obtain that the numerator of Hilbert series is
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Minimal cuts
(1,1,1,0,0,0,0,0)
(1,1,0,0,1,0,0,1)
(1,0,1,1,1,0,1,0)
(1,0,0,1,0,0,1,1)
(0,1,1,1,0,1,1,1)
(0,1,0,1,1,1,0,1)
(0,0,1,0,1,1,1,0)
(0,0,0,0,0,1,1,1)

Table 1.4: Minimal cuts of the system from Example 1.2.18

NHS(I) =x1x2x3 + x1x2x5x8 + x1x3x4x5x7 + x1x4x7x8+

+x2x3x4x6 + x2x4x5x6x8 + x3x5x6x7 + x6x7x8+

−(x1x2x3x4x6 + x1x2x3x4x5x7 + x1x2x3x4x7x8+

+x1x2x3x5x6x7 + x1x2x3x5x8 + x1x2x3x6x7x8+

+x1x2x4x5x6x8 + x1x2x4x5x7x8 + x1x2x5x6x7x8+

+x1x3x4x5x6x7 + x1x3x4x5x7x8 + x2x3x4x5x6x7+

+x2x3x4x5x6x8 + x2x3x4x6x6x7x8 + x2x4x5x6x7x8+

+x3x5x6x7x8)+

+(2 · x1x2x3x4x5x6x7 + x1x2x3x4x5x6x8+

+x1x2x3x4x5x7x8x1x2x4x5x6x7x8+

+2 · x2x3x4x5x6x7x8)− 2 · (x1x2x3x4x5x6x7x8).

Observe that in this example we are working with the ideal generated
by the minimal cuts i.e. the cut ideal. Because of that, instead of substitut-
ing the working probabilities, we have to substitute the fail probabilities
of each components i.e. each variable xi has to be replace with pi,0 and we
will obtain (bounds of) unreliability of the system, instead of the reliability.
We have
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U = 2, 31525 · 10−5 − 4, 398 · 10−8 + 1, 02 · 10−10 − 2, 25 · 10−13

= 2, 310862178 · 10−5

u2 = 2, 31525 · 10−5 − 4, 398 · 10−8 + 1, 02 · 10−10 = 2, 3108622 · 10−5

l1 = 2, 31525 · 10−5 − 4, 398 · 10−8 = 2, 310852 · 10−5

u1 = 2, 31525 · 10−5

where U is the unreliability of the system, ui are upper bounds for
unreliability in which the higher the i, the tighter the bound, and l1 is a
lower bound.

�

Example 1.2.19 (Binary k-out-of-n systems). A binary k-out-of-n:G(:F) system
is a system with n components that works (fails) if and only if k compo-
nents work (fail). This kind of systems are really important due to its
wide range of applications (see, for instance, [75]). We will work with the
multi-state version of those systems in Section 3.2.3 of Chapter 3.

Let us work with a 2-out-of-4 system in which we have the following
probabilities for the components: p1,0 = 0.1, p1,1 = 0.9, p2,0 = 0.15, p2,1 =

0.85, p3,0 = 0.05, p3,1 = 0.95, p4,0 = 0.17, p4,1 = 0.83.
We know from [116] that the ideal associated to a binary k-out-of-n

system is of the form

Ik,n = 〈xμ s.t. xμ is a squarefree monomial ideal of degree k in n variables〉 .

For this ideal, the authors showed how to compute the Betti numbers
associated to these ideals (and, in consequence, how to compute the
Hilbert series) but we compute the Betti numbers using Mayer-Vietoris
Trees.

In our example, we have that

I2,4 = 〈x1x2, x1x3, x1x4, x2x3, x2x4, x3x4〉 ,

which MVT is showed in Figure 1.5 with no (position, dimension) writ-
ten.
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x1x2, x1x3, x1x4, x2x3, x2x4, x3x4

x1x3x4, x2x3x4

x1x2x3x4 x1x3x4

x1x2, x1x3, x1x4, x2x3, x2x4

x1x2x4, x2x3x4

x1x2x3x4 x1x2x4

x1x2, x1x3, x1x4, x2x3

x1x2x3 x1x2, x1x3, x1x4

x1x2x4, x1x3x4

x1x2x3x4 x1x2x4

x1x2, x1x3

x1x2x3 x1x2

Figure 1.5: MVT associated to the ideal I2,4 from Example 1.2.19

From the MVT we can read that the numerator of the Hilbert series
associated to the ideal is

NHS(I2,4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

− 2(x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4)

+ 3x1x2x3x4

Substituting the probabilities (where it appears xi we have to substitute
the variable for pi,1) we have that

R = 4.6685 − 2 · 2.78195 + 3 · 0.6032025 = 0.9142075,

l1 = 4.6685 − 2 · 2.78195 = −0.8954,

u1 = 4.6685,
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where l1 is a lower bound and u1 is an upper bound for reliability. In
this example, bounds are useless because the ideal does not have enough
variables and generators.

�
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Chapter 2

Polarization and depolarization of

monomial ideals. The support

poset

2.1 Introduction

Polarization is an operation that transforms a monomial ideal into a
squarefree monomial ideal in a larger polynomial ring, preserving several
important features of the original ideal such as the graded Betti num-
bers. The main idea behind polarization is the possibility of using the
combinatorial properties of squarefree monomial ideals when studying
problems about general monomial ideals. Polarization is used in a wide
variety of applications in the theory of monomial ideals. For example it
was used by Hartshorne to prove the connectedness of the Hilbert scheme
by showing that distractions of ideals can be described as specializations
of polarizations of monomial ideals [60]. One of the main applications
is its use to study the Cohen-Macaulay1 property of monomial ideals by
passing to squarefree monomial ideals and applying Reisner’s criterion
on their associated simplicial complex [93, 103]. It is also used to study
associated primes of monomial ideals and their powers [64, 58, 90].

1An R-module M is Cohen-Macaulay if depth(M) = Krull dim(M).
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Even though polarization has been used as a powerful tool in algebraic
geometry and in applications, the inverse operation, depolarization, has
been less investigated. Depolarization can be used to study the algebraic
invariants of squarefree monomial ideals using general monomial ideals
in less variables [106]. We note that depolarization is not unique, in
the sense that a given squarefree monomial ideal might have different
depolarizations.

One of the main goals of this chapter is to find all depolarizations of a
given squarefree monomial ideal and describe their structure combinatori-
ally. Furthermore, as we have said before, a given squarefree monomial
ideal I shares several important features with its depolarizations, the afore-
mentioned combinatorial structure can be then used to select a convenient
depolarization of I in order to study the properties of either I or any of
its depolarizations. For example, one immediately obtains the Hilbert
function of these ideals by studying only one of them, as they are closely
related. The properties and features that are not shared within the family
of depolarizations of I are also interesting to study in order to identify
a particular depolarization whose invariants are easier to compute and
provide information about all depolarizations of I.

2.2 Polarization and depolarization

2.2.1 Polarization

Let R = k[x1, . . . , xn] be a polynomial ring in n indeterminates over a
field k on which we make no explicit assumptions. For any monomial
ideal I ⊆ R, we let G(I) = {m1, . . . , mr} be the unique minimal monomial
generating set of I.

Definition 2.2.1. Let a = (a1, . . . , an) and μ = (b1, . . . , bn) be two elements
in Nn with bi ≤ ai for all i. The polarization of μ in Na1+···+an is the
multi-index

μ = (1, . . . , 1︸ ︷︷ ︸
b1

, 0, . . . , 0︸ ︷︷ ︸
a1−b1

, . . . , 1, . . . , 1︸ ︷︷ ︸
bn

, 0, . . . , 0︸ ︷︷ ︸
an−bn

).
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The polarization of xμ = xb1
1 · · · xbn

n ∈ R with respect to a is the squarefree
monomial

xμ = x1,1 · · · x1,b1 · · · xn,1 · · · xn,bn ∈ k[x1,1, . . . , x1,a1 , . . . , xn,1, . . . , xn,an ].

Note that for ease of notation we used x with two different meanings
in this definition.

Example 2.2.2. Let xμ ∈ R = k[x1, x2, x3], with μ = (2, 1, 3). The polariza-
tion of xμ with respect to a = (3, 2, 3) is

xμ = x(1,1,0,1,0,1,1,1) = x1,1x1,2x2,1x3,1x3,2x3,3,

with S = k[x1,1, x1,2, x1,3, x2,1, x2,2, x3,1, x3,2, x3,3].

�

Definition 2.2.3. Let I = 〈m1, . . . , mr〉 ⊆ R be a monomial ideal and let ai
be the maximum exponent to which indeterminate xi appears among the
generators of I. The polarization of I, denoted by IP, is the monomial ideal
in S given by IP = 〈m1, . . . , mr〉, where mi is the polarization of mi with
respect to a.

Example 2.2.4. Let Let I =
〈

x2y2, z2〉 ⊆ k[x, y, z]. The polarization of I is
the squarefree monomial ideal

IP = 〈x1x2y1y2, z1z2〉 ⊆ k[x1, x2, y1, y2, z1, z2].

�

Observe that Definition 2.2.3 is a combinatorial expression of the fol-
lowing result of Fröberg [49] as given in [137] in which I′ is a polarization
of I.

Proposition 2.2.5. For any monomial ideal I ⊂ R, there is a squarefree monomial
ideal I′ ⊂ R′ such that R/I = R′/(I′ + (h)), where h is a regular sequence2 on
R′/I′ of forms of degree one.

2Let M be a graded module on R = k[x1, . . . , xn]. A sequence f = f1, . . . , fr ∈ R is
a regular sequence on M or M-sequence if M/fM �= 0 and fi is a nonzerodivisor on
M/〈 f1, . . . , fi−1〉M for each i = 1, . . . , r.
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2.2.1.1 Polarization and free resolutions

Let
F : · · · −→ Fi

δi−→ Fi−1
δi−1−−→ Fi−2 −→ . . .

be a multigraded chain complex of R-modules, i.e., Fi =
⊕ri

j=1 R(−μi,j)

where μij ∈ Nn, and the differentials δi have multidegree 0. The differen-
tials δi are given by matrices Ai whose entries are monomials in Nn. We
denote by ei,j the standard generator of the j-th summand of Fi whose mul-
tidegree is μi,j. Then the j-th column of Ai is given by (ai

1,j, ai
2,j, . . . , ai

ri−1,j)

where δ(ei,j) = ∑
ri−1
k=1 ai

k,jei−1,k and the ei−1,k are the standard generators of

Fi−1. The nonzero entries ai
k,j are given by μi,j/μi−1,k.

Definition 2.2.6. We define F, the polarization of F, as the chain complex
given by

F : · · · −→ Fi
δi−→ Fi−1

δi−1−−→ Fi−2 −→ . . .

where Fi =
⊕ri

j=1 R(−μij) if Fi =
⊕ri

j=1 R(−μij) and the matrices Ai of the

differentials δi are given by

ai
j,k =

⎧⎨⎩0 if ai
j,k = 0

x1,c1+1 · · · x1,b1 · · · xn,cn+1 · · · xn,bn if ai
j,k �= 0, μi,j = xb, μi−1,k = xc,

where b = (b1, . . . , bn) and c = (c1, . . . , cn). Note that if 0 �= ai
j,k ∈ k then

ai
j,k = ai

j,k.

By polarizing a resolution of a monomial ideal we obtain a resolution
of its polarization. This is a consequence of Theorem 3.3 in [139]. Here, we
present our own proof to keep track of the explicit changes in each multi-
degree. The use of depolarization to compute resolutions of a monomial
ideal from the resolutions of its polarization is also a well-known result,
see Examples 3.4 in [139] and [49].

Proposition 2.2.7. Let F be a multigraded free resolution of a monomial ideal
I. The polarization F of F is a multigraded free resolution of the polarization of
I. Moreover, the ranks and the graded ranks of F are equal to those of F. In the
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case of multigraded ranks, we have that the (i, μ)-rank of F equals the (i, μ)-rank
of F.

Proof. Given the fact that F is a multigraded free resolution of I and the
construction of F by polarization, we only need to prove that Im(δi) =

Ker(δi−1).
We know that δ2 = 0. Explicitly, we have that

δi−1δi(ei,j) =
ri−1

∑
k=1

ri−2

∑
l=1

ai
k,ja

i−1
l,k ei−2,l = 0, ∀ i, j.

This implies that

ri−1

∑
k=1

ri−2

∑
l=1

ai
k,ja

i−1
l,k =

ri−1

∑
k=1

ri−2

∑
l=1

μ(ei,j)

μ(ei−1,k)

μ(ei−1,k)

μ(ei−2,l)
= 0, ∀ i, j. (2.2.1)

On the other hand, from the definitions of the maps in F we have that for
any i, j

δi−1δi(ei,j) =
ri−1

∑
k=1

ri−2

∑
l=1

ai
k,ja

i−1
l,k ei−2,l.

Now by polarizing (2.2.1), we obtain

ri−1

∑
k=1

ri−2

∑
l=1

μ(ei,j)

μ(ei−1,k)

μ(ei−1,k)

μ(ei−2,l)
=

ri−1

∑
k=1

ri−2

∑
l=1

ai
k,ja

i−1
l,k = 0,

and hence δi−1δi(ei,j) = 0 for all i, j. Since polarization induces a multi-
graded isomorphism, the result follows.

Proposition 2.2.7 is important in our context since it allows us to use
polarization in the algebraic analysis of system reliability and obtain
formulas and bounds for the reliability of the system corresponding to the
polarization of a given ideal. In particular, we can use the Mayer-Vietoris
trees as one of the main tools applied.

Corollary 2.2.8. Let F be a cone resolution of a monomial ideal I, then F is a
cone resolution of the polarization of I. In particular, if T is a Mayer-Vietoris tree
of I, then the polarized tree T is a Mayer-Vietoris tree of the polarization of I.

59



2.2. Polarization and depolarization

2.2.2 Depolarization

In the Section 2.1 we have said that polarization has been extensively
studied whereas the reverse process, depolarization, has not. Depolariza-
tion transforms a square-free monomial ideal into a monomial ideal with
exponents, providing ideals belonging to rings with less variables than
the original monomial ideal. Although polarization of a monomial ideals
is unique, depolarization is not, i.e. there exist different monomial ideals
sharing the same polarization.

We claimed before that there are some properties and features which
are shared between the square-free monomial ideals and its depolariza-
tions such as Betti numbers or the Hilbert series (it is not exactly the
same, but it is close-related). Most of the times making computations with
square-free monomial ideals is (much) more efficient even though, as we
mentioned earlier, one has to pay the price of dealing with more variables.
Nonetheless, there are times when having all these extra variables does
not pay off. This usually happens when we have to deal with a monomial
ideal that falls under certain category for which some invariants are ex-
plicitly defined (such is the case of the stable ideals for which Eliahou and
Kervaire [41] give an explicit definition of the minimal resolution). This is
mainly the reason why depolarization is so important: it allows us to per-
form computations with square-free or monomial ideals with exponents
indistinctly. Then, one can explore which features and properties are and
which are not shared between a square-free ideal and its polarization.

When it comes to reliability, depolarization allows to reduce the number
of components of the system, which is sometimes profitable. This process
will be explored in Chapter 3.

Definition 2.2.9. Let R, S and T be polynomial rings over a field k. Let
I ⊆ R be a squarefree monomial ideal. A depolarization of I is a monomial
ideal J ⊆ S such that I is isomorphic to JP ⊆ T, that is: there is a bijective
map ϕ from the set of variables of R to the set of variables of T such
that ϕ (G(I)) = G(JP), where G(JP) is the unique minimal monomial
generating set of JP.
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Observe that the ring R and T in the definition above should have the
same number of variables.

Example 2.2.10. (A) Let I = 〈x1x2x3x4, x5x6〉 ⊆ k[x1, x2, x3, x4, x5, x6]. The
monomial ideals J1 =

〈
x2y2, z2〉 ⊆ k[x, y, z] and J2 =

〈
x4, y2〉 ⊆ k[x, y]

are two depolarizations of the squarefree monomial ideal I. Observe
that

• JP
1 = 〈a1a2b1b2, c1c2〉 ⊆ k[a1, a2, b1, b2, c1, c2] is the polarization of

J1. Furthermore, I and JP
1 are isomorphic via the correspondence

a1 �→ x1, a2 �→ x2, b1 �→ x3, b2 �→ x4, c1 �→ x5, c2 �→ x6.

• JP
1 = 〈a1a2a3a4, b1b2〉 ⊆ k[a1, a2, a3, a4, b1, b2] is the polarization of

J1. Furthermore, I and JP
1 are isomorphic via the correspondence

a1 �→ x1, a2 �→ x2, a3 �→ x3, a4 �→ x4, b1 �→ x5, b2 �→ x6.

(B) Consider the squarefree monomial ideal I = 〈xyz, xyt, yzt, ytu〉 ⊆ R =

k[x, y, z, t, u]. The ideals

J1 = 〈ab2, a2b, abc, a2c〉 and J2 = 〈ab2, abc, b3, b2c〉

in S = k[a, b, c] are two different depolarizations of I. To check this
observe that

• JP
1 = 〈a1b1b2, a1a2b1, a1b1c1, a1a2c1〉 ⊆ k[a1, a2, b1, b2, c1] and we

have an isomorphism between I and JP
1 via the correspondence

a1 �→ y, a2 �→ x, b1 �→ t, b2 �→ u, c1 �→ z.

• JP
2 = 〈a1b1b2, a1b1c1, b1b2b3, b1b2c1〉 ⊆ k[a1, b1, b2, b3, c1] is isomor-

phic to I by a1 �→ x, b1 �→ y, b2 �→ t, b3 �→ u, c1 �→ z.

�

Remark 2.2.11. As seen in Proposition 2.2.5, depolarization is a combina-
torial way to perform identification of variables arosen from a regular
sequence of linear forms. A natural question would be whether every such
identification of variables can be read as a depolarization of the original
ideal. In the following example we show that this is not true in general.
Consider the following three ideals from [100], Example 9.5:
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M = 〈x3
1, x2

2, x2
3, x2

1x2, x2
1x3, x1x2x3 ⊆ k[x1, x2, x3]

M = 〈x12x13x14, x21x24, x31x34, x13x14x24, x12x14x34, x14x24x34〉
⊆ k[x12, x13, x14, x21, x24, x31, x31]

O = 〈x12x13x14, x12x24, x13x34, x13x14x24, x12x14x34, x14x24x34〉
⊆ k[x12, x13, x14, x24, x34].

Both ideals M and O can be obtained from M by identifying a set of
variables together. More precisely, in M we relabel every variable xij with
the variable xi, and in O we identify the following sets of variables with
each other {x13, x31} and {x12, x21}. Lemma 10.4 from [100] implies that
these identifications of variables arise from a regular sequence of linear
forms. However, we note that neither of them is a depolarization of M.

2.3 The support poset

In Section 2.2 we showed that polarization and depolarization are inverse
operations but, although polarization is unique, depolarization is not.
Then, some natural questions arise:

• How can one obtain all monomial ideals that have the same polar-
ization?

• Have the monomial ideals sharing the same polarization ideal any
property in common?

The support poset is a combinatoric tool which helps us to answer
these questions.

2.3.1 The support poset

Let R = k[x1, . . . , xn] be a polynomial ring in n variables. For any mono-
mial m of R the support of m, denoted by supp(m), is defined as the set
of indices of variables which divide m. The support of a monomial ideal
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I ⊆ R is supp(I) =
⋃

m∈G(I) supp(m), where G(I) is the unique minimal
monomial generating set of I. We say that an ideal I has full support if
supp(I) = {1, . . . , n} = [n]. For ease of notation we assume that ideals
have full support, unless otherwise stated.

Let I be a squarefree monomial ideal with G(I) = {m1, . . . , mr}. For
each i in supp(I) we define the set Ci ⊆ supp(I) as,

Ci =
⋂

m∈G(I)
xi divides m

supp(m).

In other words, Ci is given by the indices of all the variables that appear in
every minimal generator of I in which xi is present. Let CI = {C1, . . . , Cn}.
The poset on the elements of CI ordered by inclusion is called the support
poset of I and is denoted suppPos(I). We define the support poset of a
general monomial ideal as the support poset of its polarization obtained
from Definition 2.2.1.

Given n subsets Ci of [n], we form the poset (C = {C1, . . . , Cn},⊆)

on elements Ci which are ordered by inclusion. Note that some Ci can
possibly be equal to Cj for i �= j. A natural question is whether for such
(C,⊆) we can construct a monomial ideal IC whose support poset is (C,⊆).
This question is not easy in general. See Example 2.3.2 (2). In the following
proposition we provide a sufficient condition to construct such ideals.
Another sufficient condition will be given in Proposition 2.3.14.

Proposition 2.3.1. Let (C = {C1, . . . , Cn},⊆) be a poset such that {i} ⊆
Ci ⊆ [n] for each i, and if k ∈ Ci and i ∈ Cj then k ∈ Cj for all i, j, k. Let
R = k[x1, . . . , xn] and let mi = ∏j∈Ci

xj for each i. For any σ ⊆ [n] let
mσ = lcm(mi|i ∈ σ), and for any collection Σ of subsets of [n], consider the
monomial ideal IΣ = 〈mσ|σ ∈ Σ〉. Then (C,⊆) is the support poset of IΣ if the
following properties hold:

1. ∀i ∈ [n] there is some σ ∈ Σ such that xi|mσ.

2. If {σ : xi|mσ} ⊆ {σ : xj|mσ}, then Cj ⊆ Ci.

Proof. Let (D = {D1, . . . , Dn},⊆) be the support poset of the ideal IΣ. We
want to show that Dj = Cj for all j ∈ {1, . . . , n}.
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We have that Dj =
⋂

xj |mσ

σ∈Σ

supp(mσ). If xj divides mσ, then there is

some � ∈ σ such that xj divides m�. This implies that mj divides mσ for all
σ with xj|mσ. Hence, supp(mj) ⊂

⋂
xj |mσ

σ∈Σ

supp(mσ) which means Cj ⊆ Dj.

On the other hand, k ∈ Dj implies that xk divides all mσ, where xj|mσ.
This together with condition (2) imply that Ck ⊆ Cj and k ∈ Cj which
means Dj ⊆ Cj.

In the following example, we show that some posets might not appear
as support poset of any ideal, and on the other hand, several ideals might
have the same support poset.

Example 2.3.2. 1. Let C1 = {1, 2}, C2 = {2}, C3 = {3}, C4 = {4} and
C5 = {4, 5}. Let

Σ1 = {{1}, {2, 4}, {3}, {5}},

Σ2 = {{1}, {2, 3}, {3, 4}, {5}},

Σ3 = {{1, 3}, {3, 5}, {1, 4}, {2, 5}}.

These three collections satisfy the conditions in Proposition 2.3.1
and hence (C = {C1, . . . , C5},⊆) is the support poset of the ideals
IΣ1 = 〈x1x2, x2x4, x3, x4x5〉, IΣ2 = 〈x1x2, x2x3, x3x4, x4x5〉 and IΣ3 =

〈x1x2x3, x3x4x5, x1x2x4, x2x4x5〉.

2. Let C be given by C1 = {1}, C2 = {1, 2} and C3 = {1, 2, 3}, then
there is no monomial ideal I ⊆ R[x1, x2, x3] such that (C,⊆) is the
support poset of I. To see this, observe that x1x2x3 must be one of
the minimal generators of I, hence the only one, but C is not the
support poset of I = 〈x1x2x3〉.

3. Let C1 = {1, 2, 4}, C2 = {1, 2, 4}, C3 = {1, 2, 3, 4}, C4 = {4}, C5 =

{1, 2, 4, 5, 6}, C6 = {4, 6}, C7 = {7}, C8 = {7, 8}, C9 = {7, 8, 9},
C10 = {7, 8, 10}. Then for Σ = {{3}, {6, 7}, {5}, {9}, {10}}, the ideal
IΣ = 〈x1x2x3x4, x4x6x7, x1x2x4x5x6, x7x8x9, x7x8x10〉 ⊆ k[x1, . . . , x10].
has (C = {C1, . . . , C10},⊆) as its support poset.

�
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Remark 2.3.3. Note that in any support poset, k ∈ Ci and i ∈ Cj imply that
k ∈ Cj. We can use this fact to visualize support posets using their Hasse
diagrams, where each node is labelled by their elements which are not in
any of the nodes below it.

2 3 4

1 5

(a) Support poset for Example 2.3.2 (1)

4 7

1,2 6 8

3 5 9 10

(b) Support poset for Example 2.3.2 (3)

The support poset of any monomial ideal I ⊆ R = k[x1, . . . , xn], to-
gether with a given ordering < on the variables x1, . . . , xn induces a partial
order ≺ on the set of variables as follows: xi ≺ xj if Ci ⊂ Cj or if Ci = Cj
and xi < xj. We call this partial order the <-support poset of I and denote
it by suppPos<(I). If Ci �= Cj for every pair of indices, then suppPos(I) is
equal to the <-support poset of I for any order <. See Figure 1 (A) for
Example 2.3.2 (1).

Note that, the Hasse diagram of suppPos<(I) can be obtained from
the Hasse diagram of suppPos(I) in which every node C labelled with
more than one index is substituted by a vertical line of nodes labelled by
distinct elements of C, ordered by <. In other words, every <-support
poset of I is a refinement of suppPos(I). See Figure 2.2 as a <-support
poset of IΣ in Example 2.3.2 (3) for any order on the variables which is
compatible with x1 < x2.

4 7

1

2

6

8

3 5

9 10

Figure 2.2: suppPos<(I) for Example 2.3.2 (3) for any order with x1 < x2
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2.3.2 Support Poset applied to depolarization

2.3.2.1 Depolarization orders

Recall that a subset C of a poset (P ,≺) is a chain if any two elements of C
are comparable. An antichain is a set of pairwise incomparable elements
in (P ,≺).

Definition 2.3.4. Given an order < on the variables of R, a depolarization
order of a squarefree monomial ideal I ⊆ R is a partition of suppPos<(I)
into disjoint chains.

We now show that depolarization orders characterize all depolariza-
tions of I. Namely, every depolarization order gives rise to a depolarization
of I, and every depolarization of I can be realized as a depolarization
obtained by such an order.

Proposition 2.3.5. Using any depolarization order of a squarefree monomial
ideal I, we can construct a depolarization of I.

Proof. Let (P ,≺) be a depolarization order for a squarefree monomial
ideal I ⊆ R = k[x1, . . . , xn], where P = {σ1, . . . , σk} and each σi is a chain
in suppPos<(I) for a given order < on the variables of R. We construct a
depolarization J of I in a polynomial ring S = k[y1, . . . , yk] as follows: for
each monomial m in G(I) consider the monomial m′ given by the image
of m under the correspondence xi �→ yj for each i ∈ σj. The monomials
m′ generate an ideal J whose polarization JP is clearly equivalent to I via
the map sending yj,� �→ xσj�

where σj� is the �-th element of σj under the
order ≺.

Example 2.3.6. The partition given by P = {{4, 2, 1, 3}, {6, 5}, {7, 8, 9}, {10}}
is a depolarization order for the ideal I in Example 2.3.2 (3) for any order-
ing in which x2 < x1. Figure 2.4 shows this partition.

The depolarization order (P ,≺) depicted in Figure 2.4 gives the de-
polarization J = 〈y4

1, y1y2y3, y3
1y2

2, y3
3, y2

3y4〉 ⊆ k[y1, y2, y3, y4] of I. The
equivalence between JP and I is given by y1,1 �→ x4, y1,2 �→ x2, y1,3 �→ x1,
y1,4 �→ x3, y2,1 �→ x6, y2,2 �→ x5, y3,1 �→ x7, y3,2 �→ x8, y3,3 �→ x9, y4,1 �→ x10.
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4 7

2

1

6

8

3 5

9 10

Figure 2.3: A chain partition of suppPos<(I) in Example 2.3.2 (3) gives a
depolarization order (P ,≺) for I.

�

Remark 2.3.7. Observe that the order selected in the support poset for
variables x1, x2 in Example 2.3.6 is not relevant for depolarizing the ideal,
i.e. if we choose the order x1 > x2 the depolarizations obtained are the
same. A node labeled with indexes i, j (or more than one) is a consequence
of Ci = Cj which means that indexes i and j appears exactly in the same
monomials.

We have just seen that every depolarization order of a squarefree
monomial ideal I gives a depolarization of I. Now, we study the reverse
of this process and we show that given any depolarization J of I we can
explicitly find a depolarization order from which we can reconstruct J.

Theorem 2.3.8. Let I = 〈m1, . . . , mr〉 ⊆ R = k[x1, . . . , xn] be a squarefree
monomial ideal. Every depolarization of I can be obtained from a depolarization
order of I.

Proof. Let J ⊆ S = k[y1, . . . , yk] be a depolarization of the ideal I and let
JP ⊆ T = k[y1,1, . . . , y1,j1 , . . . , yk,1, . . . , yk,jk ] be the polarization of J. Since J
is a depolarization of I, we know that R and T have the same number of
variables and that I and JP are equivalent under a map sending xi to ya,b
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for some a ∈ {1, . . . , k} and b ∈ {1, . . . , ja}. Now consider in {1, . . . , n}
the partition P with k subsets in which σi contains all j such that xj
corresponds to some yi,b with the total order given by j < j′ if b < b′,
where yi,b �→ xj and yi,b′ �→ xj′ . Then (P ,<) is a depolarization order for
I that produces the depolarization J.

Example 2.3.9. Consider the depolarization J = 〈ab2, a2b, abc, a2c〉 of
the ideal I = 〈xyz, xyt, yzt, ytu〉 in Example 2.2.10 (B). We have that
JP ⊆ k[a1, a2, b1, b2, c1] is equivalent to I ⊆ k[x, y, z, t, u] through the corre-
spondence a1 �→ y, a2 �→ x, b1 �→ t, b2 �→ u, c1 �→ z. The corresponding
depolarization order is P = {{y, x}, {t, u}, {z}} where the elements in the
sets are given in increasing order.

y

x z t

u

Figure 2.4: The chain partition proposed associated to the depolarization
order given in Example 2.3.9.

�

2.3.2.2 Depolarization posets

Let P and P′ be two chain partitions of a given poset. We say that P is
a refinement of P′ if for every chain C in P there is a chain C′ in P′ such
that C′ ⊆ C. The set of all chain partitions of a given poset are sorted by
refinement and using this ordering they form themselves a poset. Let I
be a squarefree monomial ideal and let J, J′ be two depolarizations of I.
We say that J ≤ J′ if the chain partition giving rise to J is a refinement of
the one corresponding to J′. Using this ordering, a collection of ideals that
are depolarizations of a given squarefree monomial ideal I forms a poset
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in which I is the unique minimal element. We call this the depolarization
poset of I, denoted DP(I). Given any monomial ideal J (not necessarily
squarefree), we define its depolarization poset to be the depolarization poset
of its polarization JP. In other words, DP(J) := DP(JP).

Every depolarization poset has a unique minimal element which is a
squarefree monomial ideal, hence DP(J) is a meet-semilattice for every
monomial ideal J, that is for every pair K and K′ in DP(J) there is an
element in DP(J), denoted by K ∧ K′, which is smaller than both of them.
On the other hand, DP(J) might have several maximal elements and
therefore it is not a lattice in general. We say that an ideal J ⊆ k[x1, . . . , xn]

is a maximum element in its depolarization poset if there is no other ideal
J′ ⊆ k[x1, . . . , xm] in DP(J) such that m < n. That means the ambient ring
of J has the minimal number of variables among the ambient rings of all
ideals in DP(J).

2.3.2.3 Copolar ideals

Here, we study which algebraic invariants, such as their Betti numbers,
are preserved with the operations polarization and depolarization. A
motivation for studying such family of ideals is to find some particular
ideal in the family that can provide information about the rest of the ideals
in the family.

Definition 2.3.10. Two monomial ideals I and J are called copolar if their
polarizations are equivalent, i.e., they are in the same depolarization poset.

Copolarity is an equivalence relation in the set of monomial ideals.
We say that a property or numerical invariant of an ideal is copolar if it is
shared by all ideals in the same polarity class. The following proposition
gives a list of copolar properties. For more details, we refer the reader to
[62], Corollary 1.6.3.

Proposition 2.3.11. Let I ⊆ S be a monomial ideal and let J ⊆ T be its
polarization. Then

(1) βi,j(I) = βi,j(J) for all i and j
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(2) HSI(t) = (1 − t)δHSJ(t) where δ = dim T − dim S

(3) height(I) = height(J)

(4) projdim(S/I) = projdim(T/J) and reg(S/I) = reg(T/J)

(5) S/I is Cohen-Macaulay if and only if T/J is Cohen-Macaulay.

A reason behind the items in Proposition 2.3.11 is that the lcm-lattice
[139, 94] of I, which is the lattice of all least common multiples of subsets
of the (minimal) generators of I, ordered by divisibility, and is denoted
by lcm(I), is isomorphic to the lcm-lattice of J under the map taking
lcm(m, m′) to lcm(m, m′) for every pair of monomials in G(I).

Lemma 2.3.12. Let I and J be two copolar ideals. Then lcm(I) ∼= lcm(J).

The lcm-lattice of a monomial ideal encodes the structure of its minimal
free resolution and thus its Betti numbers [139]. In fact polarization is a
particular tool to generate ideals with isomorphic lcm-lattice. Some other
important invariants are also fixed under polarization. For example, in
[71] where the authors proved that the Stanley conjecture can be reduced
to the squarefree case via polarization, and that the Stanley projective
dimension is invariant under polarization (in particular, two ideals with
isomorphic lcm-lattice have the same Stanley projective dimension). One
recent remarkable result using polarization is given in [91], where the
authors used polarization and combinatorial optimization to study the
depth and regularity of powers of edge ideals on graphs and clutters.

We first take advantage of the fact that the number of variables of the
ambient ring is not constant within the same polarity class, but the pro-
jective dimension is. Therefore, for any monomial ideal we can construct
its depolarization poset and find the maximum elements whose ambient
rings has the minimum number of variables. Since the number of variables
of a polynomial ring is an upper bound for the projective dimension of its
ideals, this procedure provides us with an upper bound for the projective
dimension of the ideals in terms of their depolarization posets. Recall that
the width of a poset is the maximum size of its antichains.

Theorem 2.3.13. The width of suppPos(IP) is an upper bound for projdim(I).
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Proof. The projective dimension of I is equal to the projective dimension
of its polarization IP which is in turn the same as that of any of its
depolarizations. Let J be a depolarization of IP whose ambient ring has
the smallest number of variables, say r. By Hilbert Syzygy Theorem we
know that projdim(J) ≤ r. By Theorem 2.3.8 we know that r is given
by the minimal number of chains in which we can partition the support
poset of IP (observe that this number is the same for any suppPos<(I)
and suppPos(I)). By Dilworth’s Theorem [34], this number is smaller than
the size of the maximal antichain of the support poset of IP which is the
width of suppPos(IP).

An interesting question, relegated to future work (see Chapter 5) be-
cause it is out of the scope of this thesis, is to compare this bound with
other bounds for the projective dimension of monomial ideals, like the
ones in [32, 33].

2.3.2.4 Quasi-stable ideals

We usually study depolarization posets to find an ideal with a particularly
nice property that can be transferred to its copolar ideals. For instance,
here we study quasi-stable ideals [123] to compute the algebraic invariants
of their copolar ideals.

Quasi-stable ideals are also called ideals of nested type [20] or ideals of
Borel type [65]. A monomial ideal I ⊆ k[x1, . . . , xn] is of nested type if each
of its associated prime ideals is of form p = (x1, . . . , xi) for some i. The
equivalence between these families of ideals is not immediate and it has
been proven by Seiler in [123, Proposition 4.4].

The invariants of such ideals have been extensively studied in [20,
123], and it is shown that their Castelnuovo-Mumford regularity and
their projective dimension can be obtained in terms of their irreducible
decompositions or in terms of their Pommaret bases. Moreover, a minimal
free resolution of these ideals is explicitly computed in [123, Theorem 8.6].

Therefore, if a polarity class contains a quasi-stable ideal, then we can
use the aforementioned results to compute the Castelnuovo-Mumford
regularity and the projective dimension of each ideal in such class. Since
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zero-dimensional ideals are quasi-stable we can make use of these consid-
erations in the polarity classes that contain at least one zero-dimensional
ideal.

In the same spirit as Proposition 2.3.1 we provide a sufficient condition
for a poset to be a support poset of a zero-dimensional monomial ideal.

Proposition 2.3.14. Let n, m1, . . . , mn be some positive integers with 1 ≤ mi ≤
n for all i and let m = ∑i mi. Consider a poset (P ,⊆) on subsets of {1, . . . , m}
formed by n disjoint paths each of length mi. Then there is a squarefree monomial
ideal I whose support poset is P except if n = 2 and m1 �= m2. Moreover, if
mi > 1 for all i, then there is a zero-dimensional monomial ideal copolar to I.

Proof. Let P = A1 � · · · � An where

Ai = {{ai,1}, {ai,1, ai,2}, . . . , {ai,1, . . . , ai,mi}}.

We assume that n > 2 or m1 = m2. The remaining case is studied in
Example 2.3.15.

For ease of notation, we identify each variable xai,j with its subindex
ai,j. We can assume without loss of generality that m1 ≥ · · · ≥ mn.

We first construct a monomial ideal generated by the following sets of
monomials:

1. G1 consists of the monomials μi = ai,1 · · · ai,mi for all i with mi > 1.

2. G2 consists of the monomials μi,j = ai,1 · · · ai,jbi,j for all i, j with
1 < j < mi. Here, bi,j = a�i+j−1�,1 where �i + j − 1� denotes i + j − 1
modulo n. Note that the indices bi,j are pairwise distinct for each i,
as mi ≤ n.

3. G3 = {ai,1ai′,1 : ai,1, ai′,1 ∈ G′
3 and ai,1ai′,1 � m for any m ∈ G1 ∪ G2},

where G′
3 consists of all indices ai,1 for mi = 1 that appeared at most

once as bj,k in G2, and indices ai,1 for mi > 1 that never appeared as
bj,k in G2.

We now prove that the support poset of the ideal IG ⊆ k[xa1,1 , . . . , xan,mn ]

generated by the above sets of monomials is (P ,⊆).
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To see this, first observe that, by construction, the monomials in G =

G1 ∪ G2 ∪ G3 do not divide each other. Now we show that for each pair
of variables ai,j, ai′,j′ with i �= i′ there is at least one monomial in G which
only contains one of these variables. If j > 1 or j′ > 1, then it is easy
to find such a monomial in G1. Now assume that j = j′ = 1. If mi > 1
or mi′ > 1, then such a monomial can be found in G1. Otherwise, they
appear in separate monomials in G2 or G3.

Now, we show that Cai,j = {ai,1, . . . , ai,j} for every variable aij. First note
that every variable ai,1 appears at least once in G2 or G3 without the rest
of the variables ai,j for j > 1. Thus Cai,1 = {ai,1}. For mi > 1, ai,mi appears
only in the monomial μi = ai,1 · · · ai,mi in G1, hence Cai,mi

= {ai,1, . . . , ai,mi}.
Now assume that 1 < j < mi. The variable ai,j appears always together
with all the variables ai,j′ for j′ < j since they all divide the monomials
μi in G1 and μi,j ∈ G2. On the other hand, if mi > � > j, then by the
construction of G2, there is at last one monomial μi,j in which ai,� is not
present. Hence, Cai,j = {ai,1, . . . , ai,j} which completes the proof.

Moreover, if mi > 1 for each i, then using the chain partition given by
the disjoint paths themselves, the corresponding depolarization of I has
one variable for each i whose pure power appears in G1, which implies
that I is zero-dimensional.

Example 2.3.15. Let n = 2, m1 = 2 and m2 = 1. Then the minimal
generating set of any monomial ideal I with the support poset P =

{{1}, {1, 2}, {3}} must include a monomial divisible by x1x2. Therefore,
the only candidates for such an ideal are 〈x1x2x3〉, 〈x1x2, x3〉, 〈x1x2, x1x3〉,
〈x1x2, x2x3〉 and 〈x1x2, x1x3, x2x3〉. However, none of them has P as it
support poset.

�

Example 2.3.16. Consider the poset (P ,⊆) on the following subsets of
{1, . . . , 14}. Let

A1 = {{1}, . . . , {1, 2, 3, 4, 5, 6}}, A2 = {{7}, . . . , {7, 8, 9, 10}},

A3 = {{11}}, A4 = {{12}}, A5 = {{13}}, A6 = {{14}}.
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Then following the notation of the proof of Proposition 2.3.14 we have that
(P ,⊆) is the support poset of the ideal generated by the monomials in
G1 ∪ G2 ∪ G3, where

G1 ={x1x2x3x4x5x6, x7x8x9x10}
G2 ={x1x2x7, x1x2x3x11, x1x2x3x4x12, x1x2x3x4x5x13, x7x8x11, x7x8x9x12}
G3 ={x1x14, x13x14} and G′

3 = {x1, x13, x14}.

�

Example 2.3.17. Consider the following monomial ideal in 9 variables:

I = 〈x1x2x3x4, x5x6x7, x8x9, x1x2x3x5, x1x2x8, x5x6x8, x1x5x8〉.

One can check that p1 = 〈1, 5, 8〉 and p2 = 〈2, 7, 8〉 are associated primes
of I and they are not nested. Then, I is not quasi-stable. However, by
determining the depolarization poset of I we found that the ideal,

J = 〈y4
1, y3

2, y2
3, y3

1y2, y2
1y3, y2

2y3, y1y2y3〉 ⊆ k[y1, y2, y3]

is one of its maximum depolarizations. As J is a zero-dimensional ideal,
and hence quasi-stable, by applying Theorems 8.11 and 9.2 in [123] we
obtain pd(J) = 2 and reg(J) = 5, thus obtaining these invariants for I.

�

2.3.3 Support poset of some monomial ideals

We now know that the support poset of a monomial ideal I ⊆ k[x1, . . . , xn]

encodes the relation between the variables x1, . . . , xn and the minimal
monomial generators of I.

As it is shown in previous sections not every poset is realizable as
the support poset of a monomial ideal. A natural problem is therefore
to find posets that can be realized as support posets of monomial ideals and
provide explicit descriptions of those ideals, so that we can describe properties
of the ideal based on properties of the support poset and viceversa. In
Proposition 2.3.14 we saw that a poset formed by n disjoint chains of
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different lengths are always a support poset of a squarefree monomial ideal
I. In fact, there if the subsets have length greater than 1, the exist a zero-
dimensional monomial ideal copolar to I. In Section 2.3.3.1 we go further
in the characterization of posets that are realizables as a support poset of
monomial ideals: we give some families of posets for which we can always
find at least one monomial ideal supported by them (collections of lines or
diamonds, and forests) and provide a full explicit description of the main
features of these ideals such as their Betti numbers and free resolutions,
see Propositions 2.3.21 and 2.3.24 and in particular Theorem 2.3.30.

Another natural question related to support posets is to find a natural
way to describe the support poset of some families of monomial ideals. We describe
in Section 2.3.3.2 the support poset of k-out-of-n and series-parallel ideals,
studied in Chapter 3, which correspond to relevant systems in reliability
theory [75, 117, 118]. We find a particular relation between forests and
series-parallel ideals, see Theorem 2.3.35 and Proposition 2.3.37. It is
known that a given poset can be the support poset of several different
monomial ideals. We see that this holds even within the classes of forests
and series-parallel ideals, i.e. a given forest can be the support poset of
several different series-parallel ideals.

Some open questions related to support posets can be found in Chap-
ter 5.

2.3.3.1 Ideals with a given support poset

In this section we give some posets that are realizables as a support poset
of some monomial ideals.

Proposition 2.3.18. Let n and m be two positive integers and let (P ,⊆) be a
poset of subsets of the set [nm] = {1, . . . , nm} formed by n disjoint lines each of
length m. Then there is at least one squarefree monomial ideal In,m such that P
is its support poset and there is a zero-dimensional monomial ideal Jn,m copolar
to In,m.

In particular, the ideal Jn,m ⊆ k[y1, . . . , yn] given by

Jn,m = 〈ym
1 , . . . , ym

n , ym−1
1 y2, . . . , y1ym−1

2 , . . . , ym−1
1 yn, . . . , y1ym−1

n 〉.
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is a zero dimensional ideal having P as its support poset.

Proof. We describe the construction of I stepwise as n increases. The base
case is n = 2. Let P = A1 � A2 where A1 = {1, . . . , m} and A2 = {m +

1, . . . , 2m}. The ideal I2,m ⊂ k[x1, . . . , x2m] generated by the monomials

x1 · · · xm, xm+1 · · · x2m, x1 · · · xm−1xm+1,

x1 · · · xm−2xm+1xm+2, . . . , x1xm+1 · · · x2m−1

satisfies that suppPos(I2,m) = P .
To see this, let us consider first the indices in A1. Observe that xm

appears only in the first generator, x1 . . . xm, hence Cm = {1, . . . , m}. If
1 ≤ j < m then every generator that contains xj also contains x1 . . . , xj−1
and if j < k ≤ m then there is at least one generator which contains xj but
not xk, for instance x1 · · · xjxm+1 · · · x2m−j. Finally, if k ≥ m + 1 we have
that xk is not present in x1 · · · xm in which xj is, hence Cj = {1, . . . , j}. By
simmetry, the same applies to the generators in A2.

Considering in P the chain partition given by the Ai’s we have that the
corresponding depolarization is J2,m ⊂ k[y1, y2] given by

J2,m = 〈ym
1 , ym

2 , ym−1
1 y2, . . . , y1ym−1

2 〉

which is zero-dimensional and JP
2,m = I2,m. Let now n = 3. Then

I3,m ⊆ k[x1, . . . x3m] is given by the same set of generators of I2,m plus
the following ones

{x2m+1 · · · x3m, x1 · · · xm−1x2m+1,

x1 · · · xm−2x2m+1x2m+2, . . . , x1xm+1 · · · x3m−1}.

Using the same argument as for n = 2 we have that suppPos(I3,m) =

A1 � A2 � A3. The ideal J3,m ⊆ [y1, y2, y3] is given by

J3 = 〈ym
1 , ym

2 , ym
3 , ym−1

1 y2, . . . , y1ym−1
2 , ym−1

1 y3, . . . , y1ym−1
3 〉.

Now, proceeding in the same way adding at each step the new generators

x(n−1)m+1 · · · xnm, x1 · · · xm−1x(n−1)m+1, . . . , x1x(n−1)m+1 · · · xnm−1
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we obtain the ideal In,m whose support poset is formed by a disjoint set of
n paths of size m.

The ideal Jn,m ⊆ k[y1, . . . , yn] is given by

Jn,m = 〈ym
1 , . . . , ym

n , ym−1
1 y2, . . . , y1ym−1

2 , . . . , ym−1
1 yn, . . . , y1ym−1

n 〉.

Observe that JP
n,m = In,m and Jn,m is zero-dimensional for all n, since it

contains a pure power of each of the variables.

Remark 2.3.19. If we take the same value for all mi, i = 1, . . . , n in Proposi-
tion 2.3.14, we obtain the particular case presented on Proposition 2.3.18.
The contribution of Proposition 2.3.18 is the explicit computation of the
zero-dimensional ideal when all the subsets have the same length.

Example 2.3.20. Let us take n = 2 and m = 3. Then, we have the support
poset showed on Figure 2.5

1

2

3

4

5

6

Figure 2.5: Support poset for Example 2.3.20

We can compute the monomial ideal associated to this poset by using
both Proposition 2.3.14 and .2.3.18.

Using Proposition 2.3.14 (and following the constructive proof) we
have that

A1 = {{1}, {1, 2}, {1, 2, 3}} and A2 = {{4}, {4, 5}, {4, 5, 6}} .

Now, we can construct the G sets:

G1 = {x1x2x3, x4x5x6} and G2 = {x1x2x4, x1x3x4} .

We have that

IG = G1 ∪ G2 = 〈x1x2x3, x4x5x6, x1x2x4, x1x3x4〉
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is a monomial ideal with the support poset given on Figure 2.5.
By using Proposition 2.3.18 we obtain that

J2,3 = y3
1, y3

2, y2
1y2, y1y3

2.

Polarizing we obtain

JP
n,m = {y11y12y13, y21y22y23, y11y12y21, y11y21y22} ,

which is isomorphic to IG via the correspondence x1 �→ y11x2 �→ y12, x3 �→
y13, x4 �→ y21, x5 �→ y22, x6 �→ y23.

�

Observe that the ideal constructed in Proposition 2.3.18 can be obtained
by taking the following collection σ in (P ,⊆)

Σ =

(
n⋃

i=1

{im}
)⋃⎛⎝n−1⋃

i=1

m−1⋃
j=1

{m − j, im + j}

⎞⎠ ,

which satisfies Proposition 2.3.1. The ideals Jn,m are generated in degree
m and their Betti numbers are computed by the following result.

Proposition 2.3.21. The Betti numbers of the ideal

Jn,m = 〈ym
1 , . . . , ym

n , ym−1
1 y2, . . . , y1ym−1

2 , . . . , ym−1
1 yn, . . . , y1ym−1

n 〉

are given by

β0(Jn,m) = n + (n − 1)(m − 1)

βi(Jn,m) =

(
n − 1

i

)
+

n

∑
j=2

(m − 1)
(

1 + n − j
i

)
+

(
n − 1
i + 1

)
∀ 1 ≤ i ≤ n − 1

In particular, projdim(Jn,m) = n − 1 and reg(Jn,m) = (n − 1)(m − 1). The
minimal free resolution of Jn,m can be obtained as an iterated mapping cone.
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Proof. We shall use Mayer-Vietoris trees. First we sort the generators of
Jn,m in the following way:

ym
1 , . . . , ym

n ,

y1ym−1
2 , . . . , y1ym−1

n ,

...

ym−1
1 y2, . . . , ym−1

1 yn.

Now, we use them in turn to construct a Mayer-Vietoris tree of Jn,m i.e. an
iterated mapping cone resolution. Let us denote this resolution by F and
let γi(Jn,m) denote the rank of the i’th module of F. We proceed row by
row with the pivots.

The first pivot, ym
1 produces the ideal 〈ym

1 〉 ∩ 〈ym
2 , . . . , ym−1

1 yn〉, mini-
mally generated by 〈ym

1 y2, . . . , ym
1 yn〉. Observe that the Taylor complex of

this ideal is its minimal free resolution, and hence the contribution of this
ideal to γi(Jn,m) is (n−1

i ) for 1 ≤ i ≤ n − 1. Each of the next n − 1 pivots in
the first row, namely ym

2 , . . . ym
n produce the ideals 〈y1ym

j , ym
j ym

j+1, . . . , ym
j ym

n 〉,
2 ≤ j ≤ n. Each of these ideals is again minimally resolved by its
Taylor complex and hence their contribution to γi(Jn,m) is (1+n−j

i ) for
1 ≤ i ≤ n − 1 and 2 ≤ j ≤ n.

For the next m − 2 rows of pivots, from

y1ym−1
2 , . . . , y1ym−1

n

to
ym−2

1 y2
2, . . . , ym−2

1 y2
n

we have that each pivot ym−k
1 yk

j with j = 2, . . . , n and k = 2, . . . , m − 1
produces the ideal

〈ym−k+1
1 yk

j , ym−k
1 yk

j yk
j+1, . . . , ym−k

1 yk
j yk

n〉.

All these ideals are again minimally resolved by their Taylor complexes
and hence their contribution to γi(Jn,m) is (1+n−j

i ) for 1 ≤ i ≤ n − 1, and
this is for 2 ≤ j ≤ n and 2 ≤ k ≤ m − 1 hence the contribution of these
rows to γi(Jn,m) is ∑n

j=2(m − 2)(1+n−j
i ) for 1 ≤ i ≤ n − 1.
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Finally, the last row forms a monomial ideal whose Taylor complex is
its minimal resolution and is generated by n − 1 monomials , hence its
contribution to γi(Jn,m) is (n−1

i+1) for 1 ≤ i ≤ n − 1.
Putting all these contributions together we have that

γi(Jn,m) =

(
n − 1

i

)
+

n

∑
j=2

(m − 1)
(

1 + n − j
i

)
+

(
n − 1
i + 1

)
∀ 1 ≤ i ≤ n − 1.

Now it is easy to observe, by the sorting of our pivots, that the Mayer-
Vitoris tree that we have built has no repeated generators, i.e. the gen-
erators of the modules in F all have different multidegrees, hence F is
minimal. And we obtain that projdim(Jn,m) = n − 1.

Finally, observe that the ideal produced by pivot ym
2 is

J = 〈y1ym
2 , ym

2 ym
3 , . . . ym

2 ym
n 〉 and reg(J) = (n − 1)(m − 1) + 1.

By easy inspection of the degrees of the rest of ideals involved, we can see
that reg(Jn,m) = reg(J)− 1 .

Remark 2.3.22. By keeping track of the (multi-)degrees of the generators of
the ideals in the Mayer-Vietoris tree built in Proposition 2.3.21 we obtain
the (multi-)graded Betti numbers of Jn,m.

Proposition 2.3.23. Let m be a positive integer, let (P ,⊆) be a poset of subsets of
the set [4m] formed by m > 1 disjoint diamonds D1, . . . , Dm, Di = {ai1, . . . , ai4}
with ai1 < ai2, ai1 < ai3, ai2 < ai4, ai3 < ai4. Then there is at least one
squarefree monomial ideal Im such that P is its support poset.

Proof. Consider the following two sets of monomials:

A = {x11x12x13x14, . . . , xm1xm2xm3xm4}

B = {x11x12x21x23, . . . , x(m−1)1x(m−1)2xm1xm3, xm1xm2x11x13}

Let Īm = 〈A ∪ B〉 ⊆ k[x11, . . . , x14, . . . , xm1, . . . , xm4], then P is in fact
the support poset of Īm. Just observe that for every i we have that xi4
is only present in the monomial xi1xi2xi3xi4 hence Ci4 = {i1, i2, i3, i4},
xi3 is present in the monomials xi1xi2xi3xi4 and xi−1,1xi−1,2xi1xi3 hence
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Ci3 = {i1, i3}. The variable xi2 is present in the monomials xi1xi2xi3xi4
and xi1xi2xi+1,1xi+1,3 hence Ci2 = {i1, i2}. Finally xi1 is present in the
monomials xi1xi2xi3xi4, xi1xi2x(i+1)1x(i+1)3 and x(i−1)1x(i−1)2xi1xi3 hence
Ci1 = {i1} 3.

One possible partition of (P ,⊆) is to consider, for each i the paths
{ai1, ai2, ai4} and {ai3}, the resulting deporalization is an ideal for which
we can explicitly compute the Betti numbers, hence obtaining the Betti
numbers of all the ideals in its polarity class.

Proposition 2.3.24. Let Im ⊆ k[x11, x12, . . . , xm1, xm2] the ideal given by

Im = 〈x3
11x12, . . . , x3

m1xm2, x2
11x2,1x2,2, . . . , x2

(m−1)1xm1xm2, x2
m1x11x12〉.

The Betti numbers of Im are given by

β0(Im) = 2m

βi(Im) = 2Km
m−3,i−1 + Km

m−2,i

where the numbers Km
a,b are given by the recurrence relation

Km
a,b = Km

a−2,b−1 + Km
a−1,b

with base cases

Km
a,0 = m + a, Km

0,i =

(
m

i + 1

)
, Km

1,i =

(
m
i

)
+

(
m

i + 1

)
.

Proof. We divide the generators of Im in two groups A and B. Group
A consists on the following m generators: x3

11x12, . . . , x3
m1xm2. Group B

consists on the following m generators:

x2
11x21x22, . . . , x2

(m−1)1xm1xm2, x2
m1x11x12.

Since Im has m generators in each of the groups we say that it is of the
form 〈m|m〉.

3If i = 1 then take m instead of i − 1, and if i = m take 1 instead of i + 1.
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To build the Mayer-Vietoris tree of Im we will first use the genera-
tors of group A in the given order. When using the first generator, the
ideal produced is given by the monomial x3

11x12 multiplied by each of
the following m − 3 generators from group A: x3

3,1x3,2, . . . , x3
m−1,1xm−1,2,

and the following m monomials, one for each generator of group B:
x2,1x2,2, x2

2,1x3,1x3,2, . . . , x2
m−1,1xm1xm2, x2

m1. I.e. the obtained ideal Ĩm is
of the form 〈m − 3|m〉. The ideal I′m = 〈x3

21x22, . . . , x2
m1x11x12〉 is of the

form 〈m − 1|m〉.
We continue the construction of the Mayer-Vietoris tree by using as

pivots the monomials in group A in their given order. If we take a pivot
from an ideal of the form 〈a|m〉 then its left child is of the form 〈a − 2|m〉
(or 〈0|m〉 if a ≤ 2) and the right child is of the form 〈a − 1|m〉. Each time,
when using the pivot x3

i1x(i+1)1x(i+1)2 we delete generators x3
(i+1)1x(i+1)2

from group A and transform the generators x2
i1x(i+1)1x(i+1)2 and x2

i−1xi1xi2
into x3

i1xi2x(i+1)1x(i+1)2 and x3
i1xi2x2

i−1 respectively (observe that when we
use x3

m1xm2 we transform xm1x11x12 into x3
m1xm2x11x12).

We continue this procedure until we reach an ideal of the form 〈0|m〉.
Ideals of this form are minimally resolved by their Taylor complex, no
matter how we choose pivots, since they consist of the list of generators
x2

11x21x22, . . . , x2
m1x11x12 where some of them have been substituted by

their corresponding x3
i1xi2x(i+1)1x(i+1)2 or by x3

(i−1)1x(i−1)2x2
i1. No lcm of

any set of i of these monomials is divisible by the lcm of any other set of i
of them.

The ideals of the form 〈a|m〉 for a > 1 which are in an even position
of dimension i of the tree contribute with a + m generators to βi(Im). The
nodes of the form 〈0|m〉 in an even position of dimension i of the tree
contribute with ( m

j−i+1) generators to β j(Im) for j ≥ i. Finally, the nodes
〈0|m〉 in an odd position of dimension i of the tree contribute to β j(Im)

with ( m
j−i+1) generators.

Now we add up all the contributions. The number Km
a,i for a > 0

represents the contribution of a node of the form 〈a|m〉 to βi(Im). From
the above considerations we have that Km

a,i = Km
a−1,i + Km

a−2,i−1 and the base
cases of this recursion are Km

a,0 = m + a for a > 0, Km
0,i = ( m

i+1) and Km
1,i =
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(m
i ) + ( m

i+1) for i > 0. Finally, from the first step in the construction of the
tree, we have that βi(Im) = Km

m−3,i−1 + Km
m−1,i = 2Km

m−3,i−1 + Km
m−2,i.

We can use of the following binomial identity [18], to describe the Betti
numbers of Im in a direct non-recursive way.

Proposition 2.3.25.

Km
a,b =

(
a + 1

0

)(
m

b + 1

)
+

(
a
1

)(
m
b

)
+

(
a − 1

2

)(
m

b − 1

)
+ · · ·

By direct inspection of the Mayer-Vietoris tree constructed in Proposi-
tion 2.3.24 we have that

Corollary 2.3.26. For every ideal Jm in the polarity class of Im we have reg(Jm) =

2m, projdim(Jm) = �m
2 �+ m − 1 and its minimal free resolution is given as an

iterated cone resolution.

A more general class of posets than lines are trees and forests. Observe
that a line is a tree that has only one leaf and a set of lines is a forest
formed by 1-leaf trees. For trees and forest we can identify supported
monomial ideals for which we can compute the main invariants.

Proposition 2.3.27. Let P be a tree with nodes {1, . . . , n} and let {l1, . . . , lk} ⊆
{1, . . . , n} be the set of leaves of the tree. There exists a squarefree monomial ideal
IL(P) ⊆ k[x1, . . . , xn] with k generators such that P is it support poset. The
Taylor resolution of IL(P) minimally resolves it and therefore βi(IL(P)) = ( k

i+1)

for all i ≥ 0.

Proof. Consider the ideal IL(P) = 〈ml1 , . . . , mlk〉 where mli = ∏i<li xi; here
i < j means that i is an ancestor of j. We have that P is the support
poset of IL(P). To see this, observe that given a variable xi, the set Ci of
variables that appear in every generator in which xi appears is formed by
the variables xj such that j < i in P .

To see that the Taylor complex of IL(P) minimally resolves it and
therefore βi(IL(P)) = ( k

i+1) for all i, consider the following process:
First, for each node a such that it is the unique child of node b we

identify both in a new node a and in the corresponding ideal we substitute
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xaxb by xa. We proceed in the same way until we obtain a reduced tree P′

such that each node is either a leaf or has more than one child. Observe
that IL(P) � IL(P′) and hence βi(IL(P)) = βi(IL(P′)) for all i.

Now, take the root a of the reduced tree P′ whose children are
b1, . . . , bm. Delete a and we are left with a set of m disjoint trees P′

1, . . . ,P′
m

whose nodes are either leaves or have more than one children. Observe
that IL(P′) = xa · ∑m

i=1 IL(P′
i ), where multiplication by xa means that we

multiply each generator of each of the ideals IL(P′
i ) by xa and the ideals

IL(P′
i ) are supported on mutually disjoint sets of variables, hence the sum

is direct and βi(IL(P′)) = ∑m
j=1 βi(IL(P′

j )).
By repeated us of this process we obtain that IL(P) has the same total

Betti numbers than a prime monomial ideal generated by one variable for
each of its leaves, and hence the result.

Remark 2.3.28. Observe that the squarefree monomial ideal I constructed
in the proof of Proposition 2.3.18 is different with the one presented in
Proposition 2.3.27. That is because in Proposition 2.3.18 we are taking into
account the order of the variables i.e. the poset given in Figure 2.6 (a) is
not the same that in Figure 2.6 (b), whereas the support poset of the ideal
obtained with Proposition 2.3.27 can be indistinctly the one given in 2.6
(a) or in (b).

1

2

(a)

2

1

(b)

Figure 2.6

Then, when we have a poset formed by lines, there exist different
monomial ideals with it as a support poset.

Example 2.3.29. Consider the tree depicted in Figure 2.7 together with its
reducing process as described in Proposition 2.3.27. We have that the leaf
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ideal of P is given by

IL(P) = 〈x1x2x3x4, x1x2x3x5x6, x1x2x3x7x8x9,

x1x2x3x7x8x10x11, x1x2x3x7x8x10x12〉,

which has the same total Betti numbers than the prime ideal generated
by the variables corresponding to the leaves. i.e. 〈x4, x6, x9, x11, x12〉.

1

2

3

4 7 5

8 6

9 10

11 12

3

4 6

8

9 10

11 12

4 68

9 10

11 12

4 69 10

11 12

4 69 11 12

Figure 2.7: Reduction process of tree P in Example 2.3.29

�

We call IL(P) the leaf ideal of P . Generalizing Proposition 2.3.27 we
obtain the following result.

Theorem 2.3.30. Let P be a forest whose trees P1, . . . ,Pm have ni nodes and
li leaves each, for i = 1, . . . , m. Then there is a squarefree monomial ideal
IL(P) ⊆ k[x1, . . . , xn], n = ∑m

i=1 ni whose support poset is P . The ideal IL(P)

has g = ∑m
i=1 li minimal monomial generators, its Taylor complex minimally

resolves it, and βi(IL(P)) = ∑m
j=1 (

lj
i+1) for all i.

2.3.3.2 Support posets of some families of ideals

We turn now to the second question that we address in this section: given
a certain class of monomial ideals, how can we describe their support
posets? We will treat consecutive k-out-of-n ideals (equivalently path
ideals of line graphs cf. [61]) and series-parallel ideals, i.e. path ideals of
series-parallel systems cf. [117].
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Consecutive linear k-out-of-n ideals. A k-out-of-n ideal Ik,n ⊆ k[x1, . . . , xn]

is an ideal generated by all possible products of k variables. One can easily
see that the support poset of such ideals is a collection of n isolated
points, hence it is the only ideal in its polarity class. Consecutive k-out-
of-n ideals are generated by the products of any k consecutive variables,
Jk,n = 〈x1 · · · xk, x2 · · · xk+1, . . . , xn−k+1 · · · xn〉. These ideals are the path
ideals of the line graph, and their main characteristics are well known
[61, 118]. Here we describe their support poset.

Proposition 2.3.31. Let Jk,n = 〈x1 · · · xk, x2 · · · xk+1, . . . , xn−k+1 · · · xn〉 a con-
secutive k-out-of-n ideal. Then its support poset Pk,n is given by

- If k < n − k + 1:

Ci =

⎧⎪⎪⎨⎪⎪⎩
{i, . . . , k} i = 1, . . . , k

{i} i = k + 1, . . . , n − k

{n − k + 1, . . . , i} i = n − k + 1, . . . , n

- If k ≥ n − k + 1:

Ci =

⎧⎪⎪⎨⎪⎪⎩
{i, . . . , k} i = 1, . . . , n − k

{n − k + 1, . . . , k} i = n − k + 1, . . . , k

{n − k + 1, . . . , i} i = k + 1, . . . , n

The form of Pk,n is given in Figure 2.8

Proof. Observe that x1 is only present in the generator x1 · · · xk hence
C1 = {1, . . . , k}. x2 is present in generators x1 · · · xk and x2 · · · xk+1 hence
C2 = C1 − {1}, then C3 = C2 − {2} and so on. By symmetry, xn is
only present in generator xn−k+1 · · · xn so Cn = {xn−k+1, . . . , xn} and
Cn−1 = Cn − {n} etc.

If k < n − k + 1 then we get in this way C1, . . . , Ck and Cn−k+1, . . . , Cn.
For all the Ci with k < i < n − k + 1 observe that i appears in generators
xi−k+1 · · · xi to xi . . . xi+k−1 and these generators have only one variable in
common, namely xi, hence Ci = {i}.
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k

1

k+1 n-k
n-

k+1

n

..
.

. . .

...

(a) Support poset of Jk,n for k < n − k +
1.

1

n-k

n-
k+1

k

k+1

n. . .

..
.

. .
.

(b) Support poset of Jk,n for k ≥ n − k +
1.

Figure 2.8: Form of the support posets of consecutive k-out-of-n ideals.

If k ≥ n − k + 1 observe that Cn−k+1 = · · · = Ck = {n − k + 1, . . . , k}
since the monomial xn−k+1 · · · xk divides every generator of Jk,n, and for
each j < n − k + 1 the variable xj is only present in generators xi · · · xk
for i < j (and by symmetry, for every j > k variable xj is only present in
generators xi · · · xn for i > j).

Remark 2.3.32. Using the depolarization poset as described in the sections
above we see that if k ≥ n − k + 1 there is a monomial ideal J′k,n copolar to
Jk,n in only two variables, namely

J′k,n = 〈ak, ak−1b, . . . , a2k−nbn−k〉,

which is isomorphic to the zero-dimensional ideal in two variables

J′′k,n = 〈an−k, an−k−1b, . . . , bn−k〉.

If k < n − k + 1 then we have that there is an ideal in 2 + n − 2k
variables copolar to Jk,n, namely

J′k.n = 〈ak, ak−1b1, . . . , a3k−nb1 · · · bn−2k, a3k−n−1b1 · · · bn−2kc, . . .

. . . , ab1 · · · bn−2kc3k−n−1, b1bn−2kc3k−n, . . . , bn−2kck−1, ck〉.
These reductions in the number of variables improve drastically the com-
putation times of the Betti numbers and other invariants for this kind
of ideals.
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Remark 2.3.33. The support poset P of a Jk,n ideal is always a tree or forest.
We could then use Proposition 2.3.27 to construct the leaf ideal IL(P) of P .
Observe that IL(P) �= Jk,n. This is an example that a given poset P may
be the support poset of different squarefree ideals.

Series-parallel ideals Series-parallel ideals are defined as the cut ideals of
series-parallel networks, a prominent class of coherent systems, cf. [117].
We can define these ideals in the following way

Definition 2.3.34. The ideal I = 〈x1〉 ⊆ k[x1] is called a basic series-parallel
ideal. If I1 ⊆ k[x1, . . . , xn] and I2 ⊆ k[xn+1, . . . , xn+m] are series-parallel
ideals then I′1 + I′2 and I′1 ∩ I′2 in k[x1, . . . , xn+m] are series-parallel ideals,
where I′1 is the image of I1 under the inclusion

k[x1, . . . , xn] ⊆ k[x1, . . . , xn+m]

and I′2 is the image of I2 under the inclusion

k[xn+1, . . . , xn+m] ⊆ k[x1, . . . , xn+m].

Theorem 2.3.35. The support poset of any series-parallel ideal is a forest.

Proof. Let I be a series-parallel ideal. We will give a constructive proof
following a building process of I.

First, the support poset of a basic series-parallel ideal I = 〈x1〉 has a
single element 1, which is a basic forest.

Now, we start constructing I by joining basic series-parallel ideals, i.e.
ideals of the form 〈xi〉 one at a time. If we join 〈xi〉 and 〈xj〉 by union, the
resulting ideal is 〈xi, xj〉 whose poset is the disjoint union of two points. If
we join them by intersection, we obtain 〈xixj〉 whose poset is a line with
two points. Whenever we join a new basic series-parallel ideal 〈xi〉 we
either join it by addition, in which case we have a new disjoint point in the
support poset of the new ideal, or we add it by intersection, in which case
we obtain the new poset by setting i as its unique minimal element and
joining the minimal element of each connected component of the previous
support poset to i. Hence, whenever our series-parallel ideal is built by
joining on new basic series-parallel ideal at a time its support poset is a
tree plus zero or more disjoint points.
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The next step is joining two of these ideals I1 ⊆ k[x1, . . . , xn] and
I2 ⊆ k[xn+1, . . . , xn+m] whose support posets we denote by T1 and T2, and
the support poset of the resulting ideal by T. If I = I1 + I2 then T is
the disjoint union of T1 and T2 since the two ideals have separate sets of
variables.

If I = I1 ∩ I2 then the minimal monomial generating set of I is given
by all the products {mim′

j|mi is a generator of I1, m′
j is a generator of I2}

and we can be in one of the following three cases:

i) T1 and T2 have more than one connected component each. In this
case, T is the disjoint union of T1 and T2. To see this, observe that
there are no indices i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + m} such
that i < j or j < i. If this was not the case, assume we have i < j,
then whenever xj appears in a generator of I so does xi. But we have
that for every generator g of I1 there is a generator in I of the form
μxjg with μ ∈ k[xn+1, . . . , xn+m], hence xi is in every generator of I1

and hence T1 has one connected component which contradicts our
asumption.

ii) Either T1 or T2 have one connected component. Let T1 have a single
connected component, then T1 is a tree which has a set of elements
b = {i1, . . . , ik} ⊆ {1, . . . , n} such that Ci1 = · · · = Cik and j > ia for
every ia ∈ b, j ∈ {1, . . . , n} not in b, i.e. b is the trunk of the tree T1.
Then T is formed by the union of T1 and T2 plus a connection from
max(b) to every minimal element in T2. This is because in I there
are no new relations among the variables {x1, . . . , xn} or among the
variables in {xn+1, . . . , xn+m}. Observe that all variables in b appear
in every generator of I.

iii) Both T1 and T2 have only one connected component each. Then let
b and b′ be the maximal elements of their respective trunks. The
support poset of T is the result of identifying both trunks.

Remark 2.3.36. Observe that Theorem 2.3.35 provides a criterion to detect
ideals that cannot be obtained as a series-parallel ideal. For instance, the
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ideal I in Example 2.3.2 (3) cannot be obtained as a series-parallel ideal
since its support poset is not a forest.

We have just seen that for every series-parallel ideal I we have a tree
PI such that P is the support poset of I. Our next results states that the
converse is also true.

Proposition 2.3.37. Let P be a forest. There is a series-parallel ideal IP such
that P is its support poset.

Proof. Let P be a tree whose root is r. For every leaf i of P let Ii = 〈xi〉.
For every inner node j whose children are j1, . . . , jk let Ij = 〈xj〉 ∩ ∑i=k

i=1 Ijk .
At each stage we have that the support poset of Ij is the upper set of j,
P≥j, hence we have that IP = Ir.

Observe that the ideal we construct in Proposition 2.3.37 is in fact the
leaf ideal of Proposition 2.3.27. The proof is an easy inspection of each of
the generators. While we always have that PI(P) = P it is not always the
case that I = I(PI) as the following example shows.

Example 2.3.38. Consider the system S1 in Figure 2.9. It is a series-parallel
system whose construction procedure following Theorem 2.3.35 yields the
cut ideal

IS1 = (〈x1〉 ∩ (〈x2〉 ∩ 〈x3〉+ 〈x4〉)) ∩ (〈x5〉 ∩ (〈x6〉 ∩ 〈x7〉+ 〈x8〉))
⊆ k[x1, . . . , x8].

We have that IS1 = 〈x1x2x3x5x6x7, x1x2x3x5x8, x1x4x5x6x7, x1x4x5x8〉
and its support poset PIS1

is given by the sets

C1 = {1, 5}, C2 = {1, 2, 3, 5}, C3 = {1, 2, 3, 5}, C4 = {1, 4, 5},

C5 = {1, 5}, C6 = {1, 5, 6, 7}, C7 = {1, 5, 6, 7}, C8 = {1, 5, 8}

whose Hasse diagram (for x1 < x5, x2 < x3 and x6 < x7) is depicted in
Figure 2.10
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Figure 2.9: S1, a series-parallel system.
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Figure 2.10: Support poset of IS1

Observe that following the procedure in Proposition 2.3.37 on PIS1
we

obtain the series-parallel ideal

I(PIS1
) = 〈x1x2x3x5, x1x4x5, x1x5x8, x1x5x6x7〉

which is also the leaf ideal of PIS1
. This is the cut ideal of the series-

parallel system S2 in Figure 2.11. Observe that S1 and S2 are two different
series-parallel systems, yet their respective cut ideals have the same sup-
port poset.

�
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Figure 2.11: S2, a series-parallel system.
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Chapter 3

Algebraic Reliability of

multi-state systems

This chapter is devoted to the application of monomial ideals to multi-state
system analysis. In previous works [55, 99, 116, 117, 118, 119, 120, 97] the
authors have studied the ideals associated to coherent systems for which
the performing probabilities of different components are independent,
and used their algebraic invariants such as Hilbert function and Betti
numbers to compute the reliability of such systems. However, most of the
work is devoted to binary systems whose associated ideals are squarefree.
But, in practice many systems are non-binary, i.e., their components
have multiple possible states, and hence their associated ideals are not
squarefree. Moreover, a single ideal is not enough to model multi-state
systems, we will need a collection (in fact, a filtration) of reliability ideals
for each multi-state system. This chapter extends the algebraic analysis of
system reliability from binary to multi-state systems.

In Chapter 1 we introduced definitions related to reliability in the
particular case of binary systems. However, as studying multi-state sys-
tems is one of the aims of this thesis, Section 3.1 is devoted to generalize
these definitions to the multi-state case. In this section we also explain
how the algebraic method works for computing reliability of multi-state
systems. Section 3.2 shows how the structure of multi-state systems can
be analyzed by algebraic means and that this analysis can be transferred
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between binary and multi-state systems using polarization and depolar-
ization. Multi-state k-out-of-n systems are deeply studied in Section 3.2.3,
including variants such as weighted or consecutive systems.

3.1 Multi-state coherent systems

In reliability theory [28, 13, 75, 102], a system S is defined as follows

Definition 3.1.1. A system S = (C, φ) is a set of components C = {c1, . . . , cn}
so that each ci can be in a discrete number of ordered states Si =

(0, . . . , mi), together with a structure function φ : S1 × · · · × Sn → S , where
S = {0, 1, . . . , m} is the set of possible states of the system. The structure
function receives an n-tuple of component states, and outputs a state of
the system.

The set

D = {a = (a1, . . . , an) s.t. ai ∈ Si, ∀i ∈ {1, . . . , n}}

is call the state space of S and each a is a component’s state.

When there is no opportunity of misunderstanding, we simply refer to
the system S = (C, φ) as S.

We say that the structure function φ is non-decreasing if φ(x) ≥ φ(y)

whenever x > y. The system S is said to be coherent if φ is non-decreasing
and each component is relevant to the system, i.e. for each component ci
there exist a system state a = (a1, . . . , an) and two different levels j, k ∈ Si
such that φ(ai,j) �= φ(ai,k), where ai,� = (a1, . . . , ai−1, �, ai+1, . . . , an).

One can notice that Definition 3.1.1 is a generalization of Definition
1.2.1. If we choose mi = 1 and m = 1 we have exactly the definition
of binary system given in Section 1.2.1. Taking into account the general
definition we have just introduced, one can classify systems with respect
to their number of states:

- If m = 1 and mi = 1 for all i, we have a binary system with binary
components. These are usually simply referred to as binary systems.
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- If m > 1 and mi = 1 for all i, we have a multi-state system with
binary components.

- If m = 1 and there is at least one i with mi > 1, we have a binary
system with multi-state components.

- If m > 1 and there is at least one i with mi > 1, we have a multi-state
system with multi-state components.

We follow the notation in [53, 102]. However, we allow a more general
kind of system by not restricting to the case max(S) ≤ max(Si) for all
i. For other definitions of multi-state system and a review of multi-state
reliability analysis, see [85, 144] and the references therein.

Example 3.1.2. Let S = (C, φ) be the system represented in Figure 3.1. The
set of components is C = {c1, c2, c3, c4}. For each component ci we define
its sets of states as S1,S3,S4 = {0, 1, 2}, S2 = {0, 1}, i.e. we have that
components c1, c3 and c4 are multi-state whereas c2 is a binary component.
The set of states of the system is S = {0, 1, 2} and the structure function is

φ(x) = max {c4, min {c1, max {c2, c3}}} .

Some examples of components’ states with the output of the structure

c1

c4

c2

c3

Figure 3.1: A series-parallel system
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function are

φ(0, 0, 0, 0) = 0 φ(0, 1, 1, 0) = 0 φ(1, 1, 2, 0) = 0 φ(2, 0, 0, 0) = 0

φ(0, 0, 0, 1) = 1 φ(1, 1, 1, 0) = 1 φ(1, 1, 2, 0) = 1 φ(2, 1, 0, 1) = 1

φ(0, 0, 0, 2) = 2 φ(2, 1, 2, 0) = 2 φ(2, 0, 2, 0) = 2 φ(2, 1, 1, 2) = 2.

�

3.1.1 The algebraic method in reliability analysis

We saw in Section 1.2 of Chapter 1 the definitions related to binary systems
and how one can compute their reliability by using squarefree monomial
ideals. In this section we generalize the definitions and the algebraic
method presented for binary systems to multi-state ones.

Definition 3.1.3. Let S be a coherent system with n components C =

{c1, . . . , cn} so that each ci can be in a discrete number of ordered states
Si = (0, . . . , mi) and S = {0, 1, . . . , m} is the set of possible states of the
system. Let 0 < j ≤ m:

• The set of tuples of components’ states x such that φ(x) ≥ j is
denoted by F P

S,j. Its elements are called j-working states or j-paths of
S.

• We call minimal j-working states or minimal j-paths to the tuples in F P
S,j

for which the degradation of the performance of any component
provokes that the overall performance of the system is degraded to
j′ < j. The set of minimal j-working states is denoted by F P

S,j.

• The tuples of components’ states x with φ(x) < j are called j-failure
states or j-cuts. The set of j-failure states is denoted by FC

S,j.

• The minimal j-failure states or minimal j-cuts are states in FC
S,j such that

the improvement of the performance of any component provokes
that the overall performance of the system is increased to j′ ≥ j. The
set of minimal j-failure states is denoted by FC

S,j.
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Remark 3.1.4. Definition 3.1.3 is a generalization of Definition 1.2.4 and
Definition 1.2.5. If m = 1 in Definition 3.1.3, then we simply speak of
working states or paths and failure states of cuts.

Now, let R = k[x1, . . . , xn] be a polynomial ring over a field k. Each
tuple of components’ states (s1, . . . , sn) ∈ S1 × · · · × Sn corresponds to the
monomial xs1

1 · · · xsn
n in R. The coherence property of the system is equivalent

to saying that the elements of FS,j correspond to a monomial ideal in R,
denoted by IS,j The unique minimal monomial generating set of IS,j is
formed by the monomials corresponding to the elements of FS,j (see [116,
§2] for more details). Hence, obtaining the set of minimal j-paths of S is
equivalent to computing the minimal generating set of IS,j.

Definition 3.1.5. Let S be a multi-state system such that it can reach m + 1
different states. For each 0 ≤ j ≤ m, the monomial ideal IS,j defined above
is called the j-reliability ideal of S.

There exist some differences between the binary and the multi-state
cases: for computing the reliability of binary system, we only need to
assign a squarefree monomial ideal to the system and, using the numerator
of the Hilbert series, compute its reliability. However, we have just showed
that, for each level j of a multi-state system, we have one monomial ideal,
i.e. for a multi-state system with m + 1 states, we have m monomial ideals
assigned to it. Due to this fact, the definition of reliability given for binary
systems is not enough when treating multi-state systems: we need to
generalize this definition.

Let us S = (C, φ) be a multi-state system given by C = {c1, . . . , cn},
with Si = {0, 1, . . . , mi} for all i ∈ {1, . . . , n}. Each component ci has a
probability of being in one of its mi states. We will denote it by pi,j, where
i ∈ {1, . . . , n} and j ∈ {0, . . . , mi}. The probabilities associated to each
components are the ones which will allow us to compute the j-reliability
of the system, which is defined as follows:

Definition 3.1.6. Let S be a multi-state system such that it can reach m + 1
different states. For each 0 ≤ j ≤ m, the j-reliability of S is the probability
that the system is performing at least at level j.
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In order to compute the j-reliability of S, we can use the numerator
of the Hilbert series of IS,j, denoted by HIS,j . The polynomial HIS,j gives a
formula, in terms of x1, . . . , xn that enumerates all the monomials in IS,j,
i.e., the monomials corresponding to the states in FS,j. Hence, computing
the (numerator of the) Hilbert series of IS,j provides a method to compute
the j-reliability of S by substituting xa

i by pi,a, the probability that the
component i is at least performing at level a, as explored in Chapter 1.

In summary, the algebraic method for computing the j-reliability of a
coherent system S works as follows:

1. Associate to the system S its j-reliability ideals IS,j.

2. Obtain the minimal generating set of IS,j to get the set FS,j.

3. Compute the Hilbert series of IS,j to have the j-reliability of S.

3’ Compute any free resolution of IS,j. The alternating sum of the ranks
of this resolution gives a formula for the Hilbert series of IS,j i.e.,
the unreliability of S, which provides bounds by truncation at each
summand.

The choice between steps (3) or (3’) depends on our needs. If we are
only interested in computing the full reliability formula, then we can use
any algorithm that computes Hilbert series in step (3). However, if we need
bounds for our system reliability, then we can compute any free resolution
of IS,j and thus perform step (3’). If the performing probabilities of differ-
ent components are independent and identically distributed (i.i.d), then in
points (3) and (3’) of this procedure we only need the graded version of
Hilbert series and free resolutions. Otherwise, we need their multigraded
version. For more details and the proofs of the results described here, we
refer to [116, 119]. To see more applications of this method in reliability
analysis we refer to [117, 118, 120].
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3.1.1.1 Bounds

As we have explained in Chapter 1, in practice it is often more useful to
have bounds on the j-reliability of S rather than the complete precise for-
mula.

Bonferroni-Fréchet bounds. In Section 1.2.1.2 we presented the Bonferroni-
Fréchet bounds for binary systems. This bounds can be generalized
for the case of multi-state systems as follows: Let S = (C, φ) be
a multi-state coherent system such that S = {0, . . . , m} and let
F P

S,j =
{

a
j
1, . . . , a

j
sj

}
be its set of paths for each level j ∈ S , where a

j
i

means the first path that satisfies φ(a
j
i) ≥ j with i ∈ {1, . . . , sj}. The

Inclusion-Exclusion method allows to compute the reliability for S
as follows:

RS,j =P(a
j
1 ∪ · · · ∪ a

j
sj)

=
[
P(a

j
1) + P(a

j
2) + · · ·+ P(a

j
sj)
]
+

−
[
P(a

j
1 ∩ a

j
2) + P(a

j
1 ∩ a

j
3) + · · ·+ P(a

j
sj−1 ∩ a

j
sj)
]
+ . . .

=

sj

∑
i=1

(−1)i−1 ∑
|σ|=i

⋂
l∈σ

a
j
l ,

where, for i, t, m = 1, . . . , sj, P(a
j
i) is the probability of the com-

ponents’ state being greater or equal to a
j
i , P(a

j
1 ∪ · · · ∪ a

j
sj) is the

probability that the components’ state is greater or equal to at least
one of the a

j
i , and P(a

j
t ∩ a

j
m) is the probability that the components’

state is greater or equal to both of a
j
t and a

j
m.

As in the binary case, one can truncate the summands in order
to obtain the Bonferroni-Fréchet bounds for the j-reliability of the
multi-state system as follows:
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RS,j ≤
k

∑
i=1

(−1)i−1 ∑
|σ|=i

⋂
l∈σ

a
j
l for k odd,

RS,j ≥
k

∑
i=1

(−1)i−1 ∑
|σ|=i

⋂
l∈σ

a
j
l for k even,

with k ∈ {1, . . . , sj}.

Gasemyr-Natvig bounds. In [51], Funnemark and Natvig presented the
following lower bounds based on minimal paths and minimal cuts:

• Let ym, m = 1, . . . , Mp be the minimal paths of the multi-state
system S for level j. Then,

l′j(p) = max
1≤m≤Mp

(
n

∏
i=1

pym
i

i

)

is a lower bound for the RS,j reliability.

• Let zm, m = 1, . . . , Mc be the set of minimal cut vectors of the
multi-state system S for level j, then we have the following
lower minimal bound for Rj(S)

l∗∗j(p) =
Mc

∏
m=1

n

�
i=1

pzm
i +1

i

where for pi ∈ [0, 1] we define �n
i=1 = 1 − ∏n

i=1(1 − pi).

Gasemyr and Natvig presented in [53] a lower bound which is an
improvement with respect to l′j(p) and l∗∗j(p). It is defined as
follows: given a multi-state system S = (C, φ), whose components
are independent, we have that

l̃ j
φ(p) = ∑

x∈S1×···×Sn

1(φ(x) ≥ j)
n

∏
i=1

(pxi
i − pxi+1

i )
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is a lower bound for RS,j. In [Theorem 2, [53]] it is proved that, if the
components processes are independent, then

l̃ j
φ(p) ≥ max{l′j(p), l∗∗j(p)}.

Gasemyr and Natvig point out that in complex systems, the compu-
tation of the reliability bounds l′jφ (p), l∗∗j

φ (p) and l̃ j
φ(p), can become

quite difficult and computationally expensive. A wide class of those
more complicated systems are those in which we can by some means
obtain the minimal cuts or paths but their structure is complicated.
In these cases the algebraic approach can be a very useful tool.

Algebraic bounds. In order to have a formula that can be truncated at
different summands to obtain bounds for the j-reliability, we need a
special way to write the numerator of the Hilbert series of IS,j. This
convenient form is given by the alternating sum of the ranks in any
free resolution of the ideal IS,j, i.e.

HNIS,j(x) =
d

∑
i=0

(−1)i

⎛⎝ ∑
a∈Nn

0

γi,axa

⎞⎠ ,

where γi,a is the rank of the i-th module in multi-degree a and d is the
length of the resolution. Given the numerator of the Hilbert Series
written this way, we can obtain bounds by truncating as follows

RS,j ≤
k

∑
i=0

(−1)i

⎛⎝ ∑
a∈Nn

0

γi,axa

⎞⎠ for k = 0 or k even,

RS,j ≥
k

∑
i=0

(−1)i

⎛⎝ ∑
a∈Nn

0

γi,axa

⎞⎠ for k odd,

Observe that the bounds improve when k approaches to d.

As we saw in Chapter 1, every monomial ideal has a minimal free
resolution, which provides the tightest bounds among the aforemen-
tioned ones. Remember that the ranks of the minimal free resolution
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are called Betti numbers. In general, the closer the resolution is to
the minimal one, the tighter the bounds obtained, for full details see,
e.g., [116, §3].

3.1.2 Duality

Given a structure function φ, its dual φD with respect to t ∈ Nn
0 is given

by (cf. [40])

φD(s1, . . . , sn) = m − φ((t1 − s1, . . . , tn − sn)). (3.1.1)

Example 3.1.7. Consider a binary series:G system S with three components
where φ(s1, s2, s3) = min{s1, s2, s3}. We have φD(s1, s2, s3) = 0 if and only
if (s1, s2, s3) = (0, 0, 0) hence the minimal working states of the dual system
are (1, 0, 0), (0, 1, 0) and (0, 0, 1), which correspond to a parallel system.
The dual of a series system is always a parallel system and vice-versa.

�

There is a notion of duality in monomial ideals, called Alexander duality
[94]. To describe it we use the following notation. Given a vector μ ∈ Nn,
we denote by mμ the monomial ideal

mμ = 〈xμi
i | μi ≥ 1〉.

Given two vectors μ and ν in Nn let μ \ ν the vector whose i’th coordinate
is μi + 1 − νi if νi ≥ 1 and 0 otherwise.

Definition 3.1.8. Let I ⊂ k[x1, . . . , xn] be a monomial ideal, MinGens(I)
its minimal set of monomial generators, and xν = lcm(MinGens(I)). The
Alexander dual of I is the intersection

ID =
⋂

xμ∈MinGens(I)

mν\μ,

where m(s1,...,sn) denotes the monomial ideal 〈xsi
i | si ≥ 1〉
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We can use the dual ideal of a system to compute its reliability in
the following way. Let pr(xμ) = ∏n

i=1(1 − pi,μi+1) i.e. the product of the
probabilities that each component i is in a state less than or equal to
μi. We denote by ν = (m1, . . . , mn) the vector of maximal possible levels
of the components. Let I j(S) be the ideal generated by the monomials
{xν\μ | xμ is a generator of Ij(S)}. We consider the ideal I j(S)D and
compute HNIj(S)D(x1, . . . , xn). We obtain Uj(S) = 1 − Rj(S) by formally

substituting each monomial xμ in HNIj(S)D(x1, . . . , xn) by pr( xν

xμ ).

Example 3.1.9. Consider the system in Example 3.1.7. We have that
I1(S) = 〈x1x2x3〉, then I1(S)D = 〈x1, x2, x3〉 and I1(S)D = 〈x1, x2, x3〉.
By using the minimal free resolution of I1(S)D = 〈x1, x2, x3〉 we have
that HNI1(S)D(x1, . . . , xn) = (x1 + x2 + x3)− (x2x3 + x1x3 + x1x2)+ x1x2x3.
Hence, if we set the probabilities p1,1 = 0.8, p2,1 = 0.9 and p3,1 = 0.75, we
get U1(S) = pr(x1x2) + pr(x1x3) + pr(x2x3)− pr(x1)− pr(x2)− pr(x3) +

pr(1) = 0.25 + 0.1 + 0.2 − (0.025 + 0.05 + 0.02) + 0.005 = 0.46, and we
obtain R1(S) = 0.54. Observe that in the equality above, pr(1) =

pr(x0
1x0

2x0
3) = pr(x1 ≤ 0)pr(x2 ≤ 0)pr(x3 ≤ 0) = 0.005.

�

3.2 Analysis of certain multi-state systems using

monomial ideals

In applications it is sometimes convenient to work with squarefree mono-
mial ideals, i.e, with polarizations of monomial ideals, and use all their
features as combinatorial objects, as seen in [93, 98, 97]. However, on many
occasions it makes sense to work on depolarizations of squarefree mono-
mial ideals and reduce the number of variables of their corresponding
rings. See, e.g., [19, 100] for similar considerations in different contexts.
We propose to explore both directions in the context of algebraic analysis
of the reliability of systems using polarization and depolarization.
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3.2.1 Multi-state systems examples

The examples presented in this section show how to apply the algebraic
method to the analysis of the reliability of multi-state coherent systems.
We show that our approach, using the algebraic method, can be used
to analyze the reliability of such systems in an efficient and clear way.
Throughout this section, we assume that the performing probabilities of
different components of each system are independent.

3.2.1.1 Multi-state system given by its minimal paths

This example is the series-parallel system presented in Example 3.1.2 and
is showed in Figure 3.2.

c1

c4

c2

c3

Figure 3.2: Series-parallel system

Components c1, c3 and c4 are multi-state components that can reach 3
different states, while c2 is a binary component. The set of states of the
system is S = {0, 1, 2} and the minimal paths are showed in Table 3.1. We
have that the probabilities of working for each component are

p1,0 = 1 p1,1 = 0.95 p1,2 = 0.9

p2,0 = 1 p2,1 = 0.9

p3,0 = 1 p3,1 = 0.9 p3,2 = 0.8

p4,0 = 1 p4,1 = 0.9 p4,2 = 0.85

The first step is computing the j-reliability ideals. As the system has 3
different levels of performance (0, 1, 2), we need to compute the j-reliability
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Minimal 1-paths Minimal 2-paths
(1,1,0,0) (0,0,0,2)
(0,0,0,1) (2,0,2,0)
(1,0,1,0)

Table 3.1: Minimal 1-paths and minimal 2-paths for multi-state system of
example presented in Section 3.2.1.1

ideal for j = 1, 2. We have the 1-paths and 2-paths, so obtain the j-reliability
ideals is a direct computation: I1 = 〈x1x2, x1x3, x4〉 and I2 = 〈x2

1x2
3, x2

4〉.
Now, we compute the numerator of the Hilbert Series for both ideals

and we obtain

NHIS,1 = x1x2 + x1x3 + x4 − (x1x2x3 + x1x2x4 + x1x3x4) + x1x2x3x4,

NHIS,2 = x2
1x2

3 + x2
4 − x2

1x2
3x2

4.

Let us start computing the 2-reliability. By substituting the components’
probabilities in NHIS,2 we obtain RS2 , i.e. the probability that the system
works at level equal or greater than 2:

RS2 = 0.72 + 0.85 − 0.612 = 0.9558.

Repeating the process in NHIS,1 we obtain RS,1:

NHIS,1 = 0.855 + 0.855 + 0.9 − (0.7695 + 0.7695 + 0.7695) + 0.69255

= 2.61 − 2.3085 + 0.69255 = 0.99405

Observe that RS,1 and RS,2 are the probabilities that the system is in
state greater than or equal to 1 and 2, respectively. However, one can
compute the probability of the system of being in state exactly j, for
0 ≥ j ≥ 2, as

rS,0 = 1 − RS,1 = 1 − 0.99405 = 0.00595,

rS,1 = RS,1 − RS,2 = 0.99405 − 0.9558 = 0.03825,

rS,2 = RS,2 = 0.9558
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For an arbitrary coherent system S that can reaches M + 1 different
level of performance, one can compute the exact probability of being in
level j, denoted by rS,j, 0 ≥ j ≥ M, as{

rS,j = RS,j − RS,j+1 for 0 ≥ j ≥ M − 1
rS,j = RS,j for j = M

Furthermore, if bounds are needed for j-reliability, one can obtain them
by truncating the numerator of Hilbert Series. We are going to denote
the upper bounds as uj

i , and the lower bounds as l j
i for level j, where the

greater the i, the tighter the bound. In particular, in this example we have

l1
1 = 2.61 − 2.3085 = 0.3015,

u1
1 = 2.61,

u2
1 = 1.57

The bounds for this example are not very good: the upper bounds are
both useless and the lower bound is not accurate.

3.2.1.2 Flow network

A flow network S has n components ci, i = 1, . . . , n, where each of them
can be in mi + 1 states Si = {0, 1, . . . , mi} and the set of states of the
system is S = {0, . . . , m1 + · · · + mn}. The structure function of S is
φ = x1 + · · · + xn. The j-reliability ideal Ij ⊆ R = k[x1, . . . , xn] of S is
generated by all monomials in R of degree j. These ideals are stable and
therefore, the resolution given in [41] is minimal and provides a formula
for the j-reliability of S which can be truncated to obtain bounds.

We consider now an example of a flow network with different levels of
performance, see Example 2 in [53]. The system S has two components
and each of these can be in three states, S1 = S2 = {0, 1, 2}. The system
itself can be in five states, S = {0, 1, 2, 3, 4}. The structure function of this
system is φ(x) = x1 + x2, i.e., the state of the system is the sum of the
states of each of its components. The probability that each component is
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at least in state 1 is p(1) = 0.9 and the probability that each component is
in state 2 is p(2) = 0.8.

We use now the algebraic method to compute the j-reliabilities of this
system:

- For performance at level 1 the minimal paths are (1, 0) and (0, 1),
the corresponding ideal is I1 = 〈x, y〉 whose Hilbert function is
HI1 = x + y − xy. By substituting the corresponding probabilities we
have that RS,1 = 0.9 + 0.9 − 0.9 · 0.9 = 0.99.

- For performance at level 2 the minimal paths are (2, 0), (1, 1) and
(0, 2), the corresponding ideal is I2 = 〈x2, xy, y2〉 whose Hilbert
function is HI2 = x2 + xy + y2 − (x2y + xy2). By substituting the
corresponding probabilities we have that RS,2 = 0.8+ 0.9 · 0.9+ 0.8−
(0.8 · 0.9 + 0.9 · 0.8) = 0.97.

- For performance at level 3 the minimal paths are (1, 2) and (2, 1),
the corresponding ideal is I2 = 〈x2y, xy2〉 whose Hilbert function is
HI2 = x2y + xy2 − x2y2. By substituting the corresponding probabili-
ties we have that RS,3 = 0.8 · 0.9 + 0.9 · 0.8 − 0.8 · 0.8 = 0.80.

- Finally, for performance at level 4 the only minimal path is (2, 2),
I4 = 〈x2y2〉, HI4 = x2y2 and we have that RS,4 = 0.8 · 0.8 = 0.64.

3.2.2 Multi-state systems via binary systems and viceversa

We can study multi-state systems via binary systems and vice versa by
means of polarization and depolarization of their j-reliability ideals. The
main reason behind this approach is that the Hilbert series and free
resolutions of monomial ideals and their polarizations are related, see
Proposition 2.3.11. For a complete application of the polarization and
depolarization operations in the algebraic method, we also need the state-
ment that the ranks of the modules in any resolution of a monomial ideal
and its polarization are the same, see Proposition 2.2.7. When using the
polarization of a j-reliability ideal to study the system’s reliability, we
have to carefully adapt the probability associated to the monomials in
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the new ideal. Under independence assumption, the term xa1
1 xa2

2 con-
tributes prob(c1 ≥ a1) · prob(c2 ≥ a2) to the reliability of the system. If
independence is not assumed, then we need to individually study the
probability evaluation of each monomial. In general, one needs to know
the full distribution on the failure set, although the structure of the sets
are distribution-free. In the case of polarization of a system reliability
ideal, we have to take care of monomials that include products of the type
xi,1 · · · xi,k which must be evaluated as prob(ci ≥ k).

3.2.2.1 Coherent system given by structure function

There are different ways in which a system can be presented such as
giving its minimal paths (or cuts), as in Example 3.2.1.1. Another way to
present a system is giving its structure function: given a system S with
n components, we only have it structure function φ(x). It might be given
the explicit formula of the function so it is necessary to compute the paths
and cuts (as in Example 3.2.1.2) or maybe just the results are given, with
no more information (as in this example, the structure function of which
is given in a table).

Let S be the coherent system with 4 components c1, c2, c3, c4 such that
c1, c3, c4 have two possible states 0 and 1 meaning failure and working,
while c2 has three possible states 0, 1, 2. The system S itself can be in
two possible states, working (1) or failure (0). The probabilities pi,j that
component i is in state j are: p1,0 = 0.2, p1,1 = 0.8, p2,0 = 0.3, p2,1 = 0.2,
p2,2 = 0.5, p3,0 = 0.1, p3,1 = 0.9, p4,0 = 0.1, p4,1 = 0.9.

c1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 1 1 1
c2 0 0 1 2 0 0 1 2 0 0 1 1 2 2 0 1 2 1 2 0 1 2 1 2
c3 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 0 1 1 1 1 1
c4 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1

φ(x) 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 3.2: Structure function φ(x) for system S.
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We want to study the reliability of S whose structure function φ is
given in Table 3.2. One can see from the table that

FS = {(1, 1, 0, 0), (1, 0, 1, 0), (0, 2, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)}.

Hence, the reliability ideal of S is IS = 〈xy, xz, y2, yz, zt〉. The numerator of
the Hilbert series of IS given by the alternating sum of its Betti numbers is

HIS = xy+ xz+ y2 + yz+ zt− (2xyz+ xy2 + xzt+ y2z+ yzt)+ xy2z+ xyzt.

Substituting the probabilities in HIS , we obtain that RS = 0.9606. On the
other hand, the polarization of IS is

IP
S = 〈x1y1, x1z1, y1y2, y1z1, z1t1〉 ⊂ k[x1, y1, y2, z1, t1].

We can see that the numerator of the Hilbert series of IP
S is

HIP
S

= x1y1 + x1z1 + y1y2 + y1z1 + z1t1

−(2x1y1z1 + x1y1y2 + x1z1t1 + y1y2z1 + y1z1t1)

+x1y1y2z1 + x1y1z1t1.

Now, we substitute the probabilities, taking into account that y1y2

corresponds to prob(c2 ≥ 2). We obtain RS = 0.9606.

Studying the depolarization operation on IP
S we find that we can use

the following sets for depolarizing ideal IP
S

σx1 = {x1}, σy1 = {y1}, σy2 = {y1, y2}, σz1 = {z1} and σt1 = {z1, t1}.

Hence, using the partition {x1}, {y1, y2}, {z1, t1} we obtain a depolariza-
tion of IP

S in only three indeterminates, as J = 〈ab, ac, b2, bc, c2〉 ⊂ k[a, b, c].
The numerator of the Hilbert series of this ideal is

HJ = ab + ac + b2 + bc + c2 − (2abc + ab2 + ac2 + b2c + bc2) + ab2c + abc2.

In order to use this expression to evaluate the reliability of S we must keep
track of the meaning of the new variables in terms of the ones in IP

S , i.e., the
monomial b2 corresponds to y1y2 which corresponds to prob(c2 ≥ 2) but
c2 corresponds to z1t1 which is evaluated as prob(c3 ≥ 1) · prob(c4 ≥ 1).
Using these evaluations we obtain the same result that RS = 0.9606.
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3.2.2.2 Depolarization of consecutive k-out-of-n systems and store-

house systems:

A consecutive k-out-of-n:G system [75], as we saw in Chapter 2, is a binary
system with n components that works whenever k consecutive components
work. The reliability ideal of such a system is

Jk,n = 〈x1 · · · xk, . . . , xn−k+1 · · · xn〉 ⊆ k[x1, . . . , xn].

The ideal Jk,n has n − k + 1 generators, all of degree k in n variables,
which correspond to the set of all k-paths of the line graph [61]. The
depolarization poset of Jk,n has a maximal element J′k,n whose ambient
ring has n + 2 − 2k variables, and we can use it to compute the reliability
of consecutive k-out-of-n:G systems when n is large.

A storehouse system is a system with components of n types (m compo-
nents of each type) and such that within each type, components are sorted
so that the i’th component can be working only if the previous ones are
working. The system works whenever k components are working (with
k > m). These systems can be used to model storehouses with shared
capacities, industrial straps and pipelines, for instance. The depolarization
poset of the squarefree ideal In,m,k corresponding to such a system (which
has nm variables) has a maximal element I′n,m,k whose ambient ring has
n variables and is generated by all monomials of degree k such that each
variable appears with a degree less than or equal m. These ideals are
treated in [114], Chapter 3.

Tables 3.3 and 3.4 show the timings of an algorithm implemented by
the authors using the Hilbert series implementation in Macaulay2 [57] to
compute the reliability polynomial of several large consecutive k-out-of-n
systems and storehouse systems respectively. The last two columns in
these tables show the times used to compute the reliability polynomial
using the original squarfree ideal Jk,n, resp. In,m,k, and the times used to
compute the reliability polynomial using the maximal depolarization J′k,n,
resp. I′n,m,k. The times are in seconds. OOT means the computation was
manually stopped after 24 hours. Observe that the times are reduced due
to the reduction of the number of variables in the ambient ring. Working
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with the maximal depolarization makes it possible to handle bigger cases
that are not possible to deal with using the squarefree reliability ideals.

n k Num. gens. Time Jk,n Time J′k,n
100 30 71 0.54 0.18
100 15 86 34.62 17.81
200 60 141 8.12 1.63
200 30 171 1936.16 883.81
300 90 211 56.12 8.63
300 45 256 OOT 11941.60

Table 3.3: Computing times for the reliability polynomials of several
consecutive k-out-of-n:G system ideals and their maximal depolarizations.

n m k Num. gens. Time In,m,k Time I′n,m,k
3 40 50 1161 0.82 0.17
3 90 100 4986 33.92 2.13
3 140 150 11311 282.33 13.91
4 30 40 11461 111.49 14.40
4 50 60 38831 1670.39 404.09
4 70 80 91001 OOT 2697.49

Table 3.4: Computing times for the reliability polynomials of several
storehouse system ideals and their maximal depolarizations.

3.2.3 Multi-state k-out-of-n systems

We recall that a system is a k-out-of-n:G system (G for good) if it works
whenever k of its n components work, and that it is a k-out-of-n:F (F for
fail) if it fails whenever k of its n components fail. k-out-of-n systems
and its variants, e.g. linear consecutive, circular consecutive, weighted,
etc., are one of the most relevant types of systems studied in reliability
theory due to their theoretical interest and wide range of applications,
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cf. [69, 75, 43]. The multi-state version, which can model more general
situations, has been object of intense research in the last decades and
is also applied in a variety of situations [68, 69, 95, 44, 113]. Since the
first definition of multi-state k-out-of-n systems [40] several authors have
proposed different definitions and generalizations, together with particular
methods to evaluate the reliability of these systems, see for instance
[28, 68, 59, 35, 36, 107, 95, 96, 95, 82, 52] and references therein.

In this chapter we review the different definitions of multi-state k-out-
of-n systems, study them in an algebraic way, and apply the algebraic
method as a unified way to compute their reliability.

A problem for the reliability computation of these systems is the
computational burden when complexity increases. Several algorithms
have been proposed to compute the exact reliability of these systems, see
[8, 30, 147, 132, 95]; also, Ding et al. propose in [35] a framework for
reliability approximation. Our approach, while enumerative, shows good
performance and can provide both exact reliability and bounds in the
case of i.i.d components and in the case of independent non-identical
components.

3.2.3.1 Simple multi-state k-out-of-n systems

The first definition of multi-state k-out-of-n systems was given by El-
Neweihi et al. in the seminal work [40]. They define multi-state systems
as follows:

Definition 3.2.1 (El-Neweihi et al., 1978). A system of n components is said
to be a multi-state coherent system (MCS) if its structure function φ satisfies:

1. φ is increasing.

2. For level j of component i, there exists a vector (·i, x) such that
φ(ji, x) = j while φ(li, x) �= j for l �= j for i = 1, . . . , n and j =

0, . . . , M, where (ji, x) means that the state of the i’th component in
x is j.

3. φ(j) = j for j = 0, . . . , M, where j = (j, . . . , j).
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Observe that this definition is more restrictive than ours in the sense
that they assume every component has the same number of states, which
is in turn the number of states of the system, i.e. M.

The definiton of multi-state k-out-of-n systems in [40] is:

Definition 3.2.2 (El-Neweihi et al., 1978). A system is a multi-state k-out-of-n
system if its structure function satisfies

φ(x) = x(n−k+1) (3.2.1)

where x(1) ≤ x(2) ≤ · · · ≤ x(n) is a non decreasing arrangement of
x1, . . . , xn.

Observe that this definition satisfies the conditions given in Defini-
tion 3.2.1. It is easy to check that φ is an increasing function and φ(j) = j
for all j = 0, . . . , M. To see condition (2) just observe that there always
exists a non decreasing arrangement of x1, . . . , xn in which φ(ji, x) = j
while φ(li, x) �= j for l �= j for i = 1, . . . , n and j = 0, . . . , M. Taking the
vector in which the first n − k + 1 components are lower than j and the
rest of them are greater than j, we have that condition (2) is satisfied.

Remark 3.2.3. This kind of systems are called simple multi-state k-out-of-n
systems in [75].

We describe now the j-reliability ideal of these multi-state k-out-of-n
systems:

Proposition 3.2.4. The ideal

I(k,n),j = 〈 ∏
σ⊆{1,...,n}

|σ|=k

xj
i | i ∈ σ〉

is the j-reliability ideal of a multi-state k-out-of-n system as defined in Defini-
tion 3.2.2.

Proof. First of all we need to check that all μ ∈ G(I(k,n),j) satisfy φ(μ) = j.

Let xμ = xj
i1

xj
i2

. . . xj
ik

be a generator of I(k,n),j, with {i1, . . . , ik} ⊆ {1, . . . , n}.
If we make a non decreasing arrangement of xi1 , . . . , xik we obtain the
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vector (0, ..., 0, j, ..., j) in which the first n − k components are in state 0 and
the other components are in state j. Applying the structure function φ to
this vector we have that φ(0, ..., 0, j, ..., j) = j.

Now, if xν ∈ I(k,n),j, there exists xμ ∈ G(I(k,n),j) such that μ ≤ ν. This
implies φ(μ) ≤ φ(ν) and since φ(μ) = j and φ is an increasing function,
we obtain φ(ν) ≥ j.

Finally if l < j and φ(ν) = l we must have xν �∈ I(k,n),j. Since φ(ν) =

l < j we have that there are at most, k − 1 variables with exponent greater
or equal j. This implies that there does not exist any σ ∈ {1, . . . , n} with
|σ| = k such that ∏xi∈σ xj

i s.t. xν, hence xν /∈ I(k,n),j.

In [28] Boedigheimer and Kapur define customer-driven reliability
models for multi-state systems. They consider systems with M states in
which component i can be in Mi states. They describe such systems using
upper and lower boundary points, which are enough to describe the system
completely and are defined as follows

Definition 3.2.5. We say x is a lower boundary point (l.b.p.) to level j iff
φ(x) ≥ j and y < x implies that φ(y) < j, for j = 1, . . . , M. An upper
boundary point (u.b.p) to level j is an n-tuple x such that φ(x) ≤ j and y > x

implies that φ(y) > j, for j = 0, . . . , M − 1.

Observe that the lower boundary points to level j are the minimal mono-
mial generators of the j-reliability ideal of the system. To describe upper
boundary points algebraically we need maximal standard pairs [130] (see
Definition 1.1.7 from Chapter 1) which are in one-to-one correspondence
with upper boundary points.

Theorem 3.2.6. Let IS,j be the j-reliability ideal of a coherent system S for
which component i can be in states (0, . . . , Mi). Then μ + ∑i∈σ 1Mi is an upper
boundary point of S for level j − 1 if and only if (xμ, σ) is a maximal standard
pair of IS,j.

Proof. ⇒) Let α be an upper boundary point of S for level j − 1. Let
σ ⊆ {1, . . . , n} be the set of components of S such that αi = Mi. We
have that σ �= {1, . . . , n} i.e. there exists at least one component i such
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that αi �= Mi hence α is of the form α = μ + ∑i∈σ 1Mi . φ(α) < j implies
xα /∈ IS,j, and we claim that (μ, σ) is a standard pair for IS,j. To see this, let
xμxν such that supp(xν) ⊆ σ. If νi ≤ Mi then clearly xμxν /∈ IS,j because
μ + ν ≤ α and φ(α) < j. Now, since xα /∈ IS,j we know there is no minimal
generator of IS,j that divides xα and since Mi = αi is the maximal power
to which variable i can possibly be raised to in any generator of IS,j then
no generator will divide xαxν for any ν such that supp(xν) ⊆ σ hence
(μ, σ) is a standard pair. Assume now that (μ, σ) is not maximal. Then
there is some i′ /∈ σ such that (μ + 1i′ , σ) is a standard pair for IS,j. Then
xμxi′ ∏i∈σ xMi

i /∈ IS,j i.e. φ(α + 1i) < j which contradicts the assumption
that α is an upper boundary point of S for level j − 1.
⇐) Let (xμ, σ) be a maximal standard monomial of IS,j, i.e. xμ /∈ IS,j

and xμxν /∈ IS,j for all xν such that supp(xν) ⊆ σ. Let xα = xμ ∏i∈σ xMi
i .

Since xα /∈ IS,j we know that φ(α) < j. Let now β > α, we can assume
without loss of generality that β = α + 1i for some i /∈ σ. Suppose xβ /∈ IS,j.
Then there is no minimal generator of IS,j that divides xβ but since Mi
is the maximal state of component i, then there is no minimal generator
of IS,j that divides xβxν for any ν such that its support is a subset of σ.
Finally since the difference between xμxi and xβ is a monomial whose
support is in σ, we have that (xμxi, σ) is a standard pair for IS,j, which is
in contradiction with the fact that (xμ, σ) is maximal, hence xβ ∈ IS,j and
α is an upper boundary point of S for level j − 1.

Remark 3.2.7. Given a coherent system S its j-reliability ideal Ij(S) is gen-
erated by the monomials corresponding to its minimal j-paths. The ideal
of its dual system Ij(SD) is generated by the monomials corresponding
to minimal j-cuts of S and may be seen as the ideal generated by the
maximal standard pairs of Ij(S) [105]. These can be computed using the
Alexander dual of the artinian ideal Ij(S) + 〈xm1+1

i , . . . , xmn+1
n 〉 [24].

Using upper and lower boundary points, Boedigheimer and Kapur
define multi-state k-out-of-n systems as follows.

Definition 3.2.8 (Boedigheimer and Kapur, 1994). φ is a multi-state k-
out-of-n : G structure function if, and only if, φ has (n

k) lower boundary
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points to level j (j = 1, . . . , M) and ( n
k−1) upper boundary points to level j

(j = 0, . . . , M − 1).

The minimal generating set of the ideal I(k,n),j in Proposition 3.2.4
has (n

k) elements, i.e. this system has (n
k) lower boundary points. The

maximal standard pairs of I(n,k),j are (∏i∈σ xj−1
i , {1, . . . , n} − σ) for all σ ⊆

{1, . . . , n} such that |σ| = n − k + 1, i.e. the number of upper boundary
points of S for j − 1 is ( n

n−k+1) = ( n
k−1). Hence, Proposition 3.2.4 is a proof

of the equivalence of definitions 3.2.2 and 3.2.8 in the case that Mi = M
for all i.

If we allow that the number of states of each of the components can
be different, then the situation is more complicated. Let nj be the number
of components such that their maximum performance level Mi is bigger
than or equal to j. If nj ≥ k then the system behaves as a multi-state
k-out-of-n system by setting φ as in Definition 3.2.2. The number of lower
and upper boundary points does however vary. The lower boundary
points are given by the tuples that have k components at level j and n − k
components at level 0, and there are (

nj
k ) such tuples. And if nj ≥ k then

the upper boundary points for level j are given by the tuples in which
k − 1 components are at their maximum level (strictly bigger than j), the
other component such that its maximum level is bigger than j is exactly at
level j and the rest of the components are at level min{Mi, j}. The number
of such tuples is (nj+1

k ). Hence the system behaves at level j as a k-out-of-nj
system according to Definition 3.2.8. In fact, if we only consider those
components whose maximum performance level is bigger than j then
the system behaves at level j as a k-out-of-nj system according to both
definitions.

We can then generalize the ideal in Proposition 3.2.4 allowing different
number of levels for each component:

Definition 3.2.9. Let S be a multi-state system with levels {0, . . . , M} and
such that each component i has Mi+1 levels of performance {0, . . . , Mi}.
Let nj ≤ n be the number of components such that Mi ≥ j for each
j ∈ {0, . . . , M} (for ease of notation we consider that these are components
1, . . . , nj). S is a multi-state k-out-of-n system if for every j ∈ {1, . . . , M}
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Level Lower boundary points Upper boundary points
0 (0, 0, 0, 0, 1), (0, 0, 0, 2, 0), (0, 0, 2, 0, 0),

(0, 3, 0, 0, 0), (4, 0, 0, 0, 0)
1 (0, 0, 0, 1, 1), (0, 0, 1, 0, 1), (0, 1, 0, 0, 1), (1, 0, 0, 0, 1), (1, 1, 1, 2, 1), (1, 1, 2, 1, 1), (1, 3, 1, 1, 1),

(0, 0, 1, 1, 0), (0, 1, 0, 1, 0), (1, 0, 0, 1, 0), (0, 1, 1, 0, 0) (4, 1, 1, 1, 1)
(1, 0, 1, 0, 0), (1, 1, 0, 0, 0)

2 (0, 0, 2, 2, 0), (0, 2, 0, 2, 0), (2, 0, 0, 2, 0), (0, 2, 2, 0, 0), (2, 3, 2, 2, 1), (4, 2, 2, 2, 1)
(2, 0, 2, 0, 0), (2, 2, 0, 0, 0)

3 (3, 3, 0, 0, 0)

Table 3.5: Upper and lower boundary points for the system in Exam-
ple 3.2.10

the j-reliability ideal of S, IS,j, is of the form

IS,j = 〈 ∏
σ⊆{1,...,nj}

|σ|=k

xj
i | i ∈ σ〉.

Example 3.2.10. Let S be the multi-state system such that S = {0, 1, 2, 3},
S1 = {0, 1, 2, 3, 4}, S2 = {0, 1, 2, 3}, S3 = S4 = {0, 1, 2} and S5 = {0, 1}
and let φ(x) = x(4). Observe that n1 = 5, n2 = 4, n3 = 2, n4 = 1.
The system behaves as a 2-out-of-5 for levels j = 1, 2, 3 according to
Definition 3.2.2 and as a 2-out-of-nj system for levels j = 1, 2, 3 according
to Definition 3.2.8. The lower and upper boundary points are given in
Table 3.5.

The reliability ideals for this system are

IS,1 = 〈x1x2, x1x3, x1x4, x1x5, x2x3, x2x4, x2x5, x3x4, x3x5, x4x5〉
IS,2 = 〈x2

1x2
2, x2

1x2
3, x2

1x2
4, x2

2x2
3, x2

2x2
4, x2

3x2
4〉

IS,3 = 〈x3
1x3

2〉.

�

3.2.3.2 Generalized multi-state k-out-of-n systems

In [69] Huang, Zuo and Wu introduced generalized multi-state k-out-of-n
systems allowing different number of components for a system to perform
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at each level j naturally extending the capabilities of the systems studied
in the previous section and providing more flexibility to describe practical
situations. The definition in [69] is the following

Definition 3.2.11 (Huang, Zuo and Wu, 2000). An n-component system is
called a generalized multi-state k-out-of-n:G system if φ(x) > j, 1 ≤ j ≤ M
whenever there exists an integer value l (j ≤ l ≤ M) such that at least kl
components are in state l or above.

If we denote by φ the structure function of the system S and by Nj
the number of components in state j or above, then this definition can be
rephrased by saying that φ(S) ≥ j if

Nj ≥ kj

Nj+1 ≥ kj+1

...

NM ≥ kM

Hence we can denote a generalized multi-state k-out-of-n system by
Sn,(k1,...,kM). When k1 ≤ · · · ≤ km the system is called an increasing gener-
alized multi-state k-out-of-n:G system, and if k1 ≥ · · · ≥ km the system
is said to be decreasing. Huang et al. provide formulas for both cases
and an enumerative algorithm for the evaluation of the reliability of gen-
eralized multi-state k-out-of-n systems when the sequence (k1, . . . , kM)

is monotone.
Continuing this line M. J. Zuo and Z. Tian defined in [151] generalized

multi-state k-out-of-n:F systems.

Definition 3.2.12 (Zuo and Tian, 2006). An n-component system is called
generalized multi-state k-out-of-n : F system if φ(x) < j, 1 ≤ j ≤ M whenever
the states of at least kl components are below l for all l such that j ≤ l ≤ M.

Using this definition they provide a correspondence between general-
ized multi-state k-out-of-n:G systems and generalized multi-state k-out-of-
n:F systems. They study these systems when the sequence (k1, . . . , kM) is
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not necessarily monotone and provide an efficient algorithm that is recur-
sive on M, the number of performance levels. This algorithm outperforms
the one in [69] which is recursive in n.

Using the ideals in Proposition 3.2.4 we can immediately describe the
reliability ideal of a generalized multi-state k-out-of-n:G system given
by (k1, . . . , kM).

Proposition 3.2.13. The j-reliability ideal of a generalized multi-state k-out-of-n
system S = Sn,(k1,...,kM) is given by

IS,j = In,(kj,...,kM) =
M

∑
i=j

I(ki,n),i.

Example 3.2.14. We study here Example 8 in [69] with the algebraic
method and recover the exact same results given there. The system in
this example is a generalized multi-state k-out-of-3:G system with four
states (0, 1, 2, 3) such that k1 = 3, k2 = 2 and k3 = 2, hence it is a
decreasing generalized multi-state k-out-of-n:G system. The probabilities
of the different components are given by p1,0 = 0.1, p1,1 = 0.2, p1,2 = 0.3,
p1,3 = 0.4, p2,0 = 0.1, p2,1 = 0.1, p2,2 = 0.2, p2,3 = 0.6, p3,0 = 0.1, p3,1 = 0.2,
p3,2 = 0.4, p3,3 = 0.3, where pi,j is the probability that component i is
performing at level j.

- For the system to be in state 3 there must be at least 2 components
in state 3 or above (k3 = 2). Hence the corresponding ideal is
IS,3 = 〈x3y3, x3z3, y3z3〉. The numerator of the Hilbert series is HIS,3 =

x3y3 + x3z3 + y3z3 − 2(x3y3z3) and when plugging the probabilities
in, we have that the probability that the system is in state 3 or above,
denoted RS,3, is 0.396, which equals the probability that the system
is exactly in state 3, denoted rS,3.

- The system is in state 2 or above if at least 2 components are in state
2 or above, hence IS,2 = I(2,3),2 + I(2,3),3 = I(2,3),2 = 〈x2y2, x2z2, y2z2〉.
The numerator of the Hilbert series is HIS,2 = x2y2 + x2z2 + y2z2 −
2(x2y2z2) and we obtain RS,2 = 0.826 and rS,2 = RS,2 − RS,3 =

0.826 − 0.396 = 0.430.

119



3.2. Analysis of certain multi-state systems using monomial ideals

- Since k1 = 3 the system is in state 1 or above if all 3 components
are in state 1 or above or if at least 2 components are in state 2
or above or if at least 2 components are in state 3 or above. The
corresponding ideal is then IS,1 = I(3,3),1 + I(2,3),2 + I(2,3),3 = I(3,3),1 +

I(2,3),2 = 〈xyz, x2y2, x2z2, y2z2〉, HIS,1 = xyz + x2y2 + x2z2 + y2z2 −
(xy2z2 + x2yz2 + x2y2z) and we obtain RS,1 = 0.89 and rS,1 = RS,1 −
RS,2 = 0.89 − 0.826 = 0.064.

- Finally rS,0 = RS,0 − RS,1 = 1 − 0.89 = 0.11.

�

Using the reliability ideals of generalized multi-state k-out-of-n:G sys-
tems given in Proposition 3.2.13 we can develop a recursive method to
compute their reliability. The method is recursive on M, the number of
performance levels and can be used for any sequence (k1, . . . , kM) describ-
ing the system, not necessarily monotone. This method is an enumerative
one that can be used even when the component’s probabilities are not
i.i.d. For the i.i.d. case our method is equivalent to the one in [151] in
terms of computational complexity. We will use the technique of Mayer-
Vietoris trees, which were introduced in [114, 123], see Chapter 1 for an
explanation of the method. For ease of the notation we assume that the
sequence (k1, . . . , kM) is strictly decreasing. In any other case, the only
difference is that some of the summands that compose the ideal In,(kj,...,kM)

will be missing, as we saw in Example 3.2.14 but this fact does not affect
the algorithm description or its performance.

Let 1 ≤ j ≤ M and In,(kj,...,kM) = ∑M
i=j I(ki,n),i the j-reliability ideal of

the system. We sort the generators of In,(kj,...,kM) in ascending degree and
lexicographically within each degree. For constructing the Mayer-Vietoris
tree we will use as pivot always the last generator. First, we use as pivots
the generators of I(kM,n),M. We denote each of them by xM

σ = ∏xi∈σ xM
i for

σ ⊆ {1, . . . , n} and |σ| = kM. For each of these generators we obtain as
left child in the Mayer-Vietoris tree the ideal denoted by Iσ,M given by

Iσ,M = In−kM,(kj−kM,...,kM−1−kM) + ∑
xi /∈σ,xi<max(σ)

〈xM
i 〉,
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where In−kM,(kj−kM,...,kM−1−kM) ⊆ k[[n]− σ]. On each of the nodes of the
tree we use as pivots the monomials in ∑xi /∈σ,xi<max(σ)〈xM

i 〉 and proceed
in the same way when the node is Iσ,M = In−kM,(kj−kM,...,kM−1−kM). Finally,
after using all the generators of In,(kj,...,kM) as pivots, we are left with
the ideal In,(kj,...,kM−1)

. This procedure leads to the following recursive
formula for the Betti number of In,(kj,...,kM) (we give here the version for
i.i.d. components)

βα(In,(kj ,...,kM)) = βα(In,(kj ,...,kM−1)
)+

+
n−kM−2

∑
i=0

(
n

kM + i

)(
i + kM − 1

kM − 1

)
pkM+i
≥M βα−i+1(In−kM−i,(kj−kM−i,...,kM−1−kM−i))+

+

(
n

kM + α − 1

)(
α + kM − 2

kM − 1

)
pkM+α−1
≥M

(
M−1

∑
i=j

(
n − kM − (α − 1)
ki − kM − (α − 1)

)
pki−kM−(α−1)
≥i

)
+

+ pkM+α
≥M

n−kM

∑
i=1

(i + 1)
(

ı
α

)
.

(3.2.2)

The complete derivation of this formula is straightforward but some-
what tedious. It is based on the analysis of the branches of the Mayer-
Vietoris tree, as described in Chapter 1. Observe that the computation for
(k1, . . . , kM) is done in terms of cases with strictly less than M levels, and
hence the recursion is on the number of performance levels, and not on
the number of variables. The efficiency of this method is equivalent to the
one in [151].

Remark 3.2.15. There are several algorithms to compute the reliability of
generalized multi-state k-out-of-n systems. Some of them are restricted to
identical independent components. Among these, the algorithm in [69] is
enumerative (hence of low efficiency) and applicable to monotonic patterns,
the one in [151] is also enumerative but more efficient and is applicable
to monotonic and non-monotonic patterns. For the case of independent
but not necessarily identical components the algorithm by [147] uses a
finite Markov chain imbedding (FMCI) approach and is adequate for small
size systems, as is the algorithm in [132]. Other more efficient algorithms
include [30], based on conditional probabilities, or [95] using multi-valued
decision diagrams. Our algebraic approach is enumerative and applicable
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to both kind of systems (with independent and identical components and
with independent non identical components) and produces not only the
full reliability formulas but also bounds.

Quality of the algebraic bounds. For a polynomial ring R = k[x1, . . . , xn]

Hilbert’s syzygy theorem (cf. [39] for instance) states that the length of
any resolution of an ideal in R is bounded above by n. In our context this
means that the algebraic method using the Betti numbers of reliability
ideals produces a compact version of the inclusion-exclusion identity
and thus a series of Bonferroni-like bounds for the system’s reliability
such that if the system S has n components then the reliability formula,
given by the Hilbert series numerator of IS, has at most n + 1 summands.
Every truncation of this formula provides a bound for the reliability. We
compare these bounds with the lower bounds l′jφ and l∗∗j

φ introduced in
Section 3.1.1.1.

Example 3.2.16. Let k1 = 4, k2 = 2, k3 = 1 and let n = 8, 11, 14. Let us
consider the multi-state generalized k-out-of-n:G systems In,(4,2,1) for the
following probabilities, independent but not identical:

level c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

1 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6 0.4 0.5 0.6
2 0.2 0.15 0.1 0.2 0.15 0.1 0.2 0.15 0.1 0.2 0.15 0.1 0.2 0.15
3 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05 0.05 0.1 0.05

Table 3.6: Probabilities pi,j, i.e. P(ci ≥ j) for the components of several
generalized multistate k-out-of-n systems

The number of generators (i.e. number of minimal paths) of each of
the systems considered are given in Table 3.7 we also give the number of
minimal cuts.

The results are summarized in tables 3.8 and 3.9 in which we consider
the probability of the system performing at levels 1 to 3. In the tables,
column li indicates a lower bound given by the first i summands of the
Hilbert series numerator of the corresponding j-reliability ideal, while
column ui denotes an upper bound given by the first i summands. An
asterisk indicates that the bound is sharp. Cells with a minus sign −
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Sytem level # minimal paths # minimal cuts
S8,(4,2,1) 1 106 168
S8,(4,2,1) 2 36 8
S8,(4,2,1) 3 8 1
S11,(4,2,1) 1 396 495
S11,(4,2,1) 2 66 11
S11,(4,2,1) 3 11 1
S14,(4,2,1) 1 1106 1092
S14,(4,2,1) 2 105 14
S14,(4,2,1) 3 14 1

Table 3.7: Number of minimal paths and cuts for several generalized
multistate k-out-of-n systems

System Level l2 l4 l6 l8 l10 l12 l14

S8,(4,2,1) 1 - - 0.419984 0.779916
S8,(4,2,1) 2 - 0.480262 0.530988 0.531611
S8,(4,2,1) 3 0.42 0.435844 0.435914*
S11,(4,2,1) 1 - - - - 0.0.914949 0.937376*
S11,(4,2,1) 2 - 0,357057 0.654349 0.666748 0.666865 0.666866*
S11,(4,2,1) 3 0.4975 0.541256 0.541819 0.541821*
S14,(4,2,1) 1 - - - 0.870386 0.984878
S14,(4,2,1) 2 0.670885 0.765189 0.767655 0.767675*
S14,(4,2,1) 3 0.627826 0.627844*

Table 3.8: Lower bounds for several generalized multi-state k-out-of-n
systems.

indicate that the bound is meaningless (i.e. upper bounds above 1 or lower
bounds below 0).

The results in tables 3.8 and 3.9 allow us to discuss the strengths and
weaknesses of our method. First of all, for systems with big number of
generators, the first bounds are useless due to the fact that each of the first
summands of the compact inclusion-exclusion formula consists of a large
number of inner summands. As the number of variables increases, we
obtain a collection of useful bounds, that compare well with the bounds
l′jφ (p) and l∗∗j

φ (p) from Section 3.1.1.1 (see Table 3.10). Observe that l∗∗j
φ (p)
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System Lvl. u1 u3 u5 u7 u9 u11 u13 u15

S8,(4,2,1) 1 - - - 0.825892 0.782246*
S8,(4,2,1) 2 - 0.750481 0.538913 0.531642 0.531612*
S8,(4,2,1) 3 0.55 0.43725 0.435916 0.435914*
S11,(4,2,1) 1 - - - - - 0.938269 0.937376*
S11,(4,2,1) 2 - - 0.741715 0.668326 0.666872 0.666866*
S11,(4,2,1) 3 0.75 0.547875 0.541858 0.541821*
S14,(4,2,1) 1 - - - - - - 0.992941 0.985126*
S14,(4,2,1) 1 - - - 0.785541 0.767936 0.767677 0.767675*
S14,(4,2,1) 1 0.95 0.6455 0.628081 0.627845 0.627844*

Table 3.9: Upper bounds for several generalized multi-state k-out-of-n
systems.

behaves very well in case we have a multi-state parallel system, as is
the case in level 3 of our systems. This is because the minimal cuts are
unique in these cases. We have considered low working probabilities
in our system, since our bounds are sharper in this case. In case our
probabilities are high we can consider the unreliability of the dual systems
and thus obtain close bounds. All our bounds were computed in less than
one second on a laptop1. It is worth noting that the performance of our
method does not depend on having identical or non-identical probability
distributions in the components of the system.

�

3.2.3.3 Binary k-out-of-n system with multi-state components

The following multi-state generalization of k-out-of-n systems was intro-
duced in [114]. Let Sm,n,k be a system with k components, each of which
can be in a set of states {0, 1, . . . , m}. Sm,n,k is called an m-multi-state
k-out-of-n:G system if the system works whenever the sum of the states
of the n components is bigger than or equal to k. Note that this kind
of systems allows k to be bigger than n. This is an example of a binary
system with multi-state components. This kind of systems are useful to
model different situations like the following examples:

1CPU: intel i7-4810MQ, 2.80 GHz. RAM: 16Gb
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System Lvl. l′jφ (p) l∗∗j
φ (p)

S8,(4,2,1) 1 0.108 0.0510583
S8,(4,2,1) 2 0.1 0.0710738
S8,(4,2,1) 3 0.1 0.435914*
S11,(4,2,1) 1 0.1296 0.35674
S11,(4,2,1) 2 0.1 0.125414
S11,(4,2,1) 3 0.1 0.541821*
S11,(4,2,1) 1 0.1296 0.762837
S11,(4,2,1) 2 0.1 0.211015
S11,(4,2,1) 3 0.1 0.627844*

Table 3.10: Lower bounds l′jφ (p) and l∗∗j
φ (p) from Section 3.1.1.1 for some

generalized multi-state k-out-of-n systems

- A storehouse has n storage facilities each of which has a capacity
of m units. At any given time each of the facilities is partially full,
leaving a real capacity smaller than or equal to m units. The system
is said to work if it is capable to store a new arriving lot that consists
of k storage units.

- A set of n pumps and pipes contributes to a global pipe that covers
the needs of a power plant. Each individual pipe may supply water
at different levels {0, . . . , m} and we consider that the system is
working if the combined supply (sum of all the individual supplies)
is above level k.

The reliability ideal of Sm,n,k, denoted by Jm
[n,k] is generated by all mono-

mials xμ in n variables such that the degree of xμ is k and μj ≤ m for all
1 ≤ j ≤ n. To obtain the number of generators of the system (i.e. the
minimal working states) and the Betti numbers, needed to compute the
reliability function and bounds for it in the algebraic approach, we can
proceed as follows.

First, we list all the generators in a precise ordering, following Proposi-
tion 3.2.14 in [114]: for each i from m descending to 0 and for each variable
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xj for j from 1 to n (we call xj the distinguished variable in each step) we
form all monomials xμ such that

- the first j − 1 variables have an exponent strictly smaller than i

- the variable xj has an exponent equal to i

- the remaining last n − j variables have an exponent smaller than or
equal to i

- the degree of xμ equals k

Using this ordering and Corollary 3.2.25 in [114] we can obtain the Betti
numbers of Jm

[n,k] using only one more piece of information, namely, for
each generator xμ of Jm

[n,k] we need to know the number of variables before
xj that have a nonzero exponent in xμ. So when we list the generators
of Jm

[n,k] we keep track of how many of the first j − 1 variables have a
nonzero exponent with the notation we just described. The method for
this computation of the Betti numbers of a monomial ideal is described in
detail in [114, 115].

For this, let j be the distinguished variable and i ≤ m fixed, the expo-
nent of xj in xμ. Now, for each p between 0 and k − i, which represents
the sum of the exponents of the first j − 1 variables of xμ, and for each
l between 0 and j − 1, which represents the number of variables among
the first j − 1 ones whose exponent is different from zero, we count all
the possible ways to obtain the sum p using l summands each of which is
between 1 and i − 1. This number is called the number of restricted composi-
tions of p in l summands between 1 and i − 1 and is denoted C(p, l, 1, i − 1)
in [72]. Since we have l nonzero summands among the first j − 1 variables,
we can choose them in (j−1

l ) ways. For each of these choices we have that
the exponents of the last n − j variables sum up to k − i − p and each of
these exponents is between 0 and i. The number of such compositions is
C(k − i − p, n − j, 0, i). Hence, putting all these considerations together we
have the following result.
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Lemma 3.2.17. The number of generators of Jm
[n,k] is

Nm
[n,k] =

k

∑
i=0

n

∑
j=1

k−i

∑
p=0

j−1

∑
l=0

C(p, l, 1, i− 1)
(

j − 1
l

)
C(k− i− p, n− j, 0, i). (3.2.3)

All these generators have degree k, hence β0,k(Jm
[n,k]) = Nm

[n,k] and β0,j(Jm
[n,k]) = 0

for all j �= k. Each generator contributes to βi,k+i(Jm
[n,k]) with (n−l−1

i ) elements,
hence the formula for the Betti numbers of Jm

[n,k] is

βi,k+i(Jm
[n,k]) =

=
k

∑
i=0

n

∑
j=1

k−i

∑
p=0

C(p, l, 1, i − 1)
(

j − 1
l

)
C(k − i − p, n − j, 0, i)

(
n − l − 1

i

)
(3.2.4)

and βi,j(Jm
[n,k]) = 0 if j �= k + i.

Remark 3.2.18. The number of restricted compositions of an integer with
a given number of bounded summands can be obtained using a certain
generating function, as shown in [7, 38, 46]. The following closed formula
for some types of restricted compositions can be found in Theorem 2.1 in
[72] which can be used to explicitly compute the numbers in Lemma 3.2.17
using that C(k − i − p, n − j, 0, i) = C(k − i − p + n − j, n − j, 1, i + n + j):

C(n, k, 1, b) = ∑
i2=α2,i3,...,ib

max{0,αj}≤ij≤min{β j,γj}

b

∏
l=2

(
k − ∑l−1

j=2 ij

il

)
,

where

αj = n − k(j − 1)−
b

∑
l=j+1

(l − j + 1)il

β j = k −
b

∑
l=j+1

il

γj = �
n − k − ∑b

l=j+1(l − 1)il

j − 1
�.
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In order to obtain the necessary information to construct the relia-
bility polynomial and bounds from the Betti numbers of Jm

[n,k] we need
their multigraded version. For this, let xμ be a minimal generator of
Jm
[n,k] and xj its distinguished variable. Let (xi1 , . . . , xil) be the l variables

among the first j − 1 that appear with a nonzero exponent in xμ. Let
Pxμ = {x1, . . . , x̂j, . . . , xn} \ {xi1 , . . . , xil}. Then the multidegrees of the
contribution of xμ to βi,k+i(Jm

[n,k]) are xμ ∏xi∈σ xi for each subset σ of Pxμ of
cardinality i. Observe that the resolution of Jm

[n,k] is k-linear, i.e. βi,j Jm
[n,k] = 0

for all j �= k + i.

Example 3.2.19. Let S be a system with 4 components, each of which has
possible states {0, 1, 2, 3} such that the system is working whenever the
sum of the states of the components is bigger than or equal 5. The ideal of
this system is J3

[4,5] ⊆ R = k[x, y, z, t] and is minimally generated by the
following 40 monomials, sorted as described before.

i = 3 i = 2
x x3yt, x3zt, x3yz, x3y2, x3z2, x3t2 x2y2z, x2y2t, x2yz2, x2yt2, x2z2t, x2zt2, x2yzt
y y3zt, y3z2, y3t2, xy3z, xy3t, x2y3 y2z2t, y2zt2, xy2zt, xy2z2, xy2t2

z z3t2, xz3t, yz3t, xyz3, x2z3, y2z3 xz2t2, yz2t2, xyz2t
t xyt3, xzt3, yzt3, x2t3, y2t3, z2t3 xyzt2

And from this we have that β0,5(J3
[4,5]) = 40, β1,6(J3

[4,5]) = 92, β2,7(J3
[4,5]) =

72, β3,8(J3
[4,5]) = 19 and βi,j(J3

[4,5]) = 0 otherwise. Observe that, for instance,

the multidegrees of the two contributions of xz3t to β1,6(J3
[4,5]) are xyz3t

and xz3t2, and the multidegree of its contribution to β2,7(J3
[4,5]) is xyz3t2

since Pxz3t = {y, t}.

�

We finish with an example of application of these systems.

Storage problem using binary k-out-of-n systems with multi-state com-

ponents. Binary k-out-of-n systems with multi-state components can be
used to model storage problems in which the storage capacity is dis-
tributed among several containers. To illustrate this, let S be the set of n
tanks in a wine cellar where grape is received in the harvesting season.
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Each of the tanks Ti, i = 1, . . . , n has a total capacity of Ci tons and when a
tractor arrives at the cellar, the staff distributes the the new coming grapes
among different tanks so that the wine produced in the tanks is sufficiently
homogeneous in terms of the origin of the grapes.

The filling procedure is the following: let G be the number of loads of
grapes in the incoming tractor (a load consists of 100Kg). We use a discrete
measure of time, namely time t means that we have already stored in the
tanks the grapes of t tractors. We denote by lt a measure of the level of the
set of tanks after time t. We can consider lt as the average of the levels of
each of the tanks, the minimum or the maximum among them. We choose
a level l ≤ min{C1, . . . , Cn} that we do not want to pass after storing the
new coming grapes. Let m = l − lt and observe that in principle l is chosen
so that m < G. Among all the possibilities to perform the required load,
we choose one randomly. Let us denote by pt

i,j the probability that at time
t the empty space in tank Ti is at least j. We have that pt

i,0 = 1 for all i and
pt

i,j ≥ 0 for all 0 ≤ j ≤ m. If one or more of the tanks is full at time t we
continue with the same procedure on the remaining tanks. Our goal is
to study the probability p(l), l > lt that we can store the G new coming
grape loads in the n tanks so that no tank is filled beyond l and assuming
all tanks are already filled to level lt. This situation can be modeled by
a binary G-out-of-n system with multi-state components, in which each
component can be in states {0, . . . , m}.

Example 3.2.20. Consider a cellar with n = 5 tanks with a capacity of 15
tons each. After a certain time t the maximum level on any of the tanks
is 12.5 tons i.e. 125 loads. A tractor arrives with 15 loads of grapes and
we want to describe how p(l) behaves for l > 125. We have modeled
the probabilities pi,j as pi,j = 1 − ( 10

150 j)3/2 for all i, and 0 ≤ j ≤ 15, and
pi,j = 0 if j > 15, i.e. in our case all tanks have the same probability
distribution. Under these conditions we have a binary 15-out-of-5 system
with multi-state components such that each component can be in states
{0, . . . , m = l − 125} for each l. Using the results in Section 3.2.3.3 we have
that the ideal of this system is Jm

[5,15]. The number of generators of this
ideal, according to the formula given in Lemma 3.2.17, gives the number
of different ways to allocate the grapes meeting the requirements of the
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Figure 3.3: Probability that we can fill the 5 tanks in Example 3.2.20 up to
level at most l for l from 125 to 140.

described procedure. Taking into account the probabilities of each of the
tanks, we can compute the probability that we can meet the requirements
using the multigraded Betti numbers as computed in Lemma 3.2.17. We
used an implementation of the formulas (3.2.3) and (3.2.4) and algorithms
to obtain the set of generators and Hilbert series of the corresponding
ideals within the computer algebra system Macaulay2 [57]. The results are
shown in Figure 3.3 and Table 3.11, in which we also show the time (in
seconds) taken for the computation of the full list of multigraded Betti
numbers, from which we compute the probability in each case.

�

3.2.3.4 Multi-state consecutive k-out-of-n systems

A definition of consecutive multi-state k-out-of-n:F systems, in which k
could take different values for different system levels was proposed in
[68]. Under that definition, a possibly different number of consecutive
components need to be below level j for the system to be below level j for
different levels. The required number of consecutive component failures
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Level l p(l) # gens time
125 0 – –
126 0 – –
127 0 – –
128 0.32768 1 0
129 0.78926 121 0.016
130 0.92148 651 0.126
131 0.95644 1451 0.532
132 0.97187 2226 1.140
133 0.97805 2826 1.594
134 0.98136 3246 2.057
135 0.98321 3526 2.274
136 0.98413 3701 2.470
137 0.98453 3801 2.799
138 0.98466 3851 2.821
139 0.98469 3871 2.834
140 0.98469 3876 2.821

Table 3.11: Probabilities, number of generators and times to compute
multigraded Betti numbers for the data in Example 3.2.20

is thus dependent on the system level under consideration. The definition
is formalized as follows

Definition 3.2.21. An n-component multi-state system such that its struc-
ture function φ satisfies that φ(x) < j for j = 1, 2, · · · , M if at least kl
consecutive components are in states below l for all j ≤ l ≤ M is called a
multi-state consecutive k-out-of-n:F system.

If k1 ≥ k2 ≥ · · · ≥ kM the system is called a decreasing multi-state
consecutive k-out-of-n:F system. In this case, as j increases, the requirement
on the number of consecutive components that must be below state j for
the system to be below state level j also decreases.

If k1 ≤ k2 ≤ · · · ≤ kM, the system is an increasing multi-state consecu-
tive k-out-of-n:F system. In this case, for the system to be below a higher
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state level j, a larger number of consecutive components must be below
state j.

If all the kj are the same we say the system is a constant consecutive
k-out-of-n:F system.

Example 3.2.22 ([68] Example 2, [75] Example 12.16). Consider a three-
component system where both the system and the components may be in
one of three possible states: 0, 1 and 2. The system is below state 2 if and
only if at least one component is below state 2 i.e. k2 = 1. The system is
below state 1 if and only if at least two consecutive components are below
state 1 i.e. k1 = 2. This is a strictly decreasing multi-state consecutive
k-out-of-n system. This system has a consecutive 1-out-of-3:F structure
at system state level 2 and a consecutive 2-out-of-3:F structure at system
state level 1.

�

Example 3.2.23 ([68], Example 3, [75], Example 12.17). Consider a three-
component system where both the system and the components may be in
one of four possible states: 0, 1, 2 and 3. The system is below state 3 if and
only if the three components are below state 3. The system is below state
2 if and only if at least two consecutive components are below state 2 and
the three components are below state 3. The system is below state 1 if and
only if at least one component is below state 1, at least two consecutive
components are below state 2, and at least three components are below
state 3. The system in this example has a 3-out-of-3:F structure at system
state 3, a consecutive 2-out-of-3:F structure at system state level 2, and a
1-out-of-3:F structure at system state level 1.

�

As we know from Section 3.1.2, given a structure function φ its dual
φD with respect to t ∈ Nn is given by (cf. [40], and see [13] for the case
t = (1, . . . , 1), M = 1)

φD(s1, . . . , sn) = M − φ((t1 − s1, . . . , tn − sn)). (3.2.5)
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In our case, we use t = (M, . . . , M). This means that the dual system
is in state M − j or above if and only if the original system is in state j
or below, and that for probability evaluation, the probability of the dual
component ci to be in state greater or equal to M − j is the probability that
the original component ci is at state lower than or equal to j. Observe that
MS consecutive k-out-of-n:F systems are dual to consecutive k-out-of-n:G
systems; this duality transforms increasing systems in decreasing ones and
vice-versa. For the algebraic treatment of these systems we shall make use
of their dual structure. We can treat the consecutive k-out-of-n:F structures
at each level of our systems as consecutive k-out-of-n:G structures and
take advantage of the ideal structure. In this setting, the system-to-ideal
correspondence is clearer and more convenient.

Let Ik,n be the reliability ideal of a binary consecutive k-out-of-n system,
this ideal is given by

Ik,n = 〈x1 · · · xk, x2 · · · xk+1, . . . , xn−k+1 · · · xn〉.

The graded Betti numbers of Ik,n can be recursively computed by the
formulas given in [118], where βi,j,k,n indicates the i-th Betti number in
degree j of the ideal Ik,n:

β0,k,k,n = n − k + 1,

β1,k+1,k,n = n − k, for k ≥ n
2

,

β1,k+1,k,n = 1 + β1,k+1,k,n−1, for k <
n
2

,

β1,2k,k,n = n − 2k + β1,2k,k,n−1, for k <
n
2

,

βi,j,k,n = βi−2,j−k−1,k,n−k−1 + βi−1,j−k,k,n−k−1 + βi,j,k,n−1 ∀i ≥ 2, for k <
n
2

.

Let us denote by Ik,n,j the monomial ideal given by the generators of
Ik,n in which each variable is raised to the j-th power

Ik,n,j = 〈xj
1 · · · xj

k, xj
2 · · · xj

k+1, . . . , xj
n−k+1 · · · xj

n〉
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Observe that for this ideal, the graded Betti numbers are given by

βi,d,(Ik,n,j) = βi, d
j
(Ik,n).

An increasing or constant multi-state consecutive k-out-of-n:G system
(i.e. a decreasing k-out-of-n:F system) works at level j if at least kj com-
ponents work at level j or more, and these requirements do not overlap
among the levels. Therefore each level has a binary consecutive kj-out-of-n
structure and the j-th reliability ideal is given by

Ik,n,j = Ikj,n,j

Example 3.2.24. The system in Example 3.2.22 corresponds to a multi-state
consecutive k-out-of-n:G system with k1 = 1, k2 = 2, hence the j-reliability
ideals are given by

Ik,n,1 =〈x, y, z〉,
Ik,n,2 =〈x2y2, y2z2〉

�

The case of decreasing MS consecutive k-out-of-n:G system (i.e. in-
creasing MS consecutive k-out-of-n:F systems) is more complex. The main
difficulty comes from the fact that multi-state decreasing consecutive k-out-
of-n:G systems consist on a set of binary consecutive k-out-of-n structures
connected by and operators to describe the conditions under which the
system is in state j or above, and these individual structures are not em-
bedded in one another. The system is in state j or above if there are kj
consecutive components in state j or above and if there are kj′ consecu-
tive components in state j′ or above for each j′ < j. Since the system is
decreasing, these conditions do not completely overlap.

Example 3.2.25. The dual to the system in Example 3.2.23 is a decreasing
multi-state consecutive k-out-of-n system such that k1 = 3, k2 = 2 and
k3 = 1. The system is in state 1 or above if at least three components are in
state 1 or above; the system is in state 2 or above if at least 2 consecutive
components are in state 2 or above and at least 3 components are in state
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1 or above. Finally, the system is in state 3 if at least 1 component is in
state 3 and at least 2 components are in state 2 or above and at least 3
components are in state 1 or above. This system consists on three binary
consecutive k-out-of-n structures combined using the and operator.

�

Proposition 3.2.26. The ideal of a decreasing multi-state consecutive k-out-of-n
system is of the form

Ik,n,j =
⋂
j′≤j

Ikj′ ,n,j′

Proof. The ideal corresponding to a consecutive k-out-of-n structure in
which each component is at level j is given by Ik,n,j. This models the
condition of having k consecutive components out of n, operating at level j
or more. The and operator between two levels with such structure implies
that the monomials verifying both conditions are in the intersection of
both ideals, hence the result.

Example 3.2.27. The ideals of the system in Example 3.2.25 are given by

Ik,n,1 = 〈xyz〉,
Ik,n,2 = 〈x2y2, y2z2〉 ∩ 〈xyz〉 = 〈x2y2z, xy2z2〉,
Ik,n,3 = 〈x3, y3, z3〉 ∩ 〈x2y2, y2z2〉 ∩ 〈xyz〉 = 〈xy2z3, xy3z2, x2y3z, x3y2z〉

�

Using these ideals to compute the reliability of the system we can
improve over the enumerative method. The algebraic approach provides
an algorithm that can be used for increasing, constant and decreasing
as well as for non monotonic multi-state consecutive k-out-of-n systems.
In the latter case the intersection in Proposition 3.2.26 runs only on the
non-decreasing stretches, since Ikl ,n,l ∩ Ikl′ ,n,l′ = Ikl ,n,l if kl ≥ kl′ when
l > l′. Huang et al. gave in [68] an algorithm for decreasing multi-state
consecutive k-out-of-n:F systems and claimed that “there are no efficient
algorithms for system performance evaluation of an increasing multi-
state consecutive k-out-of-n:F systems”. They proposed the use of duality
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to obtain bounds for the reliability of such systems and the use of the
enumerative method to obtain the exact reliability. Later, Belaouli and
Ksir proposed in [16] a non-recursive algorithm for monotonic systems.
Yamamoto et al. [141] proposed an algorithm for general multi-state
consecutive k-out-of-n: G systems which do not need to be monotonic.
Finally, Zhao et al. [148] used the finite Markov chain imbedding approach
(see [50, 73]) for the multi-state consecutive k-out-of-n model, and more
recently Yi et al. [143] used the same method for some of its variants.
The algorithms in [141] and [148] are very efficient and provide the exact
reliability for systems with independent components both identical and
non-identical. Our algorithms based on the algebraic methods are slower
than these but since they are enumerative have the advantage that can be
used to obtain bounds and exact reliabilities, and that can be used in the
case of non-independent components. Their efficiency is bigger than other
enumerative methods since we avoid much of their redundancy (cf.[37]) by
using the Hilbert series of the corresponding ideals in a compact form [21].

Example 3.2.28 ([141, 148]). Consider a non-monotone system with inde-
pendent non identical components. We will consider 10 components
and six levels. The number of consecutive components required at
each of these levels do not follow a monotonic sequence. We have that
k1 = 6, k2 = 5, k3 = 1, k4 = 2, k5 = 4, and k6 = 4. The probabilities of
each component being in the different states are given as follows: pi,0 = 0.1,
pi,1 = 0.12, pi,2 = 0.13, pi,3 = 0.14, pi,4 = 0.15, pi,5 = 0.16 and pi,6 = 0.2
if i is odd, and pi,0 = 0.05, pi,1 = 0.1, pi,2 = 0.12, pi,3 = 0.13, pi,4 = 0.15,
pi,5 = 0.2 and pi,6 = 0.25 if i is even.

The j-reliability ideals of this system are

Ik,n,1 = 〈x1x2x3x4x5x6, x2x3x4x5x6x7, . . . , x5x6x7x8x9x10〉,
Ik,n,2 = Ik,n,1 ∩ 〈x2

1x2
2x2

3x2
4x2

5, x2
2x2

3x2
4x2

5x2
6, . . . , x2

6x2
7x2

8x2
9x2

10〉,
Ik,n,3 = Ik,n,2 ∩ 〈x3

1, x3
2, . . . , x3

10〉
Ik,n,4 = Ik,n,3 ∩ 〈x4

1x4
2, x4

2x4
3, . . . , x4

9x4
10〉
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Ik,n,5 = Ik,n,4 ∩ 〈x5
1x5

2x5
3x5

4, x5
2x5

3x5
4x5

5, . . . , x5
7x5

8x5
9x5

10〉
Ik,n,6 = Ik,n,5 ∩ 〈x6

1x6
2x6

3x6
4, x6

2x6
3x6

4x6
5, . . . , x6

7x6
8x6

9x6
10〉

Tables 3.12 and 3.13 show the bounds and exact reliabilities obtained
by the algebraic algorihtms for Ik,n,j, j = 1, . . . , 6. In these tables, column
li indicates a lower bound given by the first i summands of the Hilbert
series numerator of the corresponding j-reliability ideal, while column ui
denotes an upper bound given by the first i summands. The bounds l′j(p)
and l∗∗j(p) are the ones presented in Section 3.1.1.1.

An asterisk in Table 3.12 indicates that the bound is sharp. Cells
with a minus sign – indicate that the bound is meaningless (i.e., upper
bounds above 1 or lower bounds below 0). Note that for systems with
big number of generators, the first bounds are useless due to the fact that
each of the first summands of the compact inclusion–exclusion formula
consists of a large number of inner summands. Observe that our sets
of bounds compare well with l′j(p) and l∗∗j(p). All these bounds and
reliabilities were computed in less than 0.1 seconds on a laptop 2 using the
C++ library described in [21]. It is worth noting that the performance of our
method does not depend on having identical or non-identical probability
distributions in the components of the system.

level gens. l2 l4 l6 l8 l′j(p) l∗∗j(p)

1 5 0.812534* 0.625026 0.807054
2 10 0.628628* 0.33627 0.496151
3 82 0.315292 0.603833 0.628417 0.628627* 0.288797 0.496148
4 58 – – 0.560247 0.596598* 0.155202 0.411976
5 22 0.0624633 0.101436* 0.0200767 0.00178415
6 22 0.0104151 0.0123518* 0.0019125 2.73312e-07

Table 3.12: Lower bounds for the j-reliability of the consecutive k-out-of-n
system in Example 3.2.28

�
2MacBookAir M1. 8GbRAM
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level gens. u1 u3 u5 u7 u9

1 5 – 0.812534*
2 10 – 0.628628*
3 82 0.746048 0.631709 0.628634 0.628627*
4 58 – – – 0.596598*
5 22 0.412608 0.102 0.101436*
6 22 – 0.0123544 0.0123518*

Table 3.13: Upper bounds for the j-reliability of the consecutive k-out-of-n
system in Example 3.2.28

3.2.3.5 Sparsely connected homogeneous multi-state consecutive k-out-

of-n:G systems

Sparsely connected homogeneous multi-state consecutive k-out-of-n:G
systems were proposed in [52] as a generalization of the binary sparse k-
out-of-n systems proposed by Zhao et al. in [142], which were themselves
conceived as an extension of the consecutive k-out-of-n model. In such
systems two working (resp. failing) components are said consecutive with
sparse d if the number of non-working (non-failed) components between
any two adjacent working (failed) components is at most d. Hence when
d = 0 this is the usual consecutive k-out-of-n model. In the multi-state
setting, the model proposed in [52] generalizes the MS consecutive k-out-of-
n model, cf. [68], in the same fashion as in the binary case. One considers
any two components whose states are l or above; if all the components
between them are below state l and the number of such components is at
most d, then these components can be called consecutive components in
state l with sparse d.

Example 3.2.29 ([52], Example 1). Consider a lighting system in a man-
ufacturing workshop with ten homogeneous lamp bulbs, see Fig. 3.4.
All the bulbs are arranged linearly and each of them might be in one of
three different states. State 0 is a failed state, state 1 represents a partial
functioning state, and state 2 is a perfect functioning state. We want to
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1
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0
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1
4

2
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2

6

1
7

2

8

0

9

1
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State
Component

linear 10-bulb arrangement

three consecutive 2-level components with sparse 1

Figure 3.4: Lighting system: bulb linear arrangement in Example 3.2.29

evaluate the probability that the system can satisfy a certain requirement of
brightness. According to this requirement the system may be in one of the
following states: System state 0 indicates that the lighting system does not
provide enough brightness for the manufacturing system to work; system
state 1 indicates that the manufacturing system can work partially by a
certain amount of brightness; and system state 2 means that the lighting
system provides enough brightness for the manufacturing system to work
perfectly. In the lighting system, the concept of sparse d can be illustrated
in terms of the coverage of light. Let d = 1. As shown in Fig. 3.4, compo-
nents 5, 6, and 8 are in state 2 while component 7 is below state 2, then
they can be regarded as 3 consecutive components in state 2 because the
number of components being below state 2 between components 6 and
8 does not exceed 1. However, components 1 and 4 cannot be regarded
as consecutive components in state 1 because the number of components
being below state 1 between them exceeds 1.

�

Let us denote by Jk,n,d the reliability ideal of a binary consecutive k-
out-of-n:G system with sparse d. It is generated by all the monomials xμ

such that xμ is the product of k consecutive variables with sparse d, i.e.
xμ = xi1 · · · xik such that ij − ij−1 ≤ d + 1 for all j ∈ {i2, . . . , ik}. In order
to collect all such monomials, observe that:

- i1 can be any index in {1, . . . , n − k + 1}
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- For each of indices ij, j ∈ {i2, . . . , ik} the gap ij − ij−1 must be in
{1, . . . , d + 1}. Note that the sum of those k − 1 gaps is always in
{k − 1, . . . , n − i1}.

Hence, the number of generators of Jk,n,d, i.e. the number of minimal
working states of the system, is given by the following result.

Proposition 3.2.30. Let G(Jk,n,d) be the set of minimal generators of Jk,n,d, we
have that

#(G(Jk,n,d)) =
n−1

∑
j=k−1

(n − j)
k−1

∑
l=0

(−1)l
(

k − 1
l

)(
j − l(d + 1)− 1

k − 2

)
Proof. Let Cj,k−1,d+1 be the number of compositions of j in k− 1 summands
each of them in {1, . . . , d + 1}. For each index i in {1, . . . , n − k + 1} we
select k variables, starting in xi, i.e. we select k − 1 gaps, each of which is
smaller than d + 1 or equal, and the total sum cannot exceed n − i, being
the minimal sum equal to k − 1, since each gap is at least 1. Hence we
have that the number of generators of the ideal is

n−k+1

∑
i=1

n−i

∑
j=k−1

Cj,k−1,d+1,

and a simple reorganization of the summands leads to

n−k+1

∑
i=1

n−i

∑
j=k−1

Cj,k−1,d+1 =
n−1

∑
j=k−1

(n − j)Cj,k−1,d+1.

Now, by formula E in [7] we have that

Cj,k−1,d+1 =
k−1

∑
l=0

(−1)l
(

k − 1
l

)(
j − l(d + 1)− 1

k − 2

)
,

and hence the result.

Let G(Jk,n,d) = {g1, g2, . . . } be the set of minimal generators of Jk,n,d
and let it be sorted by the lex order. In order to compute the Betti numbers
and Betti multidegrees of Jk,n,d we will use Mayer-Vietoris trees and cone
resolutions, cf. [123]. These are based on the iterative computation of the
intersection ideals 〈g1, . . . , gi−1〉 ∩ 〈gi〉 where i ranges in |G(Jk,n,d)|.
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Proposition 3.2.31. Let set(gi) be the set of variables in

{xmin(gi)−d−1, . . . , xmax(gi)
}

such that xi does not divide gi. Then

〈g1, . . . , gi−1〉 ∩ 〈gi〉
= 〈xi · gi | xi ∈ set(gi)〉+ 〈gi · g′l | g′l ∈ G(Jk,min(gi)−d−2,d)〉

Proof. Let supp(gi) be the set of variables that divide gi, max(gi) be the
biggest variable that divides gi and min(gi) the smallest variable that
divides gi.

For all xv ∈ set(gi) we have that gi
xv

max(gi)
= gi′ ∈ G(Jk,n,d) with i′ < i

in the lex order, therefore xvgi ∈ G(〈g1, . . . , gi−1〉 ∩ 〈gi〉).
If xv /∈ set(gi) and xw ∈ supp(gi) we have that gi

xv
xw

either is not in
G(Jk,n,d) or it is equal to some gi′ ∈ G(Jk,n,d) with i′ > i in the lex order.
Therefore, in any case xvgi it is not a minimal generator of 〈g1, . . . , gi−1〉 ∩
〈gi〉.

Finally, for any gi′ ∈ G(Jk,n,d) such that supp(gi′) ⊆ {1, . . . , min(gi)−
d − 2} we have that supp(gi) ∩ supp(gi′) = ∅ and there is no xv ∈ set(gi)

such that xv divides gi′ hence 〈gi〉∩ 〈gi′ 〉 = 〈gigi′ 〉, gigi′ ∈ G(〈g1, . . . , gi−1〉∩
〈gi〉 and gigi′′ does not divide gigi′ for any other such gi′′ �= gi′ . Ob-
serve that the set given by all gi′ ∈ G(Jk,n,d) such that supp(gi′) ⊆
{1, . . . , min(gi)− d − 2} is precisely G(Jk,min(gi)−d−2,d).

Theorem 3.2.32. βi(Jk,n,d) = ∑xμ∈G(Jk,n,d)
(| set(xμ)|

i ) + βi−1(Jk,min(xμ−d−2),d)

Proof. It is a direct consequence of Proposition 3.2.31 and the fact that

set(xμ) ∩ supp(G(Jk,min(xμ−d−2),d)) = ∅.

Observe that β0(Jk,n,d) = #(G(Jk,n,d)) and hence the recursion in The-
orem 3.2.32 is closed and it yields a procedure for the computation of
the Betti numbers of Jk,n,d. From this result and applying the compo-
nents’ probabilities we obtain the reliability of the corresponding binary
consecutive k-out-of-n:G system with sparse d.
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We say that a binary consecutive k-out-of-n:G system with sparse d
is compact if 2k ≥ n − d. For any such compact system, we have that
Ci−d−2,k,d = 0 for all i = 1, . . . , n − k + 1, i.e. Jk,min(xμ−d−2),d = ∅ for
all xμ ∈ G(Jk,n,d). We therefore obtain the following consequences of
Proposition 3.2.31:

Corollary 3.2.33. Let Jk,n,d the reliability ideal of a compact binary consecutive
k-out-of-n:G system with sparse d, then Jk,n,d has linear quotients with respect to
the lex order.

Proof. Having linear quotients with respect an ordering of the generators
means that for such ordering we have that 〈g1, . . . , gi−1〉 : 〈gi〉 is gen-
erated by a set of variables set(gi). This is equivalent to the fact that
〈g1, . . . , gi−1〉 ∩ 〈gi〉 = 〈xi · gi | xi ∈ set(gi)〉. Proposition 3.2.31 and the
fact that for compact systems Jk,min(xμ−d−2),d = ∅ for all xμ ∈ G(Jk,n,d)

yield the result.

Corollary 3.2.34. Let Jk,n,d be a compact binary consecutive k-out-of-n:G system
with sparse d, then

βi(Jk,n,d)) = ∑
xμ∈G(Jk,n,d)

(|set(xμ)|
i

)
.

Observe that a binary consecutive k-out-n ordinary system i.e. d = 0,
is compact if and only if k ≥ n/2.

Example 3.2.35. Let n = 9, k = 3, d = 2. The corresponding consecutive
k-out-of-n with sparse d system is not compact. The list of minimal mono-
mial generators of Jk,n,d has 45 generators and is given by the monomials
xμ = xaxbxc for all triples abc in the following set (given in lex order)
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Figure 3.5: System reliability for consecutive 5-out-of-15 systems with
sparse d = {0, . . . , 10}. Low, medium and high reliability components.

123, 124, 125, 134, 135, 136, 145, 146, 147,

234, 235, 236, 245, 246, 247, 256, 257, 258,

345, 346, 347, 356, 357, 358, 367, 368, 369,

456, 457, 458, 467, 468, 469, 478, 479,

567, 568, 569, 578, 579, 589,

678, 679, 689,

789.

�

Example 3.2.36. Let n = 15, k = 5 and let vary d from 0 to 10. When
d = 0 we have the usual consecutive 5-out-of-15 system, and as d increases
we tend towards the traditional k-out-of-n system, which occurs when
d > n − k. Let us assign working probabilities to the components in three
ways: First consider highly reliable components, i.e. pi,1 = 0.8 if i is odd
and pi,1 = 0.7 if i is even, second consider medium reliable components,
i.e. pi,1 = 0.5 if i is odd and pi,1 = 0.4 if i is even and finally consider
components with low reliability, pi,1 = 0.3 if i is odd and pi,1 = 0.2 if i is
even. Figure 3.5 shows the behaviour of the reliability of these three kinds
of systems as the sparse d varies.

�
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For the multi-state case the situation is similar to multi-state consecutive
k-out-of-n systems. Gao, Cui and Chen define multi-state consecutive k-
out-of-n:G system with sparse d in [52] in the following way.

Definition 3.2.37. A system with n components is called a generalized
multi-state consecutive k-out-of-n:G system with sparse d if φ(X) ≥ j, (1 ≤
j ≤ M) whenever there exists an integer value l, (j ≤ l ≤ M) such that at
least consecutive kl components are in state l or above with sparse d.

As in MS consecutive k-out-of-n systems, we consider increasing, de-
creasing and constant generalized MS consecutive k-out-of-n:G system
with sparse d systems depending on the sequence of kj for the different
levels j.

Applying the same reasoning as in Section 3.2.3.4 we define Jk,n,d,j as
the ideal generated by the generators of Jk,n,d each raised to the j-th power.
We then define the ideal of a multi-state consecutive k-out-of-n:G system
with sparse d as

Jk,n,d,j =
⋂
j′≤j

Jkj′ ,n,j′,d

Example 3.2.38. In the system in Example 3.2.29, see [52], to reach system
state 1, it is required that at least consecutive 3-out-of-10 light bulbs should
be in state 1 or above with sparse 1. To reach state 2, i.e., to meet the
demand of enough brightness, at least consecutive 5-out-of-10 light bulbs
should be in state 2 or above with sparse 1. Therefore, we can model the
mentioned example as an increasing MS consecutive (k1, k2)-out-of-10:G
system model with sparse 1, where k1 = 3 and k2 = 5. Using Proposition
3.2.30 we have that the number of generators of J3,10,1,1 is 28 and the
number of generators of J5,10,1,2 is 64. In both cases the computation of the
Betti numbers and j-reliabilities (and bounds) of this system is computed
in less than one second by our algorithms.

�

Example 3.2.39. Let n = 15 and k1 = 2, k2 = 5, k3 = 7, k4 = 9. We consider
multi-state consecutive k-out-of-n:G systems with sparse d such that the
systems have 4 different working levels. Take d = 3, 5, 7. The components
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n k d j num.gens. reliability time(s.)

15 2 3 1 50 0.9999996 0.004018
15 5 3 2 1281 0.99801 0.152161
15 7 3 3 4470 0.785976 2.04139
15 9 3 4 4565 0.0233618 4.49723
15 2 5 1 69 0.9999996 0.003935
15 5 5 2 2499 0.999723 0.343454
15 7 5 3 6219 0.857467 4.90422
15 9 5 4 4997 0.0250292 5.43077
15 2 7 1 84 0.9999998 0.00347
15 5 7 2 2919 0.999942 0.480944
15 7 7 3 6429 0.863406 5.61369
15 9 7 4 5005 0.0250567 5.40056

Table 3.14: Number of generators of the ideals of several multi-state
consecutive k-out-of-n:G systems with sparse d and times to compute their
reliability

are independent but non identical. The probabilities of each component
being in the different sates are given as follows: pi,0 = 0.1, pi,1 = 0.15,
pi,2 = 0.2, pi,3 = 0.25 and pi,4 = 0.3 if i is odd, and pi,0 = 0.05, pi,1 = 0.15,
pi,2 = 0.2, pi,3 = 0.25 and pi,4 = 0.35 if i is even. The number of generators
for the corresponding ideals and the reliabilities and computation times
for each of these systems are given in Table 3.14. The column reliability

indicates the probability that the system is at level j or higher.

�

Multi-state consecutive k-out-of-n:G systems with sparse d and maxi-

mum total gap m. In multi-state consecutive systems, Huan et al. [145]
consider the situation in which a system may fail when a number of
consecutive failures takes place or when a total number of failures (may
be not consecutive) occur, see also [80]. This situation can be applied to
multi-state consecutive k-out-of-n:G systems with sparse d and therefore
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extend this model to a wider range of situations. We consider as before
that two components whose states are l or above are consecutive if all
the components between them are below state l and the number of such
components is at most d, in addition, we say that k components c1, . . . , ck
are consecutive only if they are pairwise consecutive in this sense and the
total number of components in state l or below between c1 and ck is at
most m. With this restriction we give the following definition:

Definition 3.2.40. A system with n components is called a generalized
MS consecutive k-out-of-n:G system with sparse d and maximum total
gap m if φ(X) ≥ j (1 ≥ j ≥ M) whenever there exists an integer value l
(j ≥ l ≥ M) such that at least consecutive kl components are in state l or
above with sparse d and the number of components below state l within
them is at most m.

Let us denote by J′k,n,d,m the ideal of a binary consecutive k-out-of-n:G
system with sparse d and maximum total gap m. Following the proof
of Proposition 3.2.30 we have that the number of generators of J′k,n,d,m is
given by a truncation of the sum in the number of generators of Jk,n,d.

Proposition 3.2.41. Let G(J′k,n,d,m) be the set of minimal generators of J′k,n,d,m,
we have that

#(G(J′k,n,d,m)) =
m

∑
j=k−1

(n − j)
k−1

∑
l=0

(−1)l
(

k − 1
l

)(
j − l(d + 1)− 1

k − 2

)
Observe that if m ≥ n − 1 then the system is a consecutive k-out-of-n:G

system with sparse d.

Example 3.2.42. Consider the system in Example 3.2.35. We have n = 9,
k = 3, d = 2, and set m = 3. Now, components 1, 4 and 7 are consecutive
with sparse 2 but the total number of failed components between 1 and 7
is four, hence this would be a failure state for a consecutive 3-out-of-9:G
system with sparse 2 and maximum total gap 3. For such a system the
list of minimal monomial generators of its reliability ideal J′k,n,d,m has 42
elements and is given by the monomials xμ = xaxbxc for all triples abc in
the following set (given in lex order)
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Figure 3.6: System reliability for consecutive 5-out-of-15 systems with
sparse d = {0, . . . , 10} and maximum gap set as d/2 or 2d. Systems with
low, medium and high reliability components.

123, 124, 125, 134, 135, 136, 145, 146,

234, 235, 236, 245, 246, 247, 256, 257,

345, 346, 347, 356, 357, 358, 367, 368,

456, 457, 458, 467, 468, 469, 478, 479,

567, 568, 569, 578, 579, 589,

678, 679, 689,

789.

�

Example 3.2.43. Figure 3.6 shows the effect of setting the maximum gap at
half the sparse and twice the sparse in the systems of Example 3.2.36. In
both cases the reliability of the system is reduced as expected, by a small
amount in case the gap is half the sparse, and by a bigger amount in case
the maximum allowed gap doubles the sparse of the system.

�

3.2.3.6 Weighted multi-state k-out-of-n systems

The traditional binary k-out-of-n system model was extended by Wu and
Chen [140] to weighted k-out-of-n systems. In a binary weighted k-out-of-

147



3.2. Analysis of certain multi-state systems using monomial ideals

n:G system, component i has a weight wi. The weight of each component
represents the utility of the component, i.e. its contribution to the actual
performance of the system. The system works if and only if the total
weight of the working components is at least k, a pre-specified value.
Observe that k may be larger than n. The multi-state version of weighted
k-out-of-n systems was introduced by Li and Zuo in [82] where the authors
define two variants of these systems.

Definition 3.2.44 (Weighted multi-state k-out-of-n system, model I). In a
system with n components, each component and system may be in M + 1
possible states, {0, . . . , M}. Component i (1 ≤ i ≤ n), when in state j
(0 ≤ j ≤ M), has a utility value of wi,j. The system is in state j or above
if the total utility of all components is greater than or equal to kj, a pre-
specified value. Let φ be the structure function of the system representing
the state of the system and W the total utility of all components. Then,
this definition means Pr{φ ≥ j} = Pr{W ≥ kj}. Since state 0 is the worst
state of the system, we have Pr{φ ≥ 0} = 1.

For the second definition we consider only the contribution of those
components in state j or above.

Definition 3.2.45 (Weighted multi-state k-out-of-n system, model II). The
system is in state j or above if the sum of the weights of the components
whose states are in state j or above is greater than or equal to kj. Let
N be the structure function of the system and Wj be the sum of the
utilities of the components whose states are j or above. We then have
Pr{φ ≥ j} = Pr{Wj ≥ kj}.

Since the structure functions of these kinds of systems depend strongly
on the individual contributions or weights of each of the variables, the
methods for computing its reliability are of an enumerative nature. Li and
Zuo evaluate in [82] two such methods: a recursive one [140, 67] and the
Universal Generating Function Method (UGF) [136, 85, 84]. The analysis
in [82] shows that in general, the recursive approach is more effective than
the UGF method for both models I and II. A key issue in the algorithmic
evaluation of these systems’ reliability is the efficiency in enumerating the
working states for each level.
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For any monomial ideal I ⊆ k[x1, . . . , xn], a quotient basis is a basis
as a k-vector space of the quotient ring R/I. It amounts to a way of
enumerating all the monomials that are not in I. In our case, considering
I = 〈xM+1

1 , . . . , xM+1
n 〉 we have that the (M + 1)n monomials not in I

correspond to all possible states of the system’s components. In order
to obtain the reliability of the system, we proceed state by state and add
the probabilities of the states whose weight is above kj for each j. This
methodology might theoretically be less efficient than the recursive or
the UGF approach, but a good implementation of the enumeration step
can compensate this. This is indeed the case with the CoCoALib function
QuotientBasis which is an efficient implementation of the enumeration
of the elements in the k-basis of R/I for any ideal I. Tables 3.15 and 3.16
show the results of some computer experiments in systems of the same
kind as those in the experiments in [82]. In table 3.15 we set n = 5 and take
M from 3 to 12. Each component’s weight is a random integer number in
the range [1, 14] and probabilities are randomly assigned. In Table 3.16 the
weights and probabilities are assigned in the same way but we keep M
constant and equal to 5 while n varies from 3 to 11. In both cases we set
k1 = 200. In the tables, column TS indicates the total number of possible
states of the system, column WS indicates the number of j-working states
and column RS indicates the size of the set of minimal working states.
The number of working states was obtained by exhaustive search on the
possible states of the systems, and the number of minimal states was
obtained by the minimization algorithm implemented in CoCoALib. For
each of these numbers there is a column indicating the time used for its
computation by the C++ class described in [21]. Observe that [82] shows
the results of another set of examples in which the weights assigned to
the variables are floating point numbers in the range [20, 50] this affects
the performance of the UGF method, since there are less like terms to
cancel, but it does not affect the recursive method. It does not affect the
performance of our approach either, since our method is based on the
efficiency of the algebraic approach to enumeration of all working states.
Observe that in these tables the time for the computation of the reliability
of the system is that in the WS-time column. The tables show computations
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M TS WS RS TS-time(s.) WS-time(s) RS-time(s)

3 243 0 0 0.006094 0.006162 0
4 1024 0 0 0.007245 0.007462 0
5 3125 3 1 0.008029 0.008848 0.008869
6 7776 44 5 0.009567 0.011285 0.011382
7 16807 410 26 0.01666 0.018772 0.019281
8 32768 5398 293 0.028787 0.36573 0.044584
9 59049 16204 179 0.091856 0.101756 0.113455
10 100000 32768 390 0.150313 0.166822 0.193492
11 161051 76570 373 0.3017117 0.351811 0.413162
12 248832 121508 326 0.427333 0.482606 0.583472

Table 3.15: n = 5, k1 = 200, average of ten runs

Model I systems, the algorithms and results are essentially equivalent for
Model II.

The described procedure computes the exact reliability of weighted
k-out-of-n systems. In case one is interested in the algebraic bounds as
obtained in the previous sections, we need to consider the ideal generated
by the monomials corresponding to working states of the system. In
this case, the first step is to obtain the set of minimal working states, or
equivalently the minimal set of generators of the corresponding ideal. The
complexity of this procedure, starting with the complete set of working
states is O(r2) were r is the total number of working states of the system.
It is, therefore, an impractical procedure for large systems. In Tables 3.15
and 3.16 the time for computing the minimal generating set of the j-ideal,
i.e. the minimal set of working states is given under column RS-time. The
size of these sets are under column RS and one can see that these sizes are
significantly smaller than that of the set of working states, hence it would
be worth investigating efficient ways of obtaining these sets directly. This
would imply a drastic reduction of the computing time of the reliability
and bounds for weighted multi-state k-out-of-n systems.
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n TS WS RS TS-time(s.) WS-time(s) RS-time(s)

3 125 0 0 0.00592 0.005949 0
4 625 0 0 0.006535 0.006662 0
5 3125 0 0 0.006134 0.006803 0
6 15625 20 7 0.15506 0.017679 0.017708
7 78125 3873 302 0.01859 0.036595 0.04394
8 390625 46945 2106 0.11527 0.120179 0.214819
9 1953125 224695 3561 0.155288 0.422814 0.889363

10 9765625 1662628 24131 0.738989 2.4139 18.5923
11 48828125 10022724 31389 3.812 12.1875 64.2796

Table 3.16: M = 5, k1 = 200, average of ten runs
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Chapter 4

Algorithms for Multi-state

Systems

The development and implementation of efficient algorithms for system
reliability computations is an important task in reliability engineering.
Many algorithms exist, and are available to the community in a variety of
forms. Some are included in large versatile commercial systems [3, 1, 2],
others are offered as packages, functions or libraries in mathematical
software systems of general purpose languages, for example Matlab [81,
109], Python [110] or R [125]. Others still are directly distributed by the
authors as stand-alone software, like SHARPE [121].

This chapter is devoted to describe a C++ class which implements the
algebraic approach to system reliability described in this thesis and can be
integrated in other software systems. In this way it may become available
in different forms and toolboxes to researchers, software developers and
reliability engineers. The language C++ (now in its version 20, standard
ISO/IEC 14882 : 2020) is a widely used [4] object-oriented general purpose
computer language, both for very large systems and for small ad-hoc
applications. Among the virtues of C++ is its integrability with other
languages and also its high performance, meeting the need for fast and
reliable computations. Our class is implemented in the CoCoALib library
[5], which is a C++ library for Computations in Commutative Algebra,
currently at its version 0.99800 (March 2022). It is open source and free.
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The main feature of the C++ class introduced in this chapter is that it is
applicable to a large variety of systems, with or without a known identifi-
able structure, and can be used to compute the reliability (and bounds) of
systems having independent identical or non-identical components. The
performance of this class is good in terms of time requirements, being
able to compute the reliability of systems with hundreds of components
and tens of thousands of minimal paths or cuts. Even though there exist
optimized algorithms for several kinds of systems which are faster than
the ones presented here, ours are useful to analyze systems for which no
specialized algorithms are known, and to benchmark new algorithms for
particular types of systems.

All the code of the class and the examples, which have been developed
as a joint work with Anna M. Bigatti and Eduardo Sáenz-de-Cabezón, are
available at

http://www.dima.unige.it/~bigatti/data /AlgebraicReliability/

4.1 Algebraic reliability class in CoCoALib

The good performance of an algorithm depends also on the efficiency of
its implementation. In this section we give the interested reader some
technical details on the implementation of our algorithms and some of the
decisions we made, like the choice of data types and the structure of the
algorithms. These decisions contribute to the actual performance of the
algorithms in terms of memory usage and CPU time. Also, we describe
the CoCoALib library, which provides convenient implementations of the
main algebraic structures we need. We hope these descriptions, although
not fully detailed, make it easier for engineers and reliability practitioners
to practically use these algorithms or incorporate them into their own
software, and also make it easy to reproduce our results, experiments
and benchmarks.
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4.1.1 CoCoALib

CoCoALib, for Computations in Commutative Algebra, is an open source
C++ software library principally based on multi-variate monomials and
polynomials and devoted to algebraic geometry. It is the computational
core of the CoCoA software system [6]. A crucial aspect of CoCoALib is
that it was designed from the outset to be an open-source software library.
This initial decision, together with the desire to help the software prosper,
has many implications: e.g. designing a particularly clean interface for all
functions with comprehensive documentation. This cleanliness makes it
easy to integrate CoCoALib into other software in a trouble-free manner.
The library is fully documented, and also comes with about 100 illustrative
example programs. CoCoALib reports errors using C++ exceptions, while
the library itself is exception-safe and thread-safe. The current source
code follows the C++14 standard. The main features of the design of
CoCoALib are:

• it is well-documented, free and open source C++ code (under the
GPL v.3 licence);

• the design is inspired by, and respects, the underlying mathematical
structures;

• the source code is clean and portable;

• the user function interface is natural for mathematicians, and easy to
memorize;

• execution speed is good with robust error detection.

The design of the library (and its openness) was chosen to facilitate and
encourage “outsiders” to contribute. There are two categories of contri-
bution: code written specifically to become part of CoCoALib, and stand-
alone code written without considering its integration into CoCoALib. The
library has combined some of the features of various external libraries into
CoCoALib. Such as Frobby (see [111]) which is specialized for operations
on monomial ideals. Other integrations are with Normaliz, a library for
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computing with affine monoids or rational cones and GFanLib which is a
C++ software library for computing Gröbner fans and tropical varieties.

4.1.2 The class description

We have implemented within CoCoALib a set of C++ classes for making
computations in algebraic reliability. The UML class diagram is depicted
in Figure 4.1.

Figure 4.1: UML diagram of the CoherentSystem class

Our main class is the abstract class CoherentSystem which consists of
a series of levels and a matrix of probabilities. The levels are stored
in a std::vector (an efficient structure of the C++ language) in which
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each component is an instance of the class CoherentSystemLevel, and the
probabilities are given by a vector of vectors of type double where the
j’th entry of the i’th vector corresponds to pi,j = p(si ≥ j), the probability
that the level of the i’th component of the system is bigger than or equal
to j. Each instance of the class CoherentSystemLevel consists basically of
an ideal and its dual, which are objects of the CoCoALib class ideal. Also,
we store as member fields their Mayer-Vietoris trees, which play the role
of multigraded free resolutions optimized for monomial ideals.

The concrete classes inheriting from the class CoherentSystem are the
ones called CoherentSystemPath and CoherentSystemCuts which respec-
tively represent :G systems in which the levels and probabilities denote
working states, and :F systems in which the levels and probabilities repre-
sent failures.

For any instance of these two concrete classes, and hence of the abstract
class CoherentSystem we can call the following member functions:

myMinimalPaths Receives a level and gives a vector of vectors of type
long. Each of these vectors is a minimal path of the system at the
given level.

myMinimalCuts Receives a level and gives a vector of vectors of type
long. Each of these vectors is a minimal cut of the system at the
given level.

myReliability Receives a level j and computes Rj(S).

myUnreliability Receives a level j and computes Uj(S).

myReliabilityBounds Receives a level j and computes bounds for Rj(S)
given by the resolution obtained by the Mayer-Vietoris tree of Ij(S).

myUnreliabilityBounds Receives a level j and computes bounds for
Uj(S) given by the resolution obtained by the Mayer-Vietoris tree
of Ij(S).

In addition, for :G systems given by their sets of paths, we have imple-
mented two more bounds, the ones presented in Section 3.1.1.1:
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GNMaxMinPathBound Which corresponds to l′jp hi(p).

GNCoproductMinCutsBound Which corresponds to l∗∗j
φ (p).

When computing the functions myReliability, myUnreliability,
myReliabilityBounds or myUnreliabilityBounds the object checks its
ideal and its dual ideal, and chooses whichever of them has a small-
est number of minimal generators to perform the actual computation.
To compute duals of ideals we use the Frobby library, in particular the
function FrbAlexanderDual which is in general a fast computation. Once
the ideal is chosen, we check whether the system has already computed
its Mayer-Vietoris tree. If it is not yet computed, it is computed and stored
in the corresponding class member field. Then the Mayer-Vietoris tree is
used to retrieve the required value or bounds for reliability or unreliability.

4.2 Examples of use

In this section we apply our C++ class to some examples of reliability
computations. We use binary networks and multi-state systems. We
consider systems in which their components have independent identically
distributed probabilities as well as systems in which the components’
probabilities are independent but not identically distributed. All the
computations in this section have been implemented and executed in an
HP Z-book laptop1.

4.2.1 Test examples

First, we validate our algorithms with a set of diverse examples of multi-
state systems found in the literature. We selected systems of different
nature so that we can test our algorithms with examples featuring different
characteristics. Table 4.1 shows the results of these tests. The first column
of the table indicates the name of each example (see description below),
n indicates the number of variables and M the number of levels of the

1CPU: intel i7-4810MQ, 2.80 GHz. RAM: 16Gb
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system (not counting the complete failure level or level 0). Column Mi
indicates the number of levels of each component and column gens(Ij)

indicates the number of minimal generators of the j-reliability ideal for
each level j = 1, . . . , M. The set of test examples consists of the following:

- Army Battle Plan is taken from the classical paper [28]. It is a
customer-driven multi-state system with 5 different states and 4 com-
ponents (two binary components and two three-level components),
the probabilities of the different components are independent but
not identical.

- Bin.S-P is a binary Series-Parallel system taken from [85] (Example
4.5) which has seven independent not identical components and two
levels.

- MAX+MIN,TIMES is a multi-state system with 5 components and 7
levels whose structure function is given by

φ(x1, . . . , x5) = (max{x1, x2}+ min{x3, x4})× x5,

and the details on components’ and system’s levels and probabilities
(not i.i.d) are given in [84], Example 4.7.

- Bridge Flow Network is a multi-state network with 5 edges with
different weights considered as flows. The states of the system are
given by the possible flows through the network. The example
considers the probability of a total flow of at least three units (i.e. the
system is in level j = 3). The details on states and probabilities are
given in [127] Example 4, see also [133] Example 5.14.

- Dominant MS binary-imaged system is a multi-state system with
three i.i.d. components. Both the system and components have four
different states. It is presented as Example 12.21 in [75] to illustrate
the concept of multi-state dominant binary-imaged system.

- MS Cons.k-out-of-n is a multi-state consecutive k-out-of-n system
with 3 components and three levels. It is example 12.18 in [75].
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Example n M Mi gens(Ij)

Army Battle Plan 4 4 2,2,3,3 2,4,5,5
Bin.S-P 7 1 1 ∀i 3
MAX+MIN,TIMES 5 6 3,2,2,3,2 4,3,4,3,2,1
Bridge Flow Network 5 3 3,1,2,1,2 3 for j = 3
Dominant MS binary-imaged system 3 3 3,3,3 3,2,1
MS Cons. k-out-of-n 3 3 3,3,3 1,2,1
Gen k-out-of-n:(3,2,1) 10 3 3 ∀i 175,55,10

30 3 3 ∀i 4525,465,30
50 3 3 ∀i 20875,1275,50

Gen.k-out-of-n:(3,4,2) 10 3 3 ∀i 165,245,45
30 3 3 ∀i 4495,27840,435
50 3 3 ∀i 20825,231525,1225

Gen.k-out-of-n:(4,3,2) 10 3 3 ∀i 375,165,45
30 3 3 ∀i 31900,4495,435
50 3 3 ∀i 251125,20825,1225

Table 4.1: Test examples of multi-state systems.

4.2.2 Source to terminal networks

One of the main problems in reliability engineering is Network Reliability,
see for instance [10, 133] for a comprehensive account and [56] for a recent
algorithm. In this problem we consider a network in which one vertex
is selected as source vertex and one or more vertices are selected as target
vertices. Each of the connections in the network has a certain probability to
be working, and the problem is to compute the probability that there exists
at least one source-to-target path composed by operational connections.
Usually the networks are binary i.e. the system and all of its components
have only two possible levels, although the multi-state version has also
been considered [9, 146].

4.2.2.1 GARR: Italian Research and Education Network

Our first example is the GARR Italian network. The motivation to use
this example is to show the performance of our algorithms in a real-life
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S-node T-node # Minpaths i.i.d probabilities non i.i.d.
0.9 0.95 0.99

TO CT 212 0.977344 0.994704 0.999798 0.994352
TS1 NA 223 0.985203 0.996890 0.999895 0.993917
TO* CT* 196 0.977428 0.994713 0.999797 –
TS1* NA* 168 0.975771 0.994486 0.999795 –

Table 4.2: Reliability computations for the GARR 2008 network.

system that has already been studied in the literature. Figure 4.2 shows
the official 2008 map of the backbone of the GARR network in Italy,
which interconnects universities, research centers, libraries, museums,
schools and other education, science, culture and innovation facilities,
see http//:www.garr.it. The network was at the time formed by 41
nodes and 52 connections. Table 4.2 shows the results of some reliability
computations in this network. First, we use TO as source node and CT as
terminal node, and then we use TS1 as source node and NA as terminal
node. In both cases we consider an identical independent probability p
for all the connections and compute the source to terminal reliability for
p = 0.9, 0.95 and 0.99. The last two rows in Table 4.2 correspond to the
same computations in [133] (Example 5.7), observe that the differences are
due to the fact that the authors in [133] use a slightly different network
which has 42 nodes and hence some different connections and a different
number of minimal paths in each example. Since our algorithms can also
treat the case of non-identical probabilities, we assigned probability 0.99
to all 10Gbps connections (4 connections), 0.95 to all 2.5 Gbps connections
(14 connections) and 0.9 to the rest of the connections. The results are
shown in the last column of the table. All our computations in this table
took less than one second.

4.2.2.2 Random networks

Our second example is a randomly generated set of networks. This is a
convenient way to generate a big number of examples not having a regular
structure (like for instance series-parallel systems or k-out-of-n systems
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Figure 4.2: Map of the GARR network in 2008

and variants), and therefore represents a good set of benchmarks for the
application to general systems. We demonstrate our algorithms’ perfor-
mance in several random networks generated following the Erdős-Rényi
model ER(n, p) [42] and Barabasi-Albert model BA(n, m) [12]. These
models generate networks with different characteristics such as degree
distribution, modularity, etc. We compute the reliability of 100 random
Erdős-Rényi networks with n = 40, p = 0.05 and 100 Barabasi-Albert
networks with n = 10 and m = 4; we chose randomly one source and one
terminal node in each case. The number of minimal paths varies between
100 and 1000 in both cases. However, the relation between the number of
minimal paths and minimal cuts is significantly different in the two types
of networks. Erdős-Rényi networks tend to have many more minimal
cuts with respect to the number of minimal paths, while the situation
is the opposite for Barabasi-Albert networks, see Figure 4.3. In the case
of Barabasi-Albert networks our algorithms compute the reliability of
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Figure 4.3: Number of minimal paths and minimal cuts in Erdős-Rényi
and Barabasi-Albert networks. The line indicates number of minimal paths
equals number of minimal cuts.

the network using the dual ideal, since it is smaller in most cases. The
reliability of the Erdős-Rényi examples was always computed using the
minimal path ideal. Times for the computation of the reliability of these
networks are shown in Figure 4.4. The figures show that the times depend
greatly on the number of minimal paths, but the topology of the network
influences the algebraic characteristics of the ideals. Observe that there
are two cases of Barabasi-Albert graphs in which the number of minimal
paths is smaller than the number of minimal cuts and hence the path ideal
was used for the computation, which results in higher computation times
compared with the cases in which the dual was used. The resolutions
of these networks ideals are much shorter in the dual case and hence
the results.
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(a) (b)

Figure 4.4: Times for reliability computation on Erdős-Rényi and Barabasi-
Albert graphs.

4.2.3 Multi-state generalized k-out-of-n systems

Our final example is multi-state generalized k-out-of-n systems. We in-
clude this example since they are one of the most important types of
systems studied in the reliability engineering literature, both in their
binary and multi-state versions.

We have used our C++ class to compute the reliability of several gen-
eralized k-out-of-n systems. Since each of these systems is given by a
vector (k1, . . . , kM) we generated randomly 100 vectors for systems with
four levels, and 10 variables. Figures 4.5 (a) and (b) show the number of
minimal paths and minimal cuts of these systems and the computing time
of these examples vs. the number of generators used for its computation
in each case. All systems considered have components with independent,
non-identical working probabilities. The figures show that most of these
systems have a smaller number of minimal paths compared to the number
of its minimal cuts, and that the computation time depends greatly on the
structure of the system. Let us denote by k the maximum of the integers
kl for l ∈ {1, . . . , M}. Figures 4.6 (a) and (b) show the number of minimal
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paths and cuts for systems with 12 components, 4 levels and k = 4, k = 6.
The number of minimal cuts and paths of multi-state generalized k-out-
of-n grows as (n

k). The performance of our algorithms depend greatly on
the number of minimal paths or minimal cuts, as can be seen in Figure 4.6
(c). There exist specialized algorithms for this kind of systems that are
recursive on M, see [151, 105] or based on Decision Diagrams [95].

4.2.4 Computational complexity

The algebraic method is (in its general form) an enumerative method,
similar to the inclusion-exclusion approach but less redundant. The com-
pact form of the Hilbert series provided by our algorithms gives some
computational advantages, but there exist certain intrinsic limitations due
to the complexity of the problem. The computation of network reliability
(either k-terminal, 2-terminal or all-terminal) is a #P-hard problem [11]
and hence there is no hope of finding an efficient algorithm for comput-
ing the reliability of general systems unless P = NP, even in the binary

(a) (b)

Figure 4.5: Number of minimal paths vs. number of minimal cuts and
computing time for generalized multi-state k-out-of-n systems with 10
components, 4 levels, and non-identical probabilities.
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case. The algebraic method in which our algorithms are based shows
that the problem of computing the reliability of a multi-state system can
be polynomially reduced to the computation of the multigraded Hilbert
series of a monomial ideal. This problem belongs to the class of #P-hard

(a) (b)

(c)

Figure 4.6: Number of minimal paths vs. number of minimal cuts and
computing time for generalized multi-state k-out-of-n systems with 12
components, 4 levels, k = 4, 6, and non-identical probabilities.
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problems and there exist several sub-problems of it that are known to be
#P-complete or NP-complete. In particular, the problem of computing the
Euler characteristic of an abstract simplicial complex is equivalent to the
computation of the coefficient of the monomial x1 · · · xn in the multigraded
Hilbert series of a (square-free) monomial ideal, and this problem belongs
to the #P-complete complexity class [112].

There are two complementary directions to follow for finding sat-
isfactory solutions for these problems. One is to develop specialized
polynomial algorithms for particular families of systems. The other is to
find algorithms showing good heuristic behavior when applied to general
problems. In these two directions it is of paramount importance to develop
good implementations in terms of data types, memory management, etc.
that make the algorithms applicable to practical problems.

The algebraic method for system reliability contributes to both of the
directions described above. On the one hand, the study of the structure
of the ideals of particular classes of systems can provide efficient algo-
rithms or even formulas (explicit or recursive) for their Hilbert series, see
[117, 118] for k-out-of-n and consecutive k-out-of-n binary systems, and
[105] for the multi-state version. As an example, the formulas for k-out-
of-n systems have complexity O(n2) which is quadratic, but not optimal
when restricted to systems with statistically independent components, for
which the algorithm in [17], based on the Fast Fourier Transform, runs
in complexity O(n(log n)2). On the other hand, for the general case we
used efficient algorithms for computing the multi-graded Hilbert series
of monomial ideals and Alexander duals. These algorithms avoid much
of the redundancy that shows up in reliability computation of general
systems, when we have no evident structure to take advantage of. Besides,
they make use of the recursive nature of the problem, which has also been
used in other approaches like the Universal Generating Function method.
However, there is still room for improvement. As the UGF and other meth-
ods show, it is important, for the sake of efficiency, to identify good base
cases for the recursion, and for simplification techniques. The algorithms
provided use only algebraic base cases and simplifications, and hence it is
expected to gain efficiency by exploring other base cases that arise from
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the knowledge of system reliability. Finally, as it is common in computer
algebra, implementations of general algorithms which are good enough
for NP-hard or #P-hard problems offer good performance in practice. A
paradigmatic example of this are the good algorithms for Gröbner bases,
a problem whose complexity is known to be doubly exponential. This is
the case of the class presented, in which we took advantage of the data
types and optimized routines provided by CoCoALib together with good
implementations for the Hilbert series and Alexander dual algorithms.
This allows us to efficiently compute the reliability of general systems of
big size with an affordable use of time and memory resources.
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Chapter 5

Future work

The directions explored in this thesis have opened some ways of continuity,
both in a theoretical, applied and computational framework.

5.1 Theoretical aspects

Regarding the ways we can follow on the theoretical research, from Section
2.3 we know that not every poset is the support poset of a monomial ideal.
In this thesis we partially answered the question

Question 5.1.1. How can we characterize those posets that are realizable as the
support poset of a monomial ideal?

We have seen that forests and collections of disjoint diamonds are in
the category of realizable posets. However, we did not characterize all
of them. From this point we will look for more support posets that are
realizable as a support poset of some monomial ideal and, then if there are
characteristics shared between the families found. However, this problem
is very complex and will take long time to properly answer this question.
In fact, maybe is easier to try to answer the same question about posets
that cannot be realized as support posets:

Question 5.1.2. How can we characterize those posets that are not realizable as
the support poset of a monomial ideal?
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Another open question arises from the fact that a given poset can be
seen a the support poset of several ideals which have different properties,
cf. Remark 2.3.33. Even within the class of forests and series-parallel ideals
we have seen that a given tree can be the support poset of different series-
parallel ideals, cf. Example 2.3.38, these may have different number of
generators, hence different Betti numbers, projective dimension, regularity,
etc. A wide open question is then to find relations between ideals having
the same support poset and properties of the ideal that can be read off the
support poset:

Question 5.1.3. What properties are shared by ideals that have the same sup-
port poset?

Attempts to answer these questions will prove the usefulness of the
support poset as a tool to study monomial ideals and their structure.

Furthermore, in a talk given by Professor Federico Ardila at University
of Genova about matroids (see [104]), we found that support posets are
possibly related with these objects. A finite matroid is equivalent to a
geometric lattice ([129]) i.e. a finite, atomistic (every element is a join) and
semimodular (for every two elements a and b, if a ∧ b <: a, then b <: a ∨ b,
where ) lattice. We believe there exists a way for turning a support poset
into a matroid and we can obtain valuable information from both of them.
The topic was not closely related with the goals of the research so we leave
it as a future direction to explore.

Another interesting question, although out of the scope of this thesis, is
to compare the bound obtained for projdim in Theorem 2.3.13 with other
bounds for the projective dimension of monomial ideals, like the ones in
[32, 33].

5.2 Applications to system reliability

When thinking on the applications of this research to Reliability Theory,
we also have some open paths for going further.

• During a visit of Professor Fatemeh Mohammadi to University of La
Rioja, we started to look into measures of importance in a system
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Chapter 5. Future work

(see, for instance [74]). We saw that it might be possible to use
support posets for explore this field.

• Another way to explore is modules of systems. A module of a
system is, summing up, a subsystem. It is interesting to explore
when one can gen some profit of using them or not, i.e. when is
convenient to decompose a big system into smaller ones and compute
the reliability of them. Support posets are believed to be a useful
tool for answering this question. We believe that each component of
the support poset corresponds, at least, with a module of a system
and could ease computations.

• Together with Rodrigo Iglesias and Professor Eduardo Sáenz-de-
Cabezón, we are exploring an algebraic version of the sum-of-disjoint-
products method (see [47, 88]) for multi-state system reliability anal-
ysis. For going further on this topic, we employ involutive basis
([122, 124]).

• Future research on multi-state systems will continue to combine
Markov and other models of movement between states with the
ideal theory describing the detailed structure of failure. In addi-
tion, we would like to study the relations and possible combination
with other related methods like the Universal Generating Function
method ([76]).

5.3 Computational aspects

Regarding computations and computer implementations, our future work
includes the design of specialized algebraic algorithms for particular
kinds of systems. The structure of particular systems induces a particular
structure in the associated ideals which can be studied using algebraic
and combinatorial tools allowing the design of more efficient algorithms.

Another direction of improvement is to adapt the algorithm for systems
with non-independent components or try to use continue variables rather
than discrete (then, instead of working with probabilities we will use
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probability distributions). The algebraic theory is exactly the same and
only the probability assignment to the computed monomials need to be
changed. This would give a wider flexibility to the C++ class presented
on Chapter 4.

The last point of improvement regarding our C++ class, is tuning and
optimizing the existing algorithms in order to improve their efficiency and
reduce the computing times.

Finally, we are developing another C++ class for compute polarization
and depolarization for monomial ideals.
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Summary

In this thesis we study the reliability of multi-state systems using an
algebraic approach based on monomial ideals.

Chapter one is devoted to introduce the tools needed along this re-
search. Despite the fact that it is a chapter with no original results, it
serves to settle the theoretical foundations both in the algebraic and in the
reliability field.

The first section of the chapter is dedicated to monomial ideals, an
indispensable object for the development of this doctoral thesis.

Further on the chapter, resolutions are presented. Resolutions are
exact sequences defined over a module and the relations existing between
its generators. When working with graded modules, another relevant
notion for this research can be defined, which is the minimal resolution.
The minimal resolution will allow us to compute, in addition to the
reliability os a system as other resolutions, the tightest bounds within the
enumerative ones.

Then, we make a review on Hilbert series, whose numerator enumer-
ates all the monomials belonging to a monomial ideal. The Hilbert series
of a monomial ideal can be calculated in different ways. One of them is
computing a free resolution of the ideals and writing its numerator as
the alternate sum of its ranks. When the resolution is minimal, the ranks
have an especial name: Betti numbers. In fact, Betti numbers are going to
proportionate the tightest bounds.

For a deeper study, references [62, 31, 114] are recommended.
Chapter one ends exploring reliability of binary systems. It starts

making a little review of the development of the field. Then the proper
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definition of a binary system is given, together with some important
objects related to them such as paths, cuts or state space. Then, the
algebraic method with an algebraic approach is presented by exploring the
relationship between the squarefree monomial ideals and binary systems
and, then, by computing its reliability or bounds for it. For going further
on this topic we recommend [75, 116, 117, 118, 119, 120].

We start chapter two dealing with polarization, an operation that trans-
forms an arbitrary monomial ideal I = 〈m1, . . . , mr〉 ⊆ R = k[x1, . . . , xn]

into a squarefree one I = 〈m1, . . . , mr〉 ⊆ S = k[y1, . . . , ym], where m ≥ n.
When one polarizes a monomial ideal, the property of being squarefree is
obtain but, in return, the polynomial ring in which the new ideal lies has
a bigger number of variables.

Depolarization is the inverse operation if polarization,i.e. given a square-
free monomial ideal, depolarization turns it into a monomial ideal with
exponents. Although polarization is unique, depolarization is not: when
a squarefree monomial ideal is depolarized it could be more than one
monomial ideals as a result. Figure 5.1 sums up this idea.

. . .

I3

I2

I3

IP

Depolarization Polarization

Figure 5.1: Graphic representation of que uniqueness and not uniqueness
of the operations polarization and depolarization

The aim of using polarization and depolarization operations is that
sometimes exist explicit formulas for computing certain properties of a
monomial ideal which are better in the case of being squarefree (or vicev-
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ersa). Polarization and depolarization preserve some algebraic invariants
such as Betti numbers or the Hilbert series (not are always exactly the
same but ease the calculations). Section 2.3.2.3 is devoted to investigate
properties transferred by the ideals who shares the same polarization.

Then, support posets are introduced. The support poset is a combina-
toric tool which allows to compute all the depolarizations of a squarefree
monomial ideals (see Theorem 2.3.8).

The question that may naturally arise is if all the posets are realizables
as a support poset of a monomial ideal, i.e. if given a poset C there exist
a monomial ideal I such that its support poset is C. Following this idea,
Proposition 2.3.1 gives a sufficient condition to construct monomials ideals
with a given support poset.

Going further in the chapter, some families of posets that are realiz-
able as support posets are shown. Some of this families are set of lines
or diamonds and forest (see Proposition 2.3.18, Proposition 2.3.23 and
Theorem 2.3.30). Furthermore, certain properties of the ideals which has
the support poset as just mentioned are explicitly calculate such as its Betti
numbers.

The chapter ends describing the support poset of k-out-of-n and series-
parallel ideals.

In the following chapter we study of algebraic reliability of multi-state
systems . A multi-state system is a system which can reach more than to
levels of performance. For example, given the lighting system of a city,
the failure of the lights of a street does not mean the failure of the entire
system, but it does not mean that it is perfectly working. From Chapter 1
it is knows that the reliability of a binary system is the probability of being
in a working state. Yet, for multi-state systems the notion of j-reliability
is needed, which is the probability that the system is working, at least, at
level j.

In Section 3.1.1 the algebraic method based on monomial ideals for
computing multi-state system reliability is showed, together with some
examples of its functioning.

Going further in the chapter we deal with multi-state k-out-of-n sys-
tems, a kind of system which has high relevance in the field due to its wide
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range of applications. Firstly, a review of the different definitions they
have received along the literature is done. In Proposition 3.2.4, Definition
3.2.13 and Proposition 3.2.13 the definitions aforementioned are proposed
in terms of monomial ideals. Besides, a way to compute these ideals and
its Betti numbers on a recursive way. Section 3.2.3.2 shows a comparative
between the bounds presented on Section 3.1.1.1 and the ones obtained
with the algebraic method.

Finally, some variants of k-out-of-n are treated, such as the binary k-
out-of-n systems with multi-state components, the multi-state consecutive
k-out-of-n, the sparsely connected homogeneous multi-state k-out-of-n and
the weighted multi-state k-out-of-n systems. For all of them, we define its
associated algebraic structures and explicit formulas for its Betti numbers.

This thesis ends showing a C++ class implemented with the free soft-
ware CoCoALib and devoted to compute the reliability (and bounds) of
multi-state systems. The algorithm for computing the reliability is based
on the algebraic approach studied in this thesis. The code and some
examples are available at

http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/

We first introduce CoCoALib, a C++ library created to make Computa-
tions in Commutative Algebra. It was developed by John Abbot and Anna
Maria Bigatti. It is based on multivariate monomials and polynomials and,
currently, is at its 0.998000 version.

Going further in the chapter, an explicit description of the implemented
class can be found. Its UML is the one depicted on Figure 4.1 on Chapter 4.

Next section shows some examples and the results using the class.
Firstly, the class is validated with diverse multi-state systems appearing in
the literature, such us the Army Battle Plan from [26]. Then, we compute
network reliability. In particular, the examples of networks used are the
GAAR: Italian Research and Education Network and randomly generated
networks based on Erdős-Rényi ER(n, p) and Barabasi-Albert BA(n, m)

models. This section ends showing how the implemented class behaves
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with two multi-state k-out-of-12 systems with 4 levels of performance and
taking k = 4 and k = 6.

Finally, computational complexity of the algebraic method imple-
mented in the class are treated.

The results of this thesis have been published on
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Resumen

Esta tesis se centra en el estudio de la fiabilidad de sistemas multi-estado
con un acercamiento algebraico basado en el uso de ideales monomiales.

En el capı́tulo uno se presentan las herramientas necesarias en esta
tesis doctoral. A pesar de que es un capı́tulo en el que no se aportan
resultados novedosas, sirve para asentar las bases teóricas, tanto en el
ámbito algebraico como en el relacionado con la fiabilidad de sistemas.

La primera parte del capı́tulo está dedicada a ideales monomiales,
objeto indispensable en el desarrollo de esta tesis.

Más adelante nos encontramos con el concepto de resolución, que es
una secuencia exacta definida sobre un módulo y las relaciones existentes
entre sus generadores. Si trabajamos con módulos graduados podemos
definir otro concepto de especial relevancia tanto en el campo del Álgebra
como para este trabajo de investigación: la resolución mı́nima. La res-
olución mı́nima nos va a permitir calcular, además de la fiabilidad de un
sistema como con cualquier otra resolución, las cotas más ajustadas dentro
de las de naturaleza enumerativa.

Después se introduce la serie de Hilbert, cuyo numerador nos va a
permitir enumerar los monomios de un ideal monomial. La serie de
Hilbert de un ideal se puede calcular de diferentes formas. Una de ellas
es calculando una resolución libre del ideal y escribir su numerador como
la suma alternada de sus rangos. En caso de que la resolución sea mı́nima,
los rangos tienen un nombre especial: números de Betti. Estos rangos nos
van a ofrecer las cotas más ajustadas de entre todas las resoluciones.

Para profundizar en los resultados algebraicos presentados se re-
comienda consultar [62, 31, 114], entre otros.
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Este capı́tulo preeliminar finaliza con una pequeña revisión de fiabil-
idad de sistemas binarios. En ella se hace una pequeña revisión de la
evolución del campo de estudio y definimos qué es un sistema binario,
ası́ como objetos relevantes asociados a él (caminos, cortes, espacio de
estados...). Finalmente se muestra la relación existente entre los ideales
monomiales libres de cuadrados y los sistemas binarios y cómo se puede
calcular su fiabilidad - o cotas para ella - utilizando dicha relación. Se
recomienda la lectura de [75, 116, 117, 118, 119, 120].

Comenzamos el capı́tulo dos tratando la operación polarización la
cual, dado un ideal monomial I = 〈m1, . . . , mr〉 ⊆ R = k[x1, . . . , xn], lo
transforma en un ideal monomial libre de cuadrados I = 〈m1, . . . , mr〉 ⊆
S = k[y1, . . . , ym], donde m ≥ n. Cuando polarizamos un ideal monomial
ganamos la propiedad de que el ideal resultante sea libre de cuadrados
pero, a cambio, trabajamos en un anillo con un mayor número de variables.

La operación depolarización es la inversa de la polarización, i.e. dado
un ideal monomial libre de cuadrados lo transformamos en un ideal mono-
mial con exponentes. Hay que tener en cuenta que, aunque la operación
polarización es única, la depolarización no lo es: cuando depolarizamos un
ideal monomial libre de cuadrados puede haber varios ideales monomiales
como resultado. La Figura 5.2 resume esta idea.

. . .
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Figure 5.2: Idea gráfica de la unicidad y no unicidad de las operaciones
polarización y depolarización
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El objetivo del uso de la operación polarización y depolarización es
que, en algunos casos, existen fórmulas explı́citas para calcular ciertas
propiedades de un ideal en el caso libre de cuadrados (o al contrario). Las
operaciones polarización y depolarización conserva, aunque no siempre
exactamente igual si que es fácil calcularlos, ciertos invariantes algebraicos
(como pueden ser los números de Betti o la serie de Hilbert). En la Sección
2.3.2.3 se realiza un estudio de diferentes propiedades compartidas entre
los ideales que tienen la misma polarización.

Más adelante se presentan los support posets, una herramienta de natu-
raleza combinatoria que va a permitir calcular todas las depolarizaciones
de un ideal monomial (ver Teorema 2.3.8).

De manera natural surge la pregunta de si todos los posets son realiz-
ables como support poset de un ideal monomial,i.e. si dado un poset C va a
existir un ideal monomial I tal que su C. En esta lı́nea, la Proposición 2.3.1
proporciona una condición suficiente para construir ideales que tengan un
support poset dado.

Después, se muestran familias de posets que son realizables como sup-
port poset de un ideal monomial, como pueden ser los conjuntos de lı́neas
o diamantes y los bosques (ver Proposición 2.3.18, Proposición 2.3.23 y
Teorema 2.3.30) y se dan, de manera explı́cita, propiedades fundamentales
de dichos ideales, como los números de Betti.

Finalmente se describe el suppor poset de los ideales k-entre-n y de los
series-paralelo.

El siguiente capı́tulo está dedicado al estudio de fiabilidad algebraica
en sistemas multi-estado. Un sistema multi-estado es aquel que puede
tomar más de dos niveles de funcionamiento. Por ejemplo, dado un
sistema de alumbrado de una ciudad, que fallen las luces de una calle
no quiere decir que el sistema no funcione, aunque tampoco que lo haga
a pleno rendimiento. Sabemos del Capı́tulo 1 que la fiabilidad de un
sistema es la probabilidad de que esté funcione. Sin embargo, para los
sistemas multi-estado necesitamos el concepto de j-fiabilidad, que es la
probabilidad de que un sistema esté funcionando, al menos, a nivel j.
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El método algebraico basado en ideales monomiales para calcular la
fiabilidad de este tipo de sistemas se explica en la Sección 3.1.1 junto con
ejemplos que muestran su funcionamiento.

Avanzando en el capı́tulo nos encontramos con sistemas multi-estado
k-entre-n, un tipo especı́fico de sistemas de gran interés debido a su amplio
abanico de aplicaciones. Para ellos, revisamos las diferentes definiciones
que se han dado en la literatura y cómo interpretarlas en términos de
ideales monomiales (ver Proposición 3.2.4, Definición 3.2.13 y Proposición
3.2.13). También se muestra un modo de calcular estos ideales de manera
recursiva, ası́ como sus números de Betti. Además, en la Sección 3.2.3.2 se
hace una comparativa entre las cotas presentadas en la Sección 3.1.1.1 y
las que se obtienen con empleando el método algebraico.

El capı́tulo finaliza tratando variantes de los sistemas k-entre-n multi-
estado, como los sistemas binarios k-entre-n con componentes multi-
estado, los sistemas multi-estado k-entre-n consecutivos, los sistemas ho-
mogéneos sparsely conectados k-entre-n o sistemas multi-estado k-entre-n
con pesos. Para todos ellos definimos sus estructuras algebraicas asociadas
y fórmulas para calcular sus números de Betti.

En el último capı́tulo se presenta una clase en C++ desarrollada con el
software libre CoCoALib para el cálculo de fiabilidad (y cotas) de sistemas
multi-estado basado en el acercamiento algebraico propuesto en esta tesis.
El código de la clase ası́ como ejemplos están disponibles en

http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/

En primer lugar se hace una pequeña introducción de CoCoALib, una
librerı́a de C++ pensada para realizar Cálculos en Álgebra Conmutativa.
Ha sido implementada por John Abott y Anna Maria Bigatti. Está basada
en monomios y polinomios multi variables y, actualmente, se encuentra
en la versión 0.998000.

Avanzando en el capı́tulo, nos encontramos con una descripción detalla
de la clase, cuyo diagrama UML aparece en la Figura 4.1 del Capı́tulo 4.

Más adelante se realizan unos ejemplos utilizando la clase desarrollada.
Primero se valida la clase con sistemas de diferente naturaleza que apare-
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cen en la literatura, como puede ser el Army Battle Plan de [26]. Después,
se calcula la fiabilidad de redes empleando la clase implementada. En
particular, los ejemplos de redes utilizados son la GAAR: Italian Research
and Education Network y redes generadas de manera aleatoria utilizando
los modelos de Erdős-Rényi ER(n, p) y Barabasi-Albert BA(n, m). Los
ejemplos finalizan mostrando el comportamiento de la clase en sistemas
en dos sistemas k-entre-12 multi-estado con 4 niveles de funcionamiento y
diferenciando k = 4 y k = 6.

Para finalizar, se trata la complejidad computacional del método alge-
braico implementado con la clase.

Los resultados presentados en esta tesis doctoral han sido publicados en
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Conclusions and results

In this thesis we have focused on the reliability of multi-state systems with
and algebraic approach based on monomial ideals. The main goals have
been

• Research on polarization and depolarization of monomial ideals.

• Investigate the application of polarization and depolarization opera-
tions for the analysis of multi-state system reliability.

• Study different kinds of systems and its associated algebraic struc-
tures.

• Algorithms’ development.

This works started with a background chapter in which the tools
needed for the later chapters have been presented: monomial ideals, which
is the most basic tool in this research, but the most needed due to they
are in charge of relating Algebra and Reliability Theory; resolutions and
Hilbert series, which have been used for computing reliability and bounds
for it; Mayer-Vietoris trees, a fast and efficient algorithm (implemented
in CoCoALib by Eduardo Sáenz-de-Cabezón en [114]) which allows us to
compute the numerator of the Hilbert series; and a brief introduction to
Reliability Theory, where binary systems ([75]) and how the algebraic
method based on monomial ideals ([116, 117, 118, 120]) are presented.

The second chapter is devoted to explore the relation between square-
free monomial ideals and arbitrary ones. For doing that, polarization and
depolarization operations were investigated.
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Polarization transforms a monomial ideal I ⊆ R = k[x1, . . . , xn] into a
squarefree one IP ⊆ S = k[y1, . . . , ym]. When polarazing, we change from
a polynomial ring with n variables to another one with m, where m ≥ n.
The inverse operation, depolarization, transforms a squarefree monomial
ideals into monomial one. However, the result of depolarization is not
unique: for a squarefree monomial ideal there exist some depolarizations.
In Section 2.2 one can find a deep study of this operations.

The main interest of monomial ideals and its polarization is that they
share some algebraic invariants (see Corollary 1.6.3, [62]). For some
families of monomial ideals there exist explicit formulas for computing
these invariants, such us the minimal Eliahou-Kervaire resolution [41]
for stable ideals. Taking this into account, some natural questions arises:
Are we able to compute all the depolarizations of a monomial ideal? Is
it possible to characterize the squarefree monomial ideals which has a
special kind of monomial ideal as depolarization? What properties are
shared between the ideals sharing the same polarization?

For answering these questions, we develop a tool called support poset
of a monomial ideal:

Definition. Let I be a squarefree monomial ideal with G(I) = {m1, . . . , mr}.
For each i in supp(I) we define the set Ci ⊆ supp(I) as,

Ci =
⋂

m∈G(I)
xi divides m

supp(m).

Let CI = {C1, . . . , Cn}. The poset on the elements of CI ordered by
inclusion is called the support poset of I and is denoted suppPos(I). We
define the support poset of a general monomial ideal as the support poset
of its polarization.

With the support posets we are able to obtain all the posible depolar-
izations of a squarefree monomial ideal:

Theorem (Theorem 2.3.8). Let I = 〈m1, . . . , mr〉 ⊆ R = k[x1, . . . , xn] be a
squarefree monomial ideal. Every depolarization of I can be obtained
from a depolarization order of I.
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We call copolar ideals to all the monomial ideals obtained from the
same support poset. We explored some properties shared by copolar ideals
in section 2.3.2.3, such as the results below:

Lemma (Lemma 2.3.12). Let I and J be two copolar ideals. Then lcm(I) ∼=
lcm(J).

Theorem (Theorem 2.3.13). The width of suppPos(IP) is an upper bound
for projdim(I).

We say that a poset C is relizable as s support poset of a monomial ideal
I when C is its support poset. It is known that not all posets are realizable
as a support poset of a monomial ideals. Even we did not characterize
which are and which are not, we obtain relevant results.

The first of them is a proposition which gives give a sufficient condi-
tion for building a monomial ideal given a support poset under certain
conditions:

Proposition (Proposition 2.3.1). Let (C = {C1, . . . , Cn},⊆) be a poset such
that {i} ⊆ Ci ⊆ [n] for each i, and if k ∈ Ci and i ∈ Cj then k ∈ Cj for
all i, j, k. Let R = k[x1, . . . , xn] and let mi = ∏j∈Ci

xj for each i. For any
σ ⊆ [n] let mσ = lcm(mi|i ∈ σ), and for any collection Σ of subsets of [n],
consider the monomial ideal IΣ = 〈mσ|σ ∈ Σ〉. Then (C,⊆) is the support
poset of IΣ if the following properties hold:

1. ∀i ∈ [n] there is some σ ∈ Σ such that xi|mσ.

2. If {σ : xi|mσ} ⊆ {σ : xj|mσ}, then Cj ⊆ Ci.

Proposition 2.3.14 gives a sufficient condition for a poset to be the
support poset of a zero-dimensional monomial ideal

Proposition (Proposition 2.3.14). Let n, m1, . . . , mn be some positive inte-
gers with 1 ≤ mi ≤ n for all i and let m = ∑i mi. Consider a poset (P ,⊆)

on subsets of {1, . . . , m} formed by n disjoint paths each of length mi.
Then there is a squarefree monomial ideal I whose support poset is P
except if n = 2 and m1 �= m2. Moreover, if mi > 1 for all i, then there is a
zero-dimensional monomial ideal copolar to I.
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Proposition 2.3.18 and Proposition 2.3.23 show that given a poset
formed by lines or diamonds, it will always exist a monomial ideal for
which the poset is its support poset.

Proposition (Proposition 2.3.18). Let n and m be two positive integers and
let (P ,⊆) be a poset of subsets of the set [nm] = {1, . . . , nm} formed by
n disjoint lines each of length m. Then there is at least one squarefree
monomial ideal In,m such that P is its support poset and there is a zero-
dimensional monomial ideal Jn,m copolar to In,m.

In particular, the ideal Jn,m ⊆ k[y1, . . . , yn] given by

Jn,m = 〈ym
1 , . . . , ym

n , ym−1
1 y2, . . . , y1ym−1

2 , . . . , ym−1
1 yn, . . . , y1ym−1

n 〉.

is a zero dimensional ideal having P as its support poset.

Proposition (Proposition 2.3.23). Let m be a positive integer, let (P ,⊆)

be a poset of subsets of the set [4m] formed by m > 1 disjoint diamonds
D1, . . . , Dm, Di = {ai1, . . . , ai4} with ai1 < ai2, ai1 < ai3, ai2 < ai4, ai3 < ai4.
Then there is at least one squarefree monomial ideal Im such that P is its
support poset.

Besides, Proposition 2.3.21 and Proposition 2.3.24 gives an explicit
formula for the Betti numbers of those ideals.

Proposition 2.3.27 and Theorem 2.3.30 proof that trees and forest are
realizable as a support poset of a monomial ideal and the Betti numbers
of its monomial ideals are given.

Proposition (Proposition 2.3.27). Let P be a tree with nodes {1, . . . , n}
and let {l1, . . . , lk} ⊆ {1, . . . , n} be the set of leaves of the tree. There
exists a squarefree monomial ideal IL(P) ⊆ k[x1, . . . , xn] with k generators
such that P is it support poset. The Taylor resolution of IL(P) minimally
resolves it and therefore βi(IL(P)) = ( k

i+1) for all i ≥ 0.

Theorem (Theorem 2.3.30). Let P be a forest whose trees P1, . . . ,Pm have
ni nodes and li leaves each, for i = 1, . . . , m. Then there is a squarefree
monomial ideal IL(P) ⊆ k[x1, . . . , xn], n = ∑m

i=1 ni whose support poset
is P . The ideal IL(P) has g = ∑m

i=1 li minimal monomial generators, its
Taylor complex minimally resolves it, and βi(IL(P)) = ∑m

j=1 (
lj

i+1) for all i.
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This chapter ends showing that monomial ideals associated to binary
consecutive k-out-of-n systems has a set of lines as a support poset when
k < n − k + 1 and a tree otherwise (see Proposition 2.3.31) meanwhile
series-parallel ideals has a forest as a support poset (Theorem 2.3.35).

Chapter three is focused on algebraic reliability of multi-state systems.
After introducing basic notions related to multi-state systems, the func-
tioning of the algebraic method based on monomial ideals is showed. It
can be summarized as

1. Associate to the system S its j-reliability ideal IS,j.

2. Obtain the minimal generating set of IS,j to get the set FS,j.

3. Compute the Hilbert series of IS,j to have the j-reliability of S.

3’ Compute any free resolution of IS,j. The alternating sum of the ranks
of this resolution gives a formula for the Hilbert series of IS,j i.e.,
the unreliability of S, which provides bounds by truncation at each
summand.

Then, some examples of how the algebraic method works when work-
ing with multi-state systems are showed: the reliability of a multi-state
system given by its set of minimal paths and of a network is computed.
Besides, it is showed how to compute the reliability of a multi-state system
via binary systems using the operations polarization and depolarization.

From this point, the chapter is devoted to the particular case of multi-
state k-out-of-n systems.

Firstly, a review of the different definitions given in the literature, for
both the simple ([40, 28]) and the general ([69, 151]) case, is done. The
j-reliability ideals associated to each definition are described as

Proposition (Proposition 3.2.4). The ideal

I(k,n),j = 〈 ∏
σ⊆{1,...,n}

|σ|=k

xj
i | i ∈ σ〉

is the j-reliability ideal of a multi-state k-out-of-n system as defined in
Definition 3.2.2.

189



Conclusions and results

Definition (Definition 3.2.12). An n-component system is called generalized
multi-state k-out-of-n : F system if φ(x) < j, 1 ≤ j ≤ M whenever the states
of at least kl components are below l for all l such that j ≤ l ≤ M.

Proposition (Proposition 3.2.13). The j-reliability ideal of a generalized
multi-state k-out-of-n system S = Sn,(k1,...,kM) is given by

IS,j = In,(kj,...,kM) =
M

∑
i=j

I(ki,n),i.

Furthermore, it is showed how to compute in a recursive way these
ideals and its Betti numbers. Section 3.2.3.2 compares the bounds for
reliability obtained with the algebraic method with other given in the
literatura (see Section 3.1.1.1). Weaknesses and strengths of the algebraic
method are shown. For example, if the number of generator is quite
big, the very first bounds are not good, while the greater the number of
variables, the better the bounds are.

Chapter three ends treating variants of k-out-of-n systems such as
binary k-out-of-n system with multi-state components, multi-state con-
secutive k-out-of-n systems, sparsely connected homogeneous k-out-of-n
systems and weighted multi-state k-out-of-n systems. For all of them, a
description of it j-reliability ideals and formulas for computing its Betti
numbers are given.

In chapter four a C++ class implemented with the library CoCoALib,
currently in its 0.998000 version, for computing the reliability of a multi-
state system via the algebraic method. The class is available at

http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/.

Then, a detailed description of the class is given (see Figure 4.1 on
Chapter 4).

The main class is CoherentSystem which consist of a set of levels and
a matrix of probabilities. Each level, stored in a std::vector, is a instance
of the class CoherentSystemLevel. Each instance of this class has an
ideal and it dual and its Mayer-Vietoris trees. CoherentSystemPath and
CoherentSystemCuts inherits from the main class. An instance of this
classes can call to the following functions:
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myMinimalPaths Receives a level and gives a vector of vectors where
each vector is a minimal path of the system.

myMinimalCuts Receives a level and gives a vector of vectors where each
vector is a minimal cut of the system.

myReliability Receives a level j and computes RS,j.

myUnreliability Receives a level j and computes US,j.

myReliabilityBounds Receives a level j and computes bounds for RS,j
using the Mayer-Vietoris tree of IS,j.

myUnreliabilityBounds Receives a level j and computes bounds for US,j
using the Mayer-Vietoris tree of IS,j.

Going further on this chapter, some examples are developed with the
class aforementioned. Firstly, we validate the class with different systems
appearing in the literature, as Army Battle Plan from [26]. Then, we
compute the reliability of some networks. The networks chosen are GAAR:
Italian Research and Education Network and randomly generated networks
with Erdős-Rényi ER(n, p) and Barabasi-Albert BA(n, m) models. We
taste our class in a k-out-of-12 system with four levels of performance and
takin k = 4 and k = 6. The chapter ends dealing with the computational
complexity of the algebraic method.

In this thesis we have accomplished the aims fixed and we have opened
new directions of research on this area.
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En esta tesis nos hemos centrado en el estudio de fiabilidad de sistemas
multi-estado con un acercamiento algebraico basado en ideales monomi-
ales. Los objetivos principales han sido:

• Estudio de la polarización y depolarización de ideales monomiales.

• Definir la aplicabilidad de las operaciones polarización y depolar-
ización al análisis de la fiabilidad de un sistema.

• Estudio de los distintos tipos de sistemas multi-estado y sus estruc-
turas algebraicas asociadas.

• Implementación de algoritmos.

La tesis ha comenzado con un capı́tulo en el que se presentan las her-
ramientas necesarias en los capı́tulos posteriores: los ideales monomiales,
que es la herramienta más básica, aunque la más necesaria puesto que son
los encargados de relacionar Álgebra y Teorı́a de Fiabilidad; resoluciones
y serie de Hilbert, los cuales han sido empleados para el cómputo de
la fiabilidad y cotas para ella; árboles de Mayer-Vietories, un algoritmo
rápido y eficiente (implementado en el software libre CoCoALib por Ed-
uardo Sáenz-de-Cabezón en [114]) que nos permite calcular el numerador
de la serie de Hilbert; y una breve introducción de Teorı́a de la Fiabilidad,
en la que se presentan los sistemas binarios y cómo funciona el método
algebraico basado en ideales monomiales para ellos [75, 116, 117, 118, 120].

El capı́tulo segundo se centra en la relación existe entre los ideales
monomiales libres de cuadrados y los ideales monomiales arbitrarios. Para
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estudiar dicha relación, hemos investigado las operaciones polarización y
depolarización.

La operación polarización transforma un ideal monomial I ⊆ R =

k[x1, . . . , xn] en un ideal monomial libre de cuadrados IP ⊆ S = k[y1, . . . , ym].
Al polarizar, pasamos de un anillo de polinomios en n variables a otro en
m, donde m ≥ n. La operación inversa, la depolarización, transforma un
ideal monomial libre de cuadrados en un ideal monomial. Sin embargo,
el resultado de esta operación no es único: para un ideal libre de cuadra-
dos existen varias depolarizaciones. En la Sección 2.2 se tratan ambas
operaciones en profundidad.

El interés principal de los ideales monomiales y su polarización es
que comparten ciertos invariantes algebraicos (Corolario 1.6.3, [62]). Para
ciertas familias de ideales monomiales existen fórmulas explı́citas para el
cómputo de estos invariantes, como por ejemplo la resolución de Eliahou-
Kervaire [41] para ideales estables, que es mı́nima. Teniendo esto en
cuenta surgen, de manera natural, varias preguntas: ¿podemos calcular
todas las depolarizaciones de un ideal monomial? ¿se pueden caracterizar
los ideales libres de cuadrados que cuentan ideales determinados como
depolarización? ¿qué propiedades comparten los ideales que comparten
la misma polarización?

Para responder estas preguntas, introducimos el concepto de support
poset de un ideal monomial:

Definición. Sea I un ideal monomial libre de cuadrados cuyo conjunto
generador es G(I) = {m1, . . . , mr}. Para cada i en supp(I) definimos el
conjunto Ci ⊆ supp(I) como

Ci =
⋂

m∈G(I)
xi divide m

supp(m).

Sea CI = {C1, . . . , Cn}. El poset de elementos de CI ordenador por in-
clusión se llama support poset de I y lo denotamos por suppPos(I).

Definimos el support poset de un ideal monomial general como el support
poset de su polarización.
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Con la herramienta support poset definida ya somos capaces de cal-
cular todas las posibles depolarizaciones de un ideal monomial libre de
cuadrados:

Teorema (Teorema 2.3.8). Sea I = 〈m1, . . . , mr〉 ⊆ R = k[x1, . . . , xn] un
ideal monomial libre de cuadrados. Todas las depolarizaciones de I se
pueden obtener con un irden de depolarización de I.

Llamamos ideales copolares a aquellos ideales monomiales obtenidos
del mismo support poset. Algunas propiedades compartidas por ideales
copolares se han explorado en la Sección 2.3.2.3, como son:

Lema (Lema 2.3.12). Sean I y J dos ideales copolares. Entonces lcm(I) ∼=
lcm(J).

Teorema (Teorema 2.3.13). La anchura de suppPos(IP) es una cota superior
de projdim(I).

Diremos que un poset C es realizable como support poset de un ideal
monomial I cuando C es su support poset. Se sabe que no todos los poset
son realizables como support poset de un ideal monomial y, aunque no se ha
caracterizado cuáles lo son y cuáles no lo son, se han obtenido resultados
relevantes.

El primero de ellos es una proposición que da una condición suficiente
para poder construir un ideal monomial dado un poset que cumple ciertas
condiciones:

Proposición (Proposición 2.3.1). Sea (C = {C1, . . . , Cn},⊆) un support poset
tal que {i} ⊆ Ci ⊆ [n] para cada i, y si k ∈ Ci e i ∈ Cj entonces k ∈ Cj
para todos i, j, k. Sea R = k[x1, . . . , xn] y sea mi = ∏j∈Ci

xj para cada i.
Para cualquier σ ⊆ [n] sea mσ = lcm(mi|i ∈ σ), y para cada colección Σ
de subconjuntos de [n], consideremos el ideal monomial IΣ = 〈mσ|σ ∈ Σ〉.
Entonces (C,⊆) es el support poset de IΣ si se cumplen las siguientes
condiciones:

1. ∀i ∈ [n] existe algún σ ∈ Σ tal que xi|mσ.

2. Si {σ : xi|mσ} ⊆ {σ : xj|mσ}, entonces Cj ⊆ Ci.

195



Conclusiones y resultados

La Proposición 2.3.14 da una condición suficiente para que un poset
sea el support poset de un ideal monomial 0-dimensional:

Proposición (Proposición 2.3.14). Sean n, m1, . . . , mn enteros positivos con
1 ≤ mi ≤ n para todo i y sea m = ∑i mi. Consideremos el poset (P ,⊆)

en subconjuntos de {1, . . . , m} formado por n caminos disjuntos cada
uno de ellos de longitud mi. Entonces existe un ideal monomial libre de
cuadrados I cuyo support poset es P excepto si n = 2 y m1 �= m2. Ademas,
si mi > 1 para todo i, entonces existe un ideal monomial 0-dimensional
copolar a I.

La Proposición 2.3.18 y Proposición 2.3.23 muestran que, si tenemos
un poset formado por lı́neas y diamantes, siempre va a realizable como
support poset de un ideal monomial.

Proposición (Proposición 2.3.18). Sean n y m dos enteros positivos y
sea (P ,⊆) un poset de subconjuntos de [nm] = {1, . . . , nm} formado por
n lı́neas disjuntas de longitud m. Entonces, existe al menos un ideal
monomial libre de cuadrados In,m tal que P es su support poset y existe un
ideal monomial 0-dimensional Jn,m copolar a In,m.

En particular, el ideal Jn,m ⊆ k[y1, . . . , yn] dado por

Jn,m = 〈ym
1 , . . . , ym

n , ym−1
1 y2, . . . , y1ym−1

2 , . . . , ym−1
1 yn, . . . , y1ym−1

n 〉.

es un ideal monomial 0-dimensional cuyo support poset es P .

Proposición (Proposición 2.3.23). Sea m un entero positivo, sea (P ,⊆) un
poset de subconjuntos del conjunto [4m] formado por m > 1 diamantes
disjuntos D1, . . . , Dm, Di = {ai1, . . . , ai4} con ai1 < ai2, ai1 < ai3, ai2 <

ai4, ai3 < ai4. Entonces existe al menos un ideal monomial libre de cuadra-
dos Im tal que P es su support poset.

Además, en la Proposición 2.3.21 y Proposición 2.3.24 se da una fórmula
explı́cita para calcular los números de Betti de dichos ideales.

La Proposición 2.3.27 y el Teorema 2.3.30 prueban que los árboles y
los bosques también son support poset de un ideal monomial y se da una
fórmula explı́cita para sus números de Betti.
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Proposición (Proposición 2.3.27). Sea P un árbol con nodos {1, . . . , n} y
sea {l1, . . . , lk} ⊆ {1, . . . , n} el conjunto de hojas del árbol. Existe un ideal
monomial libre de cuadrados IL(P) ⊆ k[x1, . . . , xn] con k generadores tal
que P es su support poset. La resolución de Taylor de IL(P) es mı́nima y,
por lo tanto, βi(IL(P)) = ( k

i+1) para todo i ≥ 0.

Teorema (Teorema 2.3.30). Sea P un bosque cuyos árboles P1, . . . ,Pm

tienen ni nodos y li hojas cada uno, para i = 1, . . . , m. Entonces existe
un ideal monomial libre de cuadrados IL(P) ⊆ k[x1, . . . , xn], n = ∑m

i=1 ni
cuyo support poset e P . El ideal IL(P) tiene g = ∑m

i=1 li generadores
monomiales mı́nimos, su complejo de Taylor lo resuelve de forma mı́nima,
y βi(IL(P)) = ∑m

j=1 (
lj

i+1) para todo i.

Finalizamos este capı́tulo mostrando que los ideales monomiales asoci-
ados a sistemas binario k-entre-n consecutivos tienen como support poset
un conjunto de lı́neas cuando k < n − k + 1 y un árbol en el caso contrario
(Proposición 2.3.31) mientras que los ideales series-paralelo tienen un
bosque (ver Teorema 2.3.35).

El capı́tulo tres está dedicado al estudio de fiabilidad algebraica en
sistemas multi-estado. Tras presentar las definiciones básicas relacionadas
con sistemas multi-estado, se explica cómo funciona el método algebraico
aplicado a sistemas multi-estado que, en resumidas cuentas, funciona de
la siguiente forma:

1. Se asocia al sistema S sus ideales de j-fiabilidad IS,j.

2. Obtenemos el sistema mı́nimo generador de IS,j, para cada j, para
conseguir el conjunto de los caminos mı́nimos FS,j.

3. Se calcula la serie de Hilbert de IS,j, con el que ya podemos calcular
la j-fiabilidad del sistema.

3’ Calculamos una resolución libre de IS,j. La suma alternada de los
rangos de dicha disolución dan una fórmula para obtener el numer-
ador de la seria de Hilbert. El numerador de la serie de Hilbert
calculado ası́ proporciona cotas truncando en cada sumando.
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Después, se muestran varios ejemplos de cómo funciona el método
algebraico cuando se trabaja con sistemas multi-estado: se calcula la
fiabilidad de un sistema multi-estado dado por su conjunto de caminos
mı́nimos, de una red y se muestra cómo se puede calcular la fiabilidad de
un sistema multi-estado mediante un sistema binario y viceversa (estos
últimos casos gracias al trabajo realizado en el capı́tulo dos).

Desde este punto, el capı́tulo se centra en el caso particular de sistemas
multi-estado k-entre-n.

En primer lugar, se hace un repaso de las diferentes definiciones que se
han dado en la literatura, tanto para el caso simple ([40, 28]) como para el
caso generalizado ([69, 151]). Los ideales de j-fiabilidad asociados a cada
una de las definiciones son:

Proposición (Proposición 3.2.4). El ideal

I(k,n),j = 〈 ∏
σ⊆{1,...,n}

|σ|=k

xj
i | i ∈ σ〉

es el ideal de j-fiabilidad de un sistema multi-estado k-entre-n definido
como en la Definición 3.2.2.

Definición (Definición 3.2.12). Un sistema de n componentes se llama
sistema multi-estado k-entre-n : F generalizado si φ(x) < j, 1 ≤ j ≤ M cuando
el estado de al menos kl componentes están por encima del nivel l para
todo l tal que j ≤ l ≤ M.

Proposición (Definición 3.2.13). El ideal de j-fiabilidad ideal de un sistema
multi-estado k-entre-n generalizado S = Sn,(k1,...,kM) viene dado por

IS,j = In,(kj,...,kM) =
M

∑
i=j

I(ki,n),i.

Además, vemos cómo calcular estos ideales de forma recursiva y
calculamos sus números de Betti.

En la Sección 3.2.3.2 se hace una comparativa de la calidad de las
cotas que se obtienen cuando se calcula la fiabilidad usando el método
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algebraico presentado con otras conocidas en la literatura (ver Sección
3.1.1.1). En esta sección se muestran fortalezas y debilidades de nuestro
método: por ejemplo, si el número de generadores es muy grande, las
primeras cotas no son buenas, mientras que cuando el número de variables
va aumentando, las cotas van mejorando.

El resto del capı́tulo tres está dedicado al estudio de casos particulares
de sistemas k-entre-n, como son el caso de sistemas binarios k-entre-n con
componentes multi-estado, sistemas multi-estado k-entre-n consecutivos
o sistemas multi-estado k-entre-n con pesos. Para todos ellos mostramos
sus ideales de j-fiabilidad y damos fórmulas para calcular sus números
de Betti.

En el capı́tulo cuatro presentamos una clase de C++ implementada con
la librerı́a CoCoALib, actualmente en su versión 0.998000, para el cálculo
de la fiabilidad de sistemas por medio del método algebraico presentado
en esta tesis. La clase está disponible en

http://www.dima.unige.it/~bigatti/data/AlgebraicReliability/.

Avanzando en el capı́tulo, nos encontramos con una descripción detalla
de la clase (ver Figura 4.1 del Capı́tulo 4).

La clase principal es la clase CoherentSystem que consiste en una serie
de niveles y una matriz de probabilidades. Cada uno de los niveles, almace-
nados en un std::vector, es una instancia de la clase CoherentSystemLevel.
Cada instancia de esta clase consta de un ideal y su dual y sus árboles
de Mayer-Vietoris. Las clases CoherentSystemPath y CoherentSystemCuts

heredan de la clase principal. Cualquier instancia de estas clases puede
llamar a las funciones

myMinimalPaths Recibe un nivel y devuelve un vector de vectores, en el
que cada uno de estos vectores es un camino mı́nimo.

myMinimalCuts Recibe un nivel y devuelve un vector de vectores, en el
que cada uno de estos vectores es un corte mı́nimo.

myReliability Recibe un nivel j y calcula RS,j.

myUnreliability Recibe un nivel j y calcula US,j.
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myReliabilityBounds Recibe un nivel j y calcula cotas para RS,j mediante
el árbol de Mayer-Vietoris de Ij(S).

myUnreliabilityBounds Recibe un nivel j y calcula cotas para US,j medi-
ante el árbol de Mayer-Vietoris de Ij(S).

Más adelante se realizan unos ejemplos utilizando la clase desarrollada.
Primero se valida la clase con sistemas de diferente naturaleza que apare-
cen en la literatura, como puede ser el Army Battle Plan de [26] y, después,
se calcula la fiabilidad de redes empleando la clase implementada. En
particular, se utiliza la red GAAR: Italian Research and Education Network y
redes generadas de manera aleatoria mediante los modelos de Erdős-Rényi
ER(n, p) y Barabasi-Albert BA(n, m). Finalmente, se muestra el compor-
tamiento de la clase en sistemas en dos sistemas k-entre-12 multi-estado
con 4 niveles de funcionamiento y diferenciando k = 4 y k = 6.

El capı́tulo finaliza tratando la complejidad computacional del método
algebraico implementado con la clase.

Ası́, esta tesis cumple los objetivos planteados. Además, durante su
desarrollo han surgido nuevas vı́as de investigación que serán tratadas en
un futuro.
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