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Tı́tulo en castellano:
Cálculo efectivo de invariantes de espacios topológicos finitos

Resumen:
En este trabajo presentamos algoritmos efectivos para el cálculo de invariantes de espacios

topológicos finitos. Estos algoritmos han sido desarrollados por medio de la combinación

de técnicas combinatorias sobre posets, las cuales han sido establecidas en los trabajos que

fundamentan la teorı́a de los espacios finitos, y de trabajos recientes en esta lı́nea de trabajo,

tales como métodos para mantener tipos de homotopı́a débil o tipos de homotopı́a simple,

ası́ como la aplicación de la Teorı́a de Morse Discreta.

La memoria se encuentra organizada en cinco capı́tulos. El Capı́tulo 1 contiene algunas

notaciones, definiciones y resultados concernientes a la Topologı́a Algebraica de espacios

topológicos finitos, sus conecciones con complejos simpliciales y algunas perspectivas de

la Teorı́a de Morse Discreta, las cuales serán útiles a lo largo de este trabajo. También se

ha incluı́do una presentación del programa Kenzo como una herramienta poderosa para el

desarrollo de nuestras implementaciones algorı́tmicas en capı́tulos posteriores.

Hasta el momento, los métodos conocidos para el cálculo de invariantes de espacios

topológicos finitos eran aplicables solamente en los posets de caras de complejos simpli-

ciales o de CW-complejos regulares. En el Capı́tulo 2, hemos desarrollado versiones con-

structivas de algunos resultados teóricos de diferentes autores acerca de espacios topológicos

finitos, produciendo en particular nuevos algoritmos para el cálculo explı́cito de algunos

complejos de cadenas asociados a espacios finitos h-regulares (que resultan más pequeños

que el complejo de cadenas del complejo simplicial asociado al espacio finito) y sus corre-

spondientes generadores. Hemos implementado los algoritmos mencionados en el sistema

de álgebra computacional Kenzo. Hasta donde sabemos, nuestro programa es el único soft-

ware capaz de calcular grupos de homologı́a de espacios topológicos finitos trabajando di-

rectamente sobre los posets sin tener que acudir, necesariamente, al mundo simplicial. Más

aún, hemos mejorado nuestros algoritmos sobre espacios finitos h-regulares mediante el uso

de campos de vectores discretos. En este caso, hemos producido un nuevo algoritmo para

construir un campo de vectores discreto definido directamente sobre el poset, el cual puede

ser aplicado a espacios finitos h-regulares en general; como hemos dicho antes, hasta donde

sabemos no existe otro software que produzca esta clase de construcción sobre espacios

topológicos finitos en general.

Los algoritmos ya mencionados para calcular homologı́a son aplicables a espacios finitos

h-regulares. En la literatura hay pocos ejemplos de espacios finitos h-regulares diferentes a

los posets de caras de complejos simpliciales. El proceso de h-regularización que hemos

desarrollado en el Capı́tulo 3, produce una amplia variedad de espacios finitos de este tipo.

De hecho, cualquier espacio finito de altura menor o igual a dos puede ser h-regularizado,

permitiendo considerar nuevos ejemplos de esta clase de espacios.

En el Capı́tulo 4, hemos presentado una interfaz entre los sistemas de álgebra com-

putacional SageMath y Kenzo. Nuestro trabajo ha hecho posible trabajar con Kenzo de



una forma más amigable y ha permitido que ambos sistemas colaboren mutuamente en al-

gunos cálculos que no pueden ser hechos de manera independiente por dichos programas.

Más aún, hemos creado un módulo en SageMath implentando espacios topológicos finitos

y algunos conceptos relacionados mediante el uso de los algoritmos en Kenzo previamente

mencionados. Finalmente, en el Capı́tulo 5, hemos considerado algunas estrategias para es-

tudiar diferentes alternativas para calcular campos de vectores discretos de mayor longitud

sobre espacios finitos. Además, hemos usado algunas técnicas de aprendizaje automático

(machine learning) tales como aprendizaje por refuerzo y árboles de búsqueda Monte-Carlo

para obtener campos de vectores discretos de la mayor longitud posible
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Introduction

A finite topological space is a topological space whose underlying point set is finite. The

study of finite topological spaces, or finite spaces for short, is a problem of great interest

from a topological point of view, since they can be considered as models for a wide variety

of spaces, including regular CW-complexes. Also, these spaces have been used to describe

objects in image processing [Kov89], [LKE+02] and for evaluating the topological incon-

sistency of geospatial data in [JBADB17]. Therefore, it is important to provide tools, both

theoretical and computational, allowing to determine topological invariants of finite spaces.

In 1937, Alexandroff [Ale37] proved that finite topological spaces are related with pre-

ordered sets, connecting them by a one-to-one correspondence that, in particular, permits to

establish an equivalence between finite spaces satisfying the T0 axiom (T0-spaces) and par-

tially ordered sets (posets). This correspondence is very valuable, among other things, in the

study of homotopy of finite spaces, because every finite space is homotopically equivalent

to a T0-space [Sto66], allowing to deal with T0-spaces without altering homotopic proper-

ties. Some of the most important results on which the theory of finite topological spaces

is based were established more than 50 years ago. The relation between finite spaces and

posets permitted Stong [Sto66] to classify the homotopy types of finite spaces by means of

an algorithmic way of deletion of some special points, called beat points, which reduces a

finite space to the smallest homotopy equivalent space to it by means of operations called

strong collapses. Moreover, the relation between finite spaces and posets makes appropriate

the use of this structure for automatic computations, since the topological structure of a finite

topological space can be represented in a suitable way from a computational point of view.

At the same time, a fruitful relation between finite topological spaces and finite simplicial

complexes is due to McCord [McC66], who assigns to each finite T0-space X a simplicial

complex K(X), the order complex of X , in such a way that X and K(X) are weak homotopy

equivalent. Conversely, to each simplicial complex K, McCord relates a T0-space X (K),
the face poset of K, such that K and X (K) are weak homotopy equivalent. In addition, Mc-

Cord proves that homotopy types of compact polyhedra are in one-to-one correspondence

with weak homotopy types of finite topological spaces. At a first glance, the latter result

is unexpected since non discrete finite spaces are non Hausdorff spaces (which in principle

seems to convert them into uninteresting topological objects), unlike CW-complexes which

do satisfy the Hausdorff property.

Fortunately, Alexandroff, Stong and McCord’s results were not completely forgotten

and served as the starting point of a deep research on Algebraic Topology of finite topo-
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logical spaces. The first detailed exposition on the subject, based on the PhD Dissertation

of Jonathan Barmak, can be found in [Bar11]. In that work, some well-known problems in

Topology, Algebra and Geometry have been restated in terms of finite spaces. A Quillen’s

conjecture [Qui78] asserting that if the simplicial complex associated (in the sense of Mc-

Cord) to the poset Sp(G) of nontrivial p-subgroups of a finite group G, where p is a prime

integer, is contractible then G has a nontrivial p-subgroup, was restated in terms of finite

spaces as follows: Sp(G) is contractible if and only if it is homotopically trivial. The Ge-

ometric Andrews-Curtis conjecture [AC65], which asserts that any contractible compact

3-polyhedron 3-deforms to a point, was translated to the setting of finite spaces as follows:

a homotopically trivial finite T0-space of height 2 3-deforms to a point. Indeed, Barmak’s

work allowed to enlarge the class of complexes which are known to satisfy this conjecture,

by generalizing the concept of constructible complex to the notion of quasi constructible
2-complex.

Simple homotopy types of polyhedra were investigated by Whitehead [Whi50] by in-

troducing the notions of simplicial collapse and simplicial expansion, moves that preserve

the homotopy type of a complex. These concepts were translated to the theory of finite

topological spaces by means of the notion of weak point, which was introduced by Barmak.

The elementary move consisting on removing a weak point from a finite T0-space corre-

sponds exactly to a simplicial collapse of the associated simplicial complex (in the sense of

McCord), allowing to find a one-to-one correspondence between simple homotopy types of

finite spaces and simple homotopy types of finite simplicial complexes.

A general technique to analyze the topology of a simplicial complex was introduced by

Forman with the name of Discrete Morse Theory [For98], a combinatorial adaptation of

Morse Theory which is a powerful tool to study smooth manifolds. The main theorem of

Discrete Morse Theory asserts that a simplicial complex is homotopy equivalent to a CW-

complex with exactly one cell of dimension p for each critical simplex of dimension p with

respect to a discrete Morse function defined on it. Moreover, Minian [Min12] introduced

a version of discrete vector fields for posets that satisfy the h-regularity property; since the

face poset of a simplicial complex is h-regular, Minian’s results apply to any finite topo-

logical space coming from the simplicial context. Finally, recent works of Cianci and Ot-

tina [CO17] have generalized Minian’s results by defining an appropriate spectral sequence

that converges to the homology of a finite T0-space. Also, a wider class of quasicellular
spaces (containing the h-regular spaces and the cellular spaces appearing in [Min12]) has

been defined and it has been shown that the homology of such spaces can be computed by

means of a concrete chain complex ([CO17]).

Algebraic Topology provides a linearization of topological problems, which usually

present a pure non-linear nature. Then, the pursuit of reasonable linear algebra algorithmic

solutions is of great interest from a computational point of view. In particular, our interest

consists in providing symbolic computation systems in topology with tools devoted to finite

topological spaces, such that it is possible to compute topological invariants of these spaces,

which includes in an implicit way computations over a wide variety of topological spaces.

To implement our methods we consider the symbolic computation system Kenzo [DRSS99],

2



which was developed by Francis Sergeraert and some coworkers and allows the user to work

with chain complexes and to compute homotopy and homology groups of simplicial sets.

This work is organized as will be described in the next lines. Chapter 1 contains some

notations, definitions and previous results about Algebraic Topology on finite topological

spaces, their connections with simplicial complexes and some insights into the Discrete

Morse Theory which will be useful along our work. Also, a presentation of the Kenzo pro-

gram as a powerful tool for the development of our algorithmic implementations in posterior

chapters, is included.

In Chapter 2 we present a new module for the Kenzo program allowing to compute some

invariants of finite topological spaces. In this way, we have enhanced Kenzo with new topo-

logical objects and powerful functionalities. Identification of beat points and weak points

permits to apply methods of point reductions to find weak homotopy equivalent spaces to

a given finite space in Kenzo. Moreover, we have developed algorithms which are based

on new constructive versions of results found in [Min12] and [CO17] in order to determine

homology groups of h-regular finite spaces without constructing the simplicial complex as-

sociated with the poset. The implementation of an algorithm to compute homologically ad-

missible Morse matchings in order to use the Discrete Morse Theory to study the topology

of finite spaces is also presented.

Once we have developed algorithms to compute invariants on h-regular finite spaces,

a question arises naturally: how can we construct h-regular spaces in order to apply our

results? In fact, given a finite T0-space, its barycentric subdivision (the poset of the simplices

ordered by inclusion of the simplicial complex associated to the finite T0-space) is an h-

regular space. In Chapter 3, we present a new technique to modify a finite space of height

at most 2 in order to obtain an h-regular space which is simple homotopy equivalent to the

initial one, with a smaller number of elements and edges than the barycentric subdivision.

We believe it is necessary to bring symbolic computation systems closer to their poten-

tially users. This is particularly important in the case of Kenzo, due to its nearness to Lisp.

In this line, in Chapter 4 we describe a new interface we have created to integrate the Kenzo

program and the computer algebra system SageMath [Dev20], in order to transform topo-

logical data structures from one system to the other one in such a way that both systems can

collaborate together in computations. Regarding to finite topological spaces, we will show a

new module that we have created for finite spaces in SageMath by means of the developed

interface.

In order to achieve better reductions in the size of the objects involved in computations,

mainly chain complexes, in Chapter 5 we have considered some different strategies to com-

pute discrete vector fields on finite spaces, by means of changing the way the candidates

to vectors are chosen. In this way, we try to obtain a discrete vector field as big as possi-

ble. Moreover, we have explored some machine learning techniques such as reinforcement

learning and Monte-Carlo tree search, obtaining promising results.

The memoir ends with a chapter which includes conclusions and further work, and the

bibliography.
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vasón, Miguel Marco-Buzunáriz and Ana Romero) at Women in Algebra and Sym-

bolic Computations, December 2019, Bad Dürkheim, Germany.

• h-regularización de espacios topológicos finitos at VIII Encuentro de Jóvenes Topólogos
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Chapter 1

Preliminaries

In this chapter we set some notations and definitions about finite topological spaces, sim-

plicial complexes, chain complexes and some topics about Discrete Morse Theory as well

as basic results relating them, that we will use along this work. For further reading about

finite topological spaces see [Bar11], for Discrete Morse Theory see [For98] and for general

concepts in Algebraic Topology see [Hat02], [Mun84], [Rot98]. Moreover, since the algo-

rithms we are going to design in our work will be included in the Kenzo computer algebra

system [DRSS99], some basic ideas about this program will be presented.

1.1 Finite topological spaces

1.1.1 Finite spaces and posets
The main objects of study in this work are the finite topological spaces. We assume the reader

is familiar with basic notions in topology such as topological space, subspace, open and

closed sets, quotient space and closures. Throughout this work, the n-dimensional sphere

will be denoted by Sn and the symbol ∗ will be used to denote a one-point set.

Definition 1.1. A finite space X is a topological space whose underlying point set is finite.

Observe that in these spaces, arbitrary intersections of open sets are always open, so that

the next definition makes sense.

Definition 1.2. The intersection of all the open sets that contain an element x ∈ X , denoted

by UX
x , is called the minimal open set of x in X (if the finite space in which we are working

is clear from the context, the symbol Ux is used to denote the minimal open set of x). The

tilded version is defined by Ûx = Ux � {x}.

The collection UX = {Ux}x∈X is a basis for the topology of a finite space X , that is, it

satisfies that X = ∪x∈XUx and the intersection of any two elements V,W ∈ UX is a union

of elements in UX . It is easy to see that the collection UX is the minimal basis of the finite

space X in the following sense: if B is a basis for the topology of X then UX ⊆ B.

7
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In the context of finite spaces, the subspaces Ux play a crucial role in the description of

topological properties. Other subspaces that are important in the study of finite spaces are

the closures of singletons.

Definition 1.3. Given a finite space X and an element x ∈ X , the closure of {x} is denoted

by FX
x (the tilded version is defined by F̂x = Fx � {x}). The star of x is Cx = Ux ∪Fx and

its tilded version Ĉx = Cx � {x} is called the link of x.

It is easy to see that the closed sets of a finite topological space define a topology on it.

Definition 1.4. Let X be a finite space. The opposite of X , denoted by Xop, is the finite

space whose underlying set is X and whose topology is given by the basis FX = {FX
x }x∈X .

Observe that UXop

x = FX
x for all x ∈ X .

In topology, there exist some properties that pretend to distinguish disjoint sets and dis-

tinct points, known as separation axioms. Among them, the most important one, in the

context of finite topological spaces, is the T0 axiom. We recall the corresponding definition.

Definition 1.5. A topological space X is a T0-space (also called a Kolmogorov space) if

for any two different points x and y there is an open set which contains one of these points

and not the other one (x and y are topologically distinguishable).

Example 1.6. On the set X = {a, b, c}, consider the topologies T1 = {∅, {a}, X} and

T2 = {∅, {a}, {a, b}, {a, c}, X}. The finite space (X, T2) is a T0-space while (X, T1) is not

(observe that b and c are not topologically distinguishable).

The close relationship between finite topological spaces and partially ordered sets (posets)

plays a crucial role in the theory of finite topological spaces.

Definition 1.7. Let X be a finite poset. A subset C ⊆ X is a chain if it is a totally ordered

subset of X , that is, x � y or y � x for every pair of elements x, y ∈ C. The height of an

element x ∈ X is defined as h(x) = max{#C : C is a chain and x = max(C)}− 1 and the

height of X is the number h(X) = max{h(x) : x ∈ X}. A fence is a finite sequence of

points x0, x1, . . . , xn ∈ X such that xi and xi+1 are comparable, for all 0 � i � n− 1.

Definition 1.8. Let X be a poset. The Hasse diagram of X , denoted by H(X) is a digraph

whose vertices are the points of X and whose edges are the ordered pairs (x, y) such that

x < y and there exists no z such that x < z < y (x is the tail and y is the head of the edge

(x, y)). The set of edges is denoted by E(H(X)).

Example 1.9. Let X = {a, b, c, d, e} be a set and consider the relation on X given by

Δ ∪ {(a, b), (a, c), (a, d), (b, d), (e, b), (e, d)} where Δ = {(x, x) : x ∈ X}. Then X ,

together with the given relation, is a poset whose Hasse diagram is represented in Figure 1.1.

In this case, h(a) = h(e) = 0, h(b) = h(c) = 1 and h(X) = h(d) = 2.
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•b

•e

•d

•a

•c

Figure 1.1: Hasse diagram of the poset in Example 1.9.

There exists a well-known result due to Alexandroff [Ale37] providing a one-to-one cor-

respondence between finite spaces and finite preordered sets. If (X,�) is a finite preordered

set, the family of subsets {y ∈ X : y � x}x∈X is a basis for a topology on X . Conversely,

if X is a finite space, a preorder relation can be defined as follows:

x � y ⇐⇒ x ∈ Uy ⇐⇒ Ux ⊆ Uy. (1.1)

Moreover, in [Ale37] it is shown that the separation axiom T0 corresponds to the anti-

symmetry property, so that finite T0-spaces are equivalent to finite posets. If X is a finite

T0-space, we also denote by X the associated (equivalent) poset.

The preorder relation of Xop is the inverse preorder of X , therefore by (1.1) we can

write:

UX
x = {y ∈ X : y � x}, FX

x = {y ∈ X : x � y} (1.2)

When we write a finite space X in roster notation X = {x1, . . . , xn}, we use the sym-

bol Uk (resp. Fk) to denote Uxk
(resp. Fxk

).

The relation between finite topological spaces and posets is functorial, that is, it extends

to the corresponding morphisms: continuous functions and order preserving maps.

Some of the principal topological properties that are used to distinguish topological

spaces are connectedness and the stronger condition path-connectedness.

Definition 1.10. A topological space X is connected if the only subsets of X which are

both open and closed are X and the empty set. The connected components of X are the

maximal connected subsets (ordered by inclusion). X is path-connected if for every pair

of points x, y ∈ X , there exists a path α : I = [0, 1] −→ X (a continuous map from I to

X) such that α(0) = x and α(1) = y.

It is well known that, in arbitrary topological spaces, the notions of connectedness and

path-connectedness are not equivalent properties (indeed, if a space is path-connected then

it is connected, but the converse is not true in general). However, in the context of finite

spaces these concepts are in fact equivalent and coincide with the order-connected notion on

preordered sets (a preordered set X is order-connected if for every pair x, y ∈ X , there

exists a fence starting in x and ending in y).

Proposition 1.11. [Bar11] Let X be a finite space. Then the following are equivalent:
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1. X is a connected topological space.

2. X is an order-connected preorder.

3. X is a path-connected topological space.

1.1.2 Basic constructions

We introduce now some topological constructions which are useful in order to describe the

structure of finite spaces.

Definition 1.12. Let X and Y be two finite T0-spaces. The non-Hausdorff join (also called

ordinal sum) of X and Y , denoted by X�Y , is the disjoint union X 
Y with the topology

associated to the following order: one keeps the respective orderings within X and Y and

one sets x � y for every x ∈ X and y ∈ Y . The non-Hausdorff cone of X is defined

by C(X) = X � ∗. The non-Hausdorff suspension of X is the finite space S(X) =
X � S0; defining S0(X) = X , the non-Hausdorff suspension of order n of X is defined

recursively by Sn(X) = S(Sn−1(X)).

Note that for every x in a finite T0-space, its link can be written as Ĉx = Ûx � F̂x.

In general, the quotient of a T0-space by a subespace is not a T0-space. The next result

shows a necessary and sufficient condition for which the quotient of a finite T0-space by a

subspace A ⊆ X is again a T0-space. The open hull of A is A = ∪a∈AUX
a and its closure is

A = ∪a∈AFX
a .

Lemma 1.13. [Bar11] Let A be a subspace of a finite T0-space X , then X/A is T0 if and
only if A ∩ A = A.

The minimal open subsets of a quotient space are characterized by the next result.

Lemma 1.14. [Bar11] Let x ∈ X and let q : X −→ X/A be the quotient map. If x ∈ A,
Uq(x) = q(Ux ∪ A). If x /∈ A, Uq(x) = q(Ux).

A particular case of a quotient space is the wedge construction.

Definition 1.15. Let X and Y be finite T0-spaces and let x0 ∈ X , y0 ∈ Y . The wedge of

X and Y is the finite T0-space X ∨ Y := X 
 Y/{x0, y0}.

Observe that if X and Y are finite T0-spaces and x0 ∈ X , y0 ∈ Y , the set A = {x0, y0}
seen as a subspace of X 
 Y satisfies A = A ∩ A. Then, the wedge is a T0-space.

Example 1.16. In Figure 1.2 are shown two finite T0-spaces X and Y which we use to illus-

trate the non-Haussdorf cone of X , the non-Hausdorff suspension of Y , the non-Hausdorff

joins X � Y and Y �X and the wedge X ∨ Y = X 
 Y/{c, w}.
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•c •d
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X � Y

•
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•
v
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w

•z

•a •b

•c •d

Y �X

•z

•
v

•
u

•
a

•
b

•A •d

X ∨ Y

Figure 1.2: Some basic constructions involving finite T0-spaces.

1.1.3 Topogenous and Stong matrices
The matricial representation of a finite topological space is given by topogenous and Stong

matrices.

Definition 1.17. Given a finite space X = {x1, . . . , xn}, its topogenous matrix is the n×n
matrix TX = [tij] defined by

tij =

{
1 , xi ∈ Uj

0 , xi /∈ Uj

. (1.3)

Observe that the minimal open set of xk (resp. closure of {xk}) can be read from the

column (resp. row) k of the topogenous matrix by considering the row (resp. column)

indexes equal to 1. In symbols,

Uk = {i : tik = 1}, Fk = {j : tkj = 1} (1.4)

Definition 1.18. Given a finite T0-space X = {x1, . . . , xn}, its Stong matrix is the n × n
matrix SX = [sij] satisfying

sij =

{
1 , xi ∈ Uj and there is no k such that Ui � Uk � Uj

0 , in other case.
(1.5)
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In [Shi68], Shiraki introduced the term topogenous matrix to denote the transpose of the

matrix that we have called topogenous above. We prefer this choice since the topogenous

matrix (as defined in Definition 1.17), in the case of T0-spaces, can be regarded as the inci-

dence matrix corresponding to the partial order induced by the finite T0-space and the Stong

matrix is the adjacency matrix of the Hasse diagram of the associated poset.

Remark 1.19. Observe that the enumeration chosen for the elements in a finite space X plays

a crucial role when defining a topogenous matrix. Each finite space with n elements has n!
associated topogenous matrices, each of them corresponding to a unique permutation of the

elements of the space. For this reason, each time we mention the topogenous matrix of X ,

an enumeration of the elements of X must be fixed.

Topogenous matrices can be characterized by means of the next result.

Theorem 1.20. [Kri66] Let X = {x1, . . . , xn} be a finite T0-space and let TX = [tij] be its
topogenous matrix. Then TX satisfies the following properties for all 1 � i, j, k � n:

1. tij ∈ {0, 1}.

2. tii = 1.

3. If tij = 1 and tjk = 1 then tik = 1.

Conversely, if an n× n matrix T = [tij] satisfies the above properties, then T induces a
topology on X whose minimal open sets are Ui = {xk : tki = 1} for all i.

Bearing in mind the permutation-similarity relation between two square matrices (A and

B are permutation-similar if there exists a permutation matrix P such that A = P TBP ),

the next result characterizes the homeomorphisms between finite spaces by means of their

topogenous matrices.

Theorem 1.21. [Shi68] Let X and Y be finite spaces with topogenous matrices TX and TY ,
respectively. Then X and Y are homeomorphic if and only if TX and TY are permutation-
similar.

As we have seen, the T0 separation axiom in finite spaces corresponds to the antisymme-

try property of the preorder given in (1.1). In terms of topogenous matrices, these properties

are equivalent to the upper triangular property (up to homeomorphism).

Theorem 1.22. [Shi68] A finite space X is T0 if and only if its topogenous matrix TX is
permutation-similar to an upper triangular topogenous matrix.

Remark 1.23. By Theorem 1.22, from now on, when we say X is a finite T0-space, we will

assume that the enumeration of its elements was chosen in such a way that its topogenous

matrix TX is upper triangular.
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1.1.4 Homotopy types and weak homotopy types
We recall some well-known notions and results in algebraic topology and explain them in

the finite topological space framework.

Definition 1.24. Let X and Y be topological spaces, A ⊆ X and let f, g : X −→ Y
be continuous functions. The maps f and g are homotopic relative to A if there exists a

continuous map (a homotopy) H : I ×X −→ Y (I is the unit interval) such that:

1. H(0, x) = f(x) and H(1, x) = g(x) for all x ∈ X ,

2. H(t, x) = f(x) = g(x) for all (t, x) ∈ I × A.

In this case we write f  g (rel A); when A = ∅, f and g are said to be homotopic and it

is denoted by f  g.

It can be proved that if X and Y are finite spaces, there is a natural correspondence

between the set of homotopies {H : I × X −→ Y } and the set of paths {α : I −→ Y X},

where Y X is the set of continuous maps from X to Y equipped with the compact-open

topology which corresponds (by Alexandroff correspondence) to the preorder relation on

Y X given by f � g if f(x) � g(x) for every x ∈ X (see details in [Bar11]). As a

consequence of these considerations, the next result is obtained.

Proposition 1.25. [Bar11] Let X and Y finite spaces, A ⊆ X and let f, g : X −→ Y be
two maps. Then f  g (rel A) if and only if there exists a finite sequence of maps {fi}ni=0

such that f = f0 � f1 � f2 � · · · � fn = g and fi|A = f |A for every 0 � i � n.

Intuitively, two continuous functions are homotopic if one can be continuously deformed
into the other (the continuous deformation is given by the homotopy between them).

Definition 1.26. Let X and Y be topological spaces. X and Y are homotopy equivalent
(X and Y have the same homotopy type), if there exist maps (homotopy equivalences)

f : X −→ Y and g : Y −→ X such that g ◦ f  idX and f ◦ g  idY . In this case we write

X
he≈ Y . A space X is contractible if it has the homotopy type of a one-point space (this is

equivalent to say that idX  c for some constant function c : X −→ ∗) i.e. X
he≈ ∗.

A finite T0-space X with maximum satisfies that the identity map idX is comparable

with the constant map c(x) = max(X) for every x ∈ X since idX � c, then idX  c, by

Proposition 1.25 and therefore X is contractible. A similar argument shows that a finite T0-

space with minimum is contractible. In particular, the subspaces Ux and Fx are contractibles.

Definition 1.27. Let X and Y be topological spaces, A ⊆ X and let iA : A ↪→ X be the

inclusion map. The subspace A is said to be a:

1. retract of X if there exists a continuous map (a retraction) r : X −→ A such that

r ◦ iA  idA.
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2. deformation retract of X if there exists a retraction r such that iA ◦ r  idX .

3. strong deformation retract of X if there exists a retraction r such that iA ◦ r 
idX (rel A).

Observe that X
he≈ A when A is a deformation retract or a strong deformation retract

of X . In the setting of finite topological spaces, Stong proved that every finite space is

homotopy equivalent to a finite T0-space, therefore when studying homotopy types of finite

spaces, we can restrict ourselves to finite T0-spaces. This fact is established in the following

result.

Proposition 1.28. [Sto66] Let X be a finite space. Let X0 be the quotient space X/ ∼ where
x ∼ y if x � y and y � x. Then X0 is T0 and the quotient map q : X −→ X0 is a homotopy
equivalence. Moreover, X0 is a strong deformation retract of X .

Example 1.29. The next diagram represents the minimal open sets of a finite space X . Its

topogenous matrix TX is also shown.

•x1

•x2 •x3

•x4X

•x5

•x6
•x7

•x8

TX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 1
0 1 0 1 0 1 1 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 1
0 1 0 1 0 1 1 0
0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Observe that X is not T0 since U2 = U6 = {x2, x6}. Then, by taking one representative

of each equivalence class [x1] = {x1, x5, x8}, [x2] = {x2, x6}, [x3] = {x3} and [x4] =
{x4, x7}, we obtain the finite T0-space X0 as in Proposition 1.28. Note that in TX , the

corresponding columns and rows of the elements in each equivalence class are the same; for

example, columns (and rows) 2 and 6 are equal in TX . By removing repeated columns (or

rows) in TX , we can obtain the topogenous matrix of the finite T0-space X0 [CR16] (observe

that it is upper triangular).

X0

•x2 •x3

•x1

•x4

TX0 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎤⎥⎥⎦.
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In the setting of finite T0-spaces, there is a fundamental move that allows to reduce the

size of a space in order to obtain a homotopy equivalent space with minimum cardinality.

Such a move is the elimination of beat points.

Definition 1.30. Let X be a finite T0-space. A point x ∈ X is a down beat point if Ûx

has a maximum; x is an up beat point if F̂x has a minimum. In any of these cases, x is

a beat point of X and it is said that there is an elementary strong collapse from X to

X � {x}. There is a strong collapse X↘↘Y (or a strong expansion Y ↗↗X) if there

is a sequence of elementary strong collapses starting in X and ending in Y . X is a minimal
finite space if it has no beat points.

Definition 1.31. A core of X is a strong deformation retract of X which is a minimal finite

space.

Stong, in [Sto66], called linear and colinear points to the beat points; the term beat point
was introduced in some unpublished notes written by Peter May for REU 2003, which are

now summarized in [May20]. Beat points can be identified in the Hasse diagram of a finite

T0-space X as follows: a point x ∈ X is a down beat point if and only if there is only one

edge with x at its head; x is an up beat point if and only if there is only one edge with x at

the tail.

Example 1.32. The following sequence of elementary strong collapses shows a procedure

to obtain a core of a finite T0-space X by removing beat points. Observe that a is an up beat

point of X , b is an up beat point and a down beat point of X � {a} and, finally, c is a down

beat point of X � {a, b}. Then, X � {a, b, c} is a minimal finite space.

X

•a • •

• • •

•

↘↘

• •

• • •b

•

↘↘

• •

• •

•c

↘↘

• •

• •

The removing of beat points allows to find strong deformation retracts of a finite T0-

space. Indeed, Barmak proved that this is the only procedure to find strong deformation

retracts from a finite T0-space.
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Proposition 1.33. [Sto66] Let X be a finite T0-space and let x ∈ X be a beat point. Then,
the inclusion map i : X � {x} −→ X is a homotopy equivalence.

Proposition 1.34. [Bar11] Let X be a finite T0-space and let A ⊆ X . Then, X↘↘A if and
only if A is a strong deformation retract of X .

Homotopy types of finite spaces are characterized by classes of homeomorphism of min-

imal finite spaces.

Theorem 1.35. [Sto66] A homotopy equivalence between minimal finite spaces is a homeo-
morphism. In particular the core of a finite space is unique up to homeomorphism and two
finite spaces are homotopy equivalent if and only if they have homeomorphic cores.

As a consequence of the above result, observe that in the context of finite spaces, a space

is contractible if and only if its cores are one-point spaces.

Regarding finite topological spaces, weak homotopy types are fundamental to understand

the relations between finite spaces and simplicial complexes (as we will see in Section 1.2).

See [Hat02] for the definition of homotopy groups, which are one important invariant for

topological spaces.

Definition 1.36. Let X and Y be finite spaces. A continuous map f : X −→ Y is a

weak homotopy equivalence if it induces an isomorphism between the homotopy groups

of both spaces i.e. for every base point x ∈ X , f∗ : πi(X, x) −→ πi(Y, f(x)) is a group

isomorphism for all i � 1 and f∗ : π0(X) −→ π0(Y ) is a bijective function. X and Y are

weak homotopy equivalent (X and Y have the same weak homotopy type) if there exists

a finite sequence of topological spaces X = X1, X2, . . . , Xn = Y and weak homotopy

equivalences Xi → Xi+1 or Xi+1 → Xi for each 1 � i � n − 1. In this case we write

X
we≈ Y . A space X is homotopically trivial if it has the weak homotopy type of a one-

point space i.e. X
we≈ ∗.

Definition 1.37. Given a topological space Z, a finite model of Z is a finite space X such

that X
we≈ Z. X is said to be a minimal finite model (of Z) if it is a finite model of minimum

cardinality.

Example 1.38. McCord [McC66] proved that the finite T0-space Sn(S0) is a finite model of

the n-dimensional sphere Sn for every n � 0. In fact, Sn(S0) is a minimal finite model of

Sn [Bar11]. Minimal finite models of some spheres are shown in Figure 1.3.

A useful way to check if a continuous map f : X −→ Y between finite T0-spaces

is a weak homotopy equivalence is verifying that such a map is a local weak homotopy

equivalence over a basis like open cover of the codomain, that is, a basis for a topology

in the underlying set of Y , perhaps different from the original topology. In particular, the

minimal basis UY = {Uy}y∈Y is a basis like open cover of Y and this is what is used most

times.
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• •
S0

• •

• •

S(S0)

• •

• •

• •

S2(S0)

Figure 1.3: Minimal finite models for S0, S1 and S2.

Theorem 1.39. [McC66] Let X and Y be topological spaces and let f : X −→ Y be a
continuous map. Suppose that there exists a basis like open cover U of Y such that each
restriction

f |f−1(U) : f
−1(U) −→ U

is a weak homotopy equivalence for every U ∈ U . Then f : X −→ Y is a weak homotopy
equivalence.

1.2 Simplicial complexes and simple homotopy types
The relationship between finite topological spaces and simplicial complexes is crucial in

order to compute invariants on finite topological spaces.

1.2.1 Simplicial complexes
We recall some basic notions on simplicial complexes.

Definition 1.40. Let V a finite set. A simplicial complex K is a family of subsets of V
satisfying the following conditions:

1. {v} ∈ K for all v ∈ V .

2. If τ ∈ K and σ ⊆ τ then σ ∈ K.

The set V is called the vertex set of K and the elements of K are called simplices.

Given a simplex σ ∈ K, the dimension of σ is dim(σ) = #σ − 1. If the dimension of σ
is p, we say that σ is a p-simplex; the p-skeleton of K is the collection of p-simplices of

K and it is denoted by Kp. In particular, the vertex set V is in a one-to-one correspondence

with K0, so that by abuse of notation, we write v ∈ V when {v} ∈ K. The dimension of

K is the supremum of the dimensions of its simplices. If τ ⊆ σ, we say that τ is a face of σ
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and if τ ⊂ σ, τ is called a proper face of σ. A facet in K is any simplex that is not a face

of any larger simplex.

Given a p-simplex σ = {v0, v1, . . . , vp}, the closed simplex σ is the set of formal

convex combinations of the vertices of σ i.e. σ = {∑p
i=0 αivi : αi � 0,

∑p
i=0 αi = 1}. A

metric d (and therefore a topology induced by d) can be defined on a closed simplex by the

formula

d

(
p∑

i=0

αivi,

p∑
i=0

βivi

)
=

(
p∑

i=0

(αi − βi)
2

)1/2

(1.6)

The geometric realization |K| of a simplicial complex K is the set

|K| =
⋃
σ∈K

σ =
{∑

v∈K
αvv : αv � 0,

∑
v∈K

αv = 1, {v : αv > 0} ∈ K
}

A polyhedron is the geometric realization of a simplicial complex and a triangulation
of a polyhedron X is a simplicial complex K whose geometric realization is homeomorphic

to X .

The support of a point x =
∑

v∈V αvv ∈ |K| is the set support(x) = {v : αv > 0}.

|K| is a topological space with the topology given by the collection {U ⊆ |K| : U ∩
σ is open in σ}. In the particular case K is a finite simplicial complex (a simplicial com-

plex with a finite number of vertices), the topology of |K| coincides with the topology in-

duced by the metric d defined in (1.6) and |K| can be imbedded in Rn for some n ∈ N.

Given a simplicial complex K, its barycentric subdivision K ′ is the simplicial complex

whose vertices are the simplices of K, and the simplices of K ′ are the sets of simplices

{σ0, σ1, . . . , σn} satisfying σ0 ⊂ σ1 ⊂ · · · ⊂ σn. The barycenter of a simplex σ ∈ K is the

point b(σ) =
∑

v∈σ
v
#v

∈ |K|.
Let K and L be simplicial complexes. A simplicial map ϕ : K −→ L is a vertex map

VK −→ VL such that σ ∈ K implies ϕ(σ) ∈ L. A simplicial map ϕ : K −→ L induces a

continuous map |ϕ| : |K| −→ |L| defined by |ϕ|(∑v∈K αvv) =
∑

v∈K αvϕ(v).

Regarding finite topological spaces, McCord [McC66] associates to each finite T0-space

a simplicial complex and for each finite simplicial complex it was associated a finite T0-

space allowing to prove that weak homotopy types of finite spaces coincide with homotopy

types of finite CW-complexes.

Definition 1.41. Let X be a finite T0-space. The simplicial complex associated to X is

the simplicial complex whose simplices are the nonempty chains of X and it is denoted by

K(X) (it is also called the order complex of X).

If f : X −→ Y is a continuous map between finite T0-spaces, the associated map

K(f) : K(X) −→ K(Y ), defined by K(f)(x) = f(x), is a simplicial map.

Definition 1.42. Let K be a finite simplicial complex. The finite T0-space associated to
K is the poset of simplices of K ordered by inclusion and it is denoted by X (K) (it is also

called the face poset of K).
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•a •b

•c •d

•eX •f

a

b

c

d

|K(X)|

e

f

c

Figure 1.4: A finite T0-space X and the geometric realization of its order complex K(X).

If ϕ : K −→ L is a simplicial map between finite simplicial complexes, the associated

map X (ϕ) : X (K) −→ X (L),defined by X (ϕ)(σ) = ϕ(σ), is a continuous map.

a

b

c
|K|

d

e

•
b(a)

•
b(b)

•
b(c)

•
b(d)

•
b(e)

•b(a, b)

X (K)

•b(a, c) •b(b, c) •b(a, d) •b(c, d) •b(d, e)

• b(a, b, c)

Figure 1.5: The geometric realization |K| of a finite simplicial complex K and its face poset

X (K).

In Figures 1.4 and 1.5 are illustrated the order complex of a finite T0-space and the face

poset of a finite simplicial complex. Note that if K is a finite simplicial complex, K(X (K))
is the (first) barycentric subdivision of K i.e. K(X (K)) = K ′. By analogy, one has the

following definition.

Definition 1.43. The barycentric subdivision of a finite T0-space X is defined as the finite

T0-space X ′ = X (K(X)).

An important result establishes that finite simplicial complexes and finite T0-spaces have

the same weak homotopy types by means of the McCord maps.

Definition 1.44. Let X be a finite T0-space and let K be a finite simplicial complex. The

K-McCord map μX : |K(X)| −→ X is defined by μX(x) = min(support(x)). The X -
McCord map is the composite μK = μX (K)s

−1
K : |K| −→ X (K), where sK : |K ′| −→ |K|

is the homeomorphism defined by sK(σ) = b(σ).
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Theorem 1.45. [McC66] The K-McCord map μX is a weak homotopy equivalence for every
finite T0-space X . The X -McCord map μK is a weak homotopy equivalence for every finite
simplicial complex K.

For the sake of completeness, we mention some definitions about CW-complexes which

are related to finite topological spaces and simplicial complexes. See [Hat02], [Mun84] for

more information.

Definition 1.46. Let K be a CW-complex. K is a regular complex if for each cell en, the

attaching map Sn−1 −→ K is a homeomorphism onto its image ėn, the boundary of en. K
is an h-regular complex if the attaching map of each cell is a homotopy equivalence with

its image and the closed cells en are subcomplexes of K (by [Bar11, Corollary 7.1.4], a

CW-complex is h-regular if the closed cells are contractible subcomplexes).

Observe that regular complexes are h-regular. On an h-regular complex K, an order

relation on the cells of K can be defined by e � e′ if e ⊆ e′. The face poset X (K) is the

poset of cells of K ordered by the face relation �.

Theorem 1.47. [Bar11] If K is a finite h-regular complex, X (K) is a finite model of K.

For the class of finite topological spaces, the concept of h-regular space was introduced

in [Min12]. This particular type of finite spaces will be of great interest for our work.

Definition 1.48. A finite T0-space X is called h-regular if for every x ∈ X , the order com-

plex K(Ûx) is homotopy equivalent to the (h(x)−1)-dimensional sphere i.e. Ûx

we≈ Sh(x)−1.

The face poset X (K) of any h-regular CW-complex K (in particular, of any finite sim-

plicial complex) is h-regular. In [Min12], Figure 1.6 is shown as an example of an h-regular

space which is not the face poset of a regular CW-complex.

• • •

• • •

• •

• •

Figure 1.6: An h-regular poset (shown in [Min12, Figure 1]).
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1.2.2 Simple homotopy types

Collapses are a useful tool for reducing simplicial complexes preserving their topological

invariants.

Definition 1.49. Let K be a finite simplicial complex. There is an elementary simplicial
collapse from K to a subcomplex L if there are only two simplices σ, τ ∈ K � L such

that τ is the unique simplex of K containing σ properly (σ is called a free face of τ ). In

symbols, K = L ∪ aσ and L ∩ aσ = aσ̇ where σ ∈ K and a is a vertex of K not in σ (σ̇ is

the boundary of σ and aσ̇ is a simplicial cone).

We say that K (simplicially) collapses to L (or that L expands to K) if there exists a

sequence of elementary simplicial collapses starting in K and ending in L. This is denoted

by K ↘ L or L ↗ K. Two finite simplicial complexes K and L are simple homotopy
equivalent if there is a sequence K = K1, K2, . . . , Kn = L such that for each 1 � i < n,

Ki ↘ Ki+1 or Ki ↗ Ki+1. We denote this by K�↘L.

Theorem 1.50. [Bar11] Let X be a finite T0-space and let x ∈ X . If the inclusion map i :
X� {x} −→ X is a weak homotopy equivalence, it induces a simple homotopy equivalence
|K(X � {x})| −→ |K(X)|. In particular X � {x}�↘X .

Barmak found an elementary move in the setting of finite spaces which corresponds ex-

actly to a simplicial collapse of the associated polyhedra; such a move consists of removing

a weak point of the space.

Definition 1.51. Let X be a finite T0-space. A point x ∈ X is a down weak point if Ûx is

contractible; x is an up weak point if F̂x is contractible. In any of these cases, x is a weak
point of X and in this case we will say that there is an elementary collapse from X to

X � {x}. There is a collapse X ↘ Y (or an expansion Y ↗ X) if there is a sequence

of elementary collapses starting in X and ending in Y . Two finite T0-spaces X and Y are

simple homotopy equivalent if there is a sequence X = X1, X2, . . . , Xn = Y of finite

T0-spaces such that for each 1 � i < n, Xi ↘ Xi+1 or Xi ↗ Xi+1. We denote this by

X�↘Y . A space X is collapsible if it collapses to a one-point space i.e. X�↘∗.

Observe that beat points are weak points and it is easy to see that x ∈ X is a weak point

if and only if its link Ĉx is contractible. Elimination of weak points of a finite T0-space does

not modify the weak homotopy type.

Proposition 1.52. [Bar11] Let X be a finite T0-space and let x ∈ X be a weak point. Then,
the inclusion map i : X � {x} −→ X is a weak homotopy equivalence.

A series of fundamental results about homotopy types, weak homotopy types and simple

homotopy types of finite T0-spaces and finite simplicial complexes can be summarized in

the diagram in Figure 1.7.
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Figure 1.7: Relation between simple homotopy types, weak homotopy types and homotopy

types of finite T0-spaces and finite simplicial complexes (taken from [Bar11]).

1.3 Effective homology and Kenzo
The primitive structures in the Kenzo system are simplicial sets and chain complexes. As

we have presented, there is a relationship between finite topological spaces and simplicial

complexes. Then, a direct method to compute in Kenzo some topological invariants of

a finite space X is through the chain complex which can be canonically defined from its

associated simplicial complex K(X). Usually, the size of this chain complex is too large

and it is imperative to use some kind of reduction techniques. In this section we introduce

some notions and results related to these issues. Moreover we include a brief introduction to

the Kenzo system.

1.3.1 Chain complexes and homology

Definition 1.53. A chain complex C∗ = (Cp, dp) is a sequence of abelian groups and

homomorphisms

· · · −→ Cp+1

dp+1−−−→ Cp

dp−−−→ Cp−1 −→ · · ·
such that dpdp+1 = 0 for each p ∈ Z. The homomorphism dp is called the differential map
or boundary map of degree p. The condition dpdp+1 = 0 is equivalent to the inclusion

im dp+1 ⊆ ker dp. The elements of ker dp are called cycles and the elements of im dp+1 are

called boundaries. The p-th homology group of this chain complex is the quotient group

Hp(C∗) = ker dp/im dp+1
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An important example of chain complexes are those who generate the so-called simpli-
cial homology groups.

Definition 1.54. An oriented simplicial complex K is a simplicial complex and a partial

order on K0 whose restriction to the vertices of any simplex in K is a linear order.

Note that every linear ordering of K0 makes K into an oriented simplicial complex.

Definition 1.55. Let K be an oriented simplicial complex of dimension n. Define Cp(K) as

the free abelian group with basis all symbols [q0, . . . , qp], where {q0, . . . , qp} is a p-simplex

in K and q0 < q1 < · · · < qp. Define the boundary map dp : Cp(K) −→ Cp−1(K) by

extending by linearity the formula

dp([q0, . . . , qp]) =

p∑
i=0

(−1)i[q0, . . . , q̂i, . . . , qp] (1.7)

where q̂i means delete the vertex qi. It can be proved that

0 −→ Cn(K)
dn−−−→ · · · d2−−−→ C1(K)

d1−−−→ C0(K) −→ 0

is a chain complex, denoted by C∗(K) = (Cp(K), dp). The p-th homology group of C∗(K),
Hp(K) := Hp(C∗(K)), is called the p-th simplicial homology group of K. The p-th

reduced simplicial homology group H̃p(K) is the p-th homology group of the augmented

chain complex

0 −→ Cn(K)
dn−−−→ · · · d2−−−→ C1(K)

d1−−−→ C0(K)
ε−−→ Z −→ 0

where ε is the homomorphism ε(
∑

i niσi) =
∑

i ni for σi ∈ C0(K).

It is easy to see that for all p � 1, Hp(K) ∼= H̃p(K) and H0(K) ∼= H̃0(K)⊕Z. Simplicial

homology groups can be regarded as a particular case of a more general construction on

arbitrary topological spaces, called singular homology groups (see [Hat02], [Rot98]).

The simplicial homology groups of a simplicial complex K are isomorphic to the singu-

lar homology groups of its geometric realization, that is, Hp(K) ∼= Hp(|K|), for all p ∈ Z

(see [Rot98]).

Regarding finite topological spaces, note that Hp(X) ∼= Hp(|K(X)|) ∼= Hp(K(X))
and Hp(K) ∼= Hp(|K|) ∼= Hp(X (K)) for every finite T0-space X and for every finite

simplicial complex K, taking into account Theorem 1.45 and the fact that a weak homotopy

equivalence induces isomorphisms on homology groups (see [Hat02]). Then, the homology

groups of a finite T0-space can be computed by using techniques applicable to simplicial

complexes. However, since the simplices of K(X) are the chains of X , in [CO17] a chain

complex expressed entirely in terms of X and its chains is defined, which can be used to

describe the homology groups of X in a more efficient way.
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Definition 1.56. Let X be a finite T0-space. For p ∈ N, a p-chain of X is a chain of X of

cardinality p + 1. The empty chain is regarded as a (−1)-chain. The notation [v0, . . . , vp] is

used for a p-chain {v0, . . . , vp} of X with vi−1 < vi for all 1 � i � p. The set of p-chains of

X is denoted by Chp(X) and the set of chains of X is Ch(X).

Definition 1.57. Let X be a finite T0-space. The P-chain complex associated to X is the

chain complex CP
∗ (X) = (CP

p (X), dPp ) where CP
p (X) is the free abelian group with basis

the set Chp(X) of p-chains of X for p � 0 and CP
p (X) = 0 for p < 0 and the boundary map

dPp : CP
p (X) −→ CP

p−1(X) is defined by extending by linearity the formula

dPp ([v0, . . . , vp]) =
p∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vp]

where [v0, . . . , v̂i, . . . , vp] is the (p− 1)-chain of X obtained by removing the point vi from

[v0, . . . , vp] ∈ Chp(X). The p-th homology group HP
p (X) := Hp(C

P
∗ (X)) is called the p-th

P-homology group of the finite T0-space X .

The above definitions permit to obtain the next result.

Proposition 1.58. [CO17] Let X be a finite T0-space. Then HP
p (X) ∼= Hp(X) for all p ∈ Z.

1.3.2 Effective homology and discrete vector fields
A very useful technique to analyze the topology of simplicial complexes is Discrete Morse

Theory [For98]. In particular, we are interested in a concrete application of this theory which

provides “reductions” of chain complexes preserving homology and which can be applied in

a very direct way to finite topological spaces.

Definition 1.59. An algebraic cellular complex (ACC) is a family C∗ = (Cp, dp, βp) where

(Cp, dp) is a chain complex and every Cp is provided with a distinguished Z-basis βp; every

basis component σ ∈ βp is called a p-cell.

Let us introduce now the main notions of the effective homology method, introduced

in [Ser94] and deeply explained in [RS06]. These notions are implemented in Kenzo.

Definition 1.60. A reduction ρ is a diagram

ρ = Ĉ∗ C∗
f

g
h (1.8)

where:

1. The nodes Ĉ∗ and C∗ are chain complexes.

2. The arrows f and g are chain complex morphisms.
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3. The self-arrow h is a homotopy operator of degree 1.

4. The following relations are satisfied:

fg = idC∗

gf + dh+ hd = id
̂C∗

fh = 0

hg = 0

hh = 0

(1.9)

Following [RS10], we will denote a reduction by ρ = (f, g, h) : Ĉ∗ ⇒⇒ C∗. Reductions

play a relevant role in the task of computing homology. If a reduction ρ : Ĉ∗ ⇒⇒ C∗ is

defined, properties (1.9) ensure that the homology groups of the complexes Ĉ∗ and C∗ are

canonically isomorphic.

Definition 1.61. A (strong chain) equivalence ε ≡ (C∗ ⇐⇐⇒⇒E∗) between two chain com-

plexes C∗ and E∗ is a triple (D∗, ρ, ρ′) where D∗ is a chain complex and ρ and ρ′ are reduc-

tions from D∗ over C∗ and E∗ respectively: C∗
ρ⇐⇐ D∗

ρ′⇒⇒ E∗.

Definition 1.62. An effective chain complex C∗ is an algebraic cellular complex where

each group Cn is finitely generated.

Definition 1.63. An object with effective homology is a triple (X,EC∗, ε) where X is an

object (e.g. a simplicial set, a topological space) possessing a canonically associated free

chain complex C∗(X), EC∗ is an effective chain complex and ε is an equivalence between

C∗(X) and EC∗, that is, C∗(X)
ε⇐⇐⇒⇒ EC∗.

The notion of object with effective homology makes it possible to compute homology

groups of complicated spaces by using effective complexes and computing their homology

groups, which can be easily obtained through some elementary algorithms on matrices. Let

us observe that the chain complex C∗(X) could be so big that its homology groups are not

directly computable (for example, when the complex is not of finite type).

The following result provides a particular type of reduction for a given chain complex.

Theorem 1.64. [RS10] Let C∗ = (Cp, dp) be a chain complex. Assume that every chain
group is decomposed Cp = Dp⊕Ep⊕Fp. The boundary maps dp are then decomposed in 3×
3 block matrices [dp,i,j]1�i,j�3. If every component dp,2,1 : Dp −→ Ep−1 is an isomorphism,
then the chain complex can be canonically reduced to a chain complex (Fp, d

′
p), that is, there

exists a reduction ρ = (fp, gp, hp) : (Cp, dp) ⇒⇒ (Fp, d
′
p) where for every p ∈ Z:

d′p = dp,3,3 − dp,3,1d
−1
p,2,1dp,2,3, (1.10)

fp =
[
0 −dp,3,1d

−1
p,2,1 1

]
, gp =

⎡⎣−d−1
p,2,1dp,2,3
0
1

⎤⎦ , hp−1 =

⎡⎣0 d−1
p,2,1 0

0 0 0
0 0 0

⎤⎦ .
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In case the chain complex C∗ in Theorem 1.64 is an ACC, a reduction can be obtained

by computing a discrete vector field, a powerful tool that has been used, for example, to

describe the homotopy types of regular CW-complexes [For98].

Definition 1.65. Let C∗ = (Cp, dp, βp) be an ACC. A discrete vector field V on C∗ is a

collection of pairs V = {(σi, τi)}i satisfying the conditions:

1. Every σi is a p-cell and the corresponding component τi is a (p + 1)-cell. The degree

p depends on i and in general is not constant.

2. Every component σi is a regular face of the corresponding component τi (it means

that the coefficient of σi in dτi is 1 or −1).

3. A cell of C∗ appears at most one time in V : if i is a fixed index, then σi �= σj , σi �= τj ,
τi �= σj and τi �= τj for every j �= i.

The cells σi are source cells and the cells τi are target cells; a cell which does not

appear in V is called a critical cell .

Definition 1.66. Let C∗ = (Cp, dp, βp) be an ACC and let V = {(σi, τi)}i be a discrete

vector field on C∗. A V-path of degree p (and length m) is a sequence π = ((σik , τik))0�k�m

satisfying:

1. Every pair (σik , τik) is a component of the vector field V and the cell τik is a p-cell.

2. For every 0 < k � m, the component σik is a face of τik−1
, non necessarily regular,

but different from σik−1
.

Definition 1.67. Let C∗ = (Cp, dp, βp) be an ACC and let V be a discrete vector field on

C∗. V is said to be admissible if for every p ∈ Z, a function λp : βp −→ N is provided

satisfying the following property: every V -path starting from σ ∈ βp has a length bounded

by λp(σ).

Remark 1.68. Considering now Theorem 1.64, if C∗ = (Cp, dp, βp) is an ACC, each cell

basis βp can be divided by a discrete vector field V as βp = βt
p + βs

p + βc
p, where βt

p, βs
p and

βc
p are the target, source and critical cells of V , respectively. This decomposition induces

a corresponding decomposition of the chain groups Cp = Ct
p ⊕ Cs

p ⊕ Cc
p, so that every

differential dp can be viewed as a 3× 3 matrix. Moreover, every map dp,2,1 : C
t
p −→ Cs

p−1 is

an isomorphism (proved in [RS10, Proposition 18]), so that this ACC satisfies the hypothesis

of Theorem 1.64 and therefore the following result is obtained.

Theorem 1.69. (Vector-Field Reduction Theorem) [RS10] Let C∗ = (Cp, dp, βp) be an
ACC and V = {(σi, τi)} be an admissible discrete vector field on C∗. Then the vector field
V defines a canonical reduction ρ = (fp, gp, hp) : (Cp, dp) ⇒⇒ (Cc

p, d
′
p) as in (1.10), where

Cc
p = Z[βc

p] is the free abelian group generated by the critical p-cells.
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This theorem implies in particular that the homology groups of the chain complex C∗ are

isomorphic to those of a smaller chain complex generated by the critical cells of the discrete

vector field. This result is implemented in the Kenzo program as part of an external module

working with discrete vector fields, allowing the user to determine the critical chain complex

and also the maps f , g and h of the corresponding reduction. In frequent situations, if C∗
is associated with a simplicial set X , C∗ = C∗(X), this reduction can also be used when

X is considered as an ingredient in other topological constructions (such as loop spaces or

twisted cartesian product) to determine their effective homology.

1.3.3 The Kenzo program

The work that will be presented in this memoir has been implemented as a new module for

the computer algebra system called Kenzo. Kenzo [DRSS99] is a symbolic computation sys-

tem devoted to algebraic topology. It was originally written in 1990 by Sergeraert and Rubio,

under the name of EAT (Effective Algebraic Topology) [RSS97]. In 1998 it was rewritten

by Sergeraert and Dousson, with the current name of Kenzo. The last official version dates

from 2008, although there exists a more recent version maintained by G. Heber [Heb19]

with compatibility improvements and bugfixes.

As we have said, the topological spaces considered in Kenzo are represented by means

of simplicial sets (see [May67] for definitions). The main goal of Kenzo is to be able to

deal with spaces of infinite nature, codified by means of the Common Lisp programming

language making an intensive use of functional programming, being the only program for al-

gebraic topology able to carry out computations over infinite structures. The program allows

in particular the computation of homology and homotopy groups of complicated spaces,

such as iterated loop spaces of a loop space modified by a cell attachment or components of

complex Postnikov towers, which were not known before [RS06].

Homology and homotopy groups of infinite spaces are computed in Kenzo by means of

the effective homology method, explained in Subsection 1.3.2. When an object X is built

in Kenzo, an equivalence C∗(X)⇐⇐⇒⇒E∗ is automatically constructed, where C∗(X) is the

chain complex associated with X and E∗ is an effective chain complex, so that the homology

groups of E∗ can be determined by means of elementary operations on matrices. In this way,

the homology groups of the object X , which can be of infinite nature, can be obtained thanks

to the isomorphism H∗(X) ∼= H∗(C∗(X)) ∼= H∗(E∗).
Furthermore, Kenzo has been enhanced by several authors with additional modules

which are available in the personal websites of the authors. In particular, there exists a mod-

ule which automatizes the construction of the Whitehead tower of fibrations for the compu-

tation of homotopy groups using only one function [Her11]. In addition, there exists another

module computing spectral sequences [RRS06], a useful tool of algebraic topology which in

general is not constructive. This module can be applied to determine spectral sequences as-

sociated with filtered complexes of infinite type and makes it possible to determine Serre and

Eilenberg–Moore spectral sequences associated with fibrations when versions with effective

homology are known for the initial spaces.
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1.3.3.1 Syntax in Kenzo

In order to familiarize the reader with the syntax of Kenzo and some functions that we have

used in the development of this work, we present some examples explaining the construction

of some Kenzo objects. Let us show how to construct by hand the chain complex C∗(K)
which generates the simplicial homology groups of the oriented simplicial complex K in

Figure 1.8.

a

b

c

|K|

d

e
K = {[a], [b], [c], [d], [e],

[a, b], [a, c], [a, d],

[b, c], [c, d], [c, e],

[d, e], [a, b, c]}

Figure 1.8: A simplicial complex K and its geometric realization |K|.

A chain complex in Kenzo is implemented as an instance of the class CHAIN-COMPLEX.

To facilitate the construction of instances of this class, the software provides the function

build-chcm defined with six keyword arguments:

• basis is a function defining the distinguished basis of each group Cp, or the keyword

:locally-effective in case the chain complex is not effective.

• cmpr is a comparison function for the generators.

• intr-dffr is a Lisp function defining the differential homomorphism dp : Cp −→
Cp−1, for each p ∈ Z.

• strt is one of the two values: :gnrt or :cmbn defining the mapping strategy of

the differential homomorphism.

• bsgn is a generator, the base point of the underlying set.

• orgn is a list containing a comment about the origin of the chain complex.

The chain complex C∗(K), that we will name example in Kenzo, is constructed as

follows:

> (setf example-basis #’(lambda (dmn)
(case dmn

(0 ’(a b c d e))
(1 ’(ab ac ad bc cd ce de))
(2 ’(abc))
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(otherwise NIL))))
> (setf example-intr-dffr

#’(lambda (dmn gnr)
(unless (<= 0 dmn 2)

(error "Non-correct dimension"))
(case dmn

(0 (cmbn -1))
(1 (case gnr

(ab (cmbn 0 -1 ’a 1 ’b))
(ac (cmbn 0 -1 ’a 1 ’c))
(ad (cmbn 0 -1 ’a 1 ’d))
(bc (cmbn 0 -1 ’b 1 ’c))
(cd (cmbn 0 -1 ’c 1 ’d))
(ce (cmbn 0 -1 ’c 1 ’e))
(de (cmbn 0 -1 ’d 1 ’e))))

(2 (case gnr
(abc (cmbn 1 1 ’ab -1 ’ac 1 ’bc))))

(otherwise (error "Bad generator")))
))

> (setf example (build-chcm :basis example-basis
:cmpr #’s-cmpr
:intr-dffr example-intr-dffr
:strt :gnrt
:bsgn ’a
:orgn ’(kenzo-example)))

[K1 Chain-Complex]

The string [K1 Chain-Complex] is printed by the printing method associated to the

class. The identification number (1 in K1) is assigned automatically every time a new object

is constructed in Kenzo. We can compute the homology groups of example:

> (homology example 0 3)
Homology in dimension 0 :
Component Z
---done---
Homology in dimension 1 :
Component Z
Component Z
---done---
Homology in dimension 2 :
---done---

Above computations show that H0(K) ∼= Z, H1(K) ∼= Z ⊕ Z and H2(K) = 0. The

function chcm-homology-gen prints a generator for each component of the homology



30 Chapter 1. Preliminaries

groups (these are represented in Figure 1.9).

> (chcm-homology-gen example 0)
(
-----------------------------------------------{CMBN 0}
<1 * A>
-----------------------------------------------
)
> (chcm-homology-gen example 1)
(
-----------------------------------------------{CMBN 1}
<1 * AB>
<-1 * AD>
<1 * BC>
<1 * CE>
<-1 * DE>
-----------------------------------------------

-----------------------------------------------{CMBN 1}
<1 * CD>
<-1 * CE>
<1 * DE>
-----------------------------------------------
)

a

b

c

γ1 d

e

a

b

c

γ2

d

e

Figure 1.9: Representation of the generators of H1(K) = 〈γ1〉 ⊕ 〈γ2〉 ∼= Z⊕Z computed in

Kenzo.

The described construction of the chain complex C∗(K) can be simplified by using the

function build-finite-ss. Kenzo provides this function to create finite simplicial sets,

in particular, finite simplicial complexes. Simplicial sets are implemented as an instance of

the class SIMPLICIAL-SET which inherits from CHAIN-COMPLEX. In our example, we

can construct K as a simplicial set in Kenzo as follows:



1.3. Effective homology and Kenzo 31

> (setf example2 (build-finite-ss ’(a b c d e
1 ab (b a) ac (c a)

ad (d a) bc (c b)
cd (d c) ce (e c)
de (e d)

2 abc (bc ac ab))))
Checking the 0-simplices...
Checking the 1-simplices...
Checking the 2-simplices...
[K7 Simplicial-Set]

Observe that build-finite-ss verifies the coherence of the given description of

the faces (for example, regarding above computation, the faces of bc are those in the

list (c b) while the faces of abc are in the list (bc ac ab)). After this verification,

build-finite-ss calls the function build-smst to create an instance of the class

SIMPLICIAL-SET, subclass of the class CHAIN-COMPLEX. So that, it is easy for the

user to obtain the homology groups of example2 (the same of example, of course):

> (homology example2 0 3)
Homology in dimension 0 :
Component Z
---done---
Homology in dimension 1 :
Component Z
Component Z
---done---
Homology in dimension 2 :
---done---

In Kenzo has been implemented the computation of discrete vector fields on chain com-

plexes. Regarding the space example2, the matrices of the differential maps d1 and d2 are

given by

> (setf d1 (chcm-mat example2 1))
> (show d1)
========== MATRIX 5 row(s) + 7 column(s) ==========

-1 -1 -1 0 0 0 0
1 0 0 -1 0 0 0
0 1 0 1 -1 -1 0
0 0 1 0 1 0 -1
0 0 0 0 0 1 1

> (setf d2 (chcm-mat example2 2))
> (show d2)
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========== MATRIX 7 row(s) + 1 column(s) ==========

1
-1
0
1
0
0
0

Then, we can compute two vector fields by using the matrices d1 and d2:

> (m-vf-hard 5 (matrice-to-lmtrx d1))
((0 0) (2 1) (3 2) (4 5))
> (m-vf-hard 7 (matrice-to-lmtrx d2))
((0 0))

Representations of the corresponding vector fields of degrees 1 and 2 are illustrated in

Figure 1.10

a

b

c

d

e

a

b

c

d

e

Figure 1.10: Discrete vector fields of degree 1 (left) and 2 (right) computed on example2
in Kenzo.

Finally, let us consider an example that shows the power of Kenzo in computing homol-

ogy groups of objects of infinite type. The “minimal” simplicial model of the Eilenberg–

MacLane space K(Z, 1) (see [May67]) is defined by K(Z, 1)n = Zn, and it is constructed

in Kenzo as follows:

> (setf kz1 (k-z 1))
[K16 Abelian-Simplicial-Group]

The Kenzo function k-z receives an integer n (in our example, 1) and returns the

Eilenberg–MacLane space K(Z, n). The abelian simplicial group K(Z, 1) has an infinite

number of simplices in every dimension greater than or equal to 1, so that the homology

groups of kz1 cannot be elementarily computed. But the effective homology of this object,

automatically computed by Kenzo and stored in the slot efhm, is an equivalence with the

circle (1-sphere):
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> (efhm kz1)
[K37 Homotopy-Equivalence K16 <= K16 => K31]
> (orgn (k 31))
(CIRCLE)

The Kenzo function k takes a positive integer n as input an returns the n-th object built

in Kenzo. In this way, the homology groups of K(Z, 1) are computable through the finite

equivalent object (k 31):

> (homology kz1 0 3)
Homology in dimension 0 :
Component Z
---done---
Homology in dimension 1 :
Component Z
---done---
Homology in dimension 2 :
---done---





Chapter 2

A new Kenzo module for computing
invariants of finite topological spaces

Despite of the fact that the most important theoretical results that are the seeds of the theory

of finite topological spaces were established several years ago [Ale37], [McC66], [Sto66],

in recent times there has been a constant research activity about the topics involving finite

spaces. Although there are computational implementations of some of the methods working

on finite spaces in order to obtain topological invariants (see [Fer17b], [Ren19]), a lot of

work in this area must be done to enrich and complement the developed functionalities.

In this chapter, we present a new module for the computer algebra system Kenzo for

computing homology groups of finite topological spaces. The chapter is divided in four

parts. In the first one, we introduce the representation of finite T0-spaces and some basic

operations of our new module such as methods of point reductions (elimination of beat point

and weak points) and the construction of barycentric subdivision (some of these operations

are also available in [Fer17b] and [Ren19]). In the second and third parts of the chapter

we focus our attention on the wide class of h-regular finite spaces and we develop new

algorithms which represent constructive versions of results found in [Min12] and [CO17]

in order to compute homology groups and its generators. Up to our knowledge, these new

Kenzo functions are the only available software to determine the homology groups of an

h-regular space without constructing the order complex associated with the poset. Finally, in

the last part of the chapter we study the performance of our methods and we compare them

with those in [Fer17b] and [Ren19].

The work explained in this chapter has been presented in [CR18], [CRLRS18], [CR19a]

and [CRLRS20a]. The programs are available at [CR20] in the folder /h-regular-homology.
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2.1 Representation and basic operations of our new mod-
ule in Kenzo

As seen in Subsection 1.3.3, Kenzo [DRSS99] is a symbolic computation system devoted

to algebraic topology, allowing in particular to work with chain complexes and to compute

homotopy and homology groups of simplicial sets. With our new module presented in this

chapter, we enhance this system with new functionalities allowing the user to work with

finite topological spaces and to compute their homology groups with generators and other

useful information. By choosing this system, we can make use of the available functions

working on matrices, chain complexes and homology groups.

2.1.1 The new class FINITE-SPACE in Kenzo

We have created the class FINITE-SPACE in our new module in Kenzo to work with finite

T0-spaces. This class is defined as follows:

(DEFCLASS FINITE-SPACE ()
((top :type matrice :initarg :top :reader top)
(stong :type matrice :initarg :stong :reader stong)
(heights :type list :initarg :heights :reader heights)
(idnm :type fixnum :initform (incf *idnm-counter*)

:reader idnm)
(orgn :type list :initarg :orgn :reader orgn)))

The instances of this class represent finite T0-spaces whose slots are described as follows:

top (TOPogenous matrix) is a sparse matrix of type matrice (the type for sparse matri-

ces available in Kenzo) representing the topogenous matrix of the finite T0-space. It

must be upper triangular.

stong (STONG matrix) is a sparse matrix of type matrice representing the Stong ma-

trix of the finite T0-space. It must be upper triangular.

heights (HEIGHTS) is the list whose n-th element is a list containing the elements of

the finite T0-space with height equal to n.

idnm (IDentification NuMber) is the identification number as a Kenzo object.

orgn (ORiGiN) is a list with a description of the finite T0-space.

It is imperative to set some of the slots top and stong, but they might not be specified

simultaneously when a space is initialized since, if one of them is not given, it is constructed
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by using the other slot. heights is also an optional slot, which can be fixed after initializa-

tion of the space when it is necessary for specific computations. The slots idnm and orgn
are included in all Kenzo objects.

The elements of a finite T0-space in Kenzo are assumed to be natural numbers ordered

in such a way that the topogenous and Stong matrices are upper triangular. We have imple-

mented some functions for constructing finite T0-spaces by using the class just defined:

build-finite-space top stong heights orgn
The returned value is an instance of type FINITE-SPACE. This is the constructor

function for the class of finite T0-spaces. The slots are introduced by means of key-

words and, as said before, not all of them must be given.

random-finite-space dmns dens
This function constructs a random finite T0-space of cardinality dmns. The parameter

dens allows to control the density of ones in the Stong matrix of the space.

facets-to-finite-space facets
The parameter facets must be a list whose elements (lists) represent the facets of a

simplicial complex K with vertices indexed by natural numbers. Then, this function

returns the FINITE-SPACE representing X (K), the face poset of K.

Some auxiliary functions that allow us to make more flexible the use of the class have

been developed and implemented in Kenzo. They have been included in Appendix.

2.1.1.1 Constructing some finite spaces in Kenzo

Let us show how to represent a finite T0-space in Kenzo. Consider the space X in Fig-

ure 2.1 (a). We must label the elements of the space in such a way that the corresponding

Stong matrix is upper triangular. In this case, a labelling can be made from left to right and

from bottom to top in the Hasse diagram of X as in Figure 2.1 (b).

• • • •

• • •

• •

(a)

•
x1

•
x2

•
x3

•
x4

•x5 •x6 •x7

•x8 •x9

(b)

Figure 2.1: (a) Hasse diagram of a finite T0-space X . (b) A labelling for the elements of X .
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With the labelling chosen for the elements of X , the Stong matrix and the topogenous

matrix are given by

SX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0

1 0 0 0 1 0 0
1 0 0 1 0 0

1 0 0 1 1
1 0 1 1

1 0 1
1 0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, TX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0 1 1
1 0 0 0 0 1 0 1

1 0 0 0 1 0 1
1 0 0 1 0 1

1 0 0 1 1
1 0 1 1

1 0 1
1 0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.1)

Observe that we can use the edges of the Hasse diagram to construct the Stong matrix

in Kenzo by using the function edges-to-stong and constructing the :stong slot of a

FINITE SPACE:

> (setf edges ’((1 5) (2 7) (3 7) (4 7) (5 8)
(5 9) (6 8) (6 9) (7 9)))

> (setf stongmtrx (edges-to-stong 9 edges))
> (setf finspace (build-finite-space :stong stongmtrx

:orgn ’(space)))
[K1 Finite-Space]

The slots :top and :heights were not specified for finspace, but the system fills

them once we call them for the first time. The following auxiliar function, called show,

allows us to plot a matrix representing a finite T0-space.

> (show (top finspace))

========== MATRIX 9 row(s) + 9 column(s) ==========

1 0 0 0 1 0 0 1 1
0 1 0 0 0 0 1 0 1
0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

> (heights finspace)
((1 2 3 4 6) (5 7) (8 9))

Moreover, we have developed functions to obtain the u-basis {UX
x }x∈X and the f-basis

{FX
x }x∈X . These functions are widely used in order to compute homology invariants.



2.1. Representation and basic operations of our new module in Kenzo 39

> (binarymatrice-to-ubasis (top finspace))
#((1) (2) (3) (4) (1 5) (6) (2 3 4 7)

(1 5 6 8) (1 2 3 4 5 6 7 9))
> (binarymatrice-to-fbasis (top finspace))
#((1 5 8 9) (2 7 9) (3 7 9) (4 7 9)

(5 8 9) (6 8 9) (7 9) (8) (9))

In order to integrate our finite topological space module in Kenzo, it is necessary to

establish some links between finite spaces and Kenzo primitive structures. For instance, we

can obtain a finite space from a simplicial complex.

Let us consider the simplicial complex K in Figure 2.2.

1

2

3
|K|

4

5

Figure 2.2: Geometric realization of a simplicial complex K.

The facets of K are the simplices {1, 2, 3}, {1, 4}, {3, 4}, {4, 5}. Therefore, by introduc-

ing these facets as the parameter of the function facets-to-finite-space in Kenzo

we obtain:

> (setf facets ’((1 2 3) (1 4) (3 4) (4 5)))
((1 2 3) (1 4) (3 4) (4 5))
> (setf finspace2 (facets-to-finite-space facets))
[K2 Finite-Space]
> (stong-to-edges (stong finspace2))
((11 12) (10 12) (9 12) (5 11) (4 11) (5 10) (3 10)
(4 9) (3 9) (5 8) (2 8) (3 7) (2 7) (2 6) (1 6))

In this case, finspace2 represents the finite T0-space X (K) in Figure 1.5 (note the

points have been relabeled).

2.1.2 Point reductions

Once we have represented finite T0-spaces in Kenzo, some methods have been implemented

in order to identify beat points and weak points in finite spaces. With these methods, we have
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made functions to compute cores and weak cores (the term weak core refers to a finite T0-

space with no weak points). Some descriptions of the implemented methods and functions

are given in the following lines:

down-beat-point object point &optional list
The parameter object could be either a topogenous matrix of type matrice or a

FINITE-SPACE. The function returns a boolean deciding if point is a down beat

point of the submatrix (or the subspace) of object whose indexes are in list. The

default value of list is the list of all the indexes (or elements) of object.

up-beat-point object point &optional list
The parameter object could be either a topogenous matrix of type matrice or a

FINITE-SPACE. The function returns a boolean deciding if point is an up beat point

of the submatrix (or the subspace) of object whose indexes are in list. The default

value of list is the list of all the indexes (or elements) of object.

beat-point object point &optional list
The parameter object could be either a topogenous matrix of type matrice or a

FINITE-SPACE. The function returns a boolean deciding if point is a beat point of

the submatrix (or the subspace) of object whose indexes are in list. The default value

of list is the list of all the indexes (or elements) of object.

weak-point object point &optional list
The parameter object could be either a topogenous matrix of type matrice or a

FINITE-SPACE. The function returns a boolean deciding if point is a weak point of

the submatrix (or the subspace) of object whose indexes are in list. The default value

of list is the list of all the indexes (or elements) of object.

core-list object &optional list
The parameter object could be either a topogenous matrix of type matrice or a

FINITE-SPACE. The function returns a list of the indexes (or elements) in a core of

the submatrix (or the subspace) of object whose indexes are in list. The default value

of list is the list of all the indexes (or elements) of object.

weakcore-list object &optional list
The parameter object could be either a topogenous matrix of type matrice or a

FINITE-SPACE. The function returns a list of the indexes (or elements) in a weak

core of the submatrix (or the subspace) of object whose indexes are in list. The default

value of list is the list of all the indexes (or elements) of object.

core object &optional list
It returns a FINITE-SPACE representing a core of the submatrix (or the subspace)

of object whose indexes are in list.
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weakcore object &optional list
It returns a FINITE-SPACE representing a weak core of the submatrix (or the sub-

space) of object whose indexes are in list.

2.1.2.1 Computing a core and a weak core of a finite space

Let us show now some examples about how our methods work in particular spaces. Con-

sider the space in Figure 2.1, which we have represented in Kenzo by finspace in Subsec-

tion 2.1.1.1. Observe that a core of finspace is composed by the elements {x5, x6, x8, x9}:

> (core-list finspace)
(5 6 8 9)

Note that the subspace X � {x8} is contractible, since it has a maximum element, there-

fore its cores are one-point spaces:

> (core-list finspace ’(1 2 3 4 5 6 7 9))
(9)

On the other hand, a core of the subspace X � {x7, x9} is homeomorphic to a discrete

space of 4 elements:

> (setf finspace3 (core finspace ’(1 2 3 4 5 6 8)))
[K3 Finite-Space]
> (show (top finspace3))

========== MATRIX 4 row(s) + 4 column(s) ==========

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Now, consider the finite T0-space M in Figure 2.3 (a). We represent it in Kenzo by

constructing finspace4 from the tilded minimal open sets of M i.e. ÛM
x . The auxiliary

function nilpot-1 fills the diagonal entries of a matrix with ones.

> (setf cont ’(() () () (1 2) (1 2) (2 3) (2 3) (1 2 4 5)
(1 2 3 4 6) (1 2 3 5 7) (2 3 6 7)))

> (setf tilded-ubasis (make-array 11
:initial-contents cont))

> (setf topogenous4 (nilpot-1 (ubasis-to-binarymatrice
tilded-ubasis)))

> (setf finspace4 (build-finite-space :top topogenous4
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:orgn ’(space4)))
[K4 Finite-Space]

•
x1

•
x2

•
x3

•x4 •x5 •x6 •x7

•x8 •x9 •x10 •x11

(a) (b)

•
x1

•
x2

•x3•
x4

•x5

•x6 •x7•x8

Figure 2.3: (a) Hasse diagram of the finite T0-space M . (b) Hasse diagram of the finite

T0-space L.

Observe that M is non-contractible since it is a minimal finite space, but it is a collapsi-

ble space (x9 is a weak point of M and M � {x9} is contractible):

> (core finspace4)
[K5 Finite-Space]
> (cardinality (k 5))
11
> (weakcore finspace4)
[K6 Finite-Space]
> (cardinality (k 6))
1

We finish these examples with a comment about the method weakcore. Consider the

finite T0-space L in Figure 2.3 (b) (which we represent by finspace7 in Kenzo). We use

again the function edges-to-stong to construct a finite space from the list of its edges.

> (setf edges7 ’((1 3) (1 4) (2 5) (2 8) (3 6)
(3 7) (4 6) (4 8) (5 6) (5 7)))

> (setf stongmtrx7 (edges-to-stong 8 edges7))
> (setf finspace7 (build-finite-space :stong stongmtrx7

:orgn ’(space7)))
[K7 Finite-Space]

The method weakcore applied on L gives the space in Figure 2.4 (a); this procedure

corresponds to the succesive collapses

L ↘ L� {x3} ↘ L� {x3, x4} ↘ L� {x3, x4, x5}.
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On the other hand, note that x1 is a weak point of L and weakcore applied to L�{x1}
gives the space in Figure 2.4 (b); in this case, the represented collapses are

L ↘ L� {x1} ↘ L� {x1, x5}.

> (weakcore finspace7)
[K8 Finite-Space]
> (cardinality (k 8))
5
> (weakcore finspace7 ’(2 3 4 5 6 7 8))
[K9 Finite-Space]
> (cardinality (k 9))
6

•
x1

•x8 •x6

•
x2

•x7

(a) (b)

•
x4

•x8

•
x2

•x6

•
x3

•x7

Figure 2.4: (a) weakcore of L. (b) weakcore of L� {x1}.

Observe that Theorem 1.35 ensures that two cores of a finite space have the same cardi-

nality, but the same does not occur with respect to weak points, as shown in the construction

of K8 and K9.

2.1.3 Computation of the barycentric subdivision
Given a finite T0-space X , the barycentric subdivision X ′ = X (K(X)) and X have the

same weak homotopy type. We can compute the barycentric subdivision X ′ of a space

X = {x1, . . . , xr} by making use of its topogenous matrix TX . More exactly, if we consider

the nilpotent matrix NT = TX − Ir, where Ir is the identity matrix of order r, we have the

following result (based on ideas in [Shi68]).

Proposition 2.1. [CR16] For each 0 � k � r − 1, the (i, j)-th entry of Nk
T represents the

number of (k + 1)-chains of X with xi as minimum and xj as maximum.

A suitable adaptation of the above result allows us to calculate not only the number of

n-chains but also to compute the corresponding set of n-chains of X from the successive

powers of NT , and therefore we have implemented the method
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bar-subdivision finspace
which makes an instance of FINITE-SPACE where the stong slot is the Stong matrix of

the barycentric subdivision of finspace.

The aforementioned McCord’s Theorem 1.45 establishes that every finite T0-space X is

weak homotopy equivalent to its barycentric subdivision X ′. In particular, the homology

and homotopy groups of X can be computed by using the information given by X ′, since

X
we≈ X . In theory, it is a good way to describe homological and homotopical properties

of X from those of X ′ or from its order complex K(X), taking advantage of geometric

properties. This is the approach taken in [Fer17a] and [Ren19], where the order complex of

a finite T0-space is necessary for computing its homology.

Although Kenzo tools permit to make computations on simplicial complexes (in partic-

ular on K(X)), the exponential growth of this complex, and therefore of X ′, when the size

(number of points or number of edges) of X increases, limits the development of efficient

programs. For this reason, we have decided to develop algorithms working directly on the

space X . In the following sections we present new algorithms which are applied on the

space and are valid for some particular families of finite topological spaces.

2.2 Homology of h-regular spaces
In this section we focus our attention on the particular family of h-regular finite topological

spaces and we present a new algorithm implemented in Kenzo to compute their homology

groups. Our algorithm provides a constructive version of Theorem 2.6, describing in an

explicit way not only the groups but also the homology generators. Let us emphasize that,

up to our knowledge, this new Kenzo function is the only available software to determine the

homology groups of an h-regular space without constructing the order complex associated

with the poset.

We begin this section by presenting some definitions and previous results which will be

necessary for our work.

Definition 2.2. A cellular poset X is a graded poset such that for every x ∈ X , Ûx has

the homology of the sphere in dimension deg(x)− 1, where deg(x) is the degree of x in the

poset. Given a cellular poset X , its cellular chain complex C∗(X) = (Cp(X), dp)p∈Z is

defined in [Min12] by

Cp(X) = Hp(X
p, Xp−1) =

⊕
deg(x)=p

Hp−1(Ûx) (2.2)

where Hk(Y ) denotes the k-reduced homology group of Y and the differential dp : Cp(X) −→
Cp−1(X) is defined as the composition

Hp(X
p, Xp−1)

∂−→ Hp−1(X
p−1)

j−→ Hp−1(X
p−1, Xp−2)

where j is the canonical map induced by the inclusion and ∂ is the connecting morphism of

the long exact sequence for the pair (Xp, Xp−1).
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Note that any graded h-regular poset is cellular. The following result provides a frame-

work to compute the homology of cellular posets.

Theorem 2.3. [Min12, Theorem 3.7] Let X be a cellular poset and let C∗(X) be its cellular
chain complex. Then Hn(C∗(X)) = Hn(X) for all n ∈ N0.

The computation of homology of cellular posets described in Theorem 2.3 was general-

ized in [CO17] in order to be applied to a wider class of spaces by means of the notion of

quasicellular space.

Definition 2.4. A finite T0-space X is quasicellular if there exists an order preserving map

ρ : X −→ N0, called a quasicellular morphism for X , such that

1. The set Dp = {x ∈ X : ρ(x) = p} is an antichain for every p ∈ N0.

2. For every x ∈ X , the reduced homology of Ûx is concentrated in degree ρ(x)− 1.

Note that every cellular space is quasicellular and every h-regular space is quasicellular.

Definition 2.5. Let X be a finite T0-space and let Chn(X) be the set of n-chains of X (chains

of length n). For s ∈ Chn(X), the index of y ∈ s in s is ηy = #(s ∩ Ûy) and the sign of y
in s is defined as sgns(y) = (−1)ηy .

Bearing in mind above definitions, the following result is stated.

Theorem 2.6. [CO17, Corollary 3.15] Let X be a quasicellular space and let ρ be a qua-
sicellular morphism for X . Let Cρ

∗ (X) = (Cρ
p (X), dp)p∈Z be the chain complex defined

by

• Cρ
p (X) =

⊕
x∈Dp

Hp−1(Ûx) for each p ∈ N0 and Cρ
p (X) = 0 for p < 0.

• The group homomorphism dp :
⊕
x∈Dp

Hp−1(Ûx) −→
⊕

y∈Dp−1

Hp−2(Ûy), for each p ∈ N,

is defined by

dp

⎛⎝([ lx∑
i=1

axi s
x
i

])
x∈Dp

⎞⎠ =

⎛⎝⎡⎣∑
x∈Dp

∑
sxi �y

axi sgnsxi
(y)(sxi − {y})

⎤⎦⎞⎠
y∈Dp−1

(2.3)

where for every x ∈ Dp, lx ∈ N and for every i ∈ {1, . . . , lx}, axi ∈ Z and sxi ∈
Chp−1(Ûx).

Then Hn(C
ρ
∗ (X)) = Hn(X) for all n ∈ N0.

Remark 2.7. Note that if X is an h-regular space, the chain complex given in Theorem 2.6

is an ACC (recall Definition 1.59), where each basis βp can be identified with Dp = {x ∈
X : h(x) = p}.
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Consider an h-regular space X = {x1, . . . , xr}. The map h : X −→ N0 such that h(x) is

the height of x in X , is a quasicellular morphism for X , therefore X can be regarded as a qua-

sicellular space. Moreover, by the definition of h-regularity (Definition 1.48), Hp−1(Ûx) ∼= Z

if p = h(x), which means that we have to find only one generator of the (h(x)−1)-homology

group for each Ûx.

In the next lines, we are going to describe an algorithm to construct the chain complex

Cρ
∗ (X) ≡ Ch

∗ (X) of Theorem 2.6, that we have implemented in the Kenzo system. The

key point of the method consists in computing a matricial expression for the differential

dn : Ch
n(X) → Ch

n−1(X) by recursively obtaining the homology generators for the groups

{Hk−1(Ûx) : h(x) = k} (from differentials and homology generators that have been previ-

ously calculated).

While we describe the construction procedure of the chain complex Ch
∗ (X) in the follow-

ing subsections, we will show the construction of this chain complex applied to the h-regular

finite space in Figure 2.5.

•x4 •x5 •x6 •x7 •x8 •x9

•
x1

•
x2

•
x3

•x10 •x11 •x12 •x13

Figure 2.5: Minimal finite model for the projective plane RP2.

2.2.1 Computing Ch
0 (X) and d0

At first, consider the construction of Ch
0 (X). For every xk ∈ X such that h(xk) = 0 we

have Ûk = ∅ and in this case, we will denote the generator of H−1(Ûk) by ∅k. Therefore, if

D0 = {x ∈ X : h(x) = 0} = {xk1 , . . . , xkp0
},

Ch
0 (X) =

p0⊕
i=1

〈∅ki〉

Since Ch
−1(X) = 0, the differential map d0 : C0(X) =

⊕
h(x)=0 H̃−1(Ûx) −→ 0 is

trivial.

In the case of Figure 2.5, the generators correspond to the elements of height 0, so that

we obtain C0(X) = 〈x1〉 ⊕ 〈x2〉 ⊕ 〈x3〉.
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2.2.2 Computing Ch
1 (X) and d1

As a second step, we construct Ch
1 (X). If h(xm) = 1 then, by the h-regular condition,

Ûm has exactly two elements whose indexes we denote by m(1) and m(2) (without loss of

generality, we assume m(1) < m(2)), so that Ûm = {xm(1) , xm(2)}. In this case, the generator

of the reduced homology group in dimension 0 is the (formal) difference {xm(2)}− {xm(1)},

that we denote {xm(2)}m − {xm(1)}m.

Therefore if D1 = {xm1 , . . . , xmp1
},

Ch
1 (X) =

p1⊕
i=1

〈 [
{x

m
(2)
i
}mi

− {x
m

(1)
i
}mi

] 〉
For k = 1, 2, since Û

m
(k)
i

= ∅, then the sign of x
m

(k)
i

in any chain is (−1)0 = 1 and

therefore by formula (2.3), we obtain the following expression for all i = 1, . . . , p1:

d1

(
0, . . . , 0,

[
{x

m
(2)
i
}mi

− {x
m

(1)
i
}mi

]
, 0, . . . , 0

)
= ∅

m
(2)
i

− ∅
m

(1)
i

(2.4)

Then, d1 is a p0 × p1 matrix where for all i = 1, . . . , p1, the (m
(1)
i , i)-entry equals −1

and the (m
(2)
i , i)-entry equals 1; all the other entries are equal to 0.

Regarding the space of Figure 2.5, we have that D1 = {x4, x5, x6, x7, x8, x9} and the

0-th reduced homology groups, direct summands of Ch
1 (X), are given by

H̃0(Û4) = 〈{x2}4 − {x1}4〉 , H̃0(Û5) = 〈{x2}5 − {x1}5〉
H̃0(Û6) = 〈{x3}6 − {x1}6〉 , H̃0(Û7) = 〈{x3}7 − {x1}7〉
H̃0(Û8) = 〈{x3}8 − {x2}8〉 , H̃0(Û9) = 〈{x3}9 − {x2}9〉

•x4 •x5 •x6 •x7 •x8 •x9

•
x1

•
x2

•
x3

•x10 •x11 •x12 •x13

Figure 2.6: {x3}6 − {x1}6 is the generator of the 0-th reduced homology of Û6. Note that,

by using (2.4), d1 (0, 0, {x3}6 − {x1}6, 0, 0, 0) = ∅3 − ∅1.
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Note that if d1 : C1(X) =
⊕

x∈D1
H̃0(Ûx) −→ 〈∅1〉 ⊕ 〈∅2〉 ⊕ 〈∅3〉, by means of the

expresion in (2.4), its matricial representation is

d1 =

⎡⎣ −1 −1 −1 −1 0 0
1 1 0 0 −1 −1
0 0 1 1 1 1

⎤⎦ . (2.5)

2.2.3 Computing Ch
n(X) and dn, for n � 2

Suppose now that we have computed a generator of Hk−1(Ûy) for each point y such that

h(y) = k (for k < n). Now, if we consider xt ∈ X with h(xt) = n, we have to find a

generator of Hn−1(Ût), that we denote by x̂t. Since the height of Ût is n − 1, the chain

complex Ch
∗ (Ût) is

· · · −→ 0 −→ Ch
n−1(Ût)

d∗n−1−−−→ Ch
n−2(Ût) −→ · · ·

where d∗n−1 represents the restriction of dn−1 to Ût.

Then, it suffices to compute a generator of ker(d∗n−1). In this way, we obtain x̂t as a linear

combination of those x̂y such that h(y) = n − 1 and y < xt. If Dn−1 = (yu1 , . . . , yupn−1
),

we extend the coefficients of x̂t to a vector (A1
t , A

2
t , . . . , A

pn−1

t ) where Ai
t = 0 if yui

/∈ Ût.

Now, if Dn = {xt1 , . . . , xtpn},

Ch
n(X) =

pn⊕
j=1

〈x̂tj〉

Regarding to the differential dn : Ch
n(X) → Ch

n−1(X), it is not difficult to deduce from

Theorem 2.6 that

dn(x̂t) = (−1)n−1(A1
t , A

2
t , . . . , A

pn−1

t )

⎛⎜⎝ ŷu1

...

ŷupn−1

⎞⎟⎠
So, the matricial expression of dn is directly given by the expression of the generators of

dimension n − 1. Moreover, the method allows us to describe each generator x̂t as a linear

combination of (n− 1)-chains in Ût.

Turning to the space of Figure 2.5, we have that D2 = {x10, x11, x12, x13}. For example,

in order to find the reduced homology group H̃1(Û10), first we need to compute the kernel

of d1|̂U10
:

ker(d1|̂U10
) = ker

⎡⎣ −1 −1 0
1 0 −1
0 1 1

⎤⎦ = 〈[−1, 1,−1]T 〉
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The vector components of the kernel generator allows us to obtain the generator of the

group H̃1(Û10):

x̂10 = −x̂4 + x̂6 − x̂8 = −({x2}4 − {x1}4) + ({x3}6 − {x1}6)− ({x3}8 − {x2}8)

•x4 •x5 •x6 •x7 •x8 •x9

•
x1

•
x2

•
x3

•x10 •x11 •x12 •x13

Figure 2.7: The generator x̂10 seen as the cycle in the Hasse diagram.

In order to construct the matrix representing the differential map d2, observe that, since

Û10 ∩ D1 = {x4, x6, x8}, the vector generator of the above kernel must be extended to a

vector of dimension #D1 = 6 by completing with zeros the positions corresponding to

x5, x7 and x9 (the elements in D1 � Û10). In this way, we obtain the first column of d2
corresponding to x10. The same process is applied to determine all columns.

d2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 0 0 −1
0 −1 −1 0
1 1 0 0
0 0 1 1

−1 0 −1 0
0 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.6)

2.2.4 Implementation in Kenzo
In this section, we present our new Kenzo functions for computing homology groups of h-

regular spaces and we develop some examples showing how the algorithms described work

on different finite spaces.

2.2.4.1 Implemented functions for computing homology

We have implemented some methods and functions in Kenzo in order to compute the ho-

mology groups and its generators of h-regular finite spaces. These new methods have been

combined with Kenzo tools to compute the homology of chain complexes.
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h-regular-dif finspace
This method takes an h-regular finite space X of type FINITE-SPACE as the input

parameter finspace and returns a list whose n-th element is the matrix of the differen-

tial map dn of the complex Ch
∗ (X).

chcm-h-regular finspace
This function returns a Kenzo CHAIN-COMPLEX representing the complex Ch

∗ (X)
described in above subsections, by using the matrices in the output list of the function

h-regular-dif applied to finspace.

h-regular-homology finspace dim
It computes the homology group of finspace in dimension dim by means of Ch

∗ (X).

h-regular-homology-generators finspace dim
It returns the generators of the homology group (h-regular-homology finspace
dim).

explicit-chcm-h-regular finspace
This function returns a Kenzo CHAIN-COMPLEX representing the complex Ch

∗ (X)
described in above subsections, by using the matrices in the output list of the function

h-regular-dif applied to finspace. In this case, the generators are seen as chains

in the Hasse diagram of the h-regular space.

explicit-h-regular-homology-generators finspace dim
It returns an expression of the generators (h-regular-homology-generators
finspace dim) as linear combinations of edges of the Hasse diagram of the h-regular

space.

Some examples of computations with these functions are explained below.

2.2.4.2 A didactical example

Consider the finite space whose Hasse diagram is shown in Figure 2.8. Note that this space

is h-regular, it has no weak points and it is not the face poset of a regular CW-complex. This

poset, that we have called finite-space, can be represented in Kenzo by defining an

array of lists of the elements covered by each point of the space as follows:

> (setf cont ’(() () () () (1 2) (1 2) (2 3)
(2 4) (2 3) (2 4) (3 4) (3 4)
(5 6) (5 6 7) (5 6 7 8) (7 8 11)
(8 9 12) (9 10 11) (7 10 12)))

> (setf edges (make-array 19 :initial-contents cont))
> (setf finite-space (build-finite-space

:stong (edges-to-stong-mtrx edges)
:orgn ‘(example)))

[K1 Finite-Space]
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•
x1

•
x2

•
x3

•
x4

•x5 •x6 •x7 •x9•x8 •x10 •x11 •x12

•x13 •x14 •x15 •x16 •x17 •x18 •x19

Figure 2.8: Hasse diagram of finite-space.

Let us show two alternatives to compute a chain complex which generates the homology

of finite-space and compare them: the first one is to compute its barycentric subdi-

vision and to apply the methods of above subsections on it (remember that the barycentric

subdivision of a finite space is an h-regular space) and the second one is to apply such meth-

ods directly on finite-space.

Computing the barycentric subdivision

At first, we compute the barycentric subdivision of finite-space, which we call

sd-finite-space in Kenzo, and its chain complex chcm-h-regular:

> (setf sd-finite-space (bar-subdivision finite-space))
[K2 Finite-Space]
> (setf chcm-sd (chcm-h-regular sd-finite-space))
[K3 Chain-Complex]

In this case we have the following number of generators in dimensions 0, 1 and 2:

> (length (basis chcm-sd 0))
19
> (length (basis chcm-sd 1))
58
> (length (basis chcm-sd 2))
42

Applying the methods directly

Since finite-space is an h-regular space we can obtain the chain complex of Theo-

rem 2.6 as follows:

> (setf chcm (chcm-h-regular finite-space))
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[K5 Chain-Complex]

Remember that in this case, the number of generators of dimension p corresponds to the

number of elements of height p in the space (see Figure 2.8):

> (length (basis chcm 0))
4
> (length (basis chcm 1))
8
> (length (basis chcm 2))
7

Then, for example, if we require the generator (of Ch
2 (X) in Theorem 2.6) associated to

the element x16 in Figure 2.8 in terms of chcm we get:

> (fourth (basis chcm 2))
X16

Even more, if we want to know explicitly this generator (in terms of chains in the space),

we require the chain complex explicit-chcm-h-regular to Kenzo in order to obtain

the following expression:

> (setf explicit-chcm (explicit-chcm-h-regular finite-space))
[K7 Chain-Complex]
> (fourth (basis explicit-chcm 2))
----------------------------------------------{CMBN 2}
<1 * (3 11 16)>
<-1 * (4 11 16)>
<-1 * (2 8 16)>
<1 * (4 8 16)>
<1 * (2 7 16)>
<-1 * (3 7 16)>
----------------------------------------------

This is the generator of the homology group H1(Û16), so that the output has to be inter-

preted in the poset as a formal sum of chains:

{x3, x11} − {x4, x11} − {x2, x8}+ {x4, x8}+ {x2, x7} − {x3, x7}.

Observe that each term of the output has the number 16 as last element, representing

the dependence of the above sum to the generator of x16; this is important to be able to

distinguish between, for example, the generators of H0(Û5) and H0(Û6) whose interpretation

as formal sum of chains is {x2} − {x1} in both cases.
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Of course the returned results regarding to homology are the same as those obtained for

the barycentric subdivision sd-finite-space, but in this case we can also compute the

generators of such homology groups and interpret them as formal chains on the space. For

example, the generator of the homology group in dimension 1 is given by:

> (h-regular-homology-generators finite-space 1)
(
----------------------------------------------{CMBN 1}
<1 * X8>
<-1 * X10>
----------------------------------------------
)
> (explicit-h-regular-homology-generators finite-space 1)
(
----------------------------------------------{CMBN 1}
<1 *
----------------------------------------------{CMBN 1}
<-1 * (2 8)>
<1 * (4 8)>
----------------------------------------------
>
<-1 *
----------------------------------------------{CMBN 1}
<-1 * (2 10)>
<1 * (4 10)>
----------------------------------------------
>
----------------------------------------------
)

which represents the cycle −{x2, x8}+ {x4, x8}+ {x2, x10} − {x4, x10} in Figure 2.8.

2.3 Using discrete vector fields on finite topological spaces
Discrete Morse Theory was introduced by Robin Forman in 1998 [For98]. One of the main

goals of this theory is to describe the relation between the singularities (critical points) of

a discrete Morse function and the topology of the object over such function is defined (tri-

angulations of varieties or, more generally, simplicial complexes). As in classical Morse

theory [Mil63], it is of special interest to determine the functions with the least possible

number of critical points, a problem that is closely related to the homology and homotopy of

the triangulation considered. On the other hand, taking into account the combinatorial na-

ture of Discrete Morse Theory, it can be interpreted from the point of view of graph theory
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in terms of matchings on the Hasse diagrams of the face posets of the simplicial complexes

considered.

In [Min12], the Discrete Morse Theory for the class of h-regular posets is introduced,

extending the main results of the theory to this wider class. In this section, we will describe

an algorithm to compute suitable matchings on the Hasse diagrams of h-regular posets in

order to give a constructive version of Theorem 2.10. Then, by using this matching and the

relation with the ACC given in Remark 2.7, we can use the decomposition in Remark 1.68

in order to find a chain complex, depending on the critical points respect to the computed

matching, which allows to obtain the homology of h-regular finite spaces. Implementation

of our algorithms in the Kenzo system and examples of computations by using them will

also be shown.

We begin the section with some definitions and results which will be used in our work.

Definition 2.8. Let X be a poset. An edge (x, y) ∈ E(H(X)) is homologically admissible
if the subposet Ûy − {x} is acyclic. A poset is homologically admissible if all its edges

are homologically admissible.

It can be proved that any homologically admissible poset is cellular. The face poset

X (K) of any regular CW-complex K (in particular, of any finite simplicial complex) is

homologically admissible [Min12, Remarks 2.6 and 3.10].

Definition 2.9. Let X be a finite T0-space and let H(X) be its Hasse diagram. A matching
M on H(X) is a set of edges where no edges share a common vertex. A matching M on

H(X) is a Morse matching provided that the directed graph H(X), modified by reversing

the orientation of the edges in M , is acyclic. M is called homologically admissible if all

its edges are homologically admissible. A point of X is called critical (respect to M ) if it is

not incident to any edge in M .

The following result asserts that the homology of a quasicellular space X coincides with

the homology of a complex Cc
∗(X), obtained by restricting only to those direct summands

of (2.3) corresponding to the set of critical points of a homologically admissible Morse

matching M .

Theorem 2.10. [CO17, Theorem 4.3] Let X be a quasicellular poset and let M be a ho-
mologically admissible Morse matching on H(X). For p ∈ N0, let Ap = {x ∈ Dp :
x is a critical point of X}. Then Hn(C

c
∗(X)) = Hn(X) for all n ∈ N0, where Cc

∗(X) =
(Cc

p(X), d′p)p∈Z is defined by

Cc
p(X) =

⊕
x∈Ap

Hp−1(Ûx) (2.7)

(the differentials d′p can be theoretically defined from those of (2.3)).



2.3. Using discrete vector fields on finite topological spaces 55

2.3.1 Constructing a homologically admissible Morse matching
Note that Theorem 1.69 provides an explicit (algebraic) description of the reduction induced

by an admissible vector field on a chain complex. Now, we are interested in applying this

kind of reduction to our construction of the chain complex Ch
∗ (X) in Theorem 2.6. This will

allow us to obtain a representation in Kenzo of the reduced chain complex Cc
∗(X) defined

in Theorem 2.10. In order to do this, we are going to define the corresponding notion of

homologically admissible Morse matching on a finite T0-space X .

In [RS10], an algorithm is presented for computing an admissible vector field for an

ACC of finite type. This algorithm is based on the idea of vector field for a matrix M , which

can be applied on the differential matrices of the complex.

Definition 2.11. A vector field V for a matrix M with m rows and n columns is a set of

integer pairs {(ai, bi)}i satisfying three conditions:

1. 1 � ai � m and 1 � bi � n.

2. The (ai, bi)-entry of the matrix is ±1.

3. The indexes ai (resp. bi) are pairwise different.

The aforementioned algorithm makes use of the following result: a vector field V is

admissible if and only if there is no loop a1 > a2 > · · · > ak = a1, where > is the partial

order between source cells defined by: a > a′ if and only if a V -path goes from a to a′.
The idea of the algorithm consists in trying to add a new vector to an admissible vec-

tor field already constructed, in such a way the new vector field keeps the admissibility

property. The process starts from the void vector field and, by running the successive rows

of the matrix M in the usual reading order, the algorithm checks if a candidate to vector

keeps admissibility; if this is the case, the vector is added to the vector field and the par-

tial order is uploaded. For example, in [RS10], by using this algorithm, the vector field

VM = {(1, 3), (2, 2), (3, 4), (5, 1)} is obtained for the matrix

M =

⎡⎢⎢⎢⎢⎣
0 0 −1 −1 0

0 −1 0 0 1

0 0 0 1 1
0 −1 1 0 −1

−1 1 −1 0 0

⎤⎥⎥⎥⎥⎦ .

Supposing that M represents the differential map of an ACC in degree p, dp : Cp =
〈g1, . . . , g5〉 → Cp−1 = 〈g′1, . . . , g′5〉, then the computed vector field VM corresponds to

the list {(g′1, g3), (g′2, g2), (g′3, g4), (g′5, g1)}. Computing the reduced chain complex of The-

orem 1.69 and repeating the process for different degrees, new vectors can be added to the

previous list, obtaining an admissible vector field for the corresponding ACC.

Now, we can try to adapt the above procedure to obtain a Morse matching on the Stong

matrix of a finite h-regular T0-space X; we can not do it directly because it is necessary, by
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the definition of a matching, to avoid pairs with repeated components (like (2, 2) in VM ) and

different pairs with components in common (like (1, 3) and (5, 1) in VM ). Therefore, avoid-

ing the problems just mentioned and inspired on the above algorithm, we have developed a

new one which computes a Morse matching directly on the Stong matrix of X .

On the other hand, let (x, y) ∈ E(H(X)). If we verify the contractibility of Ûy − {x},

the edge (x, y) will be homologically admissible (Definition 2.8); since a finite topological

space is contractible if and only if its core reduces to a single point, we can check the

homological admissibility of an edge (x, y) by using the method core applied to Ûy −{x}.

This verification is implemented in the new algorithm in order to check if a candidate to

vector represents a homologically admissible edge.

Remark 2.12. Let us note that, if the edge (x, y) is homologically admissible, then the coef-

ficient of the generator ŷ in x̂ is equal to ±1. Then, the method ensures that a discrete vector

field on the chain complex Ch
∗ (X) is obtained.

2.3.1.1 Example

Let us show how the algorithm for computing a Morse matching is applied to the finite h-

regular T0-space X in Figure 2.5. Note that this space is homologically admissible. The

(upper triangular) Stong matrix of X is

SX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 1 0 0 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 1 0
1 0 0 0 1 1 0 0

1 0 0 0 0 1 1
1 0 1 0 1 0

1 0 1 0 1
1 0 0 0

1 0 0
1 0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The algorithm starts with M = {}, the empty set. We are going to add edges to M in

order to obtain a homologically admissible Morse matching on H(X). We search on the

columns of SX (equivalent to search by row) the first nonzero entry (from top to bottom) not

in the diagonal of the matrix. Note that the first three columns have only nonzero entries on

the diagonal, but in fourth column, the entry (1, 4) is the first 1 found; this entry corresponds

to the edge (x1, x4) which we use to update: M = {(x1, x4)}.

Once we have added to M the edge corresponding to entry (1, 4), we will not search

ones in rows and columns with indexes 1 and 4. In order to remember the used indexes,

we consider the set I = {1, 4}. Moreover, when an edge is put in M , the order of the

involved elements is reversed (following Definition 2.9) and we register such data in the set

R = {x4 < x1}.
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In what follows, a box 1 in SX means that the corresponding edge was already included

in M and a circle 1 means that we are studying if such edge could be part of M or not.

Now, we continue searching in column 5 nonzero entries. Note that entry (1, 5) of SX

can not be considered since 1 ∈ I . This is not the case with the entry (2, 5), whose indexes

do not belong to I .

SX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 1 0 0 0 0 0 0

1 0 1 1 0 0 1 1 0 0 0 0
1 0 0 1 1 1 1 0 0 0 0

1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 1 1 0

1 0 0 0 1 1 0 0
1 0 0 0 0 1 1

1 0 1 0 1 0
1 0 1 0 1

1 0 0 0
1 0 0

1 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

However, if the edge (x2, x5) would be part of M , we would have to reverse its direction

and the relation x5 < x2 would be included in R, but this is not possible since in such case,

we would have a cycle x1 < x5 < x2 < x4 < x1, which contradicts the definition of Morse

matching.

In column 6, the entry (3, 6) has no indexes in I and it does not generate a cycle in the

modified Hasse diagram of X so that we update the sets:

M = {(x1, x4), (x3, x6)} ,

I = {1, 3, 4, 6} ,

R = {x4 < x1, x6 < x3}.

Note that in column 7 there are no available entries, since the indexes of all the nonzero

entries not in the diagonal are in I . In column 8, the entry (2, 8) has no indexes in I , but

if we reverse the direction of such edge, we obtain the cycle x8 < x2 < x4 < x1 < x6 <
x3 < x8. In column 9, the only available entry is (2, 9), but by reversing the direction of the

corresponding edge, we have the cycle x9 < x2 < x4 < x1 < x6 < x3 < x9.

In column 10, entries (4, 10) and (6, 10) have row index in I , but (8, 10) has no indexes

in I and it does not generate a cycle, allowing to update the considered sets:

M = {(x1, x4), (x3, x6), (x8, x10)} ,

I = {1, 3, 4, 6, 8, 10} ,
R = {x4 < x1, x6 < x3, x10 < x8}.

In column 11, the entry (5, 11) allows to update the sets and the same occur with the

entry (7, 12) in column 12:
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M = {(x1, x4), (x3, x6), (x8, x10), (x5, x11), (x7, x12)} ,

I = {1, 3, 4, 5, 6, 7, 8, 10, 11, 12} ,
R = {x4 < x1, x6 < x3, x10 < x8, x11 < x5, x12 < x7}.

(2.8)

Finally, in column 13 the only available entry with no indexes in I is (9, 13).

SX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 1 1 1 0 0 0 0 0 0
1 0 1 1 0 0 1 1 0 0 0 0

1 0 0 1 1 1 1 0 0 0 0
1 0 0 0 0 0 1 0 0 1

1 0 0 0 0 0 1 1 0
1 0 0 0 1 1 0 0

1 0 0 0 0 1 1

1 0 1 0 1 0

1 0 1 0 1

1 0 0 0
1 0 0

1 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that this entry can not be included in the Morse matching, since it would generate

the cycle x13 < x9 < x11 < x5 < x12 < x7 < x13, using the reversed relations in R. At

this point, the algorithm ends the searching, obtaining the homologically admissible Morse

matching M shown in (2.8), which is represented in Figure 2.9.

•x4 •x5 •x6 •x7 •x8 •x9

•
x1

•
x2

•
x3

•x10 •x11 •x12 •x13

Figure 2.9: A Morse matching on the h-regular space of Figure 2.5.

2.3.2 Constructing the chain complex restricted to critical cells
Having constructed a homologically admissible Morse matching on H(X), we use the de-

composition described in Remark 1.68 to write the matrix representing the differential map

dp of the chain complex of Remark 2.7 as follows:
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dp =

βt
p βs

p βc
p

β
t p
−1 dp,1,1 dp,1,2 dp,1,3

β
s p
−1 dp,2,1 dp,2,2 dp,2,3

β
c p
−1 dp,3,1 dp,3,2 dp,3,3

(2.9)

Remark 2.13. Observe that dp,2,1 is a square block. Let us assume that the order of the

elements of the bases βs
p−1 and βt

p is such that the diagonal of dp,2,1 is composed by 1’s and

−1’s (this is justified by 2. in Definition 1.65).

In order to compute d′p in (1.10), we consider the submatrix of dp formed by the blocks

dp,2,1, dp,2,3, dp,3,1 and dp,3,3; then we apply elementary column operations on such a subma-

trix, transforming dp,2,1 to an identity matrix I and modifying the block dp,3,1:

dp,2,1 dp,2,3

dp,3,1 dp,3,3

−→
I dp,2,3

d∗p,3,1 dp,3,3

. (2.10)

Since the operations applied to the block dp,2,1 in order to obtain the identity matrix I cor-

respond to the inverse matrix d−1
p,2,1, one has d∗p,3,1 = dp,3,1d

−1
p,2,1, and applying Theorem 1.64

one obtains d′p = dp,3,3 − dp,3,1d
−1
p,2,1dp,2,3 = dp,3,3 − d∗p,3,1dp,2,3.

Regarding the homologically admissible Morse matching shown in Figure 2.9, the cor-

responding decomposition described in Remark 1.68 is given by

βt
0 = ∅

βs
0 = {x1, x3}

βc
0 = {x2}

βt
1 = {x4, x6}

βs
1 = {x8, x5, x7}

βc
1 = {x9}

βt
2 = {x10, x11, x12}

βs
2 = ∅

βc
2 = {x13}

Note that in βs
1, we have chosen the order x8, x5, x7, which ensures the mentioned

property in Remark 2.13; the natural order x5, x7, x8 allows zero entries in the diagonal of

the block d2,1, the reason why we did not choose it.

Bearing in mind the above decomposition, the matrices d1 and d2 in (2.5) and (2.6) can

be written as in (2.9):

d1 =

⎡⎣ −1 −1 0 −1 −1 0
0 1 1 0 1 1
1 0 −1 1 0 −1

⎤⎦ , d2 =

⎡⎢⎢⎢⎢⎢⎢⎣

−1 0 0 −1
1 1 0 0

−1 0 −1 0
0 −1 −1 0
0 0 1 1
0 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
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The submatrices formed by the blocks d2,1, d2,3, d3,1 and d3,3 of each matrix are the

following:

⎡⎣ −1 −1 0
0 1 1
1 0 −1

⎤⎦ ,

⎡⎢⎢⎣
−1 0 −1 0
0 −1 −1 0
0 0 1 1
0 −1 0 −1

⎤⎥⎥⎦
Performing elementary column operations on above submatrices in order to transform

d2,1 blocks to identity matrices, we obtain:

⎡⎣ 1 0 0
0 1 1

−1 −1 −1

⎤⎦ ,

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 1
0 1 1 −1

⎤⎥⎥⎦
Therefore, by using the relation d′p = dp,3,3 − dp,3,1d

−1
p,2,1dp,2,3, we obtain the differential

maps d′p of the chain complex Cc
∗(X) in Theorem 2.10:

d′1 =
[
−1

]
−
[
−1 −1

] [ 0
1

]
=
[
0
]

d′2 =
[
−1

]
−
[
0 1 1

] ⎡⎣ 0
0
1

⎤⎦ =
[
−2

]
Hence, the chain complex Cc

∗(X)

· · · −→ 0 −→ 〈x̂13〉
[−2]−−→ 〈x̂9〉 −→ 〈x̂2〉 −→ 0 −→ · · ·

allows us to compute the non-trivial homology groups of the h-regular space X in Figure 2.5:

H0(X) ∼= Z and H1(X) ∼= Z/2Z.

2.3.3 Implementation in Kenzo
In this subsection, we present our new Kenzo functions for computing discrete vector fields

on h-regular spaces. Moreover, we use them to compute homology of the same examples

presented in Subsection 2.2.4.2.

2.3.3.1 Implemented functions for working with discrete vector fields and homology

We have designed some functions to compute a homologically admissible Morse matching

on a finite space as well as functions to obtain the homology groups and their generators of

an h-regular finite space in Kenzo. Some descriptions are given in the next lines.
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dvfield finspace
It computes a homologically admissible Morse matching on the finite space finspace.

h-regular-dif-dvf finspace targets sources
This method takes an h-regular finite space X of type FINITE-SPACE as the input

parameter finspace and returns a list whose n-th element is the matrix of the differen-

tial map dn of the complex Cc
∗(X), where the keyword parameters targets and sources

are lists taken from a homologically admissible Morse matching on finspace.

chcm-h-regular-dvf finspace targets sources
The keyword parameters targets and sources are lists representing the sets of targets

and sources of a homologically admissible Morse matching on finspace, respectively.

This function returns a Kenzo CHAIN-COMPLEX representing the complex Cc
∗(X),

by using the matrices in the output list of h-regular-dif-dvf applied to finspace.

h-regular-homology-dvf finspace dvfield dim
In case the parameter dim is given, this function returns the homology group of finspace
in the given dimension dim by means of Cc

∗(X), which is obtained by using dvfield.

Otherwise, all the possibly non-trivial homology groups of finspace are returned by

using the chain complex Cc
∗(X).

h-regular-homology-dvf-generators finspace dvfield dim
This function returns the generators of the homology group given by calling the func-

tion (h-regular-homology-dvf finspace dvfield dim).

2.3.3.2 Didactical example

We consider again the space finite-space of Subsection 2.2.4.2, that is, the finite topo-

logical space in Figure 2.8. Now, we apply the new method for computing the homology

groups by defining a discrete vector field by considering again two alternatives: computing

its barycentric subdivision and applying the methods directly on finite-space.

Computing the barycentric subdivision

Now, computing a homologically admissible Morse matching on sd-finite-space
and its chain complex chcm-h-regular-dvf, we have:

> (setf sd-dvfield (dvfield sd-finite-space))
> (setf chcm-sd-dvf (chcm-h-regular-dvf sd-finite-space

sd-dvfield))
[K9 Chain-Complex]
> (length (basis chcm-sd-dvf 0))
1
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> (length (basis chcm-sd-dvf 1))
1
> (length (basis chcm-sd-dvf 2))
3

Note that there are five critical points respect to the computed admissible vector field,

which represents a considerable reduction of the number of generators of the chain complex

chcm-sd. Regarding to homology, by using the method h-regular-homology-dvf,

we obtain:

> (h-regular-homology-dvf sd-finite-space sd-dvfield 0)
Component Z
> (h-regular-homology-dvf sd-finite-space sd-dvfield 1)
Component Z/2Z
> (h-regular-homology-dvf sd-finite-space sd-dvfield 2)
Component Z
Component Z

Applying the methods directly

We can also apply the reduction explained in Section 2.3 to this space. At first, we

compute a homologically admissible Morse matching on finite-space, which is repre-

sented in Figure 2.10:

> (setf dvfield (dvfield finite-space))
((1 5) (2 7) (4 8) (6 13) (11 16) (9 17) (10 18))

•
x1

•
x2

•
x3

•
x4

•x5 •x6 •x7 •x9•x8 •x10 •x11 •x12

•x13 •x14 •x15 •x16 •x17 •x18 •x19

Figure 2.10: A homologically admissible Morse matching on finite-space.

Let us point out that the verification of the homological admissibility of the edges in

the method dvfield that we have implemented (Subsection 2.3) is not trivial since, even

when for finite spaces that are face posets of regular CW-complexes such verification is not

necessary (because all the edges in that case are homologically admissible), for example in
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finite-space the subspace Û15 − {x8} is not connected, then the edge (x8, x15) is not

homologically admissible and therefore it can not be part of a Morse matching that we are

searching.

The homology groups of finite-space can be computed by using the next com-

mands:

> (h-regular-homology-dvf finite-space dvfield 0)
Component Z
> (h-regular-homology-dvf finite-space dvfield 1)
Component Z/2Z
> (h-regular-homology-dvf finite-space dvfield 2)
Component Z
Component Z

2.4 Performance analysis and comparison with related works
In order to compare the performance of our methods of Subsection 2.1.2 with those found

in [Fer17a], we have generated 20 random spaces for each n (dimension) and d (density) ap-

pearing in Table 2.1, by using the function posets.RandomPoset(n,d).relabel()
of SageMath [Dev20]; the average computing time (in seconds) of the core of each space

in the respective sample of 20 spaces in Kenzo and in SageMath are the values shown in

the table. We have made available our testing examples at [CR20] in the folder /h-regular-

homology/data.

Table 2.2 follows the same procedure as described above but comparing the comput-

ing times given by the function weak core in [Fer17a] with those given by our method

weakcore. At this point, it is important to point out that, unlike the uniqueness (up to

homeomorphism) of the core of a finite space, the compared functions in this table can pro-

vide, in general, different spaces with no weak points (even with different cardinalities as

illustrated in Figure 2.4).

Regarding to compare the computation of homology of h-regular-spaces, we consider

the barycentric subdivision X ′ of random spaces X as input of the function homology
of [Fer17a] and of our method h-regular-homology. It is important to note that our

algorithms allow to take advantage of the h-regular property of these spaces and therefore

we do not need to compute their barycentric subdivisions again. For example, we have

computed the homology of a space of 511 points obtained as the barycentric subdivision of

a random poset of 9 points and density 0.8; such homology computations were performed

in more than 17 hours by using the homology function, while our method did the same

calculation in 15 seconds. In Table 2.3 we summarize some of the obtained results for small

sizes and only for densities 0.2 and 0.4. In [Ren19], a method called betti-of-poset is

defined; its implementation is similar to the function homology of [Fer17a] (both methods

use the order complex of the space).
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Finally, Table 2.4 shows the reductions on the size of different finite T0-spaces when we

compute homologically admissible Morse matchings on them, allowing to observe a better

performance of our method dvfield in comparison with the outputs obtained by using the

function greedy acyclic matching of [Fer17a].

Table 2.1: Average computing time (in seconds) of our method core in Kenzo (highlighted

in bold) v.s. the function core in [Fer17a] on a sample of 20 random finite spaces, for each

pair (n, d) with n = size and d = density.

d

n
100 150 200 250 300 350 400 450 500

0.3
0.051 0.095 0.129 0.202 0.208 0.420 0.461 0.858 0.858
0.381 0.838 1.444 2.292 3.285 4.408 5.801 7.290 9.781

0.4
0.022 0.036 0.057 0.076 0.102 0.150 0.527 0.568 0.684
0.368 0.804 1.476 2.150 3.070 4.135 5.418 6.852 9.129

0.5
0.018 0.034 0.054 0.075 0.112 0.153 0.464 0.609 0.807
0.352 0.767 1.339 2.038 2.924 3.946 5.136 6.538 8.128

0.6
0.018 0.033 0.052 0.078 0.120 0.167 0.500 0.673 0.827
0.343 0.733 1.328 1.980 2.823 3.925 4.918 6.252 7.804

0.7
0.019 0.032 0.055 0.082 0.123 0.178 0.560 0.724 0.998
0.327 0.712 1.215 1.884 2.707 3.739 4.743 6.174 7.460
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Table 2.2: Average computing time (in seconds) of our method weakcore in Kenzo (high-

lighted in bold) v.s. the function weak core in [Fer17a] on a sample of 20 random finite

spaces, for each pair (n, d).

d

n
10 20 30 40 50 60

0.2
0.003 0.010 0.026 0.050 0.118 0.195
0.032 0.397 2.003 6.169 16.056 32.298

0.3
0.003 0.008 0.024 0.042 0.037 0.027
0.053 0.553 1.929 6.650 14.555 27.732

0.4
0.002 0.005 0.010 0.009 0.013 0.013
0.054 0.564 2.010 5.083 12.471 20.516

0.5
0.002 0.004 0.007 0.006 0.008 0.009
0.061 0.446 1.606 4.198 8.640 15.933

0.6
0.001 0.003 0.004 0.006 0.007 0.010
0.051 0.353 1.178 3.169 6.041 11.393

0.7
0.001 0.003 0.004 0.005 0.006 0.009
0.045 0.312 0.906 2.275 4.463 7.609

0.8
0.001 0.002 0.004 0.005 0.006 0.009
0.040 0.254 0.784 1.577 2.856 5.105

Table 2.3: Average computing time (in seconds) of our method h-regular-homology in

Kenzo (highlighted in bold) vs the function homology in [Fer17a] on a sample of barycen-

tric subdivisions of 20 random finite spaces, for each pair (n, d).

d

n
9 10 11 12 13 14

0.2
0.032 0.069 0.156 0.155 0.318 1.230
0.025 0.066 0.946 0.220 4.836 197.137

0.4
0.228 0.740 2.380 3.403 8.314 15.017
0.491 14.247 127.414 184.221 1380.388 2774.636
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Table 2.4: Comparison of the average number of critical points and the average

computation time (in seconds) of a homologically admissible Morse matching given

by our method dvfield (highlighted in bold) v.s. the one given by the function

greedy acyclic matching [Fer17a], applied to the barycentric subdivisions of a sam-

ple of 20 random finite topological spaces for each pair (n, d).

Size n Density d Size X ′ Critical points Computing time

9

0.2 26.8 5.6 2.8 0.003 0.003
0.4 57.0 8.2 2.0 0.011 0.013
0.6 176.9 21.0 1.1 0.111 0.087
0.8 349.6 44.7 1.0 0.437 0.275

10

0.2 36.4 7.4 3.0 0.004 0.005
0.4 101.6 13.4 1.7 0.036 0.035
0.6 264.2 31.8 1.1 0.260 0.191
0.8 627.2 80.6 1.0 1.658 0.870

11

0.2 46.8 7.7 3.0 0.008 0.010
0.4 189.4 23.1 1.5 0.123 0.107
0.6 434.9 54.0 1.3 0.727 0.469
0.8 1057.0 141.2 1.0 5.326 2.420

12

0.2 55.1 9.6 3.4 0.009 0.011
0.4 229.2 29.1 2.5 0.182 0.157
0.6 829.7 107.3 1.0 3.857 1.860
0.8 2039.8 292.6 1.0 21.831 8.464

13

0.2 75.4 11.9 3.0 0.015 0.019
0.4 358.6 46.8 1.6 0.462 0.346
0.6 1432.2 189.6 1.1 11.184 4.857
0.8 3359.0 503.9 1.0 78.325 23.415

14

0.2 110.1 15.4 2.8 0.067 0.053
0.4 501.6 63.0 1.7 1.057 0.676
0.6 2426.0 355.1 1.0 47.102 15.645
0.8 7988.4 1394.6 1.0 864.377 156.399



Chapter 3

h-regularization of finite topological
spaces

In Chapter 2 we have shown some algorithms to compute homotopical invariants of finite

topological spaces and we have developed constructive versions of theoretical results found

in [CO17],[Min12] in order to compute homology groups in the class of h-regular spaces.

Until now in the literature, examples of h-regular spaces are restricted to face posets of h-

regular complexes and regular CW-complexes (in particular, simplicial complexes). Indeed,

homology groups of a finite T0-space X are computed by using algorithms designed to be

applied on simplicial complexes as in [Fer17b], [Ren19], so that the order complex K(X) is

used to find such invariants of X (by Theorem 1.39). Therefore, the barycentric subdivision

X ′ = X (K(X)) is an h-regular space which, in principle, we can take as input of our

algorithms. However, barycentric subdivisions can get quite large, since each n-maximal

chain of the original finite T0-space produces (n+1)! chains in the subdivision. In this way,

it is natural to ask us whether there exist h-regular spaces, other than X ′, weak homotopy

equivalent to X but with a smaller number of elements than X ′ that we can use as input of

our implemented algorithms.

In this chapter, we will show a procedure to h-regularize a finite T0-space X of height at

most 2, i.e. we will describe an algorithmic process to find an h-regular space Xh which is

simple homotopy equivalent to X . The key point of this process will consist of separating

wedges of spheres which come from minimal open sets of the elements having height 2. In

this way, the space Xh will contain more points and edges than X , but it will be smaller

than X ′. Moreover, we give examples of h-regularizations of finite T0-spaces by using our

implementation of the method in the Kenzo system.

The work explained in this chapter has been presented in the conference [CR19b] and

the preprint [CRLRS20b]. The code of the developed Lisp functions is included at [CR20]

in the folder /h-regularization.

67
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3.1 Some properties of h-regular spaces
We need to recall the definition of h-regular spaces (Definition 1.48): a finite T0-space X

is h-regular if Ûx

we≈ Sh(x), for every x ∈ X . In this section we state some results about

h-regular spaces. In particular, h-regular spaces of height 1 are characterized, which is a

useful tool for developing the h-regularization process described in Section 3.3.

Definition 3.1. Let X be a finite T0-space. We say that X is n-h-regular if for n ∈ N, the

subposet X(n) = {x ∈ X : h(x) � n} is h-regular.

The next lemma is a simple consequence of the definitions just mentioned.

Lemma 3.2. Let X be a n-h-regular space for some n ∈ N0 and let A ⊆ X be an open
subset. Then A is n-h-regular. In particular, for all x ∈ X , UX

x and ÛX
x are n-h-regular

spaces.

Proof. Let a ∈ A(n). By hypothesis, ÛX
a

we≈ ShX(a)−1. Observe that, since A is a down-set

(if b ∈ A and c � b then c ∈ A), hA(a) = hX(a), UA
a = UX

a and therefore A(n) is a subspace

of X(n). Then ÛA
a

we≈ ShA(x)−1, hence A is n-h-regular. �

The core of an h-regular space is not h-regular in general. Nevertheless, in spaces of

height 1, the h-regularity property is inherited by its cores.

Lemma 3.3. Let X be an h-regular space of height 1 and let Xc be a core of X . Then Xc is
h-regular.

Proof. Without loss of generality, assume that X is connected (otherwise consider each

connected component independently). If X is contractible there is nothing to proof. Suppose

that X is not contractible and let x ∈ mxl(Xc) ⊆ mxl(X). Since Xc is a subspace of X ,

ÛXc
x = ÛX

x ∩Xc so that #ÛXc
x � #ÛX

x = 2. Since h(x) = 1 then #ÛXc
x � 1, but Xc has

no beat points so that necessarily #ÛXc
x = 2. �

If X is a connected finite T0-space of height 1, |K(X)| is a connected graph so that

X
we≈

q∨
i=1

S1 if and only if X (X) = 1 − q, where X (X) = #X − #E(H(X)) is the Euler

characteristic of X .

Observe the Euler characteristic characterizes the weak homotopy type of a connected

graph. It is possible to characterize the h-regular spaces of height 1 by using this well-known

fact.

Lemma 3.4. Let X be an h-regular connected finite T0-space of height 1. Then

X
we≈

q∨
i=1

S1 if and only if #mnl(X)−#mxl(X) = 1− q.
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Proof. Since X has height 1, #X = #mxl(X) + #mnl(X) and by the h-regular property,

for each z ∈ mxl(X) there are exactly two edges with z as head, hence #E(H(X)) =
2#mxl(X) and therefore X (X) = #mnl(X)−#mxl(X). �

Lemma 3.5. Let X be an h-regular connected finite T0-space of height 1. If Xop is h-
regular then X

we≈ S1. Moreover, the converse is true if X has no beat points, and in this

case Xop hom≈ X .

Proof. If Xop is h-regular, then #E(H(Xop)) = 2#mxl(Xop) and by the h-regularity of X
we have

2#mnl(X) = 2#mxl(Xop) = #E(H(Xop)) = #E(H(X)) = 2#mxl(X),

hence X
we≈ S1 by Lemma 3.4.

Now, suppose that X has no beat points and X
we≈ S1. Consider the following partition

of mnl(X) :

A = {x ∈ mnl(X) : #F̂X
x = 2} , B = {x ∈ mnl(X) : #F̂X

x > 2}.

Since X is h-regular and using Lemma 3.4, #E(H(X)) = 2#mxl(X) = 2#mnl(X). Note

that if B �= ∅ then

#E(H(X)) =
∑

x∈mnl(X)

#F̂X
x =

∑
x∈A

#F̂X
x +

∑
x∈B

#F̂X
x > 2#A+ 2#B = 2#mnl(X),

which is absurd, hence B = ∅ and therefore mnl(X) = A. Since mxl(Xop) = mnl(X),

every x ∈ mxl(Xop) satisfies #F̂X
x = #ÛXop

x = 2 which is equivalent to say that Xop is

h-regular. �

Lemma 3.5 allows us to establish the following definition.

Definition 3.6. A 2m-crown is an h-regular finite model of S1 of height 1 without beat

points whose cardinal is 2m. The Hasse diagram of a 2m-crown looks like in Figure 3.1.

•
u1

•
u2

•
um−1

•
um

•v1 •v2 •
vm−1 •

· · · · · ·

vm

Figure 3.1: Hasse diagram of a 2m-crown.
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Crown spaces are going to play a crucial role in the h-regularization process. Observe

that if a point is deleted from a crown (which is a connected space), the resulting space

continues being connected. More generally, when a point of a crown that is contained in an

h-regular connected finite T0-space Z is deleted from Z, the connectedness is maintained.

Lemma 3.7. Let Z be an h-regular connected finite T0-space of height 1 and let Y be a
2m-crown contained in Z. If x ∈ mxl(Y ) then Z � {x} is connected.

Proof. Since Y is a 2m-crown, without loss of generality we assume that x = v1 (see

Figure 3.1). It is sufficient to show that for any z ∈ Z�{v1} there exists a fence of elements

in Z�{v1} connecting z with u1. Since Z is connected, there exist x1, . . . , xt ∈ Z such that

z = x1 < x2 > · · · < xt−1 > xt = u1. (3.1)

Consider the set L = {k : xk = v1}. If L = ∅, then (3.1) is a fence of elements in

Z � {v1} connecting z and u1; otherwise take l = minL. Observe that by the h-regularity

of Z, necessarily {xl−1, xl+1} = {u1, u2}. Then, by the minimality of l:

• If xl−1 = u1, the fence z = x1 < x2 > · · · < xl−1 = u1 connects z and u1 in Z�{v1}.

• If xl−1 = u2, the fence

z = x1 < x2 > · · · < xl−1

= u2 < v3 > u4 < · · · < vm > um < vm−1 > · · · < v2 > u1

connects z and u1 in Z � {v1}.

Therefore Z � {x} is connected. �

Corollary 3.8. Let X be a 2m-crown and x ∈ X . Then X � {x} is connected.

Proof. If x ∈ mxl(X), the result follows from Lemma 3.7 by taking Z = X and Y = X . If

x ∈ mnl(X), applying Lemma 3.7 for Z = Xop and Y = Xop (this choice is valid because

Xop is h-regular by Lemma 3.5), we obtain that Xop � {x} is connected and therefore

X � {x} is also connected. �

3.2 Glueable pairs
Some of the reductions that can be found in the literature, in order to obtain weak homotopy

equivalent spaces to a given finite T0-space, are contained in the next three definitions.

Definition 3.9. (Section 11.2, [Bar11]) Let X be a finite T0-space of height at most 2 and let

a, b ∈ X be two maximal elements of X such that Ua ∩Ub is contractible. We say that there

is a qc-reduction from X to Y � {a, b} where Y = X ∪ {c} with a < c > b. We say that

X is qc-reducible if we can obtain a space with a maximum by performing qc-reductions

starting from X .
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Definition 3.10. (Definition 3.2.5, [Fer17b]) Let X be a finite T0-space of height at most 2

and let a, b ∈ X be neither maximal nor minimal points such that Ua∩Ub = {∗}. If for every

x ∈ Fa�Fb, Ub∩Ux = {∗}, and for every x ∈ Fb�Fa, Ua∩Ux = {∗}, we say that there is

a middle-reduction from X to the quotient X/{a, b}. We say that X is middle-reducible if

it can be transformed into a connected space with a unique point (of height 1) by performing

middle-reductions.

Definition 3.11. (Definition 3.2.10, [Fer17b]) Let X be a finite T0-space and let e = (a, b)
be an edge in the Hasse diagram H(X), with b a maximal element. If Ub � e is contractible,

we say that there is an edge-reduction from X to X � e.

The above definitions are inspired in Theorem 1.39, a standard tool used to guarantee the

existence of a weak homotopy equivalence between two finite T0-spaces. We have adopted

the term glueable pair to refer to a more general kind of reduction.

Definition 3.12. Let X be a finite T0-space. A subset A = {a, b} ⊂ X is a glueable pair if

it satisfies the following conditions:

1. Ûa ∩ F̂b = ∅ and Ûb ∩ F̂a = ∅.

2. Ux ∪ Ub is homotopically trivial for every x ∈ Fa � Fb and Ua ∪ Ux is homotopically

trivial for every x ∈ Fb � Fa.

Note that if {a, b} is a glueable pair, Ua ∪ Ub is homotopically trivial. In the particular

case when Ua∪Ub is contractible, Ua∩Ub is also contractible as stated in the next Proposition.

Proposition 3.13. [CO18] Let X be a finite T0-space and let a, b ∈ X . Then Ua ∪ Ub is
homotopy equivalent to the non-Hausdorff suspension of Ua ∩ Ub. In particular, if Ua ∩ Ub

is contractible then Ua ∪ Ub is contractible.

The following result shows that the quotient of a space by a glueable pair does not modify

its weak homotopy type.

Proposition 3.14. Let X be a finite T0-space and A = {a, b} ⊂ X a glueable pair. Then
q : X −→ X/A is a weak homotopy equivalence.

Proof. Observe that A = Ua ∪ Ub and A = Fa ∪ Fb, then by condition 1 in Definition 3.12

it is clear that A ∩ A = A. Hence X/A is a finite T0-space by Lemma 1.13. In order to

prove that q : X −→ X/A is a weak homotopy equivalence, it is sufficient to show that

for each x ∈ X , the restricted map q|q−1(Uq(x)) : q
−1(Uq(x)) −→ Uq(x) is a weak homotopy

equivalence (Theorem 1.39). For this purpose we have two cases:

1. If x /∈ A, by Lemma 1.14, Uq(x) = q(Ux). Since x /∈ Fa ∪ Fb then a /∈ Ux and b /∈ Ux,

hence q−1(q(Ux)) = Ux.
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2. If x ∈ A, by Lemma 1.14, Uq(x) = q(Ux ∪A). Note that if x ∈ Fa ∩Fb, Ua ∪Ub ⊆ Ux

then q−1(Uq(x)) = Ux. Observe that q−1(q(Ux ∪ Ub)) = Ux ∪ Ub if x ∈ Fa � Fb and

q−1(q(Ua ∪Ux)) = Ua ∪Ux if x ∈ Fb � Fa. Therefore, for every x ∈ A, q−1(Uq(x)) is

homotopically trivial by condition 2 in Definition 3.12.

In any case, the map q|q−1(Uq(x)) : q
−1(Uq(x)) −→ Uq(x) is a weak homotopy equivalence

for each x ∈ X as we wanted. �

Example 3.15. Figure 3.2 shows how to obtain a weak homotopy equivalent space to X (the

face poset of the boundary of a triangle seen as a simplicial complex) by taking the quotient

by the glueable pair A = {a, b}; after that, we delete A as a beat point of X/A.

X

• •
c

•
a

• •d •b

we≈
•

•

•
c

•d

•A ↘↘

• •
c

• •d

Figure 3.2: Quotient of X by the glueable pair A = {a, b} followed by an elementary strong

collapse.

Corollary 3.16. If X is a finite T0-space and a, b ∈ X satisfy that F̂a = F̂b and Ua ∪ Ub is
homotopically trivial, then X

we≈ X/{a, b}.

Above Corollary is a generalization of the next Proposition.

Proposition 3.17. [CO18] Let X be a finite T0-space and let a and b be maximal elements
of X . If Ua ∪ Ub is homotopically trivial then the quotient map q : X −→ X/{a, b} is a
weak homotopy equivalence.

Some remarks can be derived from Proposition 3.14:

• Suppose that b is a down beat point of X and a = max(Ûb). In particular, (a, b) is an

edge of the Hasse diagram of X hence Ûa ∩ F̂b = ∅ and Ûb ∩ F̂a = ∅. In addition,

Ua∪Ub = Ub is contractible and therefore {a, b} is a glueable pair. A similar argument

works when b is an up beat point of X and a = min(F̂b). It means that elementary

strong collapses in finite T0-spaces can be seen as quotients by glueable pairs.

• If a, b ∈ X are maximal elements, F̂a = ∅ = F̂b, then Proposition 3.14 generalizes

Proposition 3.17. Bearing in mind this fact, edge-reductions can be seen as a sequence

of quotients by some glueable pairs: if b is a maximal element of X and e = (c, b) is an

edge of H(X) such that UX
b � e is contractible (as in Definition 3.11), we consider the

space Y = (X � e) ∪ {a} where (c, a) is an edge of H(Y ) and a is a down beat point
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• •

X

•

• •c •

•b

we≈

• • •

• •c •

•b •a
Y

↘↘

• • •

• •c

X � e

•

•b
e

Figure 3.3: An edge-reduction seen as a quotient by a glueable pair followed by an elemen-

tary strong collapse.

of Y , then the maximal elements {a, b} form a glueable pair of Y since UY
a ∪ UY

b =

{a} ∪ (UX
b � e)↘↘UX

b � e↘↘∗ and therefore X � e↗↗Y
we≈ Y/{a, b} hom≈ X . The

sequence of spaces in Figure 3.3 is an example of this situation.

• Regarding finite spaces of height at most 2, qc-reductions can be seen as quotients by

glueable pairs (by definition) and the same occurs for middle-reductions: if a, b ∈ X
are neither maximal nor minimal points and Ua ∩ Ub = {∗} (as in Definition 3.10),

then can not exist x ∈ X such that a < x < b or b < x < a (in other case a or b is

either maximal or minimal).

Now, we are going to describe the opposite process: instead of gluing a pair (which de-

creases in one point the given space), we add a point (under some conditions). The following

lemma captures this idea and it will be useful in the next sections, where this inverse method
(to that of reduction by taking a quotient by a glueable pair) will be used to modify a finite

space until an h-regular space, which is simple homotopy equivalent to the given one, is

obtained.

Lemma 3.18. Let X be a finite T0-space and a ∈ X . Consider the set Z = X ∪ {b}, where
b /∈ X , and suppose that Z is endowed with a topology satisfying the following properties:

1. F̂X
a = F̂Z

a = F̂Z
b ,

2. ÛX
a = ÛZ

a ∪ ÛZ
b ,

3. For x ∈ X � {a}, UZ
x =

{
UX
x ∪ {b} , x ∈ F̂X

a

UX
x , x /∈ F̂X

a

4. UZ
a ∪ UZ

b is homotopically trivial.

Then Z is weak homotopy equivalent to X . Moreover, if UZ
a ∪ UZ

b is contractible then
Z�↘X .
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Proof. Properties 1 and 4 say that the map q : Z −→ Z/{a, b} is a weak homotopy equiva-

lence (by Corollary 3.16). It is direct to show that, if ι : X ↪→ Z is the inclusion map, the

map qι : X −→ Z/{a, b} is a homeomorphism, which is sufficient to obtain Z
we≈ X .

Now, if UZ
a ∪ UZ

b is contractible, consider a space M = Z ∪ {c} where FM
a = FM

b =

F̂Z
a ∪ {c} and ÛM

c = UZ
a ∪ UZ

b (see Figure 3.4).

•a •b

•• •· · ·· · ·

· · ·· · · · · ·· · ·

(a)

•a •b

•• •· · ·· · ·

· · ·· · · · · ·· · ·
•c

(b)

•b

•• •· · ·· · ·

· · ·· · · · · ·· · ·
•c

(c)

•• •· · ·· · ·

· · ·· · · · · ·· · ·
•c

(d)

Figure 3.4: Illustration of: (a) CZ
a ∪ CZ

b , (b) CM
c , (c) C

M�{a}
c , (d) C

M�{a,b}
c .

Note that c is a weak point of M and a, b are beat points of M . Then Z ↗ M ↘↘M �

{a}↘↘M � {a, b}. Finally, observe that M � {a, b} hom≈ X (the homeomorphism replaces

the label c in M � {a, b} by the label a), then Z�↘X . �

Remark 3.19. Thanks to property 3 in the statement of Lemma 3.18, it is easy to verify that

closures and minimal open sets coincide in X and Z, that is, for each x ∈ X , UZ
x = UX

x and

FZ
x = FX

x .

3.3 h-regularization of finite spaces
In this section, we show an effective method to construct an h-regular space simple homo-

topy equivalent to a given finite T0-space of height at most 2. Along this section, we are

going to illustrate the application of our results on the finite T0-space M in Figure 3.5 (we

will h-regularize the space M ). Note that M is not h-regular since, for example, h(i) = 1

but #Ûi = 3.
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•
a

•
b

•
c

•
d

•
e

•f •g •h •i •j

•k •l •m

Figure 3.5: Hasse diagram of the finite T0-space M .

The process starts modifying the minimal open sets of the elements of height 1. This

procedure does not affect the elements of higher heights, so we adopt the following notation

to emphasize this:

Notation 3.20. If X and Y are finite T0-spaces such that X�X(n) hom≈ Y �Y (n) and X�↘Y
for some n ∈ N, we will write X ≈n Y .

As we have previously established, each element x of height 1 in an h-regular space must

satisfy the condition #Ûx = 2 (the 0-dimensional sphere is a discrete two-element set). The

next lemma allows us to separate the elements of Ûx when #Ûx > 2.

Lemma 3.21. Let X be a finite T0-space and let x ∈ X such that h(x) = 1 and #ÛX
x =

n � 3. Then there exists a finite T0-space Xx such that #ÛXx
x = n− 1 and X ≈1 Xx.

Proof. Let ÛX
x = {u1, . . . , un} ⊆ mnl(X). Consider the space Xx = X ∪ {x′} whose

minimal basis {UXx
z }z∈Xx is given by:

X(1) =
•
u1

•
u2

•
u3

•
un

•x

· · · · · ·

X
(1)
x =

•
u1

•
u2

•
u3

•
un

•x
′

•x

· · · · · ·

, ÛXx
z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{u1, u2} , z = x′

{u2, . . . , un} , z = x

ÛX
z ∪ {x′} , z ∈ F̂X

x

ÛX
z , z /∈ F̂X

x .

By construction, {x, x′} is an antichain of Xx such that

z ∈ F̂Xx
x ⇐⇒ x ∈ ÛXx

z ⇐⇒ z ∈ F̂X
x ,

z ∈ F̂Xx

x′ ⇐⇒ x′ ∈ ÛXx
z ⇐⇒ z ∈ F̂X

x ,



76 Chapter 3. h-regularization of finite topological spaces

therefore F̂X
x = F̂Xx

x = F̂Xx

x′ . Also, by Proposition 3.13, UXx
x ∪UXx

x′ is contractible because

UXx
x ∩ UXx

x′ = {u2} is contractible, hence by Lemma 3.18 we have Xx�↘X . Finally,

observe that Z := X −X(1) equals Xx−X
(1)
x as sets; moreover, for all y ∈ Z, since x′ /∈ Z

then UZ
y = UX

y ∩ Z = UXx
y ∩ Z. Then, the topologies of X and Xx coincide on Z. �

Corollary 3.22. Let X be a finite T0-space and let x ∈ X such that h(x) = 1 and #ÛX
x =

n � 3. Then there exists a finite T0-space Xx such that #ÛXx
x = 2 and X ≈1 Xx.

Proof. By applying Lemma 3.21 succesive times, we can construct a sequence of spaces

X = Xx,n ⊂ Xx,n−1 ⊂ · · · ⊂ Xx,2

such that for each k = 3, . . . , n we have #Û
Xx,k
x = k and Xx,k ≈1 Xx,k−1. Taking Xx =

Xx,2 the result is obtained. �

Above result permits to modify the tilded minimal open set of a point of height 1 in X
not satisfying the h-regular property. Applying this process to each point of height 1, we can

find a 1-h-regular space simple homotopy equivalent to X .

Proposition 3.23. Let X be a connected finite T0-space of height greater than zero, without
beat points. Then there exists a 1-h-regular connected finite T0-space L without beat points
such that X ≈1 L.

Proof. If X is 1-h-regular, take L = X; otherwise there exist v1, . . . , vr ∈ X elements of

height 1 such that #ÛX
vk

= nk � 3 for each k = 1, . . . , r (observe that we have used the

non existence of beat points in X). Applying Corollary 3.22 to X and v1, we obtain a space

X1 such that #ÛX1
v1

= 2 and X ≈1 X1. Succesive applications of that corollary allow us to

construct a sequence of spaces

X = X0 ⊂ X1 ⊂ · · · ⊂ Xr

such that for each k = 1, . . . , r we have #ÛXk
vi

= 2 for all i = 1, . . . , k, Xk has no beat

points (by Remark 3.19) and Xk−1 ≈1 Xk. Taking L = Xr the result is obtained. �
Theorem 3.24. Let X be a finite T0-space without beat points. There exists a 1-h-regular
space L without beat points such that X ≈1 L.

Proof. If X is 1-h-regular, take L = X; otherwise consider X =
⊔m

k=1 Ck where the Ck are

the connected components of X . If h(Ck) = 0, Ck is a single point and we take Lk = Ck; if

h(Ck) � 1, by Proposition 3.23 there exists a 1-h-regular connected finite T0-space without

beat points Lk such that Ck ≈1 Lk. Defining L =
⊔m

k=1 Lk we obtain:

X =
m⊔
k=1

Ck�↘
m⊔
k=1

Lk = L

X −X(1) =
m⊔
k=1

(
Ck − C

(1)
k

)
hom≈

m⊔
k=1

(
Lk − L

(1)
k

)
= L− L(1).

�
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Regarding the space M in Figure 3.5, observe that #Ûi = 3 and #Ûj = 3, therefore we

apply Theorem 3.24 obtaining the 1-h-regular space in Figure 3.6 (we have 1-h-regularized
the space M ).

• • • • •

• • • •i •j

• •l •m

•i
′

•j′

Figure 3.6: 1-h-regularization of M .

Once we have modified a given space so that its elements of height 1 satisfy the h-

regularity property, we have to achieve that for each element x of height 2, the subspace Ûx

to be weak homotopy equivalent to S1. In particular, Ûx must be connected; if it is not the

case, the following result allows us to modify the space in order to solve this local situation.

Proposition 3.25. Let X be a finite T0-space and let x ∈ X with h(x) � 2. Then there
exists a finite T0-space X1 such that ÛX1

x is connected and X ≈1 X1. Moreover for n ∈ N0,
if X is n-h-regular then so is X1.

Proof. If ÛX
x is connected, take X1 = X; otherwise consider ÛX

x =
⊔m

k=1 Ck where Ck

are the connected components of ÛX
x . Since Ck �= ∅ fix any xk ∈ mnl(Ck) for each k =

1, . . . ,m. Consider the T0-space X1 = X∪{v1, . . . , vm−1} whose minimal basis {UX1
z }z∈X1

is defined by:

ÛX1
z =

⎧⎪⎨⎪⎩
{xk, xk+1} , z = vk for k = 1, . . . ,m− 1

ÛX
z ∪ {v1, . . . , vm−1} , z ∈ FX

x

ÛX
z , z /∈ FX

x .

X
(h(x))
1 =

•
xk−1

•
xk

•
xk+1

•
vk−1 •vk

•x
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Observe that for each k = 1, . . . ,m − 1, F̂X1
vk

= FX
x (z ∈ F̂X1

vk
⇐⇒ vk ∈ ÛX1

z ⇐⇒
z ∈ FX

x ). This means that vk is an up beat point of X1 and then X1 ↘↘X . To prove the

connectedness of ÛX1
x it is sufficient to observe that x1 < v1 > x2 < · · · > xm−1 <

vm−1 > xm is a fence in X1 connecting all the Ck. Finally, by construction, X
(0)
1 = X(0),

X − X(1) hom≈ X1 − X
(1)
1 and for n � 1, X

(n)
1 = X(n) ∪ {v1, . . . , vm−1}, h(vk) = 1 and

#ÛX1
vk

= 2, therefore if X is n-h-regular, so is X1. �

Bearing in mind the 1-h-regular space in Figure 3.6, we can use Proposition 3.25 in

order to make Ûl and Ûm connected subspaces by adding the points l′ and m′ as it is shown

in Figure 3.7, so we have obtained a 1-h-regular space with connected tilded minimal open

sets for all the elements of height 2.

• • • • •

• • • • •

•k •l •m

• •• l′ •m′

Figure 3.7: Making Ûl and Ûm connected by adding the points l′ and m′

Then, Proposition 3.25 allows us to assume from now on in this section that the tilded

minimal open sets of elements of height greater than 1 are connected. Now, once we have

1-h-regularized a given space, the subspace Ûx is an h-regular space of height 1, for every

element x of height 2, therefore Ûx is weak homotopy equivalent to a finite wedge of 1-

dimensional spheres by Lemma 3.4. We can separate such 1-spheres in order to satisfy the

(h-regular) condition Ûx

we≈ S1 as it is shown in the next result.

Proposition 3.26. Let X be a 1-h-regular finite T0-space and let x ∈ X such that h(x) = 2.
Suppose ÛX

x

we≈ ∨q
i=1 S

1 for q > 1. Then there exists a 1-h-regular finite T0-space X1 such
that ÛX1

x

we≈ ∨q−1
i=1 S

1 and X ≈2 X1.

Proof. Let #mnl(ÛX
x ) = r and #mxl(ÛX

x ) = R. Observe that R = r + q − 1 > r by

Lemma 3.4. Let M be a core of ÛX
x , then M is connected and M

we≈ ∨q
i=1 S

1. Also, by

Lemmas 3.2 and 3.3, M is h-regular. Note that h(M) = 1, since h(x) = 2. We divide the

proof of the statement in three steps:

STEP 1: Searching a 2s-crown in M . We will show that there exists, for some s > 1,

a 2s-crown {u1, . . . , us, v1, . . . , vs}, where {u1, . . . , us} ⊆ mnl(M) and {v1, . . . , vs} ⊂
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mxl(M).

Take u1 ∈ mnl(M) and v1 ∈ mxl(M) such that u1 < v1. By the h-regularity of M , there

exists u2 ∈ mnl(M) − {u1} such that ÛM
v1

= {u1, u2}. Since M is a core, u2 is not a beat

point of M then there exists v2 ∈ mxl(M)− {v1} such that u2 < v2.

•
u1

•
u2

•v1 •v2

By the h-regularity of M , there exists u3 ∈ mnl(M) − {u2} such that ÛM
v2

= {u2, u3}.

Here we have two cases: if u3 = u1 then {u1, u2, v1, v2} is a 4-crown in M ; otherwise, since

u3 is not a beat point of M , there exists v3 ∈ mxl(M)− {v2} such that u3 < v3:

•
u1

•
u2

•v1 •v2

•
u3

•v3

Continuing with this procedure, suppose that at some point we have found a subspace of

M looking like the Figure 3.8, where 2 < m < r.

•
u1

•
u2

•v1 •v2

· · · · · ·

•
um−1

•
vm−1

•
um

•vm

Figure 3.8: Step m in the construction of a 2s-crown in M .

Then, since M is h-regular, there exists um+1 ∈ mnl(M)− {um} such that um+1 < vm.

If um+1 = uk for some k = 1, . . . ,m − 1 then {uk, uk+1, . . . , um, vk, vk+1, . . . , vm} is

a 2(m − k + 1)-crown in M ; otherwise there exists vm+1 ∈ mxl(M) − {vm} such that

um+1 < vm+1.

This process must finish because the worst case is when m = #mnl(M) in Figure 3.8.

In this case, by the h-regularity of M , there exists necessarily some k < m such that

uk ∈ mnl(M) and uk < vm, obtaining the respective 2(m − k + 1)-crown. Therefore,
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relabeling the points in the found crown if it is necessary, we have obtained a 2s-crown

{u1, . . . , us, v1, . . . , vs}, where r � s > 1, {u1, . . . , us} ⊆ mnl(M) and {v1, . . . , vs} ⊂
mxl(M).

STEP 2: Construction of X1. Bearing in mind STEP 1, we label the rest of minimal

and maximal elements of ÛX
x in such a way that mnl(ÛX

x ) = {u1, . . . , us, us+1, . . . , ur} and

mxl(ÛX
x ) = {v1, . . . , vs, vs+1, . . . , vR}. Consider the space X1 = X ∪ {x′}, with x′ /∈ X ,

whose minimal basis {UX1
z }z∈X1 satisfies:

ÛX1
z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{u1, . . . , us, v1, . . . , vs} , z = x′

{u1, . . . , ur, v2, . . . , vR} , z = x

ÛX
z ∪ {x′} , z ∈ F̂X

x

ÛX
z , z /∈ F̂X

x .

X(2) =

•
u1

•
u2

•
u3

•v1 •v2 •v3 •v4

•x

X
(2)
1 =

•
u1

•
u2

•
u3

•v1 •v2 •v3 •v4

•x
′

•x

By construction of X1, {x, x′} is an antichain of X1 such that:

z ∈ F̂X1
x ⇐⇒ x ∈ ÛX1

z ⇐⇒ z ∈ F̂X
x ,

z ∈ F̂X1

x′ ⇐⇒ x′ ∈ ÛX1
z ⇐⇒ z ∈ F̂X

x ,

hence F̂X
x = F̂X1

x = F̂X1

x′ . Also, by Proposition 3.13, the subposet UX1

x′ ∪UX1
x is contractible

because UX1

x′ ∩ UX1
x = ÛX1

x′ ∩ ÛX1
x = {u1, . . . , us, v2, . . . , vs} is connected by Lemma 3.7

and

#mxl
(
ÛX1

x′ ∩ ÛX1
x

)
= s− 1

= #mnl
(
ÛX1

x′ ∩ ÛX1
x

)
− 1 =⇒ ÛX1

x′ ∩ ÛX1
x

we≈ ∗.

Therefore X1�↘X by Lemma 3.18.

STEP 3: End of the proof. Note that, since ÛX1

x′ = {u1, . . . , us, v1, . . . , vs} is a 2s-

crown, ÛX1

x′
we≈ S1 (by using Lemma 3.4). On the other hand, taking Z = ÛX

x , Y = ÛX1

x′ and

x = v1 in Lemma 3.7, we obtain the conectedness of ÛX1
x = {u1, . . . , ur, v2, . . . , vR} and
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therefore, by Lemma 3.4

#mxl
(
ÛX1
x

)
= R− 1

= (r + q − 1)− 1

= #mnl
(
ÛX1
x

)
+ (q − 1)− 1 =⇒ ÛX1

x

we≈
q−1∨
i=1

S1.

Finally, observe that W := X −X(2) equals X1−X
(2)
1 as sets; moreover, for all y ∈ W ,

since x′ /∈ W then UW
y = UX

y ∩W = UX1
y ∩W , hence the topologies of X and X1 coincide

on W . �

By iterating the method described in Proposition 3.26, the following result is obtained.

Corollary 3.27. Let X be a 1-h-regular finite T0-space and let x ∈ X such that h(x) = 2

and ÛX
x

we≈ ∨q
i=1 S

1 for q > 1. Then there exists a 1-h-regular finite T0-space Xx such that
ÛXx
x

we≈ S1 and X ≈2 Xx.

Proof. By applying Proposition 3.26 succesive times, we can construct a sequence of spaces

X = Xq ⊂ Xq−1 ⊂ · · · ⊂ X1

such that for each k = 1, . . . , q − 1 we have ÛXk
x

we≈ ∨k
i=1 S

1 and Xk+1 ≈2 Xk. Taking

Xx = X1 the result is obtained. �

In case the subspace ÛX
x is contractible, the element x is a weak point and we could

delete it from the space without risk of modifying its weak homotopy type. However, we

want to show a different alternative in order to satisfy ÛXx
x

we≈ S1.

Lemma 3.28. Let X be a 1-h-regular finite T0-space and let x ∈ X such that h(x) = 2 and
ÛX
x is contractible. Then there exists a 1-h-regular finite T0-space Xx such that ÛXx

x

we≈ S1

and X ≈2 Xx.

Proof. Note that, by the h-regularity of ÛX
x , there exist u1, u2, v1 ∈ ÛX

x such that u1, u2 <

v1. On the other hand, by Lemma 3.4, #mxl(ÛX
x ) = #mnl(ÛX

x ) − 1. Consider the space

Xx = X ∪ {v′}, with v′ /∈ X , whose minimal basis {UXx
z }z∈Xx satisfies:

ÛXx
z =

⎧⎪⎨⎪⎩
{u1, u2} , z = v′

ÛX
z ∪ {v′} , z ∈ FX

x

ÛX
z , z /∈ FX

x .
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X(2) =

•
u1

•
u2

•v1

•x

X
(2)
x =

•
u1

•
u2

•v1 •v
′

•x

Observe that z ∈ F̂Xx

v′ ⇐⇒ v′ ∈ ÛXx
z ⇐⇒ z ∈ FX

x , then F̂Xx

v′ = FX
x and hence v′ is

a beat point of Xx. Since ÛX
x is h-regular connected, ÛXx

x is also h-regular connected and

therefore we can apply Lemma 3.4 to obtain:

#mxl(ÛXx
x ) = mxl(ÛX

x ∪ {v′})
= #mxl(ÛX

x ) + 1

= #mnl(ÛX
x )

= #mnl(ÛXx
x ) =⇒ ÛXx

x

we≈ S1.

Finally, observe that W := X−X(2) equals Xx−X
(2)
x as sets; moreover, for all y ∈ W ,

since v′ /∈ W then UW
y = UX

y ∩W = UXx
y ∩W . Then, the topologies of X and Xx coincide

on W . �

Theorem 3.29. Let X be a finite T0-space without beat points. There exists a 2-h-regular
finite T0-space L such that X ≈2 L.

Proof. If X is 2-h-regular, take L = X; otherwise consider M a 1-h-regular finite T0-space

without beat points such that X ≈1 M (by Theorem 3.24).

Let X(2) −X(1) = M (2) −M (1) = {x1, . . . , xm}. For x1, consider the following cases:

• If ÛM
x1

is connected, take M1 = M .

• If ÛM
x1

is not connected, take a 1-h-regular finite T0-space M1 such that ÛM1
x1

is con-

nected and M ≈1 M1 (by Proposition 3.25).

In any case, we have that M ≈1 M1 and ÛM1
x1

is a 1-h-regular connected finite T0-space of

height 1, hence ÛM1
x1

we≈ ∨q
i=1 S

1 for some q ∈ N0.

• If q = 1, ÛM1
x1

we≈ S1 so that we take M1,q = M1.

• If q = 0, by Lemma 3.28, there exists a 1-h-regular finite T0-space M1,q such that

Û
M1,q
x1

we≈ S1 and M1 ≈2 M1,q.

• If q > 1, by Corollary 3.27, there exists a 1-h-regular finite T0-space M1,q such that

Û
M1,q
x1

we≈ S1 and M1 ≈2 M1,q.
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In any case, we have that ÛM1
x1

we≈ S1 and M1 ≈2 M1,q.

By repeating this process for x2, . . . , xm, we obtain a sequence of 1-h-regular finite T0-

spaces

M = M0,q ⊂ M1,q ⊂ · · · ⊂ Mm,q

such that for each k = 0, . . . ,m − 1 we have Û
Mk,q
xi

we≈ S1 for all i = 1, . . . , k and Mk,q ≈2

Mk+1,q. Taking L = Mm,q the result is obtained. �

Corollary 3.30. Let X be a finite T0-space of height at most 2. Then there exists an h-regular
finite T0-space L such that X�↘L.

Proof. Apply Theorem 3.29 to a core of X . �

Continuing with our example, in order to 2-h-regularize the space in Figure 3.7, we

consider the elements of height 2. Note that Ûm has 5 minimal elements and 5 maximal

elements so that by Lemma 3.4, such subspace is weak homotopy equivalent to S1, satis-

fying the h-regular property. On the other hand, Ûk is a finite model of S1 ∨ S1 and Ûl is

contractible. Then, we use Corollary 3.27 and Lemma 3.28 in order to obtain the h-regular

space in Figure 3.9.

• • • • •

• • • • •

•k •l •

• •• •• l′′

•k
′

Figure 3.9: 2-h-regularization of M .

The statement of Corollary 3.30 is not surprising in a theoretical sense because we al-

ready know that the barycentric subdivision X ′ satisfies such characteristics. However, our

construction permits to obtain from X an h-regular space smaller than X ′, so that we can

deal with bigger finite spaces in order to compute homotopical invariants as we will show in

Section 3.4. For example, observe that the space in Figure 3.9 is an h-regular space with 19

elements simple homotopy equivalent to M ; in contrast, the barycentric subdivision of M
has 63 elements.

The method of h-regularization has been completely developed for finite T0-spaces of

height at most 2. The complete process can be done for such spaces thanks to the fact that h-

regular finite models of 1-spheres can be characterized by using Lemma 3.4. Unfortunately,

there is not an analog result on finite models of spheres in greater dimensions. However,
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most of the results that have been shown in this chapter are applicable to minimal finite T0-

spaces with no constraint on their heights. In particular, Theorems 3.24 and 3.29 can be used

as first steps in the search of h-regular spaces weak homotopy equivalent to finite T0-spaces

of height greater than two, as an alternative to the construction of barycentric subdivisions.

3.4 Examples and computations
In Section 3.3 we have shown a procedure to obtain a simple homotopy equivalent h-regular

space to a given one of height at most 2. We have implemented this procedure in Kenzo in

order to be incorporated to our new module devoted to computations on finite topological

spaces. In this section we will show some examples of computations by using the new

functions in Kenzo.

3.4.1 Implemented functions for h-regularization
First of all, we present some of the functions related with the h-regularization process that

we have developed.

separate-segments minimal-finspace point
It returns the FINITE-SPACE Xx given in Corollary 3.22 i.e. it separates the edges

of minimal-finspace whose head is point. The parameter minimal-finspace must be a

FINITE-SPACE without beat points and point must be an element of height 1 such

that #Ûpoint � 3.

1-h-regularization minimal-finspace
This function returns the FINITE-SPACE L given in Theorem 3.24 i.e. the 1-h-

regularization of minimal-finspace. The parameter minimal-finspace must be an in-

stance of FINITE-SPACE without beat points.

Un-connect 1hreg-finspace point
It returns the FINITE-SPACEX1 given in Proposition 3.25 i.e. it makes the subspace

ÛX1
point connected. The parameter 1hreg-finspace must be a 1-h-regular FINITE-SPACE

of height 2 without beat points and point must be an element of height 2.

Un-connected 1hreg-finspace
It returns the FINITE-SPACE X1 given in Proposition 3.25 applied to all the ele-

ments of height 2 i.e. it makes ÛX1
x connected for every x of height 2. The param-

eter 1hreg-finspace must be a 1-h-regular FINITE-SPACE of height 2 without beat

points.

find-crown minimal-finspace
It returns a list of elements which made part of a crown contained in minimal-finspace
(see STEP 1 in the proof of Proposition 3.26). The parameter 1hreg-finspace must be

a 1-h-regular FINITE-SPACE of height 1 without beat points.
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separate-cycles 1hreg-finspace point
It returns the FINITE-SPACE Xx given in Corollary 3.27 i.e. it makes ÛXx

point weak

homotopy equivalent to S1. The parameter 1hreg-finspace must be a 1-h-regular

FINITE-SPACE of height 2 without beat points and point must be an element of

height 2.

2-h-regularization minimal-finspace
This function returns the FINITE-SPACE L given in Theorem 3.29 i.e. the 2-h-

regularization of minimal-finspace. The parameter minimal-finspace must be an in-

stance of FINITE-SPACE without beat points.

For testing our procedure, auxiliary functions to create FINITE-SPACES of height at

most 2 were also implemented:

wedge-spheres num-minimals num-spheres
It returns a topogenous matrix of type matrice representing a finite T0-space X
weak homotopy equivalent to a wedge of num-spheres 1-dimensional spheres, such

that h(X) = 1 and #mnl(X) = num-minimals. The parameters must satisfy the

conditions num-minimals � 2 and num-spheres � 1.

random-2space dimension
This function returns a random minimal FINITE-SPACE of cardinality dimension,

height 2 and without beat points. The parameter dimension must satisfy the condition

dimension � 6.

3.4.2 h-regularizing finite spaces in Kenzo
Consider the finite T0-space in Figure 3.10, which is a space weak homotopy equivalent to

a wedge of two 1-spheres i.e. S1 ∨ S1. We represent it in Kenzo by wedge42. We can

identify a crown in this space by using the function find-crown:

> (setf wedge42 (build-finite-space :top (wedge-spheres 4 2)
:orgn ’(wedge 4 2)))

[K1 Finite-Space]
> (find-crown wedge42)
(7 8 6 5)

The obtained result (7 8 6 5) indicates that the subspace U5 ∪ U6 ∪ U7 ∪ U8 is

an 8-crown contained in wedge42. Now, we consider the non-Hausdorff suspension of

wedge42, which is denoted by nhs-wedge42:

> (setf nhs-wedge42 (non-hausdorff-suspension wedge42))
[K2 Finite-Space]

Note that nhs-wedge42 is 1-h-regular but it is not h-regular: each of the new two

maximal points satisfy Ûx

we≈ S1 ∨S1. Calling the slot :stong for nhs-wedge42 and for

(separate-cycles nhs-wedge42 10) we obtain the Stong matrices, respectively:
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•x9 •x8 •x7 •x6 •x5

•
x1

•
x3

•
x4

•
x2

Figure 3.10: The space wedge42 (an 8-crown contained in wedge42 is highlighted).

SX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 1 1 0 0
1 0 0 1 1 0 0 0 0 0

1 0 1 0 1 0 1 0 0
1 0 0 1 1 0 0 0

1 0 0 0 0 1 1
1 0 0 0 1 1

1 0 0 1 1
1 0 1 1

1 1 1
1 0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, SY =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 1 0 1 1 0 0 0
1 0 0 1 1 0 0 0 0 0 0

1 0 1 0 1 0 1 0 0 0
1 0 0 1 1 0 0 0 0

1 0 0 0 0 1 1 1
1 0 0 0 1 1 1

1 0 0 1 0 1
1 0 1 1 1

1 0 1 1
1 0 0

1 0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The column 10 in SX was separated in the two columns in bold in SY . Note that the

nonzero entries in column 10 of SY correspond to the indexes in the list (find-crown
wedge42), while the nonzero entries in column 11 represent another cycle contained in

wedge42: U5 ∪ U6 ∪ U8 ∪ U9 (this cycle is not a crown, but its core U5 ∪ U6 ∪ U9 is a

6-crown). The same separation can be done to the last column of SY . Above computations

are involved in the process of computing (2-h-regularization nhs-wedge42).

The h-regularization of nhs-wedge42 is shown in Figure 3.11. Note that the cardinal-

ity of the barycentric subdivision nhs-wedge42 is greater than the cardinality of its h-

regularization:

> (2-h-regularization nhs-wedge42)
[K5 Finite-Space]
> (cardinality (k 5))
13
> (bar-subdivision nhs-wedge42)
[K6 Finite-Space]
> (cardinality (k 6))
59

Therefore, we can use the functions described in Subsection 2.2.4.1 to compute the ho-

mology of nhs-wedge42 by using its h-regularization:

> (h-regular-homology (k 5) 0)
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•x9 •x8 •x7 •x6 •x5

•
x1

•
x3

•
x4

•
x2

•x11 •x10 •x13 •x12

Figure 3.11: The h-regularization of nhs-wedge42.

Component Z
> (h-regular-homology (k 5) 1)

> (h-regular-homology (k 5) 2)
Component Z
Component Z

3.4.3 Generating random examples and comparison of the sizes of Xh

and X ′

We have observed in the examples shown along the chapter, concretely the space in Fig-

ure 3.5 in Section 3.3 and the space nhs-wedge42 in Subsection 3.4.2, that the number

of points of our h-regularization method is smaller than the cardinality of the respective

barycentric subdivisions.

By using our implementation of the method in Kenzo, we have tested the h-regularization

of random finite T0-spaces. We have constructed 20 arbitrary finite T0-spaces X without

beat points by using the function random-2space for some dimensions (#X). Then, we

have used the method 2-h-regularization in order to obtain instances of the class

FINITE-SPACE representing the h-regularizations (Xh) of our testing examples; in the

same way, the function bar-subdivision is used to compute the barycentric subdivi-

sions (X ′). Once we have computed those spaces, the average of the cardinalities of the

spaces X , Xh and X ′ are found in order to compare the results obtained. In Table 3.1 we

have summarized this information.

To point out the benefits of the method, we present the following computations. The

h-regularization method can be used to repair some perturbations applied to finite spaces

coming from the simplicial complex world. For example, we have imported in Kenzo the
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Table 3.1: Comparison of the cardinalities of the barycentric subdivision (X ′) and our

method of h-regularization (Xh). In each row, 20 random spaces of size #X and height

2, without beat points, have been computed.

#X Average #Xh Average #X ′ Average % reduction

10 22.30 73.10 69.66
15 67.45 177.75 62.40
20 144.15 325.55 56.11
25 257.50 539.50 53.87
30 435.20 847.20 50.19
35 731.55 1266.75 43.14

data of the facets of a random 2-dimensional simplicial complex with 25 vertices and 751

triangles, picked with probability 0.328, as described in the example “rand2 n25 p0.328”
in [BL17], and we have constructed its face poset K1.

> (setf data_folder "...")
> (setf K1 (import-facets-to-finite-space "rand2_n25_p0.328"))
[K1 Finite-Space]

Then, we have taken a wedge of four copies of this finite T0-space and a random-2space
of 19 elements (a non-h-regular perturbation).

> (setf F2 (random-2space 19))
[K2 Finite-Space]
> (setf W (wedge-at-x1 K1 K1 K1 K1 F2))
[K3 Finite-Space]
> (cardinality (k 3))
4373

As we can observe, the resulting space has 4373 points. Kenzo needed around two

minutes to compute the h-regularization of W and its homology groups, while the barycentric

subdivision of W could not be constructed.

> (time (2-h-regularization W))
Timing the evaluation of (2-H-REGULARIZATION W)

User time = 0:01:04.046
System time = 0.187
Elapsed time = 0:01:04.123
[K4 Finite-Space]

> (time (h-regular-homology-sim (k 4)))
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Timing the evaluation of (H-REGULAR-HOMOLOGY-SIM (K 4))

Homology in dimension 0 : Z
Homology in dimension 1 :
Homology in dimension 2 : Z ˆ 1954
User time = 57.015
System time = 0.078
Elapsed time = 57.257





Chapter 4

Integration of Kenzo and SageMath

The algorithms and methods described in preceding chapters have been implemented in the

Kenzo program. As has been pointed out, this is a powerful software that has obtained some

results which had never been determined before [RS06] and, as far as we know, it is the only

program able to compute homology of infinite structures using effective homology and to

compute algorithmically homotopy groups combining the Whitehead tower method [Whi52]

and the effective homology technique. Despite these capabilities, Kenzo lacks of a friendly

interface and its use demands some knowledge on the Common Lisp programming lan-

guage, which can be considered tedious (indeed, the last official Kenzo release is not fully

compatible with all the Common Lisp dialects). Moreover, there exist additional modules

for computing other algebraic topology structures (for example, the module implementing

discrete vector fields that has been used in Chapter 2), but they are available only in the

personal websites of the authors.

Meanwhile, SageMath [Dev20] is a general purpose computer algebra system. It is one

of the most used programs in both education and research environments, in a wide range

of mathematical branches. It possesses a friendly graphical user interface, based on Jupyter

notebooks, and it is mainly developed in Python.

Then, the integration of these systems is of benefit for both Kenzo and SageMath com-

putations. In fact, there already exists a way to communicate Kenzo and SageMath, but it

is restricted to some particular cases and is based on external Kenzo files which have to be

loaded manually in SageMath (see [Pal20]), hence there is no proper connection between

both systems.

In this chapter, we will describe the current version of an interface between Kenzo and

SageMath that we have developed in a joint work with Jose Divasón and Miguel Marco-

Buzunáriz. Moreover, we will show a new module that we have created for finite topological

spaces in SageMath, allowing to integrate the methods we have described in above chapters,

by means of the developed interface.

The work explained in this chapter has been presented in [CRMBR19] and [CRDMBR19]

(distinguished with the Best Software Demonstration Award) and the preprint [CRDMBR20].

91
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4.1 SageMath
SageMath [Dev20] is a free open-source mathematics software system built on top of nearly

100 open-source packages (such as NumPy, SciPy, matplotlib, Sympy, Maxima, FLINT,

GAP, R), featuring a unified and friendly graphical user interface based on Jupyter note-

books and mainly developed in Python. It was created by William Stein in 2005 with the

mission statement of creating a viable free open source alternative to Magma, Maple, Math-
ematica and Matlab and following the philosophy of building the car instead of reinventing
the wheel, in the sense that it includes many other libraries and systems developed for spe-

cific purposes, and makes them work together under a common abstraction layer. Since its

creation, SageMath has grown to a big international project, with hundreds of collaborators

all around the world, developing new versions released every few months, with bugfixes and

new functionalities.

Almost all areas of mathematics are represented in SageMath, at various levels of sophis-

tication. Symbolic calculus, 2D and 3D graphics, polynomials, graph theory, group theory,

abstract algebra, algebraic topology, combinatorics, cryptography, elliptic curves and mod-

ular forms, numerical mathematics, linear algebra and matrix calculations, are some of the

fields that are included in the scope of SageMath, which also expand into neighboring fields

like Statistics and Physics.

The SageMath development process is carried out by means of an issue tracking system

called Trac. A ticket is the name given for an item on the server, where anyone can post on

the Trac server: to report a bug, to submit new code, to review code which has not been yet

included in SageMath or to suggest some corrections for the documentation.

4.1.1 Algebraic topology in SageMath
SageMath provides some tools for working in algebraic topology. Chain complexes and their

homology as well as computations over objects of finite type, such as simplicial complexes,

Δ-complexes, cubical complexes, simplicial sets and a class of generic cell complexes, are

also available.

4.1.1.1 Chain complexes

The implementation built in SageMath for chain complexes represents a more general notion

than the given in Definition 1.53. A chain complex C∗ = (Ci, di) in SageMath is a sequence

of free R-modules over a conmmutative ring R, indexed by any free abelian group F , and

R-module maps di : Ci −→ Ci+r, for a fixed r ∈ F (called degree of differentials), such

that di+rdi = 0 for all i ∈ F . However, homology calculations in chain complexes will

only work when the ring R is either Z or a field. For this reason, we will consider chain

complexes in SageMath with F = R = Z (then, the Ci’s are free abelian groups) and degree

of differentials r = −1 (as in Definition 1.53).

Let us show some examples of contructions and computations on chain complexes in

SageMath. Consider the oriented simplicial complex K in Figure 4.1 (this is the same com-
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plex in Figure 1.8). We will construct the chain complex C∗(K) which generates the simpli-

cial homology groups of K.

a

b

c

|K|

d

e
K = {[a], [b], [c], [d], [e],

[a, b], [a, c], [a, d],

[b, c], [c, d], [c, e],

[d, e], [a, b, c]}

Figure 4.1: A simplicial complex K and its geometric realization |K|.

In SageMath, there are various admissible types of data to define a chain complex, but

all of them need as inputs the matricial representation of the nonzero differential maps dp.

The matrices representing the nonzero differential maps of C∗(K), as defined by (1.7),

are the following:

d1 =

⎛⎜⎜⎜⎜⎝

[a, b] [a, c] [a, d] [b, c] [c, d] [c, e] [d, e]

[a] −1 −1 −1 0 0 0 0
[b] 1 0 0 −1 0 0 0
[c] 0 1 0 1 −1 −1 0
[d] 0 0 1 0 1 0 −1
[e] 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎠ , d2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

[a, b, c]

[a, b] 1
[a, c] −1
[a, d] 0
[b, c] 1
[c, d] 0
[c, e] 0
[d, e] 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Above matrices can be constructed in SageMath by means of a dictionary whose keys

are the indexes of the non-zero entries:

sage: d1_dict = {(0,0):-1, (1,0):1, (0,1):-1, (2,1):1,
(0,2):-1, (3,2):1, (1,3):-1, (2,3):1,
(2,4):-1, (3,4):1, (2,5):-1, (4,5):1,
(3,6):-1, (4,6):1}

sage: d2_dict = {(0,0):1, (1,0):-1, (3,0):1}
sage: d1 = matrix(5, 7, d1_dict)
sage: d2 = matrix(7, 1, d2_dict)

One way to define a chain complex in SageMath is by means of a dictionary with integers

for keys, and with values the matrices representing the differentials coming from the respec-

tive key (as we pointed out at the beginning of the subsection, the degree of the differentials

must be specified to be −1). In our case, the chain complex is constructed by:

sage: C = ChainComplex({1:d1, 2:d2},
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degree_of_differential=-1); C
Chain complex with at most 3 nonzero terms over Integer Ring
sage: ascii_art(C)

[ 1]
[-1]

[-1 -1 -1 0 0 0 0] [ 0]
[ 1 0 0 -1 0 0 0] [ 1]
[ 0 1 0 1 -1 -1 0] [ 0]
[ 0 0 1 0 1 0 -1] [ 0]
[ 0 0 0 0 0 1 1] [ 0]

0 <-- C_0 <----------------------- C_1 <----- C_2 <-- 0

Note that the base ring was not specified in the definition of C. The system examines the

input matrices to determine a ring over which they are all naturally defined, and this becomes

the base ring for the complex (in our case, the integer ring Z was chosen).

Once a chain complex is created, its homology can be obtained. Then, the simplicial

homology groups of K are given:

sage: C.homology()
{0: Z, 1: Z x Z, 2: 0}

The generators of the non-trivial homology groups (see Figure 4.2), can be computed as

follows:

sage: C.homology(0, generators=True)
[(Z, Chain(0:(0, 1, 0, 0, 0)))]
sage: C.homology(1, generators=True)[0]
(Z, Chain(1:(0, 1, -1, 0, 0, 1, -1)))
sage: C.homology(1, generators=True)[1]
(Z, Chain(1:(0, 0, 0, 0, 1, -1, 1)))

a

b

c

γ1

d

e

a

b

c

γ2

d

e

Figure 4.2: Representation of the generators of H1(K) = 〈γ1〉 ⊕ 〈γ2〉 ∼= Z⊕Z computed in

SageMath.
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4.1.1.2 Finite simplicial complexes

Finite simplicial complexes in SageMath are defined by means of the set of its facets (maxi-

mal faces). This parameter can be specified by either a list, a tuple or a set whose elements

are lists (tuples or sets) of vertices representing the facets, or by a pair (f,X) where X is

the set of points and f is a boolean function that determines if a list of elements from X is a

simplex or not.

Note that the facets of K are [a, b, c], [a, d], [c, d], [c, e] and [d, e]. This can be used as the

input data for constructing K in SageMath:

sage: facets_K = [[’a’,’b’,’c’],[’a’,’d’],[’c’,’d’],
[’c’,’e’],[’d’,’e’]]

sage: K = SimplicialComplex(facets_K); K
Simplicial complex with vertex set (’a’, ’b’, ’c’, ’d’, ’e’)
and 5 facets

The homology method for simplicial complexes computes the reduced homology. Ap-

plying this to K we obtain:

sage: K.homology(0)
0
sage: K.homology(1)
Z x Z
sage: K.homology(2)
0

Apart from this direct construction method, Sage provides some constructions that can

be used to build new simplicial complexes from a previously constructed one (Alexander

dual, barycentric subdivision, stellar subdivision, cone, suspension), or from various sim-

plicial complexes (connected sum, disjoint union, join, wedge, cartesian product). More-

over, the face poset of a simplicial complex can be constructed as an instance of the class

FinitePoset:

sage: K.face_poset().show()
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4.2 The SageMath-Kenzo interface

This section is divided in two parts. In the first one, we show the interface which has been

developed to communicate Kenzo and SageMath. This interface allows to transform topo-

logical data structures from one system to the other one. In the second part, we present the

integration of Kenzo into a particular (already existing) SageMath module. This integration

allows that Kenzo calculations can be carried out from Sage in a more easy way.

4.2.1 Communication between SageMath and Kenzo and new classes
in SageMath

In this section we present the (optional) package to install Kenzo within SageMath and the

basics of the interface that connects both systems. This connection is made via the library

interface to Embeddable Common Lisp (ECL) in SageMath.

Our Kenzo package for SageMath is based on the Kenzo version by Heber [Heb19],

which is an adapted version of the original Kenzo, but including improvements to make it

compatible with any Common Lisp system. We make it easy to install our Kenzo optional

package in SageMath, simply by running:

sage -i kenzo
This command will download the source code of a suitable version of Kenzo that we

maintain for this specific purpose [MB15], it will compile this code inside the ECL inter-

preter that SageMath includes, and it will install Kenzo. In fact, this can be an easy way to

install Kenzo even if we just plan to use it as a standalone program. More concretely, we

can use Kenzo with an ECL session via the command sage -ecl. This way, we could use

Kenzo as usual, i.e., by means of Lisp commands.

This Kenzo optional package can also be used within a SageMath session via two main

functions: EclObject, which takes a Python object and tries to find a Lisp representation

for it, and ecl eval, a function that evaluates a string in Lisp and returns the result. For

instance, the following commands load Kenzo and define the Eilenberg–MacLane space

K(Z, 3) by means of Lisp commands evaluated with ecl eval in a SageMath session.

sage: from sage.libs.ecl import ecl_eval
sage: ecl_eval("(require :kenzo)")
sage: ecl_eval("(in-package #:cat)")
sage: ecl_eval("(setf K (k-z 3))")
<ECL: [K25 Abelian-Simplicial-Group]>

In the previous example, the execution is carried out in Kenzo via the ECL library, but

there is no proper connection to SageMath classes. In addition, this embedding of Kenzo

within SageMath does not ease its use. In fact, the same Lisp syntax and Kenzo specific

commands must be used.

Thus, it is therefore appropriate to develop an interface to communicate both systems,

in such a way that both systems can collaborate together in computations. The interface we
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have designed has been implemented in Python. The corresponding file has been included

in the SageMath distribution. A ticket in Trac was created to this purpose:

https://trac.sagemath.org/ticket/27880

This interface automatically loads Kenzo inside the ECL library, which is itself loaded

as a C-library in SageMath. This way, the communication between both systems is done

via a C-library interface, which has a much lower overhead than other alternatives, such as

pseudo-terminals or temporary files. Moreover, the interface provides functions to create

Kenzo objects, and wrappers around them that allow to create new objects (with the corre-

sponding wrapper) and call functions on them. When it makes sense, the output of those

functions is converted to the corresponding SageMath object. The initial version of the in-

terface was available in the SageMath distribution from version 8.7, including some basic

functionalities. In particular, the interface exposes functions to create spheres, Eilenberg–

MacLane spaces and Moore spaces. From these spaces, it allows the construction of carte-

sian products, classifying spaces, loop spaces, suspensions and tensor products. In addition,

for each resulting space, the homology method can construct the corresponding homology

groups.

From SageMath version 9.2, a second version of the package and the interface has been

enhanced by adding some new functionalities. For instance, we have included some existing

external modules of Kenzo that allow computing homotopy groups of 1-reduced simplicial

sets (by using the Whitehead tower method) and some spectral sequences. In addition, we

have developed methods for translating objects such as chain complexes, chain complex

morphisms and simplicial sets both from SageMath to Kenzo and vice versa. In this way,

we can build simplicial objects in SageMath, translate them into Kenzo and compute their

homology and homotopy groups. This second version also updates the Kenzo package to

fix bugs detected in an external module, to include a new algorithm to compute homotopy

groups of not 1-reduced simplicial sets and other features.

We provide a website which allows the user to carry out online executions of commands

and explore the obtained outputs.

https://mybinder.org/v2/gh/jodivaso/examples-sage-kenzo/
master?filepath=examples.ipynb

The interface loads Kenzo and disables the standard output. It defines new classes and

methods which contain wrappers of the Kenzo ones. By means of Python commands (and

calls to the EclObject and ecl eval operators) it computes in Kenzo and provides the

ouput as SageMath objects in a transparent way to the user.

The main class is KenzoObject, which inherits from SageObject, and is a wrapper

to a Kenzo object (which is an ECL object). The other classes provide specific methods

for each type of object (some of them are incorporated to connect the interface to Kenzo

external modules). For instance, the KenzoSimplicialSet class possesses a method

homotopy group, which computes the n-th homotopy group of the simplicial set (via a
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call to the corresponding function in a Kenzo external package). The result of the method

is an object of the AbelianGroup class, which is part of SageMath. Then, the user could

invoke any operation provided by the AbelianGroup class over such an object.

It is worth distinguishing between two types of mathematical objects. On the one hand,

there are objects (which are necessarily finite) that can be represented in both SageMath and

Kenzo. Thus, they can be translated from SageMath to Kenzo and vice versa.

For some of these objects which are available in both Kenzo and SageMath, both systems

use the same representation and then the translation between them is easy. This is the case of

simplicial sets: an object of the SageMath class SimplicialSet can be translated to the

wrapper class KenzoSimplicialSet defined in the interface via a conversion function

called KFiniteSimplicialSet. Nevertheless, there are other structures such as chain

complexes for which the representations in SageMath and Kenzo are different. As we have

explained in Subsection 4.1.1.1, SageMath can construct a finite chain complex by means

of either a dictionary with the differential matrices indexed by the elements of the grading

group or, if the grading group is Z, just a list of matrices. However, the Kenzo represen-

tation of a finite chain complex consists of a function that provides a list of generators for

each degree and the differential maps described also as a function, as explained in Subsec-

tion 1.3.3.1. Thus, both representations share the same information (they represent the same

finite chain complex), but in different format; then, we must provide a conversion function.

When dealing with this case of different representations, our choice has been to implement

the major part of the conversion in Lisp. This permits us to keep the interface as simple as

possible and the connection is made via basic data types (integers, strings, lists, etc). This

choice means that the development of the interface has required to code in both SageMath

and Kenzo. In the case of finite chain complexes, we have implemented in Kenzo a func-

tion to construct a finite chain complex from a dictionary whose values are the differential

matrices, i.e., following the same representation as SageMath uses. Then, the interface just

presents KChainComplex as a wrapper to such a function.

Let us show the construction in SageMath of a chain complex from a dictionary {0 : m},

where m is the matrix

[
1 0
0 0

]
.

sage: from sage.interfaces.kenzo import KChainComplex
sage: m = matrix(ZZ, 2, 2, [1, 0, 0, 0])
sage: sage_chcm = ChainComplex({0: m},

degree_of_differential = -1)
sage: sage_chcm
Chain complex with at most 2 nonzero terms over Integer Ring
sage: type(sage_chcm)
<class ’sage.homology.chain_complex

.ChainComplex_class_with_category’>

Now, we compute the corresponding Kenzo object.

sage: kenzo_chcm = KChainComplex(sage_chcm)
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sage: kenzo_chcm
[K37 Chain-Complex]
sage: type(kenzo_chcm)
<class ’sage.interfaces.kenzo.KenzoChainComplex’>

On the other hand, there are objects that are of infinite nature, and thus only Kenzo is

able to represent them. In this case, the object that represents an infinite space is directly

created in SageMath as a wrapper of the corresponding Kenzo object.

For instance, we have defined a function which returns the Eilenberg–MacLane space

K(π, n) as a Kenzo simplicial group, being π a cyclic group. To do that, we first define in

the interface the corresponding ECL objects for K(Z, n), K(Z/2Z, n) and K(Z/pZ, n).

__k_z__ = EclObject("k-z")
__k_z2__ = EclObject("k-z2")
__k_zp__ = EclObject("k-zp")

Then, those functions are used in the implementation of the wrapper function, which

returns an object which belongs to the class KenzoSimplicialGroup. That is, the

implementation in SageMath internally calls the functions in Kenzo.

def EilenbergMacLaneSpace(G, n):
if G == ZZ:

kenzospace = __k_z__(n)
return KenzoSimplicialGroup(kenzospace)

elif G == AdditiveAbelianGroup([2]):
kenzospace = __k_z2__(n)
return KenzoSimplicialGroup(kenzospace)

elif G in CommutativeAdditiveGroups() and G.is_cyclic():
kenzospace = __k_zp__(G.cardinality(), n)
return KenzoSimplicialGroup(kenzospace)

else:
raise NotImplementedError("...")

Let us note again that we have had to develop code for SageMath (the interface, the

wrapper functions), but also for Kenzo. New functions have been added and some existing

ones have been adapted in order to make the output compatible with the interface and Sage-

Math. For example, we have created functions in Kenzo to create finite simplicial sets from

the corresponding SageMath objects:

sage: from sage.interfaces.kenzo import KFiniteSimplicialSet
sage: CP3 = simplicial_sets.ComplexProjectiveSpace(3); CP3
CPˆ3
sage: KCP3 = KFiniteSimplicialSet(CP3); KCP3
[K39 Simplicial-Set]

Finally, let us present an example of execution in SageMath via Kenzo involving infinite

structures. As we have already said, some direct computations of the interface of Kenzo in

SageMath includes the construction of different algebraic and topological objects which are
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available in Kenzo such as spheres, Eilenberg–MacLane spaces, cartesian products, tensor

products or loop spaces. Although some of them can also be constructed in SageMath,

Kenzo makes it possible to work with elements of infinite nature so that it is interesting to

include these functions in SageMath. For example, we can construct the cartesian product of

the Eilenberg–MacLane space K(Z/2Z, 2) and the loop space of the sphere S3 and compute

its homology groups as follows:

sage: from sage.interfaces.kenzo import EilenbergMacLaneSpace
sage: from sage.interfaces.kenzo import Sphere
sage: E = EilenbergMacLaneSpace(AdditiveAbelianGroup([2]), 2)
sage: S3 = Sphere(3)
sage: L = S3.loop_space()
sage: X = E.cartesian_product(L)
sage: [X.homology(i) for i in range(8)]
[Z, 0, Z x C2, 0, Z x C2 x C4, C2, Z x C2 x C2 x C4, C2 x C2]

Let us remark that the loop space of S3 is not of finite type and then the space X is also of

infinite nature. Moreover, the loop space constructor is not available in SageMath. Kenzo is

able to compute the homology groups of our space X using the effective homology technique

explained in Subsection 1.3.2.

4.2.2 Participation in Google Summer of Code 2020
Google Summer of Code (GSoC) is a global program focused on introducing students to

open source software development. Students work on a 10 week programming project with

an open source organization and they are paired with a mentor from the participating orga-

nizations.

In the GSoC 2020, SageMath was selected as one of the open source organizations and

we participated in the project Integration of Kenzo program with SimplicialSets. Our

proposal consisted in improving the interface between the Kenzo Program and SageMath,

whose initial version was worked in ticket https://trac.sagemath.org/ticket/
27880 (described in Subsection 4.2.1). Specifically, our purpose was to combine the func-

tions and techniques of algebraic topology for simplicial sets developed in Kenzo and those

existing in the module SimplicialSets of SageMath, in order to complement and enrich

the functionalities for computing invariants of simplicial sets.

We created the ticket

https://trac.sagemath.org/ticket/29879

for the development of the project.

The following items show some descriptions and examples of the changes made on the

Kenzo and SageMath files:
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kenzo.py

This is the file where the wrapping functions are defined and implemented for Kenzo

objects. The initial version of this file corresponds to the interface presented in the

previous subsection. The most important changes to this file are summarized in the

next lines.

• The building blocks for simplicial sets are abstract simplices. These objects are

implemented in Kenzo as a special type ABSM. We considered important to create

a class KenzoAbstractSimplex as a wrapper for this type of Kenzo objects.

Different methods were implemented for this class: the non-degenerate part, the

list of degeneracy operators applied to it (if they exist) and the cartesian product

with other abstract simplices.

• In Kenzo, the non-degenerate simplices of a cartesian product of simplicial sets

are represented internally by an object of type CRPR. In order to wrap this ob-

jects, the class KenzoCRPRSimplex was created and a method to return the

factors that generate the abstract simplex in the cartesian product was imple-

mented.

• Combinations in Kenzo are objects of type CMBN representing a sum of terms in

a chain complex. The class KenzoCombination was implemented to wrap

these objects and methods wrapping Kenzo functions dealing with combinations

were also created: the opposite of a combination, the sum, substraction and scalar

multiplication. The function Kenzocmbn was implemented in order to create

an instance of KenzoCombination from an ECL object representing a com-

bination.

• In the class KenzoChainComplexMorphismwe have added methods for the

opposite of a morphism, the sum, substraction, composition and scalar multipli-

cation of morphisms.

• Also, we have created the class KenzoSimplicialSetMorphism to wrap

simplicial set morphisms in Kenzo. Methods for computing the cone, the sus-

pension and the pushout of simplicial set morphisms have been created to deal

with these objects. The function KSimplicialSetMorphism was imple-

mented to create a KenzoSimplicialSetMorphism from an instance of

SimplicialSetMorphism in SageMath.

• The functions Kenzo from IdNumber and IdNumber were implemented in

order to use the slot :idnm in some Kenzo objects (like simplicial sets, chain

complexes, morphisms, spectral sequences...) to identify and recover the respec-

tive object in Kenzo. Also, the method orgn was implemented in classes were

the Kenzo objects have :orgn slot.
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sage-interface.lisp

In this Common Lisp file, the Kenzo functions are implemented in order to be imported

in kenzo.py.

• In order to provide the slot :intr-dffr of the KenzoSimplicialSet in

SageMath obtained by applying the function KChainComplex (in kenzo.py)

to a ChainComplex in SageMath, the function KDFFR was implemented.

• The function KINTR was added to provide the slot :intr of the instance of

KenzoChainComplexMorphism in SageMath that is obtained by applying

the function KMorphismChainComplex (in kenzo.py) to an instance ob-

ject of the class ChainComplexMorphism in SageMath. In a similar way,

the function KSINTR was added to provide the slot :sintr of the instance of

KenzoSimplicialMorphism in SageMath obtained by applying the func-

tion KSimplicialSetMorphism (in kenzo.py) to an instance object of

SimplicialSetMorphism in SageMath.

All the functions and methods created in kenzo.py and sage-interface.lisp,

provide a better communication between SageMath and Kenzo. In addition, we have added

the attribute kenzo repr to a wide variety of classes and constructors of simplicial sets

and chain complexes developed by other authors in SageMath. This attribute permits to

assign (whenever it is possible) to each object S in such classes, an equivalent object in

the Kenzo system (an ECL object S. kenzo repr), which is automatically constructed

when S is created, allowing to integrate both systems in a better way and to use Kenzo

functionalities directly as methods of Sage objects. In order to build these objects, we use

the functions defined in the file kenzo.py.

Let us describe and show some examples of computations involving kenzo repr.

chain complex.py

The kenzo repr attribute was added to ChainComplex class, developed by

J. Palmieri: when a ChainComplex in SageMath has Z as grading group and the de-

gree of differentials is -1, its Kenzo representation is constructed (these are restrictions

given by the Kenzo system). For example,

sage: m1 = matrix(ZZ, 3, 2, [-1, 1, 3, -4, 5, 6])
sage: m4 = matrix(ZZ, 2, 2, [1, 2, 3, 6])
sage: m5 = matrix(ZZ, 2, 3, [2, 2, 2, -1, -1, -1])
sage: C = ChainComplex({1: m1, 4: m4, 5: m5},

degree_of_differential = -1)
sage: KC = C._kenzo_repr; KC
[K1 Chain-Complex]
sage: type(KC)
<class ’sage.interfaces.kenzo.KenzoChainComplex’>
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In case the differential maps of a ChainComplex do not have degree -1, the attribute

kenzo repr is not assigned:

sage: m = matrix(ZZ, 2, 3, [3, 0, 0, 0, 0, 0])
sage: D = ChainComplex({0: m})
sage: hasattr(D, ’_kenzo_repr’)
False
sage: hasattr(D.dual(), ’_kenzo_repr’)
True

chain complex morphism.py

The kenzo repr attribute was added to the class ChainComplexMorphism: if

the source complex and the target complex have kenzo repr attributes, the Kenzo

representation of the morphism is constructed.

Different operations between ChainComplexMorphisms have Kenzo representa-

tions: the opposite of a morphism, sum of morphisms, composition of morphisms,

multiplication by an integer number, substraction of morphisms. All of these oper-

ations have kenzo repr attributes whenever the involved morphisms have Kenzo

representations.

Observe that simplicial complexes.Sphere(2) has a kenzo repr attribute.

If we define the following ChainComplexMorphism:

sage: S = simplicial_complexes.Sphere(2)
sage: H = Hom(S,S)
sage: i = H.identity()
sage: x = i.associated_chain_complex_morphism()
sage: w = -x
sage: z = x + x

we can call their corresponding Kenzo representations:

sage: Kx = x._kenzo_repr; Kx
[K7 Morphism (degree 0): K5 -> K5]
sage: Kw = w._kenzo_repr; Kw
[K9 Morphism (degree 0): K5 -> K5]
sage: Kz = z._kenzo_repr; Kz
[K11 Morphism (degree 0): K5 -> K5]

Since w is the opposite of x in SageMath, it implies that Kw is the opposite morphism

of Kx in Kenzo:

sage: Kw.orgn()
’(OPPS [K7 Morphism (degree 0): K5 -> K5])’

In the same way, note that in SageMath, z is the sum of x with itself. Then, Kz is

automatically interpreted in Kenzo as the sum of the morphism Kx with itself:
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sage: Kz.orgn()
’(2MRPH-ADD [K7 Morphism (degree 0): K5 -> K5]

[K7 Morphism (degree 0): K5 -> K5]
:CMBN)’

simplicial set.py

The kenzo repr attribute was added to AbstractSimplex class (for this,

the implementation of the class KenzoAbstractSimplex in kenzo.pywas nec-

essary). Different methods of this class have their respective Kenzo representations,

for example, the list of degeneracies and the nondegenerate part of an abstract simplex:

sage: from sage.homology.simplicial_set \
import AbstractSimplex

sage: v = AbstractSimplex(3, (0,1,3), name = ’v’)
sage: Kv = v._kenzo_repr; Kv
<AbSm 5-2-0 S8763998853024>
sage: Kv.degeneracies()
[5, 2, 0]
sage: Kv.degeneracies() == v.degeneracies()
True

The class KenzoCRPRSimplex in kenzo.py was created in order to represent the

product of abstract simplices:

sage: w = AbstractSimplex(2, (0,1), name = ’w’)
sage: Kw = w._kenzo_repr; Kw
<AbSm 2-0 S8763998853087>
sage: pr = Kv.product(Kw); pr
<AbSm 2-0 <CrPr 3 S8763998853024 - S8763998853087>>
sage: pr.nondegenerate()
<CrPr 3 S8763998853024 - S8763998853087>
sage: pr.nondegenerate().factors()
(<AbSm 3 S8763998853024>, <AbSm - S8763998853087>)

In the class SimplicialSet arbitrary, the join method is not implemented,

but in Kenzo this operation is available. The join of simplicial sets is created as a

KenzoSimplicialSet, whenever the involved simplicial sets have kenzo repr
attributes. In the following example, the join S2.join(S2) is computed by means

of the instruction (join S2. kenzo repr S2. kenzo repr) in Kenzo:

sage: S2 = simplicial_sets.Sphere(2)
sage: M = S2.join(S2); M
[K38 Simplicial-Set]
sage: [M.homology(i) for i in range(7)]
[Z, 0, Z, Z, 0, Z, 0]
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In the class SimplicialSet finite, the kenzo repr attribute was also added.

sage: from sage.homology.simplicial_set \
import AbstractSimplex, SimplicialSet

sage: v = AbstractSimplex(0)
sage: e = AbstractSimplex(1)
sage: S = SimplicialSet({e: (v, v)})
sage: KS = S._kenzo_repr; KS
[K228 Simplicial-Set]
sage: KS.orgn()
’(BUILD-FINITE-SS (CELL_0_0 1 CELL_1_0

((CELL_0_0) (CELL_0_0))))’

simplicial set constructions.py

In class PullbackOfSimplicialSets finite, the stored data in the attribute

self. translation is used to “translate” the involved simplices to their Kenzo

equivalent abstract simplices. Since the product of simplicial sets is implemented in

SageMath as a pullback, this translation allows us to associate the kenzo repr
attribute to the class ProductOfSimplicialSets:

sage: S1 = simplicial_sets.Sphere(1)
sage: KS1 = S1._kenzo_repr
sage: T = simplicial_sets.Torus()
sage: KT = T._kenzo_repr
sage: KT.orgn()
’(CRTS-PRDC [K233 Simplicial-Set] [K233 Simplicial-Set])’
sage: KT._factors[0] == KT._factors[1] == KS1
True
sage: KT == KS1.cartesian_product(KS1)
True

In class PushoutOfSimplicialSets, the kenzo repr attribute was added

bearing in mind that (by now) only pushouts of two morphisms are constructed in

Kenzo.

sage: K = simplicial_sets.Simplex(4)
sage: L = K.n_skeleton(3)
sage: S4 = L.pushout(L.constant_map(), L.inclusion_map())
sage: KS4 = S4._kenzo_repr
sage: KS4.orgn()
’(PUSHOUT [K271 Simplicial-Morphism K265 -> K238]

[K270 Simplicial-Morphism K265 -> K260])’
sage: Kf0 = S4._maps[0]._kenzo_repr
sage: Kf1 = S4._maps[1]._kenzo_repr
sage: Kf0.pushout(Kf1) == KS4
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True

The kenzo repr attribute was also added to WedgeOfSimplicialSets and

SmashProductOfSimplicialSets, where the Kenzo analog is constructed if

all the involved factors have their Kenzo representations.

sage: T = simplicial_sets.Torus()
sage: KT = T._kenzo_repr
sage: S2 = simplicial_sets.Sphere(2)
sage: KS2 = S2._kenzo_repr
sage: P = T.smash_product(S2)
sage: KP = P._kenzo_repr
sage: KP.orgn()
’(PUSHOUT [K344 Simplicial-Morphism K339 -> K298]

[K345 Simplicial-Morphism K339 -> K327])’
sage: P.homology()
{0: 0, 1: 0, 2: 0, 3: Z x Z, 4: Z}
sage: [KP.homology(i) for i in range(5)]
[Z, 0, 0, Z x Z, Z]

If a simplicial set has kenzo repr attribute, its suspension has a Kenzo representa-

tion (implemented in class SuspensionOfSimplicialSet).

sage: S3 = simplicial_sets.Sphere(3)
sage: S4 = S3.suspension()
sage: KS3 = S3._kenzo_repr
sage: KS4 = S4._kenzo_repr
sage: KS4.orgn()
’(SUSPENSION [K748 Simplicial-Set])’
sage: KS4._base == KS3
True

simplicial set examples.py

In the function Sphere was assigned the kenzo repr attribute in order to con-

struct a Kenzo sphere, which is possible when the dimension of the sphere is less than

15 (the maximal dimension allowed in Kenzo system).

sage: S6 = simplicial_sets.Sphere(6)
sage: KS6 = S6._kenzo_repr
sage: KS6.orgn()
’(SPHERE 6)’
sage: [KS6.homology(i) for i in range(7)]
[Z, 0, 0, 0, 0, 0, Z]

Also, in Simplex function the Kenzo analog (DELTA function) was added as the

kenzo repr attribute.
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sage: D2 = simplicial_sets.Simplex(2)
sage: KD2 = D2._kenzo_repr
sage: KD2.orgn()
’(DELTA 2)’
sage: (KD2.basis(0), KD2.basis(1), KD2.basis(2))
([1, 2, 4], [3, 5, 6], [7])

In the function RealProjectiveSpace the kenzo repr attribute was assigned

allowing the construction of the analog finite or infinite dimensional real projective

space in Kenzo.

sage: RP5 = simplicial_sets.RealProjectiveSpace(5)
sage: KRP5 = RP5._kenzo_repr
sage: KRP5.orgn()
’(R-PROJ-SPACE 1 6)’
sage: [KRP5.homology(i) for i in range(6)]
[Z, C2, 0, C2, 0, Z]
sage: BC2 = simplicial_sets.RealProjectiveSpace(Infinity)
sage: KBC2 = BC2._kenzo_repr
sage: KBC2.orgn()
’(R-PROJ-SPACE 1 :INFINITY)’

simplicial set morphism.py

In the class SimplicialSetMorphism, the kenzo repr attribute is assigned

when the domain and the codomain simplicial sets have Kenzo representations. Since

the definition of a simplicial set morphism in SageMath is stored in the attribute

dictionary, we have used this data to construct the Kenzo representation of this

simplicial set morphisms.

sage: S5 = simplicial_sets.Sphere(5)
sage: s = S5.n_cells(5)[0]
sage: one = S5.Hom(S5)({s: s}); one
Simplicial set endomorphism of Sˆ5

Defn: Identity map
sage: Kone = one._kenzo_repr; Kone
[K844 Simplicial-Morphism K839 -> K839]
sage: type(Kone)
<class ’sage.interfaces.kenzo.KenzoSimplicialSetMorphism’>

Some constructions involving simplicial set morphisms like cones, suspensions and

pushouts, which are implemented in SageMath, have their respective Kenzo represen-

tations.

sage: T = simplicial_sets.Torus()
sage: K = simplicial_sets.KleinBottle()
sage: init_T = T._map_from_empty_set()
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sage: init_K = K._map_from_empty_set()
sage: D = init_T.pushout(init_K) # the disjoint union

# as a pushout
sage: Kinit_T = init_T._kenzo_repr
sage: Kinit_K = init_K._kenzo_repr
sage: KD = D._kenzo_repr
sage: Kinit_T.pushout(Kinit_K) == KD
True

4.3 Including finite topological spaces in SageMath
There exist some external modules to SageMath implementing functions to deal with finite

topological spaces [Fer17a], [Ren19]. However, these implementations have not been in-

cluded in tickets for the evaluation of SageMath developers and therefore there is no integra-

tion with other functionalities of SageMath. We have created a module implementing finite

topological spaces and related concepts by using our previously explained Kenzo algorithms

as part of the tickets

https://trac.sagemath.org/ticket/30400
https://trac.sagemath.org/ticket/30447
https://trac.sagemath.org/ticket/30862

Let us describe our new module in SageMath. The class FiniteTopologicalSpace
has been created by taking as input the following parameters (attributes for the instances of

the classes):

elements is the list of elements of the finite space.

minimal basis is a dictionary where the keys are the points n in elements and

minimal basis[n] is the set of points in the minimal open set containing n.

topogenous is the topogenous matrix T = [tij] of the finite space induced by the order

given in elements, that is, tij = 1 if elements[i-1] � elements[j-1] and

tij = 0 otherwise.

Let us note that the cardinality of the finite space is computed and saved as an attribute

self. cardinality. Since finite T0-spaces are very important in the study of invariants

of finite topological space, we have created the subclass FiniteTopologicalSpace T0,

inheriting all the attributes above mentioned (the self. topogenous is assumed to be

upper triangular) and, additionally, the parameter

poset (default None) is a FinitePoset representing the partially ordered set corre-

sponding to the finite T0-space (by Alexandroff correspondence).
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The function FiniteSpace has been implemented to create a finite space by using the

following parameters:

data takes any of the following forms:

1. A dictionary representing the minimal basis of the space. The keys are taken as

the elements x of the space, and the respective data[x] must be the minimal

open set of x.

2. A list or tuple of minimal open sets (in this case the elements of the space are

assumed to be range(n), that is, the integers 0, . . . ,n−1, where n is the length

of data).

3. A topogenous matrix (assumed sparse). If elements = None, the elements

of the space are assumed to be range(n) where n is the dimension of the

matrix.

4. A FinitePoset.

elements parameter (default None) is ignored when data is of type 1, 2 or 4. In case

data is a topogenous matrix, elements must be a list, a tuple or a set representing

the underlying set of the finite space.

is T0 (default False) is a boolean that indicates, when it is known, if the finite space

satisfies the T0 separation axiom.

For example, by specifying data as a dictionary we can construct finite spaces:

sage: FiniteSpace({’a’: {’a’, ’c’},
’b’: {’b’},
’c’: {’a’, ’c’}})

Finite topological space of 3 points with minimal basis
{’a’: {’a’, ’c’}, ’b’: {’b’}, ’c’: {’a’, ’c’}}

Observe that, even when the parameter is T0 is not fixed as True, the T0 axiom is

checked in data:

sage: FiniteSpace([{0, 3}, {1, 3}, {2, 3}, {3}])
Finite T0 topological space of 4 points with minimal basis
{0: {3, 0}, 1: {3, 1}, 2: {3, 2}, 3: {3}}

The system checks that the corresponding data define a topology on the underlying set:

sage: FiniteSpace({’a’: {’a’, ’b’}})
Traceback (most recent call last):
...
ValueError: The data does not correspond to a valid dictionary
sage: FiniteSpace({’a’: {’a’, ’b’},

’b’: {’a’, ’b’},
’c’: {’a’, ’c’}})
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Traceback (most recent call last):
...
ValueError: The introduced data does not define a topology

We have implemented functions to compute some topological properties. For instance,

the module provides functions to determine if a point is interior, exterior, boundary, limit,

closure or isolated with respect to a given subspace. Moreover, for a given subspace, the

corresponding interior, exterior, boundary, derived, closure or isolated set can be computed.

sage: import random
sage: T = FiniteSpace(posets.RandomPoset(30, 0.5))
sage: X = T.underlying_set()
sage: k = randint(0,len(X))
sage: E = set(random.sample(X, k))
sage: Fr = T.boundary(E)
sage: Cl = T.closure(E)
sage: Der = T.derived(E)
sage: Int = T.interior(E)

sage: Fr == T.closure(E) - T.interior(E)
True
sage: X == Fr.union(T.interior(E), T.exterior(E))
True
sage: T.interior(T.boundary(Cl)) == set()
True
sage: T.closure(E) == E.union(Der)
True
sage: Int == X - T.closure(X - E)
True

In case data define a finite T0-space (for example, when data is a poset), we can use

the methods and functions implemented in the class FinitePoset. In particular, it is very

useful to visualize the Hasse diagrams of the posets associated to finite T0-spaces by using

graphic objects in SageMath:

sage: minimal_basis = {7: {7}, 9: {9, 7}, 14: {9, 14, 7},
6: {6}, 15: {6, 15}, 5: {5, 6, 15},
4: {4, 6, 7, 9, 15}, 3: {3, 6, 15},
10: {3, 4, 6, 7, 9, 10, 15},
11: {3, 4, 6, 7, 9, 11, 14, 15},
8: {3, 4, 6, 7, 8, 9, 10, 11, 14, 15},
2: {2, 6, 7, 9, 14, 15},
12: {2, 4, 6, 7, 9, 12, 14, 15},
13: {2, 6, 7, 9, 13, 14, 15},
1: {1, 2, 3, 4, 6, 7, 9, 10, 14, 15}}
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sage: X = FiniteSpace(minimal_basis); X
Finite T0 topological space of 15 points
sage: X.show()

For a finite space X not satisfying the T0 axiom, we can construct the space X0 in

Proposition 1.28 by using the method equivalent T0.

sage: minimal_basis = ({0}, {1, 3, 4}, {0, 2, 5}, {1, 3, 4},
{1, 3, 4}, {0, 2, 5}, {0, 6, 7},
{0, 6, 7}, {0, 2, 5, 8}, {9})

sage: X = FiniteSpace(minimal_basis); X
Finite topological space of 10 points
sage: X.is_T0()
False
sage: X.equivalent_T0()
Finite T0 topological space of 6 points with minimal basis
{0: {0}, 1: {1}, 2: {0, 2}, 6: {0, 6}, 8: {0, 2, 8}, 9: {9}}

By using the above construction, the implemented methods to compute invariants on

finite T0-spaces can be applied to find invariants of arbitrary finite topological spaces. In

particular, identification of beat points, weak points and construction of cores and weak

cores can be performed by using our module:

sage: minimal_basis = {7: {7}, 5: {5}, 8: {5, 7, 8}, 2: {2},
4: {2, 4, 7}, 9: {2, 5, 9},
1: {1, 5, 7, 8},
3: {1, 2, 3, 4, 5, 7, 8},
6: {1, 2, 4, 5, 6, 7, 8}}

sage: X = FiniteSpace(minimal_basis)
sage: X.core().show()
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sage: X.core([1, 2, 3, 4, 5, 6, 7, 8])
Finite T0 topological space of 1 points with minimal basis
{8: {8}}

sage: X.weak_core().show()

Finally, the interface between Kenzo and SageMath allows us to use the algorithm to

compute discrete vector fields and homology of h-regular spaces described in Chapter 2.

sage: X = RandomFiniteT0Space(20, 0.1)
sage: dvf = X.discrete_vector_field(); dvf
[(1, 5), (3, 14), (10, 15), (2, 17), (11, 18), (16, 19)]
sage: X.show(highlighted_edges = dvf)

sage: covers = [[9, 13], [7, 13], [4, 13], [8, 12],
[7, 12], [5, 12], [9, 11], [6, 11],
[5, 11], [8, 10], [6, 10], [4, 10],
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[3, 9], [2, 9], [3, 8], [2, 8],
[3, 7], [1, 7], [3, 6], [1, 6],
[2, 5], [1, 5], [2, 4], [1, 4]]

sage: P = Poset((list(range(1,14)), covers),
cover_relations = True)

sage: X = FiniteSpace(P)
We compute the homology by using the general method:

sage: X.hregular_homology()
{0: Z, 1: C2, 2: 0}

Now, we determine homology by applying discrete vector fields and the corresponding

h-regular homology algorithm:

sage: dvf = X.discrete_vector_field(); dvf
[(3, 8), (2, 4), (6, 10), (9, 11), (5, 12)]
sage: X.hregular_homology(dvfield = dvf)
{0: Z, 1: C2, 2: 0}
sage: X.show(highlighted_edges = dvf)





Chapter 5

Strategies to compute discrete vector
fields

One of the main goals of Discrete Morse Theory is to find long discrete vector fields on

a topological space in order to have a small number of critical points, since these data are

enough to describe the homotopy type of such space [For98]. Moreover, Discrete Morse

Theory has been used to develop combinatorial methods to study n-deformations of regular

CW-complexes and applications to the study of the Andrews-Curtis conjecture [Fer19], by

using the face posets of the CW-complexes. Regarding to the computation of discrete vector

fields defined on a finite topological space, the result [CO17, Theorem 4.3] presented in

Section 2.3 establishes that homology groups of the initial chain complex associated with

the finite T0-space are isomorphic to those of a smaller chain complex generated by the

critical cells defined from the vector field.

Therefore, it is natural to consider suitable strategies to compute better homologically

admissible Morse matchings on the Hasse diagrams associated to finite T0-spaces, than those

we have computed by using the algorithm described in Subsection 2.3.1.

In this chapter we present some partial results about different strategies we have consid-

ered to compute discrete vector fields on finite T0-spaces. First, we describe some natural

strategies to choose a new vector to be added to a vector field, that is, its column and row

indexes on the Stong matrix. These strategies can be used to enhance the algorithm pre-

sented in Subsection 2.3.1. Moreover, we consider some machine learning techniques such

as reinforcement learning and Monte-Carlo tree search to obtain discrete vector fields as big

as possible. The code used in this chapter is available at [CR20] in the folder /dvfields-

strategies.

5.1 Strategies description
The algorithm we have developed to compute discrete vector fields on finite T0-spaces (see

Subsection 2.3.1) searches for homologically admissible edges such that the set of such

edges does not contains cycles in the modified Hasse diagram of the poset associated to the

115
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finite space (remember that (x, y) is homologically admissible if Ûy � {x} is homotopically

trivial). In this searching, we go through the columns and the rows of the Stong matrix.

This walk can be made in ascending order, as was implemented in our function dvfield
presented in Subsection 2.3.1, or by other ways to sort the columns and rows indexes of a

matrix.

We are interested in comparing different strategies, by analyzing if there exist remarkable

differences between the size of the discrete vector fields obtained in each case. Remember

that the longer the discrete vector field is, the smaller the number of generators we need to

describe a chain complex to compute homology by means of the critical complex is.

In order to illustrate some possible strategies to compute discrete vector fields on finite

T0-spaces, let us consider the finite space in Figure 5.1.

Figure 5.1: Hasse diagram of the finite T0-space X.

> (setf edges ’((1 2) (2 3) (3 4) (3 5) (4 6) (5 6) (6 7)
(6 8) (8 9) (9 10) (1 11) (7 12) (9 12)
(7 13) (10 13) (11 13) (8 15) (7 16) (8 16)
(11 16) (15 17) (2 19) (6 20) (18 20)))

> (setf X (build-finite-space
:stong (edges-to-stong 20 edges)
:orgn ’(X)))

The order of the elements of X is given as usual in Kenzo, that is, in ascending order. We
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have considered six different strategies to sort a list of elements in a finite T0-space: :stan-
dard, :random, :indegree, :reverse-indegree, :outdegree and :reverse-outdegree. Taking into

account the next function:

dvfield-strategies-col-row finspace strategy-cols strategy-rows
It returns a discrete vector field on the space finspace. The searching of the vectors

is carried out by sorting the columns (resp. rows) of the Stong matrix by using the

strategy given by strategy-cols (resp. startegy-rows).

Let us describe the strategies in the next lines:

:standard. This strategy refers to sort a set of elements in ascending order (remember that in

Kenzo, the elements of a finite T0-space are integer numbers starting by 1). This is the

strategy used to sort column and row indexes in the function dvfield in Chapter 2.

In fact, this is the ordering proposed in the computation of discrete vector fields on

chain complexes in Kenzo (see Figure 1.10). By using this sorting, we obtain the next

discrete vector field:

> (dvfield-strategies-col-row X :standard
:standard)

((2 3) (4 6) (8 9) (7 12) (10 13)
(11 16) (15 17) (18 20))

Note that the edge (1 2) was the first candidate to be a vector, but the subspace

Û2 � {1} = ∅ is not homotopically trivial, then it was not chosen.

:random. Random orderings of rows and columns can be considered, meaning that there is

no preferable choice of the indexes in the searching we are doing. A discrete vector

field that we obtained by using this strategy is the following:

> (dvfield-strategies-col-row X :random
:random)

((2 19) (18 20) (7 16) (3 5) (8 15)
(9 12) (4 6) (11 13))

:indegree and :reverse-indegree. The indegree of a vertex v in a directed graph, denoted

by deg−(v), is the number of “head ends” adjacent to it. Note that it seems natural to

prefer a vertex with low indegree as a suitable candidate for being part of a vector in a

discrete vector field, since in future steps all the edges which have such vertex as head

can not be candidates to vector.

We can use this criteria to sort the elements of a list. In :indegree strategy, we sort the

elements of a set by the rule x � y if deg−(x) � deg−(y). By using this rule, the

elements of X are sorted as follows:

> (sorting-by-strategy X :indegree)
(1 14 18 2 3 4 5 7 8 9 10 11 15 17 19 6 12 20 13 16)
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:standard :random

Figure 5.2: Discrete vector fields on X (in blue) by using :standard and :random strategies.

In order to compute a discrete vector field by using this strategy, observe that the first

three elements 1, 14 and 18 have indegree index equal to zero (see Figure 5.1), so

that they are no tail of any edge and then, in their respective columns in the Stong

matrix of X, there are no ones (different of the diagonal entries). The next element to

be checked is 2; then, the edge (1 2) is the first candidate to be a vector, but the

subspace Û2 � {1} = ∅, is not homotopically trivial.

In the column of the Stong matrix corresponding to the next element 3, the edge

(2 3) is identified as the first vector to be added to the vector field because such

edge satisfies all the conditions to be included in it. The next two elements, 4 and 5,

have only one edge coming from 3, then the edges (3 4) and (3 5) can not be part

of the vector field (since the element 3 is already a target). The next element 7 is the

head of the edge (6 7), which is included in the vector field since it satisfies all the

conditions. Continuing with this process, we obtain a discrete vector field:

> (dvfield-strategies-col-row X :indegree
:indegree)

((2 3) (6 7) (8 9) (15 17)
(18 20) (10 13) (11 16))
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The :reverse-indegree strategy is considered by using the reverse order:

> (sorting-by-strategy X :reverse-indegree)
(13 16 6 12 20 2 3 4 5 7 8 9 10 11 15 17 19 1 14 18)

And the corresponding discrete vector field is given by:

> (dvfield-strategies-col-row X :reverse-indegree
:reverse-indegree)

((7 13) (8 16) (4 6) (9 12) (18 20) (2 3) (15 17))

The discrete vector fields found with the two above strategies applied on X are illus-

trated in Figure 5.3.

:indegree :reverse-indegree

Figure 5.3: Discrete vector fields on X (in blue) by using :indegree and :reverse-indegree
strategies.

:outdegree and :reverse-outdegree. The outdegree of a vertex v in a directed graph, de-

noted by deg+(v), is the number of “tail ends” adjacent to it. Observe that once a

vertex v is chosen to be part of a vector in a discrete vector field, all the edges having

v as tail can not be candidates to vector in future steps, so that it seems preferable to

choose vertices with low outdegree.



120 Chapter 5. Strategies to compute discrete vector fields

Then, in :outdegree strategy, we sort the elements of a set by the rule x � y if

deg+(x) � deg+(y). By using this criteria, the elements of X can be sorted as follows:

> (sorting-by-strategy X :outdegree)
(12 13 14 16 17 19 20 4 5 10 15 18 1 2 3 9 11 6 7 8)

By using this ordering, the corresponding discrete vector field is obtained:

> (dvfield-strategies-col-row X :outdegree
:outdegree)

((9 12) (10 13) (11 16) (15 17)
(2 19) (18 20) (3 4) (5 6))

:outdegree :reverse-outdegree

Figure 5.4: Discrete vector fields on X (in blue) by using :outdegree and :reverse-outdegree
strategies.

The reverse order is used in the :reverse-outdegree strategy:

> (sorting-by-strategy X :reverse-outdegree)
(6 7 8 1 2 3 9 11 4 5 10 15 18 12 13 14 16 17 19 20)

The discrete vector field obtained by using the above ordering of rows and columns in

the Stong matrix of X, is given by:
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> (dvfield-strategies-col-row X :reverse-outdegree
:reverse-outdegree)

((4 6) (2 3) (8 9) (7 12) (11 13) (15 17) (18 20))

In Figure 5.4, the last two discrete vector fields are illustrated on X.

Observe that in the finite T0-space X, the length of the discrete vector fields obtained

by using :standard, :random and :outdegree is equal to 8, while those computed by using

:indegree, :reverse-indegree and :reverse-outdegree are of length 7. These discrete vector

fields were obtained by sorting columns and rows indexes of the Stong matrix of X with the

same strategy, but if we consider :outdegree for columns and :reverse-outdegree for rows,

we obtain the next discrete vector field of length 9 (see Figure 5.5):

> (dvfield-strategies-col-row X :outdegree
:reverse-outdegree)

((7 12) (11 13) (8 16) (15 17) (2 19)
(18 20) (3 4) (9 10) (5 6))

Figure 5.5: Discrete vector field on X (in blue) by using :outdegree for columns and :reverse-
outdegree for rows.
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Then, it is clear that the orderings chosen to move through the column and row indexes

influence the computation of discrete vector fields on finite T0-spaces. Also, it seems that the

best strategies applied in a particular finite space might not be the best for other spaces. In the

next section we will apply the strategies described above to compute discrete vector fields

on random generated finite spaces, in order to evaluate and compare their performances.

5.2 Evaluating strategies on random finite spaces

The strategies considered above have been tested in random finite T0-spaces. For a given

dimension n and a given density d, we have generated random spaces and, on each one of

them, we have computed 36 discrete vector fields in Kenzo by using the strategies :standard,

:random, :indegree, :reverse-indegree, :outdegree and :reverse-outdegree (shorted as s, r, i,
ri, o and ro, respectively) in order to sort the column and row indexes of the Stong matrices.

For simplicity, we have used the symbol α - β to indicate that the strategy α was used to sort

the columns and β was used to sort the rows of the Stong matrix of the corresponding finite

T0-space.

In Table 5.1, for each pair n (size) and d (density), 20 random finite T0-spaces have

been computed. In each cell, the five strategies that generated the longest discrete vector

fields have been considered. Each parenthesis (m) in the cells of the table indicates that the

corresponding strategy achieves the maximum cardinality, among the 36 computed discrete

vector fields, in m of the 20 spaces. Observe that the strategy o - o predominates over the

others when n increases and for low values of d. However, in most of the finite spaces

we have considered, the different strategies have produced discrete vector fields with low

difference between their lengths.

In Table 5.2, the greatest and smallest average length among the 36 discrete vector fields

computed on 20 random finite T0-spaces for each pair n (size) and d (density) are shown. In

bold, the greatest average length corresponding to the strategies o - o, while the other results

(the smallest) correspond to ri - ro, except the value marked with (∗) which was obtained

with ro - ro. Note that the percentage difference between the values in each cell of the table

is less than 15%.

The data used for the application of the strategies are included at [CR20] in the folder

/dvfields-strategies/results-length. In each of the folders found there, we have included a

spreadsheet (.xlsx) where the lengths of the discrete vector fields obtained by using the 36

strategies are summarized.

It is important to remark that once we have modified the algorithm to compute discrete

vector fields on finite T0-spaces, any other sorting strategy can be defined and we can con-

trast with the above strategies in order to evaluate its performance, thanks to the function

dvfield-strategies-col-row, which takes as parameters the sorting strategies on

columns and rows.
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Table 5.1: Comparison of the number of times that a strategy α - β achieves the maximum

cardinality among the 36 strategies applied to random finite T0-spaces.

d
n

100 150 200 250 300 350

0.2

o - o (11) o - o (12) o - o (14) o - o (13) o - o (8) o - o (17)
o - i (10) o - i (6) o - i (7) o - i (5) o - i (7) o - i (3)

o - s (4) o - r (4) o - r (4) o - r (4) o - s (5) o - s (2)

o - r (4) o - s (3) o - ri (3) o - ro (2) o - r (3) o - ri (2)

o - ri (2) o - ro (2) o - s (1) o - s (2) o - ri (2) o - i (1)

0.4

o - o (9) o - i (9) o - o (13) o - o (9) o - o (12) o - o (16)
o - i (8) o - o (8) o - i (10) o - i (9) o - i (9) o - i (6)

o - r (5) o - s (3) o - s (3) o - r (3) o - r (2) o - r (1)

o - s (3) o - r (2) s - o (3) s - o (1) o - s (2) s - o (1)

s - o (3) i - o (2) o - r (2) s - r (1) o - ri (1) i - ri (1)

0.6

o - r (7) o - o (9) o - i (8) o - o (12) o - o (10) o - o (12)
o - o (6) o - i (5) o - o (6) o - i (7) o - i (7) o - i (8)

o - i (5) s - o (5) s - o (3) o - r (3) s - o (4) o - s (3)

o - s (5) o - s (4) o - r (3) o - s (1) o - r (3) o - r (2)

s - r (4) o - r (2) r - o (2) s - o (1) o - ri (1) s - o (1)

0.8

s - o (9) o - o (10) o - o (8) o - o (13) o - o (8) o - o (9)
o - o (7) o - i (6) s - o (7) o - i (8) o - i (8) o - i (8)

o - s (4) s - o (3) o - i (7) s - o (7) s - o (7) s - o (7)

s - i (4) o - r (3) r - o (2) o - r (4) o - r (2) o - r (2)

s - s (4) i - o (3) s - ri (1) s - r (2) o - s (1) s - ri (1)

Table 5.2: Comparison of the greatest and the smallest average length of the discrete vector

fields computed on random finite T0-spaces by using the 36 described strategies.

d
n

100 150 200 250 300 350

0.2
38,85 57,50 76,35 91,95 99,25 121,35
33, 15 49, 40 65, 95 80, 20 87, 45 104, 85

0.4
40,85 64,10 83,30 106,55 123,50 147,90
35, 85(∗) 55, 70 72, 50 92, 40 107, 40 127, 55

0.6
44,50 67,30 88,70 110,95 124,85 156,50
38, 85 58, 20 77, 50 96, 40 110, 00 136, 30

0.8
43,95 67,30 91,25 113,45 137,95 153,25
38, 95 58, 95 79, 85 100, 00 120, 05 133, 45
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5.3 Machine learning strategies

In the previous two sections, some geometric and random strategies to compute discrete vec-

tor fields on finite topological spaces have been introduced. Moreover, the results that have

been obtained by applying them on different random samples of finite topological spaces

have been compared. As has been mentioned, it seems clear that, in most cases, using out-
degree strategies helps obtaining discrete vector fields containing the greatest number of

vectors. Nevertheless, it is also observed that it is not true when computations are carried

out on spaces of small size and high density. It thus seems reasonable to use some other

kind of methods and techniques which can be able to obtain vector fields as big as possi-

ble in all cases. In particular, in this section, machine learning methods are going to be

applied. This kind of techniques has been successfully applied on a large variety of areas

such as computer vision [KAH20], games [SHM16] or medical image treatment [MSLR19].

Some machine learning methods have also been considered for some problems in computer

algebra [BLP20], [PSHL20], [Sil19].

In fact, machine learning covers a wide range of different alternatives for how the learn-

ing process can be carried out. In particular, due to the type of problem we are studying,

we are going to focus on the so-called reinforcement learning. The key point of this type

of learning is to establish a suitable reward system. That is, when the process has reached a

concrete state and it has to select a possible action in order to continue, a reward is applied,

which depends on the profit obtained after the corresponding change of state.

In a first attempt to introduce machine learning techniques to obtain a discrete vector

field as big as possible, we use the Q-learning algorithm [Wat89], which is a particular

case of reinforcement learning. This algorithm requires the definition of states (the possible

situations which can be encountered), actions (transitions from one state to another state)

and (positive or negative) rewards received after each transition.

More concretely, the Q-learning algorithm is based on the construction of a Q-table,

which is a matrix where we have a row for every state and a column for every action. It

is first initialized to 0, and then values are updated after training, taking into account the

rewards obtained. The process of training is done by iterating a sequence of actions starting

from the initial state, combining exploration (choosing a random action) and exploitation
(choosing actions based on already learned Q-values). For each state (each row in the table),

the best action is supposed to be the one with the highest value in the corresponding column

of the Q-table. See [Wat89] for more details.

In our problem, we have chosen to use the Python library for reinforcement learning

Gym [Ope16]. We construct a new class called DVFMatrixEnv which implements the

interface gym.Env, which represents a learning environment. This interface requires

the definition of a set of states and a set of actions, and the implementation of four

methods: init, reset, render and step. The most important method is step, which,

for an input pair of state and action, returns a new state, a reward and a boolean variable

called done which determines if the problem ends or not after applying the action.

The input data to construct an environment of type DVFMatrixEnv is the Stong matrix
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of the finite T0-space where we want to compute a discrete vector field. For instance, we

consider

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0 0
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is the Stong matrix of the finite T0-space in Figure 5.6.

•
1

•
2

•
3

•
4

•5 •6 •7

Figure 5.6: Finite T0-space.

The elements of the set of actions are the possible vectors we can select in the matrix,

which are coded as integers with the following formula:

action = row ∗ numberOfRows + column

In our example there are 6 possible vectors:

[0 ∗ 7 + 4, 1 ∗ 7 + 4, 1 ∗ 7 + 5, 2 ∗ 7 + 5, 2 ∗ 7 + 6, 3 ∗ 7 + 6] = [4, 11, 12, 19, 20, 27]

Each state is given by a list of vectors, which is coded in binary form with length equal

to the number of actions. For instance:

0 ↔ 000000 = {}
8 ↔ 000100 = {19}

17 ↔ 100010 = {4, 20}

The number of possible states is 2numberOfActions. Then, a state represents a set of possible

vectors (some of the sets are not valid, but this will be specified in the algorithm by means

of a negative reward). The initial state is 0.

Given a state and an action, the method step proceeds as follows:

• The binary representation of the state (a list) is determined.
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• The row and the column of the action are determined.

• For each vector in the state (that is, each element in the binary list which is equal to 1),

the row and the column are computed.

• If any of the rows or columns which have been computed in the previous step are equal

to those of the action, then the action is not valid and we take the reward equal to -1,

the next state equal to the actual one and done = True.

• We check if the new vector can be added, so that we have a Morse matching (which

means that there are no cycles in the modified Hasse diagram). If this condition is not

fulfilled, we also consider that the action is not valid and we take again the reward

equal to -1, the next state equal to the actual one and done = True.

• If the action is valid, then we compute the new state by adding the new vector (action):

newState = oldState + 2indexOfAction

The reward in this case is equal to +1. We determine also if it is possible to add a new

(valid) vector to the list; if it is not possible then we set done=True.

We render a state by its number and by a matrix where there are 1’s in the positions of

the selected vectors, and 0’s elsewhere.

For instance, let us consider the environment associated to the matrix M . The number of

actions (possible vectors) is 6 and the number of states is 26 = 64.

env = DVFMatrixEnv(M)
print(env.num_actions)
6
print(env.num_states)
64

The initial state 0 is rendered as a 7× 7 matrix of zero entries:

env.render()
0
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]

Let us consider the action with index equals 2, that is, the third vector in the list of

possible vectors which is the one with row equals 1 and column equals 5 (taking into account

that indexes in lists and matrices in Python start in 0), that is, the vector (2, 6) in Figure 5.6.

We apply the action and render the new state, which is equal to 4.

action_index = 2
env.step(action_index)
env.render()



5.3. Machine learning strategies 127

4
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]

If we try to add a non-valid vector (for instance, (3, 5) in Figure 5.6, which has index 3
in the list of vectors), the state is not modified.

action_index = 3
env.step(action_index)
env.render()
4
[[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]

Once we have defined our environment, we perform the training of the Q-learning al-

gorithm with a given number of iterations. The result is obtained by means of the Q-table,

which in this case is a 64× 6 matrix. Let us observe the first 3 rows of this table:

q_table[:3,:]
[[ 1.75 1.75 1.75 1.75 1.75 1.75]
[-0.25 -0.25 1.5 1.5 1.5 1.5]
[-0.25 -0.25 -0.25 1.5 1 1.5]]

The first row corresponds to the initial state, and the columns are the aggregated rewards

for each one of the possible actions. Let us observe that, in this row, all columns have the

same value, which means that all the possibilities are good. The second row corresponds

to the state 1, that is, having already selected the first vector (1, 5). In that situation, there

are two negative values which correspond to vectors which are not valid (in this case, the

same vector (1, 5) and the vector (2, 5)), and the other 4 possibilities have the same positive

value and therefore are good. The third row corresponds to the state 2, having selected the

second vector (2, 5). In that case, there are three negative values which correspond to the

three not valid vectors and then there are three positive values 1.5, 1 and 1.5. This means

that the fifth vector (3, 7) is worse than the fourth and sixth vectors (3, 6) and (4, 7). This

is due to the fact that, if we select the vector (3, 7) together with the vector (2, 5), then all

the other vectors are not valid, so that our discrete vector field would have only two vectors.

However, if we select for instance the vector (3, 6) together with (2, 5), we can add also the

vector (4, 7) obtaining in that way a discrete vector field with 3 vectors.

After a high number of iterations, the Q-table allows one to define a good process to

obtain a discrete vector field as big as possible. We have implemented this process, which

in our example produces the following discrete vector field with vectors (1, 5), (2, 6) and

(3, 7), codified as 21. Let us observe in Figure 5.6 that its is (one of) the biggest possible

vector fields.
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computeBestDVF()
21
[[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]

We have tested the method on some of the random examples studied in the previous

section. In all the cases, the Q-learning technique has provided us satisfactory results. That

is, for each space, the vector field we obtained by using this approach has the same number

of vectors as the best one obtained by applying the strategies given in Section 5.2.

Nevertheless, the size of the Q-table results to be an evident problem to be treated. In fact,

we only have tested satisfactorily the Q-learning technique in 13 spaces; for other spaces,

the Q-table can not be built. It is a common drawback of this type of machine learning

and there exist same well studied alternatives to avoid it. For instance, it is possible to use

Monte-Carlo trees or neural networks instead of computing the whole Q-table.

Monte-Carlo tree search is a heuristic search algorithm for some kinds of decision pro-

cesses, which has been employed in software that plays board games. The focus of Monte-

Carlo tree search is on the analysis of the most promising moves, expanding the search

tree based on random sampling of the search space. In our problem, each node of the tree

is a state (sequence of vectors added to the discrete vector field). In a joint work with

J. Divasón we have tested this method for some of the examples of the previous section

and it works satisfactorily. Again, the vector field we obtained by using the Monte-Carlo

tree search technique has the same number of vectors as the best one obtained by applying

the strategies given in Section 5.2. Moreover, we can deal with bigger examples than the

Q-learning method. Let us observe that in the Q-learning algorithm all the entries of the Q-

table must be built, but in fact most of them are not been representing states (set of vectors)

which can be reached. In contrast, by using Monte-Carlo tree search techniques, the corre-

sponding method only generates random training chains of vectors which are valid. In this

way, it is possible to deal with spaces having a bigger size than those that admit Q-learning

techniques. The promising results obtained in our first attempts applying machine learning

methods, open a new line of research where we plan to study the behavior of the algorithms

over a bigger set of spaces and explore other techniques such as neural networks.



Conclusions and further work

In this work we have presented effective algorithms to compute invariants of finite topolog-

ical spaces. These algorithms have been developed by combining combinatorial techniques

on posets which have been stated in the foundational papers of the theory of finite spaces

and recent results in this line of work, such us methods to maintain weak homotopy types or

simple homotopy types and the application of Discrete Morse Theory.

Up to now, the known methods for computing invariants of finite topological spaces

were applicable only for face posets of simplicial complexes or regular CW-complexes. In

Chapter 2, we have made constructive some theoretical results on finite topological spaces by

Stong, McCord, Barmak, Minian, Cianci and Ottina, producing in particular new algorithms

for computing in an explicit way some chain complexes associated with h-regular finite

topological spaces (smaller than the chain complex of the order complex of the space) and

their corresponding generators.

We have implemented the previous algorithms in the computer algebra system Kenzo. In

this way, we can make use of Kenzo capabilities for dealing with matrices, chain complexes

and homology. With our new algorithms, we endow Kenzo with new tools to deal with fi-

nite topological spaces. Up to our knowledge, our new program is the only software able to

compute homology groups of finite topological spaces working directly on the posets with-

out having to go, necessarily, to the simplicial world. Moreover, we improve our algorithms

on h-regular spaces by using discrete vector fields. In our case, we produce a new algorithm

constructing a discrete vector field defined directly on the poset that can be applied to gen-

eral h-regular finite spaces; as before, up to our knowledge there does not exist any other

software producing this kind of construction over general finite topological spaces.

The algorithms to compute homology above mentioned are applicable to h-regular finite

spaces. In the literature there are few examples of h-regular finite spaces, different from

face posets of simplicial complexes. The h-regularization process we have described in

Chapter 3, produces a wide variety of h-regular finite spaces. Indeed, as we have shown,

any finite T0-space of height at most two can be h-regularized, allowing to consider new

examples of this kind of spaces.

Some modifications to finite T0-spaces had to be considered when we were searching for

a correct implementation of h-regularization. In particular, when the tilded open minimal

set of an element of height two is not connected, we correct this by introducing a beat point,

which makes the subspace connected in the new space. The most challenging part of our

method was Proposition 3.26, where we show an algorithmic way to separate the tilded open
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minimal set into 1-spheres, which was the key result to achieve the h-regularization of finite

T0-spaces that we had in mind. Some of the results we have presented can be applied to finite

spaces with higher heights, then the search of effective methods to modify finite spaces of

heights greater than two in order to satisfy the h-regular property has just started.

Moreover, the modifications we performed to h-regularize a finite T0-space do not change

the simple homotopy type and all of the spaces in the process are 3-deformations of the initial

one. In the particular case when a homotopically trivial finite T0-space of height two satisfies

the Andrews-Curtis conjecture, all the spaces in the process of h-regularization satisfy it too,

which could be used to attack the conjecture in a future work by using simple homotopy

equivalent spaces to the given one as in [Fer17b], where some potential counterexamples to

the conjecture have been discarded by means of techniques on finite topological spaces.

In Chapter 4, we have presented an interface between the computer algebra systems

SageMath and Kenzo. Our work has made it possible to work with Kenzo in a friendlier

way and to allow both systems to collaborate in some computations which can not be done

independently in any of the programs. In addition, we have enhanced SageMath with new

functionalities in algebraic topology, allowing the representation and computation of topo-

logical invariants of objects of infinite nature; this type of objects were not available in the

system before. Since this work was carried out with open-source software, any user can

explore and adapt the code, expecting to extend the use of Kenzo to a broader community.

Regarding to finite topological spaces, the module we have described in Section 4.3 uses

all the functionalities described in this memoir by means of the interface between SageMath

and Kenzo. It can be easily used by any user of SageMath, which makes different our work

from the code found in [Fer17a] and [Ren19]. Of course, we intend to expand our module

devoted to finite topological spaces with other algorithms developed by other authors and

therefore complement the functionalities we have implemented. The tickets we have opened

in the SageMath development process to include the functions described in Chapter 4 are

already published, but they are subject to style changes and corrections proposed by the

reviewers in order to be part of SageMath.

In Chapter 5, we have considered some strategies trying to study alternatives to compute

longer discrete vector fields on finite spaces. Although there is not a unique strategy which

performs well in all situations, we have shown an optimal strategy for most finite spaces

with big size and small density. The machine learning techniques we have also explored

have shown promising results, which allow us to continue investigating new methods and

strategies that can be applied in the future, in order to compute other invariants and topolog-

ical properties of finite spaces.
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Appendix

In this appendix we have included the Lisp functions that have been used in the examples

shown in our work, in order to make them reproducible. All the functions and methods

described in this memoir are available at [CR20].

binarymatrice-to-fbasis mtrx
If mtrx is the topogenous matrix of a finite T0-space X , this function returns a vector

whose n-th component is the list of the elements in the minimal open set of n + 1
in the opposite space Xop i.e. FX

n+1 (remember that in Lisp the vectors are indexed

beginning with the zero subscript).

binarymatrice-to-ubasis mtrx
If mtrx is the topogenous matrix of a finite T0-space X , this function returns a vector

whose n-th component is the list of the elements in the minimal open set of n+ 1 i.e.

UX
n+1.

cardinality finspace
It returns the number of elements in the space finspace.

edges-to-stong dim edges
The parameter edges must be a list of pairs (a b) representing the edges of the Hasse

diagram of a finite T0-space. The function returns the Stong matrix of dimension dim
of the space associated to the poset given by edges.

edges-to-stong-mtrx u-vector
The parameter u-vector is a vector whose n-th entry is the list of the elements in Ûn+1.

The function returns the Stong matrix representing the finite T0-space induced by u-
vector.

h-regular-homology-sim finspace
It prints on the screen the homology groups of the h-regular space finspace from di-

mension 0 to the height of finspace.

non-hausdorff-suspension finspace
It returns a FINITE-SPACE representing the non-Hausdorff suspension of the space

finspace.
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show mtrx
This function prints on the screen the matrix mtrx of type matrice or array.

sorting-by-strategy finspace strategy
It returns the list of elements of finspace sorted by using the ordering induced by

strategy.

stong-to-edges stong
This is the inverse function of edges-to-stong: it takes a stong matrix and returns

a list of pairs representing the edges of the Hasse diagram associated to stong.
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[Ale37] P. Alexandroff, Diskrete Räume, Mat. Sb. (N.S.) 2 (1937), 501–518.

[Bar11] J. A. Barmak, Algebraic topology of finite topological spaces and applica-
tions, Lecture Notes in Mathematics, vol. 2032, Springer, 2011.

[BL17] B. Benedetti and F. H. Lutz, Library of triangulations, http:
//page.math.tu-berlin.de/˜lutz/stellar/library_
of_triangulations/, 2017.

[BLP20] Y. Bengio, A. Lodi, and A. Prouvost, Machine learning for combinatorial
optimization: a methodological tour d’horizon, https://arxiv.org/
pdf/1811.06128.pdf, 2020.

[CO17] N. Cianci and M. Ottina, A new spectral sequence for homology of posets,

Topology and its Applications 217 (2017), 1–19.

[CO18] , Poset splitting and minimality of finite models, Journal of Combi-

natorial Theory, Series A 157 (2018), 120–161.

[CR16] J. Cuevas-Rozo, Funciones submodulares y matrices en el estudio de los
espacios topológicos finitos, Tesis de maestrı́a, Universidad Nacional de

Colombia, 2016.

[CR18] , Point reduction algorithms and discrete vector fields for fi-
nite topological spaces in the Kenzo system, Proceedings of Fourth

EACA International School on Computer Algebra and its Applications,

2018, https://www.usc.es/regaca/eacaschool18/files/
Contributed_talks_EACA2018.pdf, pp. 3–4.

[CR19a] , Cálculo de invariantes topológicos sobre espacios topológicos
finitos, XXII Congreso Colombiano de Matemáticas 2019, 2019,
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