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INTRODUCTION
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1.1. Background

In the last years the field of periodic structures for electromagnetic waves has received
an important impulse with the introduction of the novel and fruitful concepts of
Photonic Bandgap (PBG) and Photonic/Electromagnetic Crystal. These novel
concepts were originally developed by Yablonovitch [YAB 87] and John [JOH 87] in
the latest 1980s, in the optical wavelength region. The idea was to design materials so
that they can affect the properties of photons, in much the same way that ordinary
semiconductor crystals affect the properties of electrons. Both Yablonovitch and John
suggested that structures with periodic variations in dielectric constant, resembling the
self-organized structure of atoms in a semiconductor, could influence the nature of
photonic modes in a material, creating forbidden frequency bands in certain directions
(partial photonic bandgaps) or in all the directions (complete photonic bandgaps).
These new materials were called Photonic Crystals or Photonic Bandgap (PBG)
Crystals. Figure 1.1 shows schematics of Photonic Crystals with one-dimensional
(1D), two-dimensional (2D), and three-dimensional (3D) periodic variations of the
dielectric constant.

(a) (b) (c)

Figure 1.1: Photonic Crystals or Photonic Bandgap (PBG) Crystals showing periodicity in
several dimensions. From left to right, (a) one-dimensional (1D), (b) two-dimensional (2D),
and (c) three-dimensional (3D) periodic arrangements of implants of a dielectric constant (or
refractive index) embedded in a host with another dielectric constant.

This way, PBG crystals can be defined as one- two- or three-dimensional periodic
structures in which the propagation of electromagnetic waves is not allowed in some
frequency bands or directions, behaving in a similar way as electronic crystals (e. g.
semiconductors) do for the flow of electrons [JOA 95]. Their operation rely, however,
on the well-known Bragg reflection effect, but in this case one- two- or three-
dimensional periodic structures can be involved, and hence the term ‘generalized
Bragg reflection’ is sometimes used.
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Of special importance to establish and extend the knowledge on these novel concepts
and materials was the edition of ‘Photonic Crystals’, by Joannopoulos et al. [JOA 95].
It was the first book entirely devoted to the topic, and it is indeed a very valuable
reference.
Although the research was initially focused on the optical wavelength region, PBG
crystals and properties are scalable and applicable to a wide frequency range. This
happens because Maxwell’s equations have no fundamental length scale. Actually, the
implications for the microwave and millimeter wave domains became soon apparent
and multiple interesting and promising structures and applications were developed.
It is worth saying that far from the optical frequency range, ‘Photonic Crystal’ could
be an ambiguous term, and the denomination ‘Electromagnetic Crystal’ seems to be
natural and has been also proposed at those non-optical frequency ranges. However,
and although it was somehow controversial, they are also frequently termed simply as
PBG (i.e. Photonic Bandgap) structures, regardless of the frequency regime of
operation. Here, ‘Photonic’ should be understood neither with the meaning of
referring to optical frequencies, nor considered as underlining any kind of process
related to the wave-particle duality. Here, ‘Photonic’ only enhances the relationship of
all these structures with those in the optical range where they first appeared, as well
as, owing to the scaling property of the solution of Maxwell’s equations, it makes
apparent that many concepts and ideas developed for them in the optical range can be
directly transposed to other frequency ranges. Additionally the term ‘Photonic
Crystal’ reminds the fact that a fruitful analogy can be established between the
operation of these structures and the way in which ordinary semiconductor crystals
affect the properties of electrons.
Specially significant from the point of view of nomenclature in the framework of this
thesis is the term employed by the pioneers in the introduction of PBG structures in
microstrip circuits and in their applications. This pioneering and leading role has been
carried out by Prof. Tatsuo Itoh and his group at the University of California in Los
Angeles , using the term ‘PBG structure’.
PBG structures at microwave frequencies were initially realized by scaling the
structures used at optical frequencies. That implied micromachining holes into
dielectric slabs to create a 2D [GAU 97] periodic variation of the material dielectric
constant. Machined slabs could be also stacked to create a 3D periodic variation of the
dielectric constant [SMI 99]. Specially famous is the ‘woodpile’ structure, Fig. 1.2, a
layer-by-layer PBG crystal made of stacked alumina rods, of the Iowa State University
[HO 94, OZB 96].
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Figure 1.2: The ‘woodpile’ 3D PBG crystal made by stacking alumina rods

The main applications proposed for these microwave PBG structures were their use as
substrates for planar antennas (to improve their efficiency and radiation pattern by
forbidding surface wave excitation) [GAU 97, SMI 99] the implementation of
reflectors (since they provide wide and deep reflected frequency bands) [KES 96], and
the implementation of resonant cavities and waveguides [TEM 99].
However these configurations, while useful, have two main drawbacks: firstly, they
are not easy to fabricate and, secondly, they are big in terms of wavelength. To reduce
the PBG crystal dimensions the use of metallodielectric configurations was proposed
[BRO 95, FAN 96, SIE 98]. An effective example of metallodielectric crystal is given
by the high-impedance ground plane described in [SIE 98a], and employed to improve
a patch antenna performance in [QIA 98]. It is comprised of a grounded dielectric slab
periodically loaded with a square lattice of square metallic pads. The edges of the pads
are a few millimeters apart, realizing a 2D periodic network of capacitors. Each pad is
connected to the ground through one via at its center, which provides the inductive
part of the LC-network.
These approaches, although very effective, require a non-planar fabrication process. In
the latest 1990s, Prof. Tatsuo Itoh’s group at the University of California in Los
Angeles, focused on the development of planar PBG crystals that do not need vias and
that can be easily integrated in conventional planar microwave and millimeter-wave
circuits. His achievements constituted a real breakthrough  in the application of PBG
structures in the microwave and millimeter wave filed, since the planar circuit
technology is the driving force for modern microwave and millimeter wave
applications, because of its enormous advantages including greatly reduced hardware
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size and weight, lower profile, easier integration with solid state devices, low power
consumption, conformal implementation on moving platforms, and greatly reduced
fabrication cost since they can be simply printed on a circuit board or semiconductor
wafer in large quantities instead of being machined piece by piece. However, one of
the fundamental disadvantages of planar circuits when used at high frequencies is their
relatively high loss or low quality factor (Q), in comparison to the classical and bulky
metallic waveguide systems. It is therefore extremely interesting to explore novel
ideas, concepts and structures, like the PBG crystals, to try to improve the
performance of planar microwave and millimeter wave systems. Actually, this thesis
will be devoted specifically to the study PBG structures in the most popular
microwave planar circuit technology: the microstrip technology.
The first approach proposed by Prof. Itoh to produce a PBG structure in microstrip
technology consisted in drilling a periodic pattern of cylinders in the substrate of the
microstrip line to locate implants of different materials within them, or to leave them
filled by air [QIA 97]. A photograph of a prototype is shown in Fig. 1.3. However, it
was soon found that PBG structures with even deeper and wider stopbands could be
simply achieved by etching a periodic pattern of circles in the ground plane along the
microstrip line. This approach is simpler to fabricate, compatible with the monolithic

Figure 1.3: PBG crystal in microstrip technology obtained by drilling a periodic pattern in the
dielectric substrate, as it was originally proposed by Prof. Itoh at UCLA. (Source:
http://www.cwc.nus.edu.sg/news/seminar/arch1.shtml, speaker’s notes on ‘Photonic Bandgap
structures for microwave circuits’, by Dr A. Alphones at the Center for Wireless
Communications, National University of Singapore).
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technology, and permits the PBG structure to be integrated with other microstrip
components in the upper plane. As a first approximation, a PBG microstrip structure
with three rows of same-size and equidistant circles, one of them etched in the ground
plane just below the upper-plane conductor strip and the two others at both sides of it,
was designed [RAD 98]. A photograph of a prototype is shown in Fig. 1.4.
An also very interesting PBG structure for planar microwave circuits was later
proposed. It is a more compact crystal referred to as Uniplanar Compact PBG (UC-
PBG) structure, which realizes a 2D periodic network of LC circuits without
introducing vias. It is also very attractive for applications to MICs and MMICs
because of the easy and low cost realization as well as compatibility with standard
fabrication techniques, although the rejection level provided by it in the forbidden
band is not as predictable and regular as in the previous structures [QIA 98a, YAN
98]. A sketch of the PBG crystal structure can be seen in Fig. 1.5.
The range of applications proposed for these PBG structures in microstrip technology
in the last years has been very wide. Among them we can include broadband harmonic
tuning in power amplifiers [RAD 98a, RAD 98b, RAD 98c, HAN 99, YOO 01],
oscillators [XUE 01] and mixers [YAN 99a], to increase the output power and the
efficiency, and to reduce the spurious harmonics of these active devices; the
implementation of microstrip lowpass filters with a wide high-frequency rejection

(a)

(b)

Figure 1.4: PBG crystal in microstrip technology obtained by etching a 2D lattice of holes in
the ground plane (b), while the upper plane is unperturbed (a), as it was originally proposed
by Prof. Itoh at UCLA. The photograph shows a prototype fabricated at the Public University
of Navarre, Spain.
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Figure 1.5: Uniplanar Compact PBG (UC-PBG) structure proposed by Prof. Itoh at UCLA.
This more compact crystal realizes a 2D periodic network of LC circuits without introducing
vias, as it is shown in the sketch.
(Source: http://www.cwc.nus.edu.sg/news/seminar/arch1.shtml, speaker’s notes on ‘Photonic
Bandgap structures for microwave circuits’, by Dr A. Alphones at the Center for Wireless
Communications, National University of Singapore).

bandwidth [RUM 98, YAN 99a, KIM 00]; the implementation of microstrip bandpass
filters with intrinsic spurious suppression [YAN 98a, YAN 99, YAN 00, JI 00]; and
suppression of radiation at harmonic frequencies in microstrip patch antennas with
PBG ground plane [HOR 99], or reduction of their power losses and improvement of
their radiation pattern due to the inhibition of surface wave excitation [COC 98, COC
99].
Other more sophisticated applications that are also interesting to mention include the
reduction of parallel-plate mode leakage in conductor-backed coplanar waveguide and
in stripline [MA 98, MA 99, YAN 99], the suppression of the coupling between
adjacent microstrip lines [LEO 02], and the implementation of TEM waveguides
[YAN 99b]. It is also interesting to note that other different periodic patterns have
been proposed by several groups to implement PBG crystals in microstrip technology
[XUE 00, KIM 00a], and even PBG structures for coplanar waveguides have been
lately proposed [FU 01].
Actually, the topic of PBG structures for planar microwave circuits (particularly
microstrip circuits) has attracted an increasing interest among the researchers in the
last years, that has led to an important number of journal articles devoted to them, and
to the introduction of sections dedicated to the topic in the latest books about
microstrip technology that have been published [EDW 00, HON 01, ITO 01]. It can be
said that the topic is growing very quickly and becoming quite popular in the
microwave planar circuit community, due to the promising and exciting applications
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envisaged. However, the new terminology, concepts, ideas and applications must not
fade the fact that these devices are intimately related to the historically known
microwave and millimeter wave periodic structures [COL 91]. In fact, microwave
applications of periodic structures can be dated back to the early days of radar, with
such examples as one-dimensional (1-D) slotted-waveguide array antennas, as well as
two-dimensional (2-D) frequency selective surfaces (FSSs) and polarization diplexers.
The emphasis of recent research efforts, however, is on 1-D or 2-D PBG structures
that are compatible with modern planar circuit fabrication technology. Applying the
PBG concept allows one to greatly extend the horizon of imagination when conceiving
novel structures to control the behavior of electromagnetic waves, whether it is a
guided wave, surface wave, or radiation wave. For example, as it has been previously
commented, microstrip-based lowpass (rejected band) filters can be achieved by
modifying the dielectric substrate [QIA 97] and/or the ground plane [RAD 98, YAN
99], rather than following the traditional high-low impedance line approach. In the
same way, surface wave and leaky wave suppression can be achieved by the same
means.

1.2. Overview of the thesis

The work presented in this thesis is focused on the study of PBG structures in
microstrip technology for circuit applications. The starting point will be the PBG
structure for microstrip lines proposed by Prof. Itoh in 1998, and obtained by etching a
periodic pattern of circles, following a square lattice, in the ground plane of a
microstrip line. The frequency response of this structure was very promising, since it
included a low-loss passband, together with a wide and deep rejected band whose
central frequency is fixed by the periodicity of the perturbation. However, the analysis
and design of the structure was troublesome, since it features a ground plane
perturbation of distributed nature, that is difficult to fit in the models customarily
employed to analyze microwave periodic structures. Actually, the analysis and design
of these devices was carried out with no more tools than time-consuming full-wave
electromagnetic simulations, and a trial method was used to adjust the structure
parameters to satisfy the required specifications. In order to surpass these difficulties,
and to have a better insight into the operation of the structure, a very convenient way
to model Photonic Bandgap structures for planar microwave and millimeter wave
circuits that suits very well distributed perturbations is proposed: the use of the
coupled mode theory. Here we have applied it to PBG structures in microstrip
technology, but it could be easily extended to other planar waveguides.
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In order to formulate an accurate coupled mode theory suitable for microwave and
millimeter wave devices, the cross-section method will be used in the chapter 2 of  this
thesis. The method will be rigorously applied to open waveguides that can include
perturbed ground planes and strip conductors, covering all of our cases of interest. As
a result of it, the system of coupled mode equations that characterizes the nonuniform
waveguide of interest will be obtained. It is interesting to remark that there are no
approximations involved in this process. However, as it is explained in chapter 3, the
problem can be notably simplified by realizing several reasonable approximations that
will eventually lead to a simplified system of coupled mode equations that allows us to
obtain a fast numerical solution of the general problem, and that features analytical
solutions for the case of uniform PBG structures. In this way, a comprehensive set of
analytical expressions for the most important design parameters of PBG microstrip
structures will be furnished. The set of analytical expressions available cover a wide
scope, ranging from the S parameters to the Bloch wave analysis, and constitutes a
very useful and unique set of tools for the analysis and design of these devices.
The study of PBG structures in microstrip technology using the coupled mode theory
provides also physical insight about the operation of the structure, and reveals a direct
and fruitful link with the well established topic of Fiber Bragg Gratings (FBGs) in the
optical regime. As a consequence, several ideas and techniques that are widely
employed in the field of FBGs, can be transposed to the novel and emergent field of
PBG structures for microstrip lines, to improve their performance. In this way, in
chapter 4, optimization techniques to enhance the performance of PBG structures in
microstrip technology will be proposed and tested. Using them, the ripple that appears
in the passband can be eliminated, wider rejected bandwidths can be obtained, the
circuit layout area required can be reduced, and non-periodic frequency responses as
well as multiple frequency tuned devices, can be achieved.
To finish this work, in chapter 5 several examples of practical applications of PBG
structures in microstrip technology are proposed and tested. The range of applications
considered is quite wide, including the suppression of spurious bands and harmonics
in passive and active circuits for enhanced out of band behaviour and higher
efficiency, the implementation of enhanced lowpass filers and high rejection bandpass
filters, the implementation of high-Q fully planar resonators, and the design of chirped
delay lines to realize quadratic-phase filters with applications like real-time Fourier
analysis. All of the examples presented show successfully the feasibility of the
applications proposed and, in general, the high potential of these novel structures.
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   CHAPTER 2

COUPLED MODE THEORY
THE CROSS-SECTION METHOD

The basic idea of the cross-section method is that the electromagnetic fields at any
cross section of a nonuniform waveguide can be represented as a superposition of the
forward and backward travelling waves associated to the different modes of an
auxiliary uniform waveguide that has the same cross section and identical distribution
of ε and µ as the considered cross section. The coefficients of this superposition can
be seen as the complex amplitudes of the modes along the nonuniform waveguide, and
satisfy a set of first order linear ordinary differential equations, that turn into integro-
differential equations for open waveguides, known as the coupled mode equations. In
this way, the general problem of field derivation in a nonuniform waveguide (i.e. the
three-dimensional (3D) electromagnetic problem) is reduced to the two-dimensional
(2D) problem of mode field calculation in a uniform waveguide, and to the one-
dimensional problem (1D) of solution of the coupled mode equations.
In this chapter the method described will be developed for general nonuniform
straight waveguides, and the specific details of its application to PBG structures in
microstrip technology will be given.
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2.1. Introduction

The first works that gave rise to the cross-section method were driven by research for
the waveguide telecommunications projects [MIL 54, KAZ 59]. These projects dealt
with the construction of pipes several kilometers length for information transmission
using circular oversized waveguides and the low loss TE01 mode operating at
millimeter wavelengths. Finally, metallic waveguide communications were not widely
applied mainly due to the emergence of the optical fibers. Actually an important
number of specialists that had been working in metallic waveguides migrated to the
optical  communications field transferring the acquired knowledge and the developed
techniques.
The initial ideas relating to the cross-section method belong to the book of Kisun’ko
[KIS 49] and the papers of Gutman, published in the former Soviet Union. The first
paper published in the western countries was Stevenson’s article [STE 51]. However,
the extensive application of the method did not start until after the publication of
Schelkunoff [SCH 55]. In his paper the cross-section method is proposed again and
studied in detail, and it is illustrated by several examples.
Reiter [REI 59], Katsenelenbaum [KAT 57] and Unger [UNG 58] made significant
contributions to develop the method. Of special importance is the book of
Katsenelenbaum [KAT 61] (in Russian). It is the first book devoted specifically to the
cross-section method and studies the problem for closed waveguides in great detail
and depth.
The problem of nonuniform open waveguides was first studied applying the cross-
section method by Shevchenko in his also very important book [SHE 71]. It is
interesting to note that the referenced book is actually a translation of the original one
published by the author in Russian in 1969.
The coupled mode theory was later applied to nonuniform optical dielectric
waveguides by various authors and using various methods. We want to make
reference here in particular to Marcuse [MAR 74], who studied optical dielectric slab
waveguides and to Snyder [SNY 71, SNY 72, SNY 83] who formulated the coupled
mode theory for nonuniform optical fibers. We want to highlight also, in the context of
this thesis, the work of Yariv [YAR 73, YAR 84] who applied the coupled mode
theory to optical gratings. However, it is important to note that due to the weakness of
the perturbation customarily present in the nonuniform optical dielectric waveguides,
they can be most of the times studied using a simplified coupled mode theory that
performs the expansion of the fields in terms of “ideal modes” (the modes of the
unperturbed uniform waveguide). However, Marcuse and Snyder have also formulated
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the coupled mode theory for optical dielectric waveguides realizing the expansion in
terms of “local modes” and hence applying in fact the cross-section method.
To finish this quick historical review we want to mention two books that deal with the
cross-section method for closed metallic waveguides and study it in great detail and
depth including numerous examples and applications. The first one is the book of
Sporleder and Unger [SPO 79]. It is a very serious work and was during decades the
only book available in English on this topic. The second one is a new and improved
version in English of the previously mentioned book of Katsenelenbaum [KAT 61]. It
contains very solid foundations on the theory of the cross-section method, analyzes a
lot of examples and special cases, and includes the new material that appeared until
the moment of its publication in 1998, constituting an excellent reference on the topic
[KAT 98].

In this chapter we are going to apply the cross section method to analyze nonuniform
open waveguides using the coupled mode theory formalism. The organization of the
chapter will be the following: we will start in section (2.2) studying the properties of
the modes in uniform waveguides. Both closed and open waveguides will be
considered. We will continue in section (2.3) centering our attention in the nonuniform
waveguides and in the mode coupling phenomena that take place at them. The cross
section method will be used to study them. First, in section (2.3.1), the coupled mode
equations and the coupling coefficient expressions will be deduced for nonuniform
waveguides with ε and µ variable in the propagation direction. It is assumed, however,
that in this case the metals present at the waveguide do not vary in the propagation
direction, i.e. that the metals have constant cross section. The study will be extended
to nonuniform waveguides that include metals with variable cross section, in section
(2.3.2). There, it will be demonstrated that the same coupled mode equations are still
valid for these last waveguides, and the new expressions for the coupling coefficients
will be obtained. To finish, in section (2.3.2.3), a very useful expression for the
coupling coefficient Cm,-m as a function of the characteristic impedance of the mode
will be obtained and its accuracy will be discussed.

2.2. Uniform waveguides: modes

As it has been seen in the abstract of the chapter, the modes of the uniform
waveguides (waveguides that have a cross-section and a ε and µ profile that does not
vary with distance along the waveguide axis, i.e. that are translationally invariant) will
be the building blocks used by the cross-section method to expand the total field
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present in the nonuniform waveguide. In this section we are going to review the form
of these modes and the properties that they satisfy.
In first place it is important to note that we are going to assume steady-state sinusoidal
time dependence of the fields, and we are going to use their phasor representation.
Hence the form of the fields is assumed to be:

tj

tj

ezyxHtzyxH

ezyxEtzyxE
⋅⋅

⋅⋅

⋅=

⋅=
ω

ω

),,(),,,(

),,(),,,(
(2.1)

and to obtain the value of the field that actually exists we have to take the real or the
imaginary part of the previous quantities.
As it is well known, Fourier analysis allows us to express any field ),,,( tzyxE  or

),,,( tzyxH  as a superposition of fields with steady-state sinusoidal time dependence
of different frequencies, of the form given by eqn. (2.1). Therefore, the analysis that
we are going to realize assuming that form for the fields, imposes no restrictions.
The vectors ),,( zyxE and ),,( zyxH are known as phasors of the electric and
magnetic field, respectively, and we are going to work with them throughout this
thesis. Using phasors, Maxwell equations have the following form:

DjJH
BjE

B
D

⋅⋅+=×∇
⋅⋅−=×∇

=∇
=∇

ω
ω

ρ
0

(2.2)

To take into account the interaction between the fields and the media we have to add
the following auxiliary relations:

HHB
EED

EJ

r

r

⋅⋅=⋅=
⋅⋅=⋅=

⋅=

µµµ
εεε

σ

0

0 (2.3)

The MKS (or international) system of units is used throughout this work. With it, the
involved quantities are defined as follows:

E  is the electric field intensity, in V/m
H  is the magnetic field intensity, in A/m
D  is the electric flux density, in Coul/m2

B  is the magnetic flux density, in Wb/m2
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J  is the electric current density, in A/m2

ρ  is the electric charge density, in Coul/m3

σ  is the conductivity of the medium, in S/m

 F/m10854.8 12
0

−⋅≈ε , is the dielectric constant (or permittivity) of vacuum
ε  is the dielectric constant (or permittivity) of the medium, in F/m

 H/m104 7
0

−⋅⋅= πµ , is the permeability of vacuum
µ  is the permeability of the medium, in H/m

In order to obtain the modes of a waveguide we are going to assume that the
waveguide region is source-free. Hence it is assumed that there are no external current
sources in the waveguide section ( 0=J ), and that the fields are excited by waves
incident on this section. Taking advantage of this assumption the third and fourth
Maxwell equations (eqn. (2.2)) can be rewritten as:

EjH
HjE

⋅⋅⋅=×∇
⋅⋅⋅−=×∇

εω
µω

(2.4)

It is interesting to note that in these equations the existence of a medium with
conductivity σ can be taken into account defining a complex ε with value:








⋅
⋅−⋅=⋅−=

εω
σε

ω
σεε jjcomp 1 (2.5)

that in the case of a good conductor ( εωσ ⋅>> ) can be rewritten as:

ω
σε ⋅−≈ jcomp (2.6)

Let us define a Cartesian coordinate system (x, y, z) where the z axis is parallel to the
waveguide axis. The type of solution sought for the waveguide modes is that
corresponding to a wave that propagates along the z axis and has the following form:

zj

zj

eyxHzyxH

eyxEzyxE
⋅⋅−

⋅⋅−

⋅=

⋅=
β

β

),(),,(ˆ
),(),,(ˆ

(2.7)

where ),,(ˆ zyxE  and ),,(ˆ zyxH  are the total electric and magnetic field of the mode,

),( yxE  and ),( yxH  are the (x,y) dependent part of the electric and magnetic field of
the mode, i.e. they are the factors that describe the mode field dependence in the cross-
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section plane, and β is known as the phase constant, propagation constant or
wavenumber of the mode. In this work we are going to assume that there are no
dissipative losses in the waveguide, so there will be no attenuation constant together
with the phase constant. For a frequency of operation a mode can be in the waveguide
in propagation (it happens if 02 >β , and in this case power flows through the

waveguide) or cut-off (it happens if 02 <β and in this case it will have evanescent
behaviour, suffering reactive attenuation along the waveguide without carrying
power).
For a given uniform waveguide there exists a set of solutions of the form expressed by
eqn. (2.7) that are known as the modes of the waveguide. Let us numerate all modes of
the waveguide with a superscript i , where i is an integer that can take positive and
negative values.
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(2.8)

As it can be seen each mode is characterized by the (x,y) dependent part of the of the
electric and magnetic field, ),( yxEi  and ),( yxH i , and by its phase constant, βi .
These parameters must satisfy the following relations:
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that are obtained by substituting the form of the modes (eqns. (2.8)) in the Maxwell
equations for a source-free region (eqns. (2.4)).
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The above six equations (eqns. (2.9) and (2.10)) can be solved for the four transverse
fields components in terms of the longitudinal field components ( i

zE  , i
zH ), obtaining:
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where

εµω ⋅⋅=k

(see, for instance, [POZ 98]).

The fields of the modes can have arbitrary normalization and consequently, in general,
),( yxEi  and ),( yxH i  are complex. However, in our case of a nonabsorbing

waveguide (i.e. a waveguide without dissipative losses) ε and µ are real, and eqns.
(2.11) (together with (2.10) and (2.9)) show that for a mode in propagation
( ii ββ ⇒> 02  real) it is consistent to choose the components of ),( yxEi  and ),( yxH i

so that the transverse components are real and the longitudinal components are
imaginary. We will adopt this convention throughout this work and thus a mode in
propagation will satisfy:

i
y

i
x

i
y

i
x HHEE  , , ,  are real

i
z

i
z HE  ,  are imaginary

As it will be shown later, this convention will be very convenient because it makes
very simple the relation between the normalization of the mode fields and the power
carried by the propagating mode [SNY 83].

Until now we have formulated the mode problem in such a way that it could seem that
the modes with positive superscripts and the modes with negative superscripts are
totally independent between them. This is not true. Rigorously speaking, we have

(2.12)
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developed the waves associated to the modes. Actually each mode (characterized by a
positive index i) has two associated waves: one forward travelling wave (with a
superscript +i) and one backward travelling wave (with a superscript –i).
The relation between their phase constants is:

ii ββ −=− (2.13)

where, for i > 0  (forward travelling wave) ,  βi  > 0  if the mode is in propagation, and

ii j ββ ⋅−=  if the mode is cut-off.

On the other hand the relation between the (x,y) dependent part of the fields of the
forward and backward travelling waves associated to the i mode is taken as:
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(2.14)

In this case eqns. (2.9) , (2.10) and (2.11) are invariant to the superscript sign, that is,
if the fields of the forward wave satisfy them, then the fields of the backward wave
also satisfy the same equations (if eqns. (2.13) and (2.14) are applied). However it is
important to notice that the relation between the (x,y) dependent part of the fields
(2.14) has been taken following [KAT 98]. Actually the relation could be also taken
with iE  and iH  exchanged, as it is done in [SPO 79], [SNY 83] and [MAR 91], for
example.

2.2.1. Closed waveguide

In a uniform closed waveguide (i.e. a uniform waveguide that includes a metallic
cover that surrounds it) the set of modes proposed in the previous section, both
propagating and evanescent, forms a complete and orthogonal system. They can be
numerated with a superscript i (see eqn. (2.8)), and for a given uniform closed
waveguide the set is composed by an infinite number of discrete modes [SHE 71],
[ROZ 97].

2.2.1.1. Expansion of the fields

Any electromagnetic field distribution that can exist in the uniform closed waveguide
can be expanded in a unique way as a linear combination of its modes (including the
forward and backward travelling waves). The expansion has the following form:
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where the coefficients Ai have in general constant complex values in our case of
uniform lossless waveguides.

2.2.1.2. Orthogonality relations and normalization

As we have previously stated, in a uniform closed waveguide the fields of the different
modes are mutually orthogonal. The orthogonality relationship will be formulated for
any combination of modes, superscript signs and in particular for the forward and
backward travelling waves of the same mode (same superscript but with different
sign). The expression for the orthogonality relationship in a closed waveguide (with
isotropic materials, i.e. with ε and µ scalars) can be easily obtained applying the

Lorentz lemma to the fields ii HE ˆ , ˆ  and mm HE ˆ , ˆ in a waveguide section defined
between two planes z=z1 and z=z2 , [KAT 98], [COL 91], obtaining:

( ) ( )( )∫∫ =⋅⋅×+×
S

immi dSzHEHE 0ˆ    ,   im ≠ (2.16)

where ẑ  is the unitary vector in the z direction (waveguide axis), and the integral is
performed over the cross section surface, S.
Rigorously speaking the orthogonality integral (2.16) is identically equal to zero if

im ββ ≠ . Actually, if two modes are degenerate (i.e. their phase constants are equal,

im ββ = ), then the orthogonality relationship (2.16) could be not satisfied between
them. However, for any subset of n degenerate modes we can customarily choose
suitable linear combinations of them in such a way that the subset of n degenerate
modes can be converted into a new subset of n mutually orthogonal modes. Thus we
may, generally speaking, assume that the orthogonality relationship (2.16) is always
satisfied for im ≠ [COL 91].
Other orthogonality relationship that can be obtained in the same way as the previous
one (and hence is valid for closed waveguides with isotropic materials) has the
following form [COL 91]:

( )∫∫ =⋅⋅×
S

mi dSzHE 0ˆ      ,     im ≠   and   im −≠ (2.17)
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where ẑ  is again the unitary vector in the z direction (waveguide axis), and the
integral is performed over the cross section surface, S.
As it can be seen, this last orthogonality relation is not satisfied between the forward
and backward travelling waves of the same mode, +i , -i .

Let us normalize the electromagnetic fields of the i mode, ii HE   and , in the following
way:

( )∫∫ =⋅⋅×
S i

ii NdSzHE ˆ (2.18)

It is interesting to note that due to the relation taken between the fields of the forward
and backward travelling waves associated to the same i mode (see eqn. (2.14)), the
normalization factor will satisfy:

ii NN −−= (2.19)

The orthogonality condition of eqn. (2.16) and the normalization of eqn. (2.18) can be
written in the same equation giving rise to the following expression:

( ) ( )( )∫∫ ⋅⋅=⋅⋅×+×
S iim

immi NdSzHEHE 2ˆ δ (2.19)

where the Kronecker symbol is δim=0 for mi ≠ , whereas δii=1.

2.2.1.3. Power flow

As it was previously discussed, the modes in propagation in a closed waveguide
transport power along the waveguide, whereas the modes in cutoff have evanescent
behaviour, suffering reactive attenuation without carrying power. For our case of
nonabsorbing waveguides power flows parallel to the waveguide axis (z direction) and
is distributed over the cross-section with density given by the magnitude of the time-
averaged Poynting vector. Integrating it over the cross-section for a propagating i
mode, the total power carried by the mode is calculated as:
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where the convention for the mode fields given by eqn. (2.12) has been applied, and
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being ai the complex amplitude of the mode.
Taking advantage of the normalization of the mode fields (eqn. (2.18)), the expression
for the power carried by the propagating i mode becomes:

iii NaP ⋅⋅= 2

2
1 (2.20)

This last expression reveals that in our case where the convention for the mode fields
given by eqn. (2.12) has been taken, the normalization factor, Ni , for the propagating
modes must be a positive real number for 0>i (forward propagating waves, and hence
positive power flow), and a negative real number for 0<i  (backward propagating
waves, and hence negative power flow). This is coherent with the relationship that the
normalization factors must satisfy, eqn. (2.19).

Regarding the total power carried by the closed waveguide (in the increasing z
direction), it is given by the total Poynting vector integrated over the cross-section. Its
value is:

( )∫∫ ⋅⋅×⋅=
S tottottot dSzHEP ˆˆˆRe

2
1 *

Expanding tottot HE ˆ and ˆ  as in eqn. (2.15), applying the convention for the mode fields
given by eqn. (2.12), using the orthogonality and normalization conditions of eqns.
(2.17) and (2.18), and recalling the definition for the power carried by a propagating
mode of eqn. (2.20), we have that for our case of a nonabsorbing waveguide:

∑∑ =⋅⋅=
i

i
i

iitot PNaP 2

2
1 (2.21)

where the summation is performed for all the propagating modes (with both signs).
Thus, the total power carried by the waveguide (in the increasing z direction) is equal
to the power in all forward propagating modes, minus the power in all backward
propagating modes (since the later will have a normalization factor with negative sign,
and the power carried by them will be negative, i.e. in the opposite direction).



Chapter 222

2.2.2. Open waveguide

Unlike the modes of a closed waveguide, the discrete modes of an open waveguide do
not form a complete system. Actually, the radiated field can not be represented by
them. Moreover it can be demonstrated that, in contrast to the case of closed
waveguides, the system of discrete modes of an open waveguide will be formed by a
finite number of modes, all of them in propagation.
To obtain a complete system of modes for an open waveguide, able to represent any
field distribution that can exist in the open waveguide (including the radiated fields),
we must complement the well known system of discrete modes (that exist also in the
closed waveguides and has a discrete spectrum), adding a system of modes with a
continuous spectrum. This additional system allows us to represent the radiated field,
and together with the traditional system of modes with discrete spectrum forms a
complete system for the open waveguide. The modes of this complete system will be
also mutually orthogonal and hence will propagate independently of each other in the
case of a nonabsorbing uniform open waveguide.
The basic idea to construct the complete system of modes is the following. If we apply
Maxwell equations, eqns. (2.4), to an open waveguide, we impose solutions that imply
propagation (or reactive attenuation) in the z direction (waveguide axis) (i.e. we
impose the mode solutions, eqn. (2.8)), and we impose the boundary conditions,
including the so called “radiation condition” (the fields must vanish as the distance
from the waveguide increases to infinity), then we will obtain the well known system
of modes with discrete spectrum of the open waveguide. This system of modes will
not be complete though. The “radiation condition” imposed is very reasonable at first
sight, because it simply implies that the power carried by the mode is finite. However,
in order to obtain the system of modes with continuous spectrum of the open
waveguide we must relax this last condition. We must impose a weaker condition: the
fields of the mode must be finite when the distance from the waveguide goes to
infinity. In this way we will obtain the sought system of modes with continuous
spectrum that together with the system of modes with discrete spectrum forms the
complete orthogonal system for the open waveguide that can be used for the
representation of any physically realizable field distribution in the waveguide. It is
important to note that the fact that the modes with continuous spectrum do not vanish
at infinity, and hence have infinite power, does not lead to non physical results. The
reason is that no physically realizable source generates only one of these modes. A set
of them is always excited. Since the spectrum of these modes is continuous, the field
is always expressed as an integral of them, and this integral will always satisfy the
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radiation condition (the value of the integral will vanish as the distance from the
waveguide increases to infinity), [SHE 71].

A very interesting point of view to understand the success of the method proposed and
the properties of the continuous spectrum modes of an open waveguide, is to consider
each of them as the limit of a mode of a closed waveguide (formed by surrounding the
open waveguide with a metal clad) when the metal clad goes to infinity. Actually, an
open waveguide can be always regarded as a waveguide closed at infinity, and hence
the condition to obtain the continuous spectrum modes of having finite fields at
infinity is not so strange. [SHE 71], [SNY 83], [ROZ 97].

2.2.2.1. Expansion of the fields

Any electromagnetic field distribution that can exist in a uniform open waveguide can
be expanded in a unique way as a linear combination of its modes with discrete
spectrum and its modes with continuous spectrum (including the forward and
backward travelling waves). In this work we are going to center our attention on open
waveguides that are essentially constituted by a ground plane with perturbations (i.e.
they are formed by a ground plane and customarily include a single dielectric and
other conductors, and are surrounded by air). This case includes the microstrip line,
the slotline, the coplanar waveguide... , and the structures produced by etching the
ground plane in these planar technologies. So it includes all our cases of interest. For
this kind of open waveguides the expansion of the fields has the following form [ROZ
97], [ROZ 92], [MON 93]:
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tit kkk β−=     ,    with  22

0)( tti kkk −+=β   for  0>i
22

0)( tti kkk −−=β   for  0<i

000 εµω ⋅⋅=k

The first summation is performed over the system of modes with discrete spectrum
(there will be M discrete modes, all of them in propagation, with their corresponding
forward and backward travelling waves, and 2

0
2 ki >β ).

The second summation and the integral are performed over the modes with continuous
spectrum. The summation is necessary due to the existence of degenerate modes that
share the same propagation constant )( ti kβ (the i index of the propagation constant of
the continuous spectrum modes only selects the sign). As it can be seen the
propagation constant of these modes of the continuous spectrum can take a continuous
set of values. When the kt parameter is in the range 00 kkt <<  , then the propagation

constant will be in the range 2
0

2 )(0 kkti << β , giving rise to propagating (radiative)

modes. On the other hand, when the kt parameter is in the range ∞<< tkk0 , then the

propagation constant will be in the range 0)(2 <<∞− ti kβ , giving rise to attenuating
modes (modes having evanescent behaviour and suffering reactive attenuation).
The coefficients Ai (corresponding to the discrete spectrum modes), and Ai(kt)
(corresponding to the continuous spectrum modes) have in general constant complex
values in our case of uniform nonabsorbing open waveguides.

It is important to note that for other types of open waveguides (like for example the
dielectric rib waveguide [ROZ 97] or the optical fiber [SNY 83]) the expansion
corresponding to the continuous spectrum can have slightly different forms, although
it will always include the integral of the mode fields over a continuous parameter.

2.2.2.2. Orthogonality relations and normalization

As we have previously stated, in a uniform open waveguide the fields of the different
modes are mutually orthogonal. The orthogonality relationship will be formulated for
any combination of modes (including the modes with discrete spectrum and the modes
with continuous spectrum), superscript signs, and, in particular, for the forward and
backward travelling waves of the same mode (same superscript but with different
sign). The expressions for the orthogonality relationships in an open waveguide (with
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isotropic materials, i.e. with ε and µ scalars) will have the form:

( ) ( )( )∫∫ =⋅⋅×+×
S

immi dSzHEHE 0ˆ    ,   im ≠ (2.23a)
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where ẑ  is the unitary vector in the z direction (waveguide axis), and the integral is
performed over the infinite cross section surface, S.
Eqn. (2.23a) accounts for the orthogonality relationship existent between each pair of
modes of the discrete spectrum, and eqn. (2.23b) for the orthogonality relationship
between a mode of the discrete spectrum and a mode of the continuous spectrum.
These equations can be easily obtained by applying the Lorentz lemma to the mode
fields in a waveguide section defined between two planes z=z1 and z=z2. [COL 91].
On the other hand, eqn. (2.23c) accounts for the orthogonality relationship existent
between each pair of modes of the continuous spectrum. An easy way to obtain it is to
consider each mode of the continuous spectrum as the limit of a mode of a closed
waveguide (formed by surrounding the open waveguide with a metal clad) when the
metal clad goes to infinity. Another point of view is to consider the open waveguide as
a waveguide closed at infinity. In this way the orthogonality relationship can be easily
obtained by applying the Lorentz lemma to the mode fields, as in the previous cases.
[SNY 83], [ROZ 97], [ROZ 92].
It is important to note that, rigorously speaking, the orthogonality integrals (2.23) are
identically equal to zero if im ββ ≠ . Actually, if two modes are degenerate (i.e. their

phase constants are equal, im ββ = ), then the orthogonality relationships (2.23) could
be not satisfied between them. This could be specially troublesome in eqn. (2.23c).
However, for any subset of n degenerate modes we can customarily choose suitable
linear combinations of them in such a way that the subset of n degenerate modes can
be converted into a new subset of n mutually orthogonal modes. Thus we may, in a
general discussion, assume that the orthogonality relationships (2.23) are always
satisfied for im ≠  or tt kk ≠~  [COL 91].
Other orthogonality relationships that can be obtained in the same way as the previous
ones (and hence are valid for open waveguides with isotropic materials) have the
following form [COL 91], [SNY 83], [ROZ 97], [ROZ 92]:
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( )∫∫ =⋅⋅×
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where ẑ  is again the unitary vector in the z direction (waveguide axis), and the
integral is performed over the infinite cross section surface, S.
As it can be seen, this last orthogonality relation is not satisfied between the forward
and backward travelling waves of the same mode.

Let us normalize the electromagnetic fields of the modes, in the following way [SNY
83], [ROZ 97], [ROZ 92]:
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where δ(x) is the Dirac delta function. As it can be seen, eqn. (2.25a) refers to the
discrete spectrum modes, and eqn. (2.25b) corresponds to the continuous spectrum
modes.
It is interesting to note that due to the relation taken between the fields of the forward
and backward travelling waves associated to the same mode (see eqn. (2.14)), the
normalization factor will satisfy:

ii NN −−= (2.26a)

)()( titi kNkN −−= (2.26b)

The orthogonality conditions of eqns. (2.23) and the normalizations of eqns. (2.25) can
be written together giving rise to the following expressions:
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where δim is the Kronecker symbol, and δ(x) is the Dirac delta function.

2.2.2.3. Power flow

As it has been previously stated, in an open waveguide all the modes with discrete
spectrum are in propagation, i.e. all of them can transport power along the waveguide.
These modes are also known as the bound modes of the open waveguide. On the other
hand,  part of the modes of the continuous spectrum will be cut-off (i.e. they will have
evanescent behavior, suffering reactive attenuation along the open waveguide without
carrying power) and part of them will be in propagation, accounting for the radiated
power. As a result, the modes of the continuous spectrum are often referred to as the
radiation modes.
For our case of nonabsorbing open waveguides the power of the bound modes
(discrete spectrum modes) flows parallel to the waveguide axis (z direction) and is
distributed over the cross-section with density given by the magnitude of the time-
averaged Poynting vector. Integrating it over the cross-section for an i mode, the total
power carried by the bound mode is calculated as [SNY 83]:
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being ai the complex amplitude of the discrete spectrum mode.
Taking advantage of the normalization of the fields for the discrete spectrum modes
(eqn. (2.25a)), the expression for the power carried by the i bound mode becomes:

iii NaP ⋅⋅= 2

2
1 (2.28)

Regarding the continuous spectrum modes (or radiation modes), the total time-
averaged power flow carried by them parallel to the waveguide axis can be calculated
as:



Chapter 228
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Expanding the total field of the continuous spectrum, radrad HE ˆ and ˆ , as a function of
the continuous spectrum modes as in eqns. (2.22):
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being ai(kt) the complex amplitude of the continuous spectrum modes, applying the
convention for the mode fields given by eqn. (2.12), and using the orthogonality and
normalization conditions of eqns. (2.24c) and (2.25b), it can be obtained [SNY 83]:
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As it can be seen to calculate the power flow the integral is performed over the range

00 kkt << , i.e. the range corresponding to the propagating or radiative modes. The

range ∞<< tkk0  is not included in the calculation because it corresponds to the
attenuating or evanescent modes, which do not propagate power.
It is interesting to note that individual radiation modes, like bound modes, propagate
energy parallel to the waveguide axis. The total radiated power (in the positive z
direction) is the summed power of individual radiation modes, as expressed by eqn.
(2.29). However, because of the interference between the fields of different radiation
modes, the continuum of modes expressed by integral in eqn. (2.29), represents the
expected behavior of the total radiation field, i.e. a flow of power away from the
waveguide. Clearly, an individual radiation mode is not physically meaningful and is
only a convenient building block for describing radiation mathematically.

The expressions for the power carried by the propagating modes, eqns. (2.28) and
(2.29), reveal that in our case where the convention for the mode fields given by eqn.
(2.12) has been taken, the normalization factors, Ni  for the discrete spectrum modes,
and Ni(kt) for the continuous spectrum modes in propagation, must be positive real
numbers for 0>i (forward propagating waves, and hence positive power flow), and
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negative real numbers for 0<i  (backward propagating waves, and hence negative
power flow). This is coherent with the relationship that the normalization factors must
satisfy, eqn. (2.26).

Regarding the total power carried by the open waveguide (in the increasing z
direction), including the guided power and the radiated power, it is given by the total
time-averaged Poynting vector integrated over the cross-section. Its value is:

( )∫∫ ⋅⋅×⋅=
S tottottot dSzHEP ˆˆˆRe

2
1 *

Expanding tottot HE ˆ and ˆ  as in eqns. (2.22), applying the convention for the mode
fields given by eqn. (2.12), using the orthogonality and normalization conditions of
eqns. (2.24) and (2.25), and recalling the definitions for the power carried by a bound
mode (or discrete spectrum mode) of eqn. (2.28), and the power carried by the
radiation modes (or continuous spectrum modes) of eqn. (2.29), we have that for our
case of a nonabsorbing waveguide:
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where the summations are performed for all the propagation modes, with both signs,
and including the discrete spectrum modes and the propagating continuous spectrum
modes. Thus, the total power carried by the open waveguide (in the increasing z
direction) is equal to the power in all forward propagating modes, minus the power in
all backward propagating modes (since the later will have a normalization factor with
negative sign, and the power carried by them will be negative, i.e. in the opposite
direction).

It is important to note that if we want to calculate the total power radiated by an open
waveguide, we have to take into account the power radiated in the positive z direction
and the power radiated in the negative z direction, and we have to count all of it as
positive. For example, if a nonuniform open waveguide placed between z=0 and z=L
is excited by bound modes at z=0 and is matched at z=L, then the total power lost in it
due to radiation can be calculated as [MAR 91]:
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where the modes with positive superscripts account for power outflow at z=L, and the
modes with negative superscripts carry power away from the nonuniform waveguide
through the plane at z=0.

2.2.3. Calculation of the modes

In the last sections we have studied the general form and properties of the modes of
closed and open waveguides. However, when we have to solve an specific problem we
have to calculate the exact expressions for the modes. Several techniques have been
developed in order to calculate the modes of an specific waveguide. In general, if the
problem is somewhat complex it will be necessary to resort to numerical methods.
If the cross-section of the waveguide is one-dimensional or two-dimensional and
separable, the complete spectrum (including the discrete and continuous spectrum in
the case of open waveguides) can be obtained using classical procedures, giving rise to
more or less simple solutions, and even to analytical solutions in certain cases. [FRI
56], [FEL 73], [SHE 71].
If the waveguide cross-section is two-dimensional and non-separable, the application
of the transverse resonance method in the spectral [ITO 80] or in the space domain
[ROZ 87] or in the equivalent network form [KOS 86] can always, in principle, yield
its discrete spectrum (for the case of closed and open waveguides).
Regarding the continuous spectrum of open waveguides with two-dimensional non-
separable cross-section, to our knowledge there are very few approaches proposed to
calculate it. One interesting method that could be used is proposed in [ROZ 92], [ROZ
97]. It constitutes a modified transverse resonance method to allow for the calculation
of both, the continuous spectrum modes and the discrete spectrum modes.
The application of a similar method to calculate the continuous spectrum of open
microstrip lines is developed in [ROZ 95], and to calculate the continuous spectrum of
open slotlines is  described in [ROZ 92a].



Coupled mode theory – The cross-section method 31

2.3. Nonuniform waveguides: mode coupling. Application of the
cross-section method

As it is well known, in a loss-less waveguide that is uniform in the longitudinal
direction, the modes propagate (or attenuate) along it independently, i.e. without
transferring power between them. If the waveguide is, on the other hand, nonuniform
in the longitudinal direction the modes will no longer propagate along it
independently, but will transfer power between them. The mode coupling
phenomenon will take place.

2.3.1. Waveguides with εεεε and µµµµ variable in the propagation
direction

Let us consider a straight waveguide, nonuniform in the propagation direction (the
longitudinal direction), where ε and µ vary not only with x and y (in the transversal
direction) but also with z (in the longitudinal direction). To start, it will be assumed
that ε(x,y,z) and µ(x,y,z) are functions that are continuous with z, i.e. that evolve with z
without discontinuities. This condition can be expressed mathematically as:

( )zyx ,, 00ε    continuous  Syx ∈∀ ),(  00

( )zyx ,, 00µ    continuous  Syx ∈∀ ),(  00 (2.32)

where S is the surface of the waveguide cross-section.
We are going to study the propagation of electromagnetic waves along this waveguide
using the coupled mode theory – the cross section method. According to the cross-
section method, to describe the electromagnetic field in a nonuniform waveguide it is
necessary to expand the field at each cross-section (z=constant) in a Fourier-like series
of the modal fields of a reference waveguide. The reference waveguide will be a
uniform waveguide where ε and µ are the same functions of the transversal
coordinates x and y as in the corresponding cross-section of the nonuniform
waveguide. Obviously, the reference waveguides are different for different values of
the longitudinal coordinate z. Let us denote the coordinate system in this reference
waveguide as x, y and ζ. Obviously, the fields of the reference waveguide modes

depend on ζ appearing in the exponential factor ζβ ⋅⋅− ije , but they depend also on z,
since simultaneously the functions ε(x,y) and µ(x,y) depend on z.
We are going to formulate the theory for open waveguides that are essentially
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constituted by a ground plane with perturbations (i.e. they are formed by a ground
plane and customarily include a single dielectric and other conductors, and are
surrounded by air). This case includes the microstrip line, the slotline, the coplanar
waveguide... , and the structures produced by etching the ground plane in these planar
technologies. Therefore, it includes all our cases of interest. For this kind of open
waveguides the modal expansion of the fields has the following form in uniform
waveguides and hence in a reference waveguide (see eqn. (2.22)):
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If we were interested in other types of open waveguides (like for example the
dielectric rib waveguide or the optical fiber) the expansion corresponding to the
continuous spectrum would have slightly different forms, although it would always
include the integral of the mode fields over a continuous parameter (see section
2.2.2.1). If we were interested, on the other hand, in closed waveguides then the
expansion of the fields would only include the modes of the discrete spectrum,
resulting in a significantly simplified expression (see eqn. (2.15) and section 2.2.1.1).
The modes will be orthogonal between them satisfying the orthogonality relations
given by eqns. (2.23), and will be normalized following eqns. (2.25). Therefore they
will satisfy also eqns. (2.27):
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Let us represent the transversal components (components in the x and y directions)  of
the electromagnetic fields present in an arbitrary cross-section (fixed by z) of a straight
nonuniform waveguide, as a linear combination of the transversal field components of
the modes of an auxiliary uniform waveguide (reference waveguide) that has the same
cross-section and identical distribution of ε and µ as the cross-section of interest. In
this expansion only the modes propagating in the forward direction are needed.
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Let’s recall that in our notation zEyExEE zyx ⋅+⋅+⋅= ˆˆˆˆ  is the total field present, and
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i ⋅+⋅+⋅=  is the (x,y) dependent part of the field of the i mode.

Since the cross-section (and hence the reference waveguide) varies with z, the values
for  Qi  ,  Qi(kt) , Ri ,  Ri(kt) ,  , ),(  , ),,(  , ),,(  , ),(  , ),( yxHkyxEkyxEyxEyxE i
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y kyxHkyxHyxH  depend also on z. The expansion that we have

done is possible since the fields in a cross-section of a nonuniform waveguide where
ε(x,y,z) and µ(x,y,z) are functions continuous with z, and the fields in the reference
waveguide (that is uniform and has the same cross-section with identical distribution
of ε and µ) see the same medium and satisfy the same boundary conditions.
Consequently, the modal fields of the reference waveguide can be used as a base to
expand the fields present in the cross-section of the nonuniform waveguide.
Let us introduce new coefficients for the expansion, related to the previous ones in the
following way:
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iii aaQ −−=       ;      )()()( tititi kakakQ −−=
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Using the new coefficients and taking into account the relation between the fields of
the forward and backward travelling waves associated to the same i mode and given
by eqn. (2.14), the expansions of eqns. (2.33) can be rewritten as:
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As it can be seen the last equations, unlike eqns. (2.33), contain forward and backward
travelling waves. Moreover, all of them have the same expansion coefficients,
including the expressions for the electric and magnetic fields.
The functions employed in the expansion in eqns. (2.35) (mode fields of the reference
waveguide) satisfy in the cross-section the same boundary conditions as the fields of
the nonuniform waveguide that they represent, and therefore the series will converge
to the field that it represents in all the points of the cross-section. As a result, the term
by term differentiation of the series can be done without problems.
Let us develop the third and forth Maxwell equations, eqns. (2.4), into their
components:
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Substituting eqns. (2.35a) into the third component of the third Maxwell equation, eqn.
(2.36c), differentiating the series term by term, commuting the spatial derivatives with
the integration in kt and comparing the result with the third expression of eqns. (2.9) it
is obtained that:
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In the same way, substituting eqns. (2.35b) into the third component of the fourth
Maxwell equation, eqn. (2.36f), differentiating the series term by term, commuting the
spatial derivatives with the integration in kt and comparing the result with the third
expression of eqns. (2.10) it is obtained:
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The last two equations, eqns. (2.37), are the expansions for the longitudinal field
components which are similar to the expansions for the transversal field components
previously calculated, eqns. (2.35), and have the same expansion coefficients, ai(z) ,
ai(kt,z). In this way, we can consider ai(z) , ai(kt,z) as the complex amplitudes of the
modes in the given nonuniform waveguide.

2.3.1.1. Coupled mode equations and coupling coefficients

Let’s continue our study deducing the coupled mode equations, i.e. the equations for
the complex amplitudes ai(z) , ai(kt,z) in the nonuniform waveguide. In first place we
are going to substitute eqns. (2.35) and (2.37) into eqn. (2.36a). Differentiating the
series term by term, and commuting the spatial derivatives with the integration in kt , it
is obtained:
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Using the first formula of eqns. (2.9), the term to the right of the equality sign
becomes:
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and reorganizing the terms of the equality it can be finally rewritten as:
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In the same way, substituting eqns. (2.35) and (2.37) into eqn. (2.36b), differentiating
the series term by term, commuting the spatial derivatives with the integration in kt ,
and using the second formula of eqns. (2.9), it is obtained:

∑ ∫∑

∑ ∫∑

−=

∞

−=

−=

∞

−=

⋅
∂

∂⋅+
∂
∂⋅=

=⋅⋅




 ⋅⋅+−⋅





 ⋅⋅+−

Q

Qi
t

t
i
x

ti

M

Mi

i
x

i

Q

Qi
tt

i
xtiti

ti
M

Mi

i
xii

i

dk
z
kEka

z
Ea

dkkEkakj
dz

kdaEaj
dz
da

0

0

)()(                                                           

)()()()( ββ

(2.39)

Analogously, substituting eqns. (2.35) and (2.37) into eqn. (2.36d), differentiating the
series term by term, commuting the spatial derivatives with the integration in kt , and
using the first formula of eqns. (2.10), it is obtained:
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And to finish, substituting eqns. (2.35) and (2.37) into eqn. (2.36e), differentiating the
series term by term, commuting the spatial derivatives with the integration in kt , and
using the second formula of eqns. (2.10), it is obtained:
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To deduce the coupled mode equations let us multiply eqns. (2.38), (2.39), (2.40),
(2.41) by m

y
m
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m
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m
x EEHH −−  ,  ,  ,  , respectively. The equations obtained are added, and

the final result is integrated over the cross section obtaining:
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Taking into account the normalization and the orthogonality relations that are verified
between the mode fields, eqns. (2.27), integrating the series term by term, and
commuting the surface integral with the integral in kt , the last equation can be
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rewritten as:
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where the new variables introduced Cmi , Cmi(kt) , are known as the coupling
coefficients, and have the following expressions:
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It is important to note that the surface integral of the orthogonality conditions is
developed in the following way to be used here:
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Conversely, the surface integral of the coupling coefficients can be expressed as:
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Reorganizing the terms of eqn. (2.42), the following coupled mode equation is
obtained:
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This expression is valid for any m, i.e. for any mode of the discrete spectrum, and
therefore we will have a set of coupled mode equations like this for the modes of the
discrete spectrum.
Let’s deduce now a similar expression for the modes of the continuous spectrum. To
do it, we are going to proceed in the same way previously explained but multiplying
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eqns. (2.38), (2.39), (2.40), (2.41) by )~( , )~( , )~( , )~( t
n
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n
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n
x kEkEkHkH −− ,

respectively. Adding the equations obtained, integrating the result over the cross
section, integrating the series term by term, commuting the surface integral with the
integral in kt , and taking into account the normalization and the orthogonality
relations that are verified between the mode fields, eqns. (2.27), the following coupled
mode equation is obtained:
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where the new variables introduced ),~( , )~( tt
c
nit

c
ni kkCkC  , are the corresponding

coupling coefficients. Their explicit expression are given in eqns. (2.45).
This expression is valid for any n and tk~ , i.e. for any mode of the continuous
spectrum, and therefore we will have a set of coupled mode equations like this for the
modes of the continuous spectrum.

Summing up, an open straight waveguide that is nonuniform in the propagation
direction can be characterized (using the coupled mode theory – the cross-section
method) by a set of coupled mode equations that have the following form:

∑ ∫∑
−=

∞

−=

⋅⋅+⋅=⋅⋅+
Q

Qi
ttmiti

M

Mi
miimm

m dkkCkaCaaj
dz

da
0

)()(β (2.43)

       ∑ ∫∑
−=

∞

−=

⋅⋅+⋅=⋅⋅+
Q

Qi
ttt

c
niti

M

Mi
t

c
niitntn

tn dkkkCkakCakakj
dz

kda
0

),~()()~()~()~()~( β (2.44)

Eqn. (2.43) is valid for any m, i.e. for any mode of the discrete spectrum, and eqn.
(2.44) is valid for any n and tk~ , i.e. for any mode of the continuous spectrum.
Therefore a set of coupled mode equations like these will exist for the modes of the
open waveguide, constituting a system of integro-differential equations.
Regarding the coupling coefficients, they will have the following expressions:
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As it can be seen, the expressions for all the coupling coefficients have identical form.
Actually all of them can be represented in a generic way as Cmi (eqn. 2.45), assuming
that for a mode of the continuous spectrum its index (m or i) contains the information
of the index and of the kt parameter.

It is interesting to note that the expression for the coupling coefficients can be also
rewritten as:
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As it was previously stated, the values for ai(z) , ai(kt,z) , can be seen as the complex
amplitudes of the i discrete spectrum mode, and of the (i , kt) continuous spectrum

mode, respectively, in the nonuniform waveguide. They replace the zj ie ⋅⋅− β (or
zkj tie ⋅⋅− )(β ) factor in a straight waveguide. However, they vary along the waveguide in

a more complicated way. Following eqns. (2.43) and (2.44), the variation of ai(z) ,
ai(kt,z) against the variation of z depends on the amplitudes of all the modes existing at
the given value of z. The contribution of each mode amplitude to the variation of ai(z) ,
ai(kt,z) with z, increases with the increasing coefficient Cmi . For this reason the values
Cmi are known as the coupling coefficients between the modes i and m.
In order to solve the system of coupled mode equations, boundary conditions must be
imposed on the complex amplitudes of the modes, ai(z) , ai(kt,z). If the nonuniform
waveguide under study of length L is connected between two uniform waveguides at
z=0 and z=L , and there is an incident mode (of the discrete spectrum) with index m
and unitary amplitude from the left-hand side uniform waveguide, then the boundary
conditions will be the following:
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If the waveguide of interest were a closed waveguide, then only the modes of the
discrete spectrum would exist. In that case, the coupled mode equations would be
much simpler, and they would have the form of eqn. (2.43), but without the last term
(the term related to the modes of the continuous spectrum).Thus the coupled mode
equations would form a first-order ordinary differential equation system, with the
coupling coefficients given by eqn. (2.45), [KAT 98].

2.3.1.2. Properties of the coupling coefficients

As it was seen in the previous section, the expressions for all the coupling coefficients
have identical form. Actually all of them can be represented in a generic way as Cmi

(eqn. 2.45), assuming that for a mode of the continuous spectrum its index (m or i)
contains the information of the index and of the kt parameter. Several simple
properties can be deduced from the general expression for the coupling coefficients,
eqn. (2.45).
In first place we are going to start from the normalization equation for the fields of the
m mode, eqn. (2.25). Using the field components it can be rewritten as:
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This derivation has been performed for the integrand only, since the surface of
integration is the same for all z: the infinite cross-section (excluding the metal areas).
(Let’s recall that in this case only the dielectrics are nonuniform in the propagation
direction. The metals have constant cross-section).
Introducing eqn. (2.48) in the coupling coefficient expression (2.45) it can be seen
that:
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If the mode of interest is a mode of the continuous spectrum, the expression for the
coupling coefficient will be slightly different this time. This happens because the
normalization equation is slightly different for the modes of the continuous spectrum
(eqn. (2.25)), and can be written using the field components as:
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On the other hand, starting from the orthogonality expression for the mode fields, eqn.
(2.23), and writing it using the field components we have:
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Performing the derivation by z of the orthogonality expression and identifying the
obtained integrals with those of the coupling coefficients, eqn. (2.45), we have:

imNCNC iimmmi ≠=⋅⋅+⋅⋅        ;       022

and reorganizing:

im       ;         ≠⋅−=⋅ iimmmi NCNC (2.51)

Finally, taking into account the relation between the fields of the forward and
backward travelling waves associated to the same i mode, eqn. (2.14), and between
their normalizations, eqn. (2.26), and introducing them into the coupling coefficient
expression, eqn. (2.45), it can be seen that:

immi CC −−= , (2.52)

It is interesting to note that eqns. (2.49) (and (2.50)) and (2.51) allow us to verify that
the coupled mode equations, eqns. (2.43), (2.44), satisfy the requirements of energy
conservation principle. This principle states that if ε and µ are real (i.e. if the
waveguide has no dissipative losses), then for any electromagnetic field in a
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nonuniform waveguide the following expression has to be constant (with z):
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As it was seen in section (2.2.2.3), eqn. (2.30), this expression represents the total
power carried by the open waveguide (in the increasing z direction), including the
guided power and the radiated power, and must be constant if the waveguide has no
dissipative losses.

2.3.1.3. Practical form of the coupling coefficients

As it was previously commented the expressions for all the coupling coefficients have
identical form. Actually all of them can be represented in a generic way as Cmi (eqn.
(2.45)), assuming that for a mode of the continuous spectrum its index (m or i)
contains the information of the index and of the kt parameter. However, the expression
obtained for the coupling coefficients, eqn. (2.45),  is not easy to employ in practical
engineering problems. In this section we are going to deduce a more practical
expression for the coupling coefficients, that will contain the z derivatives of ε and µ
instead of the fields derivatives contained in eqn. (2.45).
Let us write the third and fourth Maxwell equations (eqns. (2.4)) for the iÊ  and iĤ
fields in the uniform reference waveguide, employing the variables x , y , ζ.
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In these equations iÊ , iĤ , βi , iE , iH , as well as ε and µ depend on z, since they
depend on the uniform reference waveguide to which they correspond (let’s recall that
z is the longitudinal coordinate in the nonuniform waveguide under study). It is
interesting to note that the unitary vectors ζ̂  and ẑ  will have identical value (unitary
modulus and the same direction).
Let’s calculate the derivatives by z of these equations:
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Let’s see now the value of the derivatives by z of the fields:
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We multiply eqns. (2.53) by mH −− ˆ  and mE −− ˆ , respectively. In the same way the
third and fourth Maxwell equations (eqns. (2.4)) written for mE −ˆ  and mH −ˆ  are
multiplied by zH i ∂∂ ˆ  and  zEi ∂∂ ˆ , respectively. Adding the four resulting equations,
the following equality is obtained:
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Applying the vector identity:
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to the term placed to the left of the equality sign, and reorganizing the term to the right
of the equality sign, the following expression is obtained:
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Now we are going to separate the derivative by ζ in the term to the left of the equality
sign. To do it we have to recall that:
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The resulting equation is integrated over the cross section, obtaining:
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Let’s apply the two-dimensional Green theorem to the first term of the left hand side
of the equation. The two-dimensional Green theorem states:
if we have a planar surface S with perimeter l, on which n̂  is the unit outward normal,
perpendicular to the perimeter l and contained in the same plane (x,y), then the
following identity will be verified:
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Applying it to the first term of the left hand side of eqn. (2.56), we have:
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Let’s see now the value of the line integral of the fields over the perimeter of the cross
section surface, S.
The vector products can be developed as:
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where t̂  is the unitary vector in the direction tangential to the perimeter of the cross
section surface, S, and n̂  is the unitary vector normal to the perimeter. On the other
hand, as it was commented earlier, the unitary vector ζ̂  is equal to the unitary vector
ẑ .
Thus, the line integral of the fields over the perimeter of the cross section surface, S,
can be rewritten as:
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As it has been previously stated, the cross section, S, of an open waveguide extends to
infinity, and hence its perimeter l will be placed at infinity. Therefore, if one (or both)
of the implied modes (i and m) belongs to the discrete spectrum, then it will be a
bounded mode and hence its fields and their z derivatives will vanish at the perimeter
l, making the line integral of eqn. (2.58) vanish also.
If, on the other hand, both modes implied (i and m) belong to the continuous spectrum,
then their fields will not vanish at infinity. However, as it was seen in section (2.2.2),
each mode of an open waveguide can be seen as the limit of a mode of a closed
waveguide (formed by surrounding the open waveguide with a metal clad) when the
metal clad goes to infinity [SHE 71], [SNY 83], [ROZ 97]. So we can study the modes
of the open waveguide as those of a waveguide closed at infinity. Using this property
it can be seen that the components of the electric fields tangential to the virtual metal
boundary placed at infinity ( tE and ζE ), and their z derivatives, will vanish at infinity,

and hence the line integral of eqn. (2.58) will vanish also. As a result, eqn. (2.58) will
be equal to zero for any mode:
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A rigorous mathematical derivation of this result for a pair of continuous spectrum
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modes could be done using the limit point at infinity property of the transverse vector
wave equation [FRI 56].
If the waveguide of interest were a closed waveguide, the cross section would be finite
and it would be surrounded by a metallic cover of constant cross section. In that case,
it is easy to demonstrate eqn. (2.59), because the electric field components tangential
to the metal cover ( tE and ζE ), and their z derivatives, will vanish over it, and as a

result the line integral of eqn. (2.58) will vanish also.
Using this last result given by eqn. (2.59) together with the equality of eqn. (2.57), the
expression of eqn. (2.56) becomes:
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To continue, we are going to develop the term on the left hand side of eqn. (2.60). It
can be rewritten in a more comfortable form as:
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In first place we are going to substitute for the fields and for their z derivatives from
eqns. (2.54):
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Reorganizing the term, taking into account the relation between the fields of the
forward and backward travelling waves associated to the same i mode, eqn. (2.14),
and using the unitary vector ẑ  instead of ζ̂  (recalling that they are identical) the term
can be rewritten as:
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Taking into account the orthogonality relation satisfied between the mode fields, eqn.
(2.23):
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the second surface integral of the term will vanish for im ≠ , and reorganizing the
term it will become:
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Relating the surface integral with the value of the coupling coefficient, eqn. (2.46), the
term is expressible as:
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and performing the differentiation by ζ  it is finally obtained that the term on the left
hand side of eqn. (2.60) can be expressed as:
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Now we are going to develop the term on the right hand side of eqn. (2.60). Its initial
form is:
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Substituting for the fields from eqns. (2.54) the term can be expressed as:
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and reorganizing the expression we finally have that the term on the right hand side of
eqn. (2.60) can be rewritten as:
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Using the equivalent expressions obtained for the terms on the left hand side and on
the right hand side of eqn. (2.60), (eqns. (2.62) and (2.64), respectively), eqn. (2.60)
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can be rewritten as:
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Reorganizing this last equation, and taking into account the relation existent between
the phase constants and the mode fields of the forward and backward travelling waves
associated the same mode (eqns. (2.13), (2.14)), the following expression for the
coupling coefficient is obtained:
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or the equivalent expression:
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The last formulae obtained (eqns. (2.65) and (2.66)) are known as the practical form of
the coupling coefficients, and they contain the derivative by z of ε and µ, instead of
the derivative by z of the mode fields present in the original expression, eqn. (2.45).
The difference between the phase constants ( )im ββ −  appearing in the denominator of
the obtained formula does not imply that the coupling coefficient of these two modes
could be very large when their phase constants become nearly equal to each other.
Indeed, the value of the integral in the nominator of eqns. (2.65), (2.66), becomes very
small when the values of the phase constants are very close, and as a result the
coupling coefficient Cmi remains finite.

To finish this section, the expression for dzd mβ  will be obtained in a similar manner.
To do it, we are going to start from the development done for the term on the left hand
side of eqn. (2.60), but taking this time im = . In this case it is straightforward to show
(recalling the orthonormality relations satisfied by the mode fields, eqns. (2.27)) that
the final expression for this term will be:

m
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Regarding the term on the right hand side of eqn. (2.60), we can readily particularize
for our case of im =  the expression deduced for the term in eqn. (2.64), obtaining:
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And finally, using these equivalent expressions obtained for the terms on the left hand
side and on the right hand side of eqn. (2.60), (eqns. (2.67) and (2.68), respectively),
eqn. (2.60) can be rewritten this time as:
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and reorganizing it, the sought expression for the z derivative of the phase constant
follows:
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2.3.1.4. Case of εεεε and µµµµ piecewise constant functions

We have assumed from the beginning of section (2.3.1) that in the straight waveguide
under study that is nonuniform in the propagation direction (the z direction), ε(x,y,z)
and µ(x,y,z) are continuous functions with z (eqn. (2.32)). This condition is necessary
to guarantee that the fields present in a cross section of the nonuniform waveguide,
and the modes of the uniform waveguide (reference waveguide) employed in their
series expansion satisfy the same boundary conditions in the cross section of interest.
If this requirement is fulfilled, the series expansions of eqns. (2.33) and (2.35) will be
convergent to the field that they are meant to represent in all points of the cross
section. Thanks to that condition the term by term differentiation of these series was
possible, and the coupled mode equations, eqns. (2.43), (2.44), and the expressions for
the coupling coefficients given by eqns. (2.45), were obtained [KAT 98].
If, on the other hand, ε(x,y,z) and/or µ(x,y,z) are non continuous functions with z, then
in the discontinuity surfaces there will be an interface between two different dielectric
mediums (with different ε and/or µ), where the boundary conditions for the fields at a
dielectric interface apply. As it is well known, these boundary conditions are the
following for the interface between two lossless dielectric materials [POZ 98]:
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where the indices n and t refer to the directions normal and tangential to the interface,
and the indices 1 and 2 refer to the side of the interface placed on the first and second
medium. As it can be seen in Fig. 2.1, in this case the fields in the cross section of the
nonuniform waveguide under study satisfy different boundary conditions than the
mode fields of the uniform reference waveguide employed in their series expansion.
As a result the series expansion will not converge towards the fields that it is meant to
represent (the fields in the nonuniform waveguide) in the discontinuity (or boundary)
contours (the zones at which the boundary conditions satisfied are different). The
series will not be convergent in all points of the cross section. Consequently in the
case of ε(x,y,z) and/or µ(x,y,z) not continuous with z, the term by term differentiation
of the series can not be taken and all the developments performed until now in section
(2.3.1) are in principle not valid [KAT 98]. This important difficulty makes necessary
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Figure 2.1: Sketch of a nonuniform waveguide with ε(x,y,z) and µ(x,y,z) not continuous with z.
A cross section has been selected and its associated uniform reference waveguide is depicted
using a dashed line. The unitary vectors normal and tangential to the discontinuity surface
(boundary surface) are also depicted for the nonuniform waveguide (nnonunif , tnonunif) and for the
uniform reference waveguide (nunif , tunif).

to study this last case applying a mathematical trick that will allow us to solve the
problem.
In this section we are going to demonstrate the validity of the coupled mode equations
for the case of ε(x,y,z) and/or µ(x,y,z) not continuous with z, and the value for the
coupling coefficients will be calculated. Here the particular case of ε and µ piecewise
constant functions will be studied, but it is straightforward to show that the general
case is easily obtained as a combination of this one and the former studied case of
ε(x,y,z) and µ(x,y,z) continuous with z.
We are going to start our study of the nonuniform waveguide with ε and µ piecewise
constant functions, substituting the separation border between areas with different ε
and/or µ by a thin transition layer where ε and µ vary in a continuous way from the
value that they have in one area, to the value that they have in the other area. In the
thin transition layer ε and µ vary in a continuous way in the direction perpendicular to
the interface between the two areas (at least at the limit when the thickness of the
transition layer goes to zero). The resulting waveguide features ε(x,y,z) and µ(x,y,z)
that are continuous functions. Consequently the coupled mode equations (eqns. (2.43),
(2.44)) and the expressions for the coupling coefficients (eqns. (2.45), (2.66)) that
were previously obtained are still valid for this last waveguide.

ε2 , µ2

ε1 , µ1 nonuniform waveguide

uniform reference waveguide

tunif

tnonunifnunif

nnonunif

z



Coupled mode theory – The cross-section method 53

2.3.1.4.1. Expression for the coupling coefficients

We are going to calculate the coupling coefficients for the case of a nonuniform
waveguide with ε and µ piecewise constant functions, using the waveguide with
continuous ε and µ that we have constructed. This last waveguide will have z∂∂ε

and z∂∂µ different form zero only in the thin transition layers introduced. Taking into
account this fact, and to obtain a simpler result, the expression for the coupling
coefficient that we are going to use here is the practical form of the coupling
coefficient given by eqn. (2.66) (its surface integral will be different from zero only in
the thin transition layers). For the sake of simplicity we are going to assume that there
is only one separating border. Obviously, the result can be generalized for other cases
when there are several of such borders.
Let us introduce a local coordinate system with axes t, n, z in the thin transition layer
over which the integral of the coupling coefficient, eqn. (2.66), is calculated. The axes
will satisfy that t is tangential to the contour where the separating border and the cross
section intersect; n is normal to t and is placed in the cross section plane and is
directed from the area with smaller ε and µ, towards the area with larger ε and µ ; z is
in the direction of the waveguide axis. The unitary vectors ztn ˆ , ̂ , ˆ  form a right hand
side system of axes. Actually they satisfy that ztn ˆˆˆ =× . It is important to note that the
vector n̂  is not orthogonal to the separating border between areas with different ε
and/or µ in the nonuniform waveguide (it will be orthogonal in the associated uniform
reference waveguides). In Fig. 2.2 these vectors are shown for the simplest case in
which zn ˆ , ˆ  and grad ε are coplanar.

Figure 2.2: Sketch of the unitary vectors ztn ˆ , ̂ , ˆ  together with the angle α and the gradient of
ε, for the simplest case in which zn ˆ , ˆ  and grad ε are coplanar.
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ε1
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ε2

α

ẑ
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According to the representation in Fig. 2.2, in this simple case it will be satisfied:
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and from these equations it can be seen that:
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where )(tan αν = , is the tangent of the angle α defined between the z axis and the line
tangential to the separating border and orthogonal to the contour of intersection
between the separating border and the cross section.
Analogously it can be obtained that:
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In a more general case, the factors associated with grad ε in eqns. (2.71) will have a
more complex form but their ratio will be equal to -ν  in any case. Hence, in general, it
will be always satisfied that [KAT 98]:
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Strictly speaking eqns. (2.72) are only approximated when the thickness of the thin
transition layer is finite. The approximation gets better as the transition layer gets
thinner, and is exact in the limiting case when the thickness of the transition layer goes
to zero. In this limiting case the transition layer is reduced to a surface (the separating
border between the areas with different ε and µ) and grad ε and grad µ become exactly
orthogonal to this surface, making the developed equations exact.
Substituting eqns. (2.72) in the practical form of the coupling coefficients, eqn. (2.66),
and using the new local coordinate system with axis n, t, z, where dndtdS ⋅= , we
have:
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It is important to recall that the electromagnetic fields that appear in this equation
correspond to the uniform reference waveguide associated to the cross section of
interest. The ν  parameter is the only characteristic of the nonuniform waveguide.
The cross section of the uniform reference waveguide is composed of two areas where
the parameters ε and µ have constant values, and of a thin transition layer where ε and
µ vary with x and y. In this transition layer of the uniform reference waveguide the
values of the fields mE  and mH  can be approximated in the following way [KAT 98]:
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where )(nEm
n , )(nH m

n , etc. are the components of the m mode fields existent in the

thin transition layer, and m
nE , m

nH , etc. are the components of the m mode fields

existent in the separating surface, in the side where 1εε =  and 1µµ = .
The equalities of eqns. (2.74) have been deduced from the integral form of the
Maxwell equations using the same reasoning customarily employed to deduce the
boundary conditions for the fields at the interface between two lossless dielectrics.
It is important to note that the equalities obtained are only approximated when the
thickness of the thin transition layer is finite; the approximation is better the thinner
the transition layer is, and the approximation will be exact for the limiting case when
the thickness of the transition layer goes to zero.
Obviously, the equalities obtained will be also valid for the j mode.
Substituting eqns. (2.74) into eqn. (2.73), the following expression is obtained:
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Let’s see now the value of the first integral:
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developing it we have:
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and calculating the integrals we obtain:
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It is important to note that in this calculation we have assumed that 21 εε ≤ , since the
integration is realized in the direction of n̂ . ( n̂  is directed from the medium with
smaller ε towards he medium with larger ε ).
The integral with the magnetic fields of eqn. (2.75) can be calculated in a similar way
and obtaining a similar result. Introducing these results in eqn. (2.75), the expression
for the coupling coefficient becomes:

( ) ( ) ( )

( ) ( ) dtHHHHHH

EEEEEE
N

C

m
n

i
n

m
z

i
z

m
t

i
t

m
n

i
n

m
z

i
z

m
t

i
t

imm
mi

⋅





⋅⋅








−−⋅−⋅⋅−+






+⋅⋅





−−⋅−⋅⋅−⋅⋅

−⋅⋅
−= ∫

1
2

2
1

12

1
2

2
1

12

                              

2

µ
µ
µµµ

ε
ε
εεεν

ββ
ω

(2.76)

valid for im ≠  and for 21 εε ≤  and 21 µµ ≤ .

For the limiting case when the thickness of the transition layer goes to zero, the
expression for the coupling coefficient will be exact. It is important to note that in this
limiting case the transition layer is reduced to a surface (the separating border between
the areas with different ε and µ), and the constructed waveguide with continuous ε and
µ becomes the original waveguide of interest with ε and µ piecewise constant.
Therefore, for a waveguide with ε and µ piecewise constant functions, the coupling
coefficient can be calculated using eqn. (2.76), and the expression has no
approximations involved, it is exact. It is important to note also that the coupled mode
equations, eqns. (2.43), (2.44), initially obtained for waveguides with continuous ε and
µ, do not depend on the smoothness of the functions ε and µ, and hence are valid at
any stage when approaching the limit from continuous to discontinuous ε and µ.
Actually, they will remain valid in the limit of discontinuous functions, and hence in
the case of a waveguide with ε and µ piecewise constant functions.
Let’s recall that in eqn. (2.76) )(tan αν = , is the tangent of the angle α defined
between the z axis and the line tangential to the separating border and orthogonal to
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the contour of intersection between the separating border and the cross section. The
fields, on the other hand, are the fields existent in the side with 1ε  and 1µ . The

definition for the unitary vectors ztn ˆ , ̂ , ˆ  (system of axes) is given at the beginning of
this section.
Therefore, to calculate the coupling coefficient of a waveguide with ε and µ piecewise
constant using eqn. (2.76), it is sufficient to know the modal fields on the separating
border between the two areas with different ε and/or µ, and the value of ν(t,z).

To finish this section an expression for dzd mβ  when ε and µ are piecewise constant
functions will be obtained in a similar manner. We start form the expression for

dzd mβ  calculated in the section (2.3.1.3), and given by eqn. (2.69). It is valid for ε
and µ continuous with z:
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We are going to follow the same development that we have used to obtain the
coupling coefficients. In first place eqns. (2.72) will be substituted into eqn. (2.69),
obtaining:
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Now the equalities of eqns. (2.74) will be introduced, and the expression becomes:
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Integrating in the direction of n̂ (in the same way as we did to obtain the coupling
coefficients) and using the relation between the fields of the forward and backward
travelling waves associated to the same mode, eqns. (2.14), the expression can be
finally rewritten as:
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2.3.1.4.2. Other form for the coupling coefficients

In the previous section a simple expression for the coupling coefficients in the case of
a nonuniform waveguide with ε and µ piecewise constant functions has been obtained.
That expression was calculated starting from the practical form of the coupling
coefficients, eqn. (2.66). Here, an alternative expression for the coupling coefficients
for the same case will be obtained, starting this time from the initial form of the
coupling coefficients, eqn. (2.45). As we did previously, we are going to start our
study of the nonuniform waveguide with ε and µ piecewise constant functions,
substituting the separation border between areas with different ε and/or µ by a thin
transition layer where ε and µ vary in a continuous way from the value that they have
in one area, to the value that they have in the other area. As it was commented earlier,
the coupled mode equations (eqns. (2.43), (2.44)) and the expressions for the coupling
coefficients (eqns. (2.45), (2.66)) that were previously obtained are still valid for this
last waveguide.
The steps that we are going to follow are very similar to those employed in the
previous section. In first place we are going to separate the surface integral of the
coupling coefficient into two parts: the first one will contain the integral over the cross
section surface corresponding to the thin transition layer, that we are going to name ST,
and the second one will contain the integral over the rest of the cross section surface,
that will be named S – ST :
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We are going to continue our deduction developing the integral over the surface
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corresponding to the thin transition layer, ST. In this surface, let’s introduce a local
coordinate system with axes t, n, z . The axes will satisfy, as in the previous section,
that t is tangential to the contour where the separating border and the cross section
intersect; n is normal to t and is placed in the cross section plane and is directed from
the area with smaller ε and µ, towards the area with larger ε and µ ; z is in the
direction of the waveguide axis. The unitary vectors ztn ˆ , ̂ , ˆ  form a right hand side
system of axes. A sketch of these vectors for the simplest case in which zn ˆ , ˆ  and grad
ε are coplanar was shown in Fig. 2.2.
Using these new axes, the integral over the surface corresponding to the thin transition
layer, ST, can be rewritten as:
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Let’s see now the value of the derivative by z of the fields in the thin transition layer.
As it can be seen in [KOV 86], in the thin transition layer, the following relations
between the fields will be satisfied:
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where, as in the previous section, )(tan αν =  is the tangent of the angle α defined
between the z axis and the line tangential to the separating border and orthogonal to
the contour of intersection between the separating border and the cross section.
In the same way, it can be obtained for the magnetic fields in the thin transition layer:
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Strictly speaking eqns. (2.80) are only approximated when the thickness of the thin
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transition layer is finite. The approximation gets better as the transition layer gets
thinner, and is exact in the limiting case when the thickness of the transition layer goes
to zero, and hence the transition layer is reduced to a surface (the separating border
between the areas with different ε and µ).
Additionally, in this thin transition layer the values of the fields mE  and mH  can be
approximated in the following way [KAT 98]:
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where )(nEm
n , )(nH m

n , etc. are the components of the m mode fields existent in the

thin transition layer, and m
nE , m

nH , etc. are the components of the m mode fields

existent in the separating surface, in the side where 1εε =  and 1µµ = .
The equalities of eqns. (2.81) have been deduced from the integral form of the
Maxwell equations using the same reasoning customarily employed to deduce the
boundary conditions for the fields at the interface between two lossless dielectrics.
It is important to note that the equalities obtained are only approximated when the
thickness of the thin transition layer is finite; the approximation is better the thinner
the transition layer is, and the approximation will be exact for the limiting case when
the thickness of the transition layer goes to zero.
Combining eqns. (2.80) and (2.81) it can be seen that:
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The same expressions are obtained for the magnetic fields:
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Introducing these last expressions in the integral over the surface corresponding to the
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thin transition layer, ST, eqn. (2.79), of the coupling coefficient formula, and using
eqns. (2.81), the integral can be rewritten as:
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Let’s see the value of the different terms.
The value of the first term will be:
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and in the limit when the thickness of the transition layer goes to zero,
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The value of the second term will be:
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The third term has a form parallel to that of the first one, and its value in the limit
when the thickness of the transition layer goes to zero will be the same:
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The fourth term, on the other hand, has a form parallel to that of the second one, and
its value in the limit when the thickness of the transition layer goes to zero will be also
parallel:
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Therefore, in the limiting case when the thickness of the transition layer goes to zero,
the integral over the cross section surface corresponding to the thin transition layer, ST,
eqn. (2.79), will have the value:
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Returning to the coupling coefficient expression, eqn. (2.78), if we take the limit when
the thickness of the transition layer goes to zero, then the transition layer is reduced to
a surface (the separating border between the areas with different ε and µ), and the
constructed waveguide with continuous ε and µ becomes the original waveguide of
interest with ε and µ piecewise constant functions. In that case, using eqn. (2.82), the
coupling coefficient expression becomes:
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where S covers all the cross section surface except the contour of intersection between
the separating border between areas with different ε and/or µ, and the cross section.
On the other hand, the line integral is performed over this last contour.
It is important to note that in eqn. (2.83) it is assumed that 12 εε ≥  , 12 µµ ≥ . In the

same way, )(tan αν =  is the tangent of the angle α defined between the z axis and the
line tangential to the separating border and orthogonal to the contour of intersection
between the separating border and the cross section. The definition for the unitary
vectors ztn ˆ , ̂ , ˆ  (system of axes) is given at the beginning of section (2.3.1.4.1). To
finish it is important to recall that the fields that appear in the line integral are those
existent in the separating surface, in the side where 1εε =  and 1µµ = .
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2.3.1.4.3. Abrupt discontinuity in the propagation direction

Until now in section (2.3.1.4) we have studied nonuniform waveguides with ε and µ
piecewise constant functions, where the intersection between the separating border
between areas with different ε and/or µ, and the cross section, is a line or contour.
Actually, the coupling coefficients obtained, eqns. (2.76), (2.83), are valid under that
assumption. If, on the other hand, the intersection between the separating border and
the cross section is an area, then the last expressions for the coupling coefficients are
not valid. In this case we say that we have an abrupt discontinuity in the propagation
direction, and to solve the problem the following technique will be applied.
We start from a nonuniform waveguide, with ε and µ piecewise constant functions,
where the intersection between the separating border between areas with different ε
and/or µ, and the cross section, is a surface. For the sake of simplicity it will be
assumed that there is only one surface of intersection between the separating border
and the cross section, placed at z=z0. In order to calculate the coupling coefficient we
have substituted the cross section surface placed at z=z0 by a thin transition layer
where in the zone corresponding to the intersection surface, ε and µ vary in a
continuous way and in the z direction, from the value that they have in one area,
towards the value that they have in the other area. In the rest of the layer (that
corresponds to the rest of the cross section surface) ε and µ remain constant.
The resulting waveguide features ε and µ that are continuous with z. Consequently the
coupled mode equations (eqns. (2.43), (2.44)) and the expressions for the coupling
coefficients (eqns. (2.45), (2.66)) obtained in section (2.3.1.1) and (2.3.1.3), are still
valid for this last waveguide.
We are going to designate the coupling coefficient formulated for the constructed
waveguide (that includes the thin transition layer, and has ε and µ that are continuous

with z) as )(zCaux
mi . Integrating it over the thin transition layer, taking the limit when

the thickness of the transition layer goes to zero, and taking advantage of the
properties of the Dirac’s delta function, )(tδ , the coupling coefficient of the original

waveguide (with ε and µ piecewise constant functions, where the intersection between
the separating border between areas with different ε and/or µ, and the cross section, is
a surface placed at z=z0) is obtained:
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It is important to note that to calculate the required integral we can take the variation
of ε and µ in the thin transition layer as needed, provided that the variation is verified
in the z direction and in a continuous way, and that the values of ε and µ go from the
value that they have in one area, towards the value that they have in the other area. (or
remain constant outside the zone corresponding to the intersection surface).
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2.3.2. Waveguides that include metals with variable cross-section

Until now, in this chapter we have applied the cross section method to nonuniform
waveguides with dielectrics that have ε and µ variable in the propagation direction.
We have assumed implicitly that the metals present in the waveguide (if any) do not
vary in the propagation direction, i.e. that they have a constant cross section. Here we
are going to study the case of nonuniform waveguides that include metals with
variable cross section.
As it is well known, at the interface between a dielectric and a perfect conductor the
fields must satisfy several boundary conditions [POZ 98]:
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t
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(2.85)

where the indices n and t refer to the directions normal and tangential to the interface,
and the fields are placed at the side of the dielectric (the value of all the fields in a
perfect conductor is zero).
A direct application of the cross section method to a waveguide that includes metals
with variable cross section encounters difficulties since, as it can be seen in Fig. 2.3,
the fields in the cross section of the nonuniform waveguide under study, and the mode
fields of the uniform reference waveguide employed in their series expansion, satisfy

Figure 2.3: Sketch of a nonuniform waveguide that includes metals with variable cross section.
A cross section of the nonuniform waveguide has been selected and its associated uniform
reference waveguide is depicted using a dashed line. The unitary vectors normal and
tangential to the metal-dielectric interface are also depicted for the nonuniform waveguide
(nnonunif , tnonunif) and for the uniform reference waveguide (nunif , tunif).

metal

ε1 , µ1 nonuniform waveguide

uniform reference waveguide

tunif

tnonunifnunif

nnonunif

z
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different boundary conditions. As a result the series expansion, eqns. (2.33), (2.35),
will not converge towards the fields that it is meant to represent (the fields in the
nonuniform waveguide) at the dielectric-metal interfaces (the zones at which the
boundary conditions satisfied are different). The series will not be convergent in all
points of the cross section. Consequently, in the case of a waveguide that includes
metals with variable cross section, the term by term differentiation of the series can
not be taken and all the developments performed in sections (2.3.1.1), (2.3.1.2),
(2.3.1.3) are not directly applicable [KAT 98], [SHE 71]. From the physical point of
view the reason for the difficulty is the following: the field representation as a series
expansion can not be applied in the neighborhood of a metal with variable cross
section, i.e. at the place where the different boundary conditions apply.
To avoid this problem we are going to proceed in a similar way as we did in the
previous section for the case of ε and µ piecewise constant functions.
In first place, we are going to substitute the metals by a dielectric medium with
dielectric constant 02 const εε ≠= , and permeability const2 =µ . The resulting

waveguide will be a dielectric waveguide with ε and µ piecewise constant functions.
Hence, as it was seen in section (2.3.1.4), the series expansions of eqns. (2.35), (2.37),
the coupled mode equations (eqns. (2.43), (2.44)) and the expressions for the coupling
coefficients (eqns. (2.76), (2.83)) that were previously obtained are also valid for this
last waveguide. Actually, these results are valid for any values of 2ε  and 2µ .
As it was seen in section (2.2), eqn. (2.5), the existence of a medium with conductivity
σ can be taken into account defining a complex ε with value:

ω
σεε ⋅−= jcomp

and therefore the dielectric can be turned into a perfect conductor ( ∞→σ ) by taking
the limit when the modulus of the complex ε goes to infinity, in our case taking the
limit when ∞→2ε . Obviously, taking this limit, the constructed waveguide becomes

the original waveguide of interest that contains metals with variable cross section.

2.3.2.1. Expression for the coupling coefficients

We are going to calculate the coupling coefficients valid for a nonuniform waveguide
that contains metals with variable cross section, using the waveguide with piecewise
constant ε and µ that we have constructed. We will start from the coupling coefficient
expression given by eqn. (2.76).
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(valid for im ≠  and for 21 εε ≤  and 21 µµ ≤ . )(tan αν = , is the tangent of the angle α
defined between the z axis and the line tangential to the separating border and
orthogonal to the contour of intersection between the separating border and the cross
section. The fields, on the other hand, are the fields existent in the side with 1ε  and

1µ . The definition for the unitary vectors ztn ˆ , ̂ , ˆ  (system of axes) is: t is tangential to
the contour where the separating border and the cross section intersect; n is normal to t
and is placed in the cross section plane and is directed from the area with smaller ε
and µ, towards the area with larger ε and µ ; z is in the direction of the waveguide
axis). (It is important to note that since 21 εε ≤ , the dielectric medium that substitutes
the conductors must be medium 2).

Now we increase the dielectric constant of the dielectric medium that substitutes the
conductors, 2ε , and assume that it is complex. All the equations mentioned earlier are

still valid, moreover, they are also valid when the limit ∞→2ε  is reached. As it was

mentioned previously, at this limit the constructed waveguide becomes the original
waveguide that includes metals with variable cross section. Therefore, the series
expansions of eqns. (2.35), (2.37), the coupled mode equations, eqns. (2.43), (2.44),
and the properties of the coupling coefficients, eqns. (2.49), (2.50), (2.51), (2.52),
derived for waveguides with ε and µ variable in the propagation direction, are also
valid for waveguides that include metals with variable cross section [KAT 98], [SHE
71].
An indetermination of the kind ∞⋅0  will appear in eqn. (2.76), the coupling
coefficient expression, when we take the limit when ∞→2ε , since the components

m
z

m
t EE  ,  at the metal-dielectric interface of the uniform reference waveguide

(tangential components) will tend to zero. To solve this indetermination we are going
to use the Leontovich boundary condition, also known as the surface impedance
condition of a good conductor [KAT 98], [NIK 76], that allows us to relate the
tangential electric fields and the tangential magnetic fields at the surface of a good
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conductor, obtaining in our case:
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(2.86)

The Leontovich boundary condition constitutes an approximation valid for good
conductors, that will be exact for the limiting case when the conductivity ∞→σ
(perfect conductor), or equivalently when ∞→2ε .

Let’s recall that the fields in eqns. (2.86) correspond to the uniform reference
waveguide associated to the cross section of interest, and that t̂  and ẑ  are always
tangential to the metal-dielectric interface in the uniform reference waveguide.
Introducing eqns. (2.86) in the expression for the coupling coefficients, eqn. (2.76),
and assuming that the dielectric medium is not magnetic ( 01 µµ = ), it is obtained:
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and reorganizing the expression:
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Taking the limit when ∞→2ε , the constructed waveguide will become the original

waveguide that includes metals with variable cross section, and hence the field
components m

z
m
t EE  ,  and m

nH  will tend to zero at the metal-dielectric interface of the
uniform reference waveguide (tangential electric field components and normal
magnetic field component, respectively). Therefore, taking the limit when ∞→2ε

the coupling coefficient for the nonuniform waveguide that contains metals with
variable cross section is obtained as:
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where the electric and magnetic fields that appear in the equation are the mode fields
of the uniform reference waveguide, present at the metal-dielectric interface, in the
side of the dielectric (the value of all the fields in a perfect conductor is zero).
Regarding the system of axes, n, t, z, its definition can be found at the beginning of
this section. Finally, )(tan αν = , is the tangent of the angle α defined between the z
axis and the line tangential to the metal-dielectric interface, and orthogonal to the
contour of intersection between the separating border and the cross section.
It is interesting to note that eqn. (2.87) expresses the coupling coefficient through the
surface currents and the surface charges excited by the propagating modes with
superscripts i and m on the surfaces of the metals of the reference waveguide.

Let’s see now the value of dzd mβ  in the nonuniform waveguide that contains metals
with variable cross section. To calculate it we are going to start from the expression
valid for the constructed waveguide with ε and µ piecewise constant functions,
obtained in section (2.3.1.4.1), eqn. (2.77):
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We are going to realize the same development previously used to obtain the coupling
coefficient: we take the limit when ∞→2ε , in this case the constructed waveguide

becomes the original waveguide that includes metals with variable cross section, and
hence the field components m

z
m
t EE  ,  and m

nH  tend to zero at the metal-dielectric
interface of the uniform reference waveguide. To solve the indetermination that
appears in eqn. (2.77) the Leontovich boundary condition is used obtaining eqns.
(2.86). Finally, it is assumed that the dielectric medium is not magnetic ( 01 µµ = ).
With all of this, eqn. (2.77) becomes:
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valid for a nonuniform waveguide that contains metals with variable cross section.
To finish this section we are going to calculate the value of the particular coupling
coefficient Cm,-m . Starting from eqn. (2.87) we obtain:
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Taking into account the relation existent between the fields of the forward and
backward travelling waves associated to the same mode, eqns. (2.14), and the relation
between their phase constants, eqn. (2.13), the expression can be rewritten as:
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Reorganizing the expression and identifying part of it with the recently obtained
formula for dzd mβ , eqn. (2.88), it can be finally seen that:
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valid for a nonuniform waveguide that contains metals with variable cross section.

2.3.2.1.1. Microstrip line with patterned ground plane

In this section we are going to study a particular case of special interest in the
framework of this thesis: a microstrip line with a pattern etched in the ground plane.
Obviously, all the equations and considerations exposed until now in section (2.3.2)
for nonuniform waveguides that include metals with variable cross section, will be
applicable to this particular case. Here the specific application of the coupling
coefficient expression, eqn. (2.87), to the case will be studied.
In Fig. 2.4 a front view and a top view of the waveguide is shown, including the
unitary vectors ztn ˆ , ̂ , ˆ . It is assumed that the thickness of the metals is negligible.
Following Fig. 2.4 we have:

)(
)(

zWW
zWW

−−

++

=
=

where +W , −W  are the distances between the waveguide axis, z, and the edge of the
right and left conductor, respectively.
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Figure 2.4: Front view and top view of a microstrip line with a pattern etched in the ground
plane. For the sake of clarity in the top view only the ground plane is shown. The unitary
vectors ztn ˆ , ̂ , ˆ  are also depicted.

The generic coupling coefficient expression for a waveguide that includes metals with
variable cross section , eqn. (2.87), has the following form:
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where the line integral is to be taken over the metal-dielectric interfaces. In our case of
a microstrip line with a pattern etched in the ground plane, the integration paths are
depicted in Fig. 2.5, where the limit when ∆ tends to zero has to be taken due to the
negligible thickness assumed for the metals [SHE 00].
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ẑ
n̂

t̂

−W
ẑ
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Figure 2.5: Front view of a microstrip line with a pattern etched in the ground plane, showing
the integration paths, L+ , L− , for the coupling coefficient expression. For the sake of clarity
only the ground plane is shown.

Following Fig. 2.5 the coupling coefficient expression can be rewritten as:
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Finally, developing the coupling coefficient expression, we obtain for a microstrip line
with a pattern etched in the ground plane:
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where
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The integration over the rest of the path +L  and −L  is equal to zero since the value of
ν will be null, and hence it is omitted in the final expression.
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2.3.2.2. Other form for the coupling coefficients

In this section we are going to obtain an alternative form for the coupling coefficients
valid for a nonuniform waveguide that contains metals with variable cross section,
using again the waveguide with piecewise constant ε and µ that we constructed in
section (2.3.2). This time we are going to start from the coupling coefficient
expression given by eqn. (2.83):
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where S covers all the cross section surface except the contour of intersection between
the separating border between areas with different ε and/or µ (metal-dielectric
interface in the original waveguide) and the cross section, and the line integral is
performed over this last contour. It is important to note that in eqn. (2.83) it is
assumed that 12 εε ≥  , 12 µµ ≥  (therefore, the dielectric medium that substitutes the
conductors must be medium 2). In the same way, )(tan αν =  is the tangent of the

angle α defined between the z axis and the line tangential to the separating border and
orthogonal to the contour of intersection between the separating border and the cross
section. The definition for the unitary vectors ztn ˆ , ̂ , ˆ  (system of axes) is: t is
tangential to the contour where the separating border and the cross section intersect; n
is normal to t and is placed in the cross section plane and is directed from the area with
smaller ε and µ, towards the area with larger ε and µ ; z is in the direction of the
waveguide axis. To finish it is important to recall that the fields that appear in the line
integral are those existent in the separating surface, in the side where 1εε =  and

1µµ = .

We are going to proceed in a similar way as we did in section (2.3.2.1): we increase
the dielectric constant of the dielectric medium that substitutes the conductors, 2ε ,
and assume that it is complex. All the equations obtained earlier in section (2.3.1.4)
for waveguides with ε and µ piecewise constant functions are still valid, moreover,
they are also valid when the limit ∞→2ε  is reached. At the same time, taking the

limit when ∞→2ε , the constructed waveguide will become the original waveguide
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that includes metals with variable cross section, and hence the field components
m
z

m
t EE  ,  and m

nH  will tend to zero at the metal-dielectric interface of the uniform
reference waveguide (tangential electric field components and normal magnetic field
component, respectively). Therefore, taking the limit when ∞→2ε  the coupling

coefficient for the nonuniform waveguide that contains metals with variable cross
section is obtained form eqn. (2.83) as:
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(2.92)

This last result can be expressed in a more compact form. Let’s see.
As it was seen in section (2.3.1.1), the surface integral of the coupling coefficient
expression, eqn. (2.92), can be rewritten using vector notation as:
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On the other hand, the line integral of the coupling coefficient expression, eqn. (2.92),
satisfies that:
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and 0  ,0  ,0 === m
n

m
z

m
t HEE , at the metal-dielectric interface. (Let’s recall that they

are the modal fields of the uniform reference waveguide, and therefore they are
tangential and normal, respectively, to the metal-dielectric interface).
Using the last two equalities, eqns. (2.93) and (2.94), the coupling coefficient
expression of eqn. (2.92) can be rewritten as:
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This expression can be simplified realizing several mathematical manipulations.
Let’s recall the normalization relations satisfied by the fields of the discrete spectrum
modes, and by the fields of the continuous spectrum modes, eqns. (2.25)
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Using at the same time the orthogonality relations satisfied by the fields of the modes,
eqns. (2.24), and taking into account the relations existent between the fields of the
forward and backward travelling waves associated to the same mode, eqns. (2.14), the
preceeding equations can be rewritten as:
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where the first equation applies when the i mode belongs to the discrete spectrum
modes, and the second equation applies when the i mode belongs to the continuous
spectrum modes.
We are going to continue our deduction with the first equation, valid when the i mode
is a discrete spectrum mode. (a similar result would be obtained for the second
equation). Taking the derivative by z of the equality it follows:
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and reorganizing the terms we have:
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The term to the left of the equality sign can be developed, following [SPO 79], in the
following way:
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where S covers all the cross section surface except the metals and the contour of
intersection between the metal-dielectric interfaces and the cross section, and the line
integral is performed over this last contour. On the other hand, )(tan αν =  has the
same definition previously seen at the beginning of this section: it is the tangent of the
angle α defined between the z axis and the line tangential to the metal-dielectric
interface, and orthogonal to the contour of intersection between the metal-dielectric
interface and the cross section.
It is important to note that the surface integral:

( )∫∫ ⋅⋅×
S

im dSzEH ˆ

has the same value when S covers all the cross section surface, and when S covers all
the cross section surface except the metals and the contour of intersection between the
metal-dielectric interfaces and the cross section, since the value of the fields in the
perfect conductors will be null, and the value of a surface integral is not affected by
the value of its integrand in a line, provided that the integrand remains finite in the
mentioned line.
Combining eqns. (2.96) and (2.97), the following equality is obtained:
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and introducing it in eqn. (2.95), the coupling coefficient expression for a nonuniform
waveguide that contains metals with variable cross section can be finally rewritten as:

dz
dN

N
dSzE

z
H

z
HE

N
C i

m
miimS

i
mi

m

m
mi ⋅

⋅
⋅+−⋅⋅








×

∂
∂+

∂
∂×⋅

⋅
−= −∫∫ 2

1)(ˆ
2

1
,δδ (2.98)

where S covers all the cross section surface except the metals and the contour of
intersection between the metal-dielectric interfaces and the cross section, and imδ  is
the Kronecker symbol.
An expression similar to eqn. (2.98) was also obtained in [SPO 79], but using a
different way to deduce it.
To finish this section it is important to note that this time the coupling coefficient
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expression will have a slightly different form in the case of two modes of the
continuous spectrum. It will be:
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2.3.2.3. Coupling coefficient Cm,-m as a function of the characteristic
impedance of the mode, Z0m

As it will be seen in the next chapter, the coupling coefficient Cm,-m will be of primary
importance if single mode operation can be assumed for the nonuniform waveguide
under analysis and for the frequency range of interest. Here, to make easier its
calculation, we are going to obtain an expression for it as a function of the
characteristic impedance of the mode, Z0m.
In order to obtain the sought expression for Cm,-m , we are going to start from the
coupling coefficient expressions calculated in the previous section, eqns. (2.98) (2.99),
valid for nonuniform waveguides that include metals with variable cross section, and
dielectrics that can feature ε and µ variable with z, but continuous with z. To simplify
the expressions, we are going to assume that the normalization of the modes, Nm, is
constant with z. In that case, both eqns. (2.98) and (2.99) will have the same form:
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Particularizing it for our case of interest, Cm,-m , it follows:
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and taking advantage of the relation existent between the fields of the forward and
backward travelling waves associated to the same mode, eqns. (2.14), the expression
can be rewritten as:
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Let’s introduce the characteristic impedance of the mode, Z0m , expressing the mode
fields as a function of it and of other fields:
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The characteristic impedance of the m mode, Z0m , is the characteristic impedance that
the m mode has in the uniform reference waveguide associated to the cross section of
interest (it varies with z). Therefore, Z0m will be variable with z in the nonuniform
waveguide under study.
Taking into account eqns. (2.102), the derivative by z of mH  will have the form:
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On the other hand, from eqns. (2.25), the normalization factor Nm will satisfy for a
mode of the discrete spectrum:
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and similarly for a mode of the continuous spectrum:
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Introducing eqns. (2.102) and (2.103) in the coupling coefficient expression, eqn.
(2.101), it is obtained:
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and reorganizing the expression, we have:
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Now, using eqn. (2.104) it is obtained that the expression for the coupling coefficient
Cm,-m  as a function of the characteristic impedance of the mode, has the following
form when the m mode is a discrete spectrum mode:
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In the same way, using eqn. (2.105), the expression for the coupling coefficient Cm,-m

when the m mode is a continuous spectrum mode, will be:
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It is important to recall that the last expressions (eqns. (2.106) and (2.107)) have been
obtained assuming that the normalization of the mode, Nm , does not vary with z.
The fields that appear in the resulting equations, me , mh , are related to the mode

fields, mE , mH as indicated by eqns. (2.102).

To finish this section we are going to discuss the concept of characteristic impedance
of the m mode, Z0m.
As it is well known, if a mode is TEM, its associated voltage V and current I can be
defined in a unique way. In that case the definition of the characteristic impedance of
the mode is also unique and can be calculated as [POZ 98]:

−

−

+

+

−==
I
V

I
VZ m0

where the +, − indices refer to the forward and backward travelling waves,
respectively.
If a mode is not pure TEM, then the definition of its characteristic impedance is no
longer unique. In that case, which is the most interesting definition of characteristic
impedance of a mode, for our problem?
The most interesting definition of Z0m for the calculation of the coupling coefficient
Cm,-m is the one that achieves the best characterization of the propagation of the mode
along the nonuniform waveguide, in terms of reflection produced by the variations of
cross section present in the waveguide.
If the characteristic impedance of the mode, Z0m , characterizes adequately the
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variations of cross section present in the waveguide in terms of reflection coefficient
of the incident mode over the reflected one, the part corresponding to the fields of the
coupling coefficient Cm,-m  expressions (eqns. (2.106), (2.107)) will be negligible, and
the coupling coefficient could be approximated as:
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for the discrete spectrum modes, and as:
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for  the continuous spectrum modes.
An explanation for this fact can be found in appendix A. There, the equivalent voltage
and current model is obtained for a waveguide mode, and from it, the coupling
coefficient Cm,-m is calculated. The expression obtained for this coupling coefficient is
identical to eqn. (2.108), revealing that if the nonuniform waveguide is adequately
characterized by the characteristic impedance of the mode employed, then the part of
the fields in the coupling coefficient Cm,-m  expressions (eqns. (2.106), (2.107)) is
negligible.

For the case of a fundamental microstrip or quasi-microstrip mode, the definition of
characteristic impedance that best characterizes the variation of cross section in the
microstrip line is the following [GET 83]:
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i.e. the expression that uses the power and the current associated to the mode.
Therefore, in a microstrip line with a pattern etched in the ground plane, the coupling
coefficient Cm,-m for the fundamental microstrip or quasi-microstrip mode can be
successfully approximated using eqn. (2.108), provided that the characteristic
impedance of the mode is calculated using eqn. (2.110).

2.3.2.4. Abrupt discontinuity in the propagation direction

Until now in section (2.3.2) we have studied nonuniform waveguides that include
metals with variable cross section, where the intersection between the metal-dielectric
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interface and the waveguide cross section, is a line or contour. Actually, the coupling
coefficients obtained are valid under that assumption. If, on the other hand, the
intersection between the metal-dielectric interface and the cross section is an area,
then the last expressions for the coupling coefficients are not valid. The problem is
similar to the one seen in section (2.3.1.4.3), and as in that section it is produced by
the presence of an abrupt discontinuity in the propagation direction. To solve it, a
similar technique to the one proposed in the mentioned section will be applied.
Here we are going to obtain an expression for the coupling coefficient Cm,-m valid for a
nonuniform waveguide that features an abrupt discontinuity in the propagation
direction. The discontinuity can be produced by an abrupt variation of the cross
section of a metal contained in the waveguide, or by an abrupt variation, in the z
direction, of the dielectric ε and/or µ, of the kind described in section (2.3.1.4.3).
We will start from the approximated expression for the coupling coefficient Cm,-m

given by eqn. (2.108) (valid for discrete spectrum modes), obtained in the previous
section:
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As it was seen in section (2.3.1.4.3), the coupling coefficient produced by the presence
of an abrupt discontinuity at z=z0 can be calculated, following eqn. (2.84), as:
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where )(, zCaux
mm −  is the coupling coefficient formulated for an auxiliary waveguide that

includes a thin transition layer (of thickness ∆z), and has ε and µ, as well as the cross
section variation of the metals, that are continuous with z.

Using eqn. (2.108) as the expression to calculate )(, zCaux
mm − , and introducing it in eqn.

(2.111), it follows:
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and calculating the integral we obtain:
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where 1,0mZ , 2,0mZ  are the characteristic impedance of the m mode to the left and to

the right of the abrupt discontinuity, respectively.
Finally, reorganizing the expression and taking the limit it is obtained:
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valid for discrete spectrum modes.
In the same way it can be deduced:
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valid for continuous spectrum modes.
It is important to recall that the last equations obtained, valid for nonuniform
waveguides that feature an abrupt discontinuity in the propagation direction placed at
z=z0 , are only approximated since eqns. (2.108), (2.109) have been employed in their
deduction.



   CHAPTER 3

APPROXIMATE ANALYTICAL SOLUTIONS
FOR PBG STRUCTURES IN MICROSTRIP
TECHNOLOGY

The coupled mode theory presented in the previous chapter has allowed us to
formulate the problem of electromagnetic wave propagation along PBG structures in
microstrip technology in terms of a set of integro-differential equations that relate the
complex amplitudes of the modes and the coupling coefficients. There was no
approximation involved in this approach. However, the problem can be notably
simplified by realizing several reasonable approximations that will eventually lead to
a simplified system of coupled mode equations with analytical solutions. In this
chapter the approximations needed and the analytical solutions obtained will be
presented and discussed. Using them, a comprehensive set of analytical expressions
for the most important design parameters of the PBG microstrip devices will be
furnished. The set of analytical expressions available cover a wide scope, ranging
from the S parameters to the Bloch wave analysis, and constitutes a very useful and
unique set of tools for the analysis and design of these devices.
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3.1. Introduction

The organization of this chapter will be the following: we will start from the general
system of coupled mode integro-differential equations that characterize a PBG
structure in microstrip technology, obtained in the previous chapter. There was no
approximation involved to obtain this system. From it, and introducing several
reasonable approximations that will lead us to assume single mode operation in the
PBG microstrip structure, a simplified system of 2 coupled mode differential
equations will be obtained in section (3.2). A way to numerically solve the simplified
system will be also presented. To continue, in section (3.3), additional reasonable
approximations will be introduced and the system will be simplified to a from that
features analytical solutions. Using them, a set of analytical expressions for the main
design parameters of the PBG device (including the S parameters and the transmission
matrix) will be developed throughout the section. The chapter will continue dealing
with the Bloch wave analysis of the PBG microstrip structures in section (3.4), and
again, using the approximate analytical solutions previously calculated,  analytical
expressions will be obtained for the main parameters (including the dispersion
diagram and the Bloch wave characteristic impedance). In section (3.5) the interesting
and fruitful relation between the coupling coefficient and the S11 (reflection) parameter
of the PBG device will be presented. A very simple and approximate expression will
be given together with the more complicated and exact relation. To finish the chapter,
in section (3.6), this approximate theory and expressions will be applied to several
PBG microstrip devices to study their performance and behavior, and to have a further
insight into their operation. It will also allow us to check the accuracy of the theory
and of the analytical expressions developed. To this end, the studied prototypes will be
also fabricated and the measured results will be included in the section.

3.2. Simplified system of coupled mode equations

As it has been seen in the previous chapter, an open waveguide non-uniform in the
propagation direction (z direction) will be characterized by the following system of
integro-differential coupled mode equations:
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with one equation for each possible value of m and n, including the negative values.
The coupling coefficients and phase constants will satisfy the following properties:

imNCNC iimmmi ≠⋅−=⋅   ;       (3.3)

immi CC −−= (3.4)

mm NN −−= (3.5)

mm −−= ββ (3.6)

being Nm the normalization of the fields; mm HE ,  the (x,y) dependent part of the
electric and magnetic fields of the m mode corresponding to the auxiliary uniform
waveguide associated to the cross-section of interest (it varies with z), and βm the
phase constant of this m mode.
The total electric and magnetic fields present in the non-uniform open waveguide will
be given by:
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In this way we can consider ai as the complex amplitude of the i mode along the non-
uniform waveguide, and it will be only function of z and frequency.

3.2.1. Obtaining the simplified system

Focusing our study on PBG structures for microstrip lines, the system of coupled
mode equations can be notably simplified by realizing several very reasonable
approximations:
• In first place, we are going to neglect the coupling of energy to the modes of the

continuous spectrum. This can be done because the energy of these modes is
primarily radiated, and since the devices that we are going to study (filters,
resonators, ..) have very little radiation losses in the frequency bands of interest,
the error involved in the approximation will be small. It is important to notice that
if our aim were to design devices to radiate (antennas), then the coupling of
energy to the modes of the continuous spectrum couldn’t be neglected.

• Regarding the modes of the discrete part of the spectrum, for the frequency band
of interest we will only have the quasi-TEM mode for the sections of pure
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microstrip line, and a quasi-microstrip mode together with a quasi-slot mode for
the sections of microstrip with slot in the ground plane that appear due to the
introduction of the PBG structure. There will be no higher order modes due to the
frequency band of interest and to the thickness of the substrate employed, in the
same way as it would happen for a pure microstrip line [GUP 96] [AIK 89]. Since
the excitation of the devices under study will be done through a pure microstrip
line, the excitation mode will be always the quasi-TEM mode of the microstrip
line (fundamental microstrip mode). This mode has very high correlation with the
quasi-microstrip mode (actually it can be seen as the same mode), and very low
correlation with the quasi-slot mode, so we can approximate neglecting the
excitation of the quasi-slot mode and assuming that only the quasi-microstrip
mode is excited.

These approximations lead us to assume single mode operation in our PBG structure
for microstrip lines, and in this way they significantly simplify the coupled mode
equations. With them, we have to take into account only one mode (the fundamental
microstrip or quasi-microstrip mode), with two associated waves: the forward and
backward travelling waves, and the system of coupled equations simplifies to:
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with the (+) index designating the forward travelling wave associated to the
fundamental microstrip or quasi-microstrip mode (actually they are the same mode),
and the (−) index designating the backward travelling wave associated to the same
mode.
These equations can be further simplified taking advantage of some properties of the
involved variables:
from eqn. (3.6),   βββββ =−=⇒−= −+

−mm (3.11)

from eqn. (3.4),   auto
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Taking all of this into account, the coupled mode equations can be rewritten as:

from eqn. (3.3),
from eqn. (3.5),
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This system of equations can be simplified once more. It can be seen that it is
equivalent (it has the same solution) to the following simplified version:
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To finish, it is worth noticing that the resulting system of coupled equations can be
rewritten in the following normalized form:
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with a+, a-, the amplitudes of the forward and backward travelling waves associated to
the fundamental microstrip or quasi-microstrip mode, β the phase constant of the
mode, and K the coupling coefficient between both waves.
It is important also to stress that the only approximation introduced to obtain this
simplified system of coupled mode equations is to assume single mode operation.
Another important point to highlight is that although the PBG structure employed can
be two dimensional, due to the high confinement of the fields around the conductor
strip of the microstrip line, we only take advantage of the periodicity along the
conductor strip direction (z), and as a result the operation and modeling of the device
is 1-D effective.

3.2.2. Numerical solution

As it has been shown, a PBG structure in microstrip technology can be characterized
by the simplified system of coupled equations given in eqn. (3.18). The input variables
of the problem are β(z,f) and K(z,f), being z the direction of propagation and f the
frequency of operation.
- The β variable is the phase constant of the operation mode (in our case the
fundamental microstrip or quasi-microstrip mode) in the auxiliary uniform waveguide
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associated to the cross section of interest (it varies with z). It can be expressed as:

),(2),( fz
c

ffz effεπβ ⋅⋅⋅= (3.19)

and it can be calculated by using a numerical method able to calculate the modes of a
waveguide. Specifically, for our case, the method must be able to calculate the modes
of the discrete spectrum of an open waveguide with a two dimensional and non-
separable cross section. In principle this calculation can be done by applying the
transverse resonance in the spectral [ITO 80] or in the space domain [ROZ 87] or in
the equivalent network form [KOS 86]. The implementation of these numerical
methods is beyond the scope of this work, and a commercial software (Agilent HFSS)
has been used here to calculate the phase constant β.

- The K variable is the coupling coefficient. It depends on the position along the
propagation axis, z, and on the operation frequency, f. Several expressions have been
obtained in chapter 2 to calculate its value, being each one valid for a different kind of
perturbation. All the exact expressions involve the calculation of the fields of the
modes in the auxiliary uniform waveguide associated to the cross section of interest (it
varies with z). However, we also have an approximate expression given by eqn.
(2.108) that requires only the calculation of the characteristic impedance, Z0, of the
mode and that will be employed in our case:
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As it was explained earlier, this expression is accurate if the Z0 of the mode
characterizes adequately the propagation of the mode along the waveguide in terms of
reflection produced by the variations of cross section present in the waveguide. This
can be achieved for our case of fundamental microstrip or quasi-microstrip mode
calculating the Z0 by using the power and the current carried by the mode [GET 83]:
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The expression (3.20) for the coupling coefficient assumes also that the normalization
of the fields employed is constant along the z direction (i.e. it does not vary with the
variation of cross section).
As it has been said above, the implementation of a numerical method to calculate the
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modes of a waveguide is beyond the scope of this work, and to obtain the Z0 values
needed the commercial software Agilent HFSS has been used, selecting the power and
current method as the one to be employed in the calculations.

The problem that we have to solve (eqn. (3.18)) is a system of first order linear
ordinary differential equations. We have to solve it for the z interval that goes from z =
0 to  z = L, being L the length of the device under study. To complete the definition of
the problem the boundary conditions must be fixed. In order to study the propagation
of the modes along the microstrip PBG when the output port is matched, and to obtain
the S parameters of the device, we are interested in solving our problem for the
following boundary values:

1)0( === ++
inaza (3.22)

0)( === −−
outaLza (3.23)

With eqn. (3.22) a unitary excitation is set at the input of the device, and with eqn.
(3.23) matching conditions are assumed at the output port.
With these boundary conditions our problem becomes a two-point boundary value
problem, and to solve it we will use a numerical method implemented in Matlab,
based on a collocation method for the solution of boundary value problems [SHA 00].
The name of the Matlab function employed is bvp4c. The phase constant β (and hence
εeff ), and the characteristic impedance Z0 of the auxiliary uniform waveguides are
calculated for a set of them (microstrip lines with slots of different widths in the
ground plane) and the exact values needed to solve the coupled mode equations with
the numerical method are obtained by interpolation.

3.2.3. Calculation of the S-parameters of the device

The S-parameters are widely employed to characterize linear microwave circuits. In
their generalized form, they relate the power and the phase of the forward and
backward travelling waves at the input and output ports of a circuit, in terms of wave
amplitudes [POZ 98]. Here we are going to define them for a single mode of the
discrete spectrum that is in propagation at the input and output ports.
The device under study is characterized in the following way by using the complex
amplitudes of the mode of interest and its equivalent voltage:
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On the other hand a two port device is represented in the following generic form for
the calculation of its S-parameters :

being Z0n the characteristic impedance of the n port and

n

n
n Z

V
a

0

+

=     ;        
n

n
n Z

V
b

0

−

= (3.24)

As it can be seen from the graphical representations, the relation between both
notations is the following:
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and using the expressions for the equivalent voltages obtained in Appendix A, section
(A.1), and given by eqn. (A.9) (valid for a discrete spectrum mode in propagation) the
following relations hold also:
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being −+ == nnn NNN , the normalization of the mode of interest at the n port.

Taking into account the expression for the power carried by a propagating mode of the
discrete spectrum that was deduced in section (2.2.2.3), eqn. (2.28), the power carried
by the waves with complex amplitudes a+, a− will be:
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As it can be seen from the last equations, the wave amplitudes an , bn are valid to
establish physically meaningful power relations, because the power flow is
proportional to the square of their modulus.
The S-parameters of a two port network relate the incident and reflected power wave
amplitudes an , bn in the following way:
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From these equations it can be readily seen that:
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It is worth noting that if the normalization of the fields is the same at the input and

(3.26)



Chapter 392

output port of the device (because both ports are identical, or because the
normalization doesn’t vary with z), the expression for the S21 parameter is simplified
becoming:
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This always happens in our simplified system of coupled mode equations, because the
equation taken for the coupling coefficient (3.20) assumes that the normalization of
the fields does not vary in the direction of propagation, z.

Regarding the S11 parameter, it is interesting to note that if the relation between the
fields of the forward and backward travelling waves associated to the same i mode
were:
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(3.32)

then the relation between the complex amplitudes of the mode a+, a−, and the
equivalent voltage and current would be the one calculated in Appendix A, section
(A.1), and given by eqn. (A.12), and the S11 parameter would have the value:
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It is important to note that this change in the relation between the fields of the forward
and backward travelling waves would imply also a change in the sign of the coupling

coefficient +−−+ == CCK  in such a way that:

work
this

relation
new KK −= (3.34)

As it can be seen, fixing the boundary conditions as stated by eqn. (3.22) and (3.23),
and solving the simplified system of coupled mode equations, the S parameters are
easily obtained by using eqn. (3.29) and (3.31).



Approximate analytical solutions for PBG structures in microstrip technology 93

3.3. Approximate analytical solutions

In this section, the approximate analytical solution for the simplified system of
coupled mode equations that characterizes a PBG structure in microstrip technology is
obtained and studied. From this solution, analytical expressions for the parameters that
characterize the operation of the PBG (S11, S21, BW, frequency of maximum
attenuation, value of the maximum attenuation ..) are deduced, constituting an
excellent set of tools for the analysis and design of these devices.

3.3.1 Approximations realized and system with analytical solution

We start from the simplified system of coupled mode equations obtained in section
3.2, eqn. (3.16), (3.17), for a PBG structure in microstrip technology:

Kaaj
dz

da

Kaaj
dz

da

⋅=⋅⋅−

⋅=⋅⋅+

+−
−

−+
+

β

β
(3.35)

This system has no analytical solution and must be solved by using a numerical
method (see section 3.2.2.), but if we introduce two reasonable approximations it will
give rise to a system that features the desired analytical solution. The approximations
needed are the following:
In first place, we approximate the phase constant β (and hence the effective dielectric
constant εeff) as a variable constant with z. This approximation involves the election of
an “averaged” β (and εeff) for the device under study. As it will be shown later in
section 3.3.4, the most adequate value for it is:
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)(1






 ⋅⋅
Λ

= ∫
Λ

dzzeffeff εε (3.36)

being Λ the period of the PBG pattern.

In second place, due to the fact that the PBG structure for microstrip lines will be
periodic along the z direction with period Λ, the coupling coefficient, K(z), will be
periodic with the same period, and hence it will be amenable to be expanded in a
Fourier series [CAR 86]. A similar treatment is presented in [VAS 85], where the
periodic coupling is transformed into a constant coupling for the relevant term of the
Fourier expansion, allowing an analytical solution for the problem. In our case:
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From the Fourier theory we know that since K(z) is a real function, the following
relations will hold:
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where K0 will be null, since the mean value of the coupling coefficient of a periodic
structure is always zero.
Introducing this expansion of the coupling coefficient K(z) in a Fourier series, we will
be able to simplify the coupled mode equations. Let’s see.
First, we are going to realize a change in the notation:
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Using these new variables the simplified system of coupled mode equations can be
rewritten as:
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Introducing the expansion in Fourier series of K(z), we obtain:
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If we have a finite perturbation in the waveguide, A+(z) and A−(z) will be function of
the position along the waveguide axis, z, and they will vary slowly with z. (It happens

because 
2

)(zA+ and 
2

)(zA− are proportional to the power carried by the forward and

backward travelling waves, respectively).
To continue our reasoning, we are going to introduce the condition of resonant
coupling. By resonant coupling we mean a mode coupling when the following
condition is satisfied:

02 =
Λ
⋅⋅−− πββ nim (3.45)

being n an integer. This condition is of fundamental importance and it is known in the
literature as longitudinal phase matching or just phase matching. It can be seen also as
conservation of momentum [YAR 84]. When this condition holds, an important
transfer of energy can exist between the two modes involved. The condition of
resonant coupling has the following form in our case of mode coupling between the
forward and backward travelling waves associated to the same mode:

02202)(02 =
Λ
⋅⋅−⋅⇒=

Λ
⋅⋅−−−⇒=

Λ
⋅⋅−− −+ πβπββπββ nnn (3.46)

and is customarily formulated as:

Λ
⋅=⇒=

Λ
⋅− πβπβ nn 0 (3.47)

When this last condition is satisfied, the forward and backward travelling waves are
strongly coupled by the perturbation, and an important amount of the power carried by
the forward wave is transferred to the backward wave, giving rise to a large reflection.
Actually, as it will be seen later, the n-th rejected frequency band of a PBG structure
in microstrip technology will be placed around the exact frequency at which the
resonant coupling happens, and the frequency of maximum reflectivity of this n-th
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rejected band will be the frequency of resonant coupling.
So, if our frequency band of interest is placed around the n-th rejected frequency band,
then the variable ∆β defined as:

Λ
⋅−=∆ πββ n (3.48)

will have a very little value, because we will be placed around the condition of
resonant coupling given by eqn. (3.47). In this case, all the complex exponentials that
appear in eqn. (3.43), excluding the one that multiplies the coefficient K−n, will be

complex exponentials of the form zfuncje ⋅⋅ )(β  that vary very quickly with z. The

complex exponential that multiplies K−n will have the form zje ⋅∆⋅⋅ β2 and therefore it will
vary very slowly with z (all of this will happen for the frequency band of interest: i.e.
the frequency range around the n-th rejected frequency band).
When we multiply the function A−(z), a function that varies slowly with z, by a
complex exponential that oscillates very quickly with z, and we integrate the product
in z, over a distance which is much larger than the period of oscillation, we obtain a
result that tends to vanish. (It will be a contribution close to zero). On the other hand,
when we multiply the function A−(z), a function that varies slowly with z, by the term

zj
n eK ⋅∆⋅⋅

− ⋅ β2 , a term that also varies slowly with z, and we integrate in z, a relevant
contribution will be obtained in such a way that the contributions of the other terms of
equation (3.43) will be negligible when compared to it. As it can be seen this
statement will be valid for the range of frequencies placed around the n-th rejected
frequency band, in which the conditions of quick oscillation and slow oscillation of
the complex exponentials involved will hold. Moreover, in order to have a negligible
contribution from the terms with exponentials that oscillate very quickly with z it will
be necessary to perform the integration in z over a distance much larger than the
period of oscillation, and hence the length of the PBG under study must be “large
enough”. It is important to notice, however, that a length around two PBG periods is
usually enough.
By using the same reasoning in eqn. (3.44), the only relevant contribution once the

integration has been done will be contribution of the term zj
n eK ⋅∆⋅⋅−⋅ β2 .

This phenomenon that makes that only the contribution of certain terms of the coupled
mode equations is relevant, for a certain frequency band, is known in the literature as
phase matching [YAR 84].
Consequently, for the frequency range around the n-th rejected frequency band, and
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for a PBG “large enough”, the coupled mode equations can be approximated and
simplified in the following way:
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after having taken advantage of eqn. (3.39), and of the definition of ∆β, eqn. (3.48).

It is interesting to note that an identical system of coupled mode equations is also
obtained when a uniform Fiber Bragg Grating or a uniform optical periodic dielectric
waveguide is studied by using the coupled mode theory [PAS 96, YAR 97, YAR 84].
However, the starting point to obtain the equations is different from the one that we
have used for PBG structures in microstrip technology.
In the case of Fiber Bragg Gratings, the longitudinal perturbation introduced in the
refraction index is very small, and therefore we can approximate assuming that the
longitudinal perturbation doesn’t alter the (x,y) dependent part of the fields of the
mode, nor its phase constant, and it only affects the amplitude of the associated wave
and hence the power carried.
The approach taken assumes that the fields in a cross section of the perturbed optical
fiber can be represented as a superposition of the modes of the unperturbed optical
fiber. The amplitude of the waves associated to these modes will be variable with z
though. This approach is referred to in [MAR 91] as “expansion in terms of ideal
modes”, while the approach that we use to model PBG structures for microstrip lines
(the cross section method) is referred to as “expansion in terms of local normal
modes”.
It is worth noting that the expansion in terms of ideal modes is very good for the case
of Fiber Bragg Gratings because the perturbation present in the optical fiber is very
small, but it wouldn’t be suitable for PBG´s in microstrip technology. In the PBG
case, the perturbation introduced is so strong that the modes of the unperturbed
structure can no longer be taken as a base to expand the fields in all the perturbed
structure, but different modes must be taken for different cross sections.
However, the fact that the simplified equations that govern the behavior of both kind
of devices are the same suggests that a lot of ideas and techniques employed in the
developed and mature field of Fiber Bragg Gratings [KAS 99, OTH 99] could be
easily and successfully translated to the novel and emerging field of PBG structures
for planar microwave and millimeter wave circuits.
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3.3.2. Obtaining the analytical solution

Let’s see now the analytical solution of the approximate simplified system of coupled
mode equations that characterizes a PBG structure for microstrip lines, given in the
previous section by eqn. (3.49):
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and (3.48):

Λ
⋅−=∆ πββ n

The expression for the coupling coefficient that we are going to use is, as we have
stated in section (3.2.2.), the one given by eqn. (3.20):
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and for our case of PBG´s in microstrip technology, if the perturbation introduced in
the ground plane to form the PBG pattern starts with a slot width equal to zero, and
evolves increasing and decreasing the slot width in a continuos manner, without
abrupt discontinuities, then the coupling coefficient will satisfy:
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and therefore the value for the argument of Kn will be °−= 90)arg( nK , and hence:

nn KjK ⋅−= (3.51)

Due to the form of eqn. (3.51), it seems convenient to redefine the coupling coefficient
parameter, introducing the k parameter, in such a way that:

nKjk ⋅= (3.52)

With this definition the novel k parameter will be always a real number for our case of
PBG´s printed in the ground plane of a microstrip line, provided that the conditions
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about the slot width starting from zero, and evolving without abrupt discontinuities are
satisfied.
Using the novel coupling coefficient parameter, k, the approximate coupled mode
equations can be rewritten as:
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with ∆β given by eqn. (3.48)

Λ
⋅−=∆ πββ n

In order to obtain the analytical solution of eqn. (3.53) in a simpler way, we are going
to perform a change in the notation. A pair of new variables will be introduced
following the notation of Kogelnik [KOG 72, PAS 96]:
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Using the new variables the approximate coupled mode equations can be rewritten as:

RkjSj
dz
dS

SkjRj
dz
dR

⋅⋅+⋅∆⋅=

⋅⋅−⋅∆⋅−=

β

β *

(3.55)

The general solution of these equations (3.55) is of the form [KOG 72, PAS 96]:
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where

( )22 βγ ∆−+= k (3.57)

To obtain the analytical solution for our particular problem we have to fix the
boundary conditions. To do it we will assume that the perturbed waveguide with
length L extends from z=-L to z=0. We will suppose also that the output port at z=0 is
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matched, and hence the reflected wave at this point will be equal to zero, that is:

0)0(0)0( ==⇒==− zSza (3.58)

From this last condition (3.58), and applying the solution (3.56) we obtain that
−+ −= SS , and therefore, again form eqn. (3.56), the following partial result for S(z) is

obtained:

)(sinh2)( zSzS ⋅⋅⋅−= + γ (3.59)

Introducing the result (3.59) in the coupled mode equations (3.55) the corresponding
partial solution for R(z) is also obtained:
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Assuming an incident wave at the input port 0)( RLzR =−= , we can eliminate the

constant +S from eqn. (3.60) and (3.59), giving rise to the following expressions for
R(z) and S(z):
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Performing the following change of variable:

Lzz +=′ (3.62)

to have the perturbed waveguide of length L placed between 0=′z  and Lz =′  , and
using again the variable z for simplicity, we will have that the analytical solution for
the approximate coupled mode equations (3.55) that characterize a PBG structure in
microstrip technology with length L placed between z=0 and z = L, with an incident
wave R(z=0) = R0 and with the output port matched, will be:
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To finish, we are going to change the variables R(z) , S(z) that we have used to solve
the approximate coupled mode equations, for the complex amplitudes a+(z) , a−(z) of
the forward and backward travelling waves associated to the mode of interest using
the relations of eqn. (3.54). By means of this change of variable we obtain that the
analytic solution of the approximate system of coupled mode equations:
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that characterize a PBG structure in microstrip technology with length L placed
between z=0 and z = L, excited by an incident wave a+(z=0) = a+(0) and with the
output port matched, (i.e. a−(z=L)=0) will be:
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with

Λ
⋅−=∆ πββ n

( )22 βγ ∆−+= k

∆β is given by eqn. (3.48) and γ by eqn. (3.57).
Equivalent analytical expressions to those of eqn. (3.66) are obtained in [YAR 73,
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YAR 84, PAS 96] in the optical domain, for uniform periodic dielectric waveguides
and for Fiber Bragg Gratings. It should be noted, however, that the theory of coupled
modes was originated in the microwave area, driven by the research for the waveguide
telecommunication projects [MIL 54]. Several approaches to the theory can be traced
since then. In [MIL 54a], an analytical solution for the constant coupling case is
presented, and the periodic coupling case is addressed in [MIL 68]. Moreover, this
theory has been applied to the case of mode conversion in oversized circular
waveguides, using periodic wall perturbations, for high-power millimeter wave
applications, see [THU 84]. There, by using an averaging of the rapidly oscillating
terms, the periodic coupling coefficient is transformed into an uniform effective
coupling coefficient in order to apply the theory of tight coupling of Miller, [MIL
54a]. Nevertheless, the coupled mode theory has experienced a remarkable
development due to contributions from the integrated optics area, where it is today a
very mature tool for the analysis and design of advanced devices, see [HAU 91]. Now,
we experience a backward wave from the optical community that returns to the
microwave researchers the seminal work, forward wave, initiated during the fifties.
This fact is an example of fruitful interaction between two research fields sharing a
same theory, the coupled mode method.

Continuing with eqns. (3.66), the relation between the complex amplitudes a+(z) ,
a−(z) and the total field present in the waveguide was given for the general case in
section (3.2) by eqn. (3.7) and (3.8), and for the simplified system of coupled mode
equations it has the form:
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ˆ

ˆ
(3.67)

being −−++ HEHE ,,, the (x,y) dependent part of the electric and magnetic fields of the
forward (+) and backward (−) travelling waves corresponding to the fundamental
microstrip (or quasi-microstrip) mode of the auxiliary uniform waveguide associated
to the cross-section of interest (it varies with z). The details about the normalization
and relations between these fields were studied in chapter 2, section (2.2).

As we have seen previously in section (3.3.1), to go from the simplified system of
coupled mode equations, eqn. (3.35), that characterizes a PBG structure in microstrip
technology, to the approximate system (3.64) that has analytical solution, we have
realized two reasonable approximations:
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• We approximate the phase constant β as a variable constant with z. This
approximation involves the election of an “averaged” β that is assumed to remain
constant along the device.

• We neglect the terms that include complex exponentials that oscillate very quickly
with z, keeping the terms with complex exponentials that vary slowly with z. This
can be done for the range of frequencies placed around the maximum reflection
frequency of the rejected band (bandgap) of interest, and for a PBG device “large
enough”. As it can be seen this approximation involves the election of a rejected
band of interest around which the analytical solution will be valid. Each Kn of the
coupling coefficient Fourier series, eqn. (3.37), will correspond to the rejected
band of index n, being the index of the first rejected band n=1. The approximation
will get worse as the frequency of calculation moves away from the rejected band
of interest and if the length of the device is short. It is important to notice,
however, that regarding the length around two PBG periods is usually enough.

Taking into account all of this we can say that the analytical solutions given by eqn.
(3.66) are also approximate analytical solutions for the equations that characterize the
operation of a PBG in microstrip technology, eqn. (3.35), and it will happen that the
better the two approximations that we have just detailed are satisfied, the more
accurate the prediction given by the approximate analytical solutions will be.

3.3.3. Analytical expressions for several Important parameters

Using the analytical solutions that we have just calculated in the previous section for
the complex amplitudes a+(z) , a−(z) in a PBG in microstrip technology with length L,
and with the output port matched (eqn. (3.66)), we can also obtain analytical solutions
for several important parameters that characterize its operation: S11 , S21 , frequency of
maximum reflectivity, value of this maximum reflectivity, reflected bandwidth and
transmission matrix. Similar deductions to those carried out along this section can be
found in [YAR 84, YAM 87, KAS 99, OTH 99] for optical periodic dielectric
waveguides and Fiber Bragg Gratings, giving rise to similar analytical expressions.
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3.3.3.1. S11 and S21 parameters

The value for the S11 and S21 parameters will be, using eqn. (3.29) and (3.31):
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where k is the coupling coefficient parameter, eqn. (3.20), (3.38) and (3.52), ∆β is
given by eqn. (3.48), γ is given by eqn. (3.57), n is the index of the rejected band of
interest (n=1 for the first rejected band), and Λ and L are the period and length of the
PBG structure, respectively.
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3.3.3.2. Frequency of maximum reflectivity, fmax , max
S11  and 

min
S21

With respect to the frequency of maximum reflectivity (and maximum attenuation),
from eqn. (3.68) and (3.69) it can be seen that it corresponds to the frequency that
satisfies 0=∆β , and therefore its value is
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where c is the speed of light in vacuum, 8103 ⋅=c m/s, and εeff is the effective
dielectric constant of the PBG device.
The value of this maximum reflectivity is (from eqn. (3.68) with 0=∆β )

)(tanh11 LkS max ⋅= (3.71)

and its phase
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)arg()arg(
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and the corresponding value of maximum attenuation (minimum transmission), (from
eqn. (3.69) with 0=∆β ) is given by
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3.3.3.3. Reflected bandwidth, BW∞∞∞∞ , and sidelobes

Regarding the reflected bandwidth around the frequency of maximum reflectivity, we
are going to calculate it between the first minima or zeroes of reflection around the
reflected band, BW∞ .
From eqn. (3.68) it can be seen that the frequency of the first minimum of reflection
will satisfy:

πγ ⋅=⋅ jL (3.75)

and hence

     ( ) ( )( ) ( )22

2
2222222 βππβπβ ∆=+⇒−=⋅∆−⇒⋅=⋅∆−

L
kLkjLk (3.76)

At the same time, if we assume εeff as constant with the frequency in the rejected
bandwidth (i.e. if we neglect the dispersion):

)(2
maxeffmax ff

c
n −⋅⋅⋅=−=

Λ
⋅−=∆ επββπββ (3.77)

On the other hand, if we take into account the dispersion:
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being vg the group velocity, and ng the group index.
As it can be seen, the expression for ∆β  is the same in both cases (eqn. (3.77), (3.78)),

if we replace effeff n=ε (expression that neglects the dispersion) by ng (expression

that takes into account the dispersion).
Continuing our deduction with the expression that neglects the dispersion, eqn. (3.77),
and introducing it in eqn. (3.76), the equation for the bandwidth of the reflected
frequency band calculated between zeroes of reflection is obtained:
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As we have already discussed, to take into account the dispersion we have only to
substitute the effε by the group index, ng , in the equation for the bandwidth, (3.79).

Let’s see now two extreme cases in the calculation of the rejected bandwidth:

- If  ( ) 22 π<<⋅ Lk  (case of low reflectivity and low attenuation), then
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- If  ( ) 22 π>>⋅ Lk (case of high reflectivity and high attenuation), then
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Aside from the main rejected frequency band centered at the maximum reflection
frequency fmax , and with a bandwidth BW∞ , the reflectivity spectrum of the PBG
structure in microstrip technology also consists of a series of sidelobes on both sides
of the main rejected band. These sidelobes have their peak value approximately at:
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πγ ⋅




 +⋅=⋅

2
1pjL     ;    p=1, 2, 3, ... (3.82)

which corresponds to:
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and the approximate value for their peak reflectivity is:

22211
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The sidelobes are separated by reflection zeroes that are placed exactly at:

πγ ⋅⋅=⋅ qjL     ;    q=1, 2, 3, ... (3.85)

which corresponds to
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3.3.3.4. Transmission matrix parameters

To complete our set of analytical expressions for PBG structures in microstrip
technology, we are going to deduce the transmission matrix by using again the
analytical expression obtained in the previous section for the complex amplitudes
a+(z) , a−(z) in a PBG of length L. The transmission matrix relates the complex
amplitudes of the incident and reflected waves at the input (z=0) and output (z=L)
ports of the PBG microstrip device in the following manner:
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To make the calculation of the transmission matrix easier, we are going to use an
important property of this matrix shown in Appendix C, eqn. (C.6), and applicable to
our PBG structures in microstrip technology. It states that the transmission matrix of a
reciprocal (passive and without anisotropic elements) and lossless two port network,
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that has normalizations in both ports that are equal, or are real numbers or at least have
a quotient that is a real number, satisfies that:

*
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(3.88)

and hence, using this property, it will be enough to calculate the value for the A11 and
A21 parameters that are readily obtained from the equations for a+(z) , a−(z) (3.66):
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to finish we can calculate the rest of the values from eqn. (3.88).

The transmission matrices allow the analytical study of nonuniform PBG structures
obtained by cascading uniform ones. The total transmission matrix can be calculated
by multiplying the transmission matrices of the constituent structures:
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In particular the presence of defects (e.g. missing periods) can be modeled.

To make easier the study of phase shifts introduced in the PBG structure, the coupling
coefficient, k, is expressed in the following form:

)arg(k
ekk j

=
⋅= ⋅

φ

φ

(3.91)

and with this notation the equations for the transmission matrix parameters become:

a+(0)

a−(0)

a+(Ltotal)

a−(Ltotal)
1 2 q N
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If the total PBG device is formed by cascading uniform PBG structures that can
include phase shifts between them, ∆φ , the argument of the coupling coefficient of the

q-th uniform PBG, qφ , can be easily calculated by using the expression:

qkqq Ln φπφφ ∆+⋅⋅
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⋅+= −− 11 2 (3.93)

The calculation of the S-parameters from the transmission matrix parameters is
straightforward and can be done by using the following relations:
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with the general expression for the S11 and S21 parameters given by eqn. (3.29) and
(3.31), respectively. It must be noted that in the deduction of the S21 parameter it has
been assumed that the fields at the input and output port have the same normalization.
If it weren’t the case, the expression should be modified according to eqn. (3.30).

It is important to notice that the transmission matrix obtained characterizes the PBG
structure in microstrip technology assuming continuity conditions for the forward and
backward travelling waves at the interfaces of z=0 and z=L. That is, the transmission
matrix calculated fully characterizes the device if the profile in the waveguide under
analysis is continuous at the input and output port (i.e. it doesn’t feature
discontinuities at the ports).

It is important also to take into account that all the analytical expressions developed in
this section have been obtained from the analytical solutions for the approximate
system of coupled mode equations (3.64) that characterizes a PBG structure in
microstrip technology. Therefore all the expressions are approximated, because as it
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was shown in section (3.3.1.) there are two reasonable approximations involved:
• The phase constant β is approximated as a variable constant with z. An “averaged”

β is assigned to all the device.
• We neglect the terms with complex exponentials that vary very quickly with z and

as a consequence the coupling coefficient K(z) is approximated by only one term
of its Fourier series. This approximation  is valid for the range of frequencies
placed around the maximum reflection frequency, and for a PBG device large
enough (several periods).

To finish, we are going to review the changes that the last expressions developed
would suffer if the relation between the fields of the forward and backward travelling
waves associated to the mode of interest were:
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All the changes would consist on a change in the sign of the equation involved.
In first place, the coupling coefficient equation (3.20) would change its sign,
becoming:
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1)( ⋅⋅−= (3.96)

Consequently the coupling coefficient parameter would change the sign in its
definition (3.52):

nKjk ⋅−= (3.97)

The relation between the complex amplitude of the backward travelling wave, a−(z),
and the equivalent voltage (eqns. (A.9), Appendix A) would change also its sign:

 −− ⋅⋅= aNZV 0 (3.98)

and consequently the definition of S(z) (3.54) would have positive sign:
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Taking all this into account, the coupled mode equations for S and R (3.55) would
remain unaltered .
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The S11 definition (3.29) would have positive sign
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and the analytical solution for a−(z) (3.66) would change its sign, becoming:
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In this way, the analytical expression for S11 (3.68) would remain unaltered.
To finish, the A21 parameter of the transmission matrix (3.92) would have negative
sign:
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and consequently the relationship between the S11 and the A21 parameters (3.94) would
change also its sign:
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A
AS = (3.103)

3.3.4. Introduction of the spatial variable “electrical position”

In this section we are going to introduce a novel spatial variable, χ , and we are going
to name it “electrical position”. It is inspired in the electrical position variables
proposed in [XIA 01, WOH 66], and is related to the physical position, z, in the
following way:

∫ ⋅=
z

eff dssz
0

)()( εχ (3.104)

(in this definition it is assumed that the origin of the circuit is placed at z=0).

Applying the first fundamental theorem of calculus we obtain that:

effdz
d εχ = (3.105)
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and from it, the inverse equation can be readily obtained:
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The aim of the electrical position variable, χ , is to have a β constant with it along the
PBG device. In this way, the first of the two approximations used in the previous
sections to obtain the analytical solutions for the coupled mode equations can be
avoided, achieving more accurate results.
Let’s see the resulting system of coupled mode equations with the spatial variable
electrical position, χ. The initial system, function of the physical position z, was given
by eqn. (3.16) and (3.17):
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We take the first of the equations, and we introduce in it the variable χ .
The first term of the equation can be rewritten as:
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On the other hand, the coupling coefficient K(z) has the form (eqn. (3.20)):
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where
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It is worth noting that in all the cases (including the general formulations given in
chapter 2) the coupling coefficient will have the form of a derivative in the z direction,
multiplied by other terms, plus a derivative in the z direction, multiplied by other
terms, and so on. Consequently it will be always expressible in the following way:

dz
dKzK χχ ⋅= )()( (3.110)

being K(χ) the coupling coefficient calculated using the spatial variable electrical
position.
From eqn. (3.19) the phase constant β can be formulated as a function of εeff , and
using eqn. (3.105) the following expression is obtained:
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where
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With all of this, the first of the coupled mode equations can be rewritten as:
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and simplifying it becomes:
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Taking the second of the coupled mode equations (eqn. (3.17)), and introducing in it
the electrical position variable χ , we obtain in the same way:
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So the system of coupled mode equations expressed as a function of the electrical
position variable, χ , is given by eqn. (3.114) and (3.115). As it can be seen, it has
identical form to the system expressed as a function of the physical position variable,
z, (eqn. (3.16) and (3.17)), if we replace the physical position variable, z, by the
electrical position variable, χ , the phase constant β (that can be function of z), by the
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phase constant β0 (that is constant with χ ), and the coupling coefficient calculated
using z, K(z), by the coupling coefficient calculated using χ , K(χ).
As a consequence, the analytical solutions found in the previous sections will be still
valid for the new system expressed as a function of the electrical position variable, χ ,
provided that the three replacements described are introduced in the solutions. In fact,
the analytical solutions will be more accurate for the new system because to obtain
them it won’t be necessary to approximate β0 as constant with χ , since it will be
actually constant with χ .

It is important to stress that the coupling coefficient K(χ) is not obtained by realizing a
simple change of variable in K(z), but it is obtained by calculating the coupling
coefficient using the spatial variable electrical position, χ , as it can be seen in eqn.
(3.109). Thus, for the calculation of the coupling coefficient K(χ), all the elements of
the coupling coefficient equation must be expressed as function of χ , and after it the
derivatives must be taken in the direction of χ .

Using the electrical position variable, χ , an optimized value for the “averaged” β (and
hence εeff) to be employed in the analytical solutions of the coupled mode equations
expressed as function of z (eqn. (3.16) and (3.17)), can be obtained. We are going to
calculate it by adjusting the expression for the frequency of maximum reflectivity.
As it was seen in eqn. (3.70) the frequency of maximum reflectivity will be the one
that satisfies ∆β=0, and therefore using the electrical position variable its value will
be:
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It is important to notice that to obtain this expression there is still one approximation
involved: we neglect the terms with complex exponentials that vary very quickly with
χ and as a consequence the coupling coefficient K(χ) is approximated by only one
term of its Fourier series (the second of the two approximations used in the previous
sections). This approximation  is valid for the range of frequencies placed around the
maximum reflection frequency, and for a PBG device large enough (several periods).
So the approximation will be in general very good, and the results of the equation for
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the frequency of maximum reflectivity will be very accurate, but always
approximated, not exact.

By comparing the equation for the frequency of maximum reflectivity obtained using
the physical position variable, z, (eqn. (3.70)) , and this last equation obtained by using
the electrical position variable, χ , (eqn. (3.116)), it can be readily deduced that the
optimized value for the “averaged” εeff is given by:
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where εeff is the “averaged” value, constant with z, that we are going to use in the
analytical expressions to approximate the εeff(z), variable with z, that is actually
present in our PBG device.

3.3.5. Case of tapered PBG

In all the previous subsections of section 3.3 we have studied PBG structures in
microstrip technology with constant parameters: constant period and constant
amplitude of perturbation. As we have seen, for these purely periodic structures there
are approximate analytical solutions and the analysis and design process can be quite
simple. However, as it will be seen in chapter 4, the performance of a PBG structure in
microstrip technology can be notably improved for certain applications by applying
techniques that result in an optimized pattern that is almost periodic but not purely
periodic. Unfortunately, in general, there are no analytical solutions for the non
periodic patterns. However, an approximate analytical solution can be obtained for the
frequency of maximum reflectivity and for the value of this maximum reflectivity
when a tapering technique is applied. A tapered PBG will have an almost periodic
pattern with constant period and tapered (variable) amplitude of perturbation. Its
coupling coefficient will be expressible as:
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where T(z) is the tapering function applied (it is supposed to be a real function), and
KΛ(z) the purely periodic part of the coupling coefficient that can be expanded in a
Fourier series.
Applying the same reasoning employed in section (3.3.1), taking the same
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approximations:
• We approximate the phase constant β as a variable constant with z. An “averaged”

β is assigned to all the device.
• We neglect the terms with complex exponentials that oscillate very quickly with z

and as a consequence the coupling coefficient KΛ(z) is approximated by only one
term of its Fourier series. This approximation  is valid for the range of frequencies
placed around the maximum reflection frequency, and for a PBG device large
enough (several periods).

and defining the coupling coefficient parameter as:

Λ⋅= nKjk (3.119)

the coupled mode equations will take the form:
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As we have done previously in section (3.3.2), we are going to introduce the R(z) and
S(z) variables. They are defined as in eqn. (3.54). Using them and separating in the
coupling coefficient parameter its modulus, k , and its argument, φ, the coupled mode

equations (eqn. (3.120)) can be rewritten as:
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Following [KOG 76] we are going to define a modified reflection coefficient, Γ:

φ⋅−⋅=Γ je
R
S (3.122)

and it will be related to the conventional reflection coefficient, ρ , in the following
way:
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Let’s calculate now the Riccati equation for the modified reflection coefficient. By
deriving eqn. (3.122), we have:
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2 (3.124)

and substituting for dzdS  and for dzdR  from eqns. (3.121), and simplifying, we
obtain the so called Riccati equation:
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The maximum reflectivity of the device will take place when ∆β=0, so the frequency
of maximum reflectivity for the tapered PBG will be given by:
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and the value of maximum reflectivity will satisfy (introducing ∆β=0 in eqn. (3.125)):
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Integrating both terms of the equation between z=0 and z=L (assuming that the device
is placed between z=0 and z=L), and applying the boundary condition Γ(L)=0 (i.e.
assuming that the output port is matched), it will be obtained:
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defining the effective length, Leff , of a tapered device as:
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(we have to take into account that ∫ =
+

)(arctg
1 2 x

x
dx , and )(tanh)(tan xjxj ⋅−=⋅− )

As we now there is a direct relationship between the S11 parameter and the reflection
coefficient, and from eqn. (3.123) they are also related to the modified reflection
coefficient in the following way:
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and therefore the value of maximum reflectivity for the tapered PBG will be:

( )eff
j

max LkejS ⋅⋅⋅−= ⋅ tanh,11
φ (3.131)

with modulus

( )effmax LkS ⋅= tanh11 (3.132)

and with Leff given by eqn. (3.129).

As it can be seen, the expression for the maximum reflectivity in the tapered PBG case
(eqn. (3.132)) is identical to that in the uniform PBG case (eqn. (3.71)) provided that
the physical length, L , is replaced by the effective length, Leff .
Regarding the frequency of maximum reflectivity, the expression for it is identical in
both cases (eqn. (3.126) and eqn. (3.70)).
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3.4. Bloch wave analysis

In this section the Bloch wave formalism will be used to analyze PBG structures in
microstrip technology. Concepts like the dispersion relation and the characteristic
impedance of the Bloch wave will be introduced giving rise to a complementary and
powerful point of view for the analysis and design of PBG structures in microstrip
technology.

3.4.1. Floquet’s theorem

Let us consider an infinite periodic structure, periodic along the direction of
propagation z, with period Λ. In it, the permittivity and permeability will be periodic
in such a way that:

( ) ( )Λ+= zyxzyx ,,,, εε     ;    ( ) ( )Λ+= zyxzyx ,,,, µµ (3.133)

This equations indicate that the medium “looks” exactly the same to an observer
placed at z as to an observer placed at z+Λ.
The propagation of electromagnetic waves in a medium is governed by Maxwell’s
equations. Assuming time-harmonic fields with an tje ⋅⋅ω dependence, and assuming
that the medium under study is source-free they can be written as:

EjH

HjE
ˆˆ

ˆˆ

⋅⋅⋅=×∇

⋅⋅⋅−=×∇

εω

µω
(3.134)

where Ê  and Ĥ  are the total electric and magnetic fields. These equations remain
identical in our periodic structure after we have substituted z by z + Λ  in the operator
∇ and in ε and µ. The discrete translational symmetry of the structure allows us to take
its modes  in the following way [YAR 84, COL 92, JOA 95, BRI 53]:

zj

zj

ezyxHzyxH

ezyxEzyxE
⋅′⋅−

⋅′⋅−

⋅=

⋅=
β

β

),,(),,(ˆ
),,(),,(ˆ

(3.135)

where ),,( zyxE  and ),,( zyxH are periodic:

),,(),,(
),,(),,(

Λ+=
Λ+=

zyxHzyxH
zyxEzyxE

(3.136)
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The possibility of expressing the field in a periodic structure in the form given by
eqns. (3.135) and (3.136) is known as Floquet’s theorem [YAR 84, COL 92, JOA 95,
BRI 53] (the generalization of this theorem for three dimensional periodicity is also
known as Bloch’s theorem). The modes resulting from the Floquet’s theorem are the
modes of the periodic structures, and they are known as Bloch waves. These equations
state that the field behaviour in a periodic structure is describable in terms of a
fundamental travelling wave, with phase constant β′ , and a standing wave ),,( zyxE

(or ),,( zyxH ) which is the same in each period Λ, and which represents the local
variations of the fields due to the existent periodicity.
This standing wave can alternatively be represented as a superposition of travelling
waves. The representation is accomplished by expanding the periodic function

),,( zyxE  in a Fourier series as:

∑
∞

−∞=

⋅⋅
Λ
⋅⋅−

⋅=
n

znj
n eyxEzyxE

π2

),(),,( (3.137)

where

∫Λ

⋅⋅
Λ
⋅⋅

⋅⋅⋅
Λ

= dzezyxEyxE
znj

n

π2

),,(1),( (3.138)

Introducing eqn. (3.137) into eqn. (3.135) it can be seen that the field in the periodic
structure is represented now as:

∑∑
∞

−∞=

⋅





 ⋅

Λ
⋅+′⋅−∞

−∞=

⋅′⋅−⋅⋅
Λ
⋅⋅−

⋅=⋅⋅=
n

znj

n
n

zjznj
n eyxEeeyxEzyxE

πβ
β

π 22

),(),(),,(ˆ (3.139)

and defining:

nn ⋅
Λ
⋅+′=′ πββ 2       ;       ... ,2 ,1 ,0 ±±=n (3.140)

we have:

∑
∞

−∞=

⋅′⋅−⋅=
n

zj
n

neyxEzyxE β),(),,(ˆ (3.141)

As it can be seen the field present in the periodic structure is expressible as a sum of
an infinite number of travelling waves. Each of these travelling waves is called spatial
harmonic, in analogy to the familiar time harmonic expansion for an arbitrary function
in time [COL 92, OLI 63].
It must be noted that although the Bloch wave can be expanded in an infinite set of
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spatial harmonics, these spatial harmonics can not exist independently and are not
modal solutions by themselves, they are portions of a total solution and must exist
simultaneously to have a total field that satisfies the boundary conditions.
The eigenvalue equation that allows the calculation of the phase constant β′ for a
periodic structure always yields solutions Λ+′=′ πββ nn 2 , in addition to the
fundamental solution. These other possible solutions are clearly the propagation
constants of the spatial harmonics. A complete k0 - β′ diagram is thus always periodic
outside the range πβπ ≤Λ⋅′≤− . Therefore, the dispersion curve is repeated every

πβ ⋅=Λ⋅′ 2  and the range placed between πβ −=Λ⋅′  and πβ =Λ⋅′  contains all
the information of the dispersion diagram and corresponds to the first Brillouin zone
for these structures that are periodic in one dimension [JOA 95, BRI 53].

The use of the Bloch waves in the analysis of periodic structures is enough to permit
the determination of all the macroscopic properties of the periodic structure. The
alternative representation in terms of spatial harmonics allows us the exploration of
certain microscopic properties and adds insight into many features of the behaviour of
the periodic structures, for example the radiation in open periodic structures [OLI 63].

3.4.2. Dispersion diagram

In this section we are going to calculate the dispersion diagram or k0 - β diagram for a
PBG structure in microstrip technology. An approximate analytical expression will be
obtained for it taking advantage of the approximate analytical solutions that we have
for the coupled mode equations. To finish, a procedure to obtain a numerical solution
for the dispersion diagram will be also presented.

3.4.2.1. Approximate analytical expression

Let’s recall the approximate general solution of the coupled mode equations that
characterize a PBG structure in microstrip technology, eqn. (3.56):

zz

zz

eSeSzS

eReRzR
⋅−⋅−+

⋅−⋅−+

⋅+⋅=

⋅+⋅=
γγ

γγ

)(

)(

and thus the total electric field in the PBG device will be, from eqns. (3.54), (3.67):

( ) +⋅⋅+⋅⋅=
⋅⋅

Λ
⋅−⋅−⋅−++ znjzz eeReRzyxEzyxE
π

γγ),,(),,(ˆ
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( ) znjzz eeSeSzyxE
⋅⋅

Λ
⋅⋅−⋅−+− ⋅⋅+⋅⋅−
π

γγ),,( (3.142)

where ),,( ),,,( zyxEzyxE −+  are the (x,y) dependent part of the electric field of the

forward (+) and backward (−) travelling waves corresponding to the fundamental
microstrip (or quasi-microstrip) mode of the auxiliary uniform waveguide associated
to the cross-section of interest. The cross section varies with z, and hence the mode
fields will vary with z also. Since the cross section variation is periodic, with period Λ,

the mode fields ),,( ),,,( zyxEzyxE −+  will be also periodic in z with the same period

Λ, and therefore will satisfy:

),,(),,( Λ+= ++ zyxEzyxE      ;     ),,(),,( Λ+= −− zyxEzyxE (3.143)

Comparing the general form for the Bloch waves given by eqn. (3.135) and the total
electric field in our PBG device, eqn. (3.142), it can be deduced that in the general
case in our PBG device there is a forward travelling Bloch wave and a backward
travelling Bloch wave with phase constant [YAR 77, YAR 84]:

γπβ ⋅±⋅
Λ

=′ jn (3.144)

( γπβ ⋅⋅
Λ

−=′ jn  for the backward travelling wave).

The ± sign appears due to the form of the expression for γ , given by eqn. (3.57):

( )22 βγ ∆−+= k

that makes necessary, in order to have a proper definition of the phase constant of the
Bloch wave, to define it piecewise:

- forward travelling Bloch wave:









−>∆⋅−⋅
Λ

−≤∆⋅+⋅
Λ=′

kjn

kjn

βγπ

βγπ

β
      ;        

      ;        
(3.145)

- backward travelling Bloch wave:
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−>∆⋅+⋅
Λ

−

−≤∆⋅−⋅
Λ

−
=′

kjn

kjn

βγπ

βγπ

β
      ;        

      ;        
(3.146)

where ∆β is given by eqn. (3.48):

Λ
⋅−=∆ πββ n

n is the index of the rejected band of interest (n=1, 2, 3, ...) and k is the coupling
coefficient parameter, eqn. (3.20), (3.38) and (3.52).
As it was previously shown, a complete k0 - β′ diagram (i.e. including the spatial
harmonics) is always periodic outside the range πβπ ≤Λ⋅′≤−  , with the dispersion

curve repeating itself every πβ ⋅=Λ⋅′ 2 . Therefore the dispersion (k0 vs. β′ ) diagram

is customarily represented in the range 5.0
2

5.0 ≤
⋅
⋅′≤−
π
πβ , (the first Brillouin zone)

and in the form 
π⋅
Λ⋅

2
0k  vs. 

π
β

⋅
Λ⋅′

2
 , containing all the information about the dispersion

[JOA 95].
Since k0 is the phase constant of a plane wave in vacuum:

c
fk ⋅⋅= π2

0 (3.147)

the form customarily employed for the dispersion diagram can be rewritten as:

c
f Λ⋅  vs. 

π
β

⋅
Λ⋅′

2
 .

In order to obtain the dispersion diagram (including the spatial harmonics) of a PBG in

microstrip technology in the first Brillouin zone 




 ≤

⋅
⋅′≤− 5.0

2
5.0

π
πβ  the following

expressions must be represented :

β
γπβ

γπβ
∆∀










⋅−⋅
Λ

−=′

⋅+⋅
Λ

=′
         

jn

jn
(3.148)

in all the frequency range (without the necessity of defining them piecewise).
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From the approximate analytical expression for the phase constant of the Bloch wave,
eqn. (3.145), several important parameters of the rejected frequency band of the PBG
device can be obtained. The rejected frequency band, forbidden band or Photonic
Bandgap extends over the range of frequencies in which the phase constant β′  has
imaginary part, causing reactive attenuation in the Bloch waves that will have
evanescent behaviour in the PBG device. This phenomenon is analogous to the energy
gap in semiconductors where  the periodic crystal potential causes the electron
propagation constants to become complex [YAR 77, YAR 84].
The frequency of maximum attenuation will be that at which the imaginary part of the
phase constant β′  is maximum. This condition will be satisfied when ∆β=0, and
hence the frequency of maximum attenuation will have the value:

Λ⋅⋅
⋅=⇒

⇒
Λ

⋅=⋅⋅⋅⇒
Λ

⋅=⇒=∆

eff
max

eff
max

max

cnf

n
c

fn

ε

πεππββ

2

20
(3.149)

and the value of this maximum attenuation obtained for the Bloch wave will be:

kmaxmax =′−=′ )Im(βα   Np/m (3.150)

The bandwidth of the forbidden band or Photonic Bandgap will cover the frequency
range in which the phase constant β′  has imaginary part, i.e. when k≤∆β  . So the

maximum frequency of the Photonic Bandgap will satisfy:

k=∆β (3.151)

At the same time, if we assume εeff as constant with the frequency in the Photonic
Bandgap (i.e. if we neglect the dispersion):

)(2
maxeffmax ff

c
n −⋅⋅⋅=−=

Λ
⋅−=∆ επββπββ (3.152)

On the other hand, if we take into account the dispersion:

)(2)(

)(1)(

maxgmax
g

max
g

maxmax

ffn
cc

n
vd

dn

−⋅⋅⋅=−⋅=

=−⋅=−⋅≈−=
Λ

⋅−=∆

πωω

ωωωω
ω
βββπββ

(3.153)
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where vg is the group velocity, and ng the group index.
As it can be seen, the expression for ∆β  is the same in both cases (eqn. (3.152),

(3.153)), if we replace effeff n=ε (expression that neglects the dispersion) by ng

(expression that takes into account the dispersion).
Continuing our deduction with the expression that neglects the dispersion, eqn.
(3.152), and introducing it in eqn. (3.151), the equation for the bandwidth of the
Photonic Bandgap or forbidden band is obtained:

eff
gap

gap
effmaxeff

ck
BW

k
BW

c
kff

c

επ

επεπ

⋅
⋅

=⇒

⇒=⋅⋅⋅⇒=−⋅⋅⋅
2

2)(2

(3.154)

As we have already commented, to take into account the dispersion we have only to
substitute the effε by the group index, ng , in the equation for the bandwidth, (3.154).

To finish this subsection it is important to stress that all the analytical expressions
developed have been obtained from the general analytical solutions for the
approximate system of coupled mode equations (3.55) that characterizes a PBG
structure in microstrip technology. Therefore all the expressions are approximated,
because as it was shown in section (3.3.1.) there are two reasonable approximations
involved:
• The phase constant β is approximated as a variable constant with z. An “averaged”

β is assigned to all the device.
• We neglect the terms with complex exponentials that vary very quickly with z and

as a consequence the coupling coefficient K(z) is approximated by only one term
of its Fourier series. This approximation  is valid for the range of frequencies
placed around the maximum reflection frequency, and for a PBG device large
enough. (this last condition is no problem in this case because the PBG is ideal
(infinite)).

3.4.2.2. Calculation using numerical method

As we have seen previously the use of the cross section method to analyze PBG
structures in microstrip technology has allowed us to express the field in the device,
(after having simplified the problem assuming single mode operation, section (3.2))
as:
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)(),,()(),,(),,(ˆ zazyxEzazyxEzyxE −−++ ⋅+⋅= (3.155)

where ),,( ),,,( zyxEzyxE −+  are the (x,y) dependent part of the electric field of the

forward (+) and backward (−) travelling waves corresponding to the fundamental
microstrip (or quasi-microstrip) mode of the auxiliary uniform waveguide associated
to the cross-section of interest; and a+(z), a−(z) are the wave amplitudes of the mode
along the nonuniform waveguide.
The cross section varies with z, and hence the mode fields will vary with z also. Since
the cross section variation is periodic, with period Λ, the mode fields

),,( ),,,( zyxEzyxE −+  will be also periodic in z with the same period Λ, and therefore
will satisfy:

),,(),,( Λ+= ++ zyxEzyxE      ;     ),,(),,( Λ+= −− zyxEzyxE (3.156)

Taking into account the relation between the fields of the forward and backward
travelling waves associated to the same mode seen in chapter 2, eqn. (2.14):

+−+−+− +=−=−= zzyyxx EEEEEE     ;           ;       (3.157)

the eqn. (3.155) can be rewritten as:

( ) ( ))()(),,()()(),,(),,(ˆ
, zazazyxEzazazyxEzyxE zyx

−++−++ +⋅+−⋅= (3.158)

Since our PBG microstrip device is a periodic structure with period Λ, it can be
broken up in unitary cells, each of them equal to one period, in whose input and output
terminals we are going to calculate the wave amplitudes a+(z), a−(z) :

where:

)(

)(

Λ⋅==

Λ⋅==
−−

++

nzaa

nzaa

n

n (3.159)

a+
n-1

 Unitary cell
  ≡1 period

 Unitary cell
  ≡1 period

 Unitary cell
  ≡1 period

a−
n-1

a+
n a+

n+1 a+
n+2

a−
n a−

n+1 a−
n+2
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))1((

))1((

1

1

Λ⋅+==

Λ⋅+==
−−

+

++
+

nzaa

nzaa

n

n

The values of eqn. (3.159) are related by the transmission matrix of the unitary cell in
the following way:
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+
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1
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n

n

n

a
a

AA
AA

a
a

(3.160)

On the other hand the total field present in the PBG device can be expressed using the
Bloch waves in the following way:

zjBBzjFB ezyxEezyxEzyxE ⋅′⋅+⋅′⋅− ⋅+⋅= ββ ),,(),,(),,(ˆ (3.161)
where

),,( ),,,( zyxEzyxE BBFB  are the fields for the forward travelling Bloch wave (FB) and
the backward travelling Bloch wave (BB), respectively, and satisfy:

),,(),,(

),,(),,(

Λ+=

Λ+=

zyxEzyxE

zyxEzyxE
BBBB

FBFB

(3.162)

If there is only one forward travelling Bloch wave propagating in our periodic
structure, then the expression for the total field simplifies, becoming:

zjFB ezyxEzyxE ⋅′⋅−⋅= β),,(),,(ˆ (3.163)

Comparing this last expression for the field, with the one obtained in eqn. (3.158) as a
function of the wave amplitudes a+(z), a−(z), it can be deduced that if in our PBG
device there is only one forward travelling Bloch wave propagating, then it will be
satisfied that [COL 92]:

Λ⋅′⋅−−−

Λ⋅′⋅−++

⋅Λ⋅==Λ⋅+=

⋅Λ⋅==Λ⋅+=
β

β

j

j

enzanza

enzanza

)())1((

)())1((

and hence:
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eaaeaa

11

11 (3.164)

Therefore the transmission matrix of the unitary cell will satisfy:
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and reorganizing the equation:

0
1

1

2221

1211 =







⋅








−

−
−
+

+
+

Λ⋅′⋅

Λ⋅′⋅

n

n
j

j

a
a
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AeA

β
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(3.165)

A nontrivial solution for a+
n+1 ,  a−

n+1 , is obtained only if the determinant of the matrix
is equal to zero. Consequently, the eigenvalue equation for γ′ is:

( ) ( ) 012212211 =⋅−−⋅− Λ⋅′⋅Λ⋅′⋅ AAeAeA jj ββ

and operating:

( ) 02211
2

12212211 =+⋅−+⋅−⋅ Λ⋅′⋅Λ⋅′⋅⋅ AAeeAAAA jj ββ (3.166)

Since our PBG device in microstrip technology will be reciprocal (passive and without
anisotropic elements), and since the two ports of the unitary cell are equal and hence
will have the same normalization in any case (N1=N2), we can take advantage of the
property for the transmission matrix given by eqn. (C.4) (the determinant of the
transmission matrix will be equal to one), and simplify eqn. (3.166):

( ) ( ) 001 22112211
2 =+−+⇒=+⋅−+ Λ⋅′⋅Λ⋅′⋅−Λ⋅′⋅Λ⋅′⋅⋅ AAeeAAee jjjj ββββ

and reorganizing

2
)cos( 2211 AA +=Λ⋅′β (3.167)

Equation (3.167) can be further simplified for our PBG’s in microstrip technology
taking advantage of other important property of the transmission matrix. Since our
PBG device will be reciprocal and lossless (it is assumed as lossless throughout  all
our study), and since the two ports of the unitary cell are equal and hence will have the
same normalization in any case (N1=N2), the relation given by eqn. (C.6) will hold
allowing us to rewrite eqn. (3.167) as:

2
)cos(

*
1111 AA +=Λ⋅′β  (3.168)

and using the relations with the S-parameters given by eqns. (C.3):
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and using the relations with the S-parameters given by eqns. (C.3):







+⋅=Λ⋅′

*
2121

11
2
1)cos(

SS
β (3.169)

where A11 , S21 , are the parameters corresponding to the unitary cell (one period), Λ is
the value of the period of the structure, and β′  is the phase constant of the Bloch
wave.

As it can be seen, the forward travelling Bloch wave which propagate in the PBG
device is made up from a forward travelling wave and a backward travelling wave
corresponding to the fundamental microstrip (or quasi-microstrip) mode of the
auxiliary uniform waveguide associated to the cross section of interest.

3.4.3. Characteristic impedance of the Bloch wave

As it was shown in the previous section, if we assume that there is only one forward
travelling Bloch wave propagating in our PBG microstrip circuit, then eqn. (3.165)
will hold:
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β

The ratio between the wave amplitudes in this situation (only one forward travelling
Bloch wave propagating) is known as characteristic reflection coefficient, Bρ , and its
value at the n+1 terminal will be:

+
+

−
+−=
1

1

n

n
B a

aρ (3.170)

The minus sign applied to the wave amplitude a− arises due to the relation existent
between the backward wave amplitude and its equivalent voltage, see eqn. (A.9),
Appendix A.

From Bρ  it is easy to calculate the characteristic impedance of the Bloch wave, ZB ,
through the well known relation:

0

0

ZZ
ZZ

B

B
B +

−= ±

±
±ρ
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and hence:

±

±±

−
+=

B

BB

Z
Z

ρ
ρ

1
1

0
(3.171)

where the ± sign denotes the forward (+) or backward (−) travelling Bloch wave,
respectively, and Z0 is the characteristic impedance of the terminal for the fundamental
microstrip mode (in our case) of the auxiliary uniform waveguide associated to the
terminal.

3.4.3.1. Calculation using numerical method

From the initial matrix, eqn. (3.165), two equations can be extracted:

( ) 0112111 =⋅+⋅− −
+

+
+

Λ⋅′⋅
nn

j aAaeA β (3.172)

( ) 0122121 =⋅−+⋅ −
+

Λ⋅′⋅+
+ n

j
n aeAaA β (3.173)

Calculating for Λ⋅′⋅βje  from eqn. (3.172) it follows that:
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nj
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substituting it in eqn. (3.173) and reorganizing we obtain:
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and taking into account the definition of Bρ , eqn. (3.170), and reorganizing again:

0)( 211122
2

12 =+⋅−−⋅− AAAA BB ρρ

and hence:

12

2112
2

11221122

2
)(4)(

A
AAAAAA

B ⋅−
⋅−⋅−−±−

=ρ (3.175)

Thus, using eqn. (3.171), the characteristic impedance of the Bloch wave will be:
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Since our PBG device in microstrip technology will be reciprocal (passive and without
anisotropic elements), and since the two ports of the unitary cell are equal and hence
will have the same normalization in any case (N1=N2), we can take advantage of the
property for the transmission matrix given by eqn. (C.4) (the determinant of the
transmission matrix will be equal to one), and simplify eqn. (3.176), obtaining:

4)(2

4)(2
2

2211112212

2
2211112212

0 −++−⋅−

−+±−+⋅−
=

AAAAA
AAAAA

Z
ZB (3.177)

This last equation is the final expression for the characteristic impedance of the Bloch
wave [NAI 84] in the PBG device. Z0 is the characteristic impedance of the
fundamental microstrip mode (in our case) at the input/output port of the unitary cell.
The transmission matrix parameters involved correspond to the unitary cell (one
period). They can be easily calculated from the S-parameters since the network will be
reciprocal and assumed as lossless, and the two ports of the unitary cell will be equal
and hence will have the same normalization (N1=N2), giving rise from eqns. (C.3) and
(C.6) to the following relations:

*
21

*
11

12*
21

22
21

11     ;    1    ;    1
S
SA

S
A

S
A −=== (3.178)

The equation for the characteristic impedance of the Bloch wave has two results: one
corresponds to the forward travelling Bloch wave (ZB

+), and the other to the backward
travelling Bloch wave (ZB

−). If the unitary cell is symmetric then it will be satisfied

that −+ −= BB ZZ , but if the unitary cell is asymmetric then there will be no relation
between them. To avoid the ambiguity that we can have in the sign in eqn. (3.177), it
is important to take into account that the ZB

+ will be always real and positive in the
propagation band.

Another way to avoid the previously commented ambiguity that can exist in eqn.
(3.177)  and to make sure that we are calculating the characteristic impedance of the
forward or backward travelling Bloch wave in all the frequency range (including the
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forbidden band or Bandgap), we can use an alternative expression obtained as a
function of β′. To do it, we start from eqn. (3.172) and reorganize it introducing ρB

(eqn. (3.170)):
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n
j

a
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1
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substituting the result in eqn. (3.171):
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and reorganizing:
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Λ⋅′⋅

+−
−+= β

β

j

j
B

eAA
eAA

Z
Z

1112

1112

0
(3.179)

This last equation is also a valid expression for the calculation of the characteristic
impedance of the Bloch wave in our PBG device in microstrip technology. If we use
β′ of the forward travelling Bloch wave, then ZB

+ will be obtained, and if we employ
β′ of the backward travelling Bloch wave (= -β′ of the forward travelling Bloch wave),
then ZB

− will be obtained.
As in the expression previously calculated, Z0 is the characteristic impedance of the
fundamental microstrip mode (in our case) at the input/output port of the unitary cell
(one period), and the transmission matrix parameters involved correspond to the
unitary cell and can be easily calculated from the S-parameters using the relations of
eqn. (3.178).

3.4.3.2. Approximate analytical expression

To finish this section a simple and approximate analytical expression for the
characteristic impedance of the Bloch wave, ZB , will be obtained. To do it, we are
going to use a version of eqn. (3.179) calculated with the transmission matrix
parameters of a PBG device with N periods. It can be readily seen that in this case the
equation becomes:
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Λ⋅⋅′⋅

Λ⋅⋅′⋅

+−
−+= Nj

Nj
B

eAA
eAA

Z
Z

β

β

1112

1112

0
(3.180)

We are interested in using the transmission matrix parameters of a PBG with N
periods (and not with one period only), because we are going to employ the analytical
expressions previously obtained for them (eqn. (3.89) and (3.88)) that are valid for
PBG devices “large enough” (and for the range of frequencies placed around the
rejected band).
We are going to calculate the expression for ZB in the passbands placed at both sides
of the forbidden band. In the passband placed to the left, the relation k≥∆− β  will

hold, and in the passband placed to the right k≥∆β  will hold. Therefore, in the

passbands it will be satisfied that:

        γββγ ⋅=−∆⋅=∆−= jkjk 2222 )()(    ;    22)( k−∆= βγ (3.181)

where ∆β  is given by eqn. (3.48):

Λ
⋅−=∆ πββ n

Taking advantage of eqn. (3.181), the approximate analytical expressions for the
transmission matrix parameters of a PBG in microstrip technology with N periods
(eqn. (3.89) and (3.88)) can be rewritten for the passbands as:

Nnje
Nj

NA ⋅⋅⋅⋅




 Λ⋅⋅⋅∆⋅
+Λ⋅⋅= π

γ
γβ

γ
)(sin

)cos(11

Nnje
Nkj

AA ⋅⋅⋅−⋅
Λ⋅⋅⋅⋅−

== π

γ
γ )(sin*

*
2112 (3.182)

(we have taken into account that )cos()cosh( θθ =j , )(sin)(sinh θθ ⋅= jj )

In the same way, the β ′⋅j  term can be obtained from eqn. (3.145) and hence its
approximate analytical expression will be:

γπγπβ ⋅−⋅
Λ

⋅=−⋅
Λ

⋅=′⋅ jnjnjj (3.183)

for the passband to the left of the forbidden band and
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γπγπβ ⋅+⋅
Λ

⋅=+⋅
Λ

⋅=′⋅ jnjnjj (3.184)

for the passband to the right of the forbidden band, in both cases for the forward
travelling Bloch wave.
Selecting in first place the passband to the left of the forbidden band, and introducing
these expressions in eqn. (3.180), we have:
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(3.185)

(taking into account that Nnje ⋅⋅⋅π  has the same value as Nnje ⋅⋅⋅− π , since n (number of the
rejected band of interest) and N (number of periods taken) are integer numbers).
Reorganizing the equation and taking advantage of the definition of the sine and

cosine functions in terms of exponentials (
j
ee jj

2
)sin(

θθ

θ
−−= ,   

2
)cos(

θθ

θ
jj ee −+= )

it can be rewritten as:
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( ) )(sin
)(sin

)sin(
)(sin

*

*

0 Λ⋅⋅⋅−∆+⋅
Λ⋅⋅⋅−

Λ⋅⋅⋅+∆−⋅
Λ⋅⋅⋅−

=
+

Njk
Nj

Njk
Nj

Z
ZB

γβ
γ
γ

γβ
γ
γ

and simplifying, the simple and approximate analytical expression for the
characteristic impedance of the forward travelling Bloch wave is obtained:

γβ
γβ

+∆+
−∆−

=
+

*

*

0 k
k

Z
ZB (3.186)

valid for the passband to the left of the forbidden band. In the same way it can be
easily obtained (using eqn. (3.184)) that for the passband to the right of the forbidden
band the expression will be:

γβ
γβ

−∆+
+∆−

=
+

*

*

0 k
k

Z
ZB (3.187)
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And finally, using the β′ of the backward travelling Bloch wave (= -β′ of the forward
travelling Bloch wave), the expressions for the backward wave are calculated:

γβ
γβ

−∆+
+∆−

=
−

*

*

0 k
k

Z
ZB (3.188)

valid for the passband to the left of the forbidden band and:

γβ
γβ

+∆+
−∆−

=
−

*

*

0 k
k

Z
ZB (3.189)

valid for the passband to the right of the forbidden band.

In all of these equations Z0 is the characteristic impedance of the fundamental
microstrip mode (in our case) at the input/output port, γ is given by eqn. (3.181), k is

the coupling coefficient parameter given by eqns. (3.20), (3.38) and (3.52), and ∆β is
given by eqn. (3.48).

To finish it is important to notice that these analytical expressions are approximate
because they have been obtained using the approximate analytical expressions for the
transmission matrix parameters and  for the phase constant of the Bloch wave.
Therefore they involve the two approximations detailed in section (3.3.1),
• The phase constant β is approximated as a variable constant with z. An “averaged”

β is assigned to all the device.
• We neglect the terms with complex exponentials that vary very quickly with z and

as a consequence the coupling coefficient K(z) is approximated by only one term
of its Fourier series. This approximation  is valid for the range of frequencies
placed around the maximum reflection frequency, and for a PBG device large
enough. (this last condition is no problem in this case because the PBG taken has
N periods and N can be as large as needed).

3.4.4. Analysis of terminated PBG structures

Let us consider a finite periodic structure (a PBG in microstrip technology in our case)
with period Λ, and with an integer number of periods, N, excited at the input port by a
source with a characteristic impedance ZS , and terminated at the output port by a load
impedance ZL.
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For the sake of simplicity, we are going to realize the study using the equivalent
voltages and currents for the Bloch waves, BB IV  , [COL 92]. The total voltage and
current at the n-th terminal will be:

Λ⋅⋅′⋅−Λ⋅⋅′⋅−+ ⋅+⋅= nj
B

nj
BBn eVeVV ββ

00
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B
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B
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B
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BBn e

Z
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Z
VeIeII ββββ 00

00 (3.190)

On the other hand at the N-th terminal it will be satisfied:

LLBNLBNL IZIZVV ⋅=⋅== (3.191)

and hence:
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Calculating from eqn. (3.192) the reflection coefficient for the Bloch waves at the load

impedance, +

−
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NL V
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(3.193)

The reflection coefficient for the Bloch waves at the n-th terminal will be:
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and the input impedance at the n-th terminal will be given by the expression:

VB0
+

  Period 2   Period 1   Period N

VB0
−

IBNZS

VB0
ZLVBN

 IL

 VL



Approximate analytical solutions for PBG structures in microstrip technology 137
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substituting for ρn from eqns. (3.194) and (3.193), and simplifying we obtain:
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and particularizing for the 0 terminal (input port), we have that the input impedance at
the input port, Zin , of the PBG microstrip device will be:
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An equation similar to eqn. (3.196) is presented in [NAI 84] for periodic structures in
microstrip technology.

From the value for the input impedance Zin , the reflection coefficient and the
transmission coefficient of the device can be immediately calculated.
The reflection coefficient at the input port, calculated for the waves corresponding to
the fundamental microstrip mode of the auxiliary uniform waveguide associated to the
input port (whose characteristic impedance is Z0) will have the value:

0

0

ZZ
ZZ

V
V

a
a

in

in
in +

−==−= +

−

+

−

ρ (3.197)

and it is equal to the S11 parameter if the output port is matched. The minus sign
applied to the wave amplitude a− arises due to the relation existent between the
backward wave amplitude and its equivalent voltage, see eqn. (A.9), Appendix A.

The transmission coefficient at the input port will have the value:
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0
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where −+ += VVVin  is the total equivalent voltage at the input port, and
−+ −= aaain is proportional to the total transversal electric field at the input port.

The ratio between the power given to the circuit (the loaded PBG device in our case)

and the incident power at the input port will be +=
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PT in

in  and hence:
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(taking into account that the characteristic impedance of the input port, Z0 , will be  a
real number).

The power transmission coefficient, Tin , will satisfy 2
21STin = if the PBG device is

lossless and if the output port is matched.
To finish this section it is important to note that if the unitary cell (or period) of the
PBG microstrip structure under analysis is symmetrical, then the Bloch wave
characteristic impedance will satisfy:

BBB ZZZ =−= −+ (3.200)

and the resulting ZB parameter will have the same function and properties as the
characteristic impedance  in the uniform transmission lines. Let’s see.
From eqn. (3.193), the reflection coefficient for the Bloch waves at the load
impedance (N-th terminal) has the form:

BL
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BN
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ZZ
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−

ρ (3.201)

and at the n-th terminal (from eqn. (3.194)):
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Λ⋅−⋅′⋅⋅−⋅= )(2 nNj
Ln e βρρ (3.202)

The input impedance at the n-th terminal will be (from eqn. (3.195)):
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or from eqn. (3.195) also:
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and simplifying we obtain the classical form:
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Particularizing for the 0 terminal (input port), we have that the input impedance at the
input port, Zin , of the PBG microstrip device has also the classical form:

( )
( )Λ⋅⋅′⋅⋅+

Λ⋅⋅′⋅⋅+⋅=
NZjZ
NZjZZZ
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BL
Bin β

β
tan
tan (3.205)

As a conclusion it is important to stress that to have the forward travelling Bloch wave
matched (i.e. to avoid the appearance of a reflected wave due to the load) it is
necessary to have a load impedance equal to the forward Bloch wave characteristic
impedance (ZL = ZB

+). In the same way, to have the backward travelling Bloch wave
matched it is necessary that the characteristic impedance of the source satisfies

−−= BS ZZ  (to make the backward travelling Bloch wave not to have reflection when it
arrives to the source). Moreover, if the unitary cell is symmetric the PBG structure in
microstrip technology will behave as a uniform transmission line with characteristic
impedance ZB and phase constant β′ , and hence it will be matched when the source
impedance, load impedance and Bloch wave characteristic impedance satisfy:

BLS ZZZ == (3.206)
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3.5. Relation between K(z) and S11(f) in terms of Fourier Transforms

In this section several expressions that relate the coupling coefficient, K(z), of a
nonuniform waveguide (a PBG structure in microstrip technology in our case) and its
reflection parameter S11(f), will be obtained. The relation will be given through the
Fourier Transform, resulting in a straightforward expression for the simplified case of
low reflectivity and in a series type solution for the general case.

3.5.1. Approximate expression for structures with low reflectivity

We start from the simplified system of coupled mode equations valid for PBG
structures in microstrip technology, eqns. (3.16), (3.17) (the only approximation
involved is to assume single mode operation, see section (3.2.1)).
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We introduce the reflection coefficient parameter, +−+− −== aaVVρ (the minus

sign applied to the wave amplitude a− arises due to the relation existent between the
backward wave amplitude and its equivalent voltage, see eqn. (A.9), Appendix A),
and taking its derivative it follows:
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and reorganizing the equation:
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reorganizing again and introducing ρ again:

( )212 ρρβρ −⋅−⋅⋅⋅= Kj
dz
d (3.207)

Equation (3.207) is called a Riccati equation [COL 92]. It is a nonlinear equation
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because of the term 2ρ  and does not have a known general solution.
To solve it, we are going to realize the following approximations:
• We assume that the phase constant β (and hence εeff) is a variable constant with z.

An “averaged” β (and hence εeff ) is assigned to all the device.

• We assume that 1)( 2 <<zρ , i.e. we assume that the reflectivity is low along all

the device.

With these approximations eqn. (3.207) can be simplified as:

Kj
dz
d −⋅⋅⋅= ρβρ 2 (3.208)

We are going to integrate this last equation between z=0 and z=L (being L the length

of the device). To do it, we multiply both members of the equation by zje ⋅⋅⋅− β2 :

zjzjzj eKeje
dz
d ⋅⋅⋅−⋅⋅⋅−⋅⋅⋅− ⋅−⋅⋅⋅⋅=⋅ βββ ρβρ 222 2

and using the equality:
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dz
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dz
d ⋅⋅⋅−⋅⋅⋅−⋅⋅⋅− ⋅⋅⋅⋅−⋅=⋅ βββ ρβρρ 222 2

(since β is assumed as constant with z)
the equation can be rewritten as:

( ) zjzj eKe
dz
d ⋅⋅⋅−⋅⋅⋅− ⋅−=⋅ ββρ 22 (3.209)

Integrating both sides of eqn. (3.209) between z=0 and z=L (assuming that the device
has a length L and is placed between z=0 and z=L) we have:
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and assuming that the output port of the device is matched ( 0)( =Lρ ):
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= ∫ β
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00)()0(

and hence:
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∫ ⋅⋅= ⋅⋅⋅−L zj dzezKS
0

2
11 )( β (3.210)

As it can be seen, eqn. (3.210) gives the relation between the coupling coefficient of a
device K(z), and its reflection parameter S11(f). From the form of the equation a
Fourier Transform relation can be envisaged between both parameters. Let’s see now
how is exactly this Fourier Transform relation.
Expressing the phase constant β  as a function of the effective dielectric constant (eqn.
(3.19)), (where effε  is allowed to be a function of the frequency, f ):

effc
f επβ ⋅⋅⋅= 2

the relation given by eqn. (3.210) becomes:
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and if we assume that the coupling coefficient K(z)=0 , [ ]Lz ,0∉∀  it can be rewritten
as:
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Taking the following definition for the Fourier Transform pair:
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                  )()( fVtv FT→←

then eqn. (3.211) can be rewritten as:

( )cfSzK eff
FT ε⋅⋅→← 2)( 11 (3.213)

giving rise to the sought Fourier Transform pair, where c is the speed of light in

vacuum, m/s 103 8⋅=c
Moreover, from eqns. (3.212) and (3.213) it can be deduced that:
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The approximations used to obtain equation (3.211) (besides single mode operation)
are the two previously detailed in this section: β (and hence εeff) is assumed to be

constant with z, and we assume that 1)( 2 <<zρ , (i.e. the reflectivity is low along all

the device). To obtain eqn. (3.214), (and the Fourier Transform relation in full sense,
eqn. (3.213)) it is assumed also that K(z) is not a function of the frequency,  f.

On the other hand, if we take the following definition for the Fourier Transform pair:

∫
∫

∞

∞−

⋅⋅−

∞

∞−

⋅⋅−

⋅⋅
⋅

==

⋅⋅==

ωω
π

ω

ω

ω

ω

deVVFtv

dtetvtvFV

tj

tj

)(
2

1))(()(

)())(()(

1
(3.215)

                  )()( ωVtv FT→←

then eqn. (3.211) can be rewritten as:

( )β⋅→← 2)( 11SzK FT (3.216)

and, of course, the approximations involved are the same as those previously detailed.

The fundamentals that have inspired the development of this section can be found in
[BOL 50, BOL 56, COL 92].

3.5.1.1. Use of the spatial variable “electrical position”

The electrical position variable χ was introduced in section (3.3.4), and is obtained
form the physical position z by using eqn. (3.104):

∫ ⋅=
z

eff dssz
0

)()( εχ

(in this definition it is assumed that the origin of the circuit is placed at z=0).
With it, and following the same reasoning as in section (3.3.4) for the coupled mode
equations, the Riccati equation (eqn. (3.207)) can be rewritten as:

( )2
0 1)(2 ρχρβ

χ
ρ −⋅−⋅⋅⋅= Kj

d
d (3.217)
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where:

c
f⋅⋅= πβ 2

0 (3.218)

and is constant with the electrical position variable χ , and K(χ) is the coupling
coefficient calculated using the electrical position variable χ, as shown in eqn. (3.109).
The aim of the electrical position variable, χ , is to obtain a β constant with it along
the PBG device. In this way, the first of the two approximations used in the previous
section to obtain the Fourier Transform relation can be avoided, achieving more
accurate results. Thus, in this case, we have to make only one approximation:

• We assume that 1)( 2 <<χρ , i.e. we assume that the reflectivity is low along all

the device.
We are going to define also Lχ :

∫ ⋅==
L

eff dssLL
0

)()( εχχ (3.219)

From eqn. (3.217) and with the approximation introduced we obtain, following the
same reasoning detailed in the previous section:

∫ ⋅⋅= ⋅⋅⋅−χ χχ χβL j deKS
0

2
11

0)( (3.220)

Let’s see how is exactly the Fourier Transform relation.
Assuming that the coupling coefficient K(χ)=0 , [ ]χχ L,0∉∀ , and using eqn. (3.218)

the last expression can be rewritten as:

( )∫
∞

∞−

⋅⋅⋅⋅⋅− ⋅⋅= χχ χπ deKS cfj 22
11 )( (3.221)

If we take the definition for the Fourier Transform pair given by eqn. (3.212), then
eqn. (3.221) can be rewritten as:

)2()( 11 cfSK FT ⋅→←χ (3.222)

and consequently we will have also:

( ) ( ) ( )cfdecfSK cfj 22)( 22
11 ⋅⋅⋅⋅= ⋅⋅⋅⋅⋅∞

∞−∫
χπχ (3.223)

The approximation used to obtain equation (3.221) (besides single mode operation) is
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the one previously detailed in this section: we assume that 1)( 2 <<χρ , (i.e. the

reflectivity is low along all the device). To obtain eqn. (3.223), (and the Fourier
Transform relation in full sense, eqn. (3.222)) it is assumed also that K(χ) and χ(z)
( )(zeffε⇒ ) are not functions of the frequency, f.

To finish, if we take the definition for the Fourier Transform pair given in eqn.
(3.215), then eqn. (3.221) can be rewritten as:

)2()( 011 βχ ⋅→← SK FT (3.224)

3.5.1.2. Use of the “echo time” variable

In this section we are going to introduce a new variable calculated from the physical
position variable, z. It will be called “echo time” and its definition is [KOB 92]:

∫ ⋅⋅=
z eff ds

c
s

z
0

)(
2)(

ε
τ (3.225)

where τ  is the “echo time” variable and c is the speed of light in vacuum.
It is interesting to note that τ  is equal to the time employed by a signal of frequency f
transmitted at z=0 to travel along the waveguide, reflect at position z and return to the
sending point at z=0. (let’s recall that effp cv ε= ). That’s why it is called “echo

time”.
Using the τ  variable, the Riccati equation (eqn. (3.207)) will become:

( )21)(2 ρτρπ
τ
ρ −⋅−⋅⋅⋅⋅= Kfj

d
d (3.226)

(since applying the first fundamental theorem of calculus: 
cdz

d effετ ⋅= 2 )

where K(τ) is the coupling coefficient calculated using the echo time variable, in the
same sense as K(χ) was the coupling coefficient calculated using the electrical
position variable χ, as shown in eqn. (3.109).
We are going to take the following approximation:

• We assume that 1)( 2 <<τρ , i.e. we assume that the reflectivity is low along all

the device.
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with it, eqn. (3.226) can be rewritten as:

)(2 τρπ
τ
ρ Kfj

d
d −⋅⋅⋅⋅= (3.227)

Integrating eqn. (3.227) between τ=0 and τ=τL , where L is the length of the device
under analysis that is placed between z=0 and z=L, and:

∫ ⋅⋅==
L eff

L dz
c

z
L

0

)(
2)(

ε
ττ (3.228)

and following the same reasoning detailed in section (3.5.1), we obtain:

∫ ⋅⋅= ⋅⋅⋅⋅−L
deKS fjτ τπ ττ

0

2
11 )( (3.229)

Let’s see how is exactly the Fourier Transform relation with the echo time variable.
Assuming that the coupling coefficient K(τ)=0 , [ ]Lττ ,0∉∀ , the last expression can
be rewritten as:

∫
∞

∞−

⋅⋅⋅⋅− ⋅⋅= ττ τπ deKS fj 2
11 )( (3.230)

Taking the definition for the Fourier Transform pair given by eqn. (3.212), then eqn.
(3.230) can be rewritten as:

)()( 11 fSK FT→←τ (3.231)

and consequently we will have also:

( ) dfefSK fj ⋅⋅= ⋅⋅⋅⋅∞

∞−∫
τπτ 2

11)( (3.232)

The approximation used to obtain equation (3.230) (besides single mode operation) is

the one previously detailed in this section: we assume that 1)( 2 <<τρ , (i.e. the

reflectivity is low along all the device). To obtain eqn. (3.232), (and the Fourier
Transform relation in full sense, eqn. (3.231)) it is assumed also that K(τ) and τ(z)
( )(zeffε⇒ ) are not functions of the frequency, f.

To finish, if we take the definition for the Fourier Transform pair given in eqn.
(3.215), then eqn. (3.230) can be rewritten as:
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)()( 11 ωτ SK FT→← (3.224)

where f⋅⋅= πω 2

3.5.2. General expressions

The simple expressions calculated in the previous section have been obtained for
devices with low reflectivity. In this section general more complicated expressions
without this restriction will be obtained, and it will be shown that the simple
expressions can be seen also as a first approximation to the general more complicated
expressions.

3.5.2.1. Exact expression for S11(f) from K(z)

We start from the simplified system of coupled mode equations valid for PBG
structures in microstrip technology, eqns. (3.16), (3.17) (the only approximation
involved is to assume single mode operation, see section (3.2.1)).

+−
−

−+
+

⋅+⋅⋅=

⋅+⋅⋅−=

aKaj
dz

da

aKaj
dz

da

β

β

We introduce the variables )(zA+ , )(zA− :

zj

zj

ezAza

ezAza
⋅⋅−−

⋅⋅−++

⋅=

⋅=
β

β

)()(

)()(
(3.225)

The coupled mode equations then become:

zj

zj

ezAzK
dz

dA

ezAzK
dz

dA

⋅⋅⋅−+
−

⋅⋅⋅−
+

⋅⋅=

⋅⋅=

β

β

2

2

)()(

)()(
(3.226)

assuming that β  is constant in z.
The boundary conditions that we are going to use are the following:

1),0( ==+ βzA (3.227)
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0),( ==− βLzA (3.228)

and hence we are assuming unitary excitation at the input, and matching conditions at
the output of the device.

Applying them, and taking into account the expression for the S11 parameter as a
function of the complex amplitudes of the mode, a+, a−  (eqn. (3.29), section (3.2.3)):

),0(
),0(
),0(

),0(
),0()(

0),(
11 β

β
β

β
ββ

β

=−=
=
=−=

=
=−= −

+

−

==
+

−

−

zA
zA
zA

za
zaS

Lza

and therefore:

),0()(11 ββ =−= − zAS (3.229)

Integrating the second coupled mode equation of eqns. (3.226):

∫∫
=

=

⋅⋅⋅−+=

=

−

⋅⋅⋅=⋅
Lz

zz

zjLz

zz
dzeAzKdz

dz
dA 1

1

1
1

1
1

2
11

1
)( β

∫
=

=

⋅⋅⋅−+−− ⋅⋅⋅=−
Lz

zz

zj dzezAzKzALA
1

1

1
1

2
11 ),()(),(),( ββββ

and taking into account that from eqn. (3.228), 0),( =− βLA , we have:

∫
=

=

⋅⋅⋅−+− ⋅⋅⋅−=
Lz

zz

zj dzezAzKzA
1

1

1
1

2
11 ),()(),( βββ (3.230)

Integrating now the first coupled mode equation of eqns. (3.226):

∫∫
=

=

⋅⋅⋅+−=

=

+

⋅⋅⋅=⋅
zz

z

zjzz

z
dzezAzKdz

dz
dA 2

2

2
2

2 0 2
2

2220 2
),()( ββ

∫
=

=

⋅⋅⋅+−++ ⋅⋅=−
zz

z

zj dzezAzKAzA 2

2

2

0 2
2

22 ),()(),0(),( ββββ

and taking into account that from eqn. (3.227), 0),0( =+ βA , we have:

∫
=

=

⋅⋅⋅+−+ ⋅⋅+=
zz

z

zj dzezAzKzA
2

2

2

0 2
2

22 ),()(1),( βββ (3.231)

Substituting the expression of eqn. (3.231), in that of eqn. (3.230), we obtain:



Approximate analytical solutions for PBG structures in microstrip technology 149

∫ =

⋅⋅⋅−− −⋅⋅−=
L

zz

zj dzezKzA
1

1
1

2
1)(),( ββ

           ∫∫
=

=

−⋅⋅⋅−⋅⋅⋅−=

=
⋅⋅⋅⋅⋅−

12

2

21
1

1 0 2
22

2121 ),()()(
zz

z

zjzjLz

zz
zAeezKzKdzdz βββ

Proceeding in an iterative manner (i.e., substituting the expression of eqn. (3.230) in
the last result, and then the expression of eqn. (3.231) in what remains, and again
substituting expression of eqn. (3.230), and so on) we obtain the following infinite
series:

     ∫ =

⋅⋅⋅−− +⋅⋅−=
L

zz

zj dzezKzA
1

1
1

2
1)(),( ββ

 )(2
32130 21
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21
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− = −= −===
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zz n
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z n

L

zz

z

z

L

zz

n

nn
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  )...(2
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1222321)()...().()( −− +−−+−⋅⋅⋅−
− ⋅⋅⋅ nn zzzzzj

n ezKzKzKzK β

So, since ),0()(11 ββ =−= − zAS  (see eqn. (3.229)), we will finally have:

   ∫ =

⋅⋅⋅− −⋅⋅+=
L

z

zj dzezKS
0 1

2
111

1

1)()( ββ

      )(2
32130 20 1

321

23
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32
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1
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1 ....1

                                )...(2
12321

1222321)()....().()( −− +−−+−⋅⋅⋅−
− ⋅⋅⋅ nn zzzzzj

n ezKzKzKzK β

(3.232)

It is important to note that the only approximation introduced to obtain this expression
(besides single mode operation) is to assume β  constant with z. (Particularly, it will
keep being valid if K(z) is function of the frequency).
It is also interesting to note that each one of the terms in the series is an integral that
extends to all the propagation paths with a given number of scattering events.
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An expression similar to eqn. (3.232) was obtained in [FEC 99] for Fiber Bragg
Gratings in the optical regime.

3.5.2.2. Exact expression for K(z) from S11(f)

As usually, we start from the simplified system of coupled mode equations valid for
PBG structures in microstrip technology, eqns. (3.16), (3.17) (the only approximation
involved is to assume single mode operation, see section (3.2.1)).

+−
−

−+
+

⋅+⋅⋅=

⋅+⋅⋅−=

aKaj
dz

da

aKaj
dz

da

β

β

Reorganizing the equations in order to express them in the form of the Zakharov-
Shabat (ZS) system of quantum mechanics, we obtain:









⋅=








⋅
















−

−
⋅ −

+

−

+

a
a

a
a

dz
dK

K
dz
d

j β
*

(3.233)

To do this we have taken advantage of the fact that K(z) is a real function in our
system (and hence K(z) = K*(z)). Additionally, we are going to approximate β as a
constant function with z (it will only be a function of the frequency, f).

We are going to introduce four vectorial functions, which are known as the Jost
functions, ψψφφ  , , , , that are solution of the ZS system. Their asymptotic behavior is
described by:
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In the following lines a couple of properties of the Jost functions that are derived
directly of the particular form of the ZS system, will be shown:

• If the Jost function 
( )
( )






=

βφ
βφ

φ
,
,

2

1

z
z

 is a solution of the ZS system, then it is

possible to obtain another solution that is linearly independent of this one by
simply applying the complex conjugate operator to the ZS system. The resulting
function will be the Jost function φ , and it will be related to the previous one in
the following manner:

( )
( ) 








=







=

),(
),(

,
,

**
1

**
2

2

1

βφ
βφ

βφ
βφ

φ
z
z

z
z

(3.234)

• Each Jost function can be represented as a linear combination of two linearly
independent functions which are solution of the ZS system. As an example, for the
case of ψ it can be written as:

),()(),()(),( βφββφββψ zbzaz ⋅+⋅= (3.235)

If we divide this last solution (both components of the equation) by )(βa , we
continue having a solution of the ZS system that will have the form:

),(
)(
)(),(),(

)(
1 βφ

β
ββφβψ

β
z

a
bzz

a
⋅+=⋅ (3.236)

Let’s assume now that the solution ),( βφ z can be expressed as:

∫
∞

∞−

⋅⋅−⋅⋅− ⋅⋅+⋅






= ττβφ ββ dezAez zjzj ),(
0
1

),( (3.237)

where

 







=

),(
),(

),(
2

1

τ
τ

τ
zA
zA

zA

To solve the problem we are going to assume that the coupling region begins at z = 0
and therefore:

0     ,     0)( <= zzK (3.238)
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From this condition, causality restrictions that will be applied later to solve the
problem, are derived.

We are going to reformulate the problem in the time domain, using the following
inverse Fourier transform:

∫
∫
∞

∞−

⋅⋅−−

∞

∞−

⋅⋅++

⋅⋅=

⋅⋅=

ββ
π

τ

ββ
π

τ

τβ

τβ

dezazV

dezazV

j

j

),(
2
1),(

),(
2
1),(

(3.239)

The reformulation in the time domain is made since the solution is going to be
obtained by deduction applying causality requirements, so the study will be simpler in
the time domain.
The variable τ is related to the real time by means of the phase velocity vp. In fact, if
vp is constant with frequency in the full bandwidth of the signal, it follows that

tvp ⋅=τ , where t is the real time.

(This is so since 





⋅→←⋅
α
ω

α
α Vtv FT 1)( , and therefore in our case:

   









⋅→←⋅

pp

FT
p v

V
v

tvv ω1)( ).

Now we perform the inverse Fourier transform of the coupled mode equations. We are
going to approximate the coupling coefficient K(z) by allowing it not to be a function
of frequency and only of z. Taking this into account, the inverse Fourier transform of
the coupled mode equations become:

),()(),(),(

),()(),(),(

τ
τ
ττ

τ
τ
ττ

zVzKzV
z
zV

zVzKzV
z
zV

+
−−

−
++

⋅=
∂

∂−
∂

∂

⋅=
∂

∂+
∂

∂

(3.240)

Let’s consider now two solutions of the ZS system (and therefore of the coupled mode
equations) in the time domain, ),( τzΦ  and ),( τzU , that are respectively the inverse

Fourier transform of ),( βφ z  and 
)(

),(
β
βψ

a
z .

Applying the inverse Fourier transformation to eqns. (3.237) and (3.236), and using



Approximate analytical solutions for PBG structures in microstrip technology 153

eqn. (3.234), a new expression will be obtained. Let’s see:

),(
0

)(
),( τ

τδ
τ zA

z
z +







 −
=Φ  ,  applying the inverse transform to eqn. (3.237).

and

 dyyF
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),(

0
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),( *
1
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2

2

1 ττ
τ
ττδ

τ

(3.241)

applying the inverse Fourier transform to eqn. (3.236), and using the relation of eqn.
(3.234), knowing that β is real (let’s recall that lossless waveguides are considered).
The first and second terms to the right of the equality sign corresponds to ),( τzΦ , and
the third and fourth terms to the right of the equality sign are obtained by taking
advantage of the generic relation:

)()()()( ** ωωλλλ BVdtbv FT ⋅→←⋅+⋅∫
+∞

∞−

with the new function )(τF  defined as:

β
β
β

π
τ τβ de

a
bF j ⋅⋅= ⋅⋅

+∞

∞−
∫ )(

)(
2
1)(

that is, as the inverse Fourier transform of  
)(
)(
β
β

a
b .

Let’s see now the meaning of  the quotient 
)(
)(
β
β

a
b .

For this purpose we part from eqn. (3.235), that was:

),()(),()(),( βφββφββψ zbzaz ⋅+⋅=

with 







= −

+

),(
),(),(

β
ββψ

za
zaz , solution of the ZB system (and of the coupled mode

equations).
As already indicated in eqn. (3.238), we assume that the coupling coefficient satisfies
K(z)=0, 0<z , so that coupling between modes will only occur for 0>z  and
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therefore for 0≤z the modes will travel independently, satisfying:

zj
a

zj
a

eaza

eaza
⋅⋅−−

⋅⋅−++

⋅=

⋅=
β

β

ββ

ββ

)(),(

)(),(
   ,      0≤z

and the origin of the device is at z = 0.

We also know, from the definitions at the beginning of this section, that the solution

),( βψ z  tends to zje ⋅⋅−⋅






 β

0
1

 when ∞→z , i.e. that corresponds to zjea ⋅⋅−+ ⋅= β1 ,

0=−a , which corresponds to only one forward propagating mode, with the backward
propagating mode equal to zero. Therefore this solution corresponds to having the
output of the device matched (without reflections).

The solution in −∞→z  will be (taking into account to what will tend φ  and φ  when
−∞→z ):

zjzj eaabeaa ⋅⋅−+⋅⋅−+ ⋅=⇒+⋅⋅= ββ βββ )(0).(1)(
zjzj ebaebaa ⋅⋅−⋅⋅− ⋅=⇒⋅⋅+⋅= ββ βββ )(1)(0)(

Since K(z)=0 , 0<z  , and following the considerations made earlier, a+ and a− will
maintain this form 0 ≤∀ z , and therefore at z = 0 their value will be:

)(),0(
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and consequently:
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β
ββρ

a
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zaz −=
=
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and hence

 ),0(
)(
)( βρ
β
β =−= z

a
b

with this value of ρ  calculated at the origin (z=0), and with the device output port
matched. Therefore it will follow:
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)(
)(
)(          )(),0(

)(
)(

1111 β
β
βββρ

β
β S

a
bSz

a
b

matched
output

−=⇒−==−=

taking into account the expression for the S11 parameter as a function of the complex
amplitudes of the mode, a+, a−  (eqn. (3.29), section (3.2.3)).
Therefore, the function )(τF  that appears in eqn. (3.241) will finally become:

∫
∞

∞−

⋅⋅ ⋅⋅−= ββ
π

τ τβ deSF j)(
2
1)( 11 (3.242)

and will be the inverse Fourier transform of the )(11 βS  parameter (with the sign
inverted), i.e. of the reflection coefficient calculated at z = 0 (origin of the device)
when the output port is matched.
Due to causality considerations, the function )(τF  must satisfy the following relation:

0    ,    0)( <= ττF (3.243)

On the other hand, if we define the function:
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0
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),(),(
z

zUzY
τδ

ττ

it will follow, applying again causality considerations that:

τ
τδ

ττ >=






 −
−= z

z
zUzY      ,     0

0
)(

),(),( (3.244)

Also, due once more to causality considerations, it will follow that:

ττ <= zzA     ,    0),( (3.245)

Applying eqns. (3.243) and (3.245), the integration range of equation (3.241) can be
limited from τ−  to z.

Also, by using eqn. (3.244), and introducing in it the value of ),( τzU  given in eqn.
(3.241), we will obtain:
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for    ⇒
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0  ,  
0  ,  

zz
zz

τ
τ

   τ>z

which are the Gel’Fand-Levitan-Marchenko (GLM) coupled integral equations for the
inverse scattering problem (also known as coupled GLM integral equations).
Let’s recall that as it can be seen from eqn. (3.242), )(τF  will have the value:

∫
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∞−

⋅⋅ ⋅⋅−= ββ
π

τ τβ deSF j)(
2
1)( 11

A rigorous demonstration for the equations obtained by using causality considerations
(eqns. (3.243), (3.244) and (3.245)) can be found in [PER 96], [SON 85] and in the
Doctoral Thesis of Eva Peral, presented at the Universidad Politécnica de Valencia,
Spain.

We must continue by deducing the relation between the function ),( τzA  that appears
in the coupled GLM integral equations, and the coupling coefficient K(z). In order to
do so, we part from the term of eqn. (3.244):
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and we obtain ),( τzU , that is solution of the coupled mode equations in the time
domain:
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),( τzU  will verify the coupled mode equations in the time domain (eqns. (3.240)),
and therefore it will follow that:

))(),(()(),(),(
1

22 zzYzKzY
z
zY −+⋅=

∂
∂−

∂
∂ τδτ

τ
ττ (3.247)

By realizing the following coordinate change:
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2
τµ += z    ;  

2
z−= τυ        (that leads to τυµ =+   ;   z=−υµ  )

it will be satisfied that:
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So that eqn. (3.247) can be rewritten as:
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Let’s calculate first the term to the left of the equality sign. As we know from eqn.
(3.244):

ττ >= zzY       ,      0),(

In our case ττ >=⇒> zzYz    ,   0),(0
Since:

⇒
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and therefore the term to the left of the equality sign of eqn. (3.248) can be rewritten
as:
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On the other hand, the first term to the right of the equality sign of eqn. (3.248) will be
null, since the value of the integrand is finite when 0=υ .
Finally, we are going to calculate the value of the second term to the right of the
equality sign of eqn. (3.248).
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As it is well known:
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In the same way it will be satisfied that:
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Therefore, the second term to the right of the equality sign of eqn. (3.248) will have
the value:
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So in the end, eqn. (3.248) can be rewritten as:
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For a given 0>z , and going back to ),( τz  coordinates, we will have:
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Since ++ =⇒= zτυ 0 , and therefore:
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Substituting this last equation in eqn. (3.246) (taken as the definition of ),( τzY ), and
applying eqn. (3.245), we will obtain:
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As it can be seen, this last equation gives the coupling coefficient K(z) from the
solution of the GLM equations (that will be ),( τzA ). If the second term to the right of
the equality sign (the integral term) is neglected, the order zero approximation is
obtained, which is also known as the first order Born approximation, and is valid for
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very weak coupling. The physical meaning of this approximation is that coupling is so
weak that the amplitude of the incident mode is not affected by the perturbation. The
neglected integral term corresponds to the cases when there are multiple reflections in
intermediate points of the structure.
Therefore, the order zero approximation or the first order Born approximation will be:

)2(2)( zFzK ⋅−≈

and introducing the value of )(τF  (eqn. (3.242)), it becomes:
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11∫
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where eqn. (3.250) will be valid for weak coupling, with the amplitude of the incident
mode not affected by the perturbation (i.e., it will be valid for low reflectivity along all
the device). Actually, it is identical to the one that was obtained in section (3.5.1)
assuming that 1)( <<zρ .

In order to solve eqn. (3.249), we need to know ),(1 τzA  in the region z<τ

(since 0>z ). In order to do so, we will solve the GLM coupling equations (eqn.
(3.246)) using an iterative method. (GLM equations are valid particularly for

0  , >< zzτ , and this case includes the region of interest z<τ , in which we need to

know ),(1 τzA , since z will verify that 0>z ). Let’s see.
The zero order approximation (neglecting the integral) of the lower member of the
GLM equations (eqns. (3.246)) is:

)(),(2 ττ +−≅ zFzA

Substituting this expression in the upper member of the GLM equations (eqns.
(3.246)) we will be able to obtain an approximation for ),(1 τzA  that can be used to
write the first order approximation to the coupling coefficient K(z) equation (obtained
from eqn. (3.249)):
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If we continue with the iterative solution of the GLM equation (eqn. (3.246)), we
introduce the expression obtained for ),(1 τzA  in the equation of K(z) (eqn. (3.249)),
and by applying several variable changes, we will obtain the following expression in
the form of chained convolutions for the order N approximation to the coupling
coefficient, K(z), equation:
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where zxxx iii 21 −+=′ − , for 1>i . The variables ix  are in the interval [0, 2L], where
L is the length of the coupling region (length of the device).

Redefining )(τF  as the inverse Fourier transform of the reflection coefficient at z=0
(origin of the device) when the output port is matched (i.e., as the inverse Fourier
transform of the S11 parameter), we will have:
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and therefore, the expression for the coupling coefficient can be finally rewritten as:
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(3.251)
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where zxxx iii 21 −+=′ − , for 1>i . The variables ix  are in the interval [0, 2L], where
L is the length of the coupling region (length of the device).
And the function )(τF  is defined as:
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τ τβ deSF j)(
2
1)( 11 (3.252)

The expression obtained (eqn. (3.251)) corresponds to the order N approximation to
the coupling coefficient, K(z), equation.
It is important to note that the only approximations introduced to obtain this
expression (besides single mode operation) are to assume that β  is constant with z,
and to assume also that K(z) is not a function of the frequency,  f, (or equivalently of
β).
The value of )(τF  can be efficiently calculated with the aid of an inverse Fast Fourier
Transform (iFFT). In the same way, the integrals present in eqn. (3.251) can be solved
efficiently in a recursive manner, since they are related in the following way:

∫ +−⋅⋅= ++++
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iiiiiii zxxIxFdxxI
0

1111 )2()()(

Moreover, since the devices we are going to work with will be real, the inverse
Fourier Transform of their reflection coefficient (i.e., the impulsional response in
reflection of the device) is going to be real, and therefore ℜ∈)(τF , satisfying:

)()( * ττ FF =

allowing the algorithm for the calculation of K(z) from the desired value of )(11 βS  to
be very compact (see the algorithm proposed in the next page).
By means of the proposed algorithm, it is assured that the same factor is not calculated
repeatedly, therefore minimizing calculation time. The expression obtained relates the
necessary coupling coefficient, K(z), with the desired reflection coefficient, )(11 βS .
The determination of the coupling coefficient can be done with further degrees of
accuracy, increasing the order of the approximation and therefore the number of
necessary iterations.
An expression similar to eqn. (3.251) was obtained in [PER 96] for Fiber Bragg
Gratings in the optical regime.
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• Algorithm for the efficient calculation of the coupling coefficient K(z) from the
desired ))((  )(11 τβ FS ⇒

Input: [ ]LF 2 ,0         ,   )( ∈∀ττ
         NGLM ≡  Order of the approximation

Output: KGLM ≡  K(z)

For [ ]Lzn  ,0∈

V = F
KGLMn = F(2zn)

For i = 0   to  ( )12 −⋅ NGLM
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u

nzutVtFdtuU
0
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tUtFdt
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0
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3.6. Application to several PBG microstrip devices: Examples

Throughout this chapter several expressions and numerical techniques developed for
PBG structures in microstrip technology have been presented. Their aim is to provide
a simple and effective way to analyze and design these novel PBG devices, and to give
a better insight into their operation. However all the work presented until now has
been theoretical. In this section the expressions and numerical techniques are applied
to real PBG devices and the results are compared between them and checked against
measurements showing their high accuracy.

3.6.1. PBG featuring a discrete pattern of circles

The first PBG device in microstrip technology that we are going to analyze is the
structure proposed by Professor T. Itoh’s group at UCLA in 1998 [RAD 98]. It is
obtained by etching a periodic pattern of circles, following a square lattice, in the
ground plane of a microstrip line. In the upper plane, the strip conductor width is kept
constant to have an also constant nominal characteristic impedance equal to 50 Ω. The
prototype that we are going to analyze is a scaled version of the one presented in
[RAD 98] in order to be measured with our HP 8753D vector network analyzer (up to
6 GHz). The substrate employed is a Rogers RT/Duroid 6010, with dielectric constant
εr=10.2 and substrate thickness h=1.27 mm. The period of the PBG structure will
have a value Λ=14.1 mm, and the radius of the circle to period ratio will be r/Λ=0.25.
The strip conductor width will be constant, w=1.2 mm. A photograph of the upper
plane and of the ground plane of the PBG microstrip prototype is given in Fig. 3.1.

Figure 3.1: Photograph of the upper plane and of the ground plane of the PBG microstrip
prototype featuring a discrete pattern of circles.
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3.6.1.1. Perturbation profile and coupling coefficient

To begin the analysis of the proposed PBG prototype we are going to calculate its
coupling coefficient, and we are going to depict it together with the profile of the
perturbation (width of the slot in the ground plane) and with the characteristic
impedance variation produced by the perturbation. They can be seen for one period of
the PBG structure in Fig. 3.2. The characteristic impedance variation is calculated
from the perturbation profile by interpolating the characteristic impedance values
previously calculated (by using Agilent HFSS in our case) for a set of uniform
auxiliary waveguides (microstrip lines with slots of different widths in the ground
plane), as explained in section 3.2.2. The coupling coefficient is immediately obtained
from the characteristic impedance by using eqn. (3.20).
It is important to notice that although the PBG pattern employed is two dimensional,
due to the high confinement of the fields around the conductor strip only the central
row of circles (placed behind the conductor strip) is relevant, and consequently the
behavior and modeling of the device is 1-D effective [FAL 99].
In Fig. 3.3 the conventional coupling coefficient (calculated using the physical
position variable) and the coupling coefficient calculated using the electrical position
variable (as explained in section 3.3.4) are compared showing the deformation
introduced in it by the variation of phase constant, β, present along the PBG device.
Finally, the values for the coupling coefficient parameters calculated using the
physical position variable (eqns. (3.38), (3.52)) and the electrical position variable are
given in Table 3.1, for the first (n=1) and second (n=2) rejected bands. The results
obtained using the electrical position variable are more accurate because they take into
account the deformation introduced in the coupling coefficient by the variation of β
along the PBG device. The value of the “averaged” εeff  for the PBG device (calculated
through eqn. 3.117) is also included.

Band index, n k (z) k (χ) k (χ) effε⋅ εeff

1 42.89 17.20 40.56

2 -20.62 -13.24 -31.23

Table 3.1: Values for the coupling coefficient parameters calculated using the physical
position variable (k (z)) and the electrical position variable (k (χ)), for the first (n=1) and second
(n=2) forbidden bands. k (χ) effε⋅ is also included for comparison purposes, as well as the

“averaged” εeff  for the PBG device.

5.563
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(a)

(b)

(c)

Figure 3.2: (a) Profile of the PBG perturbation (width of the slot in the ground plane), (b)
variation of characteristic impedance produced by the perturbation, Z0(z) and (c) resulting
coupling coefficient, K(z).
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Figure 3.3: Coupling coefficient produced by the PBG perturbation calculated using the
physical position variable, K(z) (thick line), and using the electrical position variable, K(χ)
(thin line). The later is represented with χ divided by effε  in the horizontal axis, and with K

multiplied by effε  in the vertical axis for comparison purposes. εeff is the “averaged” value

for the PBG device calculated using eqn. (3.117) and given in Table 3.1.

3.6.1.2. S11 and S21 parameters

To continue, we are going to focus our study on a PBG microstrip prototype of finite
length, designed as stated in section (3.6.1) and with 9 periods. Firstly, its S11

(reflection) and S21 (transmission) parameters will be calculated through numerical
solution of the coupled mode equations (section (3.2.2)), using the approximate
analytical solutions obtained in section (3.3.3.1) (eqns. (3.68), (3.69)), and using the
analytical solutions with the electrical position variable (section (3.3.4)). The
prototype will be also fabricated employing a LPKF numerical milling machine, and
its S parameters measured with our HP 8753D vector network analyzer. The S11 and
S21 parameters obtained are depicted in Fig. 3.4 for the first rejected band (n=1), and
in Fig. 3.5 for the second rejected band (n=2).
Secondly, the value for the frequency of maximum attenuation (or reflectivity), the
value of this maximum attenuation, and the bandwidth (between zeroes) of the
rejected band are obtained from the measurements, from the numerical solution for the
coupled mode equations, using the approximate analytical expressions given for them
in sections (3.3.3.2) and (3.3.3.3) (eqns. (3.70), (3.73), (3.79)), and using the analytical

z  , effεχ

       K(z)

effK εχ ⋅)(
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(a)

(b)
Figure 3.4: (a) S11 and (b) S21 parameters for the PBG microstrip prototype of 9 periods
designed as stated in section (3.6.1). They have been calculated through numerical solution of
the coupled mode equations (red line), using the approximate analytical solutions (blue line),
and using the analytical solutions with the electrical position variable (green line). The
measurement results are also included for comparison (black line).

Numerical solution of
coupled mode eqns.

Analytical
solutions (z)

Analytical
solutions (χ)

Measurements

fmax (GHz) 4.54 4.51 4.51 4.45

minS21 (dB) -39.06 -41.28 -38.72 -41.20

BW∞ (GHz) 1.90 2.00 1.92 1.91
Table 3.2: Values for the frequency of maximum attenuation, fmax , the value of this maximum
attenuation, minS21 , and the bandwidth (between zeroes), BW∞ , for the first (n=1) forbidden
band, calculated through the same methods as Fig. 3.4.
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(a)

(b)
Figure 3.5: (a) S11 and (b) S21 parameters for the PBG microstrip prototype of 9 periods
designed as stated in section (3.6.1). They have been calculated through numerical solution of
the coupled mode equations (red line), using the approximate analytical solutions (blue line),
and using the analytical solutions with the electrical position variable (green line). This time
they are depicted for the second (n=2) forbidden band.

Numerical solution of
coupled mode eqns.

Analytical
solutions (z)

Analytical
solutions (χ)

fmax (GHz) 9.10 9.02 9.02

minS21 (dB) -28.83 -16.72 -28.32

BW∞ (GHz) 1.60 1.30 1.61
Table 3.3: Values for the frequency of maximum attenuation, fmax , the value of this maximum
attenuation, minS21 , and the bandwidth (between zeroes), BW∞ , for the second (n=2)
forbidden band, calculated through the same methods as Fig. 3.5.
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expressions with the electrical position variable. All of them are given in Table 3.2 for
the first rejected band (n=1), and in Table 3.3 for the second rejected band (n=2).
As it can be seen in Fig. 3.4 and in Table 3.2, the agreement between the numerical
solution of the coupled mode equations and the approximate analytical solutions is
very good in the first rejected band. The agreement with the measurements is very
good also. The small discrepancies found (mainly in the matching of the passband) are
due to the discontinuities introduced by the connectors unions in the constructed
prototype. Regarding the second rejected band (n=2), Fig. 3.5 and Table 3.3 show that
to have an accurate prediction using the approximate analytical solutions it is
necessary to employ the electrical position variable. However, using it, a very good
agreement is again obtained between the numerical solution of the coupled mode
equations and the approximate analytical solutions. In general, the discrepancies found
between the numerical and the approximate analytical solutions are more important as
we go away from the central frequency of the rejected band due to the approximation
involved to obtain the analytical solutions. However the predictions for the
fundamental parameters of the PBG device given in Tables 3.2 and 3.3 are very good,
and they confirm that the approximate analytical solutions can be successfully used for
analysis and synthesis of PBG microstrip circuits. The presence of an important
second rejected band for this PBG microstrip structure is confirmed in measurement
by the downscaled prototype designed and presented in chapter 4, section (4.6) in
order to measure its first and second rejected bands with our HP 8753D vector
network analyzer (up to 6 GHz).
To finish this section we are going to check the accuracy of the approximate analytical
solutions for the proposed PBG microstrip structure as the number of periods of the
PBG device diminish. As it was stated in section (3.3.2) the approximation used to
obtain the analytical solutions required the length of the PBG circuit to be “large
enough”. In Fig. 3.6 the S21 parameter of three PBG microstrip circuits with 4, 3 and 2
periods respectively are depicted comparing the results obtained through numerical
solution of the coupled mode equations with the approximate analytical solutions that
employ the conventional physical position variable z, and the electrical position
variable χ. The figures show that the analytical solution that employs the electrical
position variable, χ , is always more accurate, and although the discrepancies found
between the analytical and the numerical solutions increase as the number of periods
decreases, the agreement is good even for the 2 periods device. On the other hand, Fig.
3.7 shows the same representation for a PBG device with only 1 period. It can be seen
that this time the form of the curves is different and the discrepancies found are more
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(a)

(b)

(c)
Figure 3.6: S21 parameter for the PBG microstrip prototype designed as stated in section
(3.6.1), having (a) 4 periods, (b) 3 periods, (c) 2 periods. They have been calculated through
numerical solution of the coupled mode equations (red line), using the approximate analytical
solutions (blue line), and using the analytical solutions with the electrical position variable
(green line).
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Figure 3.7: S21 parameter for the PBG microstrip prototype designed as stated in section
(3.6.1), having 1 period. It has been calculated through numerical solution of the coupled
mode equations (red line), using the approximate analytical solutions (blue line), and using the
analytical solutions with the electrical position variable (green line).

important. Therefore from the data shown it can be concluded that for this PBG
structure with fairly complicated coupling coefficient (it has harmonics of
considerable value) a length of 2 periods can be considered “large enough” for the
successful use of the approximate analytical solutions.

3.6.1.3. Complex amplitudes of the mode, a+(z), a−−−−(z)

In this section the complex amplitudes a+(z) , a−(z) of the propagating mode (the
microstrip or quasi-microstrip mode in our case), in our PBG microstrip prototype
designed as stated in section (3.6.1) and with 9 periods, will be given for a frequency
placed in the forbidden band (f=4.5 GHz), Fig. 3.8, and for a frequency placed in the
passband (f=1.9 GHz), Fig. 3.9. The excitation taken has been the conventional one: a
forward travelling wave of unitary amplitude at the input port (a+(z=0)=1) and
matching conditions at the output port (a−(z=L)=0). The complex amplitudes have
been calculated through numerical solution of the coupled mode equations (section
(3.2.2)), using the approximate analytical expressions (section (3.3.2), eqns. (3.66))
and using the approximate analytical expressions with the electrical position variable
(section (3.3.4)). The agreement between the numerical solutions and the approximate
analytical expressions is good, although it can be seen that the details about the exact
variation of the complex amplitudes along the PBG device are lost in the analytical
results.
The modulus of the complex amplitudes of the mode follow the expected evolution
along the PBG circuit: the forward travelling wave attenuates along the PBG in the
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forbidden band exciting strongly the backward travelling wave and giving rise to
almost no transmission. The electromagnetic energy penetrates only partially into the
PBG in this case. On the other hand, in the passband, the forward travelling wave
propagates along the PBG almost without attenuation and exciting the backward
travelling wave only partially and in localized areas of the circuit. The electromagnetic
energy can go freely through the PBG.

(a)

(b)
Figure 3.8: Evolution of the modulus of the complex amplitudes of the mode, (a) a+(z), and (b)
a−(z), along the PBG microstrip prototype designed as stated in section (3.6.1) and having 9
periods, for a frequency placed in the forbidden band (f=4.5 GHz). They have been calculated
through numerical solution of the coupled mode equations (red line), using the approximate
analytical solutions (blue line), and using the analytical solutions with the electrical position
variable (green line).
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(a)

(b)
Figure 3.9: Evolution of the modulus of the complex amplitudes of the mode, (a) a+(z), and (b)
a−(z), along the PBG microstrip prototype designed as stated in section (3.6.1) and having 9
periods, for a frequency placed in passband (f=2 GHz). They have been calculated through
numerical solution of the coupled mode equations (red line), using the approximate analytical
solutions (blue line), and using the analytical solutions with the electrical position variable
(green line).

3.6.1.4. Dispersion diagram

To continue our study the dispersion diagram of the PBG microstrip structure
proposed in section (3.6.1) will be presented. It will be given in the first Brillouin
zone, and around the first rejected band. The dispersion diagram has been calculated
using the numerical method described in section (3.4.2.2), eqn. (3.169), using the
approximate analytical expression given in section (3.4.2.1), eqn. (3.148), and using
the approximate analytical expression with the electrical position variable (see section
(3.3.4)). The results are depicted in Fig. 3.10, giving the real part and the imaginary
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(a)

(b)
Figure 3.10: (a) Dispersion diagram for the PBG microstrip prototype designed as stated in
section (3.6.1). The first Brillouin zone is represented for the range of frequencies placed
around the first rejected band. The imaginary part of the phase constant β′ is also represented
(b). The phase constant has been calculated using the numerical method (red line), using the
approximate analytical expression (blue line), and using the approximate analytical expression
with the electrical position variable (green line).

part of the phase constant β′ . The agreement between the numerical and the analytical
results is very good, although as expected the analytical expression using the electrical
position variable is more accurate. From the figures it can be clearly seen that for the
range of frequencies placed around 4 – 5 GHz the phase constant has imaginary part,
giving rise to reactive attenuation for the Bloch waves that attempt to propagate along
the PBG structure. This frequency region in which the phase constant β′ has imaginary
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part will produce evanescent behavior in the Bloch waves preventing their propagation
along the PBG structure, and will be referred to as the forbidden band or Photonic
Bandgap of the PBG structure.
The frequency at which the Bloch waves suffer maximum attenuation, the value of
this maximum attenuation and the bandwidth of the Photonic Bandgap have been also
calculated from the numerical method, using the approximate analytical expressions
given for them in section (3.4.2.1) (eqns. (3.149), (3.150), (3.154)), and using the
analytical expressions with the electrical position variable. The results are presented in
Table 3.4. The agreement between the numerical and the analytical results is very
good, being again more accurate the approximate analytical expressions with the
electrical position variable.

Numerical
method

Analytical
expression (z)

Analytical
expression (χ)

fmax (GHz) 4.51 4.51 4.51

maxmax )Im(βα ′−=′ (Np/m) 40.58 42.89 40.56
BWgap  (GHz) 1.59 1.73 1.64

Table 3.4: Values for the frequency of maximum attenuation of the Bloch waves, fmax , the value
of this maximum attenuation, α′max , and the bandwidth of the Photonic Bandgap, BWgap ,
calculated from the numerical method, using the approximate analytical expressions, and
using the approximate analytical expressions with the electrical position variable, χ.

3.6.1.5. Characteristic impedance of the Bloch wave, ZB

The characteristic impedance of the Bloch wave, ZB , in the PBG microstrip structure
proposed in section (3.6.1) has been studied in this section. In first place it is worth
noting that since the unitary cell of the PBG microstrip structure under study is
symmetrical, the following relation will be satisfied between the characteristic
impedances corresponding to the forward and the backward travelling Bloch waves:

BBB ZZZ =−= −+

and hence, here, we will be concerned only with the “characteristic impedance of the
Bloch waves”, ZB . The evolution of its value with the frequency has been calculated
using the numerical method proposed in section (3.4.3.1), and specifically eqn.
(3.179), it has been calculated also using the approximate analytical expressions
developed in section (3.4.3.2), eqns. (3.186), (3.187), and using the approximate



Chapter 3176

analytical expressions with the electrical position variable, χ , (see section (3.3.4)).
The results are depicted in Fig. 3.11,  giving the real part and the imaginary part of the
characteristic impedance. The agreement between the numerical and the analytical
results is very good, although the analytical results obtained using the electrical
position variable are more accurate. As it can be seen, the characteristic impedance of
the Bloch wave is real in the passbands and purely imaginary in the forbidden band or

(a)

(b)
Figure 3.11: Real part (a), and imaginary part (b), of the characteristic impedance of the
Bloch wave, ZB, in the PBG microstrip prototype designed as stated in section (3.6.1). It has
been calculated using the numerical method (red line), using the approximate analytical
expressions (blue line), and using the approximate analytical expressions with the electrical
position variable (green line). The calculation using the analytical expressions is done only for
the passbands, and not for the forbidden band.
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Photonic Bandgap. Its value clearly differs from the characteristic impedance of the
ports (Z0=50 Ω in our case), and is quite stable in the first part of the passband, but
grows very quickly in the part close to the forbidden band. The difference between the
characteristic impedance of the ports and the characteristic impedance of the Bloch
waves produces the ripple (or sidelobes) that appears in the passband of the
transmission (S21) and reflection coefficients (S11) of the PBG device.

3.6.1.5.1. “Matched” PBG microstrip circuit

As we have just commented, the ripple that appears in the passband of the
transmission and reflection coefficients of our PBG microstrip circuit is due to the
difference between the characteristic impedance of the ports, Z0 , and the characteristic
impedance of the Bloch waves in the PBG circuit, ZB. Since the ZB parameter is not
constant in the passband (as it has been seen in Fig 3.11), we can not find a value for
Z0 such that all the passband is simultaneously matched (without ripple), but we can
try to match the part of interest of the passband for the intended application, using a
characteristic impedance for the ports, Z0, equal to the value of ZB in the part of
interest of the passband. To probe the validity of this approach, the transmission, T,
and reflection, R, coefficients of the PBG microstrip circuit under study (with 9
periods) have been calculated for several interesting cases using the technique detailed
in section (3.4.4): they have been calculated for the conventional case (Z0=50 Ω),
where R=S11 and T=S21, for the case in which we try to match the frequency range
around 1 GHz, (Z0=65 Ω), and for the case in which we try to match the frequency
range around 2 GHz (Z0=70 Ω). The results are depicted in Fig. 3.12. From them it
can be clearly seen that the matching of the ports achieves an almost perfect matching
around the target frequency, and reduces notably the ripple in almost all the passband.
On the other hand, the rejected band remains almost unaltered.
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(a)

(b)
Figure 3.12: (a) Reflection, R (b) and Transmission, T, parameters for the PBG microstrip
prototype of 9 periods designed as stated in section (3.6.1), and for different characteristic
impedances of the ports, Z0. The conventional case (Z0=50 Ω), where R=S11 and T=S21 is given
(blue line), together with the case where Z0=65 Ω (red line), and Z0=70 Ω (green line).

3.6.1.6. Fourier transform of the coupling coefficient

To finish the study of the PBG microstrip circuit with a pattern of circles, the Fourier
transform of its coupling coefficient will be compared with its S11 (reflection)
parameter. The relation between them is studied in section (3.5), and is given for the
simplified case of structures with low reflectivity by eqn. (3.213). In Fig. 3.13 the
evolution with the frequency of the S11 (reflection) parameter for the PBG microstrip
device designed as stated in section (3.6.1) is given for a prototype with 9 periods and
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for a prototype with 4 periods, calculated through the numerical solution of the
coupled mode equations, section (3.2.2). Together with it, the estimate of the S11

parameter through a plain Fourier transform of the coupling coefficient (eqn. (3.213)),
and through a plain Fourier transform of the coupling coefficient using the electrical
position variable (eqn. (3.222)) are also represented. It is important to stress that these
simple expressions that use a plain Fourier transform of the coupling coefficient give

(a)

(b)
Figure 3.13: S11 parameter for the PBG microstrip prototype designed as stated in section
(3.6.1), with 9 periods (a), and with 4 periods (b). It has been calculated through numerical
solution of the coupled mode equations (red line) and is compared to the estimates obtained
realizing a plain Fourier transform of the coupling coefficient (blue line), and realizing a plain
Fourier transform of the coupling coefficient using the electrical position variable (green line).
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an approximation to the reflection (S11) parameter accurate for structures with low
reflectivity, but that still constitutes a first approach to the response of general
structures. This fact can be seen in the results presented in Fig. 3.13, where the Fourier
transform of the coupling coefficient gives a reasonable estimate for the reflection
response, although when the reflectivity of the device is very high the estimated value
can not be taken into account. It is also interesting to note that the estimate for the
device with lower reflectivity (the PBG circuit with 4 periods) is better than the
estimate obtained for the largest one. It can be also seen that, as usually, the
calculation using the electrical position variable provides more accurate results.

3.6.2. PBG featuring a continuous pattern with sinusoidal profile

The second PBG device in microstrip technology that we are going to analyze was
proposed by our group in 2000 [LOP 00], and can be seen as an evolution of the
previous structure to have a better control in its frequency response. The details about
the motivation and reasoning that led to it, as well as its performance, advantages and
applications will be presented in the next chapters. Here we will be concerned only
with an analysis of the structure similar to that carried in the previous section.
The PBG device under analysis is obtained by etching a periodic pattern following
continuous raised sine function in the ground plane of a microstrip line. In the upper
plane, the strip conductor width is kept constant to have an also constant nominal
characteristic impedance equal to 50 Ω. The prototype that we are going to analyze
has the same design parameters as the previous one, in order to be measured with our
HP 8753D vector network analyzer (up to 6 GHz) and to be easily compared with it.
The substrate employed is a Rogers RT/Duroid 6010, with dielectric constant εr=10.2
and substrate thickness h=1.27 mm. The period of the PBG structure will have a value
Λ=14.1 mm, and the maximum semi-width of the perturbation to period ratio will be
r/Λ=0.25. The strip conductor width will be constant, w=1.2 mm. A photograph of the
ground plane of the PBG microstrip prototype is given in Fig. 3.1.

Figure 3.14: Photograph of the ground plane of the PBG microstrip prototype featuring a
continuous pattern with sinusoidal profile
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3.6.2.1. Perturbation profile and coupling coefficient

To begin the analysis of the proposed PBG prototype we are going to calculate its
coupling coefficient, and we are going to depict it together with the profile of the
perturbation (width of the slot in the ground plane) and with the characteristic
impedance variation produced by the perturbation. They can be seen for one period of
the PBG structure in Fig. 3.15. The characteristic impedance variation is calculated
from the perturbation profile by interpolating the characteristic impedance values
previously calculated (by using Agilent HFSS in our case) for a set of uniform
auxiliary waveguides (microstrip lines with slots of different widths in the ground
plane), as explained in section 3.2.2. The coupling coefficient is immediately obtained
from the characteristic impedance by using eqn. (3.20).
It is important to notice that this time the PBG pattern employed is one dimensional.
We have done it because, as explained previously for the 2-D pattern of circles,  due to
the high confinement of the fields around the conductor strip only the central row of
the perturbation (placed behind the conductor strip) is relevant, and consequently the
behavior is 1-D effective in any case [FAL 99].
In Fig. 3.16 the conventional coupling coefficient (calculated using the physical
position variable) and the coupling coefficient calculated using the electrical position
variable (as explained in section 3.3.4) are compared showing the deformation
introduced in it by the variation of phase constant, β, present along the PBG device.
Finally, the values for the coupling coefficient parameters calculated using the
physical position variable (eqns. (3.38), (3.52)) and the electrical position variable are
given in Table 3.5, for the first (n=1) and second (n=2) rejected bands. The results
obtained using the electrical position variable are more accurate because they take into
account the deformation introduced in the coupling coefficient by the variation of β
along the PBG device. The differences found are very small for the first rejected band,

Band index, n k (z) k (χ) k (χ) effε⋅ εeff

1 39.83 17.35 39.73

2 1.97 -2.22 -5.08

Table 3.5: Values for the coupling coefficient parameters calculated using the physical
position variable (k (z)) and the electrical position variable (k (χ)), for the first (n=1) and second
(n=2) forbidden bands. k (χ) effε⋅ is also included for comparison purposes, as well as the

“averaged” εeff  for the PBG device.

5.244
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(a)

(b)

(c)
Figure 3.15: (a) Profile of the PBG perturbation (width of the slot in the ground plane), (b)
variation of characteristic impedance produced by the perturbation, Z0(z) and (c) resulting
coupling coefficient, K(z).
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Figure 3.16: Coupling coefficient produced by the PBG perturbation calculated using the
physical position variable, K(z) (thick line), and using the electrical position variable, K(χ)
(thin line). The later is represented with χ divided by effε  in the horizontal axis, and with K

multiplied by effε  in the vertical axis for comparison purposes. εeff is the “averaged” value

for the PBG device calculated using eqn. (3.117) and given in Table 3.5.

in this case, but are significant for the second rejected band. The value of the
“averaged” εeff  for the PBG device (calculated through eqn. 3.117) is also included. It
is interesting to note that this PBG perturbation with sinusoidal profile produces a
coupling coefficient with almost sinusoidal variation, and hence the coupling
coefficient parameter calculated for the second rejected band has a very small value.
On the other hand, the coupling coefficient for the first rejected band has a value
similar to that obtained for the PBG prototype with a discrete pattern of circles.

3.6.2.2. S11 and S21 parameters

To continue, we are going to focus our study on a PBG microstrip prototype of finite
length, designed as stated in section (3.6.2) and with 9 periods. Firstly, its S11

(reflection) and S21 (transmission) parameters will be calculated through numerical
solution of the coupled mode equations (section (3.2.2)), using the approximate
analytical solutions obtained in section (3.3.3.1) (eqns. (3.68), (3.69)), and using the
analytical solutions with the electrical position variable (section (3.3.4)). The
prototype will be also fabricated employing a LPKF numerical milling machine, and
its S parameters measured with our HP 8753D vector network analyzer. The S11 and
S21 parameters obtained are depicted in Fig. 3.17 for the first rejected band (n=1), and

z  , effεχ

       K(z)

effK εχ ⋅)(
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(a)

(b)
Figure 3.17: (a) S11 and (b) S21 parameters for the PBG microstrip prototype of 9 periods
designed as stated in section (3.6.2). They have been calculated through numerical solution of
the coupled mode equations (red line), using the approximate analytical solutions (blue line),
and using the analytical solutions with the electrical position variable (green line). The
measurement results are also included for comparison (black line).

Numerical solution of
coupled mode eqns.

Analytical
solutions (z)

Analytical
solutions (χ)

Measurements

fmax (GHz) 4.67 4.64 4.64 4.75

minS21 (dB) -37.7 -37.88 -37.77 -38.70

BW∞ (GHz) 1.95 1.95 1.95 1.94
Table 3.6: Values for the frequency of maximum attenuation, fmax , the value of this maximum
attenuation, minS21 , and the bandwidth (between zeroes), BW∞ , for the first (n=1) forbidden
band, calculated through the same methods as Fig. 3.17.
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(a)

(b)
Figure 3.18: (a) S11 and (b) S21 parameters for the PBG microstrip prototype of 9 periods
designed as stated in section (3.6.2). They have been calculated through numerical solution of
the coupled mode equations (red line), using the approximate analytical solutions (blue line),
and using the analytical solutions with the electrical position variable (green line). This time
they are depicted for the second (n=2) forbidden band.

Numerical solution of
coupled mode eqns.

Analytical
solutions (z)

Analytical
solutions (χ)

fmax (GHz) 9.28 9.29 9.29

minS21 (dB) -2.07 -0.27 -1.69

BW∞ (GHz) 1.05 1.03 1.05
Table 3.7: Values for the frequency of maximum attenuation, fmax , the value of this maximum
attenuation, minS21 , and the bandwidth (between zeroes), BW∞ , for the second (n=2)
forbidden band, calculated through the same methods as Fig. 3.18.
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in Fig. 3.18 for the second rejected band (n=2).
Secondly, the value for the frequency of maximum attenuation (or reflectivity), the
value of this maximum attenuation, and the bandwidth (between zeroes) of the
rejected band are obtained from the measurements, from the numerical solution for the
coupled mode equations, using the approximate analytical expressions given for them
in sections (3.3.3.2) and (3.3.3.3) (eqns. (3.70), (3.73), (3.79)), and using the analytical
expressions with the electrical position variable. All of them are given in Table 3.6 for
the first rejected band (n=1), and in Table 3.7 for the second rejected band (n=2).
As it can be seen in Fig. 3.17 and in Table 3.6, the agreement between the numerical
solution of the coupled mode equations and the approximate analytical solutions is
very good in the first rejected band. The agreement with the measurements is very
good also. The small discrepancies found (mainly in the matching of the passband) are
due to the discontinuities introduced by the connector unions in the constructed
prototype. Regarding the second rejected band (n=2), Fig. 3.18 and Table 3.7 show
that to have an accurate prediction using the approximate analytical solutions it is
necessary to employ the electrical position variable. However, using it, a very good
agreement is again obtained between the numerical solution of the coupled mode
equations and the approximate analytical solutions. In general, the discrepancies found
between the numerical and the approximate analytical solutions are more important as
we go away from the central frequency of the rejected band due to the approximation
involved to obtain the analytical solutions. However the predictions for the
fundamental parameters of the PBG device given in Tables 3.6 and 3.7 are very good,
and they confirm that the approximate analytical solutions can be successfully used for
analysis and synthesis of PBG microstrip circuits. The fact that the second rejected
band is almost non-existent for this PBG microstrip structure is confirmed in
measurement by the downscaled prototype designed and presented in chapter 4,
section (4.6) in order to measure its first and second rejected bands with our HP
8753D vector network analyzer (up to 6 GHz). The virtual absence of second rejected
band can be predicted from the low value that the coupling coefficient parameter has
for this band, as it was previously seen in section (3.6.2.1).
To finish this section we are going to check the accuracy of the approximate analytical
solutions for the proposed PBG microstrip structure as the number of periods of the
PBG device diminish. As it was stated in section (3.3.2) the approximation used to
obtain the analytical solutions required the length of the PBG circuit to be “large
enough”. In Fig. 3.19 the S21 parameter of three PBG microstrip circuits with 4, 3 and
2 periods respectively are depicted comparing the results obtained through numerical
solution of the coupled mode equations with the approximate analytical solutions that
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(a)

(b)

(c)
Figure 3.19: S21 parameter for the PBG microstrip prototype designed as stated in section
(3.6.2), having (a) 4 periods, (b) 3 periods, (c) 2 periods. They have been calculated through
numerical solution of the coupled mode equations (red line), using the approximate analytical
solutions (blue line), and using the analytical solutions with the electrical position variable
(green line).



Chapter 3188

Figure 3.20: S21 parameter for the PBG microstrip prototype designed as stated in section
(3.6.2), having 1 period. It has been calculated through numerical solution of the coupled
mode equations (red line), using the approximate analytical solutions (blue line), and using the
analytical solutions with the electrical position variable (green line).

employ the conventional physical position variable z, and the electrical position
variable χ. The figures show that this time (and for the first rejected band) the
analytical solutions give almost the same result, and the discrepancies found between
the analytical and the numerical solutions increase very slightly (and only in the
passband) as the number of periods decreases,  with a good agreement even for the 2
periods device. On the other hand, Fig. 3.20 shows the same representation for a PBG
device with only 1 period. It can be seen that this time the discrepancies found are
more important. Therefore from the data shown it can be concluded that for this PBG
structure with quite simple coupling coefficient (it has almost no harmonics) a length
of 2 periods can be considered “large enough” for the successful use of the
approximate analytical solutions, and in all the cases the predictions for the rejected
band are very accurate.

3.6.2.3. Complex amplitudes of the mode, a+(z), a−−−−(z)

In this section the complex amplitudes a+(z) , a−(z) of the propagating mode (the
microstrip or quasi-microstrip mode in our case), in our PBG microstrip prototype
designed as stated in section (3.6.2) and with 9 periods, will be given for a frequency
placed in the forbidden band (f=4.65 GHz), Fig. 3.21, and for a frequency placed in
the passband (f=2 GHz), Fig. 3.22. The excitation taken has been the conventional
one: a forward travelling wave of unitary amplitude at the input port (a+(z=0)=1) and
matching conditions at the output port (a−(z=L)=0). The complex amplitudes have
been calculated through numerical solution of the coupled mode equations (section
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(3.2.2)), using the approximate analytical expressions (section (3.3.2), eqns. (3.66))
and using the approximate analytical expressions with the electrical position variable
(section (3.3.4)). The agreement between the numerical solutions and the approximate
analytical expressions is good, although it can be seen that the details about the exact
variation of the complex amplitudes along the PBG device are lost in the analytical
results.

(a)

(b)
Figure 3.21: Evolution of the modulus of the complex amplitudes of the mode, (a) a+(z), and
(b) a−(z), along the PBG microstrip prototype designed as stated in section (3.6.2) and having
9 periods, for a frequency placed in the forbidden band (f=4.65 GHz). They have been
calculated through numerical solution of the coupled mode equations (red line), using the
approximate analytical solutions (blue line), and using the analytical solutions with the
electrical position variable (green line).
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(a)

(b)
Figure 3.22: Evolution of the modulus of complex amplitudes of the mode, (a) a+(z), and (b)
a−(z), along the PBG microstrip prototype designed as stated in section (3.6.2) and having 9
periods, for a frequency placed in passband (f=2 GHz). They have been calculated through
numerical solution of the coupled mode equations (red line), using the approximate analytical
solutions (blue line), and using the analytical solutions with the electrical position variable
(green line).

The modulus of the complex amplitudes of the mode follow the expected evolution
along the PBG circuit: the forward travelling wave attenuates along the PBG in the
forbidden band exciting strongly the backward travelling wave and giving rise to
almost no transmission. The electromagnetic energy penetrates only partially into the
PBG in this case. On the other hand, in the passband, the forward travelling wave
propagates along the PBG almost without attenuation and exciting the backward
travelling wave only partially and in localized areas of the circuit. The electromagnetic
energy can go freely through the PBG.
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3.6.2.4. Dispersion diagram

To continue our study the dispersion diagram of the PBG microstrip structure
proposed in section (3.6.2) will be presented. It will be given in the first Brillouin
zone, and around the first rejected band. The dispersion diagram has been calculated
using the numerical method described in section (3.4.2.2), eqn. (3.169), using the
approximate analytical expression given in section (3.4.2.1), eqn. (3.148), and using
the approximate analytical expression with the electrical position variable (see section
(3.3.4)). The results are depicted in Fig. 3.23, giving the real part and the imaginary
part of the phase constant β′ . The agreement between the numerical and the analytical
results is very good, and in this case both analytical expressions give almost the same
result.
From the figures it can be clearly seen that for the range of frequencies placed around
4 – 5 GHz the phase constant has imaginary part, giving rise to reactive attenuation for
the Bloch waves that attempt to propagate along the PBG structure. This frequency
region in which the phase constant β′ has imaginary part will produce evanescent
behavior in the Bloch waves preventing their propagation along the PBG structure,
and will be referred to as the forbidden band or Photonic Bandgap of the PBG
structure.
The frequency at which the Bloch waves suffer maximum attenuation, the value of
this maximum attenuation and the bandwidth of the Photonic Bandgap have been also
calculated from the numerical method, using the approximate analytical expressions
given for them in section (3.4.2.1) (eqns. (3.149), (3.150), (3.154)), and using the
analytical expressions with the electrical position variable. The results are presented in
Table 3.8. The agreement between the numerical and the analytical results is again
remarkably good.

Numerical
method

Analytical
expression (z)

Analytical
expression (χ)

fmax (GHz) 4.68 4.64 4.64

maxmax )Im(βα ′−=′ (Np/m) 39.70 39.83 39.73
BWgap  (GHz) 1.66 1.66 1.65

Table 3.8: Values for the frequency of maximum attenuation of the Bloch waves, fmax , the value
of this maximum attenuation, α′max , and the bandwidth of the Photonic Bandgap, BWgap ,
calculated from the numerical method, using the approximate analytical expressions, and
using the approximate analytical expressions with the electrical position variable, χ.
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(a)

(b)

Figure 3.23: (a) Dispersion diagram for the PBG microstrip prototype designed as stated in
section (3.6.2). The first Brillouin zone is represented for the range of frequencies placed
around the first rejected band. The imaginary part of the phase constant β′ is also represented
(b). The phase constant has been calculated using the numerical method (red line), using the
approximate analytical expression (blue line), and using the approximate analytical expression
with the electrical position variable (green line).
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3.6.2.5. Characteristic impedance of the Bloch wave, ZB

The characteristic impedance of the Bloch wave, ZB , in the PBG microstrip structure
proposed in section (3.6.2) has been studied in this section. In first place it is worth
noting that since the unitary cell of the PBG microstrip structure under study is
symmetrical, the following relation will be satisfied between the characteristic
impedances corresponding to the forward and the backward travelling Bloch waves:

BBB ZZZ =−= −+

and hence, here, we will be concerned only with the “characteristic impedance of the
Bloch waves”, ZB . The evolution of its value with the frequency has been calculated
using the numerical method proposed in section (3.4.3.1), and specifically eqn.
(3.179), it has been calculated also using the approximate analytical expressions
developed in section (3.4.3.2), eqns. (3.186), (3.187), and using the approximate
analytical expressions with the electrical position variable, χ , (see section (3.3.4)).
The results are depicted in Fig. 3.24,  giving the real part and the imaginary part of the
characteristic impedance. Again, both analytical expressions give almost the same
results. On the other hand, the agreement between the numerical and the analytical
results is very good, although the difference between them increases for the low
frequencies of the passband.
As it can be seen, the characteristic impedance of the Bloch wave is real in the
passbands and purely imaginary in the forbidden band or Photonic Bandgap. Its value
clearly differs from the characteristic impedance of the ports (Z0=50 Ω in our case),
and is quite stable in the first part of the passband, but grows very quickly in the part
close to the forbidden band. The difference between the characteristic impedance of
the ports and the characteristic impedance of the Bloch waves produces the ripple (or
sidelobes) that appears in the passband of the transmission (S21) and reflection
coefficients (S11) of the PBG device.

3.6.2.5.1. “Matched” PBG microstrip circuit

As we have just mentioned, the ripple that appears in the passband of the transmission
and reflection coefficients of our PBG microstrip circuit is due to the difference
between the characteristic impedance of the ports, Z0 , and the characteristic
impedance of the Bloch waves in the PBG circuit, ZB. Since the ZB parameter is not
constant in the passband (as it has been seen in Fig 3.24), we can not find a value for
Z0 such that all the passband is simultaneously matched (without ripple), but we can
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(a)

(b)
Figure 3.24: Real part (a), and imaginary part (b), of the characteristic impedance of the
Bloch wave, ZB, in the PBG microstrip prototype designed as stated in section (3.6.2). It has
been calculated using the numerical method (red line), using the approximate analytical
expressions (blue line), and using the approximate analytical expressions with the electrical
position variable (green line). The calculation using the analytical expressions is done only for
the passbands, and not for the forbidden band.

try to match the part of interest of the passband for the intended application, using a
characteristic impedance for the ports, Z0, equal to the value of ZB in the part of
interest of the passband. To probe the validity of this approach, the transmission, T,
and reflection, R, coefficients of the PBG microstrip circuit under study (with 9
periods) have been calculated for several interesting cases using the technique detailed
in section (3.4.4): they have been calculated for the conventional case (Z0=50 Ω),
where R=S11 and T=S21, for the case in which we try to match the frequency range
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around 1 GHz, (Z0=69 Ω), and for the case in which we try to match the frequency
range around 2 GHz (Z0=73 Ω). The results are depicted in Fig. 3.25. From them it
can be clearly seen that the matching of the ports achieves an almost perfect matching
around the target frequency, and reduces notably the ripple in almost all the passband.
On the other hand, the rejected band remains almost unaltered.

(a)

(b)

Figure 3.25: (a) Reflection, R (b) and Transmission, T, parameters for the PBG microstrip
prototype of 9 periods designed as stated in section (3.6.2), and for different characteristic
impedances of the ports, Z0. The conventional case (Z0=50 Ω), where R=S11 and T=S21 is given
(blue line), together with the case where Z0=69 Ω (red line), and Z0=73 Ω (green line).
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3.6.2.6. Fourier transform of the coupling coefficient

To finish the study of the PBG microstrip circuit with a sinusoidal pattern, the Fourier
transform of its coupling coefficient will be compared with its S11 (reflection)
parameter. The relation between them is studied in section (3.5), and is given for the
simplified case of structures with low reflectivity by eqn. (3.213). In Fig. 3.26 the
evolution with the frequency of the S11 (reflection) parameter for the PBG microstrip
device designed as stated in section (3.6.2) is given for a prototype with 9 periods and
for  a  prototype  with  4  periods,  calculated  through  the  numerical  solution  of  the

(a)

(b)
Figure 3.26: S11 parameter for the PBG microstrip prototype designed as stated in section
(3.6.2), with 9 periods (a), and with 4 periods (b). It has been calculated through numerical
solution of the coupled mode equations (red line) and is compared to the estimates obtained
realizing a plain Fourier transform of the coupling coefficient (blue line), and realizing a plain
Fourier transform of the coupling coefficient using the electrical position variable (green line).
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coupled mode equations, section (3.2.2). Together with it, the estimate of the S11

parameter through a plain Fourier transform of the coupling coefficient (eqn. (3.213)),
and through a plain Fourier transform of the coupling coefficient using the electrical
position variable (eqn. (3.222)) are also represented. It is important to stress that these
simple expressions that use a plain Fourier transform of the coupling coefficient give
an approximation to the reflection (S11) parameter accurate for structures with low
reflectivity, but that still constitutes a first approach to the response of general
structures. This fact can be seen in the results presented in Fig. 3.26, where the Fourier
transform of the coupling coefficient gives a reasonable estimate for the reflection
response, although when the reflectivity of the device is very high the estimated value
can not be taken into account. It is also interesting to note that the estimate for the
device with lower reflectivity (the PBG circuit with 4 periods) is better than the
estimate obtained for the largest one. However it is important to stress that in any case
the virtual absence of second rejected band is successfully predicted by the Fourier
transform of the coupling coefficient, and even the specific value for the maximum
reflectivity obtained in it is very accurately predicted using the Fourier transform with
the electrical position variable. It can be also seen that, in general, the calculation
using the electrical position variable provides more accurate results.

3.6.3. Defected PBG with a pattern of circles

To finish this section of examples, a prototype of defected PBG with a pattern of
circles is studied. It is obtained by removing the central period of the PBG device
featuring a discrete pattern of circles designed in section (3.6.1), and leaving a defect
length equal to Ldef=6.25 mm. In this way, the PBG resonator proposed in [LOP 99] is
reproduced. The details about the design technique, the operation, performance and
potential applications of this resonator structure will be presented in the next chapters.
Here we will be concerned only with an analysis of the structure similar to that carried
in the previous sections.
The device is obtained by etching a periodic pattern of circles, following a square
lattice, in the ground plane of a microstrip line, whose central period is removed. The
resulting defect would have a length equal to a period, but to obtain a better
performance it is optimized giving rise to a defect length equal to Ldef=6.25 mm. In the
upper plane, the strip conductor width is kept constant to have an also constant
nominal characteristic impedance equal to 50 Ω. The prototype that we are going to
analyze has the same design parameters as the previous ones, in order to be measured
with our HP 8753D vector network analyzer (up to 6 GHz) and to be easily compared
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Figure 3.27: Photograph of the upper plane and of the ground plane of the defected PBG
microstrip prototype featuring a discrete pattern of circles.

with them. The substrate employed is a Rogers RT/Duroid 6010, with dielectric
constant εr=10.2 and substrate thickness h=1.27 mm. The period of the PBG structure
will have a value Λ=14.1 mm, and the radius of the circle to period ratio will be
r/Λ=0.25. The number of periods of the device will be 8. The strip conductor width
will be constant, w=1.2 mm. A photograph of the upper plane and of the ground plane
of the defected PBG microstrip prototype is given in Fig. 3.27.

3.6.3.1. S11 and S21 parameters

To begin the analysis of the defected PBG prototype we are going to calculate its S11

(reflection) and S21 (transmission) parameters. They will be obtained through
numerical solution of the coupled mode equations (section (3.2.2)), using the
approximate analytical results obtained by cascading the approximate analytical
expressions for the transmission matrices (section (3.3.3.4), eqns. (3.89), (3.90))
(uniform PBG + unperturbed microstrip line + uniform PBG), and using the
approximate analytical expressions with the electrical position variable (section
(3.3.4)). The prototype will be also fabricated employing a LPKF numerical milling
machine, and its S parameters measured with our HP 8753D vector network analyzer.
The S11 and S21 parameters obtained are depicted in Fig. 3.28. As it can be clearly seen
a transmission peak of resonant nature appears in the middle of the rejected band.
To continue, the  values  for  the  resonance  frequency, fres , bandwidth  at  3 dB of the
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(a)

(b)
Figure 3.28: (a) S11 and (b) S21 parameters for the defected PBG microstrip prototype of 8
periods designed as stated in section (3.6.3). They have been calculated through numerical
solution of the coupled mode equations (red line), using the approximate analytical
expressions for the transmission matrices and cascading them (blue line), and using the
approximate analytical expressions for the transmission matrices with the electrical position
variable (green line). The measurement results are also included for comparison (black line).

Numerical solution of
coupled mode eqns.

Analytical
solutions (z)

Analytical
solutions (χ)

Measurements

fres (GHz) 4.40 4.45 4.45 4.43
BW3dB (MHz) 25.0 21.0 26.1 34.1

Q 176 211 170.5 130
Table 3.9: Values for the resonance frequency, fres , bandwidth at 3 dB of the resonance peak,
BW3dB , and quality factor of the resonator, Q , calculated from the frequency responses
depicted in Fig. 3.28.
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resonance peak, BW3dB , and quality factor of the resonator, Q , are obtained from the
frequency responses previously calculated. All of them are given in Table 3.9.
As it can be seen in Fig. 3.28 and in Table 3.9, the agreement between the numerical
solution of the coupled mode equations and the approximate analytical solutions
obtained using the transmission matrices is very good. However it can be seen that the
analytical solutions that employ the electrical position variable give more accurate
predictions.
The agreement with the measurements is very good also. The discrepancies found in
the level of the resonance peak and in the quality factor, Q, are due to the losses
present in the constructed prototype. The losses are neglected in the analytical
expressions. On the other hand, the small discrepancies present in the matching are
due to the discontinuities introduced by the connector unions in the constructed
prototype.

3.6.3.2. Complex amplitudes of the mode, a+(z), a−−−−(z)

In this section the complex amplitudes a+(z) , a−(z) of the propagating mode (the
microstrip or quasi-microstrip mode in our case), calculated along the defected PBG
microstrip prototype designed as stated in section (3.6.3), will be given for a rejected
frequency (f=4.9 GHz), Fig. 3.29, and for the resonance frequency (f=4.4 GHz), Fig.
3.30. The excitation taken has been the conventional one: a forward travelling wave of
unitary amplitude at the input port (a+(z=0)=1) and matching conditions at the output
port (a−(z=L)=0).
The complex amplitudes have been calculated through numerical solution of the
coupled mode equations (section (3.2.2)).
From Fig. 3.29 it can be clearly seen that the complex amplitudes of the mode follow,
for the frequencies that are actually rejected, the same evolution in the defected PBG
as in the non-defected PBGs previously studied (see sections (3.6.1.3), (3.6.2.3)).
However, the introduction of the defect opens up a transmission band (resonance
peak) in the middle of the forbidden band, where the signal can be transmitted ideally
without attenuation (in the ideal case of a lossless device). This happens because the
defect supports a localized-defect-mode at the resonance frequency, allowing the
transmission of energy at that frequency [JOA 95]. The effect can be seen in Fig. 3.30,
where almost total transmission is achieved at the resonance frequency (the modulus
of the complex amplitude associated to the forward travelling wave is equal to one at
the output port), and the distribution of energy reveals that it is coupled to a localized
mode associated to the defect.
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(a)

(b)

Figure 3.29: Evolution of the modulus of the complex amplitudes of the mode, (a) a+(z), and
(b) a−(z), along the defected PBG microstrip prototype designed as stated in section (3.6.3), for
a rejected frequency (f=4.9 GHz). They have been calculated through numerical solution of the
coupled mode equations.
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(a)

(b)
Figure 3.30: Evolution of the modulus of the complex amplitudes of the mode, (a) a+(z), and
(b) a−(z), along the defected PBG microstrip prototype designed as stated in section (3.6.3), for
the resonance frequency (f=4.4 GHz). They have been calculated through numerical solution
of the coupled mode equations.

3.6.3.3. Fourier transform of the coupling coefficient

To finish the study of the defected PBG microstrip circuit with a pattern of circles, the
Fourier transform of its coupling coefficient will be compared with its S11 (reflection)
parameter. The relation between them is studied in section (3.5), and is given for the
simplified case of structures with low reflectivity by eqn. (3.213). In Fig. 3.31 the
evolution with the frequency of the S11 (reflection) parameter for the defected PBG
microstrip device designed as stated in section (3.6.3) is given, calculated through the
numerical solution of the coupled mode equations, section (3.2.2). Together with it,
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the estimate of the S11 parameter through a plain Fourier transform of the coupling
coefficient (eqn. (3.213)), and through a plain Fourier transform of the coupling
coefficient using the electrical position variable (eqn. (3.222)) are also represented. It
is important to stress that these simple expressions that use a plain Fourier transform
of the coupling coefficient give an approximation to the reflection (S11) parameter
accurate for structures with low reflectivity, but that still constitutes a first approach to
the response of general structures. This fact can be seen in the results presented in Fig.
3.31, where the Fourier transform of the coupling coefficient gives a reasonable
estimate for the reflection response, although when the reflectivity of the device is
very high the estimated value can not be taken into account. Specifically, it is
interesting to note that the presence of the resonance frequency is successfully
predicted by the Fourier transform of the coupling coefficient, and even the exact
value of this resonance frequency is quite accurately predicted by the Fourier
transform  with the electrical position variable. It can be also seen that, as before, the
calculation using the electrical position variable provides more accurate results.

Figure 3.31: S11 parameter for the defected PBG microstrip prototype designed as stated in
section (3.6.3), with 8 periods. It has been calculated through numerical solution of the
coupled mode equations (red line) and is compared to the estimates obtained realizing a plain
Fourier transform of the coupling coefficient (blue line), and realizing a plain Fourier
transform of the coupling coefficient using the electrical position variable (green line).
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   CHAPTER 4

TECHNIQUES TO IMPROVE THE
PERFORMANCE OF PBG STRUCTURES
IN MICROSTRIP TECHNOLOGY

The frequency response of a PBG structure in microstrip technology features a wide
rejected band whose central frequency is fixed by the periodicity of the periodic
perturbation. However, the frequency response of a conventional PBG device includes
also characteristics that can be detrimental in many applications: an important ripple
appears in the passbands placed to the left and to the right of the rejected band;
sometimes a wider rejected bandwidth can be needed; for some applications the
circuit area required to implement the PBG structure can be too large; and for other
applications the periodicity present in the frequency response (rejected bands at the
harmonics of the design frequency) can be troublesome. In this chapter several
techniques that allow to surpass this potential problems are proposed and successfully
tested, giving rise to improved PBG microstrip structures.
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4.1. Introduction

As it has been seen in chapter 1, the first approach proposed to produce a PBG
structure in microstrip technology consisted in drilling a periodic pattern of cylinders
in the substrate of the microstrip line, to locate implants of different materials within
them or to leave them filled by air [QIA 97]. However, later it was found that PBG
structures with even deeper and wider stopbands could be simply achieved by etching
a periodic pattern of circles in the ground plane along the microstrip line. This
approach is simpler to fabricate, compatible with the monolithic technology, and
permits the PBG structure to be easily integrated with other microstrip components in
the upper plane. As a first approximation, a PBG microstrip structure with three rows
of same-size and equidistant circles, one of them etched in the ground plane just below
the upper-plane conductor strip and the two others at both sides of it, was proposed
[RAD 98]. Due to its advantages, this structure was chosen as the starting point for the
research of our group into PBG structures for microstrip lines. A photograph of the
upper plane and of the ground plane of a prototype is presented in Fig. 4.1. It has been
constructed using a numerical milling machine in a Rogers RT/Duroid 6010 substrate,
with dielectric constant εr=10.2 and substrate thickness h=1.27 mm. The period of the
PBG structure has a value a=14.1 mm, the radius of the circle to period ratio is
r/a=0.25, and the number of periods employed is 9. The strip conductor width is
constant, w=1.2 mm, corresponding to a nominal characteristic impedance of 50 Ω.
The prototype is a scaled version of the one presented in [RAD 98] in order to be
measured with our HP 8753D vector network analyzer (up to 6 GHz). Its measured S
parameters are given in Fig. 4.2.
One of the first contributions of our group was to show that similar behaviors for this
two dimensional hole distribution, and for a lonely central row of circles placed
behind the conductor strip, are achieved [FAL 99]. The resulting one dimensional
PBG microstrip structures are studied in section (4.2). Due to the high confinement of
the fields around the conductor strip of the microstrip line, their frequency response is
almost identical to that of their 2D counterparts, but the circuit layout area is more
compact.
As it was seen in chapter 3, sections (3.2.1) and (3.3.1), the system of coupled mode
equations that characterize a PBG structure in microstrip technology can be simplified,
introducing several reasonable approximations, to a form that is identical to that
obtained when a uniform Fiber Bragg Grating (FBG) or a uniform optical periodic
dielectric waveguide is studied by using the coupled mode theory [PAS 96, YAR 97,
YAR 84]. Moreover, an equivalence model has been proposed by our group between
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Figure 4.1: Photograph of the upper plane and of the ground plane of a PBG microstrip
prototype as it  was originally proposed by Prof. Itoh at UCLA.
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Figure 4.2: Measured S11 (thin line) and S21 (thick line) parameters for the PBG microstrip
prototype shown in the photographs of Fig. 4.1. It has been designed as originally proposed by
Prof. Itoh at UCLA.

the parameters of Fiber Bragg Gratings and PBG microstrip structures, in such a way
that the equivalent pair of FBG and PBG microstrip circuit, feature the same
frequency response, although centered at the corresponding operation frequency [LAS
99, ERR 00, ERR 02]. This facts suggest that a lot of ideas and techniques employed
in the developed and mature field of Fiber Bragg Gratings could be easily and
successfully translated to the novel and emerging field of PBG structures for
microstrip lines.
One important problem of the frequency response of Fiber Bragg Gratings for filtering
applications (rejection of a frequency band), is the presence of an important ripple (or
from the reflection point of view sidelobes) in the pass band. The same problem arises
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in PBG microstrip structures (see Fig. 4.2). To surpass this difficulty, tapering
techniques have been customarily employed in Fiber Bragg Gratings, achieving an
important reduction in the ripple (and sidelobe) level [MIZ 93]. In section (4.3), it will
be shown that a windowing function applied to the hole radii of a PBG microstrip
structure, in such a way that the impedance mismatch diminishes towards the device
endpoints, leads also to reduced ripple (sidelobes) levels in the passband, which may
be critical in filtering applications [LOP 99a]. Different tapering functions will be
systematically studied from the device performance point of view [ERR 00a].
In section (4.4), a non-equidistant hole-distribution in these PBG microstrip structures
is considered. This is suggested by the linear change of the perturbation spatial
frequency employed in the Linearly Chirped Fiber Bragg Gratings (LCFBGs) [HIL
97], achieving increased rejection bandwidths compared to the constant period
structures [LAS 00]. Interesting design control over the group delay characteristic
using these chirping techniques will be also shown later in chapter 5, section (5.6),
where microstrip quadratic phase filters will be proposed for linearly chirped delaying,
as in the case of LCFBGs, to perform real-time energy spectral density analysis and
temporal processing of signals.
On the other hand, certain applications in microstrip technology, like high
performance filters, require high rejection values in the stopbands and sharp cutoffs.
However, to obtain them, it is necessary to include a large number of periods in the
PBG microstrip structures. This has the drawback of resulting in circuits with large
longitudinal dimension, which can certainly make unpractical their physical
implementation. To solve this problem, a compact 2D hole-distribution for the PBG
microstrip reflectors is proposed in section (4.5). As it can be seen in [RAD 98], the
use of a single bend in the PBG microstrip device does not modify significantly its
frequency behavior, which basically remains as for the straight PBG reflector. This
bending feasibility leads to a 2D configuration in which the microstrip line presents
multiple bends, following a similar structure as that of a meander line. The benefit of
using this approach is that the PBG reflector has considerable length in a reasonable
circuit area [FAL 99a]. The compactness results are very impressive but an additional
periodicity (ripple) appears in the frequency response because the meander
arrangement is a periodic structure itself. In section (4.5), several techniques are also
employed to avoid this effect of unwanted ripple produced by the meander periodicity,
which is added to the sidelobes due to the spatially limited PBG periodicity [LOP
00a]. These last ones, intrinsic to PBG devices, can be nearly eliminated through the
tapering techniques commented above and studied in depth in section (4.3).
Until now, undesired frequencies in microstrip technology have been usually filtered
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using short-circuited stubs, one half-wavelength long, tuned at the frequency to be
rejected. Alternatively, a chip capacitor placed to provide a transmission zero at the
undesired frequency has been employed. These techniques have the drawback of being
narrowband and of consuming valuable circuit layout area. PBG microstrip structures
can be used to accomplish this filtering providing a broad rejected band. Furthermore,
they can be easily integrated with other microstrip components in the upper plane to
miniaturize the circuit configuration. However, in some designs, it is needed to
eliminate more than one frequency. One interesting example is the tuning of the
second and third harmonics in power amplifiers or oscillators [RAD 98a]. To perform
this, various cascaded PBG microstrip structures, each one tuned at a different
frequency, have to be used [RUM 98], enlarging the circuit longitudinal dimension.
Furthermore, all the PBG microstrip structures described up to now with holes etched
in the ground plane present a periodic frequency response. This fact can constitute a
problem in some filtering applications. The replicas of the response at the harmonics
of the design frequency can be eliminated whenever continuous patterns following a
sinusoidal law, inspired by the continuous sinusoidal perturbation of FBGs, are
employed [LOP 00b], as it will be seen in section (4.6). In the same way, compact
multiple-frequency-tuned structures, based on superimposed PBGs, to perform
simultaneously the rejection of all the undesired frequencies, can be achieved
whenever a pattern that consists in the addition of multiple sine-functions, each one
tuned at one of the frequencies to be rejected, is used [LAS 00a], as it will be further
explained in section (4.6).

4.2. 1D PBG microstrip structures

The initial periodic patterns proposed to implement PBG structures for microstrip
lines were two dimensional. Here we have focused our attention on the 2D pattern of
Fig. 4.1. However, the operation of the resulting PBG microstrip circuit was 1D
effective, since only the periodicity along the longitudinal dimension of the conductor
strip was used. Moreover, due to the high confinement of the fields around the
conductor strip of the microstrip line, the field levels outside the central row of circles
of the periodic pattern will be very low. Finite Element three dimensional
electromagnetic simulation of the PBG structure with two dimensional pattern
confirms this fact, and reveals that field levels at the outer rows of the periodic pattern
are negligible. This suggests that PBG microstrip structures consisting of only the
central row of the pattern (1D) will have similar behaviour as a 2D structures. The
advantage of a 1D implementation is a considerable reduction in the transverse size



Chapter 4210

(a)

(b)

Figure 4.3: 2D and 1D PBG microstrip structure (a), and Finite Element simulation (b) of the
electric field intensity in the 2D case confirming the negligible values in the outer rows of
circles..

of the reflector. To check the performance of the 1D PBG microstrip structures
proposed, several prototypes have been fabricated using a numerical milling machine,
and measured with an HP 8753D vector network analyzer. The S parameters obtained
have been compared with those of their two dimensional counterparts, showing that
the frequency response is virtually identical. In Fig. 4.3 a photograph of the 2D PBG
microstrip structure presented in the previous section, and of its 1D counterpart is
given. Both of them have the same design parameters (period of the PBG structure
a=14.1 mm, radius of the circle to period ratio is r/a=0.25, and number of periods
employed is 9), and have been implemented in the same substrate (Rogers RT/Duroid
6010, with dielectric constant εr=10.2 and substrate thickness h=1.27 mm). And both
of them have almost identical frequency response (the one given in Fig. 4.2).
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4.3. Tapered PBG microstrip structures

As it has been commented in section (4.1), one of the drawbacks of PBG structures in
microstrip technology when employed in filtering applications is the significant ripple
that appears in their pass-band (or from the reflection point of view the high sidelobe
level of the frequency response). By using tapering techniques the ripple (and hence
the sidelobe level) of the frequency response can be reduced in a noticeable way, as
well as the rejected bandwidth is slightly increased. The tapering technique is applied
modifying the radius of each circle according to its position in the structure, following
a tapering function as in Fig. 4.4. The circle radii distribution will follow the next
general expression:

)( imaxi zTrr ⋅= (4.1)

being ri the  i-th circle radius, rmax the maximum circle radius that corresponds to the
central one, T(z) the tapering function, and zi the distance between the i-th and the
central circle. The improvement of the frequency response achieved through the
application of a tapering function can be understood as a consequence of the
progressive matching of the characteristic impedance of the Bloch wave towards the
input and output characteristic impedances, that the tapering function produces.
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Figure 4.4: Examples of windowing functions: Gauss, Cosine, Hyperbolic Tangent, Blackman,
and Kaiser. The window name labels its corresponding profile.
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An example of tapered 1D and 2D PBG microstrip circuits can be seen in Fig. 4.5.
Their design parameters are very similar to those employed in the previous sections.
The substrate employed is a Rogers RO3010™, which is h = 1.27 mm-thick, and has a
relative dielectric constant εr = 10.2. The conductor strip width on the upper plane is
w = 1.2 mm, which corresponds to a characteristic impedance of 50 Ω in the
conventional (unperturbed) microstrip line, and the period a is set to 14.1 mm to fix
the central frequency of the rejected band at around 4 GHz through the Bragg
condition of eqn. (3.70) of chapter 3:

a
cf
eff

max ⋅⋅
=

ε2
(4.2)

where for the sake of simplicity εeff has been taken as the effective dielectric constant
at 4 GHz of the unperturbed microstrip line (calculated using Agilent Linecalc™ or
formulae in [YAM 79]).
For the prototypes of Fig. 4.5 a Hamming window (similar to a Blackman window
with α fixed to –2) has been employed (but discarding the first and last samples), with
a maximum radius to period ratio equal to rmax/a=0.3. Their S parameters have been
measured with an HP 8753D vector network analyzer, obtaining again identical
results for the 1D and the 2D prototypes. They are given in Fig. 4.6. As it can be seen,
the ripple in the pass band (and hence the sidelobe level) is significantly reduced in the
tapered microstrip structure. At the same time, the rejected bandwidth is slightly
increased, but the rejection level achieved decreases when compared to the non-
tapered PBG device (Fig. 4.1, Fig. 4.2).

Figure 4.5: Photograph of the ground plane of a two dimensional and a one dimensional
tapered PBG microstrip structure.
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Figure 4.6: Measured S11 (thin line) and S21 (thick line) parameters for the tapered PBG
microstrip prototype shown in the photograph of Fig. 4.5.

To continue our study, the frequency responses of several tapered PBG microstrip
circuits with one row of holes etched in the ground plane below the upper conductor
strip, will be analyzed, comparing different windowing functions and their effects on
the rejection level, rejected bandwidth, sidelobe level and cutoff sharpness of the main
stopband. Special attention is paid to optimize the sidelobe suppression ratio, which
may be critical in some filtering applications, but without failing to attend the
evolution of the rest of the frequency features.
The comparative study has been carried out for the Blackman, Cosine, Gauss,
Hyperbolic Tangent, and Kaiser windows, because they are commonly used in optical
diffraction gratings, and because of the extent of tapering profiles they comprise, as it
can be seen in Fig. 4.4. These windowing functions, T, are analytically given in eqns.
(4.3) to (4.7).
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In eqn. (4.6), tanh is the Hyperbolic Tangent function and, in eqn. (4.7), oI  is the first-

class modified Bessel function. In eqns. (4.3) to (4.7), Lz  is the normalized
longitudinal position in the circuit, being L the device length and z = 0 its central
point.
The frequency responses of the tapered PBG microstrip structures, all of them
simulated using Agilent Momentum and Advanced Design System™ software, have
been compared analyzing: the rejection level, defined as the minimum value of the

21S -parameter in the stopband; the 3-dB bandwidth of the stopband (viewed in 11S -

parameter); the main lobe to sidelobe (MLSL) ratio, defined as the quotient between
the maximum rejection values of the stopband and the first sideband (viewed in 11S -

parameter); and the stopband cutoff sharpness (a kind of ‘shape factor’ of the
frequency response), defined as the ratio between the 3-dB bandwidth (BW3dB) and the
bandwidth between the first zeroes (BW∞) (viewed again in 11S -parameter). These

four criteria seem to provide good insight into the circuit frequency behavior as it
changes when the physical parameters are modified. When any ground plane etching
is present, the available version 2001 of the simulation software package Agilent
Momentum and ADS™ is not able to take properly into account conductor and
dielectric losses yet. This causes the measured and conductor-and-dielectric lossless
simulated results to differ slightly, mainly as frequency is higher.
Three different scenarios are going to be considered to account for the windowing
effects: case a) the maximum hole radius in the structure is fixed and the number of
periods is variable; case b) its reciprocal: the number of periods is fixed and the
maximum hole-radius changes. A third situation (case c) is finally considered when
the analysis is carried out sweeping Neq, the equivalent number of periods. It is
interesting to note that a similar concept (the effective length, Leff ) was already
introduced in chapter 3, section (3.3.5), when theoretically studying ideally tapered
PBG microstrip structures.



Techniques to improve the performance of PBG structures in microstrip 215

Case a) Fixed maximum hole radius and variable number of periods

When the ratio rmax/a, being rmax the largest hole radius, is set to 0.25 and the number
of periods, N, varies, the resulting rejection level, bandwidth, MLSL value and
stopband cutoff sharpness are shown in Fig. 4.7 for some of the windows of Fig. 4.4.
(The device length, L, is always N times a).
As the number of periods in the structure increases, the wave interference at the Bragg
frequency is reinforced and therefore the rejection level is increased with N, Fig.
4.7(a), for all windows. At the remaining frequencies the phase-matching condition
for back-reflection is worse satisfied and hence the bandwidth is reduced, Fig. 4.7(b),
and the stopband becomes steeper offering better selectivity, Fig. 4.7(d). The MLSL
level changes slowly when the number of periods varies, in comparison with the same
change when the tapering function varies, Fig. 4.7(c), because the MLSL level is
strongly affected by the impedance mismatch at the boundaries of the structure,
resulting in low finesse Fabry-Perot-type resonances. This way, the MLSL level
primarily depends on the shape of each tapering function and less on the number of
periods. In fact, as it was seen in chapter 3, section (3.5), the frequency behavior is
intimately related to the Fourier Transform of the coupling coefficient, and hence to
the windowing function in Fig. 4.4 between 5.0−=Lz  and 5.0=Lz . This implies
that smoother tapers (like the Cosine, Blackman or Kaiser), in contrast with other
more square-like windows (like the Gauss or Hyperbolic Tangent), have a better
MLSL ratio as well as this ratio is approximately independent of N. Therefore, the
worst MLSL is always obtained when the non-tapered structure is chosen. The
Hyperbolic Tangent window improves very slightly this value, whereas for the Cosine
window an improvement of ~13 dB is achieved; the best MLSL values are given by
the Kaiser window with a 25 dB-improvement with respect to the non-tapered
structure. However, the bands are less steep for windows with better MLSL levels, and
the rejection values smaller because as the window is smoother the wave interference
is weaker at all frequencies. In the same way, it is also expected a wider bandwidth as
the window is smoother, either from this reasoning or from the Fourier Transform of
the tapering function. However, this is not apparent from Fig. 4.7(b), where less steep
stopbands in the tapered cases partially mask the bandwidth increasing with respect to
the non-tapered case. Perhaps, these spurious consequences coming along with greatly
reinforced sidelobe suppression cause the filter to behave worse than expected in a
specific application and, in general, a trade-off has always to be met between all
frequency requirements. The concept of equivalent number of periods of the third
scenario (case c) of this section will be then especially useful.
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Legend: Figure 4.7: Rejection level (a), bandwidth (b), main lobe to sidelobe ratio
(c) and cutoff sharpness (d), as a function of the number of periods, N,
when rmax/a = 0.25, for different windowing functions (see legend on the
left). The Uniform-windowed case should be understood as the non-tapered
case.

Case b) Fixed number of periods and variable maximum hole-radius

In this case, the number of periods is fixed to N = 9 and the ratio rmax/a varies. An
increasing rmax/a results in higher rejection level, 3 dB-bandwidth, and stopband cutoff
sharpness, but in a decreasing MLSL value for all windows due to wave reinforcing at
all frequencies. These trends can be observed in Fig. 4.8. Then, it is understandable
that the non-tapered case gives, for all the rmax/a ratios, the maximum rejection level,
Fig. 4.8(a), and the sharpest cutoff, Fig. 4.8(d), but also the worst MLSL level (worst
impedance matching at the endpoints), Fig. 4.8(c). As explained in the first case or
case a, tapering weakens the wave interference and broader bandwidths should be
expected whenever the electrical parameter modulation is windowed. However,
bandwidth broadening comes along with cutoff smoothing and, in Fig. 4.8(b), the
curves are not apparently ordered from squared to more rounded windows and from
narrower to broader bandwidth, respectively, just as neither occurs in Fig. 4.7(b) using
the same reasoning. On the other hand, in Fig. 4.8(a), (c) and (d), as long as smoother
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windows are used, lower rejection level, higher MLSL value, and poorer cutoff
sharpness, respectively, are obtained due to the wave weakening with respect to the
non-tapered case. This way, lower rejection levels are achieved with the Gauss and
Hyperbolic Tangent windows but improving the MLSL level only in a few dBs in the
best case. The same MLSL level is attained approximately with the Blackman and
Cosine windows for all the rmax/a ratios, but the rejection level of the Cosine taper is
always better than that of the Blackman window. Moreover, with the Kaiser window
the MLSL level is highly improved without a significant reduction in rejection level
compared to the Blackman window. The Kaiser window allows using greater rmax/a
ratios to obtain the same rejection level than a non-tapered structure, while keeping the
sidelobes within lower values. For example, a device tapered with a Kaiser window
with N = 9 and rmax/a = 0.35 offers a rejected level of ~-28.6 dB, similar to the
rejection level (-25.9 dB) of a non-tapered device of 9 periods and rmax/a = 0.2, whilst
significantly improving the MLSL value (~22 dB for the Kaiser window and ~4.5 dB
for the non-tapered case). Besides, the bandwidth is broader (around 2.25 GHz
compared to 1.25 GHz, approximately, for the non-tapered case), although the shape
factor of the frequency response is worse.
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Case c) Comparison between windows with the same equivalent number of periods

As it can be inferred from both cases a and b, any change in either the hole radii or the
device length affects all the parameters of interest of the frequency response,
whichever the windowing function is being used. Then, it is not easy to arrive at a
final conclusion on whether a change in the window, number of holes or maximum
hole radius benefits or not the global frequency response without having in mind
particular design objectives and very often, as it was said before, some trade-off has to
be met between all of them. However, to facilitate the design of the PBG device to
assure certain frequency characteristics as well as to make easier the comparison
between different windowing functions, an equivalent number of periods, Neq, is
defined in eqn. (4.8) inspired in the equivalent length used in windowed optical
diffraction gratings [PAS 96a], and introduced in chapter 3, section (3.3.5), when
theoretically studying ideally tapered PBG microstrip structures.

eqeq ANLzdLzTNN ⋅=⋅= ∫
−

5.0

5.0

)/()/( (4.8)

where T(z/L) is the windowing function along the longitudinal z-axis, and Aeq

represents the area under the tapering function. The values of Aeq for different
windows are shown in Table 4.1.

      Window Aeq

Uniform (non-tapered case) 1

Gauss 0.92

Hyperbolic Tangent 0.79

Cosine 0.76

Blackman 0.63

Kaiser 0.61

Table 4.1: Values of Aeq for different windowing functions.

A PBG structure tapered with any of those windows registered in Table 4.1 or other
ones, and with maximum hole-radius to period ratio rmax/a and N periods, will show
approximately the same rejection level and bandwidth than a non-tapered structure
with Neq holes of the same size as the largest in the tapered structure. This can be



Techniques to improve the performance of PBG structures in microstrip 219

verified in Fig. 4.9(a) and Fig. 4.9(b), where the rejection level and bandwidth,
respectively, for non-tapered devices of different r/a ratios are shown with solid lines
as functions of Neq (that equals N in this case), along with the same parameters for all
the windows (Blackman, Cosine, Hyperbolic Tangent, Gauss, and Kaiser) with the
same rmax/a ratios and for different number of periods, plotted as isolated points. The
3 dB bandwidth of the tapered devices in Fig. 4.9(b), are slightly below those ones for
their equivalent non-tapered structures because of less steep cutoffs using tapering. It
is worth noting that Neq may result in a non-integer number of periods and hence in an
unreal equivalent non-tapered structure, but, nevertheless, it is a valuable parameter to
be used in the design and comparison of windowed structures.
The MLSL level, Fig. 4.9(c), is always better for a tapered structure than for the non-
tapered case, when they have the same equivalent number of periods and,
consequently, the same rejection level and bandwidth. As counterpart, the tapered
structure with reduced sidelobes has larger physical length than the non-tapered one
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since, for the tapered case, Neq<N. The Cosine window offers the best compromise
between length and MLSL value, while the Hyperbolic Tangent and Blackman
windows are poorer because they need longer structures than the non-tapered and the
Cosine-windowed cases, respectively, to offer similar MLSL values. The best MLSL
value is always achieved with the Kaiser window, but it needs structures =eqA1 1.6

times longer than the non-tapered ones to obtain the same rejection level and
bandwidth. At the opposite side, the Gauss window is only 1.09 times longer but
improves the MLSL value in a limited way.
Observing Fig. 4.9(c), perturbation depth and length seem to be inversely proportional
one another for a fixed MLSL level, consistent with the known behavior of FBGs.
In view of Fig. 4.7 to Fig. 4.9, some general conclusions can be drawn out on tapering
techniques for PBG structures in microstrip technology. For a given window, for
example, to achieve a better rejection level and a sharper band the number of periods,
N, or the ratio rmax/a has to be increased, while to obtain a broader bandwidth one can
reduce N or increase rmax/a. The MLSL level for each window does not depend on N
and decreases when the rmax/a ratio increases. On the other hand, for the same number
of periods, N, and rmax/a ratio, improving the rejection level or cutoff sharpness
implies to choose a window with a higher Aeq (more square-like), and increasing the
bandwidth or the MLSL level implies the opposite. Finally, to obtain a device with the
same rejection level and bandwidth as a non-tapered structure but with lower
sidelobes, a tapered device with N/Aeq periods is needed, being N the number of
periods for the non-tapered case and Aeq the corresponding area under the windowing
function of Table 4.1. The tapered structure has to be 1/Aeq times longer and, in
general, its reflected band has smoother edges, depending on the windowing function.
However, edges can be made sharper either by increasing a bit more the number of
holes, making at the same time the bandwidth a bit narrower, or by enlarging the holes
and, hence, decreasing a little the MLSL level.

4.4. Chirped PBG microstrip structures

The well known chirping techniques developed for Fiber Bragg Gratings [HIL 97],
find also an application in this section originating PBG microstrip structures with a
ground plane etched with linearly distributed holes making wider the rejected
bandwidth to perform, for instance, broadband filtering of undesired frequencies,
overcoming the narrowband techniques commonly used until now.  Such a kind of
devices tuned at a spatially varying frequency, could be also conceived to carry out
some interesting phase filtering, for example, to reorder linearly in time the frequency
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components of an input signal. This linearly chirped delaying is similar to that of
Linearly Chirped Fiber Bragg Gratings (LCFBGs) and will be studied in chapter 5,
section (5.6) for PBG microstrip devices with continuous patterns to perform real-time
energy spectral density analysis.
Chirping 1-D PBG microstrip structures with a row of holes etched in the ground
plane will produce a device in which the distance between the centers of adjacent
holes (period a) is not constant, but follows a linear function with the position in the
structure. Figure 4.10 displays a geometrical comparison between chirped (on the
right) and non-chirped (on the left) devices. The structure period, ak, is given by eqn.
(4.9) as a function of its position in the device:






 ⋅⋅−⋅=

π
0

0 1 aCkaak (4.9)

being a0 the period corresponding to the central hole of the structure, C the chirp
parameter, and k = 0, ±1,  ±2,...
The rate of the slowly varying periodicity is fixed by C (m-2).
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Figure 4.10: Chirped (right), and non-chirped (left) 1-D PBG microstrip structure

The central frequency of the rejected band for a non-chirped PBG microstrip structure
is determined by the period of the structure through the Bragg condition of eqn. (4.2).
To have a design central frequency, df , of 2.5 GHz, this period is calculated and

results in 23.9 mm for the Rogers RO3010™ substrate h = 1.27 mm-thick with



Chapter 4222

2.10=rε  and a conductor strip width of 2.1=w  mm (corresponding to a

characteristic impedance of Z0 = 50 Ω for a conventional microstrip line). This low-
design frequency has been chosen in order to measure the device response with our
vector network analyzer, up to 6 GHz, being able to capture also the bandwidth
increasing. Chirping techniques will be applied in such a way that only the central
period will correspond to the central frequency and will have the calculated value
a0 = 23.9 mm (ak will then take higher or lower values than a0, depending on its
position with respect to a0 in Fig. 4.10).
As it is well known from the studies realized previously in FBGs [HIL 97], these
chirping techniques, while increasing the rejected bandwidth, introduce a growing
ripple in the rejected band. In chirped structures, there exists a position dependence of
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Figure 4.11: Simulated (a) 11S - and (b) 21S -parameters for: the non-chirped 1-D PBG
microstrip structure (dashed line); the chirped 1-D PBG microstrip structure with C = –5.5
(thin solid line); and the chirped 1-D PBG microstrip structure with C = –11 (thick solid line).
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the resonance frequency, like in eqn. (4.9). Thus, as a pulse propagates through the
device, each frequency is reflected back to the input only in a narrow segment within
the structure. This could create new different long-path Fabry-Perot-type resonances
between that position and the mismatched boundaries of the circuit. This drawback
can be surmounted using tapering techniques as those in section (4.3) to achieve wide
but smooth rejected bands, simultaneously, with flat passbands at both sides. Then,
chirped and tapered PBG microstrip devices will have a varying periodicity following
eqn. (4.9) and a varying circle radius distribution following a windowing function.
Firstly, three different non-tapered structures with N = 9 circles and a radius, r, given
by a r/a0 ratio of 0.25 are analyzed. The first structure has C = 0, which corresponds to
a conventional PBG microstrip reflector of constant period a0. The second one has
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Figure 4.12: Simulated (a) 11S - and (b) 21S -parameters for: the non-chirped 1-D PBG
microstrip structure (dashed line); the chirped 1-D PBG microstrip structure with C = –5.5
(thin solid line); and the tapered and chirped 1-D PBG microstrip structure with C = –5.5
(thick solid line).
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been designed using a chirp parameter C = –5.5, while the third one has C = –11.
Preliminary full-wave electromagnetic simulations are performed for all the microstrip
circuits. The 11S -parameters for the three structures are depicted in Fig. 4.11(a).

Note in Fig. 4.11(a) the increasing bandwidth of the rejected band at the design
frequency, fd, as the chirp coefficient is bigger, comparing the non-chirped structure in
dashed line with the chirped ones using C = –5.5 in thin solid line, and C = –11 in
thick solid line. This broader bandwidth for the chirped structures can be also seen in
Fig. 4.11(b) from the 21S -parameter point of view. It must be also noted that a

growing ripple appears in the response, together with a reduction in the rejection level
(due to a weaker wave interference at the central frequency because of chirping and,
hence, because of the spatially-varying frequency-tuning of the structure), as the chirp
parameter is increased. To further continuing with this comparison, a chirped and
tapered PBG microstrip device with chirp parameter C = –5.5, N = 9 holes, and a
Gaussian windowing function, eqn. (4.5), with 5.0=α , has been also simulated. To
compensate for the reduction in the rejection level due to chirping and tapering, the
rmax/a0 ratio has been increased to 0.4 in this case. Its performance, in thick solid line,
is compared in Fig. 4.12(a) and (b), in 11S - and 21S -parameters respectively, with

the conventional (non-chirped and non-tapered), in dashed line, and the chirped but
non-tapered, in thin solid line, devices presented above. An impressive smoothing
effect can be observed in the frequency response of the tapered device, compared to
the chirped but non-tapered one, obtaining a very promising wide and non-rippled
rejected band with flat passbands at both sides.

(a)

(b)

(c)

Figure 4.13: Photographs of the fabricated prototypes: (a) non-chirped 1-D PBG microstrip
structure; (b) chirped 1-D PBG microstrip structure with C = –5.5; and (c) tapered and
chirped 1-D PBG microstrip structure with C = -5.5.
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The last three prototypes of Fig. 4.12 have been fabricated using a LPKF Protomat
93s™ numerical milling machine (see photographs in Fig. 4.13). For the
measurements of the devices a HP 8753-D™ Vector Network Analyzer is used. The
Rogers RO3010™ substrate has loss tangent 0026.0tan =δ , metal conductivity

-17 mS 108.5 = ⋅⋅σ , and metal thickness m 35 µ=t .

In Fig. 4.14(a) and (b) the measured 11S - and 21S -parameters, respectively, are

depicted for the non-tapered and non-chirped structure, in dashed line, and for the
chirped structures (tapered, thick solid line, and non-tapered, thin solid line) with C =
–5.5. Good agreement is found between the measurements and the full-wave
(conductor-and-dielectric lossless) simulated data of Fig. 4.12.
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Figure 4.14: Measured (a) 11S - and (b) 21S -parameters for: the non-chirped 1-D PBG
microstrip structure (dashed line); the chirped 1-D PBG microstrip structure with C = –5.5
(thin solid line); and the tapered and chirped 1-D PBG microstrip structure with C = –5.5
(thick solid line).
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In particular, the measurements also show the increased bandwidth in the chirped
structures compared to the non-chirped circuit, and the rejection level reduction
experimented in the rejected band due to chirping. Note also the ripple that arises in
the chirped but non-tapered device and the impressive smoothing effect achieved by
windowing the electrical parameter modulation.

4.5. Compact PBG microstrip structures

As the number of periods in a 1D PBG microstrip reflector is increased, higher
rejection values and sharper cutoffs in the stopband were shown in section (4.3) to be
achieved. Whenever a high performance rejected-band filter is needed, a PBG
microstrip reflector seems to be a good choice. However, the required number of
periods could be quite large in order to obtain these frequency characteristics, making
unpractical the physical implementation of the device. In this section, more compact
structures are proposed using extensively the bending feasibility of PBG microstrip
reflectors [RAD 98], this way allowing a large number of periods in a reasonable
circuit layout area. A PBG microstrip reflector using a meander-like topology leads to
a doubly periodic structure: a periodic pattern of holes etched in the ground plane (the
PBG structure), and the meander arrangement itself that also introduces a new source
of frequency ripple. In this section, different methods to reduce the undesirable
frequency ripple originated by the new periodicity introduced by meandering the
circuit are proposed too (this ripple is added to the sidelobes due to the spatially-
limited PBG periodicity, which are nearly avoidable using the tapering techniques of
section (4.3)).  One method consists in chamfering the corners of the upper conductor
strip to achieve better-matched bends. This matching weakens the effect of the
meander periodic structure, and tends to flatten the passbands. Tuning the bent
segments by lengthening introduces a phase factor and shifts the ripple peaks (i.e., the
stopbands of the new periodicity) to a more optimal position depending on the
application. A third method researches into different meander layouts to find
arrangements that provide flatter passbands in the global response near the rejected
frequency band, although they require the use of more bends, giving rise to slightly
higher losses and more rectangular (less compact) circuits.
In this section, the PBG microstrip reflectors are implemented by etching circles in the
ground plane. However, these compacting techniques could be also applied on PBG
microstrip devices with continuous patterns, and even on microstrip lines with varying
strip width. The separation between the centers of neighboring circles defines the
period, a, of the structure, and, therefore, through the Bragg condition of eqn. (4.2),
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the central frequency of the rejected band for a given substrate. For the typical
Rogers RO3010™ substrate 1.27 mm-thick with relative dielectric constant 2.10=rε ,
the spatial periodicity is set to mm 5.15=a to have the design frequency centered
around 3.9 GHz, being mm 2.1=w  the conductor strip width for 50Ω-input and
output ports. Before etching the periodic pattern, it is necessary to define the topology
of the meander PBG device. There are several ways to insert bends in the conductor
strip, depending on the separation between contiguous lines. Since there exists a high
confinement of the fields around the conductor strip, the distance between contiguous
lines is chosen as the minimum amount necessary to preserve the spatial periodicity, a,
in the bent segments of the structure, obtaining in this way a very compact
arrangement, as that in Fig. 4.15. It is apparent from this figure the existence of a
double periodicity. On the one hand, it can be seen the periodicity already present in
straight PBG structures with equally spaced holes (with period a), and, on the other
hand, the meander arrangement constitutes another periodic structure itself (with
period 5a, in this example).

a 

a 
PBG period

5a (meander period)

a 

a 
PBG period

5a (meander period)

Figure 4.15: Schematic representation of the proposed compact PBG microstrip structure. The
periodic pattern of circles is etched in the ground plane of the microstrip line. In the top plane,
the strip conductor follows a meander-type trace
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Firstly, two prototypes have been designed: a conventional (straight) PBG reflector
with N = 25 periods and a radius to period ratio, r/a=0.25, and a compact (meandered)
PBG reflector with the same hole-size, r, period a, and a 5×5 hole-distribution as that
depicted in Fig. 4.15. The simulated 21S -parameters for the straight and compact

PBG microstrip devices are compared in Fig. 4.16. The results reveal that the meander
PBG circuit behaves (from the point of view of rejection level, bandwidth, and cutoff
sharpness in the stopband) in a similar way as the conventional (straight) PBG
microstrip reflector with the same parameter set (period, a, radius, r, and number of
periods, N), solid and dotted line respectively, but its physical dimensions are
considerably more reasonable. The most relevant differences between both responses
are the narrow stopbands periodically registered in the compact case.
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Figure 4.16: Simulated 21S -parameters for the compact PBG microstrip reflector (solid line)
and for the conventional (straight) PBG microstrip reflector (dotted line), both designed with
the same parameters (structure period a = 15.5 mm, hole-radius to period ratio r/a = 0.25,
and number of periods N = 25 (5×5)).

As it can be seen in Fig. 4.17, these spurious stopbands are due to the periodic
meander arrangement itself: the solid line is again the compact PBG reflector
response, and the dotted line is the behavior of its associated conductor strip on its
own with a non-holed ground plane.
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Figure 4.17: Simulated 21S -parameters for the compact PBG microstrip reflector (solid line)
and for its associated conductor strip on its own with a non-holed ground plane (dotted line).
The design parameters are: structure period a = 15.5 mm, hole-radius to period ratio
r/a = 0.25 and number of periods N =5×5.

The compact PBG prototype has been constructed and measured. See Fig. 4.18 for
photographs of both its upper plane strip arrangement and its etched ground plane
showing the 5×5 hole-distribution. The measurement is depicted in Fig. 4.19 in 11S -

and 21S -parameters. A good agreement is obtained between the measurement and the

(conductor-and-dielectric lossless) simulation in Fig. 4.16 or Fig. 4.17.

(a) (b)

Figure 4.18: Photograph of the compact PBG microstrip reflector prototype;(a) ground plane
and (b) upper plane.
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Figure 4.19: Measured  21S -parameter (solid line) and 11S -parameter (dotted line) for the
compact PBG microstrip reflector prototype of Fig. 4.18.

Regarding the radiation and scattering losses that are expected to appear in a meander
configuration, the simulations performed, Fig. 4.20, reveal that they are increased with
respect to the values obtained for the straight PBG reflector case, but still maintained
within low levels.
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Figure 4.20: Simulated scattering and radiation losses (in percent) for the compact PBG
microstrip reflector (solid line) and for the conventional (straight) PBG microstrip reflector
(dotted line).
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aa

Figure 4.21: Schematic representation of the compact PBG microstrip with tapered input and
output holes.

Tapering the hole-radii as in section (4.3), see Fig. 4.21, the sidelobes due to the
spatially-limited PBG periodicity are nearly eliminated helping to achieve very well
flattened passbands, and the attention can be focused on ways to eliminate the ripple
due to the meander periodicity. This ripple could be detrimental for some applications
of the PBG reflectors, specially the peaks placed near the rejected band, as it will be
seen in the example of bandpass filter that will be given in chapter 5, section (5.4). A
Hamming window, similar to a Blackman window with α fixed to –2 in eqn. (4.3), is
applied to the five first (device input) and the five last (device output) circles (due to
the length of the reflector, there is no need to taper the whole structure, but only its
input and output).
Chamfered bends could be employed at the corners of the upper strip with a 50 per
cent mitering to achieve better matched bends and, moreover, lower losses due to
scattering and radiation effects than for the non-chamfered bends [EDW 92], [GAR
94]. Matching weakens the effect of the meander periodic structure, and tends to
flatten the passbands. PBG microstrip meander reflectors with optimally chamfered
bends [GUP 96] have been also studied arriving at not much better results from the
matching or power loss points of view. In Fig. 4.22, the simulated transmission
responses for the conductor strip configurations on their own (non-holed ground
plane) without chamfering (0% mitering), thick solid line, with 50% mitering, dotted
line, and with optimal mitering, thin solid line, show that mitered bends achieve
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better-matched behaviors. All of them are assumed to have the layout associated with
a 5×5 meander PBG reflector as in Fig. 4.21. Optimally chamfered bends have a
chamfering factor [GUP 96], M, defined by eqn. (4.10):

( )hwM /35.1exp6552(%) ⋅−⋅+= (4.10)

so M = 70.15 % in this case. In Fig. 4.23, the power losses due to scattering and
radiation for PBG meander reflectors with windowed hole-radii and without
chamfered bends, thick solid line, 50%-mitered bends, dotted line, and 70.15%-
mitered bends, thin solid line, all of them simulated using the described  5×5 topology,
are shown.

0 1 2 3 4 5 6
2.5

2

1.5

1

0.5

0

Frequency (GHz)

|S
21

| (
dB

)

Figure 4.22: Simulated transmission responses for conductor strip configurations without
ground plane etching and with non-chamfered bends (thick solid line), 50%-mitered bends
(dotted line), or 70.15%-mitered bends (thin solid line). All of them are assumed to have the
layout that would be associated to a 5×5 meander PBG reflector.
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Figure 4.23: Simulated power losses (in percent) due to radiation and scattering in 5×5 PBG
microstrip meander reflectors with Hamming-windowed input and output, varying the
chamfering factor of the bends: non-chamfered bends (thick solid line); 50%-mitered bends
(dotted line); and 70.15%-mitered bends (thin solid line).

As it can be seen in Fig. 4.22 and Fig. 4.23, the mitering is desired for better matching
and less power losses but the amount of chamfering is not of great relevance.
Moreover, any specific mitering amount to be implemented in the circuits is not a
realistic situation in our case because of the tolerance in the fabrication process using a
numerical milling machine, and a general 50%-mitering will be always considered in
these compact PBG reflectors.
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Figure 4.24: Straight unitary period (a); bent unitary period (b). Demonstration of bend
tuning through lengthening (c). a is the PBG periodicity.
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Once tapering and mitering are employed to smooth the influence of the sidelobes due
to the PBG periodicity and the ripple due to the meander periodic structure,
respectively, two more methods can be used to further combating the last one. The
first solution consists in tuning the phase-shift in the bends by lengthening, which
permits to move away the ripple to a more convenient frequency position. It seems
plausible to choose a lengthening, x∆ , like in Fig. 4.24(c), so that the phase behavior
of a straight unitary period, Fig. 4.24(a), approximates that of a bent one, Fig. 4.24(b).
This way, bend tuning would also create a shift in the central frequency of the rejected
band, now closer to that of the straight PBG reflector. Due to the existence of the
bend, the phase sign inversion between the input and output waves in the unitary
period takes place at a different frequency as can be seen in Fig. 4.25. The length of
the stretch, x∆ , is calculated to obtain the same S21 phase in the bent and straight
segments, resulting in mm 4.0=∆x  for this case.
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Figure 4.25: Comparison between the simulated phase shift (in degrees) in the output wave
respect to the input wave in a bent unitary period (thin solid line) and in a straight unitary
period (thick solid line).

In Fig. 4.26, the measured 21S -parameter of a 5×5 meander PBG reflector (see

photograph in Fig. 4.27) is shown in two different situations: using tuned bends, solid
line, and without tuned bends, dotted line. The meander PBG reflector with tuned
bends has a frequency response with an attenuation in the peak present next to the
lowest cutoff frequency of the rejected band, reduced in more than 4 dB in comparison
with that appearing in the non-tuned case. On the other hand, in frequencies near the
highest cutoff frequency of the rejected band the ripple increases. On the contrary, the
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meander PBG reflector without tuned bends shows a much better response in
frequencies near the highest cutoff frequency of the rejected band than the meander
reflector with tuned bends. However, as it has been already pointed out, its response at
lower frequencies is worse.
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Figure 4.26: Relationship between measured transmission responses for a 5×5 meander PBG
reflector with tuned bends (solid line) and for a 5×5 meander PBG reflector with non-tuned
bends (dotted line).

(a) (b)

Figure 4.27: Photograph of the ground plane (a) and upper plane (b) of a 5×5 meander PBG
reflector showing mitering and tapering.
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Since the meander arrangement is the determining fact in the generation of the
frequency ripple, another solution based on altering the meander trace is proposed to
reduce this ripple in the compact PBG reflector response. An isolated bend as in Fig.
4.24(b) introduces power losses, both through radiation and generation of surface
waves. This means that the new configurations should have the minimum amount of
bends as possible. On the other hand, the meander periodicity should be as short as
possible in order to separate greatly the resonant frequencies. This will allow getting a
reflector with flatter passbands at both sides of the rejected band. This way, in the new
configurations, a trade-off must be met between a minimum number of bends and
short meander periods. Moreover, a wave traversing an isolated bend presents an
asymmetric distribution of fields depending on the direction of rotation (either
rightward or leftward). To cancel this asymmetric behavior, the same amount of bends
in each direction (same number of left-angled and right-angled bends) is
recommended.
A prototype with good frequency behavior is achieved within a small circuit layout
area, when 3a-long meander periods are used. This way, it is possible to combine
short meander periods, and hence a ripple far away from the rejected band, along with
a minimum number of bends for low radiation and scattering losses. For example, to
implement a 24-period reflector, the best configuration found consists of 3×8 periods,
each bend turning to the right or to the left depending on the previous bend direction
of rotation (either leftward or rightward, respectively) to compensate for the
asymmetric field distribution (see photograph in Fig. 4.28). Using this novel
configuration, the measured 21S -parameter of the reflector is improved in its flatness

near the rejected band, obtaining almost the same rejection value, rejected bandwidth,
and cutoff sharpness as the 5×5 configuration (see Fig. 4.29). As commented above,

(a) (b)

Figure 4.28: Photograph of the ground plane (a) and upper plane (b) of a 3×8 meander PBG
reflector.
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although each bend introduces some radiation and scattering losses, and hence the
more bends are, the more losses are expected, they are also maintained at low levels in
this trade-off case. It can be seen in Fig. 4.30, where the simulated scattering and
radiation power losses for the 3×8 and 5×5 meander reflectors are shown.
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Figure 4.29: Measured  21S -parameters for the 24-period —3×8— (solid line) and 25-period
—5×5— (dotted line) compact PBG microstrip reflectors
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Figure 4.30: Simulated scattering and radiation power losses given in percent for the 3×8
meander PBG reflector (solid line) and the 5×5 meander PBG reflector (dotted line).
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As it will be seen in chapter 5, section (5.4), promising configurations of bandpass
filters could be obtained using two optimized meander PBG microstrip reflectors, as
the ones studied in this section, placed in cascade and centered at different
frequencies.

4.6. Continuous patterns: single and multiple frequency tuned
PBG microstrip structures

In the previous sections, a discrete pattern of holes etched along the microstrip line
ground plane was always considered. All the PBG microstrip structures proposed in
those sections present a periodic frequency response, as corresponds to conventional
periodic devices. This fact can constitute a problem in some filtering applications.
However, as it will be seen in this section, the replicas of the response at the
harmonics of the design frequency can be eliminated by employing continuous
patterns following a sinusoidal law, inspired by the continuous sinusoidal perturbation
of Fiber Bragg Gratings. Moreover, adding multiple sine-functions, as in
superimposed FBGs [KAS 99], it is possible to perform simultaneously the rejection
of multiple frequencies, each one corresponding to the constituent sine function whose
spatial period is tuned at that frequency. Until now, to reject different frequencies with
PBG structures, various conventional devices of discrete patterns [RUM 98] had to be
cascaded enlarging the longitudinal dimension. Using these new multiple-frequency-
tuned structures of continuous patterns, the different frequencies will find tuned
periodic perturbations and, hence, all of them will be rejected at the same time, as it
will be also proved in this section. This way, PBG microstrip structures are a good
choice to accomplish the rejection of one or several undesired frequencies, providing
broad rejected bands and being also easily integrated with other microstrip
components in the upper plane to further miniaturizing the circuit configuration. These
features surpass short-circuit stubs or chip capacitors usually employed for this
purpose, since the later are narrowband and consume valuable circuit layout area.
It is well known in optics that the reflective frequency response of a periodically
perturbed optical waveguide can be given, in a first estimation, as the Fourier
Transform of its coupling coefficient [PER 96]. This fact has been rigorously
demonstrated for PBG structures in microstrip technology in chapter 3, section (3.5),
where an approximate and an exact expression for the relation between the coupling
coefficient K(z) and the reflection parameter S11(f), in terms of Fourier Transforms,
have been found.
Therefore, it can be inferred that sinusoidal variations of the coupling coefficient in
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PBG microstrip structures should yield to single-frequency-tuned frequency responses
resulting from the Fourier Transformation of those (spatially-limited and usually
windowed) sine functions. Moreover other appropriate periodic variations of the
coupling coefficient could also yield to frequency responses in which the replicas at
the harmonics of the design frequency are constrained within reduced levels. It is
important to recall that as it was seen in chapter 2, section (2.3.2.1.1), the coupling
coefficient of a PBG microstrip device with a periodic pattern etched in the ground
plane is given by eqn. (2.90), and hence can be approximated as proportional to the
derivative of the etched profile. This way, a PBG microstrip structure with a raised-
sine or triangular pattern etched along its ground plane has a frequency response with
a prominent rejected band at the design frequency and with strongly reduced rejection
at the harmonics of it (at least for the first harmonic in the case of triangular pattern).
In the same way, the microstrip line with an etched pattern consisting in the addition
of multiple raised-sine functions is expected to have a response basically composed of
rejected bands at the frequencies corresponding to the sinusoidal functions.

a

r t

a

r t

a

r t

(a)

a

t

a

t

(b)

a

t

a

t

a

t

(c)

Figure 4.31: Photographs (left) and schematics (right) for three different patterns etched in
the ground plane: (a)discrete holes, (b) sinusoidal profile and (c) triangular profile. The
structure period, a, and the maximum amplitude of each etched pattern, t, are shown. For the
first case of holes, t is the circle radius r.
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To carry out a comparison between discrete and continuous profiles, a sinusoidal and a
triangular profile have been chosen with the same parameters as for a conventional
device with holes: N = 9 periods and t/a = 0.25, where a is the spatial period and t is
the maximum amplitude of each etched pattern (see Fig. 4.31). In the discrete pattern
of Fig. 4.31(a), t is the circle radius, r. The main rejected band of the three prototypes
has been centered around 2.5 GHz in order to capture the first harmonic at 5 GHz with
our vector network analyzer (up to 6 GHz). This requires a spatial period a = 23.9 mm
for the Rogers RO3010™ substrate (relative dielectric constant 2.10=rε , and
thickness h = 1.27 mm) with a conductor strip width 2.1=w  mm (corresponding to a
characteristic impedance of Z0 = 50 Ω for a conventional microstrip line). Figures Fig.
4.32 to Fig. 4.34 show the simulated frequency behavior, in transmission and
reflection, for the conventional PBG microstrip structure with a discrete pattern of
holes, and for those ones with sinusoidal and triangular continuous patterns,
respectively. The three prototypes have been also fabricated and the measurements are
shown in Fig. 4.35 to Fig. 4.37. A good agreement between simulations and
experimental results is obtained for all the devices. The main difference between the
two types of structures (continuous and discrete ones) is the level of the rejected band
at the harmonic of the design frequency, which is very high for the discrete PBG
device (around –55 dB). The rejected band at the harmonic is almost suppressed for
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Figure 4.32: Simulated 11S  (thin solid line) and 21S  (thick solid line) parameters for the
discrete PBG microstrip structure with 9 circles etched in the ground plane, with a period a of
23.9 mm and r/a = t/a = 0.25.
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Figure 4.33: Simulated 11S  (thin solid line) and 21S  (thick solid line) parameters for the
PBG microstrip structure with 9 periods of a continuous sinusoidal pattern etched in the
ground plane, a = 23.9 mm and t/a = 0.25.
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Figure 4.34: Simulated 11S  (thin solid line) and 21S  (thick solid line) parameters for the
PBG microstrip structure with 9 periods of a continuous triangular pattern etched in the
ground plane, a = 23.9 mm and t/a = 0.25.
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Figure 4.35: Measured 11S  (thin solid line) and 21S  (thick solid line) parameters for the
discrete PBG microstrip structure with 9 circles etched in the ground plane, with a period a of
23.9 mm and r/a = t/a = 0.25.
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Figure 4.36: Measured 11S  (thin solid line) and 21S  (thick solid line) parameters for the
PBG microstrip structure with 9 periods of a continuous sinusoidal pattern etched in the
ground plane, a = 23.9 mm and t/a = 0.25.
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Figure 4.37: Measured 11S  (thin solid line) and 21S  (thick solid line) parameters for the
PBG microstrip structure with 9 periods of a continuous triangular pattern etched in the
ground plane, a = 23.9 mm and t/a = 0.25.

the sinusoidal structure (it presents a reduction around 50 dB compared to the discrete
case) without significantly altering the main reflected band. Similarly, the triangular
profile reduces the harmonic level in more than 45 dB but also the rejection amplitude
of the main band (from more than –55 dB for the discrete and the sinusoidal patterns,
to –50 dB).

Double- and triple-frequency-tuned PBG microstrip structures will be now designed,
constructed and measured. The double-frequency-tuned PBG microstrip structure is
designed with two added raised-sine functions: the first one has 9 periods of a1 = 23.9
mm, and the second one has 14 periods of a2 = 14.8 mm in order to have the rejected
frequencies around 3 GHz and 4.5 GHz respectively. Both sine functions have
t/a = 0.2. The triple-frequency-tuned PBG microstrip structure is designed with three
added raised-sine functions. The first sine has 9 periods of a1 = 23.9 mm, the second
one has 11 periods of a2 = 19.35 mm, and the third one has 14 periods of a3 = 14.8
mm, to obtain their stopbands centered at 3 GHz, 4 GHz and 5 GHz, respectively. In
all these cases the t/a ratio is fixed to 0.15. Note that the amplitude of each particular
sine has been reduced in order to maintain the total amplitude of the ground plane
perturbation in such values that radiation is kept in low levels. It must be also pointed
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(a)

(b)

Figure 4.38: Photograph of the ground plane of: (a) the double-frequency-tuned PBG
microstrip structure. The pattern is formed by the addition of two Hamming-windowed raised-
sine functions of periods a1 = 23.9 mm, a2 = 14.8 mm and peak amplitude to period ratio
t/a = 0.2; (b) the triple-frequency tuned PBG microstrip structure. The pattern is formed by the
addition of three Hamming-windowed raised-sine functions of periods a1 = 23.9 mm, a2 =
19.35 mm, a3 = 14.8 mm and peak amplitude to period ratio t/a = 0.15.

out that in both designs the patterns resulting from the addition of various sine
functions are Hamming-windowed to achieve a low-rippled response at the passband.
The prototypes have been fabricated by means of a numerical milling machine. See
Fig. 4.38 for photographs of both the double- (a) and the triple-frequency-tuned (b)
PBG microstrip structures. The measurements are shown in Fig. 4.39 and Fig. 4.40,
respectively. Both 11S  and 21S -parameters are given. Two rejected frequency bands

centered at 2.85 GHz and 4.65 GHz are observed in Fig. 4.39 for the double-
frequency-tuned structure. Rejection levels higher than 25 dB are shown for both
stopbands. A flat and low-rippled passband is obtained at frequencies below 2 GHz. In
Fig. 4.40 three rejected frequency bands corresponding to the triple-frequency-tuned
device can be seen at 3 GHz, 3.85 GHz and 5 GHz, respectively. The achieved
rejection levels are approximately 20 dB for the first and second one, and more than
16 dB for the last one. The reduction observed in the bandwidths and rejection levels
compared with the double-frequency-tuned prototype is due to smaller t/a ratios. This
filter has also a flat and low-rippled passband below 2 GHz. Measurements show that
the proposed devices behave as multiple-frequency-tuned band reflectors, avoiding the
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Figure 4.39: Measured 11S  (thin solid line) and 21S  (thick solid line) parameters for the
double-frequency-tuned PBG microstrip structure, as shown in Fig. 4.38(a). The two
Hamming-windowed raised-sine functions have periods a1 = 23.9 mm, a2 = 14.8 mm and peak
amplitude to period ratio t/a = 0.2. The total length of the device is 215.1 mm.

Figure 4.40: Measured 11S  (thin solid line) and 21S  (thick solid line) parameters for the
triple-frequency-tuned PBG microstrip structure, as shown in Fig. 4.38(b). The three
Hamming-windowed raised-sine functions have periods a1 = 23.9 mm, a2 = 19.35 mm, a3 =
14.8 mm and peak amplitude to period ratio t/a = 0.15. The total length of the device is 215.1
mm.
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need of cascading conventional PBG devices. A promising application of these novel
devices can be the suppression of the second and third harmonic in power amplifiers
and oscillators [RAD 98a].

4.7. Final remarks

The contents of this chapter have gone deep into the interpenetration between PBG
microstrip devices and Fiber Bragg Gratings, and the application of some of the
characteristic features of the refractive index modulation in FBGs on the electrical
parameters of PBG microstrip devices has been systematically studied to improve the
microwave device frequency behavior from different points of view. This way, in
section (4.3), tapering the hole radii has led to larger ratios between the main rejected
band and sidelobe rejections, which could be a critical aspect in some filtering
applications, since smaller holes towards the device endpoints contribute to diminish
the impedance mismatch at the boundaries of the structure. Different windowing
functions have been compared from different points of view in several scenarios. The
equivalent number of periods in a tapered structure, Neq, seems to be a useful concept
for the comparison and design of these windowed circuits. Thus, to obtain a device
with the same rejection level and bandwidth as a non-tapered structure but with lower
sidelobes, a tapered device with Neq = N/Aeq periods is needed, being N the number of
periods in the non-tapered case, and Aeq ≤ 1 the area under the tapering profile. The
tapered structure has to be 1/Aeq times longer and, in general, its reflected band has
less steep edges, as the taper is smoother. However, edges can be made sharper either
by increasing a bit more the number of holes, making at the same time narrower the
bandwidth, or by enlarging the holes and, hence, decreasing a little the mainlobe to
sidelobe level. As it was said in this section (4.3), it is not easy to arrive at final
conclusions on the best window shape, number of holes, or maximum hole-radius in
order to determine whether those choices benefit or not the global frequency response,
since all of them modify the frequency features altogether, and, very often, some
trade-off has to be met for each particular application.
Broader bandwidths have been obtained in section (4.4), where the holes etched in the
ground plane are not equidistant but follow a linear function with the position in the
structure. In these chirped structures, the resonant frequency is dependent on the
location and, hence, as a pulse propagates through the device the central frequency
that is reflected back varies. Combining both chirping and tapering, a broad and non-
rippled rejected band between two flat passbands can be obtained. The spatially
varying frequency tuning of chirped structures is also the basic idea on which a device
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in the next chapter is based to perform phase filtering.
The bending feasibility of PBG microstrip reflectors has been used in section (4.5) to
propose long structures in reasonable circuit layout areas. This way, high performance
rejected-band filters with high rejection values and sharp cutoffs can be implemented.
The meander-type arrangement, though, introduces a new periodic structure that is the
source for a new frequency ripple. Different methods have been proposed to have
control on the stopbands associated with this new periodicity: chamfering the corners
of the upper conductor strip achieves better-matched bends that weaken the effect of
the meander periodic structure; tuning the bends by lengthening shifts the ripple peaks
to more convenient frequency positions; or modifying the way in which the holes are
arranged can get flatter passbands at both sides of the main reflected band, especially
when hole tapering is also used. Once two optimized compact (meander) PBG
reflectors are designed, they could be cascaded to obtain bandpass filters with steep
band edges and very high rejection at both sides of the passband, as it will be seen in
one of the examples of the next chapter.
Smooth slots with continuously varying width in microstrip PBG structures have been
presented in section (4.6) to avoid periodic frequency responses, which could be
detrimental for some applications. This way, the use of continuous patterns following
a sinusoidal law can eliminate the replicas of the response at the harmonics of the
design frequency. Moreover, multiple-frequency-tuned structures to perform
simultaneously the rejection of various undesired frequencies can be achieved,
whenever a pattern consisting in the addition of multiple sine-functions, each one
tuned at one of the frequencies to be rejected, is used. This avoids the need to cascade
several PBG reflectors, which increase the circuit layout area. Then, PBG microstrip
structures have been presented as a good choice to accomplish the rejection of one or
several undesired frequencies, providing broad rejected bands and being also easily
integrated with other microstrip components in the upper plane to further
miniaturizing the circuit configuration. These features surpass short-circuit stubs or
chip capacitors usually employed for this purpose, since these are narrowband and
consume valuable circuit layout area.



Chapter 4248



   CHAPTER 5

PRACTICAL APPLICATIONS OF PBG
STRUCTURES IN MICROSTRIP TECHNOLOGY:
EXAMPLES

In this chapter several examples of practical applications of PBG structures in
microstrip technology are proposed and tested. The range of applications considered
is quite wide, including the suppression of spurious bands and harmonics in passive
and active circuits for enhanced out of band behaviour and higher efficiency, the
implementation of enhanced lowpass filers and high rejection bandpass filters, the
implementation of high-Q fully planar resonators, and the design of chirped delay
lines to realize quadratic-phase filters with applications like real-time Fourier
analysis. All of the examples presented show clearly the feasibility of the applications
proposed, and almost all of them include fabricated prototypes and measured data.
However, it is important to note that the range of possible applications for PBG
structures in microstrip technology can be very wide, and here we are going to cover
only some of them to show their potential.
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5.1. Spurious passband suppression in passive devices

The first important application of PBG structures in microstrip technology that we are
going to address is the suppression of spurious passbands in conventional passive
devices. In this section several examples will be proposed and analyzed, showing the
successful operation of this technique.

5.1.1. Lowpass filter and multisection transformer

In this section a conventional microstrip lowpass filter, implemented using the
technique of stepped impedances, and a conventional microstrip multisection
transformer will be designed and simulated. As it is well known, together with the
desired passband, their frequency responses will include spurious passbands that we
are going to eliminate introducing PBG structures. The resulting devices will require
the same circuit layout area as the conventional ones, but will feature an improved
frequency response without the undesired spurious passbands. It is important to note
that in the particular case of the multisection transformer, the consideration of the
second passband as a spurious passband depends really on the application. Here, we
are going to eliminate it assuming that it is detrimental for the targeted application.
However, the purpose of the example is only to show the feasibility of the elimination
of undesired passbands in passive devices.
The procedure to design the conventional stepped impedance lowpass filter and the
multisection transformer is well known and can be found in many microwave books
(see for instance [POZ 98]). Here we are going to apply it to design an order 7
Butterworth lowpass filter, with cutoff frequency of 2.5 GHz, highest characteristic
impedance of 80 Ω and lowest characteristic impedance of 20 Ω. In the same way, a
multisection transformer with four sections, to connect a line with characteristic
impedance of 20 Ω to a line with characteristic impedance of 80 Ω, will be designed
using a binomial distribution. The transformer is designed to obtain optimum

Section (i) Z0i (ΩΩΩΩ) Wi (mm) Li (mm)
1 21.838 4.644 10.56
2 30.884 2.778 10.921
3 51.806 1.063 11.545
4 73.266 0.427 11.983

Table 5.1: Characteristic impedances and physical dimensions for the multisection
transformer (Wi and Li represent the width and length, respectively, of the i-th section).
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Section (i) Z0i (ΩΩΩΩ) Wi (mm) Li (mm)
1 20 5.24 1.187
2 80 0.319 6.003
3 20 5.24 4.806
4 80 0.319 9.63
5 20 5.24 4.806
6 80 0.319 6.003
7 20 5.24 1.187

Table 5.2: Characteristic impedances and physical dimensions for the lowpass filter (Wi and Li
represent the width and length, respectively, of the i-th section).

matching at 2.5 GHz. Both circuits are implemented in a substrate 1.27 mm-thick, and
with relative dielectric constant 2.10=rε . Their physical parameters are given in
Table 5.1 for the multisection transformer, and in Table 5.2 for the lowpass filter.
The circuits are simulated using Agilent Momentum and ADS software. Their
frequency response in transmission (S21 parameter) is given in Fig. 5.1 (red line) for
the lowpass filter, and in Fig. 5.2 (red line) for the multisection transformer.
As it can be seen in Fig. 5.1, the frequency response of the lowpass filter includes a
resonance peak (undesired spurious passband) placed around 5.4 GHz. In order to
suppress it, a PBG structure is introduced in the ground plane of the microstrip line.
The design frequency (frequency of maximum attenuation) of the PBG structure is
governed by its periodicity, a, and can be calculated through the following expression
obtained in chapter 3, section (3.3.3.2):

eff
max a

cf
ε⋅⋅

=
2

(5.1)

For the sake of simplicity the effective dielectric constant of the circuit, εeff , will be
calculated taking the mean value of the effective dielectric constants of the different
circuit sections. Using it, the period necessary to reject the frequencies placed around
5.4 GHz will be a=10.23 mm. Two different prototypes will be designed and
simulated. The first one will have a discrete pattern of circles, with radius to period
ratio r/a=0.488. The second one will employ a continuous pattern following a raised-
sine, with amplitude to period ratio r/a=0.5. A sketch of the prototypes can be seen in
Fig. 5.3, and their simulated transmission responses (S21 parameters) are given in Fig.
5.1 for the design with a discrete pattern of circles (blue line), and for the design with
a continuous raised-sine pattern (pink line). As it can be seen in the frequency
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responses, the resonance peak is completely suppressed in both cases, while a good
fundamental passband is still maintained.
Regarding the conventional multisection transformer, it can be seen in Fig. 5.2 (red
line) that the frequency response includes a spurious passband placed around 7.5 GHz.
In order to suppress it, a PBG structure will be again employed. This time, the period
necessary to reject the frequency band placed around 7.5 GHz will be a=7.2 mm.

Figure 5.1: Simulated frequency responses for the lowpass filter prototypes, including the
conventional filter (red line), the filter with discrete PBG of circles (blue line), and the filter
with continuous PBG of raised-sine pattern (pink line).

Figure 5.2: Simulated frequency responses for the multisection transformer prototypes,
including the conventional multisection transformer (red line), the transformer with discrete
PBG of circles (blue line), and the transformer with continuous PBG of raised-sine pattern
(pink line).

Frequency (GHz)

Frequency (GHz)
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(a)

(b)

Figure 5.3: Sketches of the lowpass filter prototypes with PBG constituted by a discrete
pattern of circles (a), and with PBG constituted by a raised-sine pattern. The red parts
represent the upper plane conductor strip, and the blue parts represent the area etched in the
ground plane.

(a)

(b)

Figure 5.4: Sketches of the multisection transformer prototypes with PBG constituted by a
discrete pattern of circles (a), and with PBG constituted by a raised-sine pattern. The red parts
represent the upper plane conductor strip, and the blue parts represent the area etched in the
ground plane.

Again, two different prototypes will be designed and simulated. The first one will
have a discrete pattern of circles, with radius to period ratio r/a=0.4. The second one
will employ a continuous pattern following a raised-sine, with amplitude to period
ratio r/a=0.4. A sketch of the prototypes can be seen in Fig. 5.4, and their simulated
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transmission responses (S21 parameters) are given in Fig. 5.2 for the design with a
discrete pattern of circles (blue line), and for the design with a continuous raised-sine
pattern (pink line). As in the previous case, the suppression of the spurious passband
achieved is very good, showing that PBG structures in microstrip technology can be
successfully employed to suppress undesired passbands. It is important to remark that
the introduction of the PBG structure in the ground plane has been done without
altering the physical dimensions of the conventional circuit, and without requiring
additional circuit layout area.

5.1.2. ‘Wiggly-line’ bandpass filter

In this section, the usefulness of some of the concepts developed up to now for PBG
microstrip structures is broadened to other classical microstrip circuits. This
broadening will be further extended in section (5.6), where the chirping and tapering
techniques of the electrical parameter modulation will be applied on conventional
microstrip lines with continuously varying strip width. Here, the strip width
modulation of otherwise traditionally designed parallel-coupled-line microstrip
bandpass filters is proposed in order to suppress their spurious passbands. It will be
shown that employing a continuous modulation pattern that follows a sinusoidal law,
as that of chapter 4, section (4.6), for the ground plane, the replica of the response at
the harmonic of the design frequency can be eliminated, thereafter improving strongly
the filter performance, provided that the sinusoidal perturbation period is tuned at the
frequency band to reject. Moreover, if the strip width modulation is tuned
simultaneously at several sine functions, as in multiple-frequency-tuned PBG
microstrip circuits, then several harmonic passbands could be rejected, whenever the
sine periods are appropriately tuned at these frequency-bands. This way, these
coupled-line microstrip bandpass filters with sine-like modulated strip width have
enhanced out-of-band behavior, whilst the main passband is virtually unaltered. This
technique has important advantages over other alternative solutions described below,
since the wiggle of the lines does not force the prototype parameters to be recalculated
and it does not increase the circuit area. Moreover, these filters do not demand special
fabrication processes or anything different to those requirements made for classical
coupled-line microstrip filters.
Parallel coupled transmission line filters in microstrip and stripline technologies are
very common for implementations of bandpass and bandstop filters with required
bandwidths up to a 20% of the central frequency. The design equations for the coupled
line parameters (space-gap between lines, and line widths and lengths) can be found in
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classical microwave books. This way, following a well-defined and systematic
procedure, the required microstrip filter parameters can be easily derived for both
Butterworth and Chebyshev prototypes [POZ 98]. As it has been said above, the
fundamental limitation of these popular and simple techniques to implement filters is
the presence of spurious passbands at the harmonics of the design frequency. To reject
these harmonics, it has been usually necessary to cascade additional filters that can
reject the spurious passbands. This solution, however, increases the filter layout area
and introduces additional insertion losses. Within this context, more compact
microstrip bandpass filters that achieve spurious passband suppression have been
proposed by using a Uniplanar Compact Photonic Bandgap (UC-PBG) structure as a
modified ground plane in a parallel-coupled-line microstrip filter [YAN 99]. The
ground plane structure in [YAN 99] introduces a periodic perturbation that rejects the
spurious passbands and, at the same time, acts as a slow wave structure that reduces
the total physical size of the parallel-coupled-line microstrip filter itself, achieving a
20% of shortening in the reported results. However, this slow wave effect is achieved
strongly in the even mode of the coupled-lines, but very weakly in the odd mode,
increasing substantially the difference between the phase constant of the even and odd
modes [YAN 00]. As it is well known, the difference between these phase constants
produces spurious effects in the frequency response of the bandpass filter [EDW 92],
giving rise in the discussed case to lower attenuation in the rejected band placed
immediately at the right of the desired passband (around 20 dB in the results reported
in [YAN 00]). Moreover, the design of the parallel-coupled-line filter must be
completely recalculated involving the need of new graphs to relate the physical and
electrical parameters of the coupled lines once the chosen UC-PBG structure is
introduced in the ground plane [YAN 00]. This is not the case for the structures
described in this section and the classical design methodology for coupled-line
microstrip filters can be used, obtaining very effective rejection at the harmonic
passband, while the design passband is kept almost unaltered [LOP 01].
Firstly, let’s consider a continuous and periodic perturbation of the cross section of a
generalized waveguide, which results in a corresponding modulation of the wave
impedance in the structure and yields to Bragg reflection in some frequency bands. As
it was already said in section (4.6), this phenomenon has been extensively studied in
optics, where it is well known that the frequency response in reflection of a
periodically perturbed waveguide is given, in a first estimation, as the Fourier
Transform of the mode-coupling coefficient [PER 96]. This fact has been rigorously
demonstrated for PBG structures in microstrip technology in chapter 3, section (3.5),
where an approximate and an exact expression for the relation between the coupling
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coefficient K(z) and the reflection parameter S11(f), in terms of Fourier Transforms,
have been found. It is important to recall that following chapter 2, section (2.3.2.3),
the coupling coefficient of a microstrip device can be approximated as proportional to
the derivative of the characteristic impedance of the microstrip structure. This way,
any smooth and periodic variation of those parameters (the coupling coefficient or the
characteristic impedance) should yield to frequency responses mainly composed of
rejected bands around those frequencies tuned at the spatial perturbation. This was
applied in section (4.6) on PBG microstrip structures with continuous patterns etched
in the ground plane to obtain non-periodic (single- or multiple-tuned) frequency
responses, and it is the basic idea on which the present section relies to reject one or
even several harmonic passbands in coupled-line microstrip filters.
Resonant Bragg mode coupling can be formulated for two generalized modes in an
also generalized waveguide like that in Fig. 5.5, having a cross-section, r(z), perturbed
following a sinusoidal law as in eqn (5.2):

( )φβ +⋅∆⋅+= zrrzr cos)( 10 (5.2)

where r(z) is the waveguide cross-section perturbed along z, being z the propagation
axis; 0r  is the mean value of the cross-section, and 1r  is the amplitude of the
perturbation. β∆  is the difference between the unperturbed phase constants of the two
interacting modes, and it is given here in eqn. (5.3):

Bλ
πβββ 2

21 =−=∆ (5.3)
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Figure 5.5: Generalized waveguide with cross-section, r(z), perturbed following a sinusoidal
law along the propagation axis, z.
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being Bλ  the beat wavelength of the two modes, that is the period of the perturbation
along the z-axis that makes the two modes satisfy the so-called resonance, coherence,
or Bragg relationship. The initial phase φ  in eqn. (5.2) can be adjusted for
convenience. In principle, this includes any waveguide mode, and comprises
backward and forward mode conversions.
The consequence of this perturbation is that for those frequencies at which the
coherence relationship is held, a continuous transfer of energy between the two modes
is guaranteed and the structure acts as a mode converter [KAT 98, THU 84]. Fourier
integral transformation theory yields an additional general conclusion: the minimal
length of the periodic structure for mode conversion must be on the order of the beat
wavelength, Bλ , of the two modes of interest. The coherence relationship in eqn. (5.3)
also guarantees that mode conversion to other unwanted modes that could be coupled
by the waveguide perturbations suffers from a destructive interference.
In the case of two interacting modes, one forward and one backward, the last one is
considered in eqn. (5.3) including a minus sign in its phase constant. This means that
for Bragg reflection in the same but counter-propagating mode, the phase constant
mismatch, β∆ , must be two times the phase constant of the forward mode, as in eqn.
(5.4):

( ) 111 2 ββββ ⋅=−−=∆ (5.4)

A rigorous description of the previous concepts in the frame of the coupled mode
theory (the cross-section method), for general non-uniform waveguides can be found
in [KAT 98] for the case of bound modes. The generalized case of open waveguides
including the continuous spectrum of modes is presented in [SHE 71].
The coupled mode theory can be formulated for the case of parallel-coupled microstrip
lines [UYS 93], [ADA 69] (or PBG microstrip reflectors) with the same properties just
discussed. To design the wiggly line filter, it can be taken advantage of this theory to
calculate the period of the perturbation necessary to reject the first harmonic passband.
Further studies could be also carried out to apply the full coupled mode theory to
obtain the frequency response of the structure and, in this way, to characterize the
harmonic reduction vs. the main passband distortion, for example as a function of the
amplitude of the perturbation. This would help the designer in deciding, among other
parameters, the amount of perturbation to use. However, this is beyond the scope of
this thesis.
In Fig. 5.6 a conventional parallel-coupled-line bandpass filter (a) and a novel
parallel-coupled-wiggly-line bandpass filter (b) for the same passband requirements
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are shown. Following the above considerations the new filter should exhibit, whenever
the perturbation is properly designed, the same passband at the design frequency as the
classical filter, but with an improved out-of-band behavior (harmonic suppression).
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Figure 5.6: (a) Classical parallel-coupled-line bandpass filter showing the typical design
parameters: conductor strip widths, iw , lengths of coupled-line sections, il , and separation
between the coupled lines of each section, is ; (b) Wiggly-line filter resulting after applying the
strip width perturbation to (a).

i wi, mm si, mm li, mm εεεεeff,e εεεεeff,o

1 0.75 0.42 11.98 7.244 5.354

2 1.09 1.70 11.54 7.448 6.086

Table 5.3: Physical parameters for the order-3 Butterworth bandpass filter centered at 2.5
GHz with a 10% fractional bandwidth, being i, the section number; iw , the strip width of the i-
th section; is , the separation between the coupled lines of the i-th section; and il  the length of
the i-th section. The input and output port strip widths are w=1.2 mm (Z0=50Ω). εeff,e and εeff,o
are the effective dielectric constants for the even and odd modes, respectively, in each section.



Practical applications of PBG structures in microstrip technology: examples 259

To test the performance of this novel technique, an order-3 Butterworth bandpass filter
centered at GHz 5.2=df , with a 10% fractional bandwidth (i.e., 250 MHz) will be
designed. The substrate employed is the Rogers RO3010™ (with relative dielectric
constant 2.10=rε , and thickness mm 27.1=h ). The first stage in the design process
of the wiggly line filter is to calculate a conventional parallel-coupled-line microstrip
filter to meet the required specifications. The design equations to obtain the
symmetrical layout parameters are very well known and they can be found in classical
microwave books [POZ 98]. The layout dimensions for our case are given in Table 5.3
referred to the variables shown in Fig. 5.6 and to the effective dielectric constant of
the even ( eeff ,ε ) and odd ( oeff ,ε ) modes in each section. Using these dielectric

constants, the even and odd phase constants are calculated as in eqn. (5.5):

oeg
oeeffoe c

f
,,

,,,
22
λ

πεπβ ⋅=⋅⋅⋅= (5.5)

being eg ,λ , og ,λ  the guided wavelengths of the even and odd modes, respectively, and

c the light velocity in vacuum. Due to the non-ideal situation of having different phase
constants for the even and odd modes, their mean value has to be taken to calculate the
physical length of every section of coupled lines in order to have an electrical length
of °90 ( 4gλ ) at the design frequency.

The second stage in the design process is to calculate the period of the sinusoidal
perturbation to adjust it to reject the harmonic passband at df⋅2  being df  the design
frequency. This case corresponds to backward coupling of the kind of Bragg reflection
in the same but counter-propagating mode, so eqn. (5.4) is applicable and the
coherence relationship reduces to eqn. (5.6):

Bλ
πββ 22 1 =⋅=∆ (5.6)

Once more, due to the non-ideal situation of having different phase constants for the
even and odd modes, their mean value is employed in eqn. (5.6). Neglecting the low
dispersion existent for the fundamental mode in microstrip lines, the phase constant of
the forward mode to be rejected at df⋅2  is simply calculated as two times the phase

constant at the design frequency df :
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( ) ( )
gd

dd ff
λ

πβββ ⋅⋅=⋅≅⋅= 22221 (5.7)

with gdλ  the guided wavelength at the design frequency. Introducing this result in the

coherence relationship of eqn. (5.6), we obtain:

Bgd λ
π

λ
πββ ⋅=⋅⋅=⋅=∆ 2422 1 (5.8)

This means that the beat wavelength Bλ  (the period of the perturbation necessary to
satisfy the coherence relationship and, this way, to reject the mode) is equal to a
quarter of the guided wavelength at the design frequency of the microstrip filter, as
indicated in eqn. (5.9):

4
gd

B
λ

λ = (5.9)

It must be noted that every coupled line section of the filter will have its own mean
phase constant value and therefore its own guided wavelength at the design frequency,

gdλ , but all of them will have the same electrical length of °90  at the design

frequency, corresponding to 4gdλ . This means that in every coupled line section a

complete period of perturbation Bλ  can be exactly accommodated.
The third and last stage in the design process consists in the introduction of the
perturbation in the conventional filter previously designed. This perturbation will be
introduced in an asymmetric way, modulating the outer edge of the coupled lines, but
keeping the inner edge (coupling region) unaltered (constant distance between the
coupled lines and straight shape), as can be seen in Fig. 5.6. This way, the conductor
strip width variation, ( )zwi , in the i-th coupled line section can be expressed as in eqn.

(5.10), where z varies from 0 to the beat wavelength at this coupled line section iB ,λ

(equal to the physical length of the section), and the initial phase is fixed alternatively
to °0  and °180 :
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being ( )zwi  the variable width of the conductor strips of the i-th coupled line section,
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iφ  their initial phases ( °0  or °180 ), iw  the constant widths calculated for the

conventional filter, iB ,λ  the beat wavelength (the period of the sinusoidal perturbation

for the i-th coupled line section), and M the strip-width modulation parameter
expressed in percentage (see Fig. 5.6). The initial phase, φ , is optimized to maximize
the rejection level achieved in the undesired passbands.
A systematic simulation of multiple prototypes with different perturbation amplitudes
(different M) has been done to test the trade-off between the spurious passband
rejection level and the preservation of the shape and matching of the main passband.
Some prototypes have been also fabricated (see photographs in Fig. 5.7).

(a) (b)

Figure 5.7: (a) Photograph of a classical coupled-line order-3 Butterworth bandpass
microstrip filter centered at 2.5 GHz with a 10% fractional bandwidth; (b) Wiggly-line filter
resulting after applying the strip width perturbation with %5.47=M  to (a).

In Fig. 5.8 and Fig. 5.9, the simulated and experimental results, respectively, are
presented for the conventional parallel-coupled-line microstrip filter and two parallel-
coupled-wiggly-line prototypes with perturbations %5.37=M  and 47.5%. A very
good agreement between simulations and experimental data has been obtained. It can
be observed that the bigger the amplitude of the perturbation in the coupled lines, the
higher the rejection level of the spurious passband. At the same time the return losses
and shape of the main passband are maintained very similar in both the unperturbed
and perturbed cases, offering this way a very satisfactory performance. As an example
we can see that with a perturbation %5.47=M , a harmonic rejection of more than 40
dB is achieved in measurement, while the main passband is kept almost unaltered.
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Figure 5.8: Simulated (a) 11S - and (b) 21S -parameters for a classical coupled-line order-3
Butterworth bandpass microstrip filter centered at 2.5 GHz with a 10% fractional bandwidth
(thick solid line); for a wiggly-line filter with %5.37=M  (dashed line); and for a wiggly-line
filter with %5.47=M  (thin solid line).
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Figure 5.9: Measured (a) 11S - and (b) 21S -parameters for a classical coupled-line order-3
Butterworth bandpass microstrip filter centered at 2.5 GHz with a 10% fractional bandwidth
(thick solid line); for a wiggly-line filter with %5.37=M  (dashed line); and for a wiggly-line
filter with %5.47=M  (thin solid line).
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When the wiggle of the sections is tuned at multiple frequencies, suppression of
multiple spurious passbands can be achieved. For instance, the first and second
spurious passbands can be simultaneously suppressed in the classical order-3
Butterworth bandpass filter described above, if the strip width modulation of two
sections is tuned at df⋅2 , and that in the other two sections rejects df⋅3 . In eqn. (5.7)

1β  can be generalized for the harmonic around dfm ⋅ , resulting in:

gd
m

λ
πβ 2

1 ⋅= (5.11)

and hence, the beat wavelength , Bλ , in eqn. (5.9) is:

m
gd

B ⋅
=

2
λ

λ (5.12)

Depending on m, the number of periods that have to be accommodated in each section
is different. To reject df⋅2  (m = 2) and df⋅3  (m = 3), a whole perturbation period
and one and a half perturbation periods, respectively, have to inserted. Figure 5.10 is a
photograph of the order-3 Butterworth bandpass filter where the wiggle of the two
first sections, i=1 and 2, rejects df⋅3 , and the wiggle of the two last ones, i=3 and 4,

rejects df⋅2 . The strip width modulation in each section follows the expression given
in eqn. (5.10), employing the parameters of Table 5.4. Like in the previous example,
the separation between the coupled lines in the i-th section, si, and the i-th section
length, li, are the same as for the classical filter.

Figure 5.10: Order-3 Butterworth bandpass microstrip filter centered at 2.5 GHz with a 10%
fractional bandwidth. The strip widths in the classical filter are modulated so that the first and
second spurious passbands are suppressed.

i = 1 i = 2

i = 3 i = 4
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i wi, mm si, mm li, mm Mi (%) φφφφi (degrees) Periods per
section
li  / λλλλB,i

1 0.75 0.42 11.98 50 90 1.5

2 1.09 1.70 11.54 50 270 1.5

3 1.09 1.70 11.54 50 90 1

4 0.75 0.42 11.98 50 270 1

Table 5.4: Physical parameters for the order-3 Butterworth bandpass filter centered at 2.5
GHz with a 10% fractional bandwidth, with suppression of the first and second spurious
passbands. The input and output port strip widths are 1.2 mm for a 50Ω-impedance.

Figure 5.11(a) shows the simulated transmission parameters for the filter designed
following the classical method (thin solid line) and for the wiggly-line filter of Fig.
5.10 (thick solid line). Figure 5.11(b) is a measurement of the wiggly-line filter
transmission parameter. Note the reduction in the spurious passband levels, below –20
dB both in simulation and measurement for the first and second spurious passbands
when the strip widths are modulated.
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Figure 5.11: (a) Simulated 21S -parameter for a classical coupled-line order-3 Butterworth
bandpass microstrip filter centered at 2.5 GHz with a 10% fractional bandwidth (thin solid
line), and for the wiggly-line filter to reject the first and second spurious passbands (thick solid
line); (b) measured 21S -parameter for the wiggly-line filter.
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Similarly, an order-7 bandpass filter, centered at 2.5 GHz with a 10% fractional
bandwidth, is designed so that the spurious passbands at df⋅2 , df⋅3 , df⋅4  and

df⋅5 , i.e. m = 2, 3, 4, and 5, are strongly suppressed. The physical filter parameters
are now given in Table 5.5, and a photograph of the circuit is shown in Fig. 5.12. The
modulation depth parameter M is now allowed to change from section to section.

i wi, mm si, mm li, mm Mi (%) φφφφi (degrees) Periods per
section
li  / λλλλB,i

1 0.47 0.27 12.34 87.5 270 1

2 1 0.9 11.67 75 90 1

3 1.09 1.77 11.53 50 270 1.5

4 1.10 2.15 11.51 50 90 1.5

5 1.10 2.15 11.51 50 90 2

6 1.09 1.77 11.53 50 270 2

7 1 0.9 11.67 75 90 2.5

8 0.47 0.27 12.34 75 90 2.5

Table 5.5: Physical parameters for the order-7 Butterworth bandpass filter centered at 2.5
GHz with a 10% fractional bandwidth, with suppression of the four first spurious passbands.
The input and output port strip widths are 1.2 mm for a 50Ω-impedance.

Figure 5.12: Order-7 Butterworth bandpass microstrip filter centered at 2.5 GHz with a 10%
fractional bandwidth. The strip widths in the classical filter are modulated so that the four first
spurious passbands are suppressed.
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Figure 5.13: (a) Simulated 21S -parameter for a classical coupled-line order-7 Butterworth
bandpass microstrip filter centered at 2.5 GHz with a 10% fractional bandwidth (thin solid
line), and for the wiggly-line filter to reject the first four spurious passbands (thick solid line);
(b) measured 21S -parameter for the wiggly-line filter.

In Fig. 5.13(a) it can be seen that the simulated levels of the spurious passbands are
below −40 dB for the wiggly-line filter. Experimental results confirm a rejection level
near –30 dB for all the spurious passbands, as can be seen in Fig. 5.13(b). The return
losses, on the other hand, are better than –10 dB in the desired passband, being near 0
dB in the rejected bands.

To finish this section it can be concluded that varying continuously the strip widths of
parallel-coupled-lines following a law of one or some consecutive sine-functions, one
or several harmonic passbands could be rejected. These coupled-line bandpass
microstrip filters with sine-like modulated strip width have enhanced out-of-band
behavior, whilst the main passband is almost unaltered. This technique has important
advantages over other alternative solutions as the use of a UC-PBG structure as a
modified ground plane, since the wiggle of the lines does not force the prototype
parameters to be recalculated and they do not demand special fabrication processes or
anything different to those requirements made for classical coupled-line microstrip
filters.
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5.2. Harmonic suppression in active circuits: active antenna

In this section the performance of an active antenna in microstrip technology is
notably improved by introducing PBG structures produced by etching the ground
plane. The active antenna consists of a microwave oscillator directly feeding a patch
antenna, and the aim of the PBG structure introduced is to suppress the harmonics
present in the radiated power spectrum, increasing at the same time the power level in
the fundamental frequency. As it will be seen, the introduction of the PBG structure is
trouble-free, since it does not require a redesign of the circuit, and the circuit layout
area needed will be maintained.
Up to now, the application of PBG structures for the reduction of harmonic content in
the output signal of active circuits has been customarily limited to the addition in
cascade of the PBG structure at the output of power amplifiers or mixers [RAD 98a],
[HAN 99], [YAN 99a]. Recently, similar structures have been included in the input
matching network of oscillators in order to provide harmonic tuning or a more
selective resonator for phase noise reduction [XUE 01],[LEE 02].
However, the PBG structures employed for all the above mentioned designs are
discrete. As it was demonstrated in chapter 4, section (4.6), and in references [LOP
00], [LAS 00a], these discrete PBG structures present a frequency response that rejects
the desired frequency band and its harmonics. This is a limitation for harmonic
cancellation in active circuits because if the structure is designed to reject the second
harmonic at 02 f⋅ , then the harmonics at 04 f⋅ , 06 f⋅ , etc.. (the even ones) will be

rejected, but the odd ones (the third harmonic at 03 f⋅  and so on) will not be rejected
[XUE 01].
To overcome this drawback, rejecting simultaneously the second and third harmonics,
we propose to introduce a multiple-frequency-tuned PBG microstrip structure etched
in the ground plane, as those proposed in chapter 4, section (4.6). It will be placed
distributed along the whole oscillator circuit, and will follow a continuous pattern
formed by the addition of two raised sines tuned at the frequencies to be rejected. As a
result of it, an increase of the power in the fundamental oscillation and a rejection of
the second harmonic will be observed as in [XUE 01], but this time the third harmonic
will be also strongly reduced and the boost of the fundamental oscillation power will
be larger.
The design of the active antenna in microstrip technology with a microwave oscillator
and a patch antenna as terminating load is the first task to be solved. A medium power
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Si BJT transistor, AT-42035, has been selected, operating at VCE=8 V, and IC=35 mA.
The selected configuration is the common base transistor due to its higher instability.
Following a classical oscillator design linear method [POZ 98], based upon the small
signal S parameters, a stable oscillation can be obtained selecting the load network as
indicated by eqn. (5.13) (see the schematic diagram of Fig. 5.14):

INL
IN

L XXRR −=−=        ,      
3

(5.13)

the first term in eqn. (5.13) accounts for the evolution of the negative resistance in
stable oscillation operation, whereas the second one, fixes the circuit resonance. The
input impedance of the matching network (ZT) can be transferred to the interface
between the transistor and load network as:

T

T
IN S

SSS
Γ⋅−
Γ⋅⋅+=Γ

22

2112
11 1

(5.14)

allowing the determination of the optimal matching network. It is important to recall
that in this case the terminating load is constituted by a patch antenna designed to
operate at the oscillation frequency.
This linear design method provides the resonance frequency value but no information
can be extracted about the fundamental oscillation power level nor the harmonics
levels.
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Figure 5.14: Schematic diagram of transistor, load and matching networks of the oscillator.

In our design, the oscillation frequency has been fixed to 4.5 GHz, and the prototype
has been fabricated in a Rogers RO3010 substrate (dielectric constant 2.10=rε , and
thickness 1.27 mm), using a numerical milling machine. A photograph of the active
antenna prototype is shown in Fig. 5.15.
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Figure 5.15: Prototype of the classical active antenna in microstrip technology designed to
operate at 4.5 GHz.

The active antenna with PBG structure is designed by choosing the continuous PBG
pattern in such a way that, for the fundamental frequency of oscillation, the introduced
PBG perturbation does not change significantly the impedances seen by the transistor
(the fundamental frequency of oscillation is placed at the passband of the PBG).
Conversely, the rejected bands where the PBG provides high reflection are tuned to be
centered around the second and third harmonics of the oscillator, at 9 GHz and 13.5
GHz in our case. The details of the PBG design process are given in chapter 4, section
(4.6), and the periods of the added raised sines necessary in our case are a1=6.2 mm
(to reject the second harmonic) and a2=4.1 mm (to reject the third harmonic). The
amplitude of the perturbation to period ratio used (r1/a1 , r2/a2) is equal to 0.3 for both
raised sines. The designed PBG structure has been simulated using Agilent
Momentum, and its frequency response in transmission (S21 parameter) is given in Fig.
5.16.

Figure 5.16: Simulated frequency response in transmission of the designed multiple-frequency-
tuned PBG structure. The total length of the simulated device is 14 a⋅ .
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As it can be seen, the fundamental frequency of oscillation (4.5 GHz) is placed in the
passband, and hence the PBG structure has very little effect over it. On the other hand,
the second and third harmonics of the oscillator (9 GHz and 13.5 GHz) are placed in
rejected bands, and therefore they will be strongly reflected by the PBG structure.
The multiple-frequency-tuned PBG pattern is etched in the ground plane of the
otherwise classically designed microstrip active antenna, and the layout of the
resulting active antenna with PBG is given in Fig. 5.17.

Figure 5.17: Layout of the active antenna prototype with PBG, designed to operate at 4.5
GHz. The orange parts represent the upper plane conductor strip, and the blue parts represent
the area etched in the ground plane.

Both active antenna prototypes, with and without PBG etched in the ground plane,
have been measured in the near field by means of an Agilent PSA E4440A Spectrum
Analyzer and a rectangular horn antenna optimized for the fundamental oscillation.
The experimental results are presented in Fig. 5.18, for the classical active antenna
(blue line), and for the active antenna with PBG (red line). It can be seen, for the
prototype with PBG, that the second harmonic has been reduced around 20 dB, and
the third harmonic in at least 10 dB, as it was expected from the selective frequency
behaviour of the PBG shown in Fig. 5.16. In addition, rejection levels of about 1 dB
for the fourth harmonic, and 6 dB for the fifth one are achieved, probably due to the
increase of radiation losses. Moreover, an increase of the fundamental oscillation
power of around 3 dB is also achieved, due to the fact that the oscillation conditions
have been changed with the introduction of the PBG.
It is important to note that the frequency dependency of the horn antenna gain is
disregarded in our measurements, but obviously it has no effect in our comparative
discussion.
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Figure 5.18:  Measured power spectrum for the classical active antenna (blue line) and for the
active antenna with PBG (red line). The frequency dependency of the horn antenna gain is
disregarded.

To conclude this section it is important to remark that the benefits of introducing a
PBG  structure etched in the ground plane of a microstrip active antenna in order to
suppress its second and third harmonic, have been experimentally demonstrated. An
increase of the fundamental oscillation level  has been also achieved.
The multiple-frequency-tuned PBG structure can be very useful for simultaneous
rejection of the second and third harmonics in active circuits, and as it has been seen
in the example of this section, it could be very easily introduced without requiring a
redesign of the circuit or an increase in the circuit layout area.

5.3. Enhanced lowpass filter

In this section, stepped-impedance lowpass filters in microstrip technology have been
designed by taking advantage of metal patterning of the front and back-side planes. It
is shown that such an approach with etched holes in the ground plane for the high
impedance sections permits one to alleviate some of the drawbacks associated with
uniplanar impedance modulated filters with high geometric aspect ratios. Prototypes
for the S and C-bands were fabricated by conventional low-cost printed circuit
techniques and show improved performances in terms of rejection and bandwidth.
Novel portable and array-like communication-related applications are highly
demanding of high performance compact filters with ever improved rejection over a
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broad band and low losses. In addition, such filters have to be manufactured in a low-
cost and industrial-qualified technology which is now one of the driving forces for
large volume market applications. This explains why microstrip technology is often
preferred to intrinsically higher performance but also more critical technologies such
as coplanar waveguides on free standing membranes defined by bulk micromachining
[BLO 98], [DUP 99]. However, in practice microstrip technology, which is now very
mature [GUP 96], requires a limited technological effort with printed-type processing
techniques. One of the key figures of merit of microstrip filters is the impedance jump
which is possible to realize on the front side of the circuit by patterning low (wide
strip) and high (narrow strip) impedance sections. This impedance ratio is primarily
defined by the geometrical aspect ratio keeping in mind some limitations associated to
the increase of ohmic metallic losses and fabrication tolerances in narrow strips, and
of radiation losses for large discontinuities. These considerations have been already
recognized in the literature giving rise to new proposals based in majority on bulk
micromachining techniques. By these means it is possible to locally modulate the
permittivity of the substrate with air-like or semiconductor-like media giving rise to
the so-called synthesized substrate technology [DRA 01].
The use of a periodic arrangement of air/high refractive index materials was also
proposed for Photonic Band Gap (PBG) frequency selective devices in microstrip
technology with the drilling of holes in the substrate while the strip width is
maintained uniform. It was also demonstrated that etching the holes in the ground
plane instead of in the substrate provided even better results [QIA 97], [RAD 98].
Here we are going to show that this last approach can be combined with a 2D½
scheme (ground plane etching coordinated with the upper strip width variations) so
that some of the shortcomings in connection notably with the inherent losses of filters
with a large number of sections can be overcome. We are going to demonstrate that
such a two-side patterning technique is a high-performance and a low-cost alternative
solution by fabricating and analyzing several prototypes, with constant periods or
chirped patterns. These structures, designed for the S and C-band operation, exhibit
higher performances in terms of rejection and bandwidth compared to conventional
approaches [AKA 02].
Basically, two approaches can be investigated for the development of compact high-
rejection filters on the modeling side. Both of them are based on a Bragg reflection
concept which is implemented in the first approach via the drilling of holes within the
substrate. The result of this is a large modulation of the refractive index (permittivity)
constant, favorable to a high ratio between the low and high impedance sections.
However, from the technological point of view, such an approach requires the
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development of specific technologies aimed at fabricating the holes. One solution is
the drilling of holes through thin dielectric materials such as SU-8 or BCB films. The
second approach involves the patterning of holes in the ground plane. Such a
technology has demonstrated interesting performances with uniplanar structuring
scheme provided that the holes are large enough with respect to the strip width on the
front side whose value in this previous experimental works was kept constant. The
filters in the present section were designed using Agilent Advanced Design System
(ADS) software and High Frequency Structure Simulator (HFSS). We decided to
design several prototypes: (i) with constant-length impedance sections aimed at the
demonstration of the underlying concepts and (ii) chirped devices with a Tchebyscheff
design [KAR 02]. The electromagnetic simulations of these filters indicated that
higher rejection and wider bandwidth are obtained with respect to their conventional
counterpart even with a limited number of sections. On this basis, several prototypes
were fabricated using a numerical milling machine in a Rogers Duroid 6010 substrate
(1.27 mm-thick, and with dielectric constant of 10.2).
Figure 5.19 is a photograph of the front- and the back-side of a fabricated prototype.
The width of the high impedance sections (with lengths l3 and l5) reinforced by the
presence of holes in the ground plane is 0.4 mm. For the prototypes with constant-
length sections (l2=l3=l4=l5=l6=7.1 mm) the holes have a circular shape and a
diameter of 7 mm, and the width of the low impedance sections (with lengths l2, l4, l6 )
is 8 mm. On the other hand, for the chirped devices with Tchebyscheff design the
holes have rectangular shape and a width of 8 mm, the low impedance sections have a
width of 5 mm and the length of each section is variable as given in Table 5.6.

(a) (b)

Figure 5.19: Photographs of the surface micromachined Tchebyscheff-type filter (a) front side
(b) back side. Dimensions are given in Table 5.6.
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l1 l2 l3 l4 l5 l6 l7

(mm) 15 4.47 5.22 7.25 5.22 4.47 15

Table 5.6: Lengths of the sections for the double side Tchebyscheff filter.

For the RF assessment of the filters and in view of the low frequency pass band,
necessary for the targeted application, simple SMA connectors were soldered on each
side of the circuit. A Vector Network Analysis (VNA) was subsequently swept from
0.5 to 12GHz. Fig. 5.20 shows the frequency dependence of the transmission
coefficient S21 for the prototype with constant-length sections. The frequency cutoff
defined at 3dB bandwidth was around 1.5 GHz whereas the maximum of the rejection
corresponding to the Bragg condition was at 3.6 GHz. At increasing frequencies,
higher-order frequency passbands can be noticed in agreement with the theoretical
analysis of periodic media. However, due to the fact that the structure is finite, instead
of a pure passband, one can note the presence of discrete peaks which are the signature
of the number of sections. This ripple in the passband of the filter with constant-length
sections can be significantly improved by a chirp-like approach as it will be seen later.
The thick line shows the theoretical frequency variations calculated using the HFSS
software. The comparison between measured and calculated data is overall
satisfactory, notably for the characteristic frequencies. In addition, it can be noticed
that the second pass band, around 6 GHz, is relatively narrow, both stop bands
practically overlapping. This result is particularly encouraging since very broadband
rejection filters are of interest in modern telecommunication systems opening the
possibility of an absolute overlapping of gaps via stub-like approach as will be seen
later.
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Figure 5.20: Simulated (thick line) and experimental (thin line) variations versus frequency of
S21 for a double side PBG microstrip filter with 5 constant-length sections.
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Regarding the chirped prototypes, the experimental and simulated results achieved
with the Tchebyscheff-type 5 section filter with holes micromachined in the ground
plane are plotted in Fig. 5.21 and compared to the corresponding conventional
microstrip filter. For comparison, the key figures such as maximum ripple in the pass-
band, cut-off frequency and number of sections were kept equal for the single and
double side designs. Also we intentionally limit the number of sections to 5 for
highlighting the improvements brought by the two side scheme. It can be seen that the
introduction of holes significantly improved: (i) the rejection with 35 dB around 5
GHz for a PBG-like prototype instead of 22 dB for a conventional configuration, (ii) a
dramatic increase of the bandwidth with only one peak of spurious transmission
around 6.2 GHz. In contrast the conventional Tchebyscheff filter shows three peaks of
transmission in the 5.5-7.5 GHz bandwidth which are more difficult to suppress.
In order to demonstrate the compactness offered by the double side topology filter we
have realized a classical Tchebyscheff filter with the same passband ripple and the
same rejection in the middle of the gap than the double sided 5 section filter. This
classical Tchebyscheff filter has 7 sections and its total length is Lclassical=36.27mm
whereas the 5 section double side filter is only Ldouble side=26.6mm. It means, on this
example, that to obtain the same rejection, the length of the classical filter is 36%
longer than the double sided one (the filter that includes a PBG-like structure in its
ground plane).
The origin of this improvement can be understood from the coordinated combination
of the stepped-impedance filter implemented in the conductor strip, and the PBG
perturbation etched in the ground plane.
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Figure 5.21: Measured (thick line) and simulated (thin line) results for a conventional single
side 5-section Tchebyscheff-type filter and the double side one. The double side filter with one
stub (as explained later) is represented by the dotted line (simulation results).
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To have a further insight into the explanation of the resonant transmission at 6 GHz
observed in Fig. 5.21 for the double side design, we first analyze the radiating term via

the frequency dependence of )(1 2
21

2
11 SS +− . A peak was clearly apparent at this

characteristic frequency with around 50% losses. The mapping of the electric field
given in Fig. 5.22 along the filtering cells at the center of the metallic strip shows that
this spurious transmission peak reflects a quasi-stationary resonant regime resulting
from the extra structuring of the ground plane. As shown in the dotted lines in Fig.
5.21, it can be demonstrated however that such a spurious transmission can be
suppressed via an additional stub placed in the input section. With a stub width of 0.24
mm and a stub length of 4.75 mm, the bandwidth at – 20 dB extends over practically 5
GHz.
The concept of modulation of effective medium via surface micromachining of the
ground plane (introduction of a PBG structure by etching the ground plane) is quite
general and could be further extended with the implementation of slow wave periodic
structures instead of devices fabricated from high permittivity substrate which are
often very lossy. Such a periodic arrangement modifies the dispersion relation in a
similar manner to that observed in transmission lines periodically loaded by discrete
devices. From the technological point of view, especially with respect to the bulk
micromachining version with a modification of the local permittivity by forming an air
micro-cavity, it seems that the key advantage is the ease of fabrication. Despite the
progress reported in the definition of air-filled cavity in semiconductor notably for a
Silicon Based technology this kind of approach requires a film to sustain the metallic
lines (polyimide, silicon nitride or silicon dioxide) which could be critical in an
industrial environment.

l1 l2 l3 l4 l5 l6 l7

air

air
substrate

propagation
direction

Figure 5.22: Illustration of the quasi-stationary resonant transmission around 6.2GHz with an
electric field mapping in the center of the metallic strip.
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To conclude this section it is important to remark that several microstrip lowpass
filters have been designed, manufactured and RF characterized. The optimized
prototypes have been obtained by using a two side patterning scheme (the stepped
impedance conductor strip width variation, coordinated with a PBG structure etched in
the ground plane) in order to strengthen the ratio between the impedance variation
which is at the origin of the frequency selectivity. The prototypes under investigation
were designed for S and C-bands application and more specifically for an
electronically steerable antenna. The results obtained show that the frequency
response of the stepped impedance microstrip lowpass filter is greatly improved by the
introduction of the coordinated PBG structure in the ground plane.

5.4. High rejection bandpass filter

In this section we propose a new way to implement bandpass filters in microstrip
technology. It consists on using two Photonic Bandgap (PBG) reflector structures
(stopband filters) in cascade, tuned at different frequencies. In this way a bandpass
with low attenuation is opened between the two rejected frequency bands.
Optimizations of the PBG microstrip structures like those seen in chapter 4 will be
used (tapering, compact arrangements) to obtain higher performance.
Here, specifically, two optimized meander PBG microstrip reflectors, like those
designed in chapter 4, section (4.5), centered at different frequencies, and placed in
cascade will be used. Very long reflectors and reasonable circuit layout area are
compatible using the compact hole-arrangements studied in section (4.5). In this way,
a flat passband can be opened between two deep rejected bands with sharp cutoffs.
The advantage of this type of filter is that optimizing the behavior of each reflector
individually, the filter parameters are highly improved. Specifically, the filter design
parameters depend only on the frequency position of these reflectors (filter passband
bandwidth) or on the individual reflectors (cut-off sharpness, rejection values,
passband attenuation), which can be highly optimized. (Here, for example, using the
meandering and tapering techniques described in chapter 4, section (4.5)) [LOP 99b].
Next, a bandpass filter centered around 4.1 GHz with a 600 MHz -3 dB bandwidth is
designed. The first reflector is designed at 3.2 GHz, which implies a structure period a
= 18.9 mm, and the second one is centered at 5.1 GHz, having a period a = 11.7 mm,
in a Rogers RO3010™ substrate (εr = 10.2, thickness h = 50 mils, dielectric loss
tangent tanδ = 0.0026 and conductor σ = 5.8⋅107 S/m) and with w = 1.2mm-wide
strips for 50Ω–input and output ports. Both reflectors follow a compact arrangement
having 5×5 periods in the first case, and 3×9 periods in the second case. The bends
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have been optimized using chamfering techniques and the reflectors have been also
tapered using a Hamming window to flatten their passbands as explained in section
(4.5). The maximum radius to period ratio is 0.25. The total device dimensions are
15.5 cm × 11 cm. A flat passband can be expected for the 5×5 reflector on the right of
its rejected band, as well as flat passbands for the 3×9 reflector at both sides of its
rejected band (see chapter 4, section (4.5)). This way, the overlapping should yield to
a flat passband between two profound and steep rejected bands. The (conductor-and-
dielectric lossless) simulated results (obtained using Agilent Momentum and ADS) for
this filter, Fig. 5.23, show a very promising flat passband with low attenuation (1 dB)
between two very deep (80 dB and 70 dB of rejection) and very sharp (446 dB/GHz
and 222 dB/GHz) stopbands. This prototype has been fabricated using a numerical
milling machine (see photograph in Fig. 5.24) and measured with an HP 8753D vector
network analyzer. Experimental data are shown in Fig. 5.25. A flat passband with an
attenuation of 7 dB is measured around 4.4 GHz with a bandwidth of 450 MHz. The
rejection values at both sides of the passband are around 52 dB for the lower stopband
and 48 dB for the upper stopband. The cut-off sharpness is 520 dB/GHz and
400 dB/GHz, respectively. The differences found between the simulated and the
experimental data can be attributed to the employment of a medium quality substrate
with significant conductor and dielectric losses that are not taken into account in the
simulations. Actually, to improve these experimental results, a higher quality substrate
could be used.
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Figure 5.23: Simulated 11S -parameter (thin line) and 21S -parameter (thick line) for the
bandpass filter prototype formed by two compact PBG reflectors.
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(a) (b)

Figure 5.24: Photograph of the bandpass filter prototype formed by two cascaded compact
PBG reflectors: upper plane (a) and ground plane (b).
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Figure 5.25: Measured 11S -parameter (thin line) and 21S -parameter (thick line) for the
bandpass filter prototype formed by two compact PBG reflectors.

To conclude this section it is important to highlight that a novel technique to
implement bandpass filters in microstrip technology has been proposed and
successfully tested. It consists on the use of two PBG reflectors in cascade. The
advantage of this type of filter is that design parameters depend only on the frequency
position of its reflectors (filter bandwidth) or on the individual reflectors (cut-off
sharpness, rejection values, passband attenuation), which can be highly optimized.
Tapering techniques and compact arrangements have been used to improve the
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behavior of the filter obtained. The design frequency of our constructed prototype is
“low” in order to measure it with our HP 8753 D network analyzer (up to 6 GHz). The
physical dimensions obtained are large for these frequencies. Anyway, this design
technique can be scaled to higher frequencies, obtaining smaller physical dimensions
and maintaining the high performance.

5.5. High-Q PBG resonator

In this section a high-Q resonator based on a defected PBG microstrip structure will be
designed and tested. To obtain the resonator, an optimized defect will be introduced in
the middle of a uniform PBG structure. Here, the basic PBG microstrip device
proposed in [RAD 98] and presented in chapter 4, section (4.1), (photograph in Fig.
4.1, and measurements in Fig. 4.2) will be used as starting point. It has been
constructed using a numerical milling machine in a Rogers RT/Duroid 6010 substrate,
(dielectric constant εr=10.2 and thickness h=1.27 mm). The period of the PBG
structure has a value a=14.1 mm, producing a wide rejected band centered around
fmax= 4 GHz, following eqn. (3.70) of chapter 3 (repeated as eqn. (5.1) in this chapter):

a
cf
eff

max ⋅⋅
=

ε2
(5.1)

where for the sake of simplicity εeff has been taken as the effective dielectric constant
at 4 GHz of the unperturbed microstrip line (calculated using Agilent Linecalc™ or
formulae in [YAM 79]). The radius of the circle to period ratio is r/a=0.25, and the
number of periods employed is 9. The strip conductor width is constant, w=1.2 mm,
corresponding to a nominal characteristic impedance of 50 Ω.
A plain defect in the PBG structure would consist on the absence of a hole column,
giving rise to a resonator structure formed by two uniform PBG reflectors with 4
period each, united by a 180º length microstrip transmission line. The length of this
transmission line will be optimized to obtain better performance, giving rise to an
“optimized defect”. To achieve it, the response of the 4 period PBG reflector must be
analyzed. A simulation has been realized for the 4 period PBG reflector, using Agilent
Momentum and ADS software. The results are presented in Fig. 5.26. The reflectivity
achieved in the rejected frequency band is adequate to employ this element as reflector
(mirror) in the proposed PBG resonator.
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Figure 5.26: Simulated S11 parameter for the 4 period PBG reflector of the resonator.

As it has been explained, the resonator consists of two PBG reflectors separated by a
50 Ω microstrip transmission line that acts as a resonant cavity (see Fig. 5.27). This
structure behaves in a similar manner as a Bragg Resonator. Therefore the resonant
frequencies are the ones that fall in the reflected frequency band of the PBG reflectors
and simultaneously satisfy the phase condition [BRA 83]:

πβφφ 2)(2)()( 21 ⋅=⋅⋅−+ nLfff resresrefresref (5.15)

being:
φref1: phase of the reflection coefficient of the first reflector
φref2: phase of the reflection coefficient of the second reflector
β : phase constant of the mode of interest in the “resonant cavity”
L : length of the microstrip transmission line that separates the two reflectors
    (length of the “resonant cavity”)
n : an integer number (positive or negative)

Following eqn. (5.15), to design a PBG resonator we have to design and simulate first
the PBG reflectors. That’s why we have done it previously (see Fig. 5.26). The
optimal frequency to design the resonator is the frequency at which the reflection
coefficient in our reflectors is maximum. From the simulation (Fig. 5.26) it can be
seen that this maximum reflection coefficient (maximum S11) is obtained at a
frequency fmax = 4.20 GHz, and the phase of the reflection coefficient (phase of the S11

parameter) at this frequency is φ(S11) = -95.849 º. Therefore to obtain an optimum
design, the operating frequency of our resonator will be 4.20 GHz.
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Figure 5.27: Photograph of the PBG resonator prototype

As we use two identical reflectors, the phase of their reflection coefficients will be
equal, and following the simulated results we will have a value at the design frequency
of: φref1 = φref2 = -95.84º , so from eqn. (5.15), and taking n = −1, it can be obtained
that the phase introduced by the microstrip transmission line must be =⋅ Lβ 84.15º,
that corresponds, for our substrate and design frequency, to a length L=6.25 mm.
The resulting PBG resonator will be formed, consequently, by two identical 4 period
PBG reflectors, designed earlier, connected by a microstrip transmission line w=1.2
mm width (Z0=50 Ω) and L=6.25 mm length (see [LOP 99]). The prototype has been
produced in a substrate with εr =10.2, loss tangent tanδ = 0.0026 and thickness h = 50
mils, by means of a numerical milling machine, and it is presented in Fig. 5.27.
The PBG resonator prototypes have been simulated with Agilent Momentum and ADS
software. The measurements were taken using a HPTM 8753D vector network analyzer.
In first place, the resonator obtained by introducing a plain defect in the PBG
structure, as described previously in this section (180º length resonant cavity line), has
been simulated. The results (Fig. 5.28) show that the performance obtained is not
optimum, because the resonant frequency is notably shifted from the central frequency
of the rejected band.
To place the resonant frequency at the center of the rejected band, the phase matching
expression (eqn. (5.15)) presented before must be taken into account, and therefore the
length of the transmission line must be optimized, as calculated previously. Now, the
simulations and measurements of the optimized resonator (obtained previously by
adjustment of the length of the resonant cavity transmission line) will be presented.
The first simulation with the resonant cavity line optimized (Fig. 5.29) has been
realized in ideal conditions (i.e., without conductor and dielectric losses). The resonant
frequency obtained with this simulation is fres= 4.198 GHz, very close to the design

Reflector 1 Reflector 2

 Transmission
line
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Figure 5.28: Simulated S11 (dashed line) and S21 (solid line) parameters for the PBG resonator
obtained by introducing a plain defect.
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Figure 5.29: Simulated S11 (dashed line) and S21 (solid line) parameters for the PBG resonator
obtained by introducing an optimized defect. (The conductor and dielectric losses are
neglected in this simulation).
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Figure 5.30: Simulated S11 (dashed line) and S21 (solid line) parameters for the PBG resonator
obtained by introducing an optimized defect. (The conductor and dielectric losses are taken
into account in this simulation).
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frequency fdesign= 4.20 GHz, and the value of |S21| at this frequency is –0.15dB also
very close to the ideal value of 0dB.
The second simulation (Fig. 5.30) takes into account the losses in dielectric as well as
in conductor. The obtained resonant frequency is similar to the last case (fres = 4.21
GHz) but the S21 parameter at resonant frequency has a value of –3.50dB, which
reveals that losses have a critical effect in resonator performance. Finally, the Q factor
of the simulated resonators is 138.5 for the ideal case and 118.3 for the simulation
accounting losses.
Regarding to the measurements, two circuits have been fabricated and measured. The
first one is the 4 section PBG reflector of the resonator, and the other one is the
optimized resonator.
The reflector measurements are presented in Fig. 5.31. The maximum reflectivity
obtained is –0.21dB at a frequency of 4.248 GHz. Reasonable agreement is achieved
between simulation and measurement, with a slight frequency shift where maximum
reflectivity is obtained. Discrepancies between simulated and experimental data can be
attributed to the absence of losses in the simulation, and to the moderate precision
mesh used in the Momentum simulations for reasonable computing times.
For the PBG resonator, the measured resonant frequency is fres = 4.42 GHz and the
value of the |S21| parameter at this frequency is –4.85 dB, which can be seen in Fig.
5.32. Again a reasonable agreement is obtained between simulation and measurement,
but there is a greater frequency shift than in the case of the reflector. This can be due
to errors in the estimation of the phase of the reflectors, in our simulation. The value
of the quality factor achieved in this measured case is Q = 129.2, similar to the values
obtained in simulation.
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Figure 5.31: Measured S11 parameter for the 4 period PBG reflector of the resonator.
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Figure 5.32: Measured S11 (dashed line) and S21 (solid line) parameters for the PBG resonator
obtained by introducing an optimized defect.

The performance of the fabricated prototype could be improved if the 4 period PBG
reflector is fabricated and its S11 phase measured, to redesign, using this value, the
resonator.
To conclude this section it is interesting to remark that PBG resonators in microstrip
technology obtained by introducing a defect  in a uniform PBG reflector have been
demonstrated both in simulation and measurement. A design approach has been
proposed and successfully tested. The results demonstrate that it is not sufficient to
produce a plain defect in the structure following [JOA 95] to obtain a good resonator,
and therefore the resonator phase matching is critical in order to obtain good
performance.
The value of the quality factor obtained by the so designed PBG resonator is
promisingly high, considering the totally planar nature of the device. Substrate losses
have demonstrated to be a key point to determine the real performance of the
resonator. It is expected that the use of high quality low loss materials and optimized
design techniques accounting losses in the resonator cavity will greatly improve the
behavior of these structures. One very promising application for them would be the
implementation of high performance planar oscillators.
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5.6. Chirped delay lines

In this section we are going to study the use of PBG structures in microstrip
technology to implement chirped delay lines (CDL), and a design method will be
presented. The first approaches attempted used ground plane etching to implement the
PBG structure in microstrip technology, following continuous patterns. However it
was discovered that for this specific application better control over the circuit response
was achieved implementing the structure by continuously varying the strip conductor
width, so that the coupling location between the quasi-TEM microstrip mode and the
same but counter-propagating mode is linearly distributed in frequency. In this way, as
it was done in section (5.1.2), some of the concepts developed for PBG structures
etched in the ground plane of a microstrip line are extended to the conductor strip
width modulation.
High delay×bandwidth products, over frequency ranges of several gigahertzs, can be
obtained following this procedure. Experimental data confirm the design method.
Real-time Fourier analysis of wideband pulses can be performed using these CDLs.
A Chirped Delay Line (CDL) is a quadratic-phase filter whose frequency response

))(exp()()( 00 ωϕωω ⋅−⋅= jAH , around a central frequency 0ω , is characterized by

uniform insertion losses, )(0 ωA , and a linear group-delay, ωϕϕ dd 00 = , across the
operating frequency-band. Different approaches have been followed to produce CDLs,
mainly as components of compressive receivers [SKO 90]. Some of them are not
simple to fabricate, while other ones do not meet easily the design specifications.
Here, we report on a plain design method for CDLs in microstrip technology with
continuously varying strip width to achieve closely the required frequency features,
that is, the desired frequency range, delay versus frequency slope, and input/output
impedance, and benefiting from fabrication on a mature technology and compatibility
with monolithic circuits. This way, CDLs with very high time-bandwidth products
(defined as the total delay excursion times the bandwidth), over ranges of several
gigahertzs, can be obtained on high-dielectric-constant and thin substrates. Promising
applications as the real-time spectral analysis of wideband signals can be envisaged
using these devices [LAS 01a].
Let’s see the microstrip CDL design. Let the characteristic impedance of a microstrip
line be changed by a continuously changing profile, for example a non-uniform
microstrip line with continuously varying strip width following a linearly frequency-
modulated (chirped) continuous periodic function. Then, the phase-matching condition
for resonant Bragg coupling between the quasi- TEM microstrip mode and the same
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but counter-propagating mode is ideally satisfied at only one position for each spectral
frequency, from which it will be back-reflected. In fact, if the perturbation is linearly
chirped then we will see that the mode-coupling location varies linearly in frequency
and, as result, the reflection time is also a linear function of frequency.
Consider )(0 zZ  as the perturbed microstrip characteristic impedance given by

)()( )(0 zfzZ zζ= , where )(zζ  represents the modulation of the local spatial angular

frequency of a continuous periodic function )(zf , and z is the axis along which the
microstrip CDL is extended from 2/Lz −=  to 2/Lz = , being L the device total
length. We will show next that if zCz ⋅⋅+= 2)( 0ζζ , then )(0 zZ  yields a mode-
coupling location linearly distributed in spectral frequency. The parameter C (m-2)
fixes the variation rate of the local spatial frequency and )0(0 == zζζ  is the value of
the local spatial frequency at the device central point. The local spatial perturbation
period T(z) is related to the previous parameter )(zζ (local spatial angular frequency)

as )(2)( zzT ζπ= .
As it was seen in section (5.1.2), the Bragg condition states that the perturbation
period for an angular frequency ω  to be coupled to the counter-propagating quasi-
TEM mode in a microstrip line can be estimated as 2/gλ  (π-rad phase-shift), being

gλ  the guided wavelength at this frequency in the unperturbed (constant strip width)

microstrip line. This condition was also seen from the point of view of the frequency
of maximum reflectivity produced by a periodic perturbation of period T as:

T
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Then, the angular frequency locally reflected at z, )(zlω , is found as:
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if an impedance modulation around 50Ω is considered. 
Ω50effε  is the effective

dielectric constant for a 50Ω-line at low-frequency regime (a quasi-static
approximation is used), c is the speed of light in vacuum, and 00 2 ζπ=a  is the local
spatial period at 0=z , which fixes the central operation frequency 0ω . Eqn. (5.16)
anticipates that a linear spatial frequency modulation of the impedance provides a
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linear group delay in a bandwidth 
Ω

⋅⋅=−=−==∆
50

)2/()2/( effll LCcLzLz εωωω ,

around a central frequency 


 ⋅⋅=
Ω5000 effac επω , and with a delay slope

)(2
500 ωεϕ ∆⋅⋅=
Ω

cLeff , in units of s2/rad, whose sign is the same as the sign of C.

The delay slope is derived by taking into account that 0ϕω ⋅∆  is the time-delay

difference between the arrivals at the input of the extreme frequencies of the
bandwidth, )2/( Lzl −=ω  and )2/( Lzl =ω , the former reflected at the input and the
latter at the output of the device, respectively (path difference = 2·CDL length). Once
the device length, L, and the variation rate of the local spatial frequency, C, in )()( zf zζ

have been fixed, we can straightforwardly test these design relationships by obtaining
the single-mode loss-less behavior of the CDL, which provides valid information on
the approximated operation frequency range and delay characteristic, by means of the
approximated expression for the coupling coefficient obtained in chapter 2, section
(2.3.2.3), from the characteristic impedance:

dz
dZ

Z
zK 0

0

1
2
1)( ⋅⋅= (5.17)

and solving the simplified system of coupled mode equations (chapter 3, section
(3.2)), valid for single mode operation. In this way, the 11S  parameter at the input port,

2/Lz −= , is easily obtained assuming that the output port at 2/Lz =  is matched.
The function )(zf  is chosen to minimize the frequency interference of the spurious
reflected bands, at the harmonics of 0ω , on the main band since low-rippled response
is a requirement for a CDL. If ( )( )02sinexp50)( azzf ⋅⋅= π  for a non-chirped

impedance modulation (i.e., )()(0 zfzZ = ) around 50Ω with a spatial periodicity 0a ,
then )2/,(11 LzS −=ω  can be analytically shown, using eqn. (5.17) and the simplified
system of coupled mode equations, to be a single-frequency-tuned response mainly
confined in the nearness of the central frequency 0ω , provided that 0aL >>  for high
time-bandwidth products. This happens because the resulting coupling coefficient will
be tuned at a single frequency, and hence will produce a single rejected band as it was
seen in chapter 3. Any other election of the periodic function )(zf  would have led to
frequency responses with reflected bands at ,...3  ,2 00 ωω ⋅⋅ , although, if )(zf  is
continuous and smooth, these replicas would be likely constrained to reduced levels.
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Therefore, the impedance modulation finally implemented is

       
( )( ) ( )( )

( )( )4/2)(exp50

)()(exp50)()(exp50)(
22

0

0

LCzCzasinzWA

dzzsinzWAzsinzWAzZ spatial

⋅−⋅+⋅⋅⋅⋅=

=⋅⋅⋅⋅=⋅⋅⋅= ∫
π

ζφ
(5.18)

since the spatial phase )(zspatialφ  relates to the spatial angular frequency )(zζ through:

∫ ⋅= dzzzspatial )()( ζφ

where in eqn. (5.18) A (non-dimensional) is an amplitude factor and the integration
constant is fixed to 4/2LC ⋅−  for 50Ω-input and output ports when L is a multiple of

0a . )(zW  is a windowing function for smoother input and output impedance
transitions to avoid partially reflections from the extremes of the structure that give
rise to different long-path Fabry-Perot like resonances, which cause undesirable rapid
ripple to appear around the mean values in the magnitude and group-delay vs.
frequency patterns degrading the CDL performance. Furthermore, both negative
values of C, which imply upper (higher loss) frequencies to be reflected in first place,
and asymmetric )(zW , which compensates for the longer lossy round trips of lower

frequencies (conductor losses, ω∝ , are much more significant than dielectric losses,
ω∝ , for most microstrip substrates), can be proved to lead to better equalized

reflection losses across the operation band if full-wave electromagnetic simulations
are performed (in our case using the commercially available Agilent Momentum
software). Parasitic effects in microstrip like radiation losses and surface-wave
propagation are maintained within negligible values due to the smooth rounded strip
shape.
Now, we are going to present an example of microstrip CDL with linearly chirped
impedance modulation around 50Ω using a medium quality Rogers RO3010 substrate
( 2.10=rε , and thickness mm 27.1=h ). The design frequency characteristics are:

operation around 9 GHz, 12 GHz-bandwidth, and −0.5 ns/GHz ( /radns 08.0 2
0 −≅ϕ )-

delay slope. The next parameter set fulfills the response:  4.60 =a mm, 050 aL ⋅= , and
-2m 2080−=C . The asymmetric tapering function )(zW  is gaussian:

( )( )( )2/44exp)( LLzzW −⋅−=

and 4.0=A .
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(a)

(b)

Figure 5.33: Photograph of the microstrip quadratic-phase filter designed and constructed in
this section (a), and equivalent implementation as PBG structure (b).

Once all the parameters in eqn. (5.18) have been fixed, we implement the impedance
variation as a strip width modulation (see [POZ 98], for instance). As the impedance
varies between 35 and 75Ω, the strip width changes between 0.5 and 2.5 mm
approximately. It is interesting to note that an equivalent device could be implemented
etching a perturbation in the ground plane, but its performance would be slightly
worse. In Fig. 5.33 a photograph of the constructed prototype is given, together with
an equivalent implementation as PBG structure. In Fig. 5.34 the 11S  parameter
obtained solving the simplified system of coupled mode equations (chapter 3, section
(3.2)) using the coupling coefficient of eqn. (5.17) (loss-less and single-mode
approximation) (dotted line) is compared with the simulation employing the
commercial software (thin solid line) and the measurement of the prototype (thick
solid line), showing that the CDL provides the required features of flat magnitude and
linear group delay. The reflection losses are maintained around -3 dB over the entire
bandwidth (dielectric loss tangent, 0026.0tan =δ , and metal conductivity

S/m 108.5 7⋅=σ ). We decided to use an appropriate time-gating to subtract the
mismatch effects of the connectors in the presented measurement because these effects
are critical in broadband operation and, in the intended integrated solution, the input
and output sections will be also microstrip lines.
Figure 5.35 shows the average internal power distribution, as relative brightness
levels, for every frequency in the operation bandwidth as a function of the position in
the CDL, 22 |)(||)(| zaza −+ + , being ±a  the complex amplitudes of the quasi-TEM
mode traveling in the forward (+) and backward (-) z-direction, as it was seen in
chapter 3. A coupling-location linearly distributed in frequency is clearly observed as
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Figure 5.34: 11S -parameter of the microstrip CDL (magnitude, left axis; and group delay,
right axis) obtained by coupled mode theory approximation (loss-less) (dotted line),
commercial software (thin solid line) and measurement (thick solid line).

Figure 5.35: Average internal power as a function of frequency and position in the CDL using
the coupled mode theory approximation. Top: CDL strip pattern (not to scale). Left: group-
delay

well as higher frequencies being reflected back earlier than lower ones (negative C).
This design method, shown here within the constrains of our equipment capabilities,
can be applied on higher-dielectric-constant- and thinner substrates to obtain
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microstrip CDLs some centimeters long with time bandwidth products above several
hundreds over very wide frequency ranges. The advantages of these devices are
easiness of design, fabrication on a mature technology, and compatibility with
monolithic circuits.
Interesting applications as real-time spectral analysis of wideband signals can be
envisaged using these devices [LAS 01]. The plot at the bottom of Fig. 5.36 shows an
ideal input rectangular pulse 0.6 ns-wide (dotted line), placed within the CDL
bandwidth, together with the output pulse reflected from the CDL (solid line),
calculated through a numerical simulation using the measured frequency response,
both as normalized average power signals (then, only the envelopes of both
microwave pulses, traveling on a carrier frequency at 8 GHz, are depicted). The
normalized input and output energy spectral densities are the dotted and solid lines,
respectively, at the upper left plot. The larger plot of Fig. 5.36 is a joint time-
frequency representation of the energy distributions for both signals providing
information of the temporal location of the spectral components. A Wigner-Ville
distribution [QIA 96] was used in this case. A strong process of linear realignment in
time is suffered by the input signal frequencies and, under the assumption of a high
delay slope in the signal bandwidth, which is the case for these microstrip CDLs, a
single dominant frequency exists at a given instant of time. This way, the output

Figure 5.36: Bottom: input signal to the CDL (dotted line) and simulation of the output
reflected signal (solid line), given in normalized average power (arbitrary units). Top: joint
time-frequency representation for the input and output signals (on the center), and normalized
input (dotted line) and output (solid line) energy spectral densities (on the left).

input
signal

output
signal
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closely reproduces the shape of the energy spectral density, 22 /)(sin xx , of the input
signal on a time axis related to frequency by a linear axis-change given by the CDL
delay slope.
To conclude this section we want to remark that it has been proposed an easy
procedure to design microstrip CDLs with high time-bandwidth products, over
frequency ranges of several gigahertzs, consisting in a continuously varying strip
width so that the coupling location between the quasi-TEM microstrip mode and the
same but counter-propagating mode is linearly distributed in frequency. Measurements
have been provided verifying the design method. Real-time Fourier processing of
wideband signals has been pointed out as a promising possible application for these
devices.
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   CHAPTER 6

CONCLUSIONS AND FUTURE WORK-LINES
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The main purpose of this thesis has been the study of PBG structures in microstrip
technology, from the point of view of their analysis and design, and of their practical
applications. To this end, the coupled mode theory has been rigorously formulated for
them, providing very useful insight into their operation, and allowing their analysis
and design through analytical solutions valid for uniform PBG devices, and fast
numerical solutions for the general problem. Additionally, design techniques to
improve the performance of PBG structures in microstrip technology have been
proposed and successfully tested. And finally, a wide range of very promising
applications for these structures, including many practical examples, have been
proposed and demonstrated. The goals of the thesis have been successfully covered.
The main contributions of this work, together with the open work-lines, are the
following:

• In chapter 2, the coupled mode theory has been rigorously applied to analyze open
waveguides that can include metals, and in particular perturbed ground planes and
strip conductors, covering all of our cases of interest. To formulate an accurate
coupled mode theory suitable for microwave and millimeter wave devices, the
cross-section method has been employed. The system of coupled mode equations
obtained includes the discrete and the continuous spectrum modes, and takes into
account all the phenomena (including the radiation), with no approximation
involved. However, in this work, this system of coupled mode equations has been
used only as an intermediate step to obtain the simplified system, valid for PBG
microstrip devices, that will be actually solved. An open work-line would be to
include in the system of coupled mode equations to be solved, the continuous
spectrum modes. In this way, the radiation would be taken into account and the
results would be more accurate. Moreover, the study of structures designed to
radiate would be also possible. In the same way, it would be very interesting to
explore the introduction of leaky modes, as a rephrasing of part of the continuous
spectrum modes. Using them, it would be possible to explore the possibility of
designing periodic mode converters, to transfer the energy from the fundamental
microstrip mode to a leaky mode, in order to radiate it.

• In chapter 3, the system of coupled mode equations that characterizes the PBG
structure in microstrip technology is notably simplified by realizing several
reasonable approximations that will eventually lead to a simplified system of
coupled mode equations that features analytical solutions for the case of uniform
PBG structures. In this way, a comprehensive set of analytical expressions for the



Conclusions and future work-lines 297

most important design parameters of PBG microstrip structures is furnished. The
set of analytical expressions available cover a wide scope, ranging from the S
parameters to the Bloch wave analysis, and constitutes a very useful and unique
set of tools for the analysis and design of these PBG devices.
An also very important contribution of the coupled mode analysis of these devices
is the fruitful link that it establishes between them and the Fiber Bragg Gratings
(FBGs) in the optical regime. As a consequence, several ideas and techniques that
are widely employed in the field of FBGs, can be transposed to the novel and
emergent field of PBG structures for microstrip lines, to improve their
performance and the range of applications.

• In chapter 4, several techniques to improve the performance of PBG structures for
microstrip lines are introduced. The results obtained are very satisfactory.
Specially promising are the novel continuous patterns proposed, that give rise to
non-periodic frequency responses, as well as to multiple frequency tuned PBG
devices. The origin of this novel patterns is in the relation that can be established,
in terms of Fourier Transforms, between the coupling coefficient K(z) produced
by a PBG structure, and its reflection parameter S11(f). It is important to note,
however, that to design these novel patterns only the approximate relation has
been used. As it is seen in chapter 3, an exact relation between both parameters
has been also obtained, and using it more sophisticated and accurate designs could
be expected. The use of the exact relation between K(z) and S11(f) to design PBG
structures with a specific frequency response is a very interesting and promising
work-line that  should be addressed in the near future.

• In chapter 5, several examples of practical applications of PBG structures in
microstrip technology are proposed and tested. All the designs studied show high
potential. Specially interesting are the applications aimed to the suppression of
spurious bands and harmonics in passive and active circuits for enhanced out of
band behaviour and higher efficiency. An important open work-line is to continue
exploring the benefits of using PBG structures with this aim, in conventional
passive and active circuits. Other very interesting application proposed is the
implementation of high-Q fully planar resonators. It is very difficult to obtain
planar high-Q resonators in microstrip technology, and actually, sometimes, the
introduction of dielectric resonators is necessary. PBG resonators could be a very
interesting alternative. In fact, they constitute an also promising open work-line.
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Electrically tunable PBG resonators have been already proposed, and it could be
expected that the use of high quality low loss materials and optimized design
techniques accounting for losses in the resonator cavity will greatly improve the
behavior of these PBG devices. Additionally, cascaded PBG resonators could be
employed for the synthesis of PBG bandpass filters.
Other important application studied is the design of chirped delay lines to realize
quadratic-phase filters with applications like real-time Fourier analysis. A wealth
of research work can be done in this area that takes advantage of the phase
response of PBG structures.
To finish this chapter it is important remark that a very interesting open work-line,
that is already being exploited by our group, is the introduction of PBG structures
in other planar microwave and millimeter wave technologies. Specially promising
are the applications in coplanar waveguide technology. There, we have proposed
the use of PBG structures to eliminate the spurious passbands that appear in
coplanar waveguides periodically loaded with reactive elements and employed to
implement low-pass filters, phase shifters or frequency multipliers [FER 02]. This
work is being done in cooperation with the Electronic Engineering Department of
the Universitat Autònoma de Barcelona, and the results obtained are really
encouraging, confirming that in the future the application of PBG structures to
planar microwave technologies will in no way be limited to the microstrip
technology. Fortunately, most of the results and techniques of this thesis, although
developed for PBG structures in microstrip technology, can be very easily
translated to other planar circuit technologies.
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   APPENDIX A

EQUIVALENT VOLTAGE AND CURRENT MODEL
FOR A WAVEGUIDE MODE AND DERIVATION
FROM IT OF THE COUPLED MODE EQUATIONS

A.1. Equivalent voltage and current for a waveguide mode

As it is well known, if a mode is TEM, its associated voltage V and current I can be
defined in a unique way. In that case the definition of the characteristic impedance of
the mode, Z0, is also unique. If, on the other hand, the mode is non-TEM, there are
many different ways to define equivalent voltage, current and characteristic
impedance for it, since these quantities only have full physical meaning for TEM
modes, and should be seen only as “equivalent” parameters for non-TEM modes.
However, in order to obtain the most useful equivalent parameters for non-TEM
modes, it is desirable to satisfy the following considerations [POZ 98]:

a) Voltage and current are only defined for a particular waveguide mode, and are
defined so that the voltage is proportional to the transverse electric field, and the
current is proportional to the transverse magnetic field.

b) In order to be used in a manner similar to voltages and currents of circuit theory,
the equivalent voltages and currents should be defined so that their product gives
the power flow of the mode.

c) The ratio of the voltage to the current for a single forward travelling wave should
be equal to the characteristic impedance of the mode. This impedance may be
chosen arbitrarily. However, as it is commented in section (2.3.2.3), the best
election for Z0 is the one that achieves the best characterization of the propagation
of the mode along the nonuniform waveguide, in terms of reflection produced by
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the discontinuities that can exist along the waveguide, and that can be calculated
using the circuit theory.

As it can be seen in chapter 2, section (2.2), the total transversal electric field, and the
total transversal magnetic field, can be expanded as a function of the complex
amplitudes of the mode in the following way:
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It is important to note that following a) we are working only with one discrete
spectrum mode (and its forward and backward travelling waves). Taking into account
the relation existent between the fields of the forward and backward travelling waves
associated to the same mode, eqns. (2.14), the expressions for the transversal fields
can be rewritten as:
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On the other hand, the total equivalent voltage and current for the mode can be
separated into the part associated to the forward travelling wave, and the part
associated to the backward travelling wave:
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Defining the voltage and the current (following a)) in such a way that the voltage is
proportional to the transverse electric field, and the current is proportional to the
transverse magnetic field, we have:
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and combining eqns. (A.2) and (A.3) it is obtained:
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On the other hand, in order to satisfy b), the power flow carried by the mode and
calculated using the transversal electric and magnetic fields must be the same to that
calculated using the equivalent voltage and current. Let’s see.
We are going to limit our study to propagating modes (cut-off or evanescent modes
will not be taken into account in this study). Following section (2.2.2.3) it can be seen
that the complex power flow carried by a forward propagating mode (of the discrete
spectrum) will be:
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where the convention for the mode fields (valid for propagating modes) given by eqn.
(2.12), and the normalization for the fields of the discrete spectrum modes (eqn.
(2.25a)) are used.
In the same way, the complex power flow for a forward propagating mode calculated
using the equivalent voltage and current will have the following form:
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Therefore, combining eqns. (A.5) and (A.6), the following expression must be
satisfied:
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and introducing eqns. (A.4) the expression can be rewritten as:
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On the other hand, following consideration c), the characteristic impedance, Z0, will
satisfy:

2

1
0

2

1
0 C

CZ
aC
aC

I
VZ =⇒

⋅
⋅== +

+

+

+

(A.8)

where eqns. (A.4) have been used.
Finally, combining eqns. (A.7) and (A.8), the values for C1 and C2 are readily
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calculated:
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and introducing them in eqns. (A.4) the sought equivalent voltage and current for a
waveguide mode are obtained as a function of the complex amplitudes of the mode:
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where N is the normalization of the mode and satisfies:

−+ == NNN (A.10)

since N+ is real and positive, due to the convention adopted for the mode fields (valid
for propagating modes) given by eqn. (2.12),  and N+ and N− satisfy eqn. (2.26a).
It is important to recall that the expressions for the equivalent voltage and current
obtained, eqns. (A.9), are valid for a discrete spectrum mode that is in propagation.
The cut-off modes and the continuous spectrum modes have not been considered in
our deduction.

It is interesting to note that if the relation between the fields of the forward and
backward travelling waves associated to the same i mode were:
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instead of the one used in [KAT 98] and in this work (eqn. (2.14)), then the relation
between the complex amplitudes of the mode a+, a−, and the equivalent voltage and
current would be slightly different:
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A.2. Derivation of the coupled mode equations from the equivalent
voltage and current model

As it is well known from the circuit theory, voltage and current obey the following
equations in a transmission line (or equivalently in a waveguide if equivalent
parameters are being used):

VY
dz
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(A.13)

where Z ′  is the (equivalent) series impedance per unit length of the waveguide, and
Y ′  is the (equivalent) shunt admittance per unit length of the waveguide. The phase
constant β and the characteristic impedance Z0 of the mode relate to these primary
parameters as follows:
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For a nonuniform waveguide the phase constant β and the characteristic impedance Z0

of the mode change with the axial distance z, and hence its equivalent quantities Z ′
and Y ′  will change also.
In order to obtain the coupled mode equations and the coupling coefficient from the
voltage and current model for a discrete spectrum mode in propagation, the expression
for the equivalent voltage and equivalent current as a function of the complex
amplitudes of the mode, eqns. (A.9), will be substituted in eqns. (A.13). Since the
equivalent voltage and current are defined for a single mode, the coupled mode
equations and the coupling coefficient obtained will correspond to the case of single
mode operation. This case has been rigorously studied in chapter 3,  section (3.2).
From eqns. (A.9), the total equivalent voltage and current will have the following
expressions:
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Substituting the expressions for the voltage and the current in the first equation of
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eqns. (A.13), we have:
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and assuming that the normalization of the mode N does not vary with z, the last
equality can be rewritten as:
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reorganizing the expression and using eqns. (A.14) it follows:
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In the same way, substituting the expressions for the equivalent voltage and current of
eqns. (A.15) into the second equation of eqns. (A.13), assuming that the normalization
N does not vary with z, and using eqns. (A.14) it is obtained:

( ) ( )−+
−+

−+ −⋅⋅−=+++⋅⋅⋅− aaj
dz

da
dz

daaa
dz

dZ
Z

β0

0

1
2
1 (A.17)

The final step to obtain the coupled mode equations consist of adding and subtracting
the last two eqns. (A.16) and (A.17).
Adding eqns. (A.16) and (A.17) it is obtained:
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and subtracting them:
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Reorganizing the last two equations obtained they can be rewritten as:

+−
−

−+
+

⋅⋅⋅+⋅⋅=

⋅⋅⋅+⋅⋅−=

a
dz

dZ
Z

aj
dz

da

a
dz

dZ
Z

aj
dz

da

0

0

0

0

1
2
1

1
2
1

β

β
(A.18)



Equivalent V-I model and derivation of the coupled mode equations 317

Comparing the resulting system of equations (eqns. (A.18)), with the simplified
system of coupled mode equations obtained in chapter 3, section (3.2), and valid for
single mode operation (eqns. (3.16), (3.17)), it can be seen that they are identical if the
coupling coefficient K is calculated as:
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Let’s recall that following eqn. (3.13):

+−−+ == CCK

and therefore the coupling coefficients obtained from the voltage and current model
have the following value:
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It is important to recall that to deduce the coupled mode equations and the coupling
coefficients from the voltage and current model, several assumptions have been made:
single mode operation has been assumed, the normalization of the mode, N, is
assumed to be constant with z, and it has been assumed that the mode of interest is a
discrete spectrum mode that is in propagation along the nonuniform waveguide.

As it can be seen, if the characteristic impedance of the mode, Z0, characterizes
adequately the propagation of the mode along the nonuniform waveguide in terms of
reflection produced by the variations of cross section, then the coupling coefficient

+−−+ == CCK  can be approximated as indicated by eqn. (A.19) (provided that the
assumptions detailed in the previous paragraph hold).
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   APPENDIX B

PROPERTIES OF THE SCATTERING MATRIX

B.1. Definitions

A two port network is represented in the following generic form for the calculation of
its S-parameters or scattering matrix [POZ 98]:

being Z0n the characteristic impedance of the n port and

n

n
n Z
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n Z
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From the definitions (B.1) it can be easily seen that the wave amplitudes an , bn are
valid to establish physically meaningful power relations, because the power flow is
proportional to the square of their modulus.

The scattering matrix of a two port network relates the power and phase of the forward
and backward travelling waves at the input and output ports of the network, in terms
of the wave amplitudes an , bn , in the following way:

Z01 Z02

1 2a1

V1
+

a2

V2
+

V1
−

b1

V2
−

b2



Appendix B320









⋅








=









2

1

2221

1211

2

1

a
a

SS
SS

b
b

(B.2)

fully characterizing the response of a linear (or linearized) time invariant network for
single mode operation.

B.2. Reciprocal and lossless networks

If a network is reciprocal (passive and without anisotropic elements, i.e. no active
devices, ferrites or plasmas) then the following relation will be satisfied [COL 92]:

[ ] [ ]tSS  = (B.3)
that is

jiij SS = (B.4)

If a network is reciprocal and lossless then it will be satisfied that [COL 92]:

[ ] [ ] [ ]n
t ISS =⋅ *  (B.5)

Centering our study in a two port network we have from the previous eqn. (B.5):
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and since from eqn. (B.4):

2112 SS = (B.7)

we will also have:

 2211 SS = (B.8)

From eqn. (B.5) it can be also seen that:
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If we take:
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then eqn. (B.9) gives:
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( ) ( ) 01 212
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valid, as we have seen, for a reciprocal lossless two port network, with the definitions
of eqn. (B.10).

B.3. Symmetrical networks

If a two port network is symmetrical, then the following relations will be satisfied:
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   APPENDIX C

PROPERTIES OF THE TRANSMISSION MATRIX

C.1. Definitions

A two port network is represented in the following generic form for the calculation of
its transmission matrix (or more exactly of its wave amplitude transmission matrix)
[COL 92]:

The transmission matrix relates the forward and backward travelling waves at the
input and output ports of the device in terms of the wave amplitudes an

+, an
−, in the

following form:
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Once we know the transmission matrix of a linear (or linearized) time invariant
network, its response is fully  characterized for single mode operation.

Using the relations obtained in chapter 3, eqn. (3.26), and eqn. (B.2) we can also
express the relationship between the wave amplitudes a1

+, a1
−, a2

+, a2
−, as a function of

the S-parameters:
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Reorganizing eqn. (C.2) to put it in the same form as eqn. (C.1), we obtain that:
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where −+ == nnn NNN , is the normalization of the mode at the n port.

C.2. Reciprocal networks

If a network is reciprocal (passive and without anisotropic elements, i.e. no active
devices, ferrites or plasmas), then eqn. (B.4) will hold implying that 1221 SS = , and
hence:

⇒=







⋅−⋅−







 ⋅−⋅⋅=
1

2

21

22

21

11

1

2

21

2211
21

211

2

2221

1211 1
N
N

S
S

S
S

N
N

S
SSS

SN
N

AA
AA

1

2

2221

1211

N
N

AA
AA

=⇒ (C.4)



Properties of the transmission matrix 325

As a consequence, if we have a reciprocal network and the normalization at the input
and output ports is the same, the determinant of its transmission matrix is equal to 1
[COL 92].

C.3. Reciprocal and lossless networks

If a network is reciprocal and lossless then eqns. (B.10) and (B.11) hold, and using
them the transmission matrix expressed as a function of the S-parameters (C.3) can be
rewritten as:
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Identifying terms it can be seen that if the normalizations at the input and output ports,
N1 , N2 , of a reciprocal and lossless network are equal, or are real numbers or at least
their quotient is a real number, then the transmission matrix parameters will satisfy:
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and the form of the transmission matrix will be:
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To obtain these last relations it is important to take into account that in the terms nje ⋅⋅π

the sign of the exponent has no importance because the value of the term is exactly the
same with positive or negative sign in the exponent.
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