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ABSTRACT 

MARÍA JESÚS VILLANUEVA MILLÁN  

Effects of different antiretroviral treatments on gut microbiota of HIV-

infected patients  

The human gut microbiota has a symbiotic relationship with the host 

and plays a crucial role in the maintenance of health. HIV infection has been 

associated with a disturbance in gut microbiota (dysbiosis). Increased 

bacterial translocation and alterations to gut microbiota composition have 

been observed in HIV-infected patients and contribute to immune activation 

and inflammation. This Doctoral Thesis demonstrates, in clinical practice, 

that not only HIV infection has effects on gut physiology and microbial 

profile, but also different combined antiretroviral therapies modify gut 

microbiota composition. From all the combinations tested in this study, 

INSTI-based antiretroviral therapy was associated with levels of systemic 

inflammation and bacterial translocation similar to uninfected controls, 

suggesting a healthier gut and potentially lesser HIV-related complications. 

In vitro, Maraviroc did not exert any bacteriostatic effect in the tested strains, 

and no significant effects were either found in gut microbiota composition 

when administered to mice fed a standard diet, while several and interesting 

actions were observed when administered to high-fat diet fed-mice. 

Although Maraviroc is not actually prescribed as monotherapy, if its 

immunological actions could be potentiated if administered along with a high 

fat diet deserves further investigation. Finally, we have also demonstrated 

that other factors that increase the morbidity and mortality of these patients, 

such as the coinfection with hepatotropic viruses and the metabolic 

syndrome, also affects the gut flora, although to a lesser extent than HIV 

infection itself. However, these effects are not mild and highlight the need for 
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monitoring these patients even after immunological control with combined 

antiretroviral therapies. 
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RESUMEN 

MARÍA JESÚS VILLANUEVA MILLÁN  

Efectos de los diferentes tratamientos antirretrovirales sobre la 

microbiota intestinal de pacientes infectados por el VIH 

La microbiota intestinal tiene una relación simbiótica con el 

hospedador y juega un papel muy importante en el mantenimiento de la 

salud. La infección por el VIH induce una disbiosis intestinal. Varios estudios 

han demostrado que los pacientes infectados por el VIH presentan 

alteraciones en la integridad y funcionalidad del tejido gastrointestinal, un 

incremento en la translocación bacteriana y alteraciones en la composición 

de la microbiota intestinal, todo lo cual contribuye a una inmunoactivación 

y, con ello, a un estado inflamatorio crónico. Esta Tesis Doctoral demuestra 

que no solamente la infección por el VIH tiene efectos sobre la fisiología 

intestinal y el perfil de la microbiota, sino que también las diferentes terapias 

antirretrovirales empleadas en la práctica clínica pueden alterar la 

composición de la microbiota intestinal. De todas las terapias analizadas en 

este estudio, la basada en los inhibidores de la integrasa se asoció con niveles 

de inflamación sistémica y translocación bacteriana similar a la de los 

controles no infectados por el VIH, lo que sugiere la presencia en estos 

pacientes de un intestino más sano y una menor probabilidad de desarrollo 

de complicaciones relacionadas con el VIH. In vitro, el fármaco antirretroviral 

Maraviroc no ejerció ningún efecto bacteriostático en las cepas testadas, y 

tampoco se encontraron efectos significativos en la composición de la 

microbiota intestinal cuando se administró en ratones alimentados con una 

dieta estándar. Sin embargo, este fármaco unido a la ingesta de una dieta alta 

en grasa se asoció con varias alteraciones del perfil microbiano 
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gastrointestinal. En este sentido, aunque Maraviroc no se prescribe 

actualmente como monoterapia, sus acciones inmunológicas podrían ser 

potenciadas al administrarse junto con una dieta alta en grasa. Esta 

observación debería ser investigada en el futuro. Finalmente, se ha 

demostrado que otros factores que incrementan la morbi-mortalidad de 

estos pacientes, como la coinfección por virus hepatotropos y el síndrome 

metabólico, también afectan a la composición de la flora intestinal, aunque 

en menor medida que la propia infección por el VIH. Sin embargo, estos 

efectos no son leves y parecen resaltar la necesidad de monitorizar estos 

pacientes incluso después del control inmunológico con las terapias 

antirretrovirales. 



 

 

1. Introduction 

1.1. Microbiota 

1.2. HIV infection 

 





INTRODUCTION 

 

1 

1.1. Microbiota 

The human body is a perfect culture medium providing nutrients and 

an environment that maintain the growth of a wide variety of 

microorganisms. These microbial species comprise what is known as “human 

microbiota” (Jorth et al., 2014;Lynch and Pedersen 2016). Thus, microbiota 

is defined as the community of microorganisms inhabiting a specific 

environment, including bacteria, archaea, viruses, and some unicellular 

eukaryotes. The term microbiome refers to the genomic content of the 

microbiota (reviewed by Morgan et al., (2013)) (Morgan et al., 2013). The 

human gut microbiome is considered as the second genome of human body, 

since includes approximately 3.3 million of genes, 150 times more genes than 

our own genome which contains about 20,000-25,000 genes and whose 

functions are not yet fully known (Zerbino et al., 2018;Zhu et al., 2010). For 

this reason, humans are also referred to as “superorganisms” (Gill et al., 

2006). 

The human microbiota is composed mainly of four bacterial phyla: 

Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria (Ley et al., 

2008). The relative abundance of these and other bacterial phyla varies 

depending on several factors such as different parts of the body (skin, 

respiratory and urogenital systems, gut, etc.), age, diet, antibiotic intake, 

geographic location and stress (Figure 1) (Bailey et al., 2011;Morgan et al., 

2013;Ursell et al., 2012). Thus, there is a high intra-individual variability, 

which makes it difficult to establish the exact composition of what is 

considered as a "normal" (healthy) microbiota (Monda et al., 2017). In this 

context, international multicenter studies developed by different countries 

and consortiums attempt to describe this “normal” microbiota. Some of the 

most relevant projects include the Metagenomes project of the Human 
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Intestinal Tract (MetaHit) (www.metahit.eu) carried out in Europe and Asia 

and the Human Microbiome Project (HMP) (https://hmpdacc.org) conducted 

in the United States of America (USA). Thanks to the MetaHIT consortium, 

the human intestinal ecosystem has been classified into three large groups, 

called enterotypes, according to the relative abundance of three genera: 

Bacteroides (enterotype 1), Prevotella (enterotype 2) and Ruminococcus 

(enterotype 3) (Arumugam et al., 2011). These enterotypes have been linked 

to long-term diets. Specifically, the enterotype 1 is associated with diets rich 

in protein and animal fat, while subjects with diets based on carbohydrates 

and simple sugars belong to enterotype 2 (Wu et al., 2011).  

 

Figure 1. Abundance of the main bacterial phyla in humans and factors that modulate 
the abundance of these phyla. 
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Over the years, different techniques have been used to study the 

microbiota, such as staining techniques, electron microscopy, bacterial 

culture or PCR techniques. However, conventional microbiology techniques 

are very limited and only a few species can be studied, due to the fact that the 

vast majority of bacterial species (60-80%) are not cultivable. Fortunately, 

nowadays, thanks to the development of next generation sequencing (NGS), 

also known as high-throughput sequencing, more than 400-500 bacterial 

species have been identified, which has made possible to overcome the 

limitations of culture-dependent methods. Therefore, NGS provides a more 

accurate picture of the bacterial community, being the metagenomic 

sequencing analysis the gold standard approach. This technique allows the 

identification of the taxonomic profile of a microbial community. Today, two 

different approaches are available to carry out the metagenomic analysis: the 

16S ribosomal RNA (rRNA) gene sequencing and the whole genome shotgun 

sequencing (WGS), although the 16S rRNA sequencing is the most popular 

molecular tool used for this aim. Bacterial 16S rRNA genes comprise nine 

“hypervariable regions” (V1–V9) that exhibit considerable sequence 

diversity among different bacteria (Chakravorty et al., 2007;Ranjan et al., 

2016). A different percentage of taxa recovery is obtained depending on the 

16S rRNA region sequenced. In general, the sequencing of the V3-V4 regions 

is the most widely used today. However, more accurate estimations of 

bacterial classifications can be obtained when longer segments or the whole 

genome are considered (Yarza et al., 2014). There are other concepts that are 

also important when the microbiota is studied. Metatranscriptomics and 

metabolomics techniques indicate which genes are expressed in the 

community and which metabolites are released by these microorganisms 

(Aguiar-Pulido et al., 2016). These “omics” approaches can offer an 

integrated study of microbial community to establish the role of each 
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participant, how they change under different physiological and pathologic 

conditions and how the members of a microbial community interact with 

each other and with their environment (Turnbaugh and Gordon 2008). 

Therefore, understanding the association of a disorder with the microbiome, 

metatranscriptome and metabolome may guide to improve disease 

management and for the development of new therapies. Besides the study of 

bacteria, these omics technologies make possible to study the virus (virome) 

and fungal (mycobiome) which also play important roles in human health 

and disease (Conceicao-Neto et al., 2015;Seed 2014). 

1.1.1. Gut microbiota 

For many years it was estimated that the human body has 

approximately 1014 bacteria, being the number of bacteria within the 

gastrointestinal tract 10 times higher than the cells of the human body. In 

fact, the gastrointestinal tract houses up to 1,000 different bacterial species 

which includes about two million genes (Azad et al., 2013;Fujimura et al., 

2010;Harris et al., 2012;Quigley 2013). However, the exact number of human 

and bacterial cells in the organism has been reviewed and recalculated in a 

recent study carried out by Sender et al., (2016). In this article, authors have 

revised the estimations taken into account the most up-to-date information 

about the number of human and bacteria cells in the body published by 

previous works. After their recalculation, they concluded that the number of 

bacteria in the body is actually of the same order as the number of human 

cells (Sender et al., 2016). Anyway, the topic is under discussion. 

From oral cavity to anus, bacteria density and diversity increases in 

the jejunum/ileum and in the large intestine in comparison with the stomach 

and duodenum. Therefore, the highest cell density is found in the colon. 

Concretely, there are approximately 1012 CFU/mL, with anaerobic bacteria 
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outnumbering aerobic bacteria by a factor of 100 to 1,000:1. In fact, the 

bacteria present in the colon are mainly anaerobes due to the low 

concentrations of oxygen present there; the microbiota has simply adapted 

to survive in this hostile environment (Figure 2). At any given level of the gut, 

the microbiota composition also varies along its diameter, with certain 

bacteria tending to be adherent to the mucosal surface, while others 

predominate in the lumen. Bacteria residing at the mucosal surface or within 

the mucus layer are those most likely to participate in interactions with the 

host immune system, while those present in the lumen may be more relevant 

to metabolic interactions with food or other products of digestion (reviewed 

by Quigley 2013) (Quigley 2013). 
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Figure 2. Bacterial distribution along the gastrointestinal tract. 

The human gut commensal microbiota maintains a symbiotic 

relationship with the host, allowing the balanced induction of protective 

responses to antigens and pathogens (Malys et al., 2015). Although there are 

several aspects to be elucidated, it is known that microbiota play a crucial 

role in the maintenance and development of the immune system, in the 

metabolism and in the body homeostasis in general (Thursby and Juge 2017). 

More specifically, among other functions, intestinal microbiota participates 
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in nutrient digestion producing short-chain fatty acids (SCFA), synthesis of 

vitamin K and folic acid, metabolism of bile salts, drugs and xenobiotics, gut 

motility, prevention of the invasion of pathogenic microorganisms, 

proliferation and differentiation of the intestinal epithelium and also 

participates in the development and modulation of the immune system 

(Quigley 2013). Because of the pivotal importance of these functions, the 

microbiota is considered the last organ of the body (Baquero and Nombela 

2012).  

1.1.1.1. Functions of the gut microbiota 

1.1.1.1.a. Metabolism 

Gut microbiota (GM) is an important factor that affects energy 

harvest from the diet and energy storage in the host. Indeed, GM exerts a 

strong influence on host lipid and cholesterol metabolism. In order to carry 

out these metabolic functions, the enzymes from intestinal microbiota such 

as glycoside hydrolases and polysaccharide lyases have the ability to extract 

energy from inaccessible nutrients, as these enzymes are able to cleave 

glycoside linkages present in some plant polysaccharides and dietary fibers 

(Backhed et al., 2004;Backhed et al., 2005). The indigestible polysaccharides, 

as oligofructose (inulin), are metabolized by colonic microbiota to 

oligosaccharides and monosaccharides and then fermented to SCFA, 

particularly to acetate, propionate, and butyrate. Butyrate provides energy 

for cellular metabolism, while acetate and propionate can act as substrates 

for gluconeogenesis and lipogenesis (Shen et al., 2013). Microbiota also 

influences host cholesterol metabolism and several mechanisms have been 

proposed for these actions. Thus, bacterial conversions of bile acids (such as 

the formation of secondary bile acids) are likely to play a role, as they affect 
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enterohepatic circulation, de novo synthesis of bile acids, emulsification, and 

cholesterol absorption (Martinez et al., 2009). 

GM also contributes to synthesize essential amino acids and 

vitamins, such as folate (Brenchley and Douek 2012;Gill et al., 2006).  

Finally, GM is also able to perform a range of biotransformations on 

xenobiotics, such as drugs and their metabolites, in ways that can affect their 

absorption and bioavailability (Wilson and Nicholson 2009). 

1.1.1.1.b. Protective role 

A pivotal role of GM is to protect the intestine against colonization by 

exogenous pathogens and potentially harmful indigenous microorganisms. 

Some of the mechanisms involved in these protective actions include direct 

competition for limited nutrients and the modulation of host immune 

responses (Kamada et al., 2013). The intestinal mucus layer is able to keep 

mutualism by keeping bacteria at bay and restricting overt immune 

stimulation (Purchiaroni et al., 2013). Bacteria can inhibit the growth of their 

competitors by producing antimicrobial peptides or proteins known as 

bacteriocins (Guarner and Malagelada 2003). Concerning the influence of 

microbiota in the host immune system, accumulating evidence indicates that 

microbiota regulates the development and/or function of different types of 

immune cells in the intestine. For instance, some members of the microbiota, 

such as specific species of Clostridia-related bacteria and Bacteroides fragilis, 

can facilitate beneficial immune responses through the development of 

steady-state T helper 17 lymphocytes and the induction of regulatory T cells 

(Tregs), respectively (Kamada and Nunez 2013). Moreover, commensal 

microbiota induces maintaining host-intestinal microbial T cell mutualism 

(Geuking et al., 2011). 
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1.1.1.1.c. Trophic role 

GM modulates the proliferation and differentiation of colonic 

epithelial cells through the SCFA produced. In this context, butyrate is 

considered as the SCFA with the strongest effect. Butyrate can modify the 

microstructure of the small and large intestine and it is able to accelerate 

intestinal mucosa maturation during the development or even to induce its 

repair after injury. In addition, butyrate reduces apoptosis of normal 

enterocytes in the small intestine through its influence on gene expression 

and protein synthesis (Guilloteau et al., 2010). 

1.1.1.1.d. Other functions 

Gut is a highly innervated organ that possesses its own nervous 

system known as the enteric nervous system that is in constant 

communication with the central nervous system. GM produces neuroactive 

substances such as catecholamines, histamine, and other biologically active 

substances, including neuromodulators and neurotransmitters, that can 

stimulate host neurophysiology either through direct interaction with 

receptors within the gastrointestinal tract or following absorption/passive 

diffusion through the gut wall and entering into the portal circulation (Lyte 

2013;Wang et al., 2010). Recently, it has been shown that cerebral 

metabolites are influenced by normal intestinal microbiota through the 

microbiota-gut brain axis and indicates that normal intestinal microbiota is 

closely connected with brain health and disease, development, attenuation, 

learning, memory, and behavior (Matsumoto et al., 2013).  

Apart from the microbiota-gut-brain axis, it is also important to 

mention the gut-liver axis, which refers to the close anatomical and 

functional relationship between the gastrointestinal tract and the liver. Such 
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association includes transfer of molecules associated with the gut 

microbiome to the liver and on the other way round. Non-alcoholic fatty liver 

disease (NAFLD) has become the most common chronic liver disease, and its 

incidence is increasing worldwide. Growing body of evidence has begun to 

indicate that gut-liver axis malfunction and specifically small intestinal 

bacterial overgrowth, intestinal dysbiosis, and increased intestinal 

permeability is a leading factor in the development and progression of 

NAFLD and obesity (Paolella et al., 2014). 

1.1.1.2. Establishment of gut microbiota 

For many years it was believed that the gastrointestinal tract was 

essentially sterile at birth. However, some authors have shown that 

meconium houses a complex microbial community. Thus, the fetal intestine 

may be in contact with microbes present in the swallowed amniotic fluid 

(Ardissone et al., 2014;Gosalbes et al., 2013;Hu et al., 2013). The intestinal 

microbiota of neonates is subsequently colonized by microbes acquired from 

the mother and the surrounding environment and by the end of the first year 

infants have an individually distinct microbial profile (Mackie et al., 

1999;Rodriguez et al., 2015). The composition of the neonatal microbiota in 

early life is influenced by several factors such as the type of birth (vaginal 

birth vs. caesarean), diet (breast milk vs. formula), sanitary conditions, 

antibiotics, and supplementation with prebiotics and/or probiotics (Mueller 

et al., 2015;Rautava et al., 2012). It is important to highlight that this initial 

microbiota establishment could have an impact in the risk of developing 

several childhood diseases that may persist to adulthood such as asthma, 

allergic disorders, chronic immune-mediated inflammatory diseases, type 1 

diabetes, obesity, and eczema (Hoskin-Parr et al., 2013;Munyaka et al., 

2014;Rodriguez et al., 2015). Once microbiota has been established in these 
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early years, the microbial composition increases in both diversity and 

richness. It reaches the highest complexity in adults, with several hundred 

species-level phylotypes. Each human individual reaches a homeostatic 

climax composition, which likely remains relatively stable during most of a 

healthy adult’s life. However, GM can be punctually modified by different 

factors, such as the use of antibiotics, probiotics, or prebiotics, stress, etc. At 

the late stages of life, the microbiota show greater inter-individual variation, 

being less diverse and more dynamic and characterized by a higher 

Bacteroides to Firmicutes ratio, increases in Proteobacteria and decreases in 

Bifidobacterium (Gur et al., 2015;Ottman et al., 2012;Rodriguez et al., 2015) 

(Figure 3). 

 

Figure 3. Factors involved in gut microbiota establishment from newborn to adult. 
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1.1.1.3. Homeostasis and dysbiosis 

Under normal conditions, there is a homeostatic equilibrium within 

microbial communities, but also between microorganisms and the host. An 

alteration in this balance can occur in response to different perturbations. 

There is a threshold of stress/perturbation that can be tolerated before the 

system changes towards a different state of equilibrium. This is known as 

resilience. An alteration of the homeostatic equilibrium is known as 

dysbiosis. In general, dysbiosis can occur due to a loss of microorganisms 

with beneficial properties and/or excessive growth of harmful bacteria 

and/or loss of microbial diversity (DeGruttola et al., 2016). In recent years, 

alterations in GM composition have been associated with different diseases, 

such as obesity, diabetes, inflammatory bowel diseases (IBD), neurological 

disorders, allergic asthma, atopic dermatitis or rheumatoid arthritis (Arrieta 

and Finlay 2014;Cani et al., 2008;Castillo-Alvarez and Marzo-Sola 2017;Lane 

et al., 2017;Maeda and Takeda 2017;Mangiola et al., 2016;Patterson et al., 

2016;Penders et al., 2013). However, to date, it is unknown whether the 

changes of GM are the causes or the consequences of these diseases, with the 

exception of the human immunodeficiency virus (HIV) infection. In fact, and 

as it will be described afterwards, it has been demonstrated that HIV-

infection induces a significant damage to gut-associated lymphoid tissue 

(GALT) that can cause changes in GM composition and, consequently, affects 

health (Dillon et al., 2014;Dinh et al., 2015;Lozupone et al., 2013;McHardy et 

al., 2013). For this reason, modulate GM has become a promising therapeutic 

strategy in diseases associated with microbiota dysbiosis. These “dysbiosis 

therapy” include the use of antibiotics, probiotics, prebiotics, postbiotics, 

symbiotics and fecal microbiota transplantation (Cammarota et al., 

2014;Vemuri et al., 2017;Vieira et al., 2016;Wischmeyer et al., 2016).  
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1.1.1.4. Bacterial translocation in gastrointestinal tract 

Gut is the primary route by which we are exposed to antigens, and 

for this reason, it houses the largest immune organ in the body, the GALT. 

Although most immune cells present in the gut are activated, under normal 

conditions there is an inmmune tolerance state to prevent excessive 

inflammatory reactions to innocuous food antigens. This protects the 

organism against the development of several inflammatory and autoimmune 

diseases (reviewed by Pabst and Mowat (2012)) (Pabst and Mowat 2012).  

The intestinal barrier is mainly composed of the mucus layer, the 

epithelial layer, and the underlying lamina propria. The epithelial layer is 

covered by a mucous coat rich in mucins and antimicrobial peptides. 

Epithelial cells are joined by tight junctions thanks to proteins such as 

occludin, claudin, and zonulin-1 that prevent the passage of molecules 

between cells. This layer also hosts intraepithelial lymphocytes, 

membranous or microfold cells (M cells), mucus-producing goblet cells and 

bacteriocin-producing paneth cells. The lamina propria houses a large 

quantity of immune cells. Thus, it contains cells of the innate (such as 

monocyte, macrophages, dendritic cells, basophil, and mast cells) and 

adaptive immune systems (including lymphocytes T cells, lymphocytes B 

cells, and immunoglobulin A (IgA) secreting plasma cells) (Belkaid and Hand 

2014;Konig et al., 2016).  

As previously mentioned, GM is located in the gut lumen, at the 

mucosal surface or within the mucus layer, where participates in important 

functions. Under homeostasis, antimicrobial peptides and the secreted IgA 

present in the mucus layer prevent the passage of bacteria to the deeper 

layers of the intestine, maintaining the integrity of the mucosal barrier 

(Konig et al., 2016;Quigley 2013). However, a passage of viable bacteria, 
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microbial products or their fragments, such as lipopolysaccharide (LPS), 

peptidoglycan, lipopeptides, and bacterial DNA through the intestinal 

epithelial barrier into lymph nodes or the systemic circulation can occur. 

This is known as bacterial translocation (BT) (Berg and Garlington 

1979;Fukui and Wiest 2016;Vaishnavi 2013). Some authors have observed 

that BT can take place as a spontaneous event in a rate of approximately 5-

10% in humans, while in animals this rate is higher, of approximately 10-

20% (Berg and Garlington 1979;Sedman et al., 1994). However, several 

factors are associated with intestinal epithelial barrier dysfunction and 

increased permeability, which triggers BT and leads to breakdown of 

immune tolerance. Among these triggering factors are host immune 

deficiencies and immunosuppression, disturbances in GM composition, high 

fat diet (HFD) intake, excessive alcohol ingestion, IBD, and other causes that 

could alter the mucosal barrier permeability (Brenchley and Douek 

2012;Cani et al., 2012;Engen et al., 2015;Vaishnavi 2013).  

Innate immune sensors such as Toll-like receptors (TLRs) are 

considered the interface among intestinal epithelial barrier, microbiota and 

immune system (Gribar et al., 2008;Peterson and Artis 2014). TLRs are 

expressed in numerous cell types including macrophages, dendritic cells, T 

lymphocytes, and intestinal epithelial cells. In general terms, they are 

transmembrane receptors that play an important role in the mechanism of 

innate immunity of the intestinal epithelium, recognizing bacterial, viral, 

parasites or self-derived ligands, initiating several signaling cascades and 

inducing the synthesis and release of factors related to inflammation, such as 

tumor necrosis factor alpha (TNFα), and/or interleukins 1 (IL-1) and 6 (IL-

6). Enterocyte TLRs in a “healthy” state may contribute to intestinal 

homeostasis, playing a pivotal role in the regulation of intestinal 

inflammation and immune tolerance but also in the response to invading 
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pathogens. Thus, the constant exposure of the intestinal mucosal surface to 

commensal bacteria induces a basal state of activation that ensures mucosal 

homeostasis through limited inflammatory responses and accelerated 

restitution and healing in the healthy intestine. Otherwise, after exposure to 

physiological stressors, such as remote infection, changes on GM 

composition or high concentrations of LPS, an increased TLR activity occurs. 

Excessive activation of TLR signaling within the enterocyte may result in a 

profound damage of the epithelial layer, including the release of 

proinflammatory citokines, the induction of epithelial damage through 

apoptosis, and the inhibition of intestinal repair. These effects may be 

initiated but also propagated by the TLR-activated leukocytes. Taken 

together, these factors promote BT, resulting in activation of the 

subepithelial immune system and the development of intestinal 

inflammation (reviewed by Gribar et al., (2008)) (Gribar et al., 2008).  

There are different types of TLRs: TLR1 to TLR10 in humans, and 

TLR1 to TLR9, TLR11, TLR12 and TLR13 in mice. The different TLRs detect 

a specific pathogen-associated molecular pattern, including endotoxin/LPS 

(TLR4), bacterial lipoprotein and peptidoglycan (TLR2), flagellin (TLR5), 

unmethylated CpG DNA (TLR9), double-stranded RNA (TLR3), and single-

stranded RNA (TLR7-8). In short, TLRs 1, 2, 4, 5 and 6 are specialized in the 

recognition of bacterial products, while TLRs 3, 7 and 8 seem to be associated 

to viral detection. TLR 9 is related with both of them, whereas the role of 

TLR10 was unknown, therefore, it was considered an orphan receptor 

without a known agonist or function. However, it was recently demonstrated 

that this receptor is involved in the induction of innate immune responses to 

influenza virus infection, suggesting that could play a role in a range of other 

viral and, perhaps, other microbial diseases (Fukui and Wiest 2016;Lee et al., 

2014;Mesonero et al., 2012;Pott and Hornef 2012).  
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One of the most studied TLRs is the TLR4, which is an innate immune 

receptor expressed in both immune cells and enterocytes (Frosali et al., 

2015). Fukata et al., (2004) demonstrated that this receptor is important in 

intestinal response to injury and in limiting BT (Fukata et al., 2005). TLR4 

signaling pathway starts when TLR4 binds to LPS which is in the outer 

membrane of gram negative bacteria. Concretely, the inflammatory process 

begins when the lipopolysaccharide binding protein (LBP), which is 

produced by the liver, binds longitudinally to the surface of LPS micelles. 

Then, CD14, an LPS coreceptor expressed by peripheral blood monocytes 

and tissue macrophages, interacts with LBP to obtain a single LPS molecule 

and rapidly dissociates from the LBP/LPS complex. After the rapid 

dissociation of CD14/LPS, LBP retains its binding to LPS micelles and recruits 

another CD14 again. Meanwhile, CD14 delivers a single LPS molecule to 

myeloid differentiation protein-2 (MD-2) (also known as lymphocyte antigen 

96) in a TLR4-dependent manner. Two LPS-bound TLR4/MD2 complexes 

form a M-shaped dimer, followed by activation of the signaling pathway for 

the innate immune response. It is important to mention that in those cell 

types without CD14 receptors (endothelial cells, dendritic cells, fibroblasts, 

smooth muscle cells, etc.), the signaling pathway is initiated by binding the 

LPS-LBP complex to the soluble CD14 (sCD14) secreted by monocytes and 

macrophages, which are circulating in the plasma (Kim and Kim 

2017;Mesonero et al., 2012;Shu et al., 2013). 

Following LPS recognition, TLR4 undergoes oligomerization and 

recruits its downstream adaptors through interactions with the TIR (Toll-

interleukin-1 receptor) domains. There are five TIR domain-containing 

adaptor proteins: MyD88 (myeloid differentiation primary response gene 

88), TIRAP (TIR domain-containing adaptor protein, MyD88-adapter-like), 

TRIF (TIR domain-containing adaptor inducing interferon beta (IFN-b)), 
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TRAM (TRIF-related adaptor molecule), and SARM (sterile α and HEAT-

Armadillo motifs-containing protein). Different TLRs utilize different 

combinations of adaptor proteins to establish downstream signaling. 

Surprisingly, TLR4 is the only known TLR which uses all these adaptor 

proteins. TLR4 signaling can be divided into MyD88-dependent and MyD88-

independent pathways, which mediate the activation of proinflammatory 

cytokines (such as TNFα, IL-1 or IL-6) and type I interferon genes, 

respectively (Figure 4) (reviewed by Lu et al., (2008)) (Lu et al., 2008). There 

are other cell wall receptors that also recognize LPS and induce an 

inflammatory response such as the MSR (macrophage scavenger receptor), 

K+ channels, and CD11/CD18 receivers. In all cases, several transcriptional 

factors are activated, such as nuclear factor kappa B (NF-κB), activator 

protein-1 (AP-1), and interferon (IFN) regulatory factors, resulting in the 

increased expression of genes involved in the inflammatory response (Kim 

and Kim 2017;Ortiz and Garnacho 2005). 

Bacteria and microbial products can be drained from the intestine by 

the portal vein into the liver, where are recognized by TLRs expressed on 

Kupffer cells, dendritic cells, hepatic stellate cells, and hepatocytes. Microbial 

antigens can also reach the systemic circulation. Once there, bacterial 

products come into contact with a further host-mediated response regulated 

by cell-surface receptors and circulating factors that bind and clear these 

products (reviewed by Nakamoto and Kanai (2014) and Brenchley and 

Douek (2012)) (Brenchley and Douek 2012;Nakamoto and Kanai 2014). 
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Figure 4. LPS/TLR4 signaling pathway (image adapted from Lu et al., (2008) (Lu et 
al., 2008)). 
CD14, cluster of differentiation 14; IL-1, interleukin-1; IL-6, interleukin-6; LBP, 
lipopolysaccharide binding protein; LPS, lipopolysaccharide; MD-2, myeloid 
differentiation protein-2; MyD88, myeloid differentiation primary response 88; NF-
κB, nuclear factor kappa B; TIRAP, toll-interleukin 1 receptor (TIR) domain-
containing adaptor protein; TLR4, toll-like receptor 4; TNFα, tumor necrosis factor 
alpha; TRAM, toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing 
interferon beta (IFN-b)-related adaptor molecule; TRIF, toll-interleukin 1 receptor 
(TIR) domain-containing adaptor inducing interferon beta (IFN-b). 
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1.2. HIV infection 

One of the major public health problems reported in our history 

occurred in 1981 when a high number of homosexual men suffered unusual 

opportunistic infections and rare malignancies. This “new disease” was 

recognized in 1982 by the CDCs (Centers for Disease Control and Prevention 

from USA) as an Acquired Immune Deficiency Syndrome (AIDS), as the 

immune system of these patients were weakened (MMWR Morb Mortal Wkly 

Rep 1982a; MMWR Morb Mortal Wkly Rep 1982b;Gottlieb et al., 1981). In 

record time, 1983, the team of Luc Montaigner at the Pasteur Institute (Paris) 

and the American team of Robert Gallo reported the discovery of the causal 

agent of such disease (Barre-Sinoussi et al., 1983;Gallo et al., 1983) that was 

later named as Human Immunodeficiency Virus (HIV) (Coffin et al., 1986). 

There was great controversy about who was the first to isolate the virus. 

However, in 1994, the French team was recognized as the discoverers, since 

they were the first to isolate the virus. Thus, for this important discovery, 

Montagnier and his colleague Françoise Barré-Sinnoussi were awarded by 

the Nobel Prize in Medicine (2008) (Special Commentary of AIDS Journal 

2009;Weiss 2008). In 1986, a second type of virus was discovered in AIDS 

patients in West Africa: HIV-2 (Clavel et al., 1986). Thus, AIDS can be caused 

by HIV types 1 and 2 (HIV-1 and HIV-2). HIV-1 has spread worldwide, while 

HIV-2 is mainly limited to West Africa and European communities with 

socioeconomic links to West Africa, such as Portugal. Both types of viruses 

are very similar, such as in modes of transmission or intracellular replication 

pathways. However, patients with HIV-2 have lower plasma viral load than 

patients infected with HIV-1, thus, HIV-2 has a lower transmissibility, and 

reduced probability of progression to AIDS with a longer asymptomatic 

period, and, finally, being less pathogenic. The underlying mechanisms for 

this lower pathogenicity are still poorly understood, however, some authors 
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have showed important variations among HIV types (German Advisory 

Committee Blood 2016;Nyamweya et al., 2013;Popper et al., 1999;Vicenzi 

and Poli 2013). Thus, because the higher pathogenicity, global distribution, 

and the type of patients of our enviroment, this Doctoral Thesis is focused on 

the HIV-1-infected patients. 

The origin of HIV-1 was the result of the zoonotic transmission of 

viruses that infect non-human primates in Africa, known as simian 

immunodeficiency viruses (SIVs). Concretely, SIVs have “jumped” 

successfully into humans on four independent occasions, crossing species 

barrier and generating HIV-1. Thus, HIV-1 is divided into four 

phylogenetically distinct groups: M, N, O and P (Hahn et al., 2000;Sharp and 

Hahn 2011). The subspecies M, N and O are closely related to the SIV that 

infects chimpanzees (SIVcpz) (Gao et al., 1999;Hahn et al., 2000;Huet et al., 

1990), while the P group, which only exists in people from Cameroon, 

appears to come from SIV that infects Cameroon’s gorillas (SIVgor) (Huet et 

al., 1990). The M group was the cause of the global pandemic with a majority 

global distribution (Merson et al., 2008). A recent study placed the origin of 

the HIV-1 group M around the early 1920s in Kinshasa (Democratic Republic 

of the Congo). Considering that the hunting of these apes is a common habit 

in Africa, virus could have been transferred from ape to human through a 

bite, scratch or the blood of a dead ape getting into an open wound. Then, the 

virus was spread from Kinshasa to the rest of Africa and to other parts of the 

world mainly by sex practice and trade (Faria et al., 2014). 

Since the beginning of the HIV/AIDS epidemic, more than 70 million 

people have been infected with the HIV virus and approximately 35 million 

people have died because of this infection. The latest figures published by the 

World Health Organization (WHO) indicated that 36.7 million (30.8–42.9 
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million) people were living with HIV at the end of 2016, being Sub-Saharan 

Africa the most affected area, with about 4.2% of people living with HIV 

(www.who.int/hiv/en, date accessed: January 2018). With regard to Spain, 

86,663 people have been infected with the virus between 1981 and the first 

half of 2017. Moreover, between the years 1981 and 2015, it was estimated 

that there were 58,162 deaths attributed to AIDS-related causes. Most of 

them were men (47,085 male and 11,077 female). In the year 2016, 3,535 

new cases of HIV were diagnosed in Spain (Instituto de Salud Carlos III 

(Spain): http://www.isciii.es/isciii/es/contenidos/fd-servicios-cientifico-

tecnicos/fd-vigilancias-alertas/fd-enfermedades/sida.shtml, date accessed: 

February 2018). Concerning the Autonomous Community of La Rioja (Spain), 

the number of new HIV diagnosed has been stabilized in the last years (data 

from Dirección General de Salud Pública y Consumo – Government of La Rioja 

(Spain)) (Figure 5).  

 

Figure 5. HIV cases reported in the Autonomous Community of La Rioja (data from 
Dirección General de Salud Pública y Consumo – Government of La Rioja (Spain)). 
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Regarding the mode of transmission, HIV is transmitted from an 

infected person to another through blood, semen, vaginal secretions and 

maternal transmission. Thus, HIV has been classically spread through sexual 

behaviors, needle or syringe use and from mother to child during pregnancy, 

childbirth and breastfeeding (CDC: 

https://www.cdc.gov/hiv/basics/transmission.html, date accessed: February 

2018). Although HIV is mainly a global sexual transmitted infection, the 

mode of transmission has changed over the years. In our enviroment at the 

beginning of the HIV/AIDS epidemic the needle/syringe sharing among 

persons who inject drugs was the leading cause of HIV transmission ahead of 

sexual contact. However, over recent years this trend has changed, and the 

sexual contact both men who have sex with men (MSM) and heterosexual has 

become the first cause of HIV transmission (Figure 6) (Instituto de Salud 

Carlos III (Spain): http://www.isciii.es/isciii/es/contenidos/fd-servicios-

cientifico-tecnicos/fd-vigilancias-alertas/fd-enfermedades/sida.shtml, date 

accessed: February 2018). Fortunately, the usage of condoms to prevent the 

infection by sexual contact, along with the development of effective 

antiretroviral treatments led to a partial “control” of this infection. However, 

in recent years, there is a certain relaxation in the population in relation to 

the sexual practice, which leads to an increase in other sexually transmitted 

diseases, such as syphilis, gonorrhea or chlamydia infection, as well as HIV. 
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Figure 6. HIV cases reported in Spain divided by mode of transmission (2006-2016) 
(image adapted from Instituto de Salud Carlos III (Spain) (Instituto de Salud Carlos 
III: http://www.isciii.es/isciii/es/contenidos/fd-servicios-cientifico-tecnicos/fd-
vigilancias-alertas/fd-enfermedades/sida.shtml, date accessed: February 2018).  
HS, heterosexual; IVDU, intravenous drug user; M-C, mother to child; MSM, men who 
have sex with men. 

1.2.1. Structure of HIV-1 virion 

HIV is grouped to the genus Lentivirus (lentis=slow), characterized 

by long incubation periods, and within the family of Retroviridae, since it has 

the enzyme reverse transcriptase that allows it to copy RNA into DNA. Figure 

7 showed the squematic structure of the HIV virus. The mature, infectious 

HIV-1 particles have a spherical shape with a diameter of 100-130 nm. The 

viral envelope is comprised of a lipid bilayer, derived from the host cell. This 

envelope contains 72 projections which are composed by trimers of proteins, 

and specifically by the trimers of glycoprotein 120 (gp120) and the 
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glycoprotein 41 (gp41). Gp41 is associated with the matrix protein p17 that 

is immediately below of the lipid layer. This membrane covers a conical 

capsid that is assembled for the capsid protein, termed as p24. The capsid 

contains two single strands of viral RNA, which are associated with the 

nucleocapsid proteins (p7), as well as the viral enzymes reverse 

transcriptase and integrase. The capsid also contains some copies of the viral 

protease and the accessory proteins Vif (viral infectivity factor), Vpr (virus 

protein r), and Nef (negative regulating factor), which are not required for 

viral replication, but help efficiency of this process (Figure 7) (German 

Advisory Committee Blood 2016;Heger et al., 2015;Kirchhoff 2013). As a 

retrovirus, the HIV genome contains the retroviral genes gag, pol and env 

flanked by long terminal repeats, which contain the viral promoter. Gag 

codes for the structural proteins capsid, matrix, and nucleocapsid; pol 

encodes the enzymes reverse transcriptase, protease, and integrase; and env 

encodes the glycoproteins gp120 and gp41. Moreover, HIV genome codes six 

regulatory genes (tat (transactivator protein), rev (RNA splicing-regulator), 

nef, vif, vpr, and vpu (virus protein unique)). Tat enhances proviral 

transcription and rev is critical for the transport of incompletely or unspliced 

viral mRNAs into the cytoplasm. The regulatory gen vpu is considered an 

accessory gen, along with nef, vif, vpr genes (Kirchhoff 2013).  
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Figure 7. Structure of HIV virion.  
Gp120, glycoprotein 120; gp41, glycoprotein 41; nef, negative regulating factor; p17, 
protein 17; p24, protein 24; vif, viral infectivity factor; vpr, virus protein r. 

1.2.2. Replication Cycle 

HIV use as cellular receptor the molecule CD4+, being CD4+ T helper 

cells the primary target for HIV-1 since they express high levels of the HIV-1 

receptor CD4 (necessary for binding to and enter cells) and are highly 

permissive for HIV-1 production. Nevertheless, other immune cells, such as 

monocytes/macrophages and dendritic cells also express CD4 and HIV-1 co-

receptors at the cell surface. The entry of the virus is initiated with the fusion 

between the CD4+ T cell and the envelope glycoprotein, gp120 from the virus. 

This binding induces a conformational change in gp120 that increases its 

affinity for a secondary receptor (co-receptor). The most relevant co-
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receptors for the HIV-1 are CCR5 and CXCR4. Thus, besides binding a CD4 

receptor, HIV must also bind either a CCR5 or CXCR4 co-receptor protein to 

get into a cell. Then, gp120 is attached to the co-receptor and further 

conformational changes in both gp120 and gp41 trigger membrane fusion 

reaction that leads to translocation of the viral capsid into the cytoplasm. The 

capsid is taken up by an endosome, and a change in pH in the phagosome 

induces the viral core release into the cytoplasm of the infected cell. Then, 

the viral RNA is reverse-transcribed into a double-stranded DNA by the viral 

enzyme reverse transcriptase. The synthesized viral DNA is transported 

across the nucleus, where the integrase enzyme integrates the viral DNA into 

the host cell chromosomal DNA. Once integrated, viral DNA is called provirus. 

The provirus sometimes can remain in an inactive state for several years, 

producing few or no copies of HIV. The integrated viral DNA can be 

transcribed by the host enzyme called RNA polymerase into several copies of 

new viral RNAs, and some of these new RNAs are transported into the 

cytoplasm where are translated into viral polyproteins. The transcribed 

proteins must be cleaved into smaller component proteins through the 

action of the viral enzyme protease. The new viral RNA and HIV proteins 

move to the surface of the cell, where are assembled in new immature HIV 

particles. Finally, viral particles are released from the infected cell and 

mature infectious virus are formed, and then a new cycle of infection can be 

initiated (Checkley et al., 2011;Freed and Martin 2006;Stein et al., 1987). 

1.2.3. Natural history of HIV-infection 

The first period, after HIV infection, 3-4 weeks post-exposition and 

infection with the virus, is defined as acute HIV infection. This phase lasts 

6-12 weeks and involves the first detection of HIV RNA in plasma and the 

formation of HIV-specific antibodies. When the HIV is parenterally 
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transmitted, the virus enters directly into the bloodstream, however, if the 

transmission occurs through unprotected sexual intercourse, the virus must 

deal with the mucous membranes where dendritic cells are present. The 

virus then traffics within these cells before being transferred to CD4+-T cells 

(Mogensen et al., 2010;Nasi et al., 2014;Wu and KewalRamani 2006). As 

previously mentioned, HIV-1 infects primarily CD4+ T cells and cells of the 

monocyte/macrophage lineage. Following infection, virus or virus-infected 

cells achieve the draining lymph nodes where activated CD4+CCR5+ T cells 

are found and that represent targets for further infection. This facilitates the 

replication and dissemination of the virus to secondary lymphoid tissue 

throughout the organism, with a particular predilection for GALT, which is 

the largest immune organ in the body and where activated CD4+CCR5+ 

effector memory T cells are housed at high levels (Mogensen et al., 2010). 

These lymphocytes, in contrast to what happens in peripheral blood 

mononuclear cells, are memory T lymphocytes in a continuous state of 

activation, which makes them very susceptible to HIV infection (Lapenta et 

al., 1999). In fact, HIV-infection should be considered as a gut disease, as it 

significantly depletes CD4 T cells from mucosal sites, particularly from GALT 

(Brenchley et al., 2004). Thus, regardless the route of transmission of HIV 

infection, the gastrointestinal tract is the primary and major site of viral 

replication, and also where more CD4+ T-cell are depleted. For this reason, it 

is important to know the structure of the intestinal immune system. As it is 

showed in Figure 8, the gastrointestinal immune system is organized into 

distinct anatomic and functional subcompartments, the inductive and 

effector sites. Inductive sites include the GALT (such as Peyer's patches and 

isolated lymphoid follicles) and the gut-draining mesenteric lymph nodes. 

The lamina propria and epithelium constitute the main effector sites, 

harboring large populations of activated T cells and antibody-secreting 
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plasma cells (Pabst and Mowat 2012). Peyer’s patches have clearly defined 

T- and B-cell–dependent areas, which are overlaid by epithelium containing 

M cells. These cells are able to transport antigens into immune inductive sites 

resulting in initiation of T-cell education and maturation. Once antigen 

presentation occurs, T and B cells are transported through efferent 

lymphatics to the draining lymph nodes, and eventually to the peripheral 

circulation. Then, these cells can reach the mucosal effector sites, where 

differentiated T cells are able to neutralize antigens and protect the host 

against invading pathogens. Effector site lymphocytes can be subclassified 

into lamina propria lymphocytes and intraepithelial lymphocytes. The 

lamina propria contains mainly CD4+ T cells, whereas intraepithelial 

lymphocytes are mainly CD8+ T cells. Lamina propria also contains 

macrophages and plasma cells. Thus, HIV can reach the intestinal tract 

through blood dissemination and also may pass through the epithelium layer 

in different ways, as shown in Figure 8: by transcytosis across intact 

epithelial cells (1) or M cells (2); by adhering to dendrites of mucosal 

dendritic cells (3); or by direct passage through epithelial breaches (4) 

compromising epithelium integrity. The lamina propria loses most of its CD4+ 

T cells, while there is an influx of CD8+ T cells. Hence, collagen deposition 

occurs making difficult the reconstitution of CD4+ T cells. Inductive sites lose 

their architecture, harboring many apoptotic T and B cells with few CD4+ T 

cells (excellently reviewed by Mehandru (2007) and Shacklett and Anton 

(2010)) (Mehandru 2007;Shacklett and Anton 2010). 
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Figure 8. Structure of the intestinal immune system (image taken from Shacklett and 
Anton (2010) (Shacklett and Anton 2010)).  
The gastrointestinal immune system is organized into distinct anatomic and 
functional subcompartments, the inductive and effector sites. HIV can reach the 
gastrointestinal tract through blood dissemination and also may pass through the 
epithelium layer in different ways: by transcytosis across intact epithelial cells (1) or 
M cells (2); by adhering to dendrites of mucosal dendritic cells (3); or by direct 
passage through epithelial breaches (4). 

Moreover, during the earliest stage of HIV infection, especially in 

GALT, some HIV-infected cells go into a resting (or latent) state. These cells 

can remain at this state for years without producing new HIV, but at any time 

they can become active and start making more HIV mature particules. These 

reservoirs are comprised by replication-competent linear provirus 
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integrated into host cellular DNA. During latency, there is highly restricted 

expression of viral genes (Churchill et al., 2016;Murray et al., 2016). Latent 

HIV reservoirs are established in cells with slow rate of depletion (Mogensen 

et al., 2010). HIV-infection also depletes mucosal Th17 cells that play a key 

role in the antimicrobial defense (Brenchley et al., 2008;Elhed and Unutmaz 

2010). The infection of macrophages present in the intestinal mucosa also 

facilitates the depletion of CD4+ cells, by the transmission of the virus "cell by 

cell" and also by secreting cytokines that attract and recruit activated T 

lymphocytes, which, subsequently, are infected, enhancing intestinal 

infection (Nasi et al., 2014). Therefore, at this time, there is a wide 

dissemination of virus seeding of lymphoid organs. After 10-14 days post 

infection HIV can be detected in the whole body, including the nervous 

system. A peak of plasma viraemia is reached after 3-4 weeks of infection, 

along with a decline in peripheral CD4+ T cells (German Advisory Committee 

Blood 2016;An and Winkler 2010;Mogensen et al., 2010) (Figure 9). At the 

time of peak viraemia, patients could develop symptoms of the acute 

retroviral syndrome, including fever, fatigue, lymphadenopathy, sore throat, 

and exanthema (Kahn and Walker 1998). Afterwards, there is a marked 

reduction of viral replication probably due to virus-specific immune 

responses that limit viral replication. Then, viral load reaches at steady state 

with low but constant replication that marks the start of the chronic phase. 

The symptoms that come at this phase usually are resolved as the viral load 

in the plasma decreases. Thus, immune response increases the circulating T 

cell numbers at “normal” levels (over 500 cells/mm3), however, the immune 

response is not capable to restore the depleted CD4+ T cells in GALT. The 

chronic phase is also called asymptomatic HIV infection or clinical latency, 

since is characterized by the absence of symptomatology and lasts an 
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average of 7–10 years (German Advisory Committee Blood 2016;Fauci et al., 

1996;Mogensen et al., 2010).  

 

Figure 9. Stages of HIV infection (image taken from An and Winkler (2010), which 
was adapted from Pantaleo et al., (1993) (An and Winkler 2010;Pantaleo et al., 
1993)). 

After this phase, the number of CD4+ T cells continues to fall to very 

low levels and this marks the start of AIDS phase (An and Winkler 

2010;Douek 2003;Mogensen et al., 2010) (Figure 9). In fact, this phase occurs 

when the number of CD4 cell drops below 200 cells/mm3 or when 

opportunistic infections and specific neoplasms develop (AIDS-defining 

condition), thus, the immune response is weakened. The time to develop 

AIDS can vary without therapy from 2 to 25 years or more since the primary 

infection (German Advisory Committee Blood 2016;Mogensen et al., 2010) 

(Figure 9).  
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Patients under an effective antiretroviral treatment showed a 

reduction of viral load to undetectable levels, as well as recovery of CD4+ T 

cell numbers (Okoye and Picker 2013). 

1.2.4. Bacterial translocation in HIV infection 

Depletion of gastrointestinal CD4+ T-lymphocytes during HIV 

infection is followed by alterations to lymphoid tissue architecture, which 

leads to a loss of the integrity and function of the mucosal barrier (Brenchley 

et al., 2004;Stebbing et al., 2005). Loss of immune protection of the intestinal 

mucosa allows translocation of microbial products (such as LPS) into the 

lamina propria of the gastrointestinal tract and, eventually, into the systemic 

circulation (Miedema et al., 2013;Nasi et al., 2014;Sandler and Douek 2012). 

BT was firstly described in HIV-infected patients in 2006 by Brenchley et al., 

(2006) (Brenchley et al., 2006). As mentioned above, bacterial products, such 

as LPS, induce a significant increase in proinflammatory cytokine production 

via TLR, contributing to immune activation and inflammation (Meier and 

Altfeld 2007). BT has been shown to persist throughout the course of the 

infection by the virus and contributes to the immune activation that is 

observed in the chronic phases of the infection (Cassol et al., 2010;Klatt et al., 

2013;Marchetti et al., 2013) (Figure 10). 

Although mucosal CD4 T-cell depletion takes place during the acute 

phase of the HIV infection, Brenchley et al., (2006) showed that plasma LPS 

levels are not enhanced in this phase. Conversely, they observed increased 

levels of LBP and sCD14 instead, suggesting that LPS translocation is rapidly 

countered by the host immune response. As HIV infection enters its chronic 

phase, higher plasma levels of LPS were found, which seems to indicate that 

the consequences of the CD4 T-cell depletion and mucosal damage are not 

manifest until the chronic phase or that there is transient mobilization of 
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factors that neutralize circulating LPS (Brenchley et al., 2006;Marchetti et al., 

2013). 
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The degree of BT is linked to the severity of HIV progression 

independent of viraemia and several studies have demonstrated that 

increased BT and proinflammatory cytokines are partially responsible for 

HIV-related comorbidities, which implies a significant increase in morbidity 

and mortality (Dillon et al., 2014;Dinh et al., 2015;Hsu et al., 2013;Mutlu et 

al., 2014;Nowak et al., 2015). Anyway, and spite of the relevance of the topic, 

there are not so many studies regarding this question in HIV infection. 

It is important to emphasize that gut microbiota are also altered after 

HIV infection, resulting in microbiome dysbiosis, which further exacerbates 

BT, epithelial barrier disruption, inflammation, and mucosal immune 

functioning (reviewed by Zevin et al., (2016)) (Zevin et al., 2016). 

1.2.5. Antiretroviral treatments 

Fortunately, the discovery of the HIV replication cycle in human CD4+ 

T-cells, along with technological advances, enabled the development of 

potential drug targets to slow or halt different steps within the HIV cycle. 

Concretely, the currently approved antiretroviral drugs are able to halt viral 

replication at six different stages, including binding (co-receptor 

antagonists), fusion (fusion inhibitors), reverse transcription (nucleoside 

and nucleotide reverse transcriptase inhibitors (NRTIs) and non–nucleoside 

reverse transcriptase inhibitors (NNRTIs)), integration (integrase strand 

transfer inhibitors (INSTIs)) and proteolytic cleavage (protease inhibitors 

(PIs)), as observed in Figure 11 (Arts and Hazuda 2012;Barre-Sinoussi et al., 

2013;Pau and George 2014). 
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Figure 11. HIV-1 replication cycle with the drugs currently approved for HIV 
infection by the AIDS Study Group (GESIDA) of the Spanish Society of Infectious 
Diseases and Clinical Microbiology (image adapted from Smith et al., (2012) (Smith 
et al., 2012)). 

In 1987, the hope for a treatment for HIV infection came with 

Zidovudine (AZT), a NRTI, which had been developed years before for the 

treatment of cancer (Fischl et al., 1987). In the following years, other drugs 

were developed for delaying the progression of HIV infection to AIDS. Thus, 

in the early 1990s, with the discovery of the first antiretroviral drugs, a 

variety of them administered as monotherapy were introduced to slow the 

virus progression in HIV-infected patients. In spite of initial successes, these 

monotherapies became ineffective because the ability of the HIV virus to 

develop resistances to single drug therapies. In 1995, the development of a 

new antiretroviral class (PIs), along with the introduction of the combined 
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antiretroviral therapy (cART) led to a “new era” in the therapy of HIV 

infection. All this meant a significant step forward in the management of HIV 

infection, reducing morbidity and mortality in all stages of HIV infection (Arts 

and Hazuda 2012;Deeks and Volberding 1995;Hoenigl et al., 2016). In fact, 

the combination of at least two distinct molecular targets/drugs is the actual 

basis to prevent the evolution of drug resistance and for HIV-treatment. 

Thus, as shown in Figure 12, different initial combination regimen for ART-

naive adult HIV-positive persons are recommended by the AIDS Study Group 

(GESIDA) of the Spanish Society of Infectious Diseases and Clinical 

Microbiology. Thus, thanks to this antiretroviral drug combination HIV-

infection has became a chronic disease (Arts and Hazuda 2012;Gardner et al., 

2008), GESIDA: http://gesida-seimc.org/category/guias-

clinicas/antirretroviral-vigentes/, date accessed: February 2018). There are 

also other cART that can be used for rescuing when virological failure or 

toxicities or other conditions happen. cART can decrease viral loads to 

undetectable levels and produces significant restoration of CD4+ cells in the 

peripheral blood, more specifically its main goals are: long-term suppression 

of viral replication; reduce the morbidity associated with HIV infection and 

prolong survival; improve the quality of life; restore and preserve immune 

function; and prevent HIV infection. Although cART is highly effective at 

inhibiting HIV replication, several mechanisms contribute to HIV persistence 

during cART, including HIV latency, HIV induced immune dysfunction, and 

possibly persistent low-level viral replication in compartments and 

reservoirs, which allow the pathogenic disease processes (Arts and Hazuda 

2012;Martinez-Picado and Deeks 2016). At intestinal level, cART only 

restores partial and slow CD4+ cells and it is not capable of eliminating viral 

reservoirs, which are also resistant to clearance by the immune system of the 

host (Mavigner et al., 2012;Mehandru et al., 2004). Besides, it has been 
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observed that HIV-infected patients are in a state of inmunoactivation 

despite cART that could be related to the increased BT observed in patients 

with chronic HIV infection (Dinh et al., 2015). This chronic activation may 

contribute to the development of different co-morbidities, such as 

atherothrombosis and other cardiovascular diseases, neurocognitive 

disorders, liver steatosis and osteoporosis (Younas et al., 2016).  

 

Figure 12. Initial combination regimen for ART-naive adult HIV-positive persons 
recommended by the AIDS Study Group (GESIDA) of the Spanish Society of Infectious 
Diseases and Clinical Microbiology (http://gesida-seimc.org/category/guias-
clinicas/antirretroviral-vigentes/, date accessed: February 2018). 

1.2.5.1. Nucleoside and nucleotide analogue reverse transcriptase 

inhibitors 

Nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs) 

were the first class of antiretroviral drugs approved for use by the United 

States Food and Drug Administration (FDA), and to date they are the 

“backbone” treatment when combined with a second class of antiretroviral 
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agents (Young 1988). NRTIs are administered as prodrugs, as these drugs 

need to be phosphorylated by cellular kinases to exert their antiviral effect. 

Therefore, NRTIs are phosphorylated within the host cell to their active 

diphosphate or triphosphate metabolites, which inhibit the enzymatic 

activity of the viral reverse transcriptase by incorporating into the nucleotide 

analogue resulting in the termination of the growing viral DNA chain or by 

competing with the natural substrate of the enzyme, halting the conversion 

of viral RNA into double stranded DNA (Arts and Hazuda 2012;Pau and 

George 2014). In 1987, Zidovudine (AZT) was the first approved 

antiretroviral drug for patients with CD4 count below 200 cells/mm3 or with 

AIDS defining conditions (Fischl et al., 1987). Currently, and as showed in 

Figure 12, GESIDA approves the use of the following NRTIs: zidovudine (AZT, 

ZDV), didanosine (ddI), stavudine (d4T), lamivudine (3TC), emtricitabine 

(FTC) and abacavir (ABC). The usage of the nucleotide reverse transcriptase 

inhibitors tenofovir disoprovil fumarate (TDF) and tenofovir alafenamide 

(TAF) is also authorized by both Societies (GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018; EACS: http://www.eacsociety.org/guidelines/eacs-

guidelines/eacs-guidelines.html, date accessed: February 2018). Regarding 

drug metabolism, NRTIs are not metabolized via the CYP450, thus, they are 

less likely to have drug-drug interactions (Vadlapatla et al., 2014). Apart 

from ABC, the majority of NRTIs need an adjustment of dosage in patients 

with renal insufficiency (Pau and George 2014). 

It is important to mention that serious toxicities have been observed 

in HIV-infected patients under treatment with older NRTIs, especially AZT 

and d4T, mostly related to their effects on human cellular mitochondrial 

DNA. Since these drugs are inhibitors of mitochondrial DNA polymerase 

gamma, they inhibit the transcription of mitochondrial RNA (mRNA), which 
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leads to mitochondrial dysfunction. This is associated with an increase in the 

levels of reactive oxygen species (ROS), promoting oxidative stress. In 

adipose tissue, an increase in ROS levels may lead to inhibition of cell 

differentiation and, instead, is associated with death of adipocytes with a loss 

of subcutaneous fat that could lead to clinical lipoatrophy. For this reason, 

these drugs are not included within the recommended initial regimens for 

naive patients. Older NRTIs are also associated with other severe toxicities 

such as lactic acidosis and hepatic steatosis (De Pauw et al., 2009;Lewis et al., 

2003;Villarroya et al., 2009), GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018). Actually used NRTIs such as ABC, 3TC and FTC are 

associated with less toxicities, since these drugs are weaker inhibitors of 

mitochondrial DNA polymerase gamma (Moyle 2005). However, there is a 

long-lasting controversy about whether the usage of ABC is associated or not 

with an increased risk of cardiovascular disease in HIV-infected patients 

(Alvarez et al., 2017). Regarding the nucleotide reverse transcriptase 

inhibitors, the first approved prodrug of tenofovir (TFV) TDF is associated 

with significant renal toxic effects and a decline in bone mineral density. 

However, the development of the novel prodrug of TFV TAF, that is available 

to patients to date, has improved renal and bone safety compared to TDF-

containing regimens (Huhn et al., 2017;Wang et al., 2016).  

1.2.5.2. Non nucleoside reverse transcriptase inhibitors 

Unlike NRTIs, non nucleoside reverse transcriptase inhibitors 

(NNRTIs) do not need intracellular phosphorylation to exert their 

pharmacologic action. Members of this class are noncompetitive inhibitors 

of RT, thus, the binding of NNRTIs results in a change of the spatial 

conformation of the substrate-binding site, which reduces polymerase 
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activity (Arts and Hazuda 2012;Pau and George 2014). At this time, both 

GESIDA and EACS approve the use of four NNRTIs: nevirapine (NVP), 

efavirenz (EFV), etravirine (ETR, ETV) and rilpivirine (RPV) (GESIDA: 

http://gesida-seimc.org/category/guias-clinicas/antirretroviral-vigentes/, 

date accessed: February 2018; EACS: 

http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html, 

date accessed: February 2018). Despite the fact that these drugs produce a 

potent virologic suppression, NNRTIs are limited because of their drug-drug 

interactions since they are highly metabolized by CYP450. Thus, special 

attention should be paid when these drugs are prescribed with other agents 

that are also highly metabolized by CYP450 (Ma et al., 2005). In general 

terms, NNRTIs are generally safe and well tolerated, although NVP is 

associated with rash and hepatotoxicity, whereas the use of EFV can cause 

central nervous system adverse effecs as well as lipoatrophy (Rojas et al., 

2016;Usach et al., 2013). 

1.2.5.3. Proteinase inhibitors  

Proteinase inhibitors (PIs) perform its pharmacologic action by 

binding HIV proteases, blocking the proteolytic activities of the enzyme, thus, 

the new infectious virions cannot be formed (Pau and George 2014). 

Ritonavir (RTV) was the first approved PI but it is not currently use as anti-

HIV agent because of its side effects and high doses required. Nowadays, RTV 

is used at low doses as a PI booster. GESIDA approves the use of six PIs, 

including atazanavir (ATV), darunavir (DRV), lopinavir (LPV), fosamprenavir 

(FPV), saquinavir (SQV), and tipranavir (TPV) (GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018). In addition of these treatments, the EACS also approves the 

use of indinavir (IDV). However, this drug is associated with intolerable side 
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effects, such as lipodystrophy or renal and urologic toxicity (EACS: 

http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html, 

date accessed: February 2018) (Jao and Wyatt 2010;Lv et al., 2015;Pau and 

George 2014). Therapies in naive patients with PIs must include a booster, 

either RTV or cobicistat (COBI). RTV is recommended with most PIs, while 

COBI has been recommended to only boost ATV and DRV (GESIDA: 

http://gesida-seimc.org/category/guias-clinicas/antirretroviral-vigentes/, 

date accessed: February 2018). This is due to the fact that RTV is a potent 

inhibitor of the CYP3A4 isozyme, the primary enzyme involved in the 

metabolism of most PIs. Thus, this drug reduces the metabolism of 

concomitantly administered PIs, resulting in an increase in absorption and 

prolongation of the half-life, enabling the use of the PI in lower doses and 

dosing frequency (Boffito 2006;Zeldin and Petruschke 2004).  

Metabolic abnormalities are the major side effects associated with 

the use of PIs, including lipodystrophy, insulin resistance, hyperglycemia, 

metabolic syndrome, and dyslipidemia. Thus, its long-term usage may lead 

to cardio-metabolic dysfunction (Coffinier et al., 2008;Reyskens et al., 2013). 

ATV and DRV, are associated with fewer side effects in comparison with the 

others PIs (Lv et al., 2015).  

1.2.5.4. Integrase strand transfer inhibitors 

This antiretroviral class is the most recently produced, being 

raltegravir (RAL) the first integrase strand transfer inhibitor (INSTI) 

approved by the FDA in 2007 (Temesgen and Siraj 2008). INSTIs catalyze the 

formation of covalent bonds between the host and viral DNA, which blocks 

the virus integrase enzyme and avoids the incorporation of viral DNA into 

the host chromosome. Concretely, INSTIs selectively inhibit the strand 

transfer reaction, hence its name (Arts and Hazuda 2012;Pau and George 
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2014). Both GESIDA and EACS approve the use of three INSTIs: RAL, 

dolutegravir (DTG) and elvitegravir (EVG). A fourth drug, bictegravir (BIC), 

is currently in the process of being approved (GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018; EACS: http://www.eacsociety.org/guidelines/eacs-

guidelines/eacs-guidelines.html, date accessed: February 2018). This 

antiretroviral class has a potent antiviral activity and it is generally well 

tolerated. For this reason, INSTIs are included in the recommended 

treatment naive patients. EVG is administered with COBI, as it needs to be 

enhanced (Pau and George 2014) (GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018).  

The three currently approved INSTIs are generally well tolerated in 

both treatment-naive and treatment-experienced patients, being headache 

and gastrointestinal effects the most frequent adverse events (Lee and Carr 

2012). 

1.2.5.5. CCR5 antagonists 

Maraviroc (MVC) is the only CCR5 antagonist approved for clinical 

use in patients infected with R5-tropic HIV-1 (GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018; EACS: http://www.eacsociety.org/guidelines/eacs-

guidelines/eacs-guidelines.html, date accessed: February 2018). MVC, as 

CCR5 antagonist, binds to human CCR5 receptor on the cell membrane, then, 

inhibits the interaction of the HIV gp120 and the CCR5 receptor for CCR5-

tropic HIV. Nevertheless, MVC is not able to block viral entry of CXCR4 tropic 

HIV or HIV that uses both CCR5 and CXCR4 for cell entry (Pau and George 

2014). For this reason, MVC must be prescribed exclusively in patients with 
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infection with HIV-1 strains that are R5-tropics. The HIV-1 tropism is 

analyzed by genotypic methods, which determine the sequence of the V3 

region of the viral envelope (gp120) (GESIDA: http://gesida-

seimc.org/category/guias-clinicas/antirretroviral-vigentes/, date accessed: 

February 2018). An important disadvantage of MVC is that co-receptor usage 

may change along HIV infection, thus, the tropism of HIV-1 should be 

measured before starting treatment and also when a treatment failure occurs 

with an antagonist of CCR5 (Pau and George 2014). MVC is extensively 

metabolized by CYP3A4, thus, MVC needs a dose adjustment when 

administered with agents that modulate the activity of CYP3A4 (Abel et al., 

2009). Because of this drug interaction, the need for testing the HIV tropism 

and the discomfort of twice per day usage, MVC is not commonly used in 

clinical practice (Pau and George 2014;Tremblay et al., 2013). In addition, 

clinical trials have reported adverse effects of MVC, such as upper respiratory 

tract infections, allergic reactions, fever, hepatotoxicity, and cardiovascular 

disorders (AIDSinfo website from the USA Department of Health and Human 

Services: https://aidsinfo.nih.gov/drugs/408/maraviroc--hiv-

treatment/0/patient, date accessed: February 2018). 

1.2.5.6. Fusion inhibitors 

Enfuvirtide (ENF) is the only fusion inhibitor approved for use in 

HIV-infected patients (GESIDA: http://gesida-seimc.org/category/guias-

clinicas/antirretroviral-vigentes/, date accessed: February 2018; EACS: 

http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html, 

date accessed: February 2018). The fusion inhibitor ENF binds to gp41 and 

prevents its conformational change necessary for the fusion of the viral and 

cellular membrane, therefore, inhibiting viral entry into host cells (Matos et 

al., 2010). A disadvantage of this agent is that it is only available in an 
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injectable formulation and needs to be administered twice daily. Thus, most 

patients have injection site reaction such as pain, erythema, induration, etc., 

along with the discomfort of this type of administration. Concerning side 

effects, clinical trials have reported an increase in the incidence of 

pneumonia in HIV-infected patients under ENF (Pau and George 2014) 

(EACS: http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-

guidelines.html, date accessed: February 2018). 

1.2.6. Metabolic alterations in HIV-infected patients 

1.2.6.1. Effects of HIV infection per se on metabolism 

It was demonstrated that HIV itself is associated with a state of 

persistent inflammation and immune activation, metabolic abnormalities, 

and vascular dysfunction (Beltran et al., 2015). In general, HIV infection leads 

to the activation of various inflammatory pathways, causing the release of 

cytokines. Several of these cytokines cause endothelial activation and alter 

its functionality. Moreover, HIV causes direct endothelial cell damage, 

increasing endothelial permeability, promoting apoptosis and increasing the 

expression of adhesion molecules (E-selectin, vascular cell adhesion 

molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1)). HIV 

infection also produces an increase of various activation markers on 

monocytes/macrophages (sCD163, sCD14, and CD14+/CD16+ monocyte 

expansion) (Beltran et al., 2015;Dhawan et al., 1997;Jia et al., 2001;Oshima 

et al., 2000;Ren et al., 2002) (reviewed by Beltran et al., 2015). Furthermore, 

HIV blocks the adenosine triphosphate-binding cassette transporter A1 

(ABCA-1) pathway, suppressing reverse cholesterol transport from arterial 

wall macrophages to HDL particles, leading to cholesterol accumulation and 

promoting conversion of macrophages into foam cells within atherosclerotic 

plaques. Also, HIV promotes atherogenesis decreasing HDL cholesterol and 
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its major protein component, knows as apolipoprotein A1, which 

participates in lipid metabolism. HIV also decreases LDL particle clearance, 

as well as increases triglycerides and VLDL cholesterol  (Beltran et al., 

2015;Grunfeld et al., 1992;Norata et al., 2011;Rose et al., 2008) (reviewed by 

Beltran et al., 2015). Moreover, HIV causes oxidative stress, altering the 

mechanisms of DNA repair and leading to the accumulation of oxidative DNA 

damage (Aukrust et al., 2005). 

As it was previously mentioned, HIV induces BT that causes 

proinflammatory cytokines secretion and immunoactivation, leading to the 

development of a chronic inflammatory state with deleterious effects on 

health (Miedema et al., 2013;Nasi et al., 2014;Sandler and Douek 2012). 

Thus, it was suggested that BT can be a predictor of disease progression, poor 

immune restoration, and non-AIDS morbidity (such as atherosclerosis, 

dyslipidemia, and insulin resistance), regardless of viraemia (Kelesidis et al., 

2012;Pedersen et al., 2013).  

1.2.6.2. Effects of cART on metabolism 

The introduction of cART in HIV-infected patient significantly 

reduced the HIV-related morbidity and mortality, and consequently, survival 

rates and quality of life increased in patients with access to this treatment 

(Krentz et al., 2005;Pacheco et al., 2009). Thus, HIV infection became a 

chronic disease that requires life-long treatment. However, the prolonged 

use of the antiretroviral drugs are associated with the development of long-

term toxicities, as previously mentioned, such as insulin resistance, 

osteoporosis, lipodystrophy, dyslipidaemia, hyperglycaemia, hypertension, 

and cardiovascular disease (CVD) besides of kidney and bone toxicities 

(Obirikorang et al., 2016;Wu et al., 2012). Moreover, as life-expectancy 

increased, these patients are exposed to the effects of “aging” itself (Paula et 
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al., 2013). In fact, treated HIV patients show signs of premature and 

accelerated aging. The acceleration of the aging process of the immune 

system leads to immunosenescence, which is characterized by continuous 

activation of the immune system and a low-grade inflammation. Thus, 

patients are predisposed to co-morbidities and natural aging symptoms 

more frequently seen in elderly people in the general population. Therefore, 

HIV patients have higher rates of CVD, non-AIDS cancers, frailty (loss of 

muscle mass, osteoporosis, and muscle weakness), kidney or liver disease, 

and neurologic complications (such as dementia) compared to uninfected 

subjects (Alejos et al., 2014;Choi et al., 2009;Deeks et al., 2012;Desquilbet et 

al., 2007;Negredo et al., 2017;Smith et al., 2012;Triant et al., 2007).  

The chronic inflammatory state due to HIV virus infection along with 

the prolonged use of the antiretroviral drugs, especially those that affect the 

mitochondria, could lead to the development of different metabolic 

alterations such as the well-known HIV-associated lipodystrophy syndrome 

(HALS). This syndrome is characterized by a loss and/or accumulation of fat 

and called as lipohypertrophy (fat accumulation on the abdominal area), 

lipoatrophy (fat reduction in peripherical regions), and/or mixed 

lipodystrophy (association of lipoatrophy with lipohypertrophy) (Sacilotto 

et al., 2017). As previously stated, NRTIs are known to inhibit the 

mitochondrial DNA polymerase and, therefore, contributes to mitochondrial 

toxicity, apoptosis and loss of adipose mass. Besides NRTIs, PIs can also cause 

severe mitochondrial damage by increasing oxidative stress and diminishing 

mitochondrial function, which increase apoptosis, and, therefore, could also 

lead to the development of HALS (Obirikorang et al., 2016;Perez-Matute et 

al., 2013;Wu et al., 2012). Although older NRTIs were associated with 

mitochondrial toxicity and other alterations in adipose tissue, fortunately, 

this is nowadays less common thanks to the clinical advances achieved in the 
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development of ARTs (Margolis et al., 2014). However, the persistent 

immune activation and chronic inflammation, as well as the usage of PIs, 

have been nowadays associated with the development of metabolic 

syndrome (MS) in HIV patients (Nasi et al., 2017;Swami 2016). MS is a 

collection of cardiometabolic risk factors including obesity, hypertension, 

dyslipemia, and insulin resistance, increasing the risk for CVD and type 2 

diabetes mellitus (Roberts et al., 2013). The prevalence of MS in HIV-infected 

people has become quite similar than that reported for the general 

population with no HIV-infection (Nguyen et al., 2016). In fact, the 

prevalence of MS in HIV-infected patients ranges from 7–47 % depending on 

the MS definition and the study design used, but in all causes, the presence of 

this syndrome should be taken into account when designing health 

strategies, since the presence of MS per se or its separate components could 

be responsible for an increased cardiovascular risk in these patients and for 

a significant reduction of their quality of life (Naidu et al., 2017;Worm and 

Lundgren 2011).  

1.2.6.3. In vitro and in vivo models to study the effect of different 

antiretroviral drugs on metabolism 

RAL and DRV antiretroviral drugs are known to be effective options 

for both antiretroviral-naive and experienced patients, with few reported 

side effects. For this reason, our group became interested in the study of the 

molecular mechanisms that could explain the lack of toxicity of RAL and DRV 

in metabolism. For this purpose, an in vitro model was used, particularly 3T3-

L1 adipocytes (derived from mice). The INSTI RAL showed the absence of 

siginificant actions on adipogenesis and glucose and lipid metabolism in 

adipocytes, which could explain, at least in part, the neutral metabolic effects 

of RAL in clinical studies (Perez-Matute et al., 2011). These results were in 
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line with other studies in which RAL did not show any deleterious effects in 

both 3T3-L1 adipocytes and human adipocytes (Minami et al., 2011;Moure 

et al., 2016). On the other hand, the PI DRV showed minimal effects on mature 

adipocyte metabolism. Concretely, it was observed that DRV decreased in 

lipolysis, glucose uptake, and lactate production at the highest concentration 

used (50 μM:). As this drug needs to be boosted, the effect of co-treatment 

with RTV was also analyzed, and it was observed that co-treatment with RTV 

did not induce any further effects on lipolysis and glucose metabolism. 

Hence, the study carried out by our group suggested that the decrease in 

lipolysis observed after DRV treatment could explain, at least in part, the 

lower plasma lipids observed in patients under DRV/r treatment in 

comparison with other drugs. In addition, the lack of effects of RTV co-

treatment on glucose and lipid metabolism emphasizes the safety of this 

treatment (Perez-Matute et al., 2012). Similar results were observed by the 

group of Capel et al., (2012), although they observed a modestly altered 

differentiation of murine and human adipocytes, but also a disturbed 

mitochondrial function when associated with RTV (Capel et al., 2012). 

Our group also investigated the effect of MVC on a mouse model of 

diet-induced obesity. The reason for this was because MVC blocks CCR5 that 

has as natural ligand the proinflammatory molecule CCL5 (also known as 

RANTES), which is an important chemoattractant for inflammatory cells. 

RANTES has been implicated in several pathologies, including 

atherosclerosis, liver fibrosis, obesity and cancer (Berres et al., 2010;Blanco 

and Ochoa-Callejero 2016;Huber et al., 2008;Veillard et al., 2004). Our group 

demonstrated that block CCR5 in mice fed with a HFD was associated with 

beneficial effects at adipose and hepatic level. Specifically, the addition of 

MVC in the drinking water in a mouse model of diet-induced obesity was able 

to counteract the increase in body weight, hepatic triglycerides and 
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ameliorate the development of hepatic steatosis when compared to 

untreated mice on a HFD (Perez-Martinez et al., 2014;Perez-Martinez et al., 

2018). Moreover, in vivo studies showed that MVC is able to decrease adipose 

tissue inflammation in mice on a HFD by decreasing adipose tissue 

macrophage recruitment (Perez-Matute et al., 2017). Interesting data have 

been also obtained with MVC from other studies using murine models 

designed to prevent or treating atherogenesis, or pulmonary arterial 

hypertension, or hepatocellular carcinoma or breast cancer, among others 

(Amsellem et al., 2014;Cipriani et al., 2013;Ochoa-Callejero et al., 

2013;Velasco-Velazquez et al., 2012).  

1.2.7. Coinfection with hepatotropic viruses 

The routes of HIV transmission are similar to some of the 

hepatotropic viruses such as hepatitis C (HCV) and hepatitis B (HBV). The 

risk of coinfection with these pathogens is related to a faster progression of 

hepatic injury. There are five unrelated hepatotropic viruses: hepatitis A 

(HAV), HBV, HCV, hepatitis D (HDV), and hepatitis E (HEV). Nowadays, HEV 

is the main cause of acute hepatitis in the world, while HBV and HCV are the 

main causes of chronic hepatitis, cirrhosis and hepatocarcinoma. To date 

there is an increase in the number of cases of acute HAV infection among 

MSM (Kamar et al., 2014;Kokki et al., 2016;Rodriguez-Tajes et al., 2018) 

(CDC: www.cdc.gov, date accessed: February 2018; WHO: 

http://www.who.int/csr/don/07-june-2017-hepatitis-a/en/, date accessed: 

April 2018). Most of studies are focused on HIV coinfected patients with HCV 

and HCB. The prevalence of active HCV has improved in our environment 

with the actual effective treatments, which fell from 34% in 2009 to 11.7% 

in 2016 (Berenguer et al., 2018). The global prevalence of HBV coinfection is 

7.4% (WHO: http://www.who.int/mediacentre/factsheets/fs204/en/, date 
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accessed: April 2018). Although the impact of HCV or HBV on HIV remains 

unclear, it was demonstrated that HIV accelerates the natural course of HBV 

and HCV infection, leading to a faster progression of liver disease to cirrhosis 

and hepatocellular carcinoma. Regarding HCV-infected patients, it was 

observed that HIV infection increases levels of HCV viraemia by 2- to 8-fold, 

resulting in a significant decrease in spontaneous recovery of acute hepatitis 

(Luetkemeyer 2010;Soto et al., 1997). The advent of cART increased the life 

expectancy of HIV-infected patients, and, consequently, liver disease 

emerged as the major cause of mortality and morbidity in those HIV patients 

coinfected with hepatotropic viruses (Sulkowski 2008). 

The last years have been crucial in the fight against HCV. Few years 

ago, physicians only had therapies based on the combination of weekly 

pegylated interferon-α and daily doses of ribavirin to treat this infection. The 

efficacy of these therapies was not higher than 50%, and their mechanism of 

action was not direct against the virus, but was based on enhancing the 

immune system. In 2011, the arrival of the first generation direct-acting 

antiviral agents and more recently the ability of the new ones agents have 

change the natural history of the infection since we can eliminate HCV in 

more than 95% of the treated infected people. Unlike the previous therapies, 

these new regimens cause fewer side effects and they require a shorter 

duration (Barth 2015;Pawlotsky et al., 2015). Regarding HBV, there is a safe 

vaccine, which prevents HBV infection by immunization with 90%–95% 

effectiveness (Chang and Chen 2015). However, there are no effective 

treatments for eliminating HBV as occurs in HCV infection. Chronic hepatitis 

B infection can be treated with oral antiviral agents, including entecavir or 

tenofovir. Both agents provide sustained suppression of HBV replication and 

clinical benefit in most HBV-infected patients (Soriano et al., 2017) 

(www.who.int/en, date accessed: January 2018). 
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The pathogenic effects associated with HBV and HCV co-infections 

are highly variable ranging from acute (including fulminant hepatic failure in 

HBV infection) to chronic hepatitis, cirrhosis, and hepatocellular carcinoma 

(Liang 2009;Nakamoto and Kaneko 2003). Thus, the normal liver 

architecture is lost by the excessive accumulation of extracellular matrix 

proteins including collagen, leading to fibrosis progression and subsequent 

cirrhosis (Bataller and Brenner 2005). However, the effect of HBV and HCV 

seems not to be limited to liver and also results in failure in immunological 

recovery in HIV-infected patients despite cART (Bhaumik 2015). It is 

important to mention the strong relationship between the liver and the 

intestine, which is termed as gut-liver axis. This linkage is characterized by 

bidirectional traffic, for instance, the transport of nutrients and other signals 

from the intestinal lumen to the liver through the portal circulation, and the 

release of bile acids secreted by hepatocytes into the small intestine through 

the biliary tract that have direct effects on bacteria, causing damage to the 

bacterial DNA (Poeta et al., 2017;Szabo 2015). Under normal conditions, the 

integrity of the intestinal epithelium and the regular control of the immune 

system in the intestine reduce the passage of bacterial products to the liver 

through the portal system. In turn, the liver as the second largest immune 

organ in the body hosts a large amount of immune cells, maintaining a “state 

of immune tolerance” in the absence of inflammation. In the presence of an 

alteration in GM composition and an alteration in the intestinal epithelium 

integrity, a greater BT occurs. These bacteria and bacterial products can 

reach the liver through the portal circulation, disrupting the state of immune 

tolerance and promoting liver inflammation. The passage of bacteria and 

bacterial products to the liver leads to the activation of immune cells and, as 

consequence, proinflammatory cytokines are produced, which, in turn, could 

increase further intestinal permeability, creating a vicious cycle (Arab et al., 
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2017;Poeta et al., 2017;Szabo 2015). Thus, because of the liver damage 

caused by these viruses have effects on GM “in both directions”, coinfection 

with hepatotropic viruses is a factor that must be considered when 

microbiota is described in coinfected HIV patients.  

1.2.8. Microbiota & HIV infection 

1.2.8.1. Alterations of microbiota in blood, semen and vagina in HIV-

infection 

For a long time it was assumed that the human plasma of healthy 

individuals was sterile, however, some groups observed numerous bacteria 

in blood culture from healthy participants (Damgaard et al., 

2015;McLaughlin et al., 2002;Nikkari et al., 2001). This has been confirmed 

by a recent metagenomic study carried out in different fractions of the blood 

(buffy coat, plasma and red blood cells) from healthy volunteers, in which 

they observed a diversified microbiome that differs between blood fractions 

and donors. Concretely, Paisse et al., (2016) found a dominance of 

Proteobacteria (more than 80%) and Actinobacteria (6.7%-10% depending 

on the fraction), which differs dramatically from the phyla predominant in 

the gut (Firmicutes and Bacteroidetes) (Paisse et al., 2016;Turnbaugh et al., 

2006). Thus, bacterial DNA can be found in the blood of healthy and 

immunocompromissed patients (Oteo et al., 2017). Regarding HIV-infected 

patients, Li, et al., (2012) found that the amount of bacterial DNA in blood 

was lower in healthy controls than in HIV-infected patients without receiving 

cART, being the bacteria belonging to the Pseudomonadales order the 

predominant component in HIV patients. Moreover, they found that the 

bacterial elements found in blood were very similar than those living in the 

gut, suggesting BT (Li et al., 2012). The study by Merlini et al., (2011) 
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observed that the polymicrobic flora circulating in peripheral blood in HIV-

infected patients is not markedly modified by a cART (Merlini et al., 2011).  

Apart from blood, HIV could also be transmitted through semen and, 

to our knowledge, only one group has analyzed the semen microbiome and 

its relationship with local immunology and viral load in HIV infection. Liu et 

al., (2014) have observed that Streptococcus, Corynebacterium, and 

Staphylococcus are common semen bacteria, regardless of HIV status. 

Ureaplasma was the more abundant genus belonging to Mollicutes class in 

HIV-uninfected men, while Mycoplasma dominated after HIV infection. They 

also found that HIV infection was associated with decreased semen 

microbiome diversity and richness, which were restored after six months of 

cART. In addition, semen bacterial load of HIV-infected patients correlated 

with several pro-inflammatory semen cytokines (including IL-6, TNFα, and 

IL-1b) and with semen HIV viral load, which could suggest that semen 

microbiome has a role in HIV sexual transmission. (Liu et al., 2014). 

Regarding the female reproductive tract, the mucosal immune 

system of this region is one of the first lines of defenses against HIV-infection 

and other pathogens (Vitali et al., 2017). Lying superficial to the epithelial 

cells of the vaginal tract is the microbiota, which exists in a symbiotic 

relationship with the female host. This vaginal microbiota living on the 

mucus layer helps to inactivate the HIV by secreting H2O2 or by decreasing 

the pH of the environment, among other mechanisms (Haase 2005). In fact, 

lactic acid and SCFAs produced by vaginal microbiota have reported 

antimicrobial and immune modulatory activities indicating their potential as 

biomarkers of disease and/or disease susceptibility (Aldunate et al., 2015).  

The current concept of a “healthy” vaginal microbiota includes that 

dominated by only one or two species, the most common of which are 
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Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii and 

Lactobacillus gasseri. These bacteria are known to be the most common 

dominant species in the vaginal microbiome of Caucasian, Asian, Black and 

Hispanic women (Huang et al., 2014). However, alterations of diet, 

inflammation, menstrual cycle, usage of hormonal contraceptives and 

infection with other viruses (HPV (Human papillomavirus) or HSV (Herpes 

simplex virus)) can affect the composition and activity of the vaginal 

microbiota, which may enhance the chance of HIV infection (Murphy et al., 

2014). Bacterial vaginosis is a symptomatic clinical condition characterized 

by a significant reduction of Lactobacillus (L. iners and L. crispatus) 

populations and overgrowth of anaerobes such as Prevotella bivia and 

Lachnospiraceae (Hummelen et al., 2010). Although bacterial vaginosis has 

been consistently linked to increased susceptibility to HIV-infection (Atashili 

et al., 2008;Hummelen et al., 2010;Schellenberg et al., 2012), it is becoming 

increasingly clear that a lower bacterial diversity, even in the absence of 

bacterial vaginosis, might also confer greater susceptibility to disease 

(Anahtar et al., 2015;Gosmann et al., 2017;Jespers et al., 2017). Concerning 

cART, it was observed that certain microbiota present in female genital tract 

decreased the vaginal antiretroviral drug concentrations in HIV-infected 

women. Hence, optimizing antiretroviral concentrations used for biomedical 

HIV prevention in women could be necessary in some cases (Donahue et al., 

2017). 

1.2.8.2. Alterations of microbiota in oral cavity and airway in HIV-

infection 

It was demonstrated that HIV-infection is associated with alterations 

in the microbiota of the respiratory tract (Lawani and Morris 2016;Twigg et 

al., 2017). Most of the studies focused on lung microbiota derived from the 
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Lung HIV Microbiome Project (LHMP) (https://lhmp.bsc.gwu.edu/) (Cui et al., 

2014). This project was driven by the recognition that pulmonary 

complications continued to be a major causes of morbidity in HIV-infected 

individuals even in the era of cART (Grubb et al., 2006). To date, evidence 

suggests that lung microbiota in HIV-infected individuals with preserved 

CD4 counts is similar to uninfected individuals. However, in individuals with 

more advanced disease present an altered alveolar microbiota characterized 

by a loss of richness and diversity, but an increase in beta diversity 

differences between individuals. These differences decline with cART, but 

even after effective therapy the alveolar microbiota in some HIV-infected 

individuals contain increased amounts of characteristic bacteria, some of 

which have been previously associated with chronic lung inflammation 

(Twigg et al., 2017). Despite these findings, other studies have failed to find 

out such differences in lung microbiota when comparing non-HIV infected 

individuals and HIV-infected patients (Beck et al., 2015). A very recent study 

has suggested that microbial communities and their interactions with the 

host may have functional metabolic impact in the lung (Cribbs et al., 2016). 

However, more studies are needed in order to have a profound knowledge of 

the influence of such microbiota on HIV-associated complications. 

HIV-infection has also been associated with a variety of oral 

manifestations and oral microbiota has been suggested to be involved in such 

HIV-related complications (Li et al., 2014;Moyes et al., 2016). Thus, Dang et 

al., (2012) observed a shift of microbial composition in the lingual region, 

which was related to the viral load in early-stage HIV patients (Dang et al., 

2012). ART has also significant effects on salivary microbial colonization (Li 

et al., 2014). In addition, a recent study has also observed that the site of 

collection of oral microbiota could be determinant, as plaque and saliva 

showed a distinct microbial composition, and, only in saliva, minor but 
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significant differences were observed when compared non-HIV infected 

patients with HIV-infected patients (Kistler et al., 2015). Thus, there is still 

lot of work to do in order to standardize the best sample to analyze and in 

which conditions to provide clinical significance. 

1.2.8.3. Gut microbiota composition in HIV infection 

As previously mentioned, HIV infection is associated with 

disturbances at intestinal level. In this context, several studies have 

described the main changes that occur in gut in HIV-infected patients, more 

specifically on GM, as a way to develop new strategies to reduce 

inflammation and, therefore, to improve HIV-associated immune 

dysfunction and associated pathologies (excellent reviews such as Ziberman-

Schapira et al., (2016); Dubourg et al., (2017); Dillon et al., (2016); Tincati et 

al., (2016); El-Far and Tremblay (2018)) (Dillon et al., 2016;Dubourg et al., 

2017;El-Far and Tremblay 2018;Tincati et al., 2016;Zilberman-Schapira et 

al., 2016).  

1.2.8.3.1. Bacterial diversity/richness 

HIV infection has been mostly associated with a reduced bacterial 

diversity in gut (McHardy et al., 2013;Mutlu et al., 2014;Nowak et al., 2015). 

However, some authors did not find differences in bacterial diversity when 

comparing healthy controls with untreated HIV-infected patients 

(HIV+(naive)) and under cART (HIV+(cART) (Dillon et al., 2014;Dinh et al., 

2015;Ling et al., 2016;Vujkovic-Cvijin et al., 2013), whereas Lozupone et al., 

(2013) observed a significant increase in HIV+(naive) compared to those 

under cART (Lozupone et al., 2013). A study carried out in stomach fluid also 

observed a reduced bacterial diversity in HIV-infected people (von 

Rosenvinge et al., 2013). Therefore, more studies with a greater number of 
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patients are needed to better understand what is happening and to associate 

these findings with the inflammatory-associated alterations observed in HIV-

infected patients (Tables 1 and 2). 
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Table 2. Other metagenomic studies focused on microbial diversity. 

Author Sample Control HIV+ α-diversity 

Gastrointestinal tract 

Yu et al., 
(2014) 

2 rectal swab 
(1-5 weeks) 

32 samples 1 
41 samples 2 

41 

No significant differences 
were found when 

examining sample 1 
Reduced alpha diversity in 

sample 2 

Noguera- 
Julian et 
al., (2013) 

Stool 57 296 
Decreased alpha diversity 
in HIV+ patients compared 

to negative individuals 

Von 
Ronsenvin
ge et al., 
2013 

Stomach fluid 21 4 Reduced bacterial diversity 
in HIV-infected people 

Brain 

Branton et 
al., (2013) Brain tissue 6 4 No significant differences 

were found among groups 

Genital site 

Gosmann 
et al., 
(2017 ) 

Recto- cervical 
swab 205 31 

HIV acquisition is 
Increased in women with 

high- diversity, low 
Lactobacillus abundance 

1.2.8.3.2. Microbial Composition 

Several studies have observed a characteristic profile in HIV-infected 

patients (untreated chronic infection) compared to a control/non-infected 

population. In general terms and as summary, depletion in Clostridia class 

and Bacteroides spp., an overgrowth of Enterobacteriaceae, and an increase 

in the genus Prevotella have been largely observed in HIV-infected patients 

(reviewed by Dubourg et al., (2017)) (Dubourg et al., 2017).  
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Concerning specific alterations in microbiota in the right colon and 

terminal ileum, the study of Mutlu et al., (2014) showed that HIV-patients 

under ART presented loss of commensals as well as a gain of some 

pathogenic bacterial taxa compared to uninfected controls (Mutlu et al., 

2014). It is important to mention that HIV-infected men with lower markers 

of BT, higher CD4+ T lymphocytes and lower viral loads before ART intake 

showed higher proportions of Lactobacillales in distal gut. During ART, 

higher proportions of gut Lactobacillales were associated with higher CD4, 

less BT, less systemic immune activation and less T lymphocyte proliferation, 

and higher CD4+ T lymphocytes in the gut (Perez-Santiago et al., 2013), 

corroborating the role of Lactobacillales in HIV-infection in distal gut, 

similarly to what was observed in the female genital tract. Finally, among 

species belonging to the Bacteroides genus, Bacteroides fragilis, which has 

been found to be significantly reduced in rectosigmoid biopsies (Vujkovic-

Cvijin et al., 2013) as well in colon biopsies of HIV-infected patients (Dillon 

et al., 2014), may also play a key role in the adaptive immune system, since it 

was demonstrated that this bacteria exerts immune-regulatory effects (Deng 

et al., 2016;Round and Mazmanian 2010). 

Regarding fecal microbiota, Lozupone et al., (2013) observed that 

HIV+(naive) patients had a higher abundance of Prevotellaceae (Prevotella), 

Erysipelotrichaceae (Catenibacterium and Bulleidia), Veillonellaceae 

(Dialister and Mitsuokella), Clostridium cluster XIII and the genus 

Desulfovibrio compared with a non-HIV-population. In contrast, the control 

population had higher amounts of Bacteroidaceae (Bacteroides), 

Rikenellaceae (Alistipes), and Porphyromonadaceae (Parabacteroides) than 

HIV-infected patients (Lozupone et al., 2013). Similarly, a pilot study 

observed, through real-time PCR, an increase in the proportion of 

Enterobacteriales and Bacteroidales in naive HIV patients with respect to a 
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control population and demonstrated important associations between this 

different bacterial composition and systemic immunity parameters in the 

HIV-infected patients (Ellis et al., 2011). 

More recent studies have shown a greater abundance of 

Proteobacteria phylum (which promote inflammation) and, on the contrary, 

a lower abundance of Bacteroidia class (known to limit inflammation) in 

naive HIV patients, which has been associated with increased cell activation 

T, a lower secretion of lymphocytes IL-17/IL-22 and a greater presence of 

inflammatory markers (Vujkovic-Cvijin et al., 2013). A very recent study has 

also observed that a lower abundance of several Bacteroides species 

influence and impair the functions of the invariant natural killer T cells which 

are known to limit BT and chronic pathologic immune activation in HIV-1 

infection (Paquin-Proulx et al., 2017). In addition, among the Bacteroidales, 

the Rikenellaceae family was reported to be decreased during HIV infection 

and the genus Alistipes seems the most affected although these data have not 

been interpreted yet (Dubourg et al., 2017).  

The study by Dillon et al., (2014) also found a greater presence of 

Proteobacteria and, on the contrary, a lower abundance of Firmicutes in 

naive HIV patients (Dillon et al., 2014). Among the Firmicutes phyla, 

particular consideration had been given during the last years to 

Faecalibacterium prausnitzii, an obligate anaerobe belonging to 

Lachnospiraceae family with known anti-inflammatory properties. 

Depletion of Lachnospiraceae has been reported during HIV infection (Dillon 

et al., 2014;McHardy et al., 2013;Mutlu et al., 2014).  

Mutlu et al., (2014) showed that GM from HIV-infected patients was 

enriched with a number of potentially pathogenic bacteria such as Prevotella 

as previously mentioned, and, in contrast, has poor content of the commensal 
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Bacteroides, similarly to what was observed by McHardy et al., (2013) 

(McHardy et al., 2013;Mutlu et al., 2014). In the same line, Gori et al., (2008) 

reported the predominant opportunistic pathogens in fecal flora of HIV-

infected patients. Candida albicans and Pseudomonas aeruginosa were over-

represented in the early stage of the infection. On the other hand, the 

abundance of protective bacteria, such as Bifidobacteria and Lactobacilli, 

were decreased when compared with healthy persons (Gori et al., 2008).  

A recent study carried out in a Chinese population has observed that 

the Firmicutes/Bacteroidetes ratio is increased in HIV patients (naive and 

under ART) with respect to an uninfected population (Ling et al., 2016). 

Furthermore, HIV+ elite controllers (those that have the capacity to control 

viraemia in absence of ART) have enriched genera such as Succinivibrio, 

Sutterella, Rhizobium, Delftia, Anaerolum and Oscillospira but depleted in 

Blautia and Anaerostipes (Vesterbacka et al., 2017).  

Some contradictory results have arisen, especially those observed 

with respect to the Prevotella genus. Thus, while some studies have observed 

a significant increase in the abundance of this genus in patients with chronic 

HIV infection, other studies have not observed it (Nowak et al., 

2015;Vazquez-Castellanos et al., 2015;Vujkovic-Cvijin et al., 2013). This may 

be due, among other factors, to the different methodology used (PCR vs. 

massive sequencing of the 16s and the region chosen from 16s) and to the 

characteristics of the population (recent infection vs. chronic vs. naive or low 

ART).  

Recent studies have also highlight the idea that other factors such as 

sexual orientation or the mode of transmission can also contribute to the 

different composition of GM in HIV-infected patients and could contribute to 

the lack of agreement in some of these studies (Noguera-Julian et al., 
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2016;Volpe et al., 2014;Yu et al., 2014). Thus, the impact of HIV on GM has to 

be deeply investigated but from a broader context, including different 

cultures, diets and lifestyles, in order to avoid confounding factors. 

Although all results mentioned above contributed to a better 

understanding of the presence of key microbes at different sites in HIV/AIDS 

disease progression, the greatest efforts have been carried out in the study 

of GM in HIV-infection. 

1.2.8.3.3. Influence of cART in gut microbiota 

Today, very few studies have analyzed the effects of cART on BT and 

GM composition. Costinuik and Angel (2012) observed that intestinal 

damage as well as BT are partially, but not completely, restored after cART 

(Costiniuk and Angel 2012). In fact, it has been observed that both the so-

called "partial responders" and those designated as "non-responders" (do 

not reach 250 CD4+) have similar plasma levels of LPS and sCD14 after 12 

months on cART and also without cART (Merlini et al., 2011). Several relative 

abundances for long-term HIV individuals have been shown to return to 

levels comparable to HIV uninfected subjects such as for Peptococcus, 

Catenibacterium, or Desulfovibrio spp, whereas those of Bacteroides or 

Prevotella were more similar to those of untreated patients (Lozupone et al., 

2013), although, the results regarding Prevotella are not conclusive 

(Lozupone et al., 2013;Nowak et al., 2015). 

Despite these studies, little attention has been paid to the impact of 

distinct classes of antiretroviral drugs on microbiota in order to investigate 

which combinations are the best to restore the HIV-associated dysbiosis. Our 

group carried out a pilot study in an animal model of obesity where the 

effects of MVC were analyzed. This antiretroviral was able to induce several 
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changes in the abundance of the main bacterial orders present in the 

gastrointestinal tract (Perez-Matute et al., 2015). Focused on HIV-infected 

individuals, only two research groups have evaluated the effects of distinct 

antiretrovirals combinations rather than ART as a whole (Pinto-Cardoso et 

al., 2017). The study of Nowak et al., (2015) addressed the role of NNRTIs vs. 

PIs on GM composition, although no differences were observed (Nowak et al., 

2015). However, the study of Pinto-Cardoso et al., (2017) observed that 

patients under PIs showed significantly higher levels of the BT marker sCD14 

compared to non-infected subjects. At the taxonomic level, they observed 

slight differences between treated HIV individuals on either EFV or PI-based 

antiretroviral regimens and HIV-uninfected participants (Pinto-Cardoso et 

al., 2017). Surprisingly and to our knowledge, no studies have analyzed the 

effect of INSTI-based regimens, which are recommended as initial therapy in 

the current guidelines (GESIDA: http://gesida-seimc.org/category/guias-

clinicas/antirretroviral-vigentes/, date accessed: February 2018; EACS: 

http://www.eacsociety.org/guidelines/eacs-guidelines/eacs-guidelines.html, 

date accessed: February 2018).  

1.2.9. Gut microbiota & coinfection with hepatotropic viruses 

Like HIV infection, several studies have demonstrated that HBV and 

HCV infections are associated with higher BT in comparison with non-

infected subjects. Several studies have showed a disturbed GM composition 

and BT in patients infected with HBV and HCV compared to non-infected 

individuals (Aly et al., 2016;Bajaj et al., 2016;Heidrich et al., 2018;Lu et al., 

2011;Wei et al., 2013). In fact, Sandler et al. (2011) observed higher plasma 

levels of the bacterial translocation markers LPS, intestinal fatty acid binding 

protein (I-FABP) (indicating enterocyte death), and sCD14, as well as of the 

inflammatory marker IL-6 in HCV- and HBV-infected individuals in 
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comparison with uninfected subjects (Sandler et al., 2011). Several works 

have analyzed the BT in HIV coinfected patients, although most of them were 

carried out in HIV/HCV-coinfected patients (French et al., 2013;Marchetti et 

al., 2014;Merchante et al., 2018;Nystrom et al., 2015;Sacchi et al., 

2015;Tudesq et al., 2017). In general terms, they have observed a higher 

bacterial translocation in these patients. However, to our knowledge there 

are no studies that analyze the GM composition of HIV co-infected patients 

in comparison with healthy subjects. 

1.2.10. Gut microbiota & metabolic syndrome 

Gut dysbiosis has been linked with chronic inflammation associated 

with several pathologies such as MS. In this context, either MS per se or its 

separated components have been associated with higher levels of BT 

(Gonzalez-Quintela et al., 2013;Sun et al., 2010). Some specific changes in the 

relative abundance of gut microorganisms have also been observed in non-

infected patients with MS (Lim et al., 2017) or in those subjects suffering 

from any of the components of this syndrome (reviewed by Festi et al., 

(2014), de Groot et al., (2017), Xiao and Zhao (2014)) (de Groot et al., 

2017;Festi et al., 2014;Xiao and Zhao 2014). However, some incongruent 

results have arisen from these studies, due to, among other factors, to the 

differences in the studied populations. Anyway, what is clear is that MS is 

accompanied by changes in GM composition in non-HIV patients. However, 

the association among HIV-infected patients with MS and GM composition 

has not been addressed yet. 
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 Several studies have confirmed that HIV infection has direct effects on gut 

microbiota composition. 

 

 An altered gut microbiota favours bacterial translocation and immune 

activation which leads to a chronic inflammatory state. HIV-related 

chronic inflammation is accompanied by an increased risk of developing 

several pathologies such as cardiovascular diseases, obesity and 

hyperlipidemia. 

 

 The resilience mechanisms are not able to restore gut microbiota 

composition and the inflammatory state and persist despite combined 

antiretroviral therapy (cART). 

 

 Current treatment for HIV infection (cART) is based on suppression of 

viral replication and restoration of the impaired immune system, which 

involves a significant reduction in the morbidity associated with HIV 

infection and a substantital prolongation of survival in these patients.  

 

 The actions of the current antiretroviral regimens on gut microbiota 

composition, bacterial translocation and the consequent inflammation 

have not been investigated in depth.  

 

 There are also other factors that might affect gut microbiota composition, 

such as the coinfection with hepatotropic viruses and the presence of 

metabolic syndrome.  
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3. Objectives 
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The main objective of this thesis was to analyze the effects of different 

antiretroviral treatments on gut microbiota composition of HIV-

infected patients with and without hepatitis C virus (HCV) coinfection 

and in presence/absence of Metabolic Syndrome.  

 

More specifically, the objectives were as follows: 

 

1. To analyze the long-term effects of different combinations of cART 

on bacterial translocation and gut microbiota composition in HIV-

infected patients.  

 

2. To assess the bacterial translocation and gut microbiota 

composition of HIV-infected patients coinfected with hepatotropic 

viruses (hepatitis C virus) in comparison with those mono-infected. 

 

3. To analyze the bacterial translocation, inflammation and gut 

microbiota composition of HIV-infected patients with metabolic 

syndrome in comparison with HIV patients without metabolic 

syndrome. 

 

4. To test the effects of Maraviroc on gut microbiota composition in a 

mouse model of diet-induced obesity/fatty liver.  

 





 

 

4. Material and 

Methods 

4.1. Human studies 

4.2. Animal study 
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4.1. Human study 

4.1.1. Patients recruitment 

Caucasian HIV-infected patients (HIV-1) from the Infectious Diseases 

Department at San Pedro´s Hospital (Logrono, Spain) as well as healthy (non 

HIV-infected) volunteers were recruited from September 2013 to April 2014. 

The group of HIV-infected patients included both untreated patients (naive) 

and those on cART for at least one year and with viral load <20 cop/mL for 

at least 6 months. All subjects on cART were immune responders. For both 

HIV-infected patients and controls, the following exclusion criteria were 

applied: <18 years old; pregnant women; patients treated with antibiotics, 

anti-inflammatory drugs, corticosteroids, immunosuppressive drugs or 

probiotics in the last 3 months; individuals with kidney, coeliac, or 

inflammatory disease, thyroid disorders, neoplasms, history of intestinal 

surgery (except appendectomy or cholecystectomy), inflammatory bowel 

diseases (IBD) (even if inactive), chronic pancreatitis, or any syndrome 

related to intestinal malabsorption. Patients receiving statins were also 

excluded because it was demonstrated that statin therapy could cause gut 

dysbiosis (Caparros-Martin et al., 2017;Nolan et al., 2017). 

As a clinical procedure at San Pedro´s Hospital, CD4+ and CD8+ T-cell 

counts and HIV viral load were measured using flow cytometry and COBAS 

TaqMan 48 Analyzer, respectively (Roche Molecular Systems Inc., 

Branchburg, New Jersey, USA). Similarly, viral load of HBV and HCV were 

quantified for possible coinfection, and, in case of coinfection, degree of liver 

fibrosis was measured by the non-invasive diagnostic method FibroScan 

(Echosens, Paris, France). The liver stiffness test was carried out by the 

physicians of the Infectious Diseases Department. The Fibroscan device was 

placed in an intercostal space near the right lobe of the liver, and a 50-MHz 
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wave passed through the liver from a small transducer. Then, the device 

measured the velocity of the shear wave as this wave passed into the liver (in 

meters per second). The more rapid the waves passed through the liver, 

more liver damage/stiffness showed the patient. Results of the 

measurements were converted to kilopascals (kPa) (Afdhal 2012). Patients 

were classified depending on liver fibrosis degree according to the METAVIR 

scoring system: F0: no fibrosis; F1: portal fibrosis without septa; F2: portal 

fibrosis and few septa; F3: numerous septa without cirrhosis; F4: cirrhosis 

or advanced fibrosis (Castera 2015).  

HIV-infected recruited people were classified according to the cART, 

the presence of metabolic syndrome or coinfection with hepatotropic viruses 

in order to answer the different objectives proposed in this thesis. Thus, 

different cross-sectional studies were performed using the same cohort of 

patients (i: classification based on type of antiretroviral treatment; ii: 

classification based on coinfection with hepatotropic viruses; iii: 

classification based on the presence/absence of metabolic syndrome) 

(Figure 13). 

This study was performed following the Helsinki Declaration and 

was approved by the Committee for Ethics in Drug Research in La Rioja 

(CEImLAR) (23 April 2013, reference number 121). All participants provided 

their written informed consent. 

4.1.1.a. Classification based on type of antiretroviral treatment 

All HIV-treated patients were on cART (HIV+(cART)) for at least one 

year and with viral load <20 cop/mL for at least 6 months (n=45). cART-

treated patients were classified depending on family treatment: NRTIs and 

PIs (NRTIs+PIs) (n=15), NRTIs and NNRTIs (NRTIs+NNRTIs) (n=22), and 
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NRTIs with INSTIs (NRTIs+INSTIs) (n=8). Untreated HIV-infected patients 

(HIV+(naive)) (n=5) with an average viral load of 54,010 cop/mL (3,550–

71,800 cop/mL) and non-infected volunteers (controls) (n=21), as reference 

group, were also included. The control population was matched for age, 

gender and body mass index with the HIV-infected group as these factors are 

known to influence GM composition (Lozupone et al., 2012;Mueller et al., 

2015).  

4.1.1.b. Classification based on coinfection with hepatotropic viruses 

Forty-five HIV-infected patients on antiretroviral treatment (ART) 

for at least one year and with viral load <20 copies/mL for at least 6 months 

were ranked in accordance with the presence of coinfection with HBV and/or 

HCV. Thus, 21 were non-coinfected HIV patients whereas 24 were coinfected 

with hepatotropic viruses, concretely 23 coinfected with HCV and one with 

HBV. 21 healthy volunteers were also included in this study. As above 

mentioned, all HIV patients coinfected with hepatotropic viruses were 

classified according to the liver stiffness (F0-F1: 37.5%, F2: 16.67%, F3: 

33.33%, F4: 12.5%). 

4.1.1.c. Classification based on the presence/absence of metabolic 

syndrome  

Fifty-one HIV-infected patients (HIV+) on antiretroviral treatment 

(ART) for at least one year and with viral load <20 copies/mL for at least 6 

months were classified according to the presence of metabolic syndrome 

(MS) based on the criteria established by the National Cholesterol Education 

Program Adult Treatment Program III (NCEP-ATP III). Thus, patients with 

any three of the following five criteria were diagnosed with MS: elevated 

waist circumference (≥102 cm in men or ≥88 cm in women), elevated 
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triglycerides (≥150 mg/dL), reduced high-density lipoprotein (HDL) 

cholesterol (<40 mg/dL in men or <50 mg/dL in women), elevated blood 

pressure (≥130 mm Hg systolic blood pressure or ≥85 mm Hg diastolic blood 

pressure) and/or elevated fasting glucose (≥100 mg/dL) (Grundy et al., 

2005). Thus, 40 HIV-infected patients did not present MS (HIV+MS-), 

whereas 11 patients were classified as MS (HIV+MS+). 
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4.1.2. Biochemical parameters and immunological techniques 

4.1.2.1. Plasma and serum preparation 

Blood samples were collected at San Pedro´s Hospital after 12 h 

fasting with two different commercial tubes, in order to obtain serum and 

plasma from blood. 

Serum samples were collected in Vacutainer (BD Vacutainer® Plus 

Plastic Serum Tubes) tubes which contain a gel to help to separate the clot. 

After collection, the tubes were leaved at room temperature for 30 minutes 

to allow the blood to clot. Then, the clot was removed by centrifuging at 3,000 

xg for 10 min at room temperature. 

Vacutainer tubes treated with ethylenediamine tetraacetic acid 

(EDTA) (BD Vacutainer® spray-coated K2EDTA Tubes) were chosen for 

collecting plasma samples. Cells were removed from plasma by 

centrifugation at room temperature for 10 minutes at 3,000 xg. The resulting 

supernatant was designated as plasma.  

Following centrifugation, both serum and plasma samples were 

transferred into clean tubes using micropippetes. The samples were stored 

at –20°C for subsequent analysis. 

4.1.2.2. Biochemical parameters 

Plasma levels of glucose, triglycerides, total cholesterol, low-density 

lipoprotein (LDL), high-density lipoprotein (HDL), aspartate 

aminotransferase (AST), and alanine aminotransferase (ALT) were 

measured at the San Pedro´s Hospital (Logrono) using an AutoAnalyzer 

(Cobas C711, Roche, Madrid, Spain). 
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4.1.2.3. Immunological techniques: enzyme-linked immunosorbent 

assays (ELISA) and Luminex Screening Assay 

Enzyme-linked immunosorbent assays (ELISAs) and Luminex 

Screening Assay were performed to analyze bacterial translocation, 

inflammation and cardiovascular risk markers from serum and plasma 

samples of HIV-infected patients and healthy subjects. All the analyses were 

performed with commercially available kits and according to the 

manufacturers’ instructions. Repeated freeze-thaw cycles were avoided.  

4.1.2.3.1. ELISA principle 

ELISA is an immunological assay commonly used to measure 

antibodies, antigens, proteins, peptides, and glycoproteins in biological 

samples. All ELISAs carried out in this Doctoral Thesis employed the 

quantitative sandwich enzyme immunoassay. This type of ELISA includes 

two specific antibodies for the antigen of interest, known as capture and 

detection antibodies. In this method, a specific antibody for the antigen of 

interest has been pre-coated onto a microplate. Standards and samples were 

pipetted into the wells and any antigen of interest present was bound by the 

immobilized antibody. After washing away any unbound substances, an 

enzyme-linked antibody specific for antigen was added to the wells. 

Following a wash to remove any unbound antibody-enzyme reagent, a 

substrate solution was added to the wells and color was developed in 

proportion to the amount of antigen bound in the initial step. The color 

development was stopped and the intensity of the color was measured in a 

plate reader spectrophotometer at the wavelength indicated by the 

manufacturer. 
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Although all assays were sandwich ELISA, they differed in relation to 

the secondary antibody (detection antibody) between the trading houses. 

Thus, the ELISAs from R&D (Minneapolis, USA) included a detection antibody 

that was previously conjugated with the peroxidase enzyme, while in the rest 

of the assays the peroxidase enzyme was added after adding the detection 

antibody. Figure 14 illustrates the different steps carried out in each case.  
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4.1.2.3.1.1. Parameters measured using ELISA  

The lipopolysaccharide-binding protein (LBP), soluble CD14 

(sCD14), interleukin-6 (IL-6), plasminogen activator inhibitor-1 (PAI-1), and 

insulin levels were measured by ELISA. Results were measured in a 

POLARstar Omega plate reader spectrophotometer (BMG LABTECH). The 

information of the different assays performed is summarized in Table 3. 

Table 3. Parameters measured using ELISA from human samples. 

 Analyte Sample Commercial 
kit from Wavelength Study 

Bacterial 
translocation 
markers 

LBP 
Plasma 
diluted 
1:1000 

Hycult Biotech 
(Uden, The 

Netherlands) 
450 nm - Antiretroviral 

families study 
- Coinfection 
study 
- Metabolic 
syndrome 
study sCD14 

Serum 
diluted 
1:200 

R&D 
(Minneapolis, 

USA) 

450 - 540 
nm 

Inflammation 
marker IL-6 

Serum 
without 
diluting 

R&D 
(Minneapolis, 

USA) 

490 - 
690nm 

- Antiretroviral 
families study 
- Metabolic 
syndrome 
study 

Cardiovascular 
risk marker PAI-1 

Plasma 
without 
diluting 

R&D 
(Minneapolis, 

USA) 

450 - 540 
nm 

- Metabolic 
syndrome 
study 

Glucose 
metabolism Insulin 

Serum 
without 
diluting 

EMD Millipore 
(Massachusetts, 

USA) 
450 nm 

- Metabolic 
syndrome 
study 
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4.1.2.3.2. Luminex Screening Assay principle 

The Luminex technology allows measuring several parameters in 

one procedure. This technique is based on polystyrene color-coded 

microparticles which are pre-coated with antigen-specific capture 

antibodies. Thus, the antibodies bind to the antigens of interest.  

In the procedure, standards and samples were added to a mixture of 

color-coded beads which were pipetted into wells and the immobilized 

antibodies bound the analytes. Then, it was necessary to wash any unbound 

substances before adding to each well a biotinylated antibody cocktail 

specific to the antigen of interest. Following a wash to eliminate any unbound 

biotinylated antibody, streptavidin-phycoerythrin conjugate (Streptavidin-

PE), which binds the biotinylated detection antibodies, was added to each 

well. A final wash eliminated unbound Streptavidin-PE, and, then, a buffer 

was added to resuspend the microparticles and to read using the Luminex 

analyzer.  

Polystyrene beads are read on a dual-laser; one laser (red) is 

microparticle-specific and determines which analyte is being detected, 

whereas the other laser (green) determines the magnitude of the 

phycoerythrin-derived signal, which is in direct proportion to the amount of 

analyte bound. 

4.1.2.3.2.1. Analytes measured with the Luminex Screening Assay 

Serum levels of the cardiovascular risk markers such as: intercellular 

adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), and 

the inflammatory marker monocyte chemoattractant protein-1 (MCP-1) 

were quantified by a Human Premixed Multi-Analyte Kit (Luminex, 

Minneapolis, USA). The results were measured in a Luminex 200TM analyzer 
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situated at San Pedro´s Hospital (Logroño). The details of the assay 

performed are summarized in the Table 4. 

Table 4. Parameters quantified with the Luminex Screening Assay from human 
samples. 

 Analyte Sample Commercial 
kit from Wavelength Study 

Cardiovascular 
risk markers 

ICAM 

Serum 
diluted 

1:2 

Human 
Premixed 

Multi-Analyte 
Kit (Luminex, 
Minneapolis, 

USA) 

Red laser: 
635 nm 

Green laser: 
532 nm 

- Antiretroviral 
families study 

VCAM 

Inflammation 
marker MCP-1 

- Metabolic 
syndrome 
study 

The triglycerides and HDL levels quantified with an AutoAnalyzer 

were used to calculate the triglycerides-to-HDL ratio as a marker of 

cardiovascular risk (Eeg-Olofsson et al., 2014;Marotta et al., 2010). Likewise, 

the values of glucose and insulin levels were used to calculate the 

“homeostasis model assessment insulin resistance index (HOMA-IR)” as 

follows: HOMA-IR index = fasting insulin (mU/L) × fasting glucose 

(mg/dL)/405 according to the report by Matthews et al., (1985) (Matthews 

et al., 1985). 

4.1.3. Fecal samples 

4.1.3.1. Collection of samples  

All patients and healthy volunteers received adequate instructions 

and a sterile tube for collecting fecal samples. The instructions were as 

follows: 

- Urinate before defecating 



MATERIAL AND METHODS 

 

93 

- Clean the perineal area with a sponge with soap 

- Rinse the perineal area with plenty of water 

- Dry the perineal area with a clean and unused towel  

- Defecate in a urinal or, otherwise, in a clean and dry place 

- Open the sterile tube without touching the edges 

- Collect a small amount of stool (about the size of a walnut) that has 

not touched the sides of the urinal with the spoon which is situated 

on the inside of the tube lid  

- Close the tube and stores in a fridge at 4-5ºC until its transportation 

to the CIBIR (within 24 hours). 

4.1.3.2. DNA extraction from fecal samples 

Fresh stool samples were received at CIBIR and fecal DNA was 

extracted using the DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands) 

following manufacturer's instructions. Then, purity and concentration were 

subsequently determined by a Nanodrop spectrophotometer 1000 (Thermo 

Scientific, USA). 

The DNeasy Blood & Tissue kit was designed for rapid purification of 

total DNA from a range of sample sources including fresh or frozen animal 

tissues and cells, blood, or bacteria. The first step of the procedure was the 

lysis; hence, fecal sample (25 mg) was mixed by vortexing with proteinase K 

(enzyme that digests the proteins, including nucleases that might otherwise 

degrade the DNA) and a lysis buffer (Buffer AL). Samples were then 

incubated overnight at 56ºC. A tissue lysis buffer (Buffer ATL) was also 

added to the samples, which were leaved at 56ºC for 10 minutes. Once the 

tissue was lysed, DNA was purificated by adding ethanol. Subsequently, 

samples were transferred into columns (DNeasy Mini spin columns) with a 

silica-based membrane, and during centrifugation, DNA was selectively 
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bound to the membrane as contaminants passed through. Remaining 

contaminants and enzyme inhibitors were eliminated in two wash steps by 

adding two wash buffers (Wash Buffer 1 and 2). Finally, DNA was eluted in 

an elution buffer (Buffer AE).  

4.1.3.3. 16S DNAr sequencing and bioinformatic analysis 

Samples were amplified for the 16S rDNA hypervariable sequence 

V4. Sequencing was performed using the Illumina MiSeq Instrument (two 

reads of 150 base pairs) with approximately 100,000 reads per sample 

(Illumina, INC, San Diego, CA, USA).  

Computational analysis was externally performed by Era7 

Bioinformatics (Granada, Spain). The first step was to assemble the two 

reads obtained from the Illumina technology. The computational tool FLASh 

was used to assembly the two reads of each pair to obtain a larger sequence 

for a more specific taxonomic assignment of the reads. The “not merged 

reads” had not sufficient quality to be analyzed and were discarded for 

further analysis steps. 

Subsequently, reads were assigned to a taxon based on sequence 

similarity to 16S rRNA genes extracted from the NCBI nucleotide (nt) 

database based on the presence of similar sequences in the set of sequences 

included in the Ribosomal Database Project (RDP) and on the specificity of 

their taxonomical assignment at the NCBI (all the sequences at NCBI nt 

database has an taxonomic assignment) (Cole et al., 2014). This database 

included 902,131 16S sequences (around 1000 Mb). Current version of the 

db.rna16s database is open and available in GitHub: 

(https://github.com/ohnosequences/db.rna16s). 
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Massive BLAST (Basic Local Alignment 116 Search Tool) tasks were 

performed using MG7 system (Alekhin et al., 2015;Jimenez et al., 2015;Ouma 

et al., 2015). MG7 assigned each read independently and there was not 

binning or clustering of reads. Each read was independently assigned to a 

taxon based on BLAST similarity to the sequences in the db.rna16s database, 

as mentioned. Two different taxonomic assignment approaches were used: 

BBH (Best Blast Hit: each read was assigned to the taxon corresponding to 

the Best Blast Hit over a threshold of similarity) and LCA (Lowest Common 

Ancestor: adopted by advanced tools of metagenomics analysis such as the 

last version of MEGAN (MEtaGenome ANalyzer)) (Huson and Weber 2013) 

(Figure 15). 

 

Figure 15. Scheme of the bioinformatic analysis performed in the human studies.  
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In the BBH method, the taxonomic assignment was based on the Best 

BLAST Hit obtained in the BLAST of each read against the 16S database over 

a threshold of similarity (e<1x10-15). However, in the LCA method the 10 Best 

BLAST Hits over a threshold of similarity (e<1x10-15) were selected and their 

taxonomic assignments were obtained. Then, it was searched on the 

taxonomy tree for the node that includes all the assignments that is the 

Lowest Common Ancestor taxon for all the 10 hits. In some cases, the reads 

had not 10 hits over the similarity threshold, thus, the BBH over this 

threshold were selected (from 1 to 10 hits). Some reads could not find 

sequences with enough similarity in the database and, then, they were 

classified as reads with no hits.  

The direct assignments and the cumulative assignment frequencies 

for each taxonomy node were analyzed. Direct assignments were calculated 

counting reads specifically assigned to a node, not including the reads 

assigned to the descendant nodes in the taxonomy tree. In contrast, 

cumulative assignments were calculated including the direct frequencies and 

also the frequencies of the descendant nodes. 

Studies at higher taxonomic levels were carried out by assignment 

using direct LCA. This method was chosen because it seemed to be the most 

robust method, since it searches the node that includes all the assignments 

that is the Lowest Common Ancestor taxon for all the 10 hit, but also because 

the direct assignment not includes the frequencies of the descendant nodes. 

Studies at lower levels were performed using the BBH technique. This was 

because the lower taxonomic ranks did not have an assigned frequency with 

the LCA method due to its estimation. BBH direct and cumulative had the 

same values, since there were not descendant nodes at these taxonomic 

levels. 
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α-diversity was calculated with R software (version 3.2.2; The R 

foundation for Statistical Computing, Vienna, Austria) considering the BBH 

method. The analysis of the β-diversity was carried out using the web server 

METAGENassist (www.metagenassist.ca/) (Arndt et al., 2012), in which the 

LCA and BBH techniques were used to study the higher and lower taxonomic 

levels, respectively. β-diversity describes the inter-subject similarity of 

microbial composition and facilitates the identification of broad differences 

between samples (Lozupone et al., 2011) β-diversity data was filtered by the 

robust estimate interquartile range that detect the variables that are near-

constant throughout the experiment conditions. Moreover, two types of 

normalization were performed. Row-wise normalization aims to make each 

sample comparable to each other (sample vs. sample), while the column-wise 

normalization aims to make each variable comparable to each other within 

the same sample (taxon vs. taxon). Row-wise normalization was performed 

by sum and column wise normalization was calculated by Pareto Scaling. 

 The LCA and BBH assigned reads from healthy participants and HIV-

infected patients included in the abovementioned studies are available in the 

repository of bacterial sequences dbBact (http://dbbact.org/main). 

4.2. Animal study 

Thirty two male C57BL/6 mice were purchased at five weeks of age 

with an average weight of 18.89 ± 0.18 g from Charles River (Barcelona, 

Spain). Upon arrival, mice were housed under controlled temperature, 

humidity, and light. They were randomly assigned (n=8) to the following 

groups: a) Control: fed with a normal chow (4% wt/wt of lipids commercially 

available (standard diet RM1A (P); SDS, Essex, UK) and autoclaved water; b) 

MVC: normal chow diet but receiving 300 mg/L of MVC (Pfizer, New York, 

NY, USA) in the drinking water. Mouse equivalent drug doses were assessed 
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in order to get a human equivalent dose (300 mg/day) (Neff et al., 

2010;Perez-Martinez et al., 2014); c) HFD: animals fed with a HFD (D12492, 

Research Diets Inc., NJ, USA) and autoclaved water; and d) HFD+MVC group: 

HFD but receiving MVC in the drinking water (same concentration than MVC 

group). All animals had free access to food and water. Mice were weighted 

and food and water ingestion were recorded every 2-3 days per week. All 

mice were euthanized by using CO2 after 16 weeks of treatment. The 

standard diet contained 79% carbohydrates, 17% proteins and 4% lipids, 

whereas the HFD was composed of 60% lipids, 20% carbohydrates and 20% 

proteins (Figure 16). 

All procedures were carried out in accordance with the European 

Communities Council Directive on animal experiments (86/609/CEE and EU 

Directive 2010/63/EU) and with approval from the ethical committee on 

animal welfare of our institution (Comité Ético de Experimentación Animal del 

CIBIR). 
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4.2.1. Serum, liver, fat pads, intestine and fecal samples collection 

Blood samples were obtained under anesthesia by cardiac puncture 

after a 4 h fast. Samples were collected into tubes and leaved at 4ºC for at 

least 30 minutes to allow the blood to clot. Then, samples were centrifuged 

in a refrigerated centrifuge for 10 min at 3,000 xg. Serum was transferred 

into clean tubes using a micropippette and was stored at -20ºC for 

subsequent analysis. 

Liver, fat pads, intestine and fecal samples from the cecum were also 

collected and weighted at the time of sacrifice. Once samples were collected, 

they were introduced immediately in liquid nitrogen, and subsequently 

stored at -80ºC for further analyses (Figure 17). 

 

Figure 17. Collection of fecal samples from the cecum. 
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4.2.1.1. Biochemical parameters 

Serum levels of glucose, AST and ALT were measured at the San 

Pedro´s Hospital (Logrono) using an AutoAnalyzer (Cobas C711, Roche, 

Madrid, Spain). 

4.2.1.2. ELISA 

Serum levels of the inflammatory markers IL-6 and tumor necrosis 

factor alpha (TNFα), as well as insulin were measured by ELISA as explained 

above. All the analyses were performed with commercially available kits and 

according to the manufacturers’ instructions. Repeated freeze-thaw cycles 

were avoided. The details of the ELISAs performed are summarized in Table 

5. 

Table 5. Parameters measured by ELISA from mice samples. 

 Analyte Sample Wavelength Commercial 
kit from 

Inflammatory 
markers 

IL-6 

Serum 
without 
dilution 

450 - 540 
nm 

R&D 
(Minneapolis, 

USA) 

TNFα 450 - 540 
nm 

R&D 
(Minneapolis, 

USA) 

Glucose 
metabolism Insulin 450 - 590 

nm 

EMD Millipore 
(Massachusetts, 

USA) 

The HOMA-IR was also calculated, as explained before (Matthews et 

al., 1985). 
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4.2.1.3. Hepatic triglyceride content 

To determine the hepatic triglyceride content, frozen liver samples 

(150 mg) were weighed and homogenized by Ultraturrax (IKA-Weke, 

Staufen, Germany) in 1.5 mL of buffer (150 mM NaCl, 0.1% Triton X-100, and 

10 mM Tris pH 8) at room temperature. Then, homogenized samples were 

centrifuged at 12,000g for 10 minutes. The obtained supernatant was 

collected (the two different phases, leaving only the pellet) and mixed, and, 

finally, triglyceride levels were measured using an AutoAnalyzer (Cobas 

C711, Roche, Madrid, Spain) at San Pedro´s Hospital (Logrono). 

4.2.1.4. Analysis of short-chain fatty acids 

The short-chain fatty acids acetate, butyrate, propionate and 

isovalerate were measured from serum samples at the Institute of Grapevine 

and Wine Sciences (ICVV) (Logrono, Spain). 

50 μL of serum were placed in a 12x32 mm glass crimp top vial with 

350 μL fused insert containing 20 mg of KCl. Then, 10 μL of HCl 1N and 100 

μL of terc-Butylethylether (tBuEtO) containing internal standard 6.5 ppm 

solution (valproic acid) were added. Vials were immediately capped with an 

aluminium cap with PTFE/Silicon septum and sealed. Samples were 

vigorously shaken at room temperature for 30 minutes and centrifuged at 

4,696 xg for 5 minutes. Upper organic phase was analyzed by gas 

chromatography-mass spectrometry (GCMS). 7890C Series gas 

chromatograph coupled to a 7000C Series Triple Quad GC/MS triple 

quadrupole mass spectrometer (Agilent Technologies Inc., Wilmington, DE, 

USA) with a MPS automatized liquid sample injection system (Gerstel GmbH 

& Co. KG, Múlheim an der Ruhr, Germany). Chromatographic separation was 

performed in a capillary column TG-WaxMS (30m x 0.25 mm int. diam., 0.25 
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μL film) (Thermo ScientificTM). A volume of 3 μL of sample was automatically 

injected into a split/splitless inlet (in splitless mode) kept at 250ºC. Helium 

was used as carrier gas at a flow rate of 1 mL/min in constant flow mode. The 

oven program was set as follows: an initial temperature of 40ºC for 5 min, 

increased to 150ºC at a rate of 3ºC/min, then increased to 240ºC at a rate of 

15ºC/min and held at 240ºC for 10 min. Total analysis time was 57.7 min. 

Detection was performed with the mass spectrometer operating in SIM mode 

(dwell time 75 ms), by electronic impact ionisation with 70 eV ionization 

energy. 

GERSTEL Maestro software (Gerstel GmbH & Co. KG) and 

MassHunter Workstation Software: GCMS Acquisition, Version B.07.02 

(Agilent Technologies Inc.) were used for data acquisition. Firstly, peak 

identification was made by comparison of retention times and ion spectra 

from fatty acids real standards and spectra from the NIST mass spectral 

library. Analyte quantification was performed by external calibration 

comparing the area of each analyte in samples with calibration curves. 

Calibration curves for each analyte were made from the chromatographical 

analysis data of standard solutions at different concentrations. MassHunter 

Workstation Software: GCMS Qualitative Analysis, Version B.07.00 (Agilent 

Technologies Inc.) was used for data analysis and MassHunter Workstation 

Software: GCMS Quantitative Analysis, Version B.07.00 (Agilent 

Technologies Inc.), was used for sample quantification. 

4.2.1.5. Fecal samples 

4.2.1.5.1. DNA extraction from fecal samples 

DNA was extracted from frozen fecal samples from the cecum using 

the DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands), as previously 
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mentioned. Purity and concentration were also determined by a Nanodrop 

spectrophotometer 1000 (Thermo Scientific, USA). 

4.2.1.5.2. 16S DNAr sequencing and bioinformatic analysis 

For the metagenomic analysis, fecal samples from 7 controls, 8 MVC 

mice, 5 mice fed with a HFD and 7 mice from the HFD+MVC group were 

collected (total 27 samples). The V4 hypervariable region of the gene 

encoding 16S rDNA was amplified. Metagenomic analysis was performed 

using the Illumina MiSeq platform (two reads of 250 base pairs) (Illumina, 

INC, San Diego, CA, USA).  

Bioinformatic analysis was developed by the Genomics & 

Bioinformatics Core Facility at the CIBIR (La Rioja, Spain). In short, quality 

check of reads and adapter trimming were performed with the quality 

control tool FastQC and Trim Galore program. Then, reconstruction of full-

length V4 16S rRNA region for taxonomic assignment and the determination 

of operational taxonomic units (OTUs) were carried out through the QIIME 

program (v1.9.1), following the "pick open reference otus" methodology 

against the 16S rRNA gene database Greengenes 13.8 at 97% sequence 

similarity (Caporaso et al., 2010;DeSantis et al., 2006;Edgar 2018). Uclust 

program was used for the establishment of taxonomy clusters 

(http://drive5.com/usearch/manual/uclust_algo.html).  

The meta-analysis of microbiome data was performed with the web-

based tool MicrobiomeAnalyst (Dhariwal et al., 2017). The data uploaded to 

this web was previously filtered by the Genomics & Bioinformatics Core 

Facility, thus, no filtering was needed for the analysis carried out by this tool. 

Instead, normalization was carried out by cumulative sum scaling (CSS) 

(Figure 18). 
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Figure 18: Scheme of the bioinformatic analysis carried out in the animal study. 

4.2.2. Antimicrobial susceptibility testing  

An antimicrobial test of Maraviroc was carried out by the Molecular 

Microbiology Area at the CIBIR (Logrono, Spain). Escherichia coli 

ATCC25922, Enterococcus faecalis ATCC29212, Staphylococcus aureus 

ATCC29213 and Pseudomonas aeruginosa ATCC27853 are strains of the 
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American Type Culture Collection (ATCC) recommended as quality controls 

in antimicrobial activity studies (Clinical and Laboratory Standards Institute, 

2015 (CLSI 2015)). Listeria monocytogenes CECT4035 is a Spanish Type 

Culture Collection strain recommended to be used for UNE-CEN ISO/TS 

11133.  

Minimal inhibitory concentration (MIC) of MVC was determined by 

microdilution method (CLSI 2015) in Mueller–Hinton broth. The stock 

concentration of MVC was 3 mg/ml (dissolved in dimethyl sulfoxide 

(DMSO)). Two-fold aqueous dilutions of MVC in concentrations ranging from 

128 to 0.125 mg/mL were analyzed in order to get a mice equivalent dose. 

The MIC values were determined against E. coli ATCC25922, E. faecalis 

ATCC29212, S. aureus ATCC29213, L. monocytogenes CECT4032, and P. 

aeruginosa ATCC27853. The initial bacterial inoculum was 5x105 CFU/mL, 

and after incubation for 24 h at 37 ºC, the MIC was considered as the lowest 

concentration of MVC that completely visually inhibited the growth of the 

bacteria. 

4.3. Statistical analysis 

Results are presented as mean ± standard error of the mean (SEM). 

P values <0.05 were considered statistically significant. Categorical variables 

were analyzed using the Chi-square test or Fisher’s exact test. Normal 

distribution of quantitative variables was checked using the Shapiro-Wilk 

test. Comparisons between three or more groups were analysed by one way 

ANOVA followed by a Bonferroni post hoc test or by Kruskal-Wallis test 

followed by Dunns post-tests depending on normality. Comparisons 

between two groups were performed with Unpaired t test or U Mann-

Whitney. Relationships between variables were analyzed by calculating 

Spearman’s rank correlation coefficients. Statistical analysis was performed 
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using SPSS 19.0 (SPSS® Inc. Chicago, IL, USA) and GraphPad Prism 6 

(GraphPad Prism®, La Jolla, California, USA).  

4.3.1. Human study 

The measure of sample-level species richness, also known as α-

diversity, was calculated using R (version 3.2.2; The R foundation for 

Statistical Computing, Vienna, Austria) and presented as four indices: 

number of observed species, Alpha index, Margalef’s diversity index, and 

Chao 1 (McHardy et al., 2013). The number of observed species, as well as 

Margalef’s diversity index and Alpha index are estimators of the specific 

bacterial richness, whereas Chao 1 is a non-parametric method that 

estimates diversity based on the number of rare species in the sample. β-

diversity was assessed using the web server METAGENassist (Arndt et al., 

2012). Data obtained from β-diversity were statistically analyzed using the 

Wilcoxon rank-sum non-parametric test. P values <0.05 were considered 

statistically significant when the effect of cART and hepatotropic viruses on 

GM composition were analyzed, whereas a false discovery rate (FDR) <0.1 

was considered significant when the effect of MS was studied. A principal 

component analysis (PCA) was also developed. Results are plotted according 

to the first two principle components (Arndt et al., 2012). 

4.3.2. Animal study 

The web server MicrobiomeAnalyst was used to obtain the same α-

diversity metrics than those selected in the human study: number of 

observed species, Alpha index, Margalef’s diversity index, and Chao 1. 

Differences among groups at family, genus and specie level were also 

assessed using Mann-Whitney non-parametric test with the web server 

MicrobiomeAnalyst (Dhariwal et al., 2017). Data obtained from β-diversity 
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were statistically analyzed using the Mann-Whitney non-parametric test. A 

false discovery rate (FDR) <0.1 was considered significant. To evaluate 

overall differences in β-diversity, a principal component analysis (PCA) was 

also performed. Results are plotted according to the first two principle 

components. A heat map was drawn by hierarchal clustering according to the 

main genus. The distance measure and the cluster algorithm chosen were 

Euclidean and the Ward’s linkage respectively. 
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5.1. Bacterial translocation and gut microbiota composition in HIV-

infected patients on different cART  

5.1.1. Clinical and demographic characteristics of participants 

Table 6 shows the main characteristics of the population analyzed to 

fulfill the first objective of this Doctoral Thesis. All participants were 

Caucasian. Sixty per cent of the HIV+(naive) patients presented over 500 

nadir CD4+ cells/mm3, whereas only 11.1% of the patients using cART 

showed nadir CD4+ cells above 500 cells/mm3 (p=0.024). There were no 

differences concerning the characteristics of patients on different families of 

cART, although individuals in the NRTIs+INSTIs group had a higher 

incidence of AIDS events (p=0.013). More than 50% (51.1%) of the patients 

using cART presented coinfection with hepatitis C virus (p=0.054), with no 

differences between the treatments. HIV patients were infected for an 

average of 16 years. Total time using cART (including the last therapy 

evaluated in this study) was 13 years. No differences were observed for the 

total length on treatment, although a slightly longer time on treatment was 

observed in the INSTI group, showing significant differences when compared 

with the NRTIs+NNRTIs group (p=0.048). 
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5.1.2. Bacterial translocation, inflammation and endothelial markers 

sCD14 plasma levels were significantly increased in HIV+ patients 

compared with controls (p=0.0003), and especially in those patients using 

cART (NRTIs+PIs, p=0.034 and NRTIs+NNRTIs, p=0.011 vs. controls, 

respectively (Figure 19A)). However, patients using NRTIs+INSTIs 

presented similar sCD14 plasma levels to the controls, although no 

significant differences were observed between the cART regimens. No 

changes were observed in LBP plasma levels (Figure 19B). IL-6, ICAM and 

VCAM plasma levels were significantly increased in HIV+ patients (p<0.05, 

p<0.001 and p<0.001, respectively), especially in those on NRTIs+PIs 

treatment compared with the controls (p=0.005, p=0.005 and p<0.001, 

respectively). ICAM values were also significantly increased in patients using 

NRTIs+NNRTIs (p=0.011 vs. controls) and NRTIs+INSTIs (p=0.020 vs. 

controls), although the increase was less potent than that observed with the 

NRTIs+PIs regimen (Figure 19C–E). A positive association was found 

between sCD14 and IL-6 and also between sCD14 and VCAM in all HIV-

infected patients (r=0.409; p = 0.006; r=0.343; p = 0.023, respectively). 
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5.1.3. Gut microbiota diversity and composition 

HIV infection dramatically decreased α-diversity, as observed with 

all the indexes analyzed and as presented in Figure 20 (p=0.0006–p=0.003). 

Patients in the NRTIs+INSTIs group showed a similar α-diversity profile to 

the controls and a significant increase compared with the HIV+(naive) group 

(p=0.006–p=0.008). The combination of NRTIs+NNRTIs was also able to 

partially restore the decreased observed in α-diversity due to HIV infection 

(p=0.026–p=0.033 vs. naive). 
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Figure 20. α-diversity measurements in control group compared with untreated HIV 
infected patients and using different cART. 
(A) Number of species. (B) Alpha index. (C) Margalef’s diversity index. (D) Chao 1 
index. Each bar represents the mean ± SEM. p<0.05 was considered significant. 
*p<0.05; **p<0.01; ***p<0.001 vs. control, #p<0.05; ##p<0.01 vs. HIV+(naive), ap<0.05 
vs. NRTIs+PIs. 

Concerning GM composition (β-diversity), the most abundant phyla 

in gut were Bacteroidetes and Firmicutes. Thus, approximately 73% of the 

bacteria detected in gut belong to these phyla (74.11%, 73.14% and 74.2% 

of abundance for control, HIV+(naive) and HIV+(cART) respectively) (Table 

7). No significant differences were observed in the most abundant phyla in 

gut when HIV patients were compared with controls. Only an increase in the 
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abundance of Proteobacteria and, consequently, in the ratio 

Proteobacteria/Firmicutes was observed in HIV-infected patients on cART 

(p=0.021; p=0.023 vs. control, respectively). A significant decrease (p=0.049) 

in the abundance of Firmicutes was observed in HIV-infected patients using 

NRTIs+PIs compared with controls. Lentisphaerae, Euryarchaeota, 

Synergistetes, and Fusobacteria represented around 0.18% of the bacteria. 

The differences observed in the abundance of these phyla are shown in Table 

7. 

At the class level, a significant increase was observed in the relative 

abundance of δ-Proteobacteria in HIV+(cART) (p=0.025 vs. controls). This 

increase was more evident in the NRTIs+INSTIs group (p=0.013 vs. control). 

A decrease in the abundance of α-Proteobacteria was observed in naive 

patients (p=0.028 vs. control) and cART was able to restore the abundance of 

this bacterial class (Table 7). 
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One of the goals of this study was to test whether different families 

of ART used in clinical practice were able to restore the gut dysbiosis induced 

by HIV infection. Thus, we compared GM composition (at lower taxonomic 

units) of the different cART families against uninfected subjects (controls). A 

combination of NRTIs+INSTIs produced a pronounced increase in bacteria 

belonging to Desulfovibrionales and Selenomonadales orders, 

Desulfovibrionaceae and Lachnospiraceae families and Desulfovibrio genus, 

whereas only a significant depletion in the abundance of unclassified 

Clostridiales order was observed. Patients using NRTIs+NNRTIs showed an 

increased abundance of Coriobacteriales order, Coriobacteriaceae and 

Lachnospiraceae bacterial families, as well as Pseudomononas genus, 

whereas a lower abundance of Bacteroidales order, Bacteroidaceae family 

and Streptococcus genus was observed. Finally, patients using NRTIs+PIs 

showed a significant increase in the presence of Clostridiales order, 

Lachnospiraceae family and Eggerthella genus, and a significant reduction in 

Actinomycetales, Pseudomonadales, and Sphingomonadales orders, 

Eubacteriaceae and Prevotellaceae families, and Prevotella, Pseudomonas 

and Solobacterium genera (Table 8). At the lowest taxons, NRTIs+INSTIs and 

NRTIs+PIs patients showed a higher abundance of Blautia sp. 3. In addition, 

a significant increase in the abundance of Flavonifractor plautii was observed 

in NRTIs+PIs patients in comparison with controls, whereas an increase in 

the levels of Parabacteroides merdae was observed in NRTIs+INSTIs patients 

compared to healthy volunteers. In summary, 10 bacterial species were 

reduced in HIV patients using NRTIs+PIs, whereas patients using 

NRTIs+NNRTIs or NRTIs+INSTIs regimens showed a lower abundance of 

only six bacterial species when compared with controls (Table 8). 
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Figure 21 shows a PCA where the NRTIs+INSTIs cluster is 

represented inside the control cluster, in contrast with the diagrams 

obtained for the other combinations of cART compared with the controls. 

The clustering of samples was represented by their respective 95% 

confidence interval ellipse and results were plotted according to the first two 

principle components. The PCA of the HIV-infected patients using 

NRTIs+INSTIs combination vs. non-infected subjects accounting for 28.3% of 

the total variation (Component 1 = 15.4% and Component 2 = 12.9%)) 

(Figure 21A), the PCA of the HIV-infected patients using NRTIs+NNRTIs 

combination vs. non-infected subjects represents 33.1% of the total variation 

(Component 1 = 17.9% and Component 2 = 15.2%)) (Figure 21B), whereas 

the PCA of the HIV-infected patients using NRTIs+PIs combination vs. non-

infected subjects accounting for 27.7% of the total variation (Component 1 = 

14.4% and Component 2 = 13.3%)) (Figure 21C). 
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Figure 21. Principal component analysis of different combined antiretroviral 
therapy compared with the control/uninfected individuals.  
Results are plotted according to the first two principle components. Each circle 
represents a sample: red circles represent the uninfected volunteers, while green 
circles represent the HIV-infected patients using a combined antiretroviral therapy. 
(A) PCA of the HIV-infected patients using NRTIs+INSTIs combination vs. non-
infected subjects. (B) PCA of the HIV-infected patients using NRTIs+NNRTIs 
combination vs. non-infected subjects. (C) PCA of the HIV-infected patients using 
NRTIs+PIs combination vs. non-infected subjects. 
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5.2. Bacterial translocation and gut microbiota composition on HIV-

infected patients in presence or absence of coinfection with 

hepatotropic viruses 

5.2.1. Bacterial translocation markers 

A significant increase was observed in LBP plasma levels in 

coinfected patients compared with non-coinfected participants (p=0.0007) 

and also compared with controls (p=0.005). No significant differences were 

observed between both HIV-infected groups when sCD14 was quantified 

(Figure 22), although an increase (p<0.01) was observed in both HIV-

infected groups when compared to the controls. 

 

Figure 22. Bacterial translocation markers regarding coinfection with hepatothropic 
viruses.  
(A) Lipopolysaccharide binding protein (LBP). (B) Soluble CD14 (sCD14). Each bar 
represents the mean ± SEM. **p<0.01 vs. Control (uninfected patients); ###p<0.001 vs. 
non-coinfected patients. 
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5.2.2. Gut microbiota diversity and composition 

Coinfected patients showed a lower α-diversity than the controls 

(p=0.011–p=0.025), although significant differences were not observed 

among coinfected and non-coinfected patients with all indexes used (Figure 

23). Non-coinfected patients had also lower bacterial richness in comparison 

with control subjects when the alpha (p=0.036) and Margalef’s diversity 

indexes (p=0.040) were measured (Figure 23B, C), while similar diversity 

than the controls were observed with the number of species and the Chao-1 

index. Coinfected patients with advanced hepatic fibrosis (F2–F4) showed a 

trend towards reduced α-diversity compared with patients with mild hepatic 

fibrosis (F0–F1) (p=0.098–p=0.078, Figure 24). 
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Figure 23. α-diversity measurements in healthy volunteers compared to HIV-
infected patients coinfected and non-coinfected with hepatotrophic viruses. 
(A) Number of species. (B) Alpha index. (C) Margalef’s diversity index. (D) Chao 1 
index. Each bar represents the mean ± SEM. p<0.05 was considered significant. 
*p<0.05; **p<0.01 vs. control. 
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Figure 24. Bacterial richness of HIV patients coinfected with hepatotrophic viruses 
with advanced hepatic fibrosis compared to patients with mild hepatic fibrosis. 
(A) Number of species. (B) Alpha index. (C) Margalef’s diversity index. (D) Chao 1 
index. Each bar represents the mean ± SEM. p<0.05 was considered significant. 

Concerning GM composition at phylum and class level, HIV 

coinfected patients showed an increase in the relative abundance of 

Proteobacteria phylum, δ-Proteobacteria class and, consequently, the ratio 

of Proteobacteria/Firmicutes in comparison with the control group 

(p=0.015; p = 0.006; p=0.030, respectively). Likewise, an increase was 

observed in the abundance of Actinobacteria phylum and the 

Actinobacteria/Firmicutes ratio in coinfected patients compared to controls 

(p=0.004; 0.002, respectively) and also compared to non-coinfected patients 

(p=0.004; p=0.003, respectively). A significant decline in the relative 
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abundance of the γ-Proteobacteria class was observed in non-coinfected 

patients in comparison with healthy subjects (p=0.002) and in comparison 

with coinfected patients (p=0.039) (Table 9). 

Table 9. Relative abundance of major phyla present in gut in control group compared 
to coinfected and non-coinfected HIV patients. 

 CONTROL 
HIV non-

coinfected 
patients 

HIV 
coinfected 

patients 

Overall p 
value 

Firmicutes  42.86 ± 1.56 38.93 ± 2.22 39.38 ± 2.00 0.329 

Bacteroidetes  31.25 ± 2.46 36.86 ± 2.40 33.43 ± 2.34 0.271 

Proteobacteria  2.96 ± 0.35 4.40 ± 0.64 4.89 ± 0.61 * 0.094 

   * α-Proteobacteria  0.43 ± 0.12 0.34 ± 0.13 0.34 ± 0.10 0.319 

   * β-Proteobacteria  0.79 ± 0.20 0.80 ± 0.19 1.44 ± 0.29 0.298 

   * γ-Proteobacteria  0.10 ± 0.02 0.03 ± 0.008 ** 0.40 ± 0.13 # 0.014 

   * δ-Proteobacteria  0.49 ± 0.07 0.75 ± 0.12 0.90 ± 0.12 ** 0.029 

Actinobacteria  0.96 ± 0.17 0.87 ± 0.13 3.28 ± 0.65 ** ## 0.004 

Ratio 
Bacteroidetes/Firmicutes  0.76 ± 0.09 1.07 ± 0.12 0.88 ± 0.09 0.169 

Ratio 
Proteobacteria/Firmicutes  0.08 ± 0.01 0.11 ± 0.02 0.13 ± 0.02 * 0.085 

Ratio 
Actinobacteria/Firmicutes  0.02 ± 0.004 0.02 ± 0.003 0.08 ± 0.02 ** ## 0.002 

Data are presented as mean ± SEM. Results with superscript are significantly 
different: *p<0.05; **p<0.01 vs. control (non-infected patients). #p<0.05; ##p<0.01 vs. 
HIV non co-infected patients.  

Coinfection was also accompanied by some slightly changes in GM at 

genera and species levels compared with non-coinfected patients. Thus, 

coinfected patients showed an increase in the Bacteroides and 

Parabacteroides genera, as well as in the bacterial specie Parabacteroides 

merdae. In contrast, a decrease in the relative abundance of five bacterial 



RESULTS 

 

132 

genera and two species was observed in HIV coinfected patients in 

comparison with those non-coinfected. Specifically, a significant reduction 

was observed in the abundance of Clostridium, Coriobacterium, Pseudomonas, 

Roseburia, and Ruminococcus genera, and in the bacterial species Roseburia 

inulinivorans and Sinorhizobium sp (Table 10). 

Table 10. Abundance of lower taxonomic levels (genus and species) which were 
significantly increased or decreased in faeces from coinfected patients compared 
with non-coinfected patients. 

Coinfected patients vs. Non-coinfected 

 Phylum Taxonomic 
group Category p 

value Coinfected 

 Bacteroidetes Bacteroides Genus 0.007 Increased 

Bacteroidetes Parabacteroides Genus <0.001 Increased 

Bacteroidetes Parabacteroides 
merdae Species 0.003 Increased 

 Firmicutes Clostridium Genus 0.038 Decreased 

Actinobacteria Coriobacterium Genus 0.043 Decreased 

Proteobacteria Pseudomonas Genus <0.001 Decreased 

Firmicutes Roseburia Genus <0.001 Decreased 

Firmicutes Ruminococcus Genus <0.001 Decreased 

Firmicutes Roseburia 
inulinivorans Species <0.001 Decreased 

Proteobacteria Sinorhizobium 
sp. Species <0.001 Decreased 

Red represents a significant increase in the relative abundance of the taxonomical 
groups in coinfected patients in comparison with those non-coinfected, whereas blue 
represents a significant decrease. 

PCA showed that clusters representing non-infected subjects and 

HIV-infected patients with and without coinfection with hepatotropic viruses 
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were overlapped. However, there was a higher dispersion in HIV patients in 

comparison with the healthy volunteers. This dispersion was even greater in 

those coinfected in comparison with the other groups. The results were 

plotted according to the first two principle components and the clustering of 

samples was represented by their respective 95% confidence interval 

ellipse. The PCA accounting for 33.4% of the total variation (Component 1 = 

18.1% and Component 2 = 15.3%)) (Figure 25). 

 
Figure 25. Principal component analysis of non-infected subjects and HIV-infected 
subjects in presence or absence of coinfection with hepatotropic viruses. 
Results are plotted according to the first two principle components. Each circle 
represents a sample: green circles represent the uninfected volunteers, blue circles 
represent the HIV-infected patients without coinfection with hepatotropic viruses, 
whereas those coinfected are represented by red circles. 
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5.3. Bacterial translocation and gut microbiota composition on HIV-

infected patients with or without MS  

5.3.1. Characteristics of the participants 

Table 11 shows the main characteristics of the studied population. 

The prevalence of MS in the HIV-infected patients recruited in our 

Department along eight months and according to the NCEP-ATP III criteria 

was 21.57%. HIV patients with MS were significantly older than those 

without MS (p=0.035). As expected, patients with MS showed a significant 

increase in body weight (p=0.018), body mass index (p=0.007), systolic and 

diastolic blood pressure (p=0.027; p=0.002, respectively), triglycerides 

(p<0.0001) and total cholesterol (p=0.008) compared to the group without 

MS. Insulin levels and HOMA-IR index were also significantly increased in 

patients with MS (p=0.021; p=0.003, respectively). No statistical differences 

were observed when comparing the different ART combinations among both 

HIV-groups (p=0.920). 
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Table 11. Cohort characteristics of HIV infected patients according to the presence 
of metabolic syndrome. 

 HIV+MS- HIV+MS+ p 
value 

No. of patients 40 11  

Gender (male) 27/40 (67.5%) 7/11 (63.64 %) 1 

Age (years) 48.38 ± 0.89 52.30 ± 1.10 0.035 

Body weight (kg) 66.95 ± 1.63 76.05 ± 3.98 0.018 

Body mass index (kg/m2) 22.78 ± 0.74 27.81 ± 2.04 0.007 

Systolic blood pressure (mmHg) 127 ± 2.31 137.8 ± 4.29 0.027 

Diastolic blood pressure (mmHg) 80.43 ± 1.80 92.78 ± 1.93 0.002 

CD4 nadir count (cells/mm³) 

<200: 17/40 
(42.5%) 

<200: 5/11 
(45.45%) 

0.898 
200-500: 

18/40 (45%) 
200-500: 4/11 

(36.36%) 
>500: 5/40 

(12.5%) 
>500: 2/11 
(18.18%) 

CD4 count (cells/mm³) 

200-500: 
10/40 (25%) 

200-500: 2/11 
(18.18%) 

1 
>500: 30/40 

(75%) 
>500: 9/11 
(81.82%) 

T4/T8 index 0.93 ± 0.05 0.77 ± 0.09 0.106 
Time since diagnosis of HIV 
infection (years) 

15.82 ± 1.12 19 ± 2.47 0.206 

AIDS 18/40 (45%) 4/11 (36.36%) 0.737 

Coinfection with hepatitis B Virus 1/40 (2.5%) 0/11 (0%) 1 

Coinfection with hepatitis C Virus 22/40 (55%) 5/11 (45.45%) 0.574 

Mode of transmission 

IVDU: 16/40 
(40%) 

IVDU: 4/11 
(36.36%) 

0.090 

HS: 17/40 
(42.5%) 

HS: 2/11 
(18.18%) 

MSM: 2/40 
(5%) 

MSM: 0/11 
(0%) 

Vertical: 1/40 
(2.5%) 

Vertical: 0/11 
(0%) 

IVDU/HS: 0/40 
(0%) 

IVDU/HS: 1/11 
(9.09%) 
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 HIV+MS- HIV+MS+ p 
value 

Unknown: 4/40 
(10%) 

Unknown: 4/11 
(36.36%) 

Degree of hepatic fibrosis 

NO: 18/40 
(45%) 

NO: 7/11 
(63.63%) 

0.939 

F1: 7/40 
(17.5%) 

F1: 1/11 
(9.09%) 

F2: 5/40 
(12.5%) 

F2: 1/11 
(9.09%) 

F3: 7/40 
(17.5%) 

F3: 2/11 
(18.18%) 

F4: 3/40 
(7.5%) 

F4: 0/11 (0%) 

Antiretroviral treatment 

NRTIs+PIs: 
11/40 (27.5%) 

NRTIs+PIs: 
4/11 (36.4%) 

0.920 

NRTIs+NNRTIs: 
18/40 (45%) 

NRTIs+NNRTIs: 
4/11 (36.4%) 

NRTIs+INSTIs: 
6/40 (15%) 

NRTIs+INSTIs: 
2/11 (18.2%) 

Others: 5/40 
(12.5%) 

Others: 1/11 
(9.1%) 

Advanced degree of hepatic 
fibrosis 

10/40 (25%) 2/11 (18.18%) 1 

Time on ART (years) 12.28 ± 0.97 14.64 ± 2.29 0.287 

Time on the last ART (years) 6.03 ± 2.90 3.36 ± 2.25 0.006 

 
Plasma 
triglycerides 
(mg/dL) 

103.6 ± 5.78 210.7 ± 24.74 <0.0001 

 
Plasma total 
cholesterol 
(mg/dL) 

181.2 ± 5.71 214.7 ± 7.91 0.008 

Biochemical 
tests 

Plasma LDL 
(mg/dL) 

113.6 ± 5.58 132.9 ± 13.68 0.154 

 
Plasma HDL 
(mg/dL) 

52.77 ± 2.53 42.90 ± 4.41 0.069 

 
Plasma 
triglycerides/HDL 

3.01 ± 0.17 6.06 ± 0.75 <0.0001 

 Plasma AST (U/L) 20.84 ± 1.07 19.89 ± 2.03 0.678 
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 HIV+MS- HIV+MS+ p 
value 

 Plasma ALT (U/L) 24.94 ± 1.89 23.67 ± 3.15 0.946 

 
Plasma glucose 
(mg/dL) 

89.83 ± 1.63 93.27 ± 3.23 0.335 

 
Serum insulin 
(μU/mL) 

12.38 ± 0.54 16.69 ± 1.83 0.021 

 HOMA-IR index 2.74 ± 0.13 3.81 ± 0.43 0.003 

 Quantitative data are presented as mean values ± SEM, whereas qualitative data are 
indicated as percentage. A p value of <0.05 was considered significant.  
AIDS, acquired immunodeficiency syndrome; ALT, alanine transaminase; ART, 
antiretroviral therapy; AST, aspartate transaminase; F0, no fibrosis; F1, portal 
fibrosis without septa; F2, portal fibrosis and few septa; F3, numerous septa without 
cirrhosis; F4, cirrhosis or advanced fibrosis; HDL, high-density lipoprotein; HIV+MS-
, HIV-infected patients without metabolic syndrome; HIV+MS+, HIV-infected patients 
with metabolic syndrome; HOMA-IR, homeostasis model assessment for insulin 
resistance; HS, heterosexual; IVDU, intravenous drug user; IVDU/HS, intravenous 
drug user and multiple heterosexual contacts; LDL, low-density lipoprotein; MSM, 
men who have sex with men; NRTIs+INSTIs, nucleoside reverse transcriptase 
inhibitors and integrase strand transfer inhibitors; NRTIs+NNRTIs, nucleoside 
reverse transcriptase inhibitors and non-nucleoside reverse transcriptase inhibitors; 
NRTIs+PIs, nucleoside reverse transcriptase inhibitors and protease inhibitors. 

5.3.2. Markers of bacterial translocation, inflammation and 

cardiovascular risk 

As previously demonstrated in this Doctoral Thesis, HIV-infected 

subjects presented higher levels of sCD14 in comparison with a general 

population. These results were obtained when patients with and without MS 

were analyzed together. However, no differences were observed when the 

bacterial translocation markers LBP and sCD14 were analyzed comparing 

both HIV-groups (Figure 26A, B). Higher levels of IL-6 and MCP-1 that 

approached the threshold of statistical significance were observed in 
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HIV+MS+ subjects when compared to non-MS HIV patients (p=0.069; 

p=0.067, respectively) (Figure 26C, D). HIV-infected patients with MS 

showed higher levels of the cardiovascular risk marker PAI-1 in comparison 

with those HIV-infected patients without MS (p=0.007) (Figure 26E). 

Likewise, HIV patients with MS showed significantly higher values of the 

triglycerides-to-HDL ratio, which is a marker of cardiovascular risk, 

compared to the HIV+MS- group (p<0.0001). Similarly, patients with MS 

showed significantly higher values of the triglycerides-to-HDL ratio, which is 

a marker of cardiovascular risk, compared to the HIV+MS- group (p<0.0001) 

(Figure 26F).  
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Figure 26. Bacterial translocation, inflammation and cardiovascular risk markers 
according to the presence of metabolic syndrome. 
(A) LBP. (B) sCD14. (C) IL-6. (D) MCP-1. (E) PAI-1. (F) Triglycerides-to-HDL ratio. 
Each bar represents the mean ± SEM. p < 0.05 was considered significant. 
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5.3.3. Bacterial diversity and gut microbiota composition  

α-diversity was assessed using the number of observed species, 

alpha-index, the Margalef and Chao-1 indexes. No differences were found 

when comparing HIV-infected patients with and without MS with none of 

these indexes (Figure 27). 

 

Figure 27. α-diversity measurements in HIV-infected patients with and without 
metabolic syndrome. 
A) Number of species. (B) Alpha index. (C) Margalef’s diversity index. (D) Chao 1 
index. Each bar Each bar represents the mean ± SEM. p < 0.05 was considered 
significant. 

Regarding GM composition, phylum-level composition was 

dominated by bacteria belonging to the Firmicutes and Bacteroidetes phyla. 

Thus, HIV+MS- and HIV+MS+ groups showed a relative abundance of 74.32% 

and 71.22% respectively of these two phyla. When comparing the relative 
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abundance of the main phyla among the two HIV-groups only a significant 

decrease in the abundance of Firmicutes phylum was observed in HIV+MS+ 

patients in comparison with HIV+MS- subjects (p=0.046) (Table 12). 

Table 12. Relative abundance (%) of the major bacterial phyla and Proteobacteria 
classes present in gut in HIV-infected patients with and without metabolic syndrome. 

Taxonomic group (relative abundance (%)) 
HIV 

p value 
HIV+MS- HIV+MS+ 

Firmicutes 40.40 ± 1.53 33.77 ± 1.91 0.046 

Bacteroidetes 33.92 ± 1.73 37.45 ± 3.74 0.362 

Proteobacteria 4.46 ± 0.39 5.97 ± 1.40 0.503 

   * α-Proteobacteria 0.22 ± 0.06 0.25 ± 0.14 0.644 

   * β-Proteobacteria 1.45 ± 0.22 0.73 ± 0.26 0.159 

   * γ-Proteobacteria 0.15 ±0.05 0.23 ± 0.13 0.854 

   * δ-Proteobacteria 0.91 ± 0.10 0.71 ± 0.14 0.378 

Actinobacteria 1.37 ± 0.24 2.42 ± 0.71 0.111 

Ratio Bacteroidetes/Firmicutes 0.87 ± 0.07 1.04 ± 0.13 0.161 

Ratio Proteobacteria/Firmicutes 0.10 ± 0.008 0.14 ± 0.03 0.100 

Ratio Actinobacteria/Firmicutes 0.04 ± 0.008 0.05 ± 0.02 0.310 

Data are presented as mean values ± SEM. A p value of <0.05 was considered 
significant.  

At lower taxonomic levels, HIV-infected patients with MS showed a 

decrease in the relative abundance of seven bacterial genera and seven 

species, whereas no increase was observed in any genera or species in these 

patients compared to those without MS. Within the Firmicutes phylum, four 

genera and six species were reduced in the HIV+MS+ group, including the 

genera Eubacterium, Roseburia, Ruminococcus and Subdoligranulum, and the 

bacterial species Eubacterium eligens, Faecalibacterium prausnitzii, 

Roseburia intestinalis, Roseburia inulinivorans, Ruminococcus flavefaciens and 
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Subdoligranulum sp. The genera Desulfovibrio and Sutterella and the specie 

Sutterella wadsworthensis, which belong to Proteobacteria phylum, were also 

reduced, while only the Bifidobacterium genus of the Actinobacteria phylum 

was decreased (Table 13). A principal component analysis (PCA) was 

performed and clusters representing both groups were overlapped; thus, 

very small differences in GM profile were observed among HIV-infected 

patients with and without MS despite the differential abundance described 

before (Fig. 28). The clustering of samples was represented by their 

respective 95% confidence interval ellipse and results were plotted 

according to the first two principle components accounting for 54.6 % of the 

total variation (Component 1 = 30.4 % and Component 2 = 24.2%). 
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Table 13. The presence of metabolic syndrome in HIV-infected patients was 
associated with a decrease in the relative abundance of several bacterial genera and 
species in comparison with HIV patients without metabolic syndrome. 

Phylum Taxonomic group Category FDR 

Firmicutes Eubacterium Genus 0.012 

Firmicutes Eubacterium eligens Specie 0.002 

Firmicutes Faecalibacterium prausnitzii Specie 0.037 

Firmicutes Roseburia Genus 7.47 x 10-4 

Firmicutes Roseburia intestinalis Specie 0.002 

Firmicutes Roseburia inulinivorans Specie 8.85 x 10-4 

Firmicutes Ruminococcus Genus 3.59 x 10-4 

Firmicutes Ruminococcus flavefaciens Specie 0.002 

Firmicutes Subdoligranulum Genus 0.012 

Firmicutes Subdoligranulum sp. Specie 0.002 

Proteobacteria Desulfovibrio Genus 0.019 

Proteobacteria Sutterella Genus 0.002 

Proteobacteria Sutterella wadsworthensis Specie 0.002 

Actinobacteria Coriobacteriales bacterium - 0.002 

Actinobacteria Bifidobacterium Genus 0.009 

A false discovery rate (FDR) <0.1 was considered significant. 
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Figure 28. Principal component analysis (PCA) of HIV-infected patients according to 
the presence of metabolic syndrome. 
Each circle represents a sample: red circles represent the HIV-infected patients 
without metabolic syndrome (HIV) and green circles represent the HIV-infected 
patients with metabolic syndrome (HIV_MS).  
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5.3.4. Associations between the reduced bacteria observed in HIV-

patients with metabolic syndrome and several physiological and 

biochemical parameters 

The relative abundance of Coriobacteriales bacterium was positively 

associated with serum glucose levels (r=0.362, p=0.009), whereas it was 

negatively associated with systolic and diastolic blood pressures (r=−0.365, 

p=0.013; r=−0.336, p=0.023, respectively). Negative correlations between F. 

prausnitzii and the bacterial translocation marker sCD14 (r=−0.398, 

p=0.007) and triglyceride levels (r=−0.466, p=0.001) were detected. A 

significant negative correlation was also observed between R. intestinalis and 

LDL levels (r=−0.332, p=0.032). The abundance of R. flavefaciens was 

negatively correlated with the cardiovascular risk marker PAI-1 (r=−0.345, 

p=0.020) and also with LDL levels (r=−0.374, p=0.015) (Table 14). 

Table 14. Associations (Spearman’s rank correlation coefficients) found between the 
abundance of the decreased bacterial groups with the presence of metabolic 
syndrome in HIV-infected patients and several biochemical and physiological 
parameters. 

 Marker Spearman Rho 
Significance 

(two tail) 

Coriobacteriales 
bacterium 

Glucose 0.362 0.009 

SBP -0.365 0.013 

DBP -0.336 0.023 

Faecalibacterium 
prausnitzii 

Triglycerides -0.466 0.001 

sCD14 -0.398 0.007 

Roseburia 
intestinalis 

LDL -0.332 0.032 

Ruminococcus 
flavefaciens 

LDL -0.374 0.015 

PAI-1 -0.345 0.020 

A p value of <0.05 was considered significant. 
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5.4. Effect of Maraviroc on gut microbiota composition in a mouse 

model of diet-induced obesity/fatty liver 

5.4.1. In vitro antibacterial activity of Maraviroc 

No antibacterial activity of MVC was observed against the tested 

strains: E. coli ATCC25922, E. faecalis ATCC29212, S. aureus ATCC29213, L. 

monocytogenes CECT4032, and P. aeruginosa ATCC27853. All the MIC values 

were ≥128 mg/mL. 

5.4.2. Bacterial richness/diversity 

Mice fed with a HFD showed a lower bacterial richness with the four 

indexes analyzed compared to the control group (p=0.003-0.006). The 

addition of MVC to the HFD was also accompanied by a lower α-diversity in 

all cases compared to the control (p=0.001-0.002) but also compared to HFD 

groups (p=0.008-0.009). MVC supplementation with a control diet was not 

associated with differences in α-diversity compared to control animals 

(Figure 29). 
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Figure 29. Alpha diversity measurements in control and HFD–fed mice. 
A) Number of species. (B) Alpha index. (C) Margalef’s diversity index. (D) Chao 1 
index. Each bar represents the mean ± SEM. p < 0.05 was considered significant. 

5.4.3. Gut microbiota composition 

Concerning GM composition at phylum level, the cecum bacterial 

composition of the four groups of mice was dominated by the Firmicutes and 

Bacteroidetes phyla (both phyla represented the 93%, 94%, 93% and 92% 

for control, MVC, HFD and HDF+MVC groups respectively). 

No differences were observed among the two groups of animals fed 

with a control/standard diet at the phylum level. The HFD was associated 
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with an increase in the Proteobacteria phylum (p=0.006) and in the 

Proteobacteria/Firmicutes ratio (p=0.006) in comparison with control mice. 

The HFD+MVC group showed a reduction in Firmicutes phylum (p=0.001 vs. 

control; p=0.003 vs. HFD) and an increase in Bacteroidetes (p=<0.0001 vs. 

control; p=0.003 vs. HFD) and Proteobacteria phyla (p=<0.0001 vs. control; 

p=0.006 vs. HFD). HFD+MVC group had also higher values in the ratio 

Bacteroidetes/Firmicutes (p<0.0001 vs. control; p=0.003 vs. HFD) and in the 

ratio Proteobacteria/Firmicutes (p<0.0001 vs. control; p=0.006 vs. HFD). The 

ratio Actinobacteria/Firmicutes was also significantly higher in HFD+MVC 

animals compared to control mice (p=0.026) (Table 15).
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Concerning lower taxonomical levels (family, genus and bacterial 

species), HFD mice showed different abundances in several family, genus and 

bacterial species compared to standard/control diet fed-mice. Concretely, 

HFD mice presented an increase in the relative abundance of 13 bacterial 

families (Bacteroidaceae, Deferribacteraceae, Dehalobacteriaceae, 

Desulfomicrobiaceae, Desulfovibrionaceae, Enterobacteriaceae, 

Enterococcaceae, Lachnospiraceae, Lactobacillaceae, Peptococcaceae, 

Porphyromonadaceae, Ruminococcaceae, and Streptococcaceae), 16 genera 

(Anaerotruncus, Anaerovorax, Bacteroides, Bilophila, Butyricimonas, 

Butyrivibrio, Dehalobacterium, Desulfomicrobium, Desulfovibrio, 

Enterococcus, Lactobacillus, Lactococcus, Mucispirillum, Oscillospira, 

Parabacteroides, and Ruminicoccus) and three species (Bacteroides 

acidifaciens, Mucispirillum schaedleri, and Ruminicoccus gnavus), whereas 

these mice showed a decrease in the relative abundance of 8 bacterial 

families (Alcaligenaceae, Anaeroplasmataceae, Bifidobacteriaceae, 

Clostridiaceae, Eubacteriaceae, Oxalobacteraceae, Prevotellaceae, and 

Propionibacteriaceae), and 10 genus (Anaerofustis, Anaeroplasma, 

Bifidobacterium, Clostridium, Coprobacillus, Oxalobacter, Prevotella, 

Propionibacterium, Roseburia, and Sutterella) compared to controls (Table 

16).  
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Table 16. Effects of a HFD intake during 16 weeks on gut microbiota composition of 
mice at bacterial family, genus and specie level compared to mice fed with a standard 
diet. 

 Phylum Taxonomic group Category FDR 

 

Bacteroidetes Bacteroidaceae Family 0.009 

Deferribacteres Deferribacteraceae Family 0.009 

Firmicutes Dehalobacteriaceae Family 0.009 

Proteobacteria Desulfomicrobiaceae Family 0.014 

Proteobacteria Desulfovibrionaceae Family 0.009 

Proteobacteria Enterobacteriaceae Family 0.009 

Firmicutes Enterococcaceae Family 0.010 

Firmicutes Lachnospiraceae Family 0.009 

Firmicutes Lactobacillaceae Family 0.041 

Firmicutes Peptococcaceae Family 0.009 

Bacteroidetes Porphyromonadaceae Family 0.009 

Firmicutes Ruminococcaceae Family 0.009 

Firmicutes Streptococcaceae Family 0.009 

Firmicutes Anaerotruncus Genus 0.011 

Firmicutes Anaerovorax Genus 0.011 

Bacteroidetes Bacteroides Genus 0.011 

Proteobacteria Bilophila Genus 0.011 

Bacteroidetes Butyricimonas Genus 0.011 

Firmicutes Butyrivibrio Genus 0.012 

Firmicutes Dehalobacterium Genus 0.011 

Proteobacteria Desulfomicrobium Genus 0.015 

Proteobacteria Desulfovibrio Genus 0.015 

Firmicutes Enterococcus Genus 0.012 

Firmicutes Lactobacillus Genus 0.042 

Firmicutes Lactococcus Genus 0.011 

Deferribacteres Mucispirillum Genus 0.011 

Firmicutes Oscillospira Genus 0.011 
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 Phylum Taxonomic group Category FDR 

Bacteroidetes Parabacteroides Genus 0.011 

Firmicutes Ruminococcus Genus 0.042 

Firmicutes Streptococcus Genus 0.011 

Bacteroidetes 
Bacteroides 
acidifaciens 

Specie 0.017 

Deferribacteres 
Mucispirillum 
schaedleri 

Specie 0.017 

Firmicutes Ruminococcus gnavus Specie 0.017 

 

Proteobacteria Alcaligenaceae Family 0.009 

Tenericutes Anaeroplasmataceae Family 0.014 

Actinobacteria Bifidobacteriaceae Family 0.013 

Firmicutes Clostridiaceae Family 0.094 

Firmicutes Eubacteriaceae Family 0.062 

Proteobacteria Oxalobacteraceae Family 0.020 

Bacteroidetes Prevotellaceae Family 0.009 

Actinobacteria Propionibacteriaceae Family 0.062 

Firmicutes Anaerofustis Genus 0.063 

Tenericutes Anaeroplasma Genus 0.014 

Actinobacteria Bifidobacterium Genus 0.013 

Firmicutes Clostridium Genus 0.014 

Firmicutes Coprobacillus Genus 0.063 

Proteobacteria Oxalobacter Genus 0.013 

Bacteroidetes Prevotella Genus 0.011 

Actinobacteria Propionibacterium Genus 0.063 

Firmicutes Roseburia Genus 0.013 

Proteobacteria Sutterella Genus 0.011 

Red represents a significant increase in the relative abundance of several families, 
genera and bacterial species in mice fed a high fat diet compared to standard diet fed-
mice, whereas blue represents a significant decrease.  
A false discovery rate (FDR) <0.1 was considered significant. 
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MVC supplementation was only associated with an increase in 

Anaerotruncus genus and a decrease in the Dorea genus when compared with 

mice fed a chow diet (Table 17). No differences in the relative abundance of 

other genera, families or bacterial species were observed.  

Table 17. Effects of MVC supplementation in drinking water during 16 weeks on gut 
microbiota composition of mice at bacterial family, genus and specie level compared 
to mice fed a standard diet without MVC. 

Phylum Taxonomic 
group Category FDR Effect of 

MVC 

Firmicutes Anaerotruncus Genus 0.065 Increase 

Firmicutes Dorea Genus 0.086 Decrease 

Red represents a significant increase in the relative abundance in mice fed a standard 
diet with Maraviroc (MVC) in drinking water in comparison with mice fed a standard 
diet without treatment, whereas blue represents a significant decrease.  
A false discovery rate (FDR) <0.1 was considered significant. 

MVC supplementation with a HFD was accompanied by several 

disturbances in GM composition. Thus, HFD+MVC mice showed an increase 

in the abundance of 4 bacterial families (Alcaligenaceae, Bacteroidaceae, 

Porphyromonadaceae, and Verrumicrobiaceae), as well as 7 genera 

(Akkermansia, Anaerotruncus, Bacteroides, Dorea, Parabacteroides, 

Sutterella, and Coprobacillus), and 3 species (Akkermansia muciniphila, 

Bacteroides acidifaciens, and Parabacteroides distasonis). By contrast, these 

mice showed a reduction in the abundance of 6 bacterial families 

(Clostridiaceae, Coriobacteriaceae, Lachnospiraceae, Lactobacillaceae, 

Peptococcaceae, and Ruminococcaceae), and 4 genera (Adlercreutzia, 

Lactobacillus, Oscillospira, and Ruminococcus) in comparison with mice fed a 

HFD (Table 18).  
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Table 18. Effects of MVC supplementation in drinking water of mice fed a HFD during 
16 weeks on gut microbiota composition at bacterial family, genus and specie level 
compared to HFD-fed mice without MVC. 

 Phylum Taxonomic group Category FDR 

 Proteobacteria Alcaligenaceae Family 0.018 

Bacteroidetes Bacteroidaceae Family 0.018 

Bacteroidetes Porphyromonadaceae Family 0.018 

Verrumicrobia Verrucomicrobiaceae Family 0.018 

Verrumicrobia Akkermansia Genus 0.014 

Firmicutes Anaerotruncus Genus 0.014 

Bacteroidetes Bacteroides Genus 0.014 

Firmicutes Coprobacillus Genus 0.023 

Bacteroidetes Parabacteroides Genus 0.014 

Proteobacteria Sutterella Genus 0.014 

Verrumicrobia 
Akkermansia 

muciniphila 
Specie 0.024 

Bacteroidetes 
Bacteroides 

acidifaciens 
Specie 0.048 

Bacteroidetes 
Parabacteroides 

distasonis 
Specie 0.024 

 Firmicutes Clostridiaceae Family 0.031 

Actinobacteria Coriobacteriaceae Family 0.043 

Firmicutes Lachnospiraceae Family 0.031 

Firmicutes Lactobacillaceae Family 0.063 

Firmicutes Peptococcaceae Family 0.018 

Firmicutes Ruminococcaceae Family 0.018 

Actinobacteria Adlercreutzia Genus 0.023 

Firmicutes Dorea Genus 0.014 

Firmicutes Lactobacillus Genus 0.066 
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 Phylum Taxonomic group Category FDR 

Firmicutes Oscillospira Genus 0.014 

Firmicutes Ruminococcus Genus 0.066 

Red represents a significant increase in the relative abundance of several families, 
genera and bacterial species in mice fed a high fat diet with MVC compared to mice 
fed the same diet without MVC in drinking water, whereas blue represents a 
significant decrease.  
A false discovery rate (FDR) <0.1 was considered significant. 

A PCA was assessed to better understand the differences in GM 

composition between the groups herein analyzed. Figure 30 showed a PCA 

according to the first two principles components accounting for 74.5% of the 

total variation (Component 1 = 64.3% and Component 2 = 10.2%). Each 

group is represented by one cluster; thus, the control and MVC clusters were 

completely overlapped, while the HFD and HFD+MVC groups were 

represented in two clusters well-differenced. Thus, control groups showed a 

similar GM profile regardless MVC supplementation. In contrast, HFD and 

HFD+MVC groups showed marked differences in GM composition between 

them and also when compared to the control groups. 
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Figure 30. Principal component analysis showing the effects of MVC 
supplementation during 16 weeks on gut microbiota profile in mice fed a 
control/standard or HFD. 
Each symbol represents a sample: orange circles represent the control group, purple 
circles represent MVC mice, gr een circles represent HFD group, whereas blue circles 
represent HFD+MVC group. 

5.4.4. Analysis of short-chain fatty acids in serum 

The consumption of a HFD was accompanied by a significant 

decrease in the serum levels of propionate (p=0.05) and butyrate, although 

it did not reach statistical significance (p=0.158). In contrast, the HFD-

feeding was accompanied by a significant increase in acetate serum levels 

(p<0.05) and isovalerate (p<0.05). MVC supplementation did not exert any 

additional effect on the serum concentrations of theses fatty acids, with the 

exception of butyrate, as a significant increase was observed in the MVC 
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group when compared with the control animals (p<0.05). A non-significant 

increase was also observed in HFD+MVC mice in comparison with the HFD-

animals (Figure 31). 

 

Figure 31. Effects of MVC supplementation during 16 weeks on serum levels of 
short-chain fatty acids from control and high fat fed mice. 
A) Acetate. (B) Butyrate. (C) Isovalerate. (D) Propionate. Each bar represents the 
mean ± SEM. p < 0.05 was considered significant. 
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5.4.5. Associations between gut microbiota composition and body-

weight-related measurements, serum inflammation and biochemical 

parameters in mice fed with a HFD 

Spearman’s rank correlation tests were performed to analyze the 

possible associations between the genera and bacterial species differentially 

present in both HFD groups and the body-weight-related measurements, 

serum inflammation and biochemical parameters of these mice (data 

previously published by our group, (Perez-Martinez et al., 2014;Perez-

Matute et al., 2015)). Among all the genera and species differently found in 

the cecum of mice of the HFD+MVC vs. HFD, only 5 genera and 1 specie were 

found significantly associated with several physiological and biochemical 

parameters. Thus, the genera Bacteroides, Parabacteroides and the bacterial 

specie Bacteroides acidifaciens were positively associated with body weight 

gain, liver weight, total adipose tissue weight, epididymal adipose tissue 

weight, hepatic triglyceride content, transaminases levels (ALT, AST), the 

insulin resistance index (HOMA) and the inflammation marker IL-6, whereas 

the genera Sutterella and Ruminococcus were negatively associated with all 

these parameters. In addition, the Sutterella genus was also negatively 

associated with the inflammation marker TNF-α, while a significant positive 

correlation was observed between this marker and the Lactobacillus genus. 

The genus Ruminococcus was positively associated with butyrate plasma 

levels (r=0.516; p=0.017) (Table 19). 
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Table 19. Spearman’s rank correlation coefficient between body-weight-related 
measurements, and serum inflammation and biochemical parameters and the 
differential genera and species found in the cecum of mice when comparing the 
HFD+MVC and HFD groups. 

Parameters Pearson (r) p value 

GENUS Bacteroides  

Body weight gain (g) 0.594 0.002 

Liver weight (g) 0.496 0.014 

Adipose Tissue (g) 0.633 0.001 

Epididymal Adipose Tissue (g) 0.558 0.005 

Hepatic Triglyceride Content 
(mg/g tissue) 

0.596 0.002 

ALT (U/L) 0.596 0.002 

AST (U/L) 0.596 0.002 

HOMA index 0.610 0.002 

Il-6 (pg/mL) 0.755 <0.0001 

GENUS Parabacteroides  

Body weight gain (g) 0.757 <0.0001 

Liver weight (g) 0.594 0.002 

Adipose Tissue (g) 0.601 0.002 

Epididymal Adipose Tissue (g) 0.601 0.002 

Hepatic Triglyceride Content 
(mg/g tissue) 

0.676 <0.0001 

ALT (U/L) 0.676 <0.0001 

AST (U/L) 0.676 <0.0001 

HOMA index 0.704 <0.0001 

Il-6 (pg/mL) 0.639 0.002 
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Parameters Pearson (r) p value 

GENUS Sutterella  

Body weight gain (g) -0,701 <0.0001 

Liver weight (g) -0.776 <0.0001 

Adipose Tissue (g) -0.810 <0.0001 

Epididymal Adipose Tissue (g) -0.841 <0.0001 

Hepatic Triglyceride Content 
(mg/g tissue) 

-0.793 <0.0001 

ALT (U/L) -0.793 <0.0001 

AST (U/L) -0.793 <0.0001 

HOMA index -0.703 <0.0001 

TNFα (pg/mL) -0.501 0.013 

Il-6 (pg/mL) -0.675 0.001 

GENUS Lactobacillus  

TNFα (pg/mL) 0.439 0.032 

GENUS Ruminococcus  

Body weight gain (g) -0.447 0.028 

Liver weight (g) -0.476 0.019 

Adipose Tissue (g) -0.452 0.027 

Epididymal Adipose Tissue (g) -0.441 0.031 

Hepatic Triglyceride Content 
(mg/g tissue) 

-0.529 0.008 

ALT (U/L) -0.529 0.008 

AST (U/L) -0.529 0.008 

HOMA index -0.497 0.013 

Il-6 (pg/mL) -0.584 0.005 
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Parameters Pearson (r) p value 

Butyrate (μmol/L) 0.516 0.017 

SPECIE 
Bacteroides 
acidifaciens 

 

Body weight gain (g) 0.685 <0.0001 

Liver weight (g) 0.554 0.005 

Adipose Tissue (g) 0.649 0.001 

Epididymal Adipose Tissue (g) 0.621 0.001 

Hepatic Triglyceride Content 
(mg/g tissue) 

0.578 0.003 

ALT (U/L) 0.578 0.003 

AST (U/L) 0.578 0.003 

HOMA index 0.744 <0.0001 

Il-6 (pg/mL) 0.721 <0.0001 

A p value of <0.05 was considered significant. 
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This discussion has been performed taking into account the different studies 

carried out. 

6.1. Bacterial translocation and gut microbiota composition in HIV-

infected patients on different cART 

HIV infection has been associated with an increased BT and 

alterations of the GM composition that contribute to immune activation and 

inflammation (Dillon et al., 2014;Dinh et al., 2015;Mutlu et al., 2014). The 

questions are: Can cART reverse this situation? Have all ARVs the same 

effects on GM? 

A potential impact of cART on inflammation markers cannot be ruled 

out as Hileman et al., (2015) demonstrated that patients who switch from 

EFV-based to EVG-based regimens showed a decrease in the BT translocation 

marker sCD14, which may result in an improvement in immune activation, 

and, consequently, in vascular inflammation (Hileman et al., 2015). In our 

study, sCD14 levels were still raised despite cART, as previously described 

(Boulassel et al., 2012;Chege et al., 2011;D'Amico et al., 2005;Dinh et al., 

2015;Merlini et al., 2011). However, concerning the actions of different cART 

combinations on GM composition and bacterial translocation, only two 

research groups have evaluated this up to now. Nowak et al., (2015) analyzed 

the role of NNRTIs vs. PIs on GM composition and they did not found 

differences among treatments (Nowak et al., 2015). However, the study of 

Pinto-Cardoso et al., (2017) observed that patients on PIs had increased 

levels of the BT marker sCD14 compared to uninfected participants (Pinto-

Cardoso et al., 2017). In our study, an increase in sCD14 levels was also 

observed in patients on PIs and NNRTIs. Moreover, patients on PIs also 

showed increased inflammation markers (IL-6 and others) compared to 

healthy volunteers. The sCD14 increase observed in both studies could be 
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due to the fact that all patients on PIs included in the study of Pinto-Cardoso 

et al., (2017) and most of patients of our study were on ART regimens based 

on RTV-boosted. In fact, it has been demonstrated that RTV induce apoptosis 

and decrease barrier function in human intestinal epithelial cells, although it 

is important to note that these effects were observed at antiretroviral doses, 

and not at boost concentrations. In addition, these effects could explain, at 

least in part, the leak-flux diarrhea and the increase in microbial 

translocation observed in patients on PIs (Bode et al., 2005). In fact, RTV-

boosted protease inhibitors show a range of gastrointestinal side effects, 

such as noninfectious diarrhea, nausea or vomiting (Elperin and Sax 

1996;Hill and Balkin 2009).  

An increase in sCD14 levels was also observed in patients on NNRTIs, 

which contrasts with Pinto-Cardoso et al., (2017). The discrepancy could be 

explained as the patients included in Pinto-Cardoso et al., (2017) study were 

on EFV-based regimen, while the patients included in this work were on 

different NNRTIs, not only EFV (50%) (Pinto-Cardoso et al., 2017). 

INSTI-based regimens are recommended as initial therapy in the 

current guidelines, but to our knowledge, no studies have addressed the 

effect of INSTI-based regimens on BT and GM composition. This study has 

demonstrated, for the first time, that the effects of INSTI-based regimens on 

GM and BT can be “good”. Our study has demonstrated that INSTI-based ART 

is associated with levels of systemic inflammation and sCD14 similar to 

uninfected controls. Furthermore, NRTIs+INSTIs patients also showed 

similar levels of IL-6, VCAM and ICAM to the controls, suggesting that this 

regimen is able to counteract the increased BT induced by HIV infection and 

also diminish systemic inflammation, potentially reducing future HIV related 

complications (such as cardiovascular events) triggered by BT and 
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inflammation. In this context, several studies have previously demonstrated 

that starting treatment with INSTIs and/or the intensification or switching 

to this regimen is associated with a favourable effect on HIV-related immune 

activation and also with inhibition of CD4-T cell depletion (Asmuth et al., 

2012;Cummins and Badley 2014;Hileman et al., 2015;Martinez et al., 

2010;Vallejo et al., 2012) which is in line with the findings of this study. It is 

also important to note than although an increase in BT and inflammation was 

observed in HIV-infected patients compared with the controls, such 

difference was only significant in HIV-patients using cART. This could be due 

to the low number of naive patients recruited, which makes difficult to reach 

statistical significance. 

Although HIV infection has been associated with a reduced bacterial 

diversity (McHardy et al., 2013;Mutlu et al., 2014;Nowak et al., 2015), others 

have observed a significant increase in HIV+(naive) patients compared with 

HIV+(cART) (Lozupone et al., 2013). In our study, a significant and clear 

collapse was observed in α-diversity in HIV+(naive) compared with the 

controls, as occurs in other pathologies such as obesity (Villanueva-Millan et 

al., 2015). Compared with controls, a more pronounced decrease was 

observed in untreated patients than in those using cART, suggesting that 

cART is able to partially restore the bacterial diversity in gut. A study by 

Lozupone et al., (2013) also observed that long-term cART is able to partially 

restore α-diversity to the values obtained in HIV-negative individuals; 

however, in contrast with the findings of the present study, they observed a 

significant increase in α-diversity in chronic HIV+(naive) patients compared 

with controls (Lozupone et al., 2013). These discrepancies could be due to 

the different indices used to compare α-diversity. Concerning the effects of 

different antiretrovirals, this study demonstrates that NRTIs+INSTIs 

patients present a microbial diversity similar to the controls, which 
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highlights the ability of this regimen to counteract the actions of HIV 

infection on gut bacterial richness. The superior capacity of cART with INSTIs 

to restore GM diversity may be due to the fact that INSTIs induce a greater 

reduction in proviral DNA, which could lead to rapid immunologic 

reconstitution (Hoenigl et al., 2016;Llibre and Martinez-Picado 

2008;Pallikkuth et al., 2013). 

HIV infection and usage of different cART did not translate into 

significant changes at higher taxonomic levels, suggesting that HIV infection 

could be more closely related to changes in lower taxonomic units and 

diversity rather than at the phylum level, as occurs in other metabolic 

pathologies (Villanueva-Millan et al., 2015). These findings contrast with 

other studies that observed changes in some of the most abundant phyla 

when HIV-infected patients (both naive and using cART) were compared 

with healthy individuals (Dillon et al., 2014;McHardy et al., 2013). Thus, 

McHardy et al., (2013) showed a significant decrease in Firmicutes phylum 

in HIV+(naive) patients and intermediate depletion in HIV+(cART) 

compared with controls, whereas only a slightly depletion was observed in 

this phylum in both HIV+(naive) patients and patients using NRTIs+PIs 

compared with the controls (McHardy et al., 2013). In contrast, a significant 

increase in the relative abundance of Proteobacteria was observed in 

HIV+(cART) with no differences among the different ART used, whereas 

others have not reported any differences (Vujkovic-Cvijin et al., 2013). A 

potential explanation for these discrepancies could be the type of sample 

used (rectal mucosal biopsies vs. faeces). There is no agreement regarding 

the best sample to use for these determinations, and, therefore, this is an 

issue that needs further investigation. However, it is worth mentioning that 

the majority of the changes observed at lower taxonomic levels in this study 

were detected in taxonomic groups belonging to Firmicutes phylum and, 
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especially, to the Clostridiales class. In the study, seven bacterial species 

were found to be depleted in NRTIs+PIs patients, four were depleted in 

NRTIs+NNRTIs patients, and five depleted in NRTIs+INSTIs patients. In 

contrast, within the Clostridiales class, Lachnospiraceae family, one of the 

major taxonomic groups of the human GM known to degrade complex 

polysaccharides to SCFAs to be used as energy by the host, was significantly 

increased with cART, suggesting that these patients are more efficient from 

an energetic point of view (Meehan and Beiko 2014). Eubacterium eligens 

and Ruminococcus flavefaciens were two species whose abundance was 

significantly depleted by all treatments used. Nowak et al., (2015) also 

observed a decrease in Eubacterium genus in HIV-infected patients 

compared with healthy subjects, especially after introducing cART (Nowak 

et al., 2015). Of interest, a decrease was observed in the butyrate-producing 

specie Faecalibacterium prausnitzii in NRTIs+PIs patients. F. prausnitzii is a 

beneficial intestinal commensal bacterium with known anti-inflammatory 

properties; thus, the decrease observed could imply loss of protection and 

persistent inflammation (Hatano 2013;Quevrain et al., 2016). These findings 

are in agreement with the increased BT observed in these patients. In 

addition, a reduction in the abundance of the butyrate-producing bacterial 

species, normally present in gut, Roseburia inulinivorans and Roseburia 

intestinalis has also been observed in the patients on this regimen, 

corroborating the loss of richness observed compared with the controls. In 

addition, it is important to mention that the loss of butyrate-producing 

bacteria is related to several disorders, including IBD and Crohn’s disease 

(Geirnaert et al., 2017;Morgan et al., 2012). In fact, butyrate is important to 

gut homeostasis, being the preferred energy source for the colon epithelial 

cells, thus, contributing to the maintenance of the gut barrier functions 

(Riviere et al., 2016). Moreover, butyrate has anti-inflammatory properties 
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(Segain et al., 2000). Finally, patients using NRTIs+INSTIs showed a lesser 

reduction in bacteria from the Clostridiales class. In addition, a reduction in 

Desulfovibrio sp. 6 was observed. This bacterium belongs to the Desulfovibrio 

genus, known to produce hydrogen sulphide, a compound that can be toxic 

to human cells. Surprisingly, this genus was found to be increased in patients 

on INSTIs-based regimen. Similarly, higher frequencies of this genus have 

been found in other pathologies such as IBD and also in HIV infection 

(Christophersen et al., 2011;Lozupone et al., 2013;Verma et al., 2010). In 

contrast, Nowak et al., (2015) found a significant increase in viraemic 

patients compared with controls, although the relative abundance of this 

genus decreased after introduction of ART (Nowak et al., 2015). These 

discrepancies could be due to the fact that Nowak et al., (2015) did not 

include patients on the NRTIs+INSTIs regimen (Nowak et al., 2015). 

It is important to note that a higher number of patients on INSTIs 

presented AIDS definition compared with the other groups. The usage of 

INSTIs in these patients was considered a very effective rescue therapy and, 

in fact, similar CD4 counts were observed when compared with the other 

groups. Therefore, differences in GM composition could not be due to the CD4 

counts. Moreover, only RAL-users were included in this group as it was the 

first INSTI approved for clinical practice and the only one available when 

patients were recruited for this study. Several studies have reported some 

beneficial effects of RAL. Masiá et al., (2013) showed that administration of 

RAL was associated with a beneficial impact on lipid profile in patients 

previously-treated with PI boosted with RTV (PI/r) with virological 

suppression (Masia et al., 2013). In the same line, Macías et al., (2017) 

demonstrated that switch from EFV to RAL led to a decline in the degree of 

hepatic steatosis in HIV-infected patients with nonalcoholic fatty liver 

disease (NAFLD) compared with HIV-patients continuing with EFV (Macias 
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et al., 2017). In addition, our group has demonstrated that RAL exerts neutral 

actions on adipogenesis and glucose and lipid metabolism in adipocytes, 

which could explain, at least partly, the neutral metabolic effects of this drug 

in clinical trials (Perez-Matute et al., 2011). This Doctoral Thesis also 

demonstrates that HIV-infected patients under RAL presented a GM 

composition similar to uninfected volunteers, which highlights the interest 

of such findings. However, it is unknown whether EVG or DTG would have 

similar effects and, therefore, this deserves further investigation. 

This study has several limitations. Important aspects that could have 

an impact in GM composition have not been controlled in this study, such as 

the exact composition of the diet, stress conditions and HIV acquisition 

(heterosexual, MSM, intravenous drug user, etc.) (Bailey et al., 

2011;Noguera-Julian et al., 2016;Ursell et al., 2012;Yatsunenko et al., 2012). 

Moreover, it would be interesting to compare the GM composition in the 

HIV+(naive) patients with different CD4 count ranges; however, this 

comparison and others could not be performed because of the small sample 

size and because patients with a CD4 count <400 cells/mm3 were not 

included in this study. Finally, this study also included a very limited number 

of untreated HIV-infected patients. However, the comparison among controls 

and HIV+(naive) has been previously described and the purpose of this study 

was to analyse the effects of different cART. In fact, this work includes more 

patients on cART than others published to date (Dinh et al., 2015;Lozupone 

et al., 2013;McHardy et al., 2013;Mutlu et al., 2014;Nowak et al., 2015;Pinto-

Cardoso et al., 2017;Vujkovic-Cvijin et al., 2013).  

To sum up, the present study provides a clear description of GM 

composition in HIV-infected patients compared with a healthy population 

and specifically investigates in-depth the impact of different cART, in order 
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to better understand which regimen is able to restore GM composition and, 

therefore, resist the actions of HIV infection on BT and subsequent immune 

activation, disease progression and future complications. In general terms, 

HIV infection is closely associated with changes in lower taxonomic units and 

diversity rather than at the phylum level. The NRTIs+PIs regimen showed the 

highest reduction in bacterial species, which could suggest a significant loss 

of diversity and increased dysbiosis. In contrast, NRTIs+INSTIs increased the 

abundance of several bacterial orders, families, genera, and bacterial species 

and induced a minor loss of bacterial species suggesting a healthier gut and 

potentially fewer HIV-related complications, which, in turn, could contribute 

to the lower inflammation and BT observed.  
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6.2. Bacterial translocation and gut microbiota composition in HIV-

infected patients in presence or absence of coinfection with 

hepatotropic viruses 

As it is well known, HIV infection induces a marked CD4+ T cell 

depletion in GALT, which is associated with damage of the intestinal barrier, 

increased microbial translocation, dysbiosis and, subsequently, systemic 

inflammation with development of non-AIDS events (Dillon et al., 2014;Dinh 

et al., 2015;Hsu et al., 2013;Lozupone et al., 2013;Nowak et al., 2015). 

Alterations in GM composition and gut barrier, that leads to increased BT and 

inflammation, have also been observed in HBV- and HCV-infected patients 

(Aly et al., 2016;Bajaj et al., 2016;Heidrich et al., 2018;Lu et al., 2011;Sandler 

et al., 2011;Wei et al., 2013). Thus, it would be expected that HIV patients 

coinfected with hepatotropic viruses have a higher BT and altered GM 

composition compared to HIV non-coinfected patients.  

Our study demonstrates that HIV coinfection with hepatotropic 

viruses, especially with HCV, is associated with very slight effects on BT and 

major phyla abundance compared to non-coinfected patients. However, at 

lower taxonomic levels, HIV coinfected patients have a different GM 

composition compared to non-coinfected patients with a reduction of some 

butyrate-producing bacteria. It is important to emphasize that in the present 

study only one patient within the coinfected group was coinfected with the 

HBV, whereas the rest of the patients were coinfected with the HCV. Thus, it 

is considered that most of the effects on GM composition were mainly 

induced by HCV, and it is for this reason that this discussion is primarily 

focused on HCV. 

Similarly to the results found in our study, the work carried out by Tudesq et 

al., (2017) observed that coinfected patients had higher levels of the BT 
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markers LBP and sCD14 compared to non-infected individuals (Tudesq et al., 

2017). It seems that BT could be further increased by the presence of HCV. 

However, in our study, these differences were only observed with LBP levels 

and not with sCD14. The lack of differences in sCD14 levels could be due to 

the fact that the levels of this marker are influenced by the liver fibrosis 

degree (Marchetti et al., 2013;Marchetti et al., 2014) and, in our coinfected 

group, all fibrosis grades were analyzed together. Moreover, sCD14 is also a 

known marker of disease progression in HBV/HCV/HIV, thus, as both groups 

were HIV-infected patients, sCD14 levels could be elevated by HIV itself and 

coinfection may not be accompanied by higher levels of this marker, although 

more studies are needed to confirm this (reviewed by Kotsounas et al., 2015) 

(Koutsounas et al., 2015).  

Concerning GM profile, several studies have showed a disturbed GM 

composition in patients infected with HCV and HBV compared to non-

infected individuals (Aly et al., 2016;Bajaj et al., 2016;Heidrich et al., 2018;Lu 

et al., 2011;Wei et al., 2013). In this context, the studies carried out by Chen 

et al., (2011) and Heidrich et al., (2018) showed a decrease in bacterial 

richness in HBV- and HCV-infected patients in comparison with healthy 

controls, suggesting that HBV and/or HCV infection is associated with 

depletion in bacterial richness (Chen et al., 2011;Heidrich et al., 2018). 

Similarly, in our study, a lower bacterial richness was observed in coinfected 

patients when compared to uninfected subjects, although no differences 

were observed when compared to non-coinfected patients. Thus, the 

decrease in bacterial richness seems to be due to the significant reduction 

induced by HIV infection rather than HCV, and not additional effects have 

been observed. Heidrich et al., (2018) found that the decrease was more 

pronounced in the presence of cirrhosis, being α-diversity associated with 

the stage of hepatic fibrosis as well as with the virus (Heidrich et al., 2018). 
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However, in our study, coinfected patients with advanced hepatic fibrosis did 

not show a lower bacterial richness compared to patients with mild hepatic 

fibrosis and only a trend towards reduced α-diversity was observed. The lack 

of differences in α-diversity according to liver fibrosis could be due to the fact 

that only 12.5 percent of the patients enrolled in this study presented 

cirrhosis.  

Coinfection was associated with mild effects on major phyla 

abundance as only an increase was observed in the Proteobacteria and 

Actinobacteria phyla compared to uninfected patients. In contrast, the work 

performed by Aly et al., (2016) showed that healthy individuals had higher 

abundance of Firmicutes, Proteobacteria, and Actinobacteria compared to 

HCV mono-infected patients. Differences among studies could be attributable 

to the fact that the study of Aly et al., (2016) included only seven patients, all 

of them with cirrhosis, whereas our study included a higher number of 

patients with different degrees of hepatic fibrosis, and only 12.5 percent of 

the coinfected patients recruited by our study presented cirrhosis. Moreover, 

it is important to note that the study carried out by Aly et al., (2016) were 

performed in HCV-mono-infected patients and not in HIV coinfected patients. 

Thus, the effect of both viruses on bacterial richness was not addressed by 

these authors (Aly et al., 2016). To sum up, due to the different 

characteristics of the patients recruited, it is very difficult to compare the 

results among both studies.  

Generally, few differences were observed at lower taxonomic levels 

among the different groups analyzed in the present study. Thus, PCA showed 

that all groups were overlapped, although a higher dispersion of the GM 

profile of coinfected patients compared to those non-coinfected and 

uninfected subjects was observed. The presence of cirrhosis among the 
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coinfected group is a variable that could contribute to such higher dispersion. 

In fact, it has been demonstrated by previous works that patients with liver 

cirrhosis showed an altered GM composition compared to healthy subjects 

(Bajaj et al., 2014;Chen et al., 2011;Liu et al., 2012), as a close association 

exists among liver and intestine in what is called as liver-gut axis. 

Regarding changes at genus and specie level, an increase was 

observed in the Bacteroides and Parabacteroides bacterial genera, as well as 

in the specie Parabacteroides merdae in coinfected patients compared to 

those non-coinfected. Bacteroides and Parabacteroides species represent 

approximately 25% of the GM, being normally commensals. Nakano et al., 

(2013) have associated these genera with a higher morbidity and mortality 

(Nakano et al., 2013). In fact, even though the genus Bacteroides become part 

of the normal human microbiota from the earliest stages of life, it was 

demonstrated that when members of this genus escape the gut, they can 

cause different pathologies including abscess formation in multiple body 

sites as well as bacteremia (Wexler 2007). As it is well-known, both HIV and 

HCV are associated with damage to the epithelial barrier of the gut, thus, the 

higher relative abundance of this genus in coinfected patients compared to 

those non-coinfected could be related with the higher BT observed, which, in 

turn, may be associated with pathogenic effects of this genus. In the same 

line, the higher abundance observed of Parabacteroides in coinfected 

patients could also have deleterious effects, since can represent 

opportunistic pathogens in infectious diseases (Chiu et al., 2014). Thus, the 

role of these bacteria in coinfected patients needs to be researched further 

but points towards an unhealthy state. 

Coinfected patients showed a decrease compared to non-coinfected 

patients in the relative abundance of the butyrate-producing bacteria 
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Roseburia and Ruminococcus and in the genus Clostridium as well as in the 

bacterial specie Roseburia inulinivorans. The reduction of these bacteria 

could have deleterious effects in these patients, as butyrate plays an 

important role in the metabolism and normal development of colonic 

epithelial cells, as previously mentioned (Barcenilla et al., 2000;Pryde et al., 

2002). The study performed by Aly et al., (2016) also observed a decrease in 

the relative abundance of Ruminococcus and Clostridium genera in HCV 

mono-infected patients compared to uninfected individuals (Aly et al., 2016). 

Coinfected patients also showed a reduction in the abundance of the genus 

Pseudomonas, which includes species known to cause disease in humans 

(Iglewski 1996). However, the role of this genus in coinfection needs to be 

further investigated. Finally, it is interesting to mention the decrease 

observed in Coriobacterium in coinfected patients since it has been 

demonstrated that this genus plays a role in the early development of the 

newborn infant's GM, being present in faeces of healthy individuals 

(Harmsen et al., 2000). Thus, whether the reduction of this bacterial genus in 

coinfected patients could have a detrimental role needs to be further 

investigated.  

To sum up, coinfection with hepatotropic viruses was associated 

with very mild effects on BT and major phyla abundance compared to non-

coinfected patients. At lower taxonomic levels, a different microbiota 

composition was observed in HIV coinfected patients when compared with 

non-coinfected patients, and for this reason the impact of such coinfection 

could not be discarded and should be taken into account in these types of 

studies. 
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6.3. Bacterial translocation and gut microbiota composition In HIV-

infected patients with or without metabolic syndrome 

In this study we analyzed what happen in gut in HIV-infected patients 

that suffer from MS in comparison with those not suffering from such 

syndrome. But, first of all, we calculated the prevalence of MS in our HIV 

cohort. Thus, the prevalence of MS in HIV-infected patients recruited from 

San Pedro´s Hospital for this study according to the NCEP-ATP III criteria was 

21.57%, which was similar to the overall prevalence observed in HIV-

infected population worldwide and in Europe using the same criteria (24.6% 

and 24.1%, respectively) (Nguyen et al., 2016). When comparing this 

prevalence with previous studies carried out in HIV-people in Spain, similar 

rates were also observed (10-25%) (Cubero et al., 2011;Jerico et al., 

2005;Palacios et al., 2007). In addition, the prevalence observed in our 

Hospital was also within the range of the 17-46% observed in the general 

population with no infection of HIV, which indicates that the prevalence of 

this syndrome is not higher in HIV-infected people than in the general 

population. However and even though the prevalence is similar, the 

metabolic changes begin at early ages in HIV-infected people, due to, among 

other factors, the chronic inflammatory state caused by HIV infection 

(“inflammaging”) and the prolonged use of antiretroviral drugs that could 

lead to the development of different metabolic alterations, as described in 

the introduction section of the present Doctoral Thesis (Nakhla and Ruble 

2010;Nguyen et al., 2016;Smith et al., 2012;Swami 2016).  

As previously described, our HIV cohort showed higher plasma levels 

of sCD14 when compared to a control/healthy population. When these 

patients were split out depending on the presence of MS, both groups 

showed higher plasma levels of sCD14 in comparison with the controls, 
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however, no differences were observed among them, despite the fact that an 

increase of BT has been reported in non-HIV people with MS or its separated 

components (Lassenius et al., 2011;Sato et al., 2014). These results could 

suggest that HIV-infection is the responsible for such increase and the 

presence of MS in these patients does not potentiate such actions.  

Analysis of GM composition using PCA revealed that HIV+MS- and 

HIV+MS+ groups clustered together, indicating very little differences in GM 

profile. In fact, no differences were observed in α-diversity among groups 

and, at phylum level, only a reduction was observed in Firmicutes phyla in 

HIV patients with MS. Conversely, the study carried out by Lim et al., (2017) 

found that the presence of MS in uninfected subjects was accompanied by a 

reduction in bacterial diversity (Lim et al., 2017). The differences could be 

due to the fact that HIV by itself induces a strong decrease in α-diversity (as 

demonstrated above) and MS does not translate into a higher reduction. 

At lower taxonomic levels, the presence of MS was accompanied by a 

lower relative abundance of Desulfovibrio genus, which is known as a 

hydrogen sulfide producer and associated with damage in the gut barrier 

(Beerens and Romond 1977). This is the first study where a reduction in the 

abundance of this genus has been reported in HIV-infected patients with MS 

in comparison with those not suffering from such syndrome. Only the study 

from Zhang et al., (2010) found a higher number of bacteria belonging to the 

Desulfovibrionaceae family in fresh faecal samples from animal models of 

diet-induced MS, specifically in Apoa-I knockout mouse and in wild-type 

C57BL/6J mice (Zhang et al., 2010). However, these discrepancies could be 

due to the fact that animal’s models not always mimicks what happen in 

humans. In addition and more importantly, the HIV-infection impact on gut 

microbiota composition can not be compared among both studies. Thus, the 
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decline observed in this endotoxin producer in HIV-infected patients with MS 

and its clinical implications needs to be further investigated. 

The vast majority of the deplected bacteria observed in HIV-infected 

patients with MS were commensal and belong to Firmicutes phylum, 

including R. intestinalis, R. inulinivorans, F. prausnitzii, and some members of 

the Subdoligranulum genus, all of them butyrate producers (Vital et al., 

2013;von Engelhardt et al., 1998). As previously mentioned, butyrate plays 

an important role at the intestinal level by contributing to intestinal mobility, 

epithelial defense barrier and reduction of inflammation (Canani et al., 

2011). Accordingly, low levels of butyrate has been associated with some 

diseases in which inflammatory processes are implicated, such as ulcerative 

colitis (Rios-Covian et al., 2016). A reduction in colonic butyrate-producing 

bacteria was found by Dillon et al., (2017) in HIV-infected patients, which 

was associated with increased BT and immune activation (Dillon et al., 2017). 

Although in our study butyrate has not been specifically measured, the 

reduction in butyrate-producing bacteria in HIV patients with MS is clear and 

could suggest an unhealthier gut and increased gut inflammation compared 

to HIV patients without MS. In the same line, it is of great interest the 

reduction observed in the abundance of F. prausnitzii. This bacterial specie 

presents anti-inflammatory properties and it was demonstrated that can 

improve intestinal barrier function in animal models with low grade or acute 

inflammation, being recognized as a biomarker of intestinal health (Carlsson 

et al., 2013;Laval et al., 2015;Miquel et al., 2013). Therefore, a lower 

abundance of F. prausnitzii could suggest that HIV patients with MS have a 

greater inflammatory state, which, in turn, could be associated with a greater 

cardiovascular risk. Overall, these results underline the need to monitor 

these patients even after immunological control with cARTs in order to 

avoid, if possible, the deleterious effects derived from loss of protection at 
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gut level. The genus Bifidobacterium (Actinobacteria phylum) includes 

bacteria with known beneficial effects. In fact, several probiotics are based 

on different bacterial strains belonging to this genus (Riviere et al., 2016). 

Interestingly, the presence of MS was associated with a decrease in 

Bifidobacterium when intestinal microbiota of both uninfected subjects (Lim 

et al., 2017) and HIV-patients of our study were analyzed. Thus, these 

patients could benefit from these probiotics in order to reduce the incidence 

of future events associated to inflammation. 

In general terms, the presence of MS was associated with a decrease 

in the relative abundance of several bacteria with known anti-inflammatory 

roles and, therefore, could suggest loss of protection against future 

cardiovascular events (Kasselman et al., 2018). Thus, the increased levels of 

PAI-1 and the triglycerides-to-HDL ratio observed in HIV-infected patients 

with MS could be due, at least in part, to the reduction of these bacteria. Thus, 

these bacteria could constitute reliable markers of future cardiovascular 

events in HIV-infected people with MS. However, more metabolic/functional 

studies are needed to corroborate such hypothesis. 

One of the limitations of the present study was the difference in age 

among both HIV-groups, despite the similarities observed in all other 

parameters (time under stable antiretroviral treatment, families of ART 

used…). In fact, GM composition can be modulated by age (Odamaki et al., 

2016). For this reason, stratification by age was carried out in the HIV-

subjects (median age 49 years) in order to evaluate whether the changes 

observed in GM composition in patients with MS were due to age or by the 

presence of MS itself. As no changes in GM composition were observed at all 

the levels analyzed (genera and bacterial species), the reduction observed in 

the abundance of several bacteria seems to be associated with the presence 
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of MS itself and not secondary to age. Other potential limitation of the present 

study could be the small number of HIV-infected patients with MS included, 

although this sample size was similar to other metagenomic studies 

(Graessler et al., 2013;Medina et al., 2017).  

In summary, the presence of MS in HIV-infected patients was not 

accompanied by major changes in GM composition and only minimal 

deviations with potentially clinical impact have been observed when 

compared with HIV patients without MS. The reduced relative abundance 

observed in some relevant bacterial species, such as F. prausnitzii suggests a 

greater inflammatory state at intestinal level that could underline the higher 

CVD risk observed in these patients. In addition, our study highlights the 

potential usage of some bacteria as markers of future cardiovascular events 

in HIV-infected patients with MS, although more studies are needed to 

confirm such results.
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6.4. Effects of Maraviroc on gut microbiota composition in a mouse 

model of diet-induced obesity/fatty liver  

Obesity has been defined as one of the 21st Century epidemics 

associated with different pathologies such as diabetes, hypertension, heart 

disease and osteoarthritis, which increases morbidity and mortality 

(Rossner 2002). This condition affects the general population (13%) (WHO: 

http://www.who.int/en/news-room/fact-sheets/detail/obesity-and-

overweight, date accessed: April 2018) but also HIV-infected people. In fact, 

the proportion of HIV-infected patients with overweight/obesity under 

antiretroviral treatment has significantly increased in recent years (Tate et 

al., 2012). These patients have an increased cardiovascular risk and 

metabolic abnormalities compared with non-obese and non-HIV infected 

patients (Shah et al., 2012). Thus, antiretroviral therapy-based molecules 

able to modulate obesity and other metabolic alterations are of great interest.  

Previous studies from our group have demonstrated that the CCR5 

antagonist MVC exerts beneficial effects against a murine model of obesity 

and fatty liver (Perez-Martinez et al., 2014;Perez-Matute et al., 2017). It has 

also been demonstrated in a very preliminary study that MVC modulates 

microbiota (Perez-Matute et al., 2015). In this context, a deeper investigation 

of the effects of this antiretroviral on GM are of interest. For this purpose, 

three different approaches have been carried out in this Doctoral Thesis: (i) 

the analysis of the in vitro actions of MVC on cultured strains, (ii) the 

investigation of the in vivo effects of MVC supplementation in gut in mice fed 

a control or a high fat diet using next sequencing technologies, and finally, 

(iii) the determination of MVC actions on SCFAs serum levels. 

Concerning the in vitro actions of MVC, our study has clearly 

demonstrated for the first time that MVC did not exert any in vitro 
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bacteriostatic effect in the tested strains. This could suggest that MVC does 

not directly interfere with the microorganisms themselves. In the same line, 

our in vivo work highlights the lack of actions of MVC in gut microbiota 

composition when administered along with a control diet, since no 

differences in the microbiota profile was observed when control mice where 

compared to mice fed with the same diet but supplemented with MVC. 

Likewise, Vitomirov et al., (2015) demonstrated that this antiretroviral drug 

did not either induce changes in GM composition, at least at order level, in 

HIV-infected patients (Vitomirov et al., 2015). However, in our study, it is 

remarkable the increase observed in butyrate levels observed in those 

animals supplemented with MVC. As only an increase in the presence of 

Anaerotruncus was observed in mice fed with a control diet supplemented 

with MVC in comparison with the controls, it is tempting to suggest that such 

increase could be produced by Anaerotruncus, a known butyrate producer 

from the Ruminococcaceae family (Esquivel-Elizondo et al., 2017). However, 

more functional/transcriptomic studies are needed in order to deeply 

understand the clinical role of increased production of butyrate induced by 

MVC. 

Although no significant effects of MVC were found when 

administered with a control diet, several and interesting actions were 

observed when administered with a HFD. This could suggest that HFD 

induces a significant increase in the expression of CCR5 at gut level, and, 

therefore, MVC could exert different actions. We have not directly measured 

CCR5 mRNA levels in gut, but previous studies observed a significant 

increase in the expression of this co-receptor in adipose tissue of obese 

human, but also in genetically obese (ob/ob) and HFD-induced obese mice 

(Huber et al., 2008;Kitade et al., 2012;Wu et al., 2007), which makes plausible 

that this could also happen at gut level. Anyway, MVC actions on GM seem to 
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be dependent on physiological status (more effective after an “input” such as 

induction of obesity) and, therefore, should be taken into account when 

prescriptions are made.  

Concerning the effects of MVC on GM composition when 

administered along with a HFD, it is important to mention that a decrease in 

Firmicutes and an increase in the Bacteroidetes phyla were observed in 

comparison with mice fed a HFD. These changes could be beneficial since 

Rabot et al., (2016) associated a GM rich in Bacteroidetes with a protective 

role against high fat-feeding induced glucose intolerance (Rabot et al., 2016). 

In fact, our previous studies observed a partial improvement in insulin 

resistance after MVC administration and despite the ingestion of a HFD 

(Perez-Martinez et al., 2014;Perez-Matute et al., 2015). The addition of MVC 

along with a HFD was able to restore most of the effects induced by a HFD 

(Alcaligenaceae, Lachnospiraceae, Lactobacillaceae, Peptococcaceae and 

Ruminococcaceae families, and Coprobacillus, Sutterella, Lactobacillus, 

Oscillospira and Ruminococcus genera), but, in contrast, MVC also potentiates 

the effects that a HFD exerts in the abundance of other taxa (Bacteroidaceae, 

Clostridiaceae and Porphyromonadaceae families, Anaerotruncus, 

Bacteroides and Parabacteroides genus and Bacteroides acidifaciens specie). 

Finally, MVC showed other effects different from those observed with the 

HFD (such as those observed on Coriobacteriaceae and Verrumicrobiaceae 

families and Akkermansia and Adlercreutzia genera). In fact and as 

represented by the PCA, the majority of the changes induced by MVC in these 

HFD-animals were independent of those exerted by the diet. Thus, we can 

not conclude that MVC could be a promising drug to counteract the HFD 

effects on gut as other actions can not be discarded and should be taken into 

account. 
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In accordance with the present study, several authors have 

associated a HFD feeding with the reduction of the Sutterella genus, while 

dietary interventions that improve host metabolism increase the abundance 

of this genus, just as the treatment with MVC (Duparc et al., 2017). In 

agreement with these statements, Sutterella genus was negatively associated 

with body weight gain, liver and adipose tissue weight, hepatic triglycerides 

content, HOMA index and levels of transaminases and the inflammatory 

markers measured in our study. Thus, the increase of this bacterial genus 

after MVC supplementation could have a beneficial impact at liver and 

adipose tissue level, though more studies are needed in this regard.  

MVC was able to counteract the increase observed in Ruminococcus 

genus in mice fed with a HFD. The study carried out by Boursier et al., (2016) 

found that Ruminococcus accumulation was correlated with liver fibrosis 

stage in patients with NAFLD (Boursier et al., 2016). Then, since MVC 

decreased the relative abundance of this genus and was negatively 

associated with liver weight, hepatic triglycerides transaminases levels and 

the inflammatory marker IL-6, it is tempting to suggest that MVC actions on 

Ruminococcus could underline the beneficial effects of this ARV on liver, as 

previously reported by our group (Perez-Martinez et al., 2014).  

The role of Lactobacillus is not clear since it has been traditionally 

believed to exert beneficial actions and a recent study indicated that could 

even reduce the endotoxin level, endotoxin-induced inflammation and 

regulation of the immunity (Zhou et al., 2017) but an increase of Lactobacillus 

in obese NAFLD patients compared to healthy controls has also been 

observed in previous works (Nobili et al., 2018;Raman et al., 2013). In this 

Doctoral Thesis, mice fed with a HFD showed an increase in this genus while 

the administration of MVC decreased the abundance of Lactobacillus. These 



DISCUSSION 

 

189 

results are quite intriguing, but it is important to mention that even though 

some members of Lactobacillus genus are used as probiotics for its beneficial 

role, it has been demonstrated that other Lactobacillus species are associated 

with different effects on weight change (L. acidophilus, L. fermentum, L. 

ingluviei L and reuteri) (Million et al., 2012a;Million et al., 2012b). Hence, the 

increase in this genus should be further investigated before making 

nutritional recommendations as several species belonging to this genus are 

actually used as probiotics.  

The ingestion of a HFD was also associated with increased presence 

of Oscillospira genus, despite the fact that other studies have associated these 

bacteria with leanness and health in humans (Gophna et al., 2017). However, 

the study performed by Krych et al., (2015) in non-obese diabetic mice 

suggested that this genus promotes the development of diabetes (Krych et 

al., 2015). MVC supplementation reduced the abundance of this genus and 

this could underline the partial improvement observed in insulin resistance 

in these mice, although more studies are needed in this regard.  

Coprobacillus is a genus that belongs to the Firmicutes phylum. It is 

known as a bacterial genus characteristic of mice, however, its role in gut is 

still being explored (Lagkouvardos et al., 2016;Meehan et al., 2015). Thus, the 

lower abundance observed after the ingestion of a HFD and the subsequent 

increase observed after MVC supplementation needs to be further 

investigated.  

Concerning the effects of MVC that are in the same way than those 

observed with a HFD, the genus Anaerotruncus was increased by a HFD 

intake but also when MVC was administered in both mice fed a HFD or a 

control diet, as previously mentioned. Intriguingly, a previous work has 

observed that Anaerotruncus is a dominant genus in GM in control mice as 
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well as in healthy children and adolescents in comparison with obese 

subjects (Hou et al., 2017). These apparent contradictory results compared 

to our results need to be clarified but what is clear is that Anaerotruncus is a 

target of MVC, independently of the metabolic status of the animals. 

Xiao et al., (2017) observed a decrease in the relative abundance of 

Bacteroides and Parabacteroides genera and in the bacterial family 

Bacteroidaceae in response to high fat feeding, which contrasts with our 

findings. These differences can be attributed to the difference in the length of 

HFD feeding, since Xiao et al., (2017) performed the treatment for 6 weeks, 

while the present study lasts longer, concretely 16 weeks (Xiao et al., 2017). 

Instead, and corroborating our results, other authors showed an increase in 

the abundance of Bacteroides spp. (an endotoxin producer) in mice with liver 

steatosis compared to control mice and an increase in the relative abundance 

of Parabacteroides in non-alcoholic steatohepatitis (NASH) patients 

compared to healthy subjects (Bashiardes et al., 2016;Xie et al., 2016). In the 

same line, Xie et al., (2016) showed a positive association between the 

Bacteroides acidifaciens with LPS plasma levels. Moreover, an association 

between increased Bacteroides concentrations and NASH development was 

also observed (Bashiardes et al., 2016;Xie et al., 2016). In addition, Lecomte 

et al., (2015) also observed an increased in Bacteroides and Parabacteroides 

genera in rats fed a HFD, which were positively associated with body weight 

gain (Lecomte et al., 2015). The function of these bacteria in HFD mice could 

be linked to a higher metabolic activity or could indicate an induced state of 

inflammation. Our present study is in line with these former studies and 

showed a significant increase in the abundance of Parabacteroides, 

Bacteroides and Bacteroides acidifaciens in HFD-mice when compared to 

controls but also in MVC-supplemented mice when compared to the HFD 

group. Furthermore, a positive correlation of Parabacteroides, Bacteroides 
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and Bacteroides acidifaciens with body weight gain, liver and adipose tissue 

weight, hepatic triglycerides content, HOMA index, transaminases levels and 

the inflammatory marker IL-6 was observed. Therefore, these results should 

be deeply analyzed from a clinical point of view before MVC is prescribed. 

Finally, MVC supplementation exerts its own actions on GM, 

independently of HFD-feeding actions. Thus, MVC along with a HFD was 

associated with an increase in Verrumicrobiaceae family and Akkermansia 

genus, and a decrease in Coriobacteriaceae family and Adlercreutzia genus.  

Several studies have associated an increase in Akkermansia genus 

(belongs to Verrumicrobiaceae family), with a reduction in fat accumulation 

and an improvement in the metabolic profile of mice with diet-inducing 

obesity (Axling et al., 2012;Shin et al., 2014). Moreover, it is worth 

mentioning that Akkermansia muciniphila, which belongs the 

abovementioned genus, showed a beneficial role in several metabolic 

disorders, such as obesity, diabetes, cardiometabolic diseases and low-grade 

inflammation. In fact, this specie has been proposed as a potential candidate 

to improve these metabolic disorders (reviewed by Cani and de Vos (2017)) 

(Cani and de Vos 2017). Therefore, the increase observed of Akkermansia in 

HFD-fed mice treated with MVC seems to suggest a protective role of this 

drug, which is of great interest and deserves further investigation. 

The reduction of the Coriobacteriaceae family is not clear. This taxon 

includes important constituents of the host physiology, but some members 

(such as Enterorhabdus, Collinsella, and Eggerthella lenta) have also been 

implicated in different pathologies, such as IBD or type-2 diabetes (Clavel et 

al., 2014;Chen et al., 2012). The abundance of the genus Adlercreutzia, which 

belongs to the abovementioned family, was reduced in those mice fed a HFD 

and supplemented with MVC. A recent study found an increase of this genus 
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in mice fed a HFD, and it was associated with an increase in body weight gain 

and increased intestinal permeability (Hamilton et al., 2017). Thus, MVC 

could be exerting a beneficial role in body weight gain by decreasing the 

relative abundance of these taxa in mice fed a HFD, although its role needs 

further functional investigation.  

In summary, this study has clearly demonstrated, for the first time, 

that MVC did not exert any in vitro bacteriostatic effect in the tested strains, 

suggesting that MVC is not able to interfiere with the microorganisms 

themselves. In addion, minimal significant effects of MVC were either found 

in gut microbiota composition when administered with a control diet, while 

several and interesting actions were observed when administered with a 

HFD. This could suggest that MVC maximal actions on gut microbiota are only 

observed when a challenge is carried out, such the induction of obesity and 

adiposity after a HFD. This opens the opportunities to investigate if its 

immunological actions could also be potentiated if administered along with 

a high fat diet. This, for sure, deserves further investigation. 
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1. HIV infection decreases alpha-diversity and is closely associated 

with changes in lower taxonomic units rather than at the phylum 

levels when compared with uninfected people.  

2. Combined antiretroviral therapy is associated with changes in 

bacterial translocation. In fact, HIV-infected patients under 

treatment showed higher plasma levels of the microbial 

translocation marker sCD14 and also increased levels of the 

cardiovascular risk markers ICAM and VCAM when compared with 

uninfected subjects.  

3. Combined antiretroviral therapy is also associated with alterations 

in gut microbiota composition. 

4. Patients on PI-based antiretroviral therapy showed the highest loss 

of alpha-diversity and increased dysbiosis.  

5. Patients on INSTI-based antiretroviral therapy showed levels of 

systemic inflammation, sCD14 serum levels and alpha-diversity 

similar to uninfected controls. 

6. INSTI-based therapy is accompanied by increased abundance of 

several bacterial orders, families, genera and species and, in contrast, 

a minor loss of bacterial species in comparison with the other 

combined antiretroviral therapies tested.  
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7. HIV/HCV coinfection results in a further increase of bacterial 

translocation, since higher levels of LBP is observed in HIV/HCV 

coinfected subjects compared to those non-coinfected.  

8. Coinfection with hepatotropic viruses does not produce further 

changes in alpha-diversity, and only an increase in Actinobacteria 

phylum was observed when compared to non-coinfected patients.  

9. At lower taxonomic levels, HIV/HCV-coinfected patients have a 

different gut microbiota profile compared to non-coinfected 

patients, showing a reduction of some butyrate-producing bacteria.  

10. The presence of metabolic syndrome is not accompanied by an 

increase in bacterial translocation or changes in alpha-diversity and 

only minimal deviations with potentially clinical impact have been 

observed in gut microbiota.  

11. The reduced abundance of F. prausnitzii in HIV-infected patients 

with metabolic syndrome suggests a greater inflammatory state at 

intestinal level which could underline the greater cardiovascular risk 

observed in these patients in comparison with those HIV-infected 

patients not suffering from metabolic syndrome. 

12. Metabolic syndrome is associated with a reduction in the butyrate-

producing bacteria Eubacterium eligens, Roseburia intestinalis, 

Roseburia inulinivorans and Subdoligranulum sp., which could 

constitute, along with F. prausnitzii, reliable markers of future 

cardiovascular events in HIV-infected patients. 
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13. Maraviroc did not exert any in vitro bacteriostatic effect in the tested 

strains.  

14. Minimal effects of Maraviroc were found in gut microbiota 

composition when administered to mice fed a control diet, while 

several and interesting actions were observed when administered to 

high-fat diet-fed mice. Thus, Maraviroc maximal actions on gut 

microbiota are only observed when a challenge is carried out, such 

the induction of obesity and adiposity after a high-fat diet.  

15. The effects of Maraviroc on gut microbiota composition of high-fat 

diet-fed mice are very diverse. It can restore the effects induced by a 

high-fat diet in some bacteria but, in contrast, Maraviroc also can 

potentiate the effects of the high-fat diet in the abundance of other 

bacteria. Maraviroc treatment is also associated with other effects on 

other bacterial taxa different from those observed with the high-fat 

diet. 

16. All the results and conclusions arisen above should be taken into 

account in future investigations and when an antiretroviral 

treatment is being prescribed.





CONCLUSIONES 

 

199 

Conclusiones 

1. La infección por el VIH reduce la riqueza de especies (alfa-

diversidad) y está asociada con cambios en la abundancia de 

unidades taxonómicas inferiores a los filos bacterianos cuando se 

compara con sujetos no infectados. 

2. La terapia antirretroviral está asociada con cambios en la 

translocación bacteriana. De hecho, los pacientes infectados por el 

VIH bajo tratamiento antirretroviral mostraron niveles 

incrementados del marcador de translocación bacteriana sCD14, y 

también de los marcadores de riesgo cardiovascular ICAM y VCAM al 

compararlos con los sujetos no infectados.  

3. La terapia antirretroviral también se asocia con alteraciones en la 

composición de la microbiota intestinal.  

4. Los pacientes bajo tratamiento basado en inhibidores de la proteasa 

mostraron una mayor reducción de la alfa-diversidad y una mayor 

disbiosis.  

5. Los pacientes bajo tratamiento basado en inhibidores de la integrasa 

mostraron niveles de inflamación sistémica, niveles séricos de 

sCD14 y de alfa-diversidad similar a los sujetos no infectados. 

6. La terapia basada en inhibidores de la integrasa se acompaña por un 

incremento en la abundancia de varios órdenes, familias, géneros y 
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especies bacterianas y, en cambio, una menor pérdida de especies 

bacterianas en comparación con las demás terapias testadas. 

7. La coinfección por VIH/VHC se asocia con un mayor incremento de 

la translocación bacteriana, ya que los pacientes coinfectados por 

VIH/VHC presentaron niveles incrementados de LBP en 

comparación con aquellos no coinfectados.  

8. La coinfección por virus hepatotropos no produce mayores cambios 

en la alfa-diversidad, y solamente se observó un incremento en la 

abundancia del filo Actinobacteria al compararse con los pacientes 

no coinfectados. 

9. A niveles taxonómicos inferiores, los pacientes coinfectados 

mostraron un perfil de la microbiota intestinal diferente al de los 

pacientes VIH no coinfectados, mostrando además una reducción en 

la abundancia de algunas bacterias productoras de butirato.  

10. La presencia de síndrome metabólico no se acompaña de un 

incremento en la translocación bacteriana o de grandes cambios en 

la alfa-diversidad al compararse con los pacientes VIH sin síndrome 

metabólico. Caben destacar algunos cambios observados en la 

composición de la microbiota intestinal con potencial impacto 

clínico. 

11. La menor abundancia de F. prausnitzii en pacientes infectados por el 

VIH con síndrome metabólico podría sugerir un mayor estado 

inflamatorio a nivel intestinal. Este hecho podría justificar el mayor 
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riesgo cardiovascular observado en estos pacientes en comparación 

con aquellos sin síndrome metabólico.  

12. El síndrome metabólico se asocia con una reducción de las bacterias 

productoras de butirato Eubacterium eligens, Roseburia intestinalis, 

Roseburia inulinivorans y Subdoligranulum spp., especies bacterianas 

que, junto con F. prausnitzii, podrían convertirse en marcadores de 

riesgo de eventos cardiovasculares en los pacientes infectados por el 

VIH. 

13. Maraviroc no ejerce ningún efecto bacteriostático in vitro en las 

cepas bacterianas testadas. 

14. La administración de Maraviroc se asocia con cambios mínimos en la 

composición de la microbiota intestinal cuando se administra a 

ratones alimentados con una dieta estándar, mientras que al 

administrarse junto con una dieta alta en grasa se pudieron apreciar 

modificaciones importantes en la composición de la microbiota 

intestinal. Por tanto, los efectos de Maraviroc sobre la microbiota 

intestinal se observan únicamente cuando los animales son 

sometidos a un “challenge”, en este caso, la inducción de la obesidad 

y adiposidad tras la ingesta de una dieta alta en grasa. 

15. Los efectos de Maraviroc sobre la composición de la microbiota 

intestinal de ratones alimentados con una dieta alta en grasa es muy 

diversa. Este fármaco puede restaurar los efectos inducidos por la 

dieta alta en grasa en la abundancia de algunas bacterias, aunque 

este fármaco también puede potenciar los efectos de la dieta alta en 
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grasa en la abundancia de otras bacterias. Finalmente, el tratamiento 

con Maraviroc también se asocia con efectos sobre taxones 

bacterianos diferentes de aquellos alterados por la ingesta de una 

dieta alta en grasa. 

16. Todos los resultados y conclusiones presentados anteriormente 

deben tenerse en cuenta en futuras investigaciones y a la hora de 

plantear un plan de tratamiento antirretroviral personalizado. 
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