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Preface

Quantum wells, quantum wires, quantum dots. These are terms that have become familiar not
only to specialists in physics and semiconductor technology but also to the common public. But
these structures of nanoscopic dimensions appeared several decades ago in the vision of renowned
specialists in these materials and, as a reality, after it was possible to develop epitaxial crystal
growth techniques and methodologies that allow ultra-precise control of the deposition of atomic
monolayers. The 1980s witnessed a steady increase in research work on these structures. The
subsequent decades have seen the consolidation of a branch that has redefined solid-state physics
and, in particular, semiconductor physics.

Although these three classes of systems began to be studied, at least from a theoretical point
of view, almost simultaneously, the attention of the first y ears was much more i nclined towards
quantum wells. These semiconductor heterostructures with rectangular profiles or other geometric
shapes obtained through the use of modulation in the composition, guarantee a spatial confinement
for the movement of charge carriers along one direction by combining semiconductor materials
with different bandgap w idths. For this reason, they are often referred to as quasi-two-dimensional
quantum systems. A multitude of theoretical and experimental works have allowed a broad knowl-
edge of its properties to be achieved and allowed the development of various applications in the
fields of electronics and o ptoelectronics. Thus, the first and fourth chapters of  this book deal with
particularities of the study of charge carrier states in semiconductor quantum wells. In chapter
1 the authors deal with the case in which the potential energy profile i n t he c onduction b and of
these heterostructures is affected by the presence of a high-density donor doping spread over a very
narrow region both inside and out, at the edges of the potential well (deltaic doping). In this 
situation, the characteristics of the optical response in the THz range associated with the electron
states in the system, taking into account the influence of elements such as the application of electric
fields and the change in the concentration o f i onized impurities in the doping r egion. Considering
the particular case of Si-Ge quantum wells, a new class of modeling device is proposed that would
work in the mentioned spectral zone.

A key element in determining the electronic structure of semiconductor quantum wells is to
solve the characteristic differential problem for the envelope wave function within the effective mass
formalism. This also means finding the eigenvalues of the corresponding energy operator. When
the geometry of the potential profile departs from the model of abrupt interfaces with rectangular
quantum wells, the analytical solution of this problem reduces to some very specific cases in terms
of special functions of Mathematical Physics. In a vast majority of situations, quantum states
must be obtained by computational numerical schemes. Chapter 4 details the procedure known as
the Numerov method, which is particularly suitable for solving second-order ordinary differential
equations of the Schrödinger type, leading to an equivalent matrix problem from which the allowed
states of energy result when solving the problem of corresponding eigenvalues. Using several typical
examples, the authors explain the algorithm and show how it works. Furthermore, they provide
the complete Python code to the interested reader.

Further progress in crystal growth methods made it possible to produce structures in which the
movement of charge carriers in the nanostructure is restricted in two or three spatial directions. In
this way, the possibility of having unlimited displacement is reduced to one dimension (in the case of
quantum wires) or to none. In this last situation, the energy spectrum is completely discrete and we
have what have been called quantum dots. Given this circumstance, we can speak of systems whose
behavior is equivalent to a kind of artificial atoms. Given their unusual properties, ideas about the
applications of quantum dots in practical life go beyond electronics and optoelectronics and reach
areas such as biomedicine. Chapter 2 briefly describes some properties of quantum transport
through quantum dots and quantum wires. In this framework, the transmission probability in a
quantum wire system with an impurity (or quantum dot) is calculated through the tight-binding
method. These same transport properties can be treated with various formalisms.
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The use of Green’s functions in the most diverse areas of Physics has made it possible to provide
accurate theoretical explanations for many phenomena inherent to this science. Its use allows the
determination of electronic, optical, thermal, transport and other properties in solid systems and
also in the case of semiconductor nanostructures. Chapter 3 of this book is dedicated to exposing in
sufficient detail the use of this formalism to investigate quantum transport properties -in particular
the so-called transmission probability- in ensembles of two or three quantum dots with different
geometries.

Speaking of optical properties, it should be noted that in semiconductor nanostructures the
nonlinear components of the response of each system to the incidence of light usually have remark-
ably large amplitudes compared to the bulk semiconductors themselves. Moreover, in several of
these systems, the characteristics of the energy spectrum allow theoretical descriptions analogous
to those used to explain the optical response of atoms or molecules. A nonlinear optical property
that often occurs in semiconductor nanostructures is electromagnetically induced transparency. In
the chapter 5 of the book, the authors have decided to give a detailed description of the derivation
process of the expressions that allow evaluating the dielectric susceptibility in a system of three
energy levels coupled to two external electromagnetic fields in the configuration typically known
as type-λ. This kind of treatment is relevant to investigate this kind of nonlinear phenomenon in
wells and quantum dots.

In the final chapter have described the procedure for corrections of first and third order to the
optical absorption and changes in the refractive index for two-level system. Clearly in a multi-level
system should make a sum over all possible transitions involving all initial and final states. In that
case it is very important to consider the occupation of levels considering the statistic that applies
to the case of low temperatures or finite values of temperature.

Readers interested in the topics presented in this book will be able to find information, in
several cases, detailed on different methods and procedures to study the electronic structure of
low-dimensional semiconductor nanostructures and for the calculation of optical and transport
properties in said systems.

Miguel Eduardo Mora Ramos
Cuernavaca, Estado de Morelos, México 
March 2022

ii

Cite this book as following: V. Akimov, A. Tiutiunnyk, R. Demediuk, V. Tulupenko, E. Soto-Gómez, J. C. Cortés-
Peñaranda, P. A. Orellana, J. H. Ojeda, J. A. Gil-Corrales, J. C. León-González, R. G. Toscano-Negrette, D. Caicedo-
Paredes, M. E. Mora-Ramos, J. C. Martínez-Orozco, R. L. Restrepo, A. L. Morales, C. M. Duque, and C. A. Duque. 
Study of delta-doped quantum wells: Energy levels and applications in the terahertz region. Editorial Instituto 
Antioqueño de Investigación, Medellín-Antioquia, Colombia (2022).



About the authors

iii

University of Tarapaca, Chile.

Ph.D. in Physics, University of Antioquia (Colombia). Master in Applied Physics, The 
Yuriy Fedkovych National University of Chernivtsi (Ukraine)

Anton Tiutiunnyk 

Donbass State Engineering Academy, Ukraine.
Candidate of Science (comparable to the Academic Degree of Doctor of Philosophy), 
V.Ye. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of 
Ukraine. Master of mathematics, Donbass State Pedagogical University (Ukraine).

Roman Demediuk 

Volodymyr Akimov 
it-ogo@yandex.ru

University of Medellin, Colombia.

Born in Kramatorsk, Donetsk region, USSR. In 1998 obtained the title of Systems 
Engineer in the specialty of Computer Aided Design Systems, at the Donbass State 
Engineering Academy DSEA, Kramatorsk, Ukraine. Subsequently, did postgraduate 
studies in the Physics Department of the DSEA, and worked as an engineer, assistant 
professor, junior researcher, and senior professor in the Department of Information 
Technologies and the Physics Department of the DSEA. Between 2003 and 2005 worked 
as a researcher at the University of Lecce, Italy, now the University of Salento, in the 
Department of Innovation Engineering. The work has been carried out within the 
framework of the European Union Project Single PrOTein NanObioSEnsor griD array 
IST-2001-38899-SPOT-NOSED. In 2011 obtained a doctorate degree in biophysics from 
Kharkiv V. N. Karazin National University, Ukraine. Until August 2014 worked as a 
professor at the Department of Information Technologies at DSEA, Kramatorsk, Ukraine. 
From September 2014 to December 2016, worked as a postgraduate researcher at the 
University of Antioquia, Colombia. From February 2016 to date, works as a full-time 
professor at the University of Medellín, Colombia.

tyutyunnyk.a.m@academicos.uta.cl

demediuk.roman@gmail.com

Viktor Mykolayovych Tulupenko 
viktor.tulupenko@gmail.com



iv

Erika Yazmín Soto Gómez
erikayazmin.soto@uptc.edu.co

Pedagogical and Technological University of Colombia UPTC, Colombia.
Universidad Internacional del Trópico Americano Unitrópico, Colombia.

Physics, Master in Sciences-Physics and Ph.D student in Sciences-Physics. She has 
experience as a professor of physics, research and formulation of projects on dye-
sensitized solar cells. She is linked to the research groups Química-Física Molecular y 
Modelamiento Computacional (QUIMOL) of the UPTC and Ciencias Básicas Aplicación 
e Innovación (CIBAIN) of the Unitrópico. Her research areas are molecular electronics, 
quantum transport and electrical, thermal and magnetic properties in low-dimensional 
systems, also studies on organic molecular systems and their applications in photovoltaic 
devices.

Juan Camilo Cortés Peñaranda 

Head of the Department of Physics and Laboratory of Solid State Quantum Electronics 
in the Donbass State Engineering Academy, Kramatorsk, Ukraine. Official Physics 
Expert of the Ministry of Science and Education and the Foundation for Fundamental 
Research of Ukraine. Member of Condensed Matter Group-UdeA, Colombia. Master of 
Radiophysics from Donetsk State University, Ukraine. PhD in Semiconductor Physics 
and Dielectrics of the Leningrad Polytechnic Institute, Russia. Doctor of Physics and 
Mathematics Sciences, Kyiv National University, Ukraine.

juancamilo.cortes@uptc.edu.co

Pedagogical and Technological University of Colombia UPTC, Colombia

Physicist and Master of Science-Physics student at the Pedagogical and Technological 
University of Colombia. Research area in molecular electronics and quantum dots, 
studies of electrical, thermal and magnetic transport properties applying the Green 
Functions method.

Pedro Alejandro Orellana Dinamarca
pedro.orellana@usm.cl

Technical University Federico Santa María (USM), Chile

Bachelor in Physics PUC 1989. Ph.D. in Physics from the Pontificia Universidad Católica 
de Chile (PUC) (1994). Actually,  he is a full professor at the USM; 1997 - 2013 Associated 
Professor Universidad Católica del Norte (UCN) - Antofagasta; 1996 Postdoctoral 
researcher at USACH- Chile;  1995 Postdoctoral researcher at CNPqRj-Brazil. His 
research line is Electronic Transport and Photonics in the Nanoscale.



v

John Alexander Gil Corrales 
jalexander.gil@udea.edu.co
University of Antioquia, Colombia.

Physicist from the University of Antioquia and Ph.D. in Physics from the same college. 
He is a member of the Condensed Matter-UdeA group, where he has developed works on 
characterization of low-dimensional structures and analysis of electronic transport 
properties in heterostructures, among others.

Judith Helena Ojeda Silva
judith.ojeda@uptc.edu.co

Pedagogical and Technological University of Colombia UPTC, Colombia.

Bachelor of Science in Physical Education and Mathematics, Specialist in Physics 
Teaching, Master of Science in Physics, Doctor of Science in Physics, Postdoctoral 
Experience at the University of Tarapacá, Chile. Actually, she is a titular professor at the 
Universidad Pedagógica y Tecnológica de Colombia; at the same university: April 2018 
and April 2021 coordinator of the Ph.D. and M.Sc. postgraduate programs in Physical 
Sciences; February 2016 - August 2018 coordinator of the M.Sc. in Physical Sciences; 
February 2015- February 2016 director Physics Department; January 2014 Postdoctoral 
researcher at Universidad de Tarapacá, Chile; August 2010 - December 2013 director of 
the Postgraduate School of the Faculty of Sciences; January 2004 - June 2012 Assistant 
Professor; January 2003 - December 2003 Assistant professor at Universidad de 
Cundinamarca, Colombia; January 2002 - December 2002 Auxiliary professor at 
Universidad Santo Tomás, Colombia. Her research lines are Quantum Transport, 
spintronics, molecular systems, electrical and magnetic properties in low dimensional 
systems. She is affiliated to the research groups: Materials Physics Group and the 
Chemistry-Molecular Physics and Computational Modeling Group Quimol of the UPTC, 
and to the Condensed Matter Group of the University of Antioquia.

Autonomous University of Zacatecas UAZ, México.

Juan Carlos Martínez Orozco
jcmartinez@uaz.edu.mx

Has a degree in Physics from the Autonomous University of Zacatecas (UAZ) in 2000 and 
a Doctor of Science (Physics) from the Autonomous University of the State of Morelos, in 
its direct Doctorate modality, obtaining the degree in August 2007 and He made a 
postdoctoral stay in 2014, through the CONACyT project, at the University of Antioquia, 
in Medellín, Colombia and is currently assigned to the Physics Academic Unit of the 
UAZ. Product of his academic and research activities, among which are around 50 
undergraduate and postgraduate courses, director of four doctoral theses (one more in 
process), two master's theses (four in process) and about a dozen undergraduate level. 



vi

University of Antioquia, Colombia.

He was born in the city of Montería, Colombia, where he studied primary and 
secondary school at the Villa Cielo educational institution. He entered the University of 
Córdoba to study Physics. He is currently doing Ph.D. studies in Physics at the 
University of Antioquia, where he studies the properties of low-dimensional 
semiconductor heterostructures. In addition, he is a professor at the University of 
Córdoba, Colombia.

José Carlos León González 
jose.leong@udea.edu.co

University of Antioquia, Colombia.

I was born in the city of Montería-Cordoba in 1993. I began my training in secondary 
school at the municipality of Puerto Escondido-Córdoba, and I finished secondary 
school at the Mercedes Abrego institution, in the city of Cartagena-Bolívar. In 2011 I 
entered the University of Córdoba to study Physics, and in July 2017 I received the 
diploma that accredited me as a professional in Physics. In the year 2020, motivated to 
learn and delve deeper into physics, I began my Ph.D. studies in Physics at the 
University of Antioquia, where I am currently studying. In the workplace, in August 
2017, I started working as a laboratory assistant at the University of Córdoba, and I am 
currently working in the same place.

Rafael Guillermo Toscano Negrette
rafael.toscano@udea.edu.co

He has published more than 60 internationally indexed research articles and about 15 
extensive publications. Which have earned him recognition as a member of the national 
system of researchers at level II and his admission to the Mexican Academy of Sciences 
in 2019. Finally, in the management part, Dr. Martínez Orozco has been technically 
responsible for at least 5 research projects of both the SEP and CONACyT. He is 
coordinator of the Doctorate in Basic Sciences at the Autonomous University of 
Zacatecas, served as president of the solid-state division of the Mexican Society of 
Physics in the period 2017-2018 and is a member of the Mexican Society of Physics, of 
the American Society of Physics, of the Mexican Society of Materials, of the Colombian 
Society of Physics, among others.

University of Antioquia, Colombia.

Dahana Caicedo Paredes
dahana.caicedo@udea.edu.co

She was born in Bajo Baudó, Chocó, on December 27, 1997. She is the sixth daughter of 
seven siblings, her father is a fisherman and her mother is a laboratory assistant.



vii

alvaro.morales@udea.edu.co 
University of Antioquia, Colombia.

Academic degrees Physicist, M.Sc. In Physics, Ph.D. in Physics. Member of the 
Condensed Matter-UdeA and Solid State groups at Universidad de Antioquia. 
Docent/researcher at Universidad de Antioquia since 1970. Member of the 
Colombian Academy of Exact, Physical, and Natural Sciences.

Álvaro Luis Morales Aramburo 

ricardo.restrepo@eia.edu.co 
EIA University, Colombia.

Physicist, Master in Physics and Doctor in Physics. He is director of the EIA-
Theoretical and Applied Physics research group, and a member of the Colombian 
Physics Society. His areas of interest are Condensed Matter Physics, Interaction of 
light with matter, photonics.

Ricardo León Restrepo Arango 

Autonomous University of Morelos State UAEM, México

Born in Havana, Cuba. Major in physics (B. Sc., 1984) AND Ph.D in physics (1995) 
from University of Havana. Assistant professor of theoretical physics, University of 
Havana (1984-1996). Associate professor of theoretical physics, autonomous 
University of Zacatecas, Mexico (1996-1997). Associate researcher, center for optical 
research, Aguascalientes, Mexico (1997-1998). Professor (full) of theoretical physics 
and mathematics (UAEM, 1998-), since 1998 full pro.

Miguel Eduardo Mora Ramos
memora@uaem.mx

At the age of 17, she moved to the city of Medellin to study materials engineering at 
the University of Antioquia, she is about to graduate. She was part of the Condensed 
Matter research group between the years 2019-2021. Among her hobbies are playing 
sports, cooking, traveling, reading and spending time with her loved ones.

cduque1987@gmail.com
Max Planck Institute of Molecular Cell Biology and Genetics, Germany.

Carlos Mario Duque Jiménez 

Physicist, Master in Physics, Ph.D. in Physics, Ph.D. University of Massachusetts 
Amherst, USA.



Carlos Alberto Duque Echeverri 
carlos.duque1@udea.edu.co
University of Antioquia, Colombia.

Ph.D. in Physics, Universidad del Valle. Master in Physics, University of Antioquia. 
Undergraduate Physicist, University of Antioquia. Coordinator of the Condensed 
Matter Group-UdeA.

viii



Table of Contents

1 Adjusting energies of intersubband optical transitions
in delta-doped quantum wells 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Semiconductor quantum wells . . . . . . . . . . 2

1.1.2 Intersubband transitions in QWs . . . . . . . . 3

1.1.3 THz radiation . . . . . . . . . . . . . . . . . . . 5

1.1.4 Impurities in semiconductor nanostructure opti-
cal devices . . . . . . . . . . . . . . . . . . . . . 7

1.1.5 Concept of the new kind of tunable THz device 8

1.1.6 General and specific objectives . . . . . . . . . . 10

1.2 Object . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 SiGe quantum wells structure . . . . . . . . . . 11

1.2.2 Assumptions and limitations . . . . . . . . . . . 13

Delta-layer Impurity concentration . . . . . . . 13

Internal stress in the well material . . . . . . . . 15

Central cell effect . . . . . . . . . . . . . . . . . 16

1.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1     Energy subband positions and wave functions . 16

1.3.2 Fermi level . . . . . . . . . . . . . . . . . . . . . 18

1.3.3 Hartree potential . . . . . . . . . . . . . . . . . 19

1.3.4 Impurity binding energy . . . . . . . . . . . . . 19

1.3.5 Self-consistent method . . . . . . . . . . . . . . 22

1.3.6 Particular case: background impurities . . . . . 23

Fermi level . . . . . . . . . . . . . . . . . . . . 23

Modification of the algorithm . . . . . . . . . . 27

1.3.7 Linear and nonlinear optical effects based on
intersubband transitions . . . . . . . . . . . . . 29

1.3.8 Many-body effects . . . . . . . . . . . . . . . . 30

ix



Table of Contents

1.4 Results and discussion . . . . . . . . . . . . . . . . . . 31

1.4.1 Energy positions and wave functions . . . . . . 31

1.4.2 Linear absorption peak changes. Estimation of
tuning ranges. . . . . . . . . . . . . . . . . . . . 34

1.4.3     Influence of nonlinearity on the absorption and
refraction . . . . . . . . . . . . . . . . . . . . . 39

1.4.4 New type of THz modulator . . . . . . . . . . . 41

1.4.5     Influence of transversal electric field . . . . . . 45

1.4.6     Influence of background impurity . . . . . . . . 49

Transition to the limit of undisturbed rectangu-
lar QW . . . . . . . . . . . . . . . . . 49

Results at temperature 4K . . . . . . . . . . . .     50
Higher temperatures. IBEs and the electron

concentrations . . . . . . . . . . . . . 52

Energy distances at higher temperatures . . . .    56
Shallower QW . . . . . . . . . . . . . . . . . . .    57

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2 Review: A Look Into QD and QW 70
2.1 A brief introduction to electronic transport through quan-

tum dots and wires . . . . . . . . . . . . . . . . . . . . 70
2.2 Review and analysis of electronic transport through a

quantum wire (QW ) with an impurity or quantum dot
(QD). . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Green’s functions and Quantum transport properties 89
3.1 Introduction to Green’s functions . . . . . . . . . . . . 89
3.2 Properties of quantum transport through systems with

QDs and QW using Green’s functions. . . . . . . . . . 95
3.2.1 Transmission probability through a quantum dot

(QD). . . . . . . . . . . . . . . . . . . . . . . . 95
3.3 Transmission probability through two QDs. . . . . . . 97
3.4 Comparison with a system of wells and barriers . . . . 104
3.5 One-dimensional system of three QDs . . . . . . . . . . 107
3.6 T-shaped System with two QDs between leads. . . . . 112

x



Table of Contents

3.7 T-shaped System with three QDs between leads. . . . . 116
3.8 Three-QDs system with cross-coupling-leads at the in-

termediate site . . . . . . . . . . . . . . . . . . . . . . 120
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

4 Derivation and Applications of the Numerov Method 127
4.1 Definition and derivation of the method . . . . . . . . . 127

4.1.1 Application of the method to the one-dimensional
Schr¨odinger equation . . . . . . . . . . . . . . . 130

4.2 Application of the method to quantum wells of different
shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1 Finite Potential Well . . . . . . . . . . . . . . .   131
4.2.2 V-shaped Potential Well . . . . . . . . . . . . .   133
4.2.3 Parabolic Potential . . . . . . . . . . . . . . . .   135
4.2.4 Asymmetric Potential Well . . . . . . . . . . . .   137
4.2.5 Sawtooth potencial . . . . . . . . . . . . . . . . 139

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 141
4.4 Algorithm implementation . . . . . . . . . . . . . . . . 141
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5 Electromagnetically Induced Transparency (EIT) 148
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Nonlinear optical properties 164
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 164
6.2 Density Matrix Equations . . . . . . . . . . . . . . . . 164
6.3 Linear and non-linear absorption coefficients . . . . . . 172
6.4 Linear and non-linear changes in the refractive index . 175 
6.5 Non-linear optical rectification, s econd a nd t hird har-

monic generator . . . . . . . . . . . . . . . . . . . . . . 177
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

xi



Chapter 1

Adjusting energies of intersubband
optical transitions in delta-doped
quantum wells

List of abbreviations

1D – 1-dimensional

2D – 2-dimensional

2DEG – 2-dimensional electron gas

3D – 3-dimensional

BI – Background Impurities

CVD – Chemical Vapor Deposition

IBE – Impurity Binding Energies

IR – Infrared

MBE – Molecular Beam Epitaxy

ME – Matrix Element

MQW – Multiple Quantum Wells

QCL – Quantum Cascade Laser

QW – Quantum Well

QWIP – Quantum Well Infrared Photodetectors

THz – Terahertz

WF – Wave Function

1.1 Introduction

A new configuration of semiconductor quantum well optical devices
based on intersubband optical transitions is proposed. The idea of
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doping into the well allows tuning energy separations between size-
quantized levels (that is the working frequency of the device) by con-
trolling the degree of impurity ionization. The proposed idea is grounded
by the extensive numerical study of a Si0.8Ge0.2/Si structures with
a number of varying parameters including geometrical ones. Self-
consistent calculations that include a calculation of impurity binding
energy as a part of iteration are used as a method. The positions and
wave functions of size quantized energy levels within quantum well are
found and studied as well as linear and non-linear absorption coefficient
and refractive index change connected with intersubband transitions.

1.1.1 Semiconductor quantum wells

Semiconductor heterostructures are monosrystallic compositions of dif-
ferent semiconductor materials with the same type of crystal lattice.
They are produced using such technologies as Molecular Beam Epi-
taxy [1] and Chemical Vapor Deposition [2] and made in the way that
inside a crystal there are regions of different materials. The materi-
als have different bandgap and form heterojunctions. The difference
of the bandgap on the border of the regions with different materials
provide a band discontinuity. The technologies and activity to obtain
semiconductor heterostructures with a given geometrical parameters is
called Bandgap Engineering. The relative positions of the band edges
of the materials forming the heterojunction is usually treated as the
fundamental property of the material couple [3]. For the simplicity
and specificity in the following explanations, we speak about the con-
duction band only and neglect the valence band. If the materials (1)
form three plane layers, (2) the width of the second (central) layer is
comparable to de Broglie wavelength of the conduction electron and
(3) conduction band edges of the first and the third (bordering) lay-
ers are higher in energy than the one of the central layer, than the
conduction band, energy profile forms a well (see Fig. 1.1). Here
bordering materials form barriers and central material forms potential
well. In the well, the conduction electrons may have states quantized
in one direction (perpendicular to the layer) and continuous in two
other spatial dimensions. Such electronic structure is called Quan-
tum Well (QW). The direction perpendicular to the layers is called
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heterostructure growth direction (for technological reasons) and tradi-
tionally denoted as z-direction. The dimensions in plane of QW are 
denoted as x and y. The electrons moving in (x,y) plane and confined 
in z-direction within the QW are called quasi two-dimensional electron 
gas in analogy to three-dimensional electron gas in bulk 
semiconductor crys-tals. The 2D continuum of electronic states 
attached to the specific size-quantized level is called a subband. So 
the quantum well forms a number of size-quantized subbands that 
can be filled with 2DEG in addition to 3D continuum of electronic 
states in the bulk crystal.

Figure 1.1: Semiconductor quantum well heterostructure (a) and its conduction band energy profile
(b).

Applications of the semiconductor heterostructures [4] can be divided
in two big groups, namely production of electronic and optical devices.
The most commonly known example of semiconductor optical device
are light-emitting diodes (LEDs) [5]. Electronic applications covers
among the others monolithic integrated circuits or computer chips.

1.1.2 Intersubband transitions in QWs

Most optical devices based on semiconductor heterostructures exploit
interband transitions. That is the transitions between valence and
conduction bands. Energies of such transitions are determined mainly
by the bandgap of the material. However, optical transitions between
the different states within the same band (intraband transitions [6])

3



Chapter 1. Adjusting energies of intersubband optical transitions in delta-doped quantum wells

are also possible. A particular kind of intraband electronic transitions
are optical transitions between the quantum wells subbands [7], which
are called intersubband optical transitions. Here “optical” means that
the transition occurs with the absorption or emission of a photon (see
Fig. 1.2) so that such transitions have the influence on the absorption
or emission spectra of the semiconductor heterostructure and can be
used to construct an optical device.

Figure 1.2: Absorptive intersubband optical transition. E – energy, k – wave vector, lower horizontal
fat line – impurity state, parabolas – dispersion of subbands, ∆Ei – impurity binding energy, ∆E12

– energy distance between two lower subbands, h (= ∆ E 12) – photon energy.

One can speak about two most important types of quantum well-based
optical devices on intersubband transitions: Quantum Well Infrared
Photodetectors [8] (passive ones, based on absorption) and Quan-
tum Cascade Lasers [9, 10] (active ones, based on stimulated emis-
sion). Many implementations of the mentioned designs are commer-
cially available and have many applications. However, they mostly
work at one given frequency (in other words lack tunability), which is
considered as the crucial disadvantage. Here we propose the way that
kind of devices can be tuned by influencing the degree of impurity
ionization so that the existing devices can be modified and the new
designs of tunable optical devices working in THz regions like filters
and modulators can be created.

Notably, in both QWIP and QCL designs the transverse electric
field is used (that is the field applied in the direction of QW growth
or perpendicular to QW plane).
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1.1.3 THz radiation

For the commonly used semiconductor materials the typical working 
frequencies for the intersubband optical transitions lie between mid IR 
and TeraHertz ranges. The lower frequencies, namely microwaves 
and below, normally cannot be obtained with photonic methods and 
are normally discussed in terms of electronics terminology. 
Particularly, if we speak in terms of photonics, in case of 
intersubband transitions if two subbands are so close in energy that 
the difference corresponds to microwaves (below 300GHz or 1 meV) 
then the transitions between the subbands are defined by the acoustic 
phonon rates and the uncertain-ties of different kind (statistical as 
well as fundamental Heizenberg) does not allow to obtain 
pronounced peaks in optical properties. The limit of higher energies is 
defined by the band discontinuities that can be obtained for the 
given materials. Generally, they are considered about one order of 
magnitude less than the characteristic bandgap of the materials.

Currently, in the mentioned range, the most attractive for engineers
as well as the most problematic technically is the TeraHertz range,
which is on the brink between optics and electronics [11], see Fig. 1.3

Figure 1.3: TeraHertz frequency range

The term terahertz literally implies the frequency = 1 THz = 1012 Hz
and accordingly, the period 10−12 s = 1 ps. The corresponding vacuum
wavelength is 300 µm and wave number is 33.3 cm−1. The energy of 1
THz photon is 4.1meV and equivalent temperature is T = 48K. The
THz range has no strict definition in the literature as the different au-
thors refer to the different ranges. Some consider THz range to be from
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0.1 to 10 THz (with wavelength from 3 mm to 30 µm), others define
it between 0.1 and 50 THz. Other definitions are also possible. We
believe that the most appropriate would be the range with wavelength
from 0.4 mm to 40 µm or with frequencies from 0.75 THz to 7.5 THz.
On the one hand, it completely covers the band of a so-called THz gap.
And on the other hand, there are physical reasons for the individual-
ization of the very mentioned spectral band. The point is that on both
sides of the frequency (wavelength) range different physical approaches
for creating active devices, which depend on the value of wavelength,
are used. The long-wavelength edge borders to the part of the entire
electromagnetic wave spectrum (sometimes it is also called as a submil-
limeter range), which within the concept of the wave-particle duality,
fits the definition of a wave rather than a particle. Accordingly, classi-
cal electronic ways of generation of electromagnetic radiation (in which
the radiation is treated as an electromagnetic wave) are efficiently used
in submillimeter and in the longer wavelength ranges

The reasons for the peculiarities of THz range are the following.
Firstly, it has a small photon energy. At room temperatures the mean
kinetic energy of molecules or free electrons in solids or the mean oscil-
lation energy of atoms is 27 meV. At the liquid nitrogen temperature of
77K (which is practically very important) it is about 7 meV. Compare
it to the photon energy photon of 1 THz, which is 4.1 meV. Such a rela-
tionship makes very difficult the creation of stable inversion population
of electrons (or holes) at these temperatures as any carrier distribu-
tion is destroyed by the Brownian motion. Also, a large thermal noise
in the background makes difficult processing information provided by
THz radiation. Actually, most of the energy emitted by the objects
at 300K or 77K objects is not in the THz range, and basically, it is
quite possible to block this radiation with optical filters. However,
any object with non-zero temperature does emit THz radiation. Sec-
ondly, radiation in THz range is well absorbed by the atmosphere of
the Earth as one can see, for example, in Fig 14 of the paper [12]. The
water vapor is the main absorbent for that spectrum. Therefore, the
effective propagation of THz radiation in the Earth is limited by the
vacuum or specific waveguides. Additionally, the vibrational and rota-
tional spectra of many other molecules are also in THz range. Thirdly,
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the THz radiation penetrates through many materials such as ceram-
ics, plastics and dress clothing. And, last but not least, THz photons
do not harm human tissue that along with their notable penetrating
ability makes THz perspective for use in medicine. That feature is the
consequence of the first tree mentioned above, but we put it separately
for its practical importance.

THz radiation has many perspective applications in medicine [13–
15], security [16–18], atmosphere monitoring [18], material inspection,
control of quality [19] etc.

1.1.4 Impurities in semiconductor nanostructure optical devices

The importance of semiconductor nanostructures as both active and 
passive optical devices in contemporary science and technology is dif-
ficult t o o verestimate. T he p roblems c onnected t o t he i mpurity po-
sitioning and characteristics Impurity has always been in the center 
of interest in physics and engineering of semiconductors and semicon-
ductor heterostructures. It determines many key features of a 
majority of semiconductor devices. (From now on when speaking 
about semi-conductor heterostructures or nanostructures mainly and 
by default we will refer to the rectangular semiconductor quantum 
wells, which are the object of our study.) Technological progress 
resulted in some shift of attention towards the impurity-related 
properties. The first task was to increase electron mobility so for 
that reason the impuri-ties were sought to remove from QW. On the 
way the principal points were modulation doping [20] and delta-
doping to the barrier [21] that allowed to combine the high mobility 
and high concentration of carri-ers. On the other hand, big oscillator 
strengths for the optical transi-tions between size-quantized subbands 
encouraged creation of both the emission-based optical devices (e.g. 
quantum cascade lasers [9], and absorption-based ones (like quantum 
well infrared photodetectors [22]. Such structures often are doped 
heavily, though the impurities played there an auxiliary role. So up 
to now in our knowledge the action of no actual device is based 
on the impurity properties in QW. In fact, impurities in quantum 
well are interesting to study. The impu-rity binding energy is quite 
sensitive to the changes of practically all the parameters of QW. In 
the pioneering in this area work [23], the

7



Chapter 1. Adjusting energies of intersubband optical transitions in delta-doped quantum wells

case of infinitely deep QWs was considered. It was shown that IBE
depends both on the well width and on the position of impurity in-
side the well. Since then was confirmed the IBE dependence on the
depth and width of QW [24, 25], the barrier width in case of MQW
structures [26], the dispersion law nonparabolicity [27], effective mass
difference in the barriers and well [28], the mismatch of dielectric con-
stant between the well and barrier materials [29], and free electrons
screening [30, 31]. Also, the influence of many external factors on the
IBE, like electric and magnetic fields, uniaxial stress [32–39], hydro-
static strain [40–42], and the incident laser radiation [43–46] was in the
focus of attention. Additionally, the effect of temperature was stud-
ied by introducing temperature-dependent electron effective masses,
dielectric constants and well depth [47–49].

1.1.5 Concept of the new kind of tunable THz device

If we put the delta-layer of impurity inside the quantum well, it may
be used as to control the energies of the optical transitions between
size-quantized subbands of QW. And that is the way to regulate the
working frequencies of the intersubband transitions-based optical de-
vices by an external electric field applied in the plane of the QW. In
such a structure without field applied and for the relatively low tem-
peratures, the impurity is not ionized. So there are no carriers and no
charged impurity center so the well has a shape designed by the mate-
rial composition only, like the traditional rectangular shape. When we
apply the electric field in QW plane, the current arises and ionizes the
impurity in the delta-layer. Initially neutral impurity centers now pro-
vide free electrons to the subbands, that spread their negative charge
in the border of QW and positive ionized atoms concentrated in the
delta-layer. As a result, redistribution of charge in space changes the
shape of the structure energy profile as well as the optical transition
energies, and, accordingly, the frequency of the peak optical response.
The effect is illustrated in Fig. 1.4.

Obviously, the described above effect depends on the number (and
fraction) of ionized impurity atoms, that we call the impurity ioniza-
tion degree, which statistically depends on impurity binding energy
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Figure 1.4: QW profile with non-ionized (a) and partly ionized (b) impurity with an impurity
delta-layer positioned in the center of the well. ∆E12 – energy separation between two lower levels.
Black circle – neutral impurity, red cross – ionized impurity centers, blue minuses – electrons in
subbands.

(IBE). The bigger is IBE, the more difficult is to ionize the impurity,
the less is the ionization degree. In the semiconductor science and
engineering for the most purposes, the IBE in the heterostructures is
taken equal to the one in corresponding bulk material, which is known
for the common semiconductor materials. However, in quantum wells
(and other kinds of semiconductor nanostructures), the IBE differs no-
tably from the one of the bulks and depends on the spatial position in
the structure [23]. Existing semiconductor devices, based on intersub-
band optical transitions, normally are doped to the passive regions as
it somewhat improves the quality of the structure and allows to avoid
calculation complexities. In this case the only function of impurity
is to provide free electrons to the structure, and the possible changes
in the IBE do not influence much the key characteristics of the de-
vice. However, our proposed design implies the varying of the energy
profile in the active region with a key factor of ionization degree and
the IBE became crucial for correct quantitative and even qualitative
description of the device performance.

IBE within the quantum wells of different c haracteristics a nd un-
der different external conditions is studied numerically in many works 
like [50–52] and others. The features that differs our approach from the 
most of them are the following. First, we use the modified auto 
consistent method that embeds the calculation of IBE, which is 
especially impor-tant in our case as the IBE has the crucial influence 
on the ionization
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degree of impurities. The energy profile shape, delta-layer impurity
ionization, charge distribution along the growth direction of the struc-
ture and IBE are mutually influencing, so we take into account that
influence by introducing iterative converging calculation process based
on Hartree self-consistent concept. Second, instead of common varia-
tional methods it uses an expansion approach and may be used as an
independent reference for the comparison to other works.

1.1.6 General and specific objectives

The general objective of this work is the complex numerical study of all
the effects and regularities arising in delta-doped within QW semicon-
ductor nanostructures from the point of view of their band and optical
properties keeping in mind the final goal to design new types of tun-
able optical devices based on intersubband transitions between space
quantized levels inside such quantum wells. The specific objectives of
the work are the following.

1. To propose and ground the materials and geometrical parame-
ters of the semiconductor heterostructure optimal to obtain the
tunability effect for THz or/and far IR active and passive optical
devices.

2. To design and implement the self-consistent numerical procedure
for the simulation of band and optical properties of the delta-doped
QW structure that incorporates calculation of impurity binding
energy. To define and pronounce the ranges of applicability of the
method.

3. To design and implement the modifications of the method to the
particular cases of transverse electric field and infinite barriers with
background impurity.

4. To study numerically the behavior of the position of energy sub-
bands, energy distances, Fermi level and impurity binding energy
depending on such parameters as geometrical sizes, impurity con-
centration and ionization degree. To verify and agree the results
with the ones existing in the literature.
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5. To calculate and analyze the optical linear and nonlinear properties
connected to the intersubband transitions in the structures under
study.

6. To estimate the possible tuning frequency range of the possible
optical devices of the proposed design. To discuss the perspectives
of implementation of the particular kinds of device.

7. To study numerically and discuss the influence of transverse elec-
tric field applied to the structure on the basic characteristics of
the structures above and possible performance of optical devices.

8. To study numerically and discuss the ranges of possible influence of
technological background impurity structure on the basic charac-
teristics of the structures above and possible performance of optical
devices.

1.2 Object

1.2.1 SiGe quantum wells structure

As the object study we use the Si0.8Ge0.2/Si/Si0.8Ge0.2 QW structures,
delta-doped with phosphorus to the center or edge of QW, see Fig-
ure 1.5. The reason of such a choice is the following. First, the n-
type QW is easier to calculate then p-type one and involves less risky
assumptions. Second, the shallow impurity binding energy for the
center-doped silicon QW have a magnitude around 30-40 meV [53],
and, according to many references [23–25, 28, 35], for the edge-doped
structures must be less about by half. So in the temperature range
of interest the degree of impurity ionization changes noticeably that
allows to use it for the phenomenon under study. Additionally, the
structure is composed from commonly used in electronics materials
and should be relatively easy to produce. Finally, this structure has
been studied numerically in [53]. It means that we can check our re-
sults against those obtained in that work when it is possible. Their
authors took the parameters of the structure taken from [54] and we
made the same. Therefore, the barrier heights was taken as 200meV in
accordance with [54], despite of some new data in the literature [55–57].
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Figure 1.5: Schematic representation of the heterostructure under study a) doped to the center, b)
doped to the well. s – delta-layer width, L – well width

For some studies the well width L is variable but as a reference point 
we took two well widths of 10 and 20 nm. Such widths allow us to 
obtain intersubband transition energies corresponding to THz region 
of spectrum. The selection of widths is also grounded in the 
assump-tions and limitations section. Delta-layer widths s we took 
as 1 nm, which is achievable technologically and corresponds to 
about 2 lattice parameters.

We considered two configurations. In most part of the study we
imply the MQW configuration, where the structure is periodical and
infinite. QWs in the structure are far enough from each other to neglect
the coupling between bound states and close enough to assume that
the Fermi level of the structure is defined by the impurities in delta-
layers and neglect the background impurities and intrinsic carriers.
Another configuration is a single quantum well with infinite barriers.
This configuration implies that the Fermi level is defined by the bulk
part of the heterostructure and is used to study the possible influence of
the backgroung impurity in its extreme cases. For both configurations
the crystal is considered infinite in all directions so that we neglect the
influence of superficial states on the Fermi level.

The temperatures we took for the most calculations are 300K, 77K
and 4K, which are traditional reference points in solid state physics
as they refer to the environment, liquid nitrogen and liquid helium
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temperatures. T=4K actually corresponds to the case of zero delta-
layer impurity ionization and is our equivalent of zero temperature but 
for the numerical reasons it was taken a non-zero value.

1.2.2 Assumptions and limitations

We use the effective mass approximation to find the impurity binding
energy. Like in the work [53] a small difference in lateral masses m||
and dielectric constants for the well and barrier materials is neglected.
We assume that subband dispersion laws are parabolic in the plane of
QW and isotropic. The assumption is based on the work [27]; it shows
that if QW width L is greater or equal two Bohr radii aB then the
nonparabolicity influence on the impurity ground state is negligible. In
our work this condition is true with a good margin for the used delta-
doping concentrations 0.6, 1.2 and 2.4×1012 cm−2. These values allow
us to consider the charge of ionized impurity centers to be distributed
uniformly in the plane of delta-layer at T = 300 K. On the other hand,
it also satisfies the condition from[30] that mean distance between
impurity atoms aI > 2×1.3aB that allows neglecting many-body effects
and treat impurity centers as isolated. In this work we use delta layer
width s=1 nm as the typical width for similar experimentally studied
structures [58].

Delta-layer Impurity concentration

Obviously, to obtain a pronounced effect from tuning the ionization de-
gree of a delta layer, the impurity concentrations should be big enough.
Again, the concept of constant in lateral plane Hartree potential im-
plies big enough concentration, at room and liquid nitrogen tempera-
tures. On the other hand, the concentration should not be high enough
to form the impurity minibands by the overlap of the impurity wave
functions, or arising tails of the density of states in the gap. That
is concentration should be small enough to use a single impurity ap-
proach that makes possible manipulate the concept of IBE and the
degree of ionization of the delta layer. The natural restriction here is
the Mott metal-semiconductor transition. The critical value nM can
be deduced from the relation aBn

1/2
M = 0.37 [59], and for our material

aB ∼= 2 nm, and nM = 3.4× 1012 cm−2.
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The concentration lower limit to avoid the potential fluctuations in
plane of quantum well can be found from the following. We know [60]
that impurities can cause fluctuating potential with a maximum size
rs that has to be included to the Hamiltonian of the problem. In our
structure, when the background impurity concentration is negligible,
the number of subband electrons equals the number of ionized delta-
layer impurity centers N+

d . Therefore [60] the maximum fluctuation
size is the average distance between ionized donors rs = d+ = 1/

√
N+

d .
So, the fluctuations can be neglected if the configuration of the ion-
ized donors is volatile, that is constantly varies over time, since the
atoms are ionizing randomly. And if anywhere along the delta layer
a potential fluctuation arises then (i) it gets shielded to some degree
by free electrons, and (ii) the ionization impurity probabilities in the
adjacent area get smoothed. The mentioned processes have character-
istic time order of τ ∼10−10 s. This is the conduction band electron
lifetime with respect to the capture by impurity [61] within the range
of temperatures 4. . . 100 K. Using this lifetime, the lower limit of the
impurity concentration can be found from the statement that the mean
distance between the ionized impurity centres d+ should not be greater
than the mean free path of the electron d+ ≤ l (l ∼= υτ ≈

√
kbT/m||τ

, kb is the Boltzmann’s constant). A stronger condition can be im-
posed taking into account that the concept of electron mean free path
makes sense only if it is greater or equal the de Broglie wavelength
λ = h

p ≈ h√
mkbT

[62] (h is Plank’s constant, and p is electron mo-

mentum). As a result, the lower concentration limit can be estimated

as: N+
d ≥ m||kbT

h2 and now it depends on temperature. For example, for
T=77 KN+

d ≥ 4.2×1010 cm−2, and for T=300 KN+
d = 1.6×1011 cm−2.

Again, in reality the lower limit of impurity concentration should be
less in the same degree as the de Broglie electron wavelength is less
than its mean free path. Therefore, in solving the task of finding IBE,
the fluctuating potential can be omitted in the Hamiltonian. The es-
timation can be formalized as

sN δ>
m||kbT

(
1 + 2exp

(
EF−Eδ

kbT

))
h2

(1.1)

As a result of all the considerations above the delta-layer impurity

concentration has been chosen as 0.6×, 1.2×, and 2.4×1012 cm−2.
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Internal stress in the well material

In this work we consider the structure grown in crystallographic di-
rection [100]. The well width (L=20nm) we chose from the following
considerations. First, in the work [63] it was shown that the influence
of the delta layer ionization on the IBE is bigger for the wider QW.
Second, there is a critical well width [56], the higher limit, after which
the well cannot be treated as tense anymore. That is the stain due to
a lattice constant mismatch between well and barrier materials cannot
be considered uniform. The well width of 20 nm looks like a good
compromise between these two limits. Our QW has an internal strain
because the lattice constant of SiGe alloy in barriers is larger than that
of Si. It means that the well can be considered as uniaxially strained in
the direction of structure growth z. The strain magnitude depends on
the fraction of Ge in the material. (Also, it relates to the QW depth,
which is 202 meV in our case.) It is known that uniaxial strain dam-
ages the crystal symmetry [64], as a result the degeneracy of electron
valleys in Si is removed. For the case of the structure grown in [100]
crystallographic direction, the energy difference between two lower in
energy valleys and four upper ones is greater than 110 meV [56,63,65].
Such difference allows us to consider only 2 lowest valleys. The elec-
tron effective masses there appear to be m|| = 0.19m0 in plane of QW,
and m⊥ = 0.92m0 in the growth direction, where m0 is a free electron
mass.

Additionally, a relatively wide well allows us neglecting the non-
parabolicity of the QW size quantization levels. The work [27] showed
that for the well width more than two Bohr radii, the influence of non-
parabolicity on the impurity ground state is negligible. For the Bohr
radius of about 2 nm [63] it is well satisfied. Also, we do not account
for the splitting in our IBE calculations. Instead, following [53] we
discuss the joint influence of splitting and central cell effect on IBE
later.
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Central cell effect

It is known that effective mass approach when calculating impurity 
ground state does not allow to take into account the central cell effect 
(also known as chemical shift). It becomes especially important in case 
of silicon-based structures. The effective mass calculation of Phospho-
rus impurity binding energy (shallow donor in Si) provides the value 
of 29 meV [66], while the experimental study gives 45.6 meV (see, for 
example, [67]). The notable difference of 16.6 meV is attributed to the 
central cell effect. So, to agree the results of effective mass calculations 
with the experiment the necessary corrections should be introduced. 
Here we propose to make the addition of 8 meV to all the obtained 
results. The proposition is based on the work [63], where such an ad-
dition to IBE was grounded for the similar structure as ours with well 
width of 7 nm and more.

1.3 Methods

1.3.1 Energy subband positions and wave functions

Size quantized in z-direction energy levels Ej and corresponding wave
functions ξj(z ) were found as the eigenvalues and eigenfunctions of
z-dependent Hamiltonian:

H0= − h2

2m⊥

∂2

∂z2
+V (z)+eφ (z) , (1.2)

here m⊥ is the transverse effective mass (in z direction), V (z ) is an
undisturbed rectangular potential profile of QW (without background

impurities and at zero temperature): V (z)=

{
0, |z|>L/2

−Vb |z| ≤L/2

}
,

φ(z) in the Hartree potential (electrostatic potential provided by charge
redistribution), e is a unit charge. Schrödinger equation for the prob-
lem can be written as [68]:

H0ξj (z)=Ejξj(z) (1.3)

The equation was solved numerically using shooting method [69].
The differences of effective masses between the materials of the well
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and the barriers were neglected. Accordingly, the Ben Daniel-Duke
boundary conditions [68] at the interfaces are interpreted as the con-
tinuity of the wave functions and their first derivatives. The number
of energy levels N accounted for (j=1,2. . .N ) has been chosen from
the following considerations. First, the difference between the ener-
gies of the first and the last considered levels should be greater than
3kT, so that absolute majority of electrons in subbands are accounted
for. Second, the IBE calculated with N and N -1 levels should not
be greater than 0.1 meV (convergence condition of the method). The
maximum of two options above was taken as actual N. Numerically
we got N=9 for the first condition (for T=300 K) and N=7 for the
second one. So, we used 9 levels for the room temperature and 7 levels
for the temperatures of 4 and 77 K.

In case of the applied transverse electric field, the equation 1.2 is
transformed into

H0= − h̄2

2m⊥

∂2

∂z2
+V (z)+eφ (z)+eEz. (1.4)

That is a term of a constant electric field is added. This term pro-
vides additional complications for the numerical method. For the large
enough integration range over z the potential on one of the borders can
become less than some of the eigenvalues for the necessary number of
eigenfunctions. Technically it means that the electronic state is not
localized and time-independent Schrodinger equation is not applica-
ble. In that case we overcame that problem on the numerical level by
introducing Big Quantum Box method, that is by modifying the well
potential as

V (z)=


0, L1

2 > |z|>L
2

−Vb, L
2 ≥ |z|

∞, |z| ≥L1

2

 , (1.5)

Where L1 is the width of a Big Quantum Box with infinite barriers,
L1>L.

L1 was selected manually during the calculation process in a way
that (i) the finite barrier width is at least comparable with the well
width; and (ii) of the center of mass of all the squared eigenfunctions
taken into account should be deep within the well. Actually it was
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the criterion, when the delocalization of the WFs can be neglected.

As the result of the numerical solution of the equation 1.3, we ob-tain 
the series of the bound in the direction z energy states Ei and wave 
functions i, describing corresponding subbands. Here i=1, 2, 3. . . 
that is the ground state corresponds to i=1.

1.3.2 Fermi level

The Fermi level was found from the condition of electro neutrality for
the structure: ∫ ∞

−∞
N± (z) dz= 0 (1.6)

The charge concentration N±(z) is the concentration difference of the
ionized impurity N+

D(z) and subband electrons N−(z):

N± (z)=N+
D(z)−N

− (z) (1.7)

The holes were neglected as it is an type structure. Ionized impurity
concentration in the delta layer were found from Fermi statistics:

N+
D (z)=

 N+
δ (z)= Nδ

1+2exp
(

EF−Eδ
kbT

) , |z|<s
2

0− otherwise

(1.8)

s is the delta layer width. Here we use the following assumptions.
First, the impurity distribution within the delta layer is uniform: Nδ (z) ={

Nδ =
nδ

s , |z| < s/2
0, |z| ≥ s/2

It is grounded in the work [63]. Second,

the binding energy does not change within the delta-layer. We be-
lieve it is acceptable, as the width of delta layer is small in comparison
to the well width. The electron concentration N−(z) is a sum of the
concentrations in each subband:

N− (z) = NQW (z)=
m||kbT

πh̄2

N∑
j

ln

(
1 + exp

EF−Ej

kbT

)
|ξj (z) |2 (1.9)
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Accordingly, the sheet concentration of electrons is:

nQW=

∫ ∞

−∞
NQW (z) dz=

m||kbT

πh̄2

N∑
j

ln

(
1 + exp

EF−Ej

kbT

)
, (1.10)

As the result of the numerical solution of the equation 1.6, we obtain
the Fermi level EF . The equation was solved using bisection method.

1.3.3 Hartree potential

Hartree potential φ(z) in Eq. 1.2 was obtained from the solution of 
Poisson equation for the QW area, with non-uniform charge distribu-
tion along z :

∂2φ

∂z2
=
e

εε0
N± (z) . (1.11)

The distribution of chargeN± (z) was discussed in the section above.
The equation is solved by the numerical integration with Runge-Kutta
method.

1.3.4 Impurity binding energy

We find the binding energy of impurity atoms in delta layer by adding
the Coulomb potential to the Hamiltonian H 0 (1.2 ). Assuming that
the effective mass in plane of QW is isotropic, the problem has a cylin-
drical symmetry, so we use the cylindrical coordinates R, θ, z, as in [70].
We write the complete wave function Ψ (R, θ, z) as

Ψ (R, θ, z)≡exp (imθ) ψm (R, z) , (1.12)

were i is an imaginary unit and m is the azimuthal quantum number.
We present the complete Hamiltonian as a sum of the part depending
on z only H0 – the same as in 1.2 - and the part, depending on all
three coordinates H 1

H=H0+ H1 (1.13)

H1= − h̄2

2m||

(
∂2

∂R2
+
1

R

∂

∂R
+

1

R2

∂2

∂θ2

)
− e2

4πεε0

√
R2+(z−zD)2

(1.14)
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Here m|| is the electron effective mass in (x,y) plane, zD is the impu-
rity center z position. Then the eigenfunction of the complete Hamil-
tonian H (1.13 ) can be expanded over a series of wavefunctions ξj(z)
of the Hamiltonian H0:

Ψ (R, θ, z)≡exp (imθ)
∑
j

fmj (R, z) ξj(z). (1.15)

Then according to the Schrodinger equation with the complete Hamil-
tonian H:H0−

h̄2

2m||

(
∂2

∂R2
+
1

R

∂

∂R
+

1

R2

∂2

∂θ2

)
− e2

4πεε0

√
R2+(z−zD)2

Ψ (R, θ, z) =EΨ (R, θ, z)

N

(1.16)

Then we differentiate Eq. 1.16 with respect to θ, multiply by ξ∗ (z) , 
(N = 0, 1, 2 . . . ) and integrate with respect to z. The result is:[

d2

dR2
+
1

R

d

dR
+

(
k2N−

m2

R2

)]
fmN (R)=UNn (R) f

m
n , (1.17)

were UNn (R)=
2m||

h̄2
1

4πεε0

∫
ξ∗N (z) e2√

R2+(z−zD)
2
ξn (z) dz, k

2
N=

2m||

h̄2
(E−EN),

and EN (N=1,2,3. . . ) are the eigenvalues of H0. If there is no Coulomb
term in 1.17 then it becomes a Bessel type order m equation, the wave
function is only allowed for E>EN and the solution can be written as

fmN (R)=CNJm (kNR)+SNNm (kNR) , (1.18)

where Jm and Nm are first and second kind Bessel functions respec-
tively, CN and SN are constants. Second kind Bessel functions are
singular at zero coordinate, so SN=0, and

Ψ (R, θ, z)=CNexp (imθ) Jm(kNR)ξN(z). (1.19)

Now let us solve 1.17 for E<EN (that is k2N < 0). In this situation
instead of 1.17 we have

[
d2

dR2
+
1

R

d

dR
−
(
k2N+

m2

R2

)]
fN (R)=

∑
n

UNn (R) fn . (1.20)
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By definition in [71] the solution of 1.20 is the solution of[
d2

dR2
+
1

R

d

dR
−
(
k2N+

m2

R2

)]
GN

(
R,R

′
, E

)
=
1

R
δ(R−R′

). (1.21)

where GN(R,R
′, E) is the Green function. Accordingly [70,71]

GN

(
R,R

′
, E

)
=

{
−Km

(
kNR

′)
Im (kNR) , R<R′

−Im
(
kNR

′)
Km (kNR) , R>R′ (1.22)

with modified Bessel functions Km and Im. So, from Green function
definition

fN (R)=
∫∞
0 R′dR′GN

(
R,R

′
, E

)∑
n UNn

(
R

′)
fn

(
R

′)
=

−Km (kNR)
∫ R

0 R
′
dR′Im

(
kNR

′)∑
n UNn

(
R

′)
fn

(
R

′)
−Im (kNR)

∫∞
R R′dR′Km

(
kNR

′)∑
n UNn

(
R

′)
fn

(
R

′)
.

(1.23)

It can be written more conveniently like 1.18:

fN (R)=CNJm (kNR)+SNNm (kNR) , (1.24)

where

CN (R)= −
∫∞
R R′dR′Km(kNR

′
)
∑

n UNn(R
′
)fn(R

′
)

SN (R)= −
∫ R

0 R′dR′Im(kNR
′
)
∑

n UNn(R
′
)fn(R

′
)
. (1.25)

After differentiating with respect to the variable upper limit (over
parameter R), from 1.25 we obtain

dCN

dR =RKm (kNR) n UNn (R) fn (R)
dSN

dR = −RIm(kNR)
∑

n UNn (R) fn (R)
. (1.26)

Then substituting 1.24 into 1.26 we obtain the system of differential 
equations, which can be numerically solved. Here we assume the 
following. First, the number of equations is not infinite, so that the 
number of subbands in QW has to be limited to a reasonable 
value. Second, the numerical integration over R is performed for a
finite range from 0 to some Rmax. The wave function for R>Rmax is
negligibly small (in our calculations Rmax=6aB). Third, we have to
adopt starting values for CN(R) and SN(R). Because of the modified
Bessel functions properties, CN (∞) = SN (Rmax)= SN (0) = 0 and
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another side of boundary conditions CN (0) = SN (Rmax)= δNn. The
conditions for R=Rmax and R=0 and are only correct at some discrete
energies. To obtain those energies the shooting method is used. It
means, we choose an initial R0 (0<R0<Rmax), integrate numerically
from 0 to R0 for all n and obtain CNn(R0-) and SNn(R0-). Similarly we
obtain CNn(R0+) and SNn(R0+) by integration back from Rmax to R0.
We took R0 as a half of Rmax. Now as the functions are continuous
the obtained values should be the same, so, following [70] we obtain a
system of linear algebraic equations:∑

nCNn (R0−)Cn (0)=
∑

nCNn (R0+)Sn (Rmax)∑
n SNn (R0−)Cn (0)=

∑
n SNn (R0+)Sn (Rmax)

(1.27)

Here the variables are CN(0) and SN(Rmax). The determinant of
the system depends on the energy and when it is equal to zero, the
solutions can be found numerically. In case of 9 subbands taken into
account, the determinant order is 18.

1.3.5 Self-consistent method

The 1D self-consistent Schrodinger-Poisson method in application to
2D semiconductor heterostructures is widely used and has many nu-
merical implementations in commercially available software. However,
to our knowledge up to now all those implementations do not imply
the possibility to include the calculation of IBE to the self-consistent
procedure, which is a crucial point in our case. The IBE has a drastic
effect on the degree of ionization which is a key factor for our idea to
regulate the working frequency of the optical device. Within our model
and parameters IBE has a strong mutual influence on the Hartree po-
tential and electronic structure and, accordingly, cannot be assumed
a constant during calculations. Therefore, we implemented a modified
self-consistent procedure that embeds the calculation of IBE as its part
performed at each iteration. The variant of the classical schematic of
the method is presented in Fig. 1.6. It includes the following steps,
described in the sections above. 1. Solution of Schrodinger equation
that uses the potential profile as an input data and gives away energy
levels of subbands and their wave functions (Section 1.3.1). 2. Solu-
tion of electroneutrality equation for a given energy profile, subband
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positions and wave functions, that provides with Fermi level, and, ac-
cordingly, charge distribution (Section 1.3.2). Normally this step uses
IBE as a constant. 3. Solution of the Poisson equations based on the
charge distribution, which gives the Hartree potential that modifies
the energy potential for the step 1 (Section 1.3.3).

Figure 1.6: General scheme of the self-consistent calculation method of 1D Schrödinger-Poisson
problem

In our method (Fig. 1.7) we introduced the calculation of IBE based
on the wave functions and energy positions of subbands (Section 1.3.4).
As a criterion of convergence was taken the condition that IBE for the
two last iterations does not change more than 0.1 meV.

1.3.6 Particular case: background impurities

In the case of background impurity, the specificity of the problem re-
quires the modifications of the method, which are described below.

Fermi level

Obtaining the Hartree potential and the heterostructure energy pro-
file by solving Poisson equation requires knowledge of the Fermi level.
In the most cases we assume the periodic n-type MQW structure so
that the Fermi level is determined by the impurities in the delta layers
and the electro neutrality equation can be written for a period, which
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Figure 1.7: General scheme of our modification of self-consistent calculation method of 1D
Schrödinger-Poisson problem.

includes the well and its relatively close proximity. The different sit-
uation is when the barriers are infinite and the well is single. In this
case the Fermi level is defined by the bulk area outside the well, that
includes background impurity. So we find it as for the uniformly n-
doped bulk barrier material as follows (see the textbook [72]). The
electro neutrality equation is:

N−
0 =N

+
b +P0, (1.28)

where N−
0 , N

+
b and P0 are volumetric concentrations of electrons,

ionized impurity centers and holes correspondingly. Within the Fermi
statistics they are found as:

N−
0 =

2√
π
Ncϕ 1

2

(
EF−Ec

kbT

)
, P0=

2√
π
Nvϕ 1

2

(
Ev−EF

kbT

)
(1.29)

N+
b =

Nb

1 + 2exp
(
EF−Eb

kbT

) (1.30)

Here ϕ 1
2
is the Fermi-Dirac integral, the Ec and Ev are gap edges,

the Nc and Nv are the effective densities of states. Subindexes c and
v denote conduction and valence bands correspondingly. Nb is the im-
purity concentration and Eb ground state of background impurity. For
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the detailed explanations and deduction of these equations see [72]. To 
find the Fermi energy from 1.28 we need the gap and IBE magnitudes 
for the bulk barrier material, which is Si0.8Ge0.2 alloy. The bandgap was 
taken as 1.08 eV (from [73] for 77 K) and the influence of tempera-ture 
was neglected because our numerical estimations showed that for the 
temperatures between 4 and 300K it practically does not change (means 
for the same temperature the variation of the bandgap has no notable 
influence on EF ). IBE here was taken as εb = 39meV, as obtained in 
[74], and accordingly Eb=Ec-εb. The acceptors were not accounted for, 
so the impurity concentration here can be understood as the difference 
between background donors and background acceptors.

So, in this case in the algorithm, we use the electro neutrality equa-
tion 1.6 not to find t he Fermi l evel, which i s known f rom t he above, 
but to calculate the half depletion layer width Z0, which is used as 
a limit for integration in the calculation of Hartree potential and the 
numerical solution of the Schrödinger equation (see Fig. 1.8). We sup-
pose that the many barrier electrons from the area around the well 
move to the well. So, by depletion layer we mean the area, where the 
charge is distributed non-uniformly along z axis. For the 
symmetric QW the electro-neutrality condition is:∫ 0

z=−Z0

N± (z) dz= 0 (1.31)

Solving this equation provides us with the depletion region length
Z0.

The equation for ionized donors 1.8 now includes not only delta-
layer impurity centers N+

δ (z), but also those in barriers N+
b (z):

N+
D (z)=


N+

b (z)= Nb

1+2exp
(

EF−Eb−eφ(z)

kbT

) , |z|>L
2

N+
δ (z)= Nδ

1+2exp
(

EF−Eδ
kbT

) , |z|<s
2

0− otherwise

(1.32)

Here we assume that the contribution of BI inside the well is negligi-
ble even for the biggest concentration (1017cm−3) at all temperatures.

The equation 1.9 for the free electrons also changes. Now it in-
cludes not only 2DEG in the well subbands but also electron gas in 3D

25



Chapter 1. Adjusting energies of intersubband optical transitions in delta-doped quantum wells

Figure 1.8: Schematic representation of a center delta-doped QW with residual impurities of con-
centration Nb in barriers at low – a) and higher – b) temperatures T. Z0 is the depletion layer
length, that is the distance between heterojuction and a point where band bending becomes zero.
εb and εδ are the binding energies of background impurities and impurities in the delta layer ac-
cordingly.

Here the concentration of electrons N3D (see 1.29 ) is

N3D(z) =


2√
π
Ncϕ1/2

(
EF−eφ(z)−Ec

kbT

)
, |z|>L/2

2√
π
N ∗

c ϕ1/2

(
EF−Em

kbT

)
, |z| ≤L

2 , T = 300K, m>9

0, |z| ≤L
2 , T = 4 or 77K

(1.34)

For the room temperature (1.34, second line) we account for 9 first
subbands. Totally there are 14 subbands but the upper ones have very
few electrons. Also, they are poorly localized. So we treat the energies
above the 9-th subband as a part of 3D continuum andN ∗

c = Nc/3 be-
cause the material within the well (z ≤ L/2) is uniaxially stressed and
we have there only 2 electron valleys instead of 6 in unstressed barriers.
Again, as was mentioned before, to find IBE with 0.1 meV precision,
9 energy levels were enough. All the electrons in subbands above the
9-th are used only for the correct solution of Poisson equation. And at
lower temperatures (line 3 of 1.34) the number of electrons above the
QW is absolutely negligible.
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Modification of the algorithm

In our calculations of this modification zero of energy corresponds to the 
conduction band edge of the bulk barrier material. So the nega-tive 
energy solutions for the subbands obtained by shooting method in z 
direction Ej< 0, correspond to the perfectly localized states. Positive 
energy solutions strictly speaking do not exist for time-independent 
Schrodinger equation if we try to solve for the whole depletion region, 
because the potential on the borders is zero and the wave functions 
should be complex that corresponds to the moving electron. However 
the states within the well can be separated by large enough barriers 
formed by Hartee potential and treated as quasilocal. To deal with this 
kind of problem numerically, in some literature [75, 76] the quantum 
box technique is used. Roughly, we put an infinite p otential barrier 
on the borders and thus obtain the solutions. However, if the region is 
large enough, most of the solutions obtained will have corresponding 
WFs mostly outside the well, which do not correspond to the quasilocal 
states off the w ell. Therefore, we l imit the quantum box by the area, 
which includes the well ant the parts of barriers, where the potential is 
greater than the solution. Mathematically it means that to find Ej> 
0 we integrate over z between z =-tj and 0, where tj is found from the 
equation eφ(-tj)=Ej. So, our quantum box limits are variable in the 
process of shooting method solution and depend on the energy. Obvi-
ously, this method can produce an error which is bigger for the higher 
energies (and narrower Hartree barriers), however in our calculations 
the minimum t fas as big as 22 nm. In the material used (Si0.8Ge0.2) 
this length is big enough to neglect electron tunneling through the bar-
rier of such width. To make an example from the literature, in [62] for 
barriers more than 15 nm in silicon the tunneling was neglected. The 
work [78] used the same approximation. Finally, the uniaxial stress 
induced electron valley splitting in our material is always bigger than 
the difference b etween t he fi rst and th e la st ac counted fo r subbands: 
∆4 - ∆2 > E 9-E 1, so that we continue neglecting the upper valleys.

The specificity of the self-consistent algorithm for calculation the
case of infinitely wide barriers with background doping is the follow-
ing. First, the Fermi level is constant. Second, there are two impu-
rity binding energies: for the barrier, and for the delta-layer in the
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well. The first one is taken as constant and the second one is vari-
able and incorporated to the calculus as was described before. Third,
it uses depletion layer width 2Z 0 as a variable. Initially depletion
zone length was taken as for the p-n junction at zero temperature

Z0 ≈
(
2ε0εV
e2Nb

) 1
2

. The starting value for the IBE of the donors in the

layer was taken as the one obtained before for the same combination
of parameters but without background impurity [79]. For the algo-
rithmic reasons at the first iteration the 3D electrons in the depletion
layers were neglected (N3D (z)=0 in eq. 1.33 ). Also, for the first iter-
ation the electrons distribution within the QW width was considered
uniform:

NQW (z)=

{
2
(∫ 0

z=−L
2
Nb

(
z

′)
dz

′
+n+δ

)
/L

0, ⌊z⌋≥L/2
, |z|<L/2 (1.35)

The very self-consistent process starts from the calculation of Fermi
energy as described in 1.3.6 in bulk barrier material. Then the iterative
process is performed in the following way.

1. The depletion zone half-length Z 0 is calculated solving the electro
neutrality equation 1.31. It is made along with Schrödinger equation
1.3 solution as follows:

1a. The left-hand side of equation 1.31 is found for a given Z 0 by 
solving numerically the Poisson equation 1.11 by direct integration over 
z from −Z0 to 0. At first iteration, after z = −L/2 the N3D(z) is 
calculated from 1.34, and is used for the further integration. In the 
following iterations instead of 1.34 we use 1.35 with the data obtained 
from the previous iteration.

1b. We solve 1.3 obtaining Ej and ζj(z) using Hartree potential φ(z)
from the previous step. We calculate the left-hand side of Eq. 1.31
for a given Z0, then a new Z0 is selected from the bisection algorithm.
Then 1a and 1b are repeated in the internal loop until the charge
concentration from Eq. 1.31 is small enough (109 cm−2).

2. IBE in the well εδ is calculated (see section 1.3.4).
3. Steps 1 and 2 are repeated in outer loop until εkδ−εk−1

δ ≤ 0.1 meV
(convergence criterium). In practice to reach the condition 3 to 7 iter-
ations of the outer loop was performed depending on the temperature.
The inner loop normally was performed about 30 times.

28



Chapter 1. Adjusting energies of intersubband optical transitions in delta-doped quantum wells

1.3.7 Linear and nonlinear optical effects based on intersubband tran-
sitions

The complete absorption for the transitions between subbands i and
j is found as a sum of the linear and Kerr-type nonlinear parts α

(1)
i,j (ω)

and α
(3)
i,j (ω, I) correspondingly. We use a model proposed in [80] with

reference to [81]:

α
(1)
ij (ω) =

ωµ0c

n
|Mji|2

σijΓ

(Eji−ω)2+Γ2
α
(3)
ij (ω, I)= − ωµ0I

2n2εε0
|Mji|2

σijΓ{
(Eji−ω)2+Γ2

}2 ×

4|Mji|2−
|Mjj−Mii|2

{
(Eji−ω)2−Γ2+2Eji (Eji−ω)

}
Eji

2−Γ2

 (1.36)

Here ω is the angular frequency of the incident radiation photon,
µ0 is the vacuum permeability constant, n=

√
ε is the material re-

fractive index (3.4926 as for the bulk silicon), Ei and Ej are energies
corresponding to the edges of the initial and final states of absorptive,
Eji=Ej-Ei is the transition energy difference, I is an optical inten-
sity of the incident radiation (I= 0.5 MW/cm2 for all frequencies as a
reasonable value), absorption peak proadening in energy units for all
transition was taken as Γ=2meV [82]). σij is the difference between
volumetric electron concentrations of i-th and j-th subbands,

σij=
m∗kbT

Lπ2
ln

{
1+e(Ef−Ei)/kbT

1+e(Ef−Ej)/kbT

}
, (1.37)

where m∗ is the density-of-states effective mass of electrons, L is a
QW width. Other quantities and constants were mentioned before.

Matrix element of the intersubband transitions is of dipole type:

Mab=

∫
ξ∗a(z) |e| zξb(z)dz(a,b = 1..NS), (1.38)

NS is a subbands number taken into account.

The total absorption coefficient is

α (ω, I)=α(1) (ω)+α(3)(ω, I). (1.39)
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Here

α1(ω) =

Ns−1∑
i=1

Ns∑
j=i+1

α
(1)
ij (ω) and α3(ω, I) =

Ns−1∑
i=1

Ns∑
j=i+1

α
(3)
ij (ω, I).

(1.40)
The transitions between the subbands i and j provide refractive index

change that consists of the linear
∆n

(1)
ij (ω)

n and nonlinear part
∆n

(3)
ij (ω,I)

n

[80]:

∆n
(1)
ij (ω)

n
=

1

2n2εε0
|Mji|2

σij(Eji−ω)
(Eji−ω)2+Γ2

(1.41)

∆n
(3)
ij (ω, I)

n
= − µ0cI

4n3εε0
|Mji|2

σij{
(Eji−ω)2+Γ2

}2×

[
4 (Eji−ω) |Mji|2−

(Mjj−Mii)
2

Eji
2+Γ2

×
{
(Eji−ω)

[
(Eji−ω)Eji−Γ2

]
−Γ2 [2Eji−ω]

}]
(1.42)

And the total change of refractive index is:

∆n (ω, I)

n
=
∆n(1)(ω)

n
+
∆n(3)(ω, I)

n
, (1.43)

Where both linear and nonlinear part were found as a sum for all 
possible intersubband transitions:

∆n(1)(ω)

n
=

Ns−1∑
i=1

Ns∑
j=i+1

∆n
(1)
ij (ω)

n
, and

∆n(3)(ω, I)

n
=

Ns−1∑
i=1

Ns∑
j=i+1

∆n
(3)
ij (ω, I)

n

(1.44)
The input data, namely wave functions, subband energy positions

and Fermi level were calculated with the self-consistent method as
described in other subsections of this section.

1.3.8 Many-body effects

To make our results more realistic, we accounted for depolarization
shift γ as described in [83,84]:

Ẽ2
ji = E2

ji (1 + γji) . (1.45)
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In the equation above Eji=Ej-Ei is the intersubband transition energy 
without depolarization shift, found solving the Schrödinger equation,
and E˜ji is the modified transition energy, that was actually used in the 
ecuations of absorption and refraction. γji was calculated as [83,84] :

γji =
2e2σij
ε0εEji

∫ ∞

−∞
dz

(∫ z

−∞
ξi (z

′) ξj (z
′) dz′

)2

, (1.46)

where ε=11.7 is the silicon dielectric constant.

When the exchange-correlation effects cannot be neglected, the usual
way to take them into account in 2DEG systems is to add a z-dependent
potential to the Hamiltonian.

Vxc = −
(
9π

4

)1/3
2

πrs

[
1 +

B

A
rsln

(
1 +

A

rs

)]
e2

8πεε0aB
(1.47)

rs =

[
4π

3
a3BN (z)

]−1/3

(1.48)

This expression was obtained first in the work [85] within the Kohn-
Sham density functional theory [86]. Parameters A and B can be taken
from many later works.

However, in this work the exchange-correlation interaction was ne-
glected for the reasons explained in [63].

1.4 Results and discussion

1.4.1 Energy positions and wave functions

For a given heterostructure, the spectrum of intersubband absorption
and emission depend on such factors as the optical transition ener-
gies, impurity concentration, impurity ionization degree, which are
presented in Tables 1.1, to 1.3. We start from comparing optical tran-
sition energies for the undisturbed wells with rectangular profile R and
the same wells with the addition of Hartree potential R+H in Table
1.1. The changes in optical transition energies due to the depolariza-
tion shift are very similar for both considered profiles. So, the changes
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Well
pro-
file

T,
K

Center doping Edge doping

L=10 nm L=20 nm L=10 nm L=20 nm
1-2 2-3 3-4 1-2 2-3 3-4 1-2 2-3 3-4 1-2 2-3 3-4

R 77,300 11 17 24 3 5 7 11 17 24 3 5 7
R+H 77 11 17 24 4 5 7 11 15 26 7 5 7
R+H 300 15 17 25 12 7 7 18 17 24 20 12 7

Table 1.1: Transition energies between i -th and j -th subbands (in meV) for QWs doped to the
center and edge of QWs at temperatures T and with different widths L. R means rectangular energy
profile, R+H means a profile modified with Hartee potential. Sheet concentration of impurities is
1.2×1012cm−2.

Well profile nd,
1011cm−2

Center doping Edge doping

1-2 2-3 3-4 1-2 2-3 3-4

R 6-24 3 5 7 3 5 7
R+H 6 8 5 7 15 9 6

12 12 7 7 20 12 7
24 17 7 8 26 14 9

Table 1.2: Transition energies between i -th and j -th subbands (in meV) for QWs doped to the
center and edge of QWs with different sheet concentration of impurity nd. Temperature 300 K,
well width L = 20 nm. R means rectangular energy profile, R+H means a profile modified with
Hartee potential

that we see here are almost exceptionally due to the Hartree poten-
tial of the delta-doped QWs. We assume that there are no changes
for the rectangular energy profile within the temperature from 77 to
300 K with the error margin of 1 meV. In the table we show only the
first three energies, as the others apparently do not depend on the
temperature. One can see that in case of center-doped well of 10 nm,
no change is exhibited at 77 K in energies, and at 300 K only the
transition energy between first and second subbands is increased. The
changes are more apparent for for the well of 20 nm, especially for the
case of edge-doping at 300 K.

Here we see big enough changes for the energy differences 1-2 and
2-3. Also, for the different temperatures we can compare the shifts
for complete energy profiles. Table 1.1 shows that the biggest changes
appear in the case of wide wells, doped to the edge at room tempera-
ture. Table 1.2 shows the energies for different sheet concentrations of
delta layer impurity. One can see that the concentration increase leads
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nd, 1011

cm−2
Center doping Edge doping

T=77K T=300K T=77K T=300K

6 14 82 21 81
12 9 70 14 65
24 7 55 9 50

Table 1.3: Ionization degree
n+
d

nd
(%) for well width L=20 nm, different sheet concentrations of

impurity nd, and temperatures T.

T, K Well
profile

Center doping Center doping

1-2 2-3 3-4 4-5 5-6 6-7 1-2 2-3 3-4 4-5 5-6 6-7
L=10 nm
77,300 R 3.9 4.6 4.8 5.0 5.2 5.5 3.9 4.6 4.8 5.0 5.2 5.5
77 R+H 3.8 4.6 4.8 5.0 5.2 5.5 3.8 4.5 4.8 4.9 5.2 5.5
300 R+H 3.0 4.9 4.9 5.1 5.2 5.5 1.6 3.9 4.5 4.8 5.1 5.6
L=20 nm
77,300 R 14 17 17 18 18 18 14 17 17 18 18 18
77 R+H 11 18 18 18 18 18 4 13 16 17 17 18
300 R+H 4 14 19 20 19 19 1.3 4 9 14 16 17

Table 1.4: Squares of matrix elements (10−18m2) for the neighboring (from i-th to j-th) subbands
transitions, for the different well widths L and temperatures T. Delta layer impurity sheet con-
centration nd=1.2×1012cm−2. R means rectangular energy profile, R+H means a profile modified
with Hartee potential.

to the increase of the transition energies. The biggest growth again
is for the transition between two first subbands for the case of edge
doping. Table 1.3 demonstrates that the fraction of ionized impurities
decreases for bigger concentration.

The dipole matrix elements for the transitions between neighboring
subbands with R+H profile depend on temperature in greater degree
than corresponding energy separations. Table 1.4 shows squared MEs
for the first six optical transitions. For example, big enough changes in
the MEs for the disturbed and undisturbed energy profiles for the wide
edge doped well are demonstrated for the first five transitions while the
energies changes only for the two first ones (Table 1.1). For the transi-
tions 1-2 MEs always decrease with temperature in Table 1.4, and the
biggest decrease is for the edge-doped wide well at room temperature.
In the meantime, for the higher transitions, center-doped well MEs for
the disturbed potential can be bigger than that for the undisturbed
one. Obviously, it is due to the change in the wave functions spread in
the V-shaped part of profile that changes the overlap (see Fig. 1.9).
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Figure 1.9: Representations of a QW energy profiles (solid lines) with a several first space- quantized
energy levels (dashed lines) at temperatures 4K – a), and at elevated temperature – b), and c).
Dotted line in a) show schematic dependence of a donor ground state energy Ed on the position
within a QW. Ed in b) and c) show the same for center-, and edge-doped QWs.

1.4.2 Linear absorption peak changes. Estimation of tuning ranges.

Let us compare the linear absorption for the undoped (undisturbed
profile) and delta-doped (disturbed profile) wells. One can see in the
Table 1.1 that the biggest changes can be expected for the wide well
with bigger concentration of impurity at room temperature. In Fig.
1.10 the absorption curves with mentioned parameters are shown for
the rectangular profile (R), center doping (C), and edge doping (E).
The vertical arrows of colors corresponding to the curves, point out
the positions of the most important transition energies. For the case
of center doping, the biggest peak around 10 meV, is about the same
as for the rectangular well, the only exception is 2-3 absorption line,
which has greater transitions energy than the others not pointed out
shown in Fig. 1.10, and the largest energy is for 1-2 transition, which
is the result of delta layer ionization. The delta layer in the well
center does not change the structure symmetry and so the selection
rules are the same for rectangular and center-doped wells. In turn,
the edge-doped well absorption strongly differs both in amplitude and
shape from that of the rectangular well, which is also the result of the
delta-layer ionization. Mostly it exhibits in the blue shift the two first
absorption lines. Table 1.4 shows that MEs of all considered transitions
in case of edge doping are lesser than ones for the case of center doping
so the peaks for edge doped well are smaller. Edge doping breaks the
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symmetry of the well, so the selection rules change and the transitions
between states of the same parity are now allowed.

Figure 1.10: Absorption coefficients for: R - pure rectangular QW; C - center-doped QW; E
– edge-doped QW. Vertical arrows show the optical transitions between 1-2, 2-3, and 1-3 energy
subbands. QW width L = 20 nm. Impurity concentration Nd= 2.4×1012cm−2.

Now let us see how the degree of ionization of the delta layer im-
purity influence the absorption of both the edge- and center-doped
structuress. The numerical results are presented in Fig. 1.11. We
marked the graphs and some transition energies with horizontal and
vertical arrows in the same way as in Fig. 1.10. Letter “C” corresponds
to center doping, letter “E” – to the edge doping. The ionization de-
grees for the cases of Fig. 1.11 one can see in the in Table 1.3. We
used the different scales for the absorption coefficient for the room and
nitrogen temperatures, as in these two situations the number of car-
riers participating in intersubband transitions is very different due to
Fermi statistics and so the absorption coefficient changes very much
as well. One can see that the absorption coefficient behaves differently
for the center- and edge-doped wells all along the spectral scale at
both temperatures. Let us see why it happens. In the left side of the
figure one can see that at nitrogen temperature the absorption for the
smaller energies up to 5 meV center-doped QW is higher than that for
the edge-doped one at the “red” end of the spectrum is greater for the
center doped well. Though the ionization degree is greater for the case
of edge doping – see the Table1.3 The reason for that is the center-
case smallest transition energy is of 4 meV, while the edge-case one
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is of 5 meV and the absorption amplitudes are approximately equal.
From the Table 1.1 is seen that transition energies are increased start-
ing from the first center-case transition, exactly like in rectangular
wells. It means that Hartree addition there is relatively insignificant
and increases 1-2 transition energy only slightly. However, in edge-case
Hartree addition is deeper and now the first subband edge is deeply
inside the V-shaped part of the well, so the first transition energy in-
creases strongly and now is greater than the second (2-3) transition
energy. All further transitions follows the rule of increasing energy in
both cases and are within the range from 5 to 11 meV. Note that dop-
ing to the center-doping does not break the symmetry and does not
alter selection rules while doping to the edge does. So, the forbidden
for the symmetric wells transitions like 1-3 or 1-5 now are allowed. In
the right side of the figure (and Table 1.1) we can see that the first
transition has the biggest energy among the transitions for the closest
subbands in both cases. So, the other transitions starting from the first
subband also move to higher energies with temperature. For example,
see the positions of 1-3 transitions for the edge–case in Fig. 1.11 a and
b. Also, the absorption for the center-case is notably greater than that
of the edge-case in the lower energies range, but later, after 17 meV,
it is reversed. The explanation is given before, when we compare the
matrix elements (see also Table 1.4).

To show the influence of the delta layer impurity concentration on
the absorption we present the Fig. 1.12 with the results for edge-case
with different concentrations. The corresponding concentration mag-
nitudes in units of 1011cm−2 are marked next to the horizontal arrows.
With the vertical arrows we mark only 1-2 and 1-3 transitions, which
are most influenced by the concentration of impurities. Other notable
absorption lines have lesser energies for all the curves. We have already
discussed the absorption for the edge-case with concentrations 12 and
24×1011cm−2 when considering the Fig. 1.10 and Fig. 1.11 b. Here
we only can add that increasing concentration leads to the increasing
transition energies mostly for the transitions from the ground state.
Also the ionization degree is different even for the same room tem-
perature (see Table 1.3). However the absolute charge concentration
increases with impurity concentration anyway, and, accordingly, the
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Figure 1.11: Absorption coefficients for center- (dashed lines), and edge-doped (solid lines) QWs
for temperatures T = 77 K – left panel and T = 300 K – right panel. QW width L = 20 nm.
Total impurity concentration Nd=1.2×1012cm−2. Letters E and C denote the optical transitions
for edge-doped and center-doped QWs respectively. Note different vertical scales for left and right
panels.

Figure 1.12: Absorption curves for edge-doped QW with different impurity concentrations, shown
next to horizontal arrows in the units 1011cm−2. Vertical arrows show optical transitions. QW
width L=20 nm.

The Fig. 1.13 demonstrates the influence of the delta doped well
width on the absorption. Here one can see the curves of absorption
coefficient for a narrow (marked with letter “N”) and a wide (marked
with letter “W”) wells having respective widths of 10 and 20 nm. Both
structures are doped to the edge of the well with sheet concentration of
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Phosphorus nd=1.2×1012 cm−2. We have discussed the wide wells at
nitrogen temperature in the comments for the 1.11 a for the edge-case.
Here we mention that 3-4, 4-5, 5-6 energies occure between 2-3 and 1-3
lines for the wide well. Now, let us discuss a narrow well. One can see
that all of the absorption lines have greater energies than the ones of
the wide well. More interesting is that the sequence of the first three
lines (1-2, 2-3 and 3-4) is “regular”, while for a wide well, the lines 1-2
and 2-3 have the opposite order, despite of the ionization degrees are
very similar, namely 14% for the wide well and 12% for the narrow
one. Our results show for the wide well the ground level is inside the
narrower V-shaped part of the well, while for the narrow well it is still
in the rectangular part. So, the negatively charged electrons in the
first subband in case of the wide well are concentrated in the narrower
part of the well, more close to the positive ionized delta layer that
makes the potential distortion deeper than the one of the narrower
well. As a result the ground level goes deeper and first transition is
bigger than the second for the wide well and lesser for the narrow one.
Thus, ionized delta-layer has bigger influence on the wider well.

Figure 1.13: Absorption curves for a narrow – capital letter N above the horizontal arrow, and a
wide – capital letter W above the horizontal arrow, QWs. The widths of the QWs: L = 10 nm
and L = 20 nm for N and W letters correspondingly. Vertical arrows show some specific absorption
lines. Degrees of ionization are 12% and 14% for narrow and wide QWs accordingly with total
impurity concentration Nd=1.2×1012cm−2.
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Energy level, meV nd
+/nd,

%
n,1012

cm−2

Ef E1 E2 E3 E4 E5 E6 E7 ED

Center
77K -19.6 -0.7 3.1 7.6 14.3 22.6 33.0 45.2 -30 9 10.8
200K -44.3 -9.2 -0.6 4.3 10.9 19.0 29.4 41.4 -32.6 50 60.0
300K -72.4 -14.4 -3.3 2.6 9.1 17.1 27.4 39.4 -33.4 70 84.0
Edge
77K -15.0 -6.5 -0.3 4.1 10.4 18.7 28.9 41.0 -23.4 14 16.8
200K -39.5 -26.0 -10.3 -1.8 4.1 11.6 21.3 33.2 -28.8 48 57.6
300K -66.6 -35.5 -15.8 -4.6 2.1 9.1 18.6 30.2 -30.0 65 78.0

Table 1.5: Energy positions of size-quantized subbands, Fermi energy Ef , IBE ED, degree of
ionization nd

+/nd and free electrons surface density n for the center and edge-doped wells for
different temperatures. ED and Ef are given relative from the first subband E 1.

1.4.3 Influence of nonlinearity on the absorption and refraction

In Fig. 1.14 shows the energy profiles and wave functions of first 7
first subbands (that have been accounted for), zero of WFs correspond
to the respective energy position: a) center-case, b) – edge-case. It is
the biggest profile distortion at room temperature. Table 1.5 represents
the calculated subband energies, Fermi level and impurity ionization
degree for the temperatures of 77, 200, and 300K.

Figure 1.14: Energy profiles and first wave functions for our structures at T=300K.

The distortion potential of the positive delta-layer and negative elec-
trons in subbands adds a V-shaped well inside the rectangular well
formed by the material band discontinuity. As a result, the most no-
table differences between the two cases are the following. First, deeper
V-shaped well in the edge-case that leads to the greater energy of the
first transition. Second, the asymmetry of edge-doped well alters the
selection rules and permits the transitions between the states of the
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same parity. It is also true for the other temperatures though pro-
nounced in a lesser degree. The Fig. 1.15 repeats some curves from
the previous figures as for the linear absorption and adds the nonlinear
part with a reasonable laser intensity I=0.5 MW/cm2

Figure 1.15: Absorption coefficient of the QW structures doped to the center (a) and edge (b) for
the different temperatures. Solid lines – linear absorption, dashed lines – total absorption with
Kerr-type nonlinear part, laser intensity I=0.5 MW/cm2.

Nonlinear Kerr-type absorption is always negative. In our model it
is proportional to the incident radiation intensity and can be extrapo-
lated to different magnitudes of I. The selected intensity gives relatively
big nonlinear part, but not enough big to make two absorption peaks
of one like, for example, in [87]. For bigger intensities this model is
hardly adequate. The nonlinear part of absorption makes biggest rela-
tive decrease in the vicinity of the absorption peaks. However, for the
edge-case at high temperatures (see Fig. 1.15 b) the nonlinearity has
lesser influence on the peak caused mainly by the first transition (1-2),
than on the first peak (2-3, 3-4 etc.). This is because the nonlinearity
percentage of the transitions between the higher levels is greater than
for the lower levels. For the same reason the relative nonlinearity for
the wide wells is bigger than that for two-level systems.

The change of refractive index due to nonlinearity (Fig.1.16) small
and hardly should be accounted for in electronic devices. Surprisingly,
the linear and nonlinear parts refractive index change have the same
order of magnitude. However, within an accepted approximation [81]
that the absorption is the imaginary part of complex susceptibility
and the refraction change is the real part, the nonlinear part should
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be lesser than the linear one, and this assumption is fulfilled. For
the refractive index change, he result of the combination of linear and
Kerr-type nonlinear parts, which have the opposite signs, the nonlin-
earity decreases the absolute value of the total change around in the
maximum areas to a few percent. So, the whole complex structure of
subbands makes many jumps.

Figure 1.16: Linear, nonlinear and total (from up to down) relative refraction coefficient change
of the QW structures doped to the center (left column) and edge (right column) for the different
temperatures.

1.4.4 New type of THz modulator

The characteristic parameter of any modulator is the the ratio of
maximum and minimum passing  radiation intensities  Imax/Imin. Ac-
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cording to Beer’s law it is proportional to e(αmax−αmin)L with L being 
optical path in the active medium, αmax and αmin being the maxi-mum 
and minimum absorption coefficients for a given frequency. Let us see 
from this viewpoint on our results, which are shown in Figs. 1.17, 1.18 
for narrow, and Figs. 1.19, 1.20 for wide wells (10 and 20 nm 
correspondingly). Obviously, the biggest influence of the impurity 
ionization degree on the relative structure transparency is expected for 
low temperatures, all electrons in equilibrium are not ionized and there 
is no intersubband absorption at all (αmin = 0). On the other hand, the 
higher temperature of operation implies much larger range of po-tential 
applications. So, we calculated both for helium and nitrogen 
temperatures. To analyze the results, one should remember the follow-
ing. First, two-dimensional electron gas in quantum well subbands can 
absorb only the photons polarized along z direction. Second, for the 
narrower well width the transition energies between the closest sub-
bands are notably bigger than ones for the wider well. Third, here we 
assume that the electron effective temperature here defines the elec-
tron distribution in the subbands, but the impurity ionization degree is 
independent and may correspond to the equilibrium of much higher 
temperatures. Such situation can be achieved with application of very 
short impulses of longitudinal electric field, that ionizes the impurity.

The Fig. 1.17 depicts the absorption coefficients for the narrow well
with two impurity ionization degrees for 4 and 77K, delta layer is in the
center. As we expected, the largest ratio Imax/Imin is at 4K, which pro-
vides the maximum absorption difference for two impurity ionization
degrees. Note that center doping does not alter the structure symme-
try and the optical selection rules in a well are like in the rectangular
well, that is transitions between the states with the same parity are
prohibited. At nitrogen temperature all the excited electrons are in the
ground subband and there is only absorption peak that corresponds
to 1-2 transition. At nitrogen temperature some fraction of electrons
appear in the higher subbands, and the is an addition from 2-3 and
even 3-4 transitions. As a result, the biggest absorption line reduces
in magnitude.
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Figure 1.17: Absorption coefficients for center-doped 10nm-wide QW structure. Electron temper-
ature T=4K (a) and 77K (b). Degree of ionization - 6% and 61% for dashed and solid curves
accordingly. The peaks corresponding to intersubband optical transitions are also shown.

perature (Fig. 1.18 a) appears the additional absorption line 1-3, which
is now allowed due to the symmetry break (see Fig.1.9). Consequently,
now the main peak is less in magnitude then the one in center-case.
Higher temperature with the same impurity ionization degree (Fig.
1.18 b) leads to the electrons appearance in the higher subbands. As
a result, the main peak decreases further, and 2-3 transitions appear.

Figure 1.18: Absorption coefficients for edge-doped 10nm-wide QW structure. Electron tempera-
ture T=4K (a), and 77K (b). Degree of ionization - 63% for solid curves and 12% for dash-dot
curves. The peaks corresponding to intersubband optical transitions are also shown.

Figs. 1.19 and 12 present the results for the wider well of 20 nm and
are interesting to compare to the ones of 10 nm-wide well. Fig. 1.19
shows two additional relatively small peaks for 1-4 and 1-6 transitions
in case of the higher ionization degree due to the decreased subband

The edge-case results are shown in Fig. 1.18. Here for helium tem-
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distances in wider wells. The main peak energy (still corresponding
mainly to 1-2 transition) has lesser energy for the same reason. On the
other hand, the main peak now includes the effect of transitions 2-3,
3-4 and 4-5 that make it broader instead of presenting separate visible
peaks.

Figure 1.19: Absorption coefficients for center-doped 20nm-wide QW structure. Electron temper-
ature T=4K (a) and 77K (b). Degree of ionization - 6% and 61% for dash-dot and solid curves
accordingly. The peaks corresponding to some specific intersubband optical transitions are also
shown.

Now let revise Fig. 1.20 with quite unusual results. On the left panel
all the notable peaks are for the transitions from the ground subband,
which is still in line with our previous analysis of Figs. 1.17-1.19. It is
true for the right panel as well, however, for higher ionization degree all
transition energies are now shifted about 8meV towards higher energies
comparing to the left panel, while for the lower ionization degree of
ionization the shift is about 2meV, nearly the same as in Figs. 1.18-
1.19. It can be explained as follows. At helium temperature only
the ground subband is occupied by electrons, and the negative charge
mainly concentrates near QW center and the Hartree potential “digs”
a very narrow v-shaped well. As a result the ground subband is pushed
up in energy to the wider region of dug out by Hartree potential QW.
So, the energy difference between the ground and the rest of subbands
is not very different in comparison to the rectangular well. At nitrogen
temperature electrons are distributed among few lower subbands and
the charge is spread over the well width. It means that Hartree well
becomes wider but still narrower than the big rectangular well. Now
it contains more levels that have greater energy separations.
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Figure 1.20: Absorption coefficients for edge-doped 20 nm-wide QW structure. Electron tempera-
ture T0=4K (a) and 77K (b). Degree of ionization - 14% and 65% for dash-dot and solid curves
accordingly. The peaks corresponding to some specific intersubband optical transitions are also
shown.

Figs. 1.17-1.20 demonstrate two dominant peaks for two impurity
ionization degrees. It shows that absorption tuning of the structure
under study in the range that corresponds to the differences in peak
positions can be performed by relatively small lateral electric field.
Fig. 1.21 depicts the mentioned range of tuning according to our cal-
culations. Each frequency presented case has its magnitude of ratio
Imax/Imin. However, for some purposes the high ratio is required, for
other purposes it more preferrable to have broader tuning band, while
in some cases the goal is a simultaneous modulation of various lines.
The goals can be reflected in particular features within the same gen-
eral design framework. Note that additional tuning or adjustment to
the particular environment condition can be done by varying temper-
ature [88]. The probable complication in the implementation of the
design can be instability at helium temperature due to the impurity
breakdown in small electric fields [89]. Though the application of a
small magnetic field [90], higher electric field allows to avoid this ef-
fect. At higher temperature it is not expected to be a problem.

1.4.5 Influence of transversal electric field

Fig. 3 of [53] depicts a binding energy of the impurity as a function
of the width of the QW made of the same materials as in our work. We
used that work as a numerical verification for our method. Fig. 1.22
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Figure 1.21: Spectral range of tuning for our structures (motion of the peak position with increasing
ionization degree) for the considered degrees of impurity ionization: solid lines – T=4K, dashed
lines – T=77K.

contains the comparison between our results and theirs, specifically,
IBE in the well center for hydrogenic impurity. The graphs are in
a good agreement if the well is narrow enough. For our maximum
well width of 20 nm the correspondence is quite good. In the extreme
situations of infinitely narrow and infinitely wide well IBE, obviously
should be equal to the one of the bulk materials of the well and of the
barrier correspondingly. In our calculations for narrow wells we used
external quantum box with infinite barriers positioned at the distance
of 10 nm from each heterojunction. As for the wide well limit, note
that we make calculations for the case of uniformly stressed material,
which is not true in case of bulk material or wider wells, and we believe
that is the main reason of disagreement, starting after 20 nm.

Fig. 1.23 illustrates qualitatively and quantitatively what happens
to the profile of our structure. The energy profile of QW under bias is
shown there along with WFs of the two first subbands (zero WF corre-
sponds to the subband energy position) and impurity level Ed for the
non-ionized (temperature 4K) and ionized (temperature 300K) impu-
rity delta-layer in the well center. The energy difference ∆E 12=E 2-E 1

characterizes the intersubband optical transition and its change corre-
sponds to the tuning range. IBE is the distance between the impurity
level and the first quantized subband E 1-E d.
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Figure 1.22: Impurity binding energy in the senter of Si0.8Ge0.2/Si/Si0.8Ge0.2 quantum well against
well width. Comparison between our results (red) and the results from [15].

Figure 1.23: QW profile with the well width of 20 nm in the applied electric field of 20kV/cm.
Red dash line correspond to the case of no ionized impurity. Black solid line correspond to the
same well with an ionized impurity delta layer in the center with ionization degree and electron
statistics corresponding to the equilibrium of room temperature. L is the width of the well. (b) is
the zoomed in lower part of (a) with the addition of impurity levels and two first wave functions.

ionized (T=300K) and non-ionized case for the different strengths of
external electric field. ∆Eij=Ej-Ei are the energy differences between
subbands.

Analyzing the first energy distance, we can see that the electric
field growth leads to its monotonous and strong increase for the case
of 4K about 9 times, while its behavior for 300K is opposite: it de-
creases more than 2 times. Our qualitative interpretation of such a
phenomenon is based on the concept of two mini-wells that appear in

The results for 20 nm wide QW are shown in Table 1.6, for the
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T,
K

E,
kV/cm

∆E12,
meV

∆E23,
meV

∆E34,
meV

∆E45,
meV

∆E56,
meV

∆E67,
meV

∆E78,
meV

∆E89,
meV

Ed,
meV

4 0 2.84 4.71 6.6 8.47 10.34 12.19 14.01 15.9 29.6
10 6.12 5.46 6.51 8.39 10.34 12.25 14.13 15.97 26.35
20 9.67 7.94 7.37 8.22 10.06 12.05 13.99 15.87 20.94
50 17.78 14.56 12.87 11.77 11.17 11.56 13.13 15.16 9.93

300 0 11.09 5.83 6.53 7.97 10.36 11.96 14.09 15.73 33.86
10 10.18 6.18 6.89 8.23 10.32 12.11 14.17 15.88 33.63
20 8.81 7.27 7.7 8.66 10.05 12.1 14.02 15.86 33.35
50 4.78 10.79 11.21 10.74 10.92 11.8 13.45 15.52 30.64

Table 1.6: IBE and intersubband energy distances in transverse electric field.

the bottom of our bigger well as a result of its distortion by the external
field and the Hartree potential of delta-layer ionization. The Hartree
well is formed in the middle of the bigger well, where the delta layer is
positioned. Its mechanism is described in the previous sections. The
field well appears at the right edge of the greater well result of applied
bias (see Fig. 1.23). The first well grows with the ionization degree od
delta-layer impurity (which can be regulated either by temperature or
by the longitudinal electric field), while the second one grows with the
transverse electric field. Each well is narrower then the originan and
when one of them is dominant, the ground subband goes down to that
dominant well and the energy of the first transition grows. However,
when two mini-wells are comparable, the two first WFs distributes
between them and the energy distance decreases.

According to the Table 1.6 the variation of the next energy dis-
tances gradually decreases that confirms our conclusions. Mini-wells
influence strongly on the first few subbands, but the differences be-
tween the upper levels, which are far from bottom and are defined by
the characteristics of the whole greater well, are stable.

So, if we try to design the structure that allows to obtain larger
tuning range |∆E12|T=300K − ∆E12|T=4K |, for such a configuration, we
can manipulate external fields to balance the mini-wells to decrease the
transition energy or disbalance them to increase the one. Interestingly,
such a configuration permits much bigger tuning range in comparison
to the situations in the previous sections and adds more flexibility
for tuning. Moreover, in this case we don´t need to rely on lower
temperatures like 4 or 77K to get the whole possible range.
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case it does not depend much on the field strength, while for the 4K
case it decreases uniformly with the field, so that its final magnitude
about three times less. We can explain it in terms of Coulomb interac-
tion strength. Fig.1.23 demonstrates that under the bias the lower part
of the well moves to the right, and energy levels descend with respect to
the impurity position. As a result, most of the WFs moves away from
the positively charged impurity and the Coulomb interaction weakens.
Indirectly this logic can be confirmed by the fact ( [53]) that in rectan-
gular well the binding energy decreases near the edges, and here again
we have the situation when electron WF moves away from the impu-
rity ion. In the ionized case, the Hartree potential makes mini-well
near the delta-layer and the electron WF now is localized there so the
interaction is strong and IBE is big.

1.4.6 Influence of background impurity

Transition to the limit of undisturbed rectangular QW

First let us discuss the reliability of our model and results. In absence
of experimental data that can be used as a reference point (we did not
find any in literature), we used theoretical work [53], which used differ-
ent method (full Hamiltonian diagonalization) to calculate IBE for the
similar structure, but only rectangular profile. In that particular case
our results are in good agreement with theirs (see the comparison in
the previous section). Additionally, many other works [24,34,40,49,91]
confirm that IBE at the edge of QW is significantly less than that at
the center. It confirms the reliability of our method in particular cases
so we can move further and account for the BI. So, to check the results
obtained with BIs we can look for their convergence with the results
without BIs. Therefore, we calculated the case of low BI concentra-
tions at low temperatures, when the delta layer is not ionized and the
profile for different BI concentrations looks like is shown in the main
panel of Fig. 1.24.

Here we can see that for lower concentrations QW shape becomes
indistinguishable from the rectangular, which is the conceptually obvi-
ous result. Table 1.7 demonstrates the IBE magnitudes (which is the
difference between the ground subband and ground impurity state)
for delta layer impurities both in the center (εcδ) and in the edge (εeδ)

As for the impurity binding energy, Table 1.6 shows that in 300K
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Figure 1.24: Energy profiles of QW at T=4K. The numbers next to curves indicate the concentra-
tions of background impurities in cm−3. In the insert in the center of the figure the QW energy
profile for a concentration of 1012cm−2 at a temperature of 300K is shown schematically.

of the well, energy distances between the neighboring subbands, and
electron sheet concentrations electrons in the well (nQW ) for different
BI concentrations. This well is relatively wide for a silicon and in case
of center doping the well positioned IBE is almost the same as in bulk
silicon (29.0 and 29.6 meV correspondingly) with the latter is obtained
by variational technique within the effective mass theory [66], and it
is the additional verification for our results. All the data of the Table
1.7 have a kind of limit in the case of Nb=0, that is a pure rectangular
QW. Again, a reported good convergence was made possible only by
accounting for the subbands positioned about bulk conductance band
edge (positive energy subbands). It illustrates why exactly we needed
the algorithmic complications described in the corresponding section.
Second thing to note is that the energy differences are the same for two
kinds of delta-layer positionind only at low temperature. For higher
temperatures it is not the case.

Results at temperature 4K

Let us start from the delta layer impurity binding energies. Table 1.7
shows the biggest variation for highest BI concentration (last column):
edge-case IBE is greater than for the center-case. It contradicts to the
results without BIs (first column). We mentioned that edge-case IBE
is lesser center-case ones for the rectangular well according to many
sources. The decrease BI concentration leads to the change of their

50



Chapter 1. Adjusting energies of intersubband optical transitions in delta-doped quantum wells

Nb, cm
−3 0 105 1012 1015 1016 1017

εcδ, meV 29.6 29.5 29.5 28.9 28.1 25.6
εeδ, meV 17.0 17.0 17.7 19.7 22.3 26.5

∆E21,
meV

2.9 2.9 2.8 2.1 1.4 0.4

∆E32,
meV

4.7 4.7 4.8 4.7 4.8 5.9

∆E43,
meV

6.7 6.7 6.7 6.6 6.6 6.0

nQW ,cm−2 0 106 1.2×108 1.0×1011 3.2×1011 8.6×1011

Table 1.7: IBE for the wells delta-doped to center εcδ, and edge εeδ, sheet concentration of electrons
in the well nQW , and energy differences between nearest subbands ∆Eij , for the different concen-
trations of BI Nb. T=4K.

behavior: center-case IBE increases, while edge-case one decreases and
finally results in the regular “rectangular” behavior. So, we gained
an uncommon result. Fig. 1.25 is used to explain it. There zero
energy is the bottom of conduction band far from depletion region. We
can compare the dynamics of the WF against BI concentration with
the one of tunnel-coupled symmetric QW (for example, see [92]) with
the variable middle barrier width. The profile distortion forms two
pockets near the heterojunctions, that act as QWs, and a hill between
them acts as a barrier that grows for bigger BI concentration [93, 94].
Something similar was presented in [95], but without proper discussion.
As soon as all delta layer impurity centers at low temperature are
neutral, the curves for the different delta layer concentrations are the
same. Here we suppose that the influence of the first subband WF on
the IBE is the biggest though for the numerical calculation we used 7
subbands (for lower temperatures).

It is seen in Fig. 1.25 that the electron WFs for the first subband
are displaced towards the heterointerfaces with increasing BI concen-
trations, so the Coulomb interaction with impurity in QW center weak-
ens and IBE decreases. For the edge impurity the situation is opposite:
one of the electron density peaks moves toward the impurity, and IBE
increases.

Now about the energy differences. Table 1.7 shows us that they
don{t change much for BI concentrations from 105 to 1015cm−3, when
the pockets near barriers are negligibly small (Fig. 1.24). For the
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Figure 1.25: Energy profiles (solid black lines), first space quantized energy levels and their wave
functions (blue dotted and dot-dashed lines accordingly), and ground impurity states for center-,
and edge-doped QWs (short red solid lines) for the different concentrations of background impuri-
ties. Temperature T=4K. At this temperature each curve is the same for both concentrations of
donors in the delta layer used: nδ=0.6×, and 1.2×1012cm−2. All the wave functions are in the
same scale. The zero of energy is at the bottom of the conduction band in barriers far away of the
depletion layers.

upper levels the distances increase monotonically in the same way it
happens in rectangular QW. Obvious alteration to this rule happens
only for BI concentration of 1017 cm−3 , where ∆E12 is very small and
∆E23 is relatively big. This is the situation, when the first two levels
correspond to the symmetric mini wells formed by pockets near barriers
and the third level mainly belongs to the whole well. Therefore, small
∆E21 is a result of the degeneracy removing in two identic tunnel-
coupled wells. Something similar, but to a lesser degree happens in
case of BI 1016cm−3 , while for 1015cm−3 the first level does not with
the central barrier the general rules for the rectangular well from now
on are dominant.

The electron concentrations in the well (Table 1.7 last line) are con-
trolled by the barrier impurities, so in this case we should expect a
notable intersubband absorption even at helium temperature.

Higher temperatures. IBEs and the electron concentrations

Now let us discuss the case of partly ionized delta layer donors, the data
is shown in the Table 1.8. There are IBEs (only for center-case), the
sheet electron density in the well, ionized donor density in the delta-
layer and Fermi level positions at different BI concentrations at T= 77
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and 300K for two different delta layer donor concentrations. Note that
Fermi level does not depend on delta layer donor concentration as it
is defined by the bulk barrier material. For the cases marked (Nb=0)
the Fermi level was found as for the MQW structure using different
electro neutrality condition so we did not put it to the table to avoid
confusion. Fig. 1.26 illustrates the situation discussed. In the upper
part of the figure (a, b and c) the well energy profiles are shown in the
same scale. (The specific case of very low BI concentration (1012cm−3)
is discussed separately.) Like in Fig. 1.25 here we present only the
lower part of the well profile as the most relevant for our discussion.
The energy has the same scale multiplier everywhere, but the origin is
shifted for better representation of our arguments as described in the
figure caption.

In general, blue lines correspond to the room temperature, red ones
to the nitrogen ones, solid lines correspond to the higher delta layer
concentrations, dashed or dotted ones to the lower one. The lower
part of the figure (d, e, f) depicts the wave functions of the ground
energy level (again the same scale multiplier). We did not present the
curves at T = 4K as they are indistinguishable from those at T =
77K. Besides, they are presented in the previous figure. From Fig.
1.26 we can conclude that the shape of QW bottom is determined by
the electrons that come from two sources. First, there are electrons
from BI in the barriers and they make the mini wells adjacent to the
heterointerfaces. Second, there are electrons from the ionized delta-
layer and they form the V-shaped potential well in the center (along
with the ionized donors). So the that bigger BI concentration leads
to the deeper “side pockets”, while delta-layer ionization leads to the
deeper central mini well.

At nitrogen temperature the delta layer ionization is less than 10%
(see Table 1.8) and the well bottom shape is defined by the domina-
tion of side pockets near the heterointerfaces so that the situation is
similar to that at helium temperature. Second, for the same reason in
this case the profiles don´t depend much on the delta layer impurity
concentration. Accordingly, WF don´t change much as well (see lower
part of the figure). As a result, the IBEs for different nδ no more than
0.3meV, which is on the brink of our numerical method precision. It
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Figure 1.26: Energy profiles – a), b), c) (upper part of the figure), and wave functions of the first
space quantized energy level – d), e), f) (lower part of the figure). Concentrations of background
impurities, Nb, cm

−3:a) and d) – 1015;b) and e) – 1016; c) and f) – 1017. Temperature T, K: 1
and 2 – 77(red lines); 3 and 4 – 300(blue lines). The concentrations of donors in the delta layer nδ,
cm−2: 1 (red) and 3 (blue) dashed lines – 0.6×1012; 2 (red) and 4 (blue) solid lines – 1.2×1012.The
upper dashed (blue) horizontal straight lines (designated as E 1 at their right ends) correspond to
the 1-st space-quantized energy level for the Nδ=0.6×1012cm−2 at T = 300K, and the lower solid
(blue) ones (designated also as E 1, but at the left ends of the lines) show the 1-st space-quantized
level for Nδ=1.2×1012cm−2at T = 300K. In the upper part the energy profiles for each Nb are
shifted in such a way that E 1 is put as zero of energy for Nδ =1.2×1012 cm−2 and T=300K. All
the curves in the a), b), and c) have the same energy scale factor. All the wave functions in the
lower part are in the same scale as well.

can be explained in the same way for all BI concentrations. Table 1.8
shows that the number of ionized impurity centers in the delta layer
(and, accordingly, electrons from this source in subbands) is two times
greater for a higher nδ. As a result the bottom part of the well energy
profile for the bigger n is inside the same for the lesser n (Fig. 1.26 b).
It means that the side mini wells are closer to each other. It has two
consequences. First, the splitting between the levels belonging to the
pockets because of the tunnel coupling should be slightly bigger for
the bigger nδ. It is confirmed by the Table 1.8 (see ∆E21). Second, the
wave function in the central barrier increases (Fig. 1.26 f) that leads
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T, K 77

2*nδ, cm−2 6×1011 12×1011

2*Nb,cm
−3 1017 1016 1015 0*

0*
1017 1016 1015

1012

2*εδ, meV 24.1 28.2 29.6 29.7
30.0

24.4 28.5 29.8
30.5

2*nQW ,1011 cm−2 9.0 3.2 1.5 0.8
1.1

9.2 3.5 1.8
1.1

2*nδ
+, 1011 cm−2 0.2 0.3 0.5 0.8

1.1
0.4 0.6 0.8

1.1

2*EF , meV -34 -43 -55 -34 -43 -55 -100

T, K 300

2*nδ, cm
−2 6×1011 12×1011

2*Nb, cm
−3 1017 1016 1015 0*

0*
1017 1016 1015

1012

2*εδ, meV 30.6 32.4 32.7 32.3
33.4

32.8 33.7 33.9
34.0

2*nQW ,1011 cm−2 10.5 6.1 4.8 4.9
8.4

13.5 9.2 8.0
7.7

2*nδ
+, 1011 cm−2 4.4 4.8 4.9 4.9

8.4
7.7 8.2 8.4

8.5

2*EF , meV -146 -205 -265
-146 -205 -265 -443

Table 1.8: IBEs (ε, meV), the complete sheet electron density in the well (nQW , cm−2), delta layer
ionization (nδ

+, cm−2), and Fermi level (EF ) for the two different delta layer impurity concentra-
tions at T=77 and 300 K, and for the different BI concentrations (Nb, cm

−3).

to an increase of IBE. We believe that the ability to explain such small
IBE variations is one more evidence of the calculation method reliabil-
ity and that the IBE behavior is explained well enough with only the
ground WF, that is the variation of the first term of expansion.

At room temperature the increase of delta layer ionization results
in a bigger central V-shaped mini well, see Fig. 1.26 a and b. Inter-
estingly, despite the notable difference in energy profiles for different
nδ, the corresponding WFs (Fig. 1.26 d and e) look very similar. IBE
change is no more than 1.5 meV with lesser magnitude again for the
lesser delta layer donor concentration. The reason is the bigger elec-
tron number, due to the bigger donor concentration, produces deeper
central mini well. As a result, electron WFs are more localized around
the well center that increases IBE.
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Generally, the same is true about Fig. 1.26 c and f. However, the
most notable thing here is the difference in WFs rather than in energy
profiles. The WF difference is a result of different contributions of
side mini wells as well to the charge redistribution of first subband
electrons along z. It results in IBE difference of more than 2meV. So,
one can see that the less different are the first subband WFs, the less
is the IBE difference. And vice versa, a big (more than 6 meV) IBE
difference follows the prominent distinction in WF shapes for T=77
and 300K (same nδ), see Fig.1.26 f, and Table 1.8.

Also, Table 1.8 presents a behavior of nδ
+ against the IBE that at

first may look counterintuitive. We can expect that the decrease of
IBE should increase the ionization level, but the situation is opposite.
To explain it we must remember that what directly influence on the
ionization degree is the relative position of the Fermi level. And the
position of Fermi level in our structure with infinitely wide barriers is
determined by the BI concentration and temperature: the greater BI
concentration, the closer it moves to the conductance band edge while
higher temperature pushes it back to the bandgap. It explains why the
number of ionized atoms in delta layer depends on BI concentration.
However, the most remarkable thing in the Table 1.8 in our opinion is
the fact that BI in barriers can increase the well electron concentration
several times. In turn it can influence the efficiency of our presumable
intersubband transition based optoelectronic devices. Note also that
at 77K the fraction of electrons in the well that came from delta layer is
always less than half. At room temperature this fraction increases and
for the lower BI concentrations most electrons come to the well from
the delta layer. The calculations show that at room temperature a
notable part of electrons moves above the barriers and now belongs to
a 3D continuum even being in the vicinity of the well and participating
in profile distortion.

Energy distances at higher temperatures

In the Table 1.9 the energy distances between adjacent subbands for
the room and nitrogen temperatures and different BI concentrations
are presented. The data shows that in general their magnitudes for
different BI concentrations are the same order as well as in case of
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T, K 77

2*nδ, cm
−2 6×1011

12×1011

2*Nb,cm
−3 1017 1016 1015 0* 1017 1016 1015 0*

2*∆E21,meV 0.3 1.4 2.6 3.6 0.3 1.5 2.9 3.8

2*∆E32,meV 7.1 4.7 4.5 4.5 6.9 4.6 4.4 4.5

2*∆E43,meV 5.6 6.6 6.7 6.7 6.8 6.7 6.7 6.6

2*∆E54,meV 8.2 8.4 8.5 8.4 8.1 8.4 8.5 8.4

T, K 300

2*nδ, cm
−2 6×1011 12×1011

2*Nb,cm
−3 1017 1016 1015 0* 1017 1016 1015 1012 0*

2*∆E21,meV 2.1 6.5 7.8 4.9 5.8 10.1 11.2 11.5 11.1

2*∆E32,meV 3.0 4.1 4.8 4.9 2.5 4.9 5.9 6.2 5.9

2*∆E43,meV 7.5 6.6 6.6 6.6 6.8 6.3 6.6 6.4 6.5

2*∆E54,meV 8.0 8.3 8.2 8.1 8.2 8.1 8.0 8.0 8.0

Table 1.9: Intersubband energy differences at nitrogen and room temperatures for different BI
concentrations and two delta layer impurity concentrations

completely without BI. However, it is interesting that, for example,
for Nb of 1015cm−3 the change magnitude of the first difference ∆E12

with temperature is 11.2-2.9 = 8.4 meV while for Nb=0 it is 11.1-3.8
=7.3 meV. The similar thing happens in other cases. We mention it to
emphasize a notable tuning range of intersubband transition energy in
our structure design. As one can see BI do not prevent this effect and
even, at come parameter combinations, can provide us with additional
possibilities.

Shallower QW

There are different data on the depth QW with the same material
combination in literature. Particularly, the works [55–57] estimate the
depth as 120 meV. Here we analyze how our results can change for
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QW with lower depth. First, regardless of the QW depth, the energy
separation due to the internal stress between the four upper electron
valleys and the two lower ones will be more than 110 meV [57], so the
upper valleys are negligible anyway. Second, as is shown, the ground
impurity state binding energy depends mainly on the first subband
wave function and position, which, in turn, depends mainly on the
QW bottom shape. We suppose, that it will be so independently from
the well depth. As we say before, other subband WFs only refine
ground impurity state energy. So, let us compare the structure of
energy levels for both quantum wells using as an example the well
with rectangular profile. The deep well has forteen subbands while the
shallow one has eleven. The nineth level energy (the last we ccounted
for in our calculations) is 76 meV with respect to the well bottom for
the deep well and 73 meV for the shallow one. As is known, the closest
intersubband energy difference increases with energy level and is the
biggest for upper subband couples (unless very close to the barrier top).
For the deep well the 8-9 difference is 16 meV and for the shallow one
is 14 meV. So, as we see, the variation is minor, at least for the first
nine subbands. We can conclude that the results for the well with
lower depth are expected to be very much like what we got for the
deeper one.

1.5 Conclusions

This work is built around the idea about the new design for semi-
conductor active and passive optical devices based on quantum wells
delta-doped within the well. The introduction of impurity delta-layer
permits tuning the working frequencies for such devices with exter-
nal electric field. The device functioning is based on the intersubband
optical transitions of electrons and may work in the spectral range
from IR to THz regions. The most actual part of the spectrum is
the THz region because there were technical problems in implementa-
tion of optical devices working in this range, which is known as THz
gap. Existing designs of intersubband QW optical devices like QCL
and QWIP can be modified using our idea that may increase their
tunability. New types of optical devices, like modulators, can also be
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To ground the idea numerically the self-consistent calculation method
has been implemented. The peculiarity of our implementation of that
method in comparison to the existing ones is the incorporation of the
impurity binding energy calculation, which is crucial for our task.

We have proposed materials for the implementation of the concept,
which is Si0.8Ge0.2/Si/Si0.8Ge0.2 heterostructures with shallow impu-
rity of Phosphorus. Our choice is grounded theorically and confirmed
with calculations. The calculation parameters are taken from liter-
ature, some of the particular results are confirmed by the works of
another authors, that demonstrates the correctness of the method.

The method permitted to calculate the energy differences between
lower subbands, position of Fermi level and wave functions of elec-
trons in QW as a function of many parameters including QW width,
electronic temperature, degree of impurity ionization, alloy content,
impurity delta-layer position and concentration of impurity within the
delta-layer. In addition, the possible influence on the tuning effect such
factors as eternal transversal electric field and the presence of techno-
logical background impurity has been studied. The obtained results
permit to calculate the linear and non-linear absorption coefficients
of the structure and non-linear refraction change. Absorption spectra
obtained for different impurity ionization degrees allowed to estimate
frequency tuning ranges for the presumable devices.

As a result of the performed calculations and analysis the following
most important conclusions can be made.

1. The best materials to implement the idea are Silicon and Ger-
manium heterostructures because their shallow impurity is deep
enough to obtain the tuning within acceptable temperature range
and has enough small Bohr radius to use higher impurity concen-
trations for better effect without shifting to the metallic side of
Mott transition.

2. The calculations show the viability of the proposed idea for the
selected materials and configuration. It is fundamentally possible
to create working tunable semiconductor optical device for THz or
IR region based on the proposed design.
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3. Absorption change in some calculated configurations demonstrate
the possibility of tuning the working frequencies, for example, from
1.3 to 3.5 THz or from 2.6 to 4.3 THz for the same device.

4. Impurity binding energy for the different may change significantly,
for example to decrease about 2-3 times. This effect does not
prevent using the proposed design, however should be taken into
account in quantitative estimations.

5. Nonlinear (Kerr-type) effects with reasonable magnitude of inci-
dent radiation and acceptable carrier concentrations may some-
what decrease the absorption peaks, however do not suppress them
completely.

6. Applied transversal electric field (which is the necessary part of
such devices as QCL and QWIP) at high magnitudes may modify
the tuning effect significantly and should be taken into account in
numerical estimations. Also, it provides additional possibility of
tuning, that makes the design more flexible.

7. The introduction of technological background impurity has some
effect on the tenability and at extremely high concentrations can
make it impossible. However extreme cases can easily be avoided
by technologic means.
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Chapter 2

Review: A Look Into QD and QW

2.1 A brief introduction to electronic transport through quan-
tum dots and wires

The ability to carry electrical charges through metals is determined by
its electrical resistance R. Ohm’s law establishes that the current I
is proportional to the potential difference V and to the conductance
G, which depends on the shape of the conductor, which together with
the intrinsic property of macroscopic systems, called the conductivity
of the material, can indicate if the material that makes up the sample
is conductive or not. This Ohm’s law loses its validity, when the size
of the conductor approaches the atomic scale, more specifically, the
electronic transport through a carbon nanotube, a quantum wire, a
quantum dot, a heterostructure, or a molecule (for example) cannot
respond to the same laws of charge transport that for a macroscopic
system. The reason is that the distance which an electron travels be-
tween two scattering events, is usually much greater than the atomic
size, i.e., the size of the system is less than some of the character-
istic lengths such as De Broglie’s wavelength, or the mean free path,
thus producing confinement and quantization of the energy where the
electrons pass ballistically through the conductor, generating that its
resistance does not depend on the size of the system [1,2].

These length scales vary widely from one material to another and
are strongly affected by temperature, magnetic fields, and/or electric
fields. We are, therefore, within a completely quantum limit, which
we cannot describe with semi-classical arguments. On the other hand,
when a mesoscopic system is at low temperatures or small applied
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voltages, the transport properties are determined by the charge carriers
on the Fermi energy.

Systems whose lengths are comparable to these characteristic lengths
are usually called mesoscopic or nanoscopic systems. These systems
have particular properties, which cannot be described by laws such as
Drude’s law, which particularly describes the electrical properties of
macroscopic systems. This then makes it necessary to design circuits
taking into account new transport regimes at nanoscopic scales.

The experimental investigation of these phenomena requires tools
for manipulation and characterization of structures at the atomic and
molecular scale, it is thus, that the construction of an electronic system
using quantum wires and/or individual molecules is one of the funda-
mental goals of what we know today as the nanotechnology. During the
last decades, important advances have been made in this regard, for
example, the measurement, control, and understanding of the trans-
port properties in a conductor that is between contacts have been the
object of study in this field [3].

A main challenge for the theory is to derive the conductor conduc-
tance of the atomic size from microscopic principles, for this reason,
the objective of this section is to review part of the basic theory to
calculate the transport properties in mesoscopic conductors, especially
through devices that are made up of quantum dots and quantum wires.

Initially, the work done by Ojeda et al. [4–6] will be taken as the
main reference, where a general and simple vision of quantum trans-
port in systems consisting of arrangements of quantum dots in one
dimension is given, which are analyzed using wave functions.

The second system is an array of quantum dots coupled to a con-
ducting quantum wire, where the transport properties were analyzed 
by Orellana et al. [7]. It should be noted that the analysis presented in 
this section was published and is the authorship of Orellana et al. [7], 
however, it is developed in detail here as a reproduction of their re-
sults, to take them as a fundamental theoretical basis and add some 
analyzes that have not been published, where parameters involved in 
the model are varied, and of which they are studied in order to com-
pare them with results of the analysis of electronic transport through 
said systems using Green functions.
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2.2 Review and analysis of electronic transport through a
quantum wire (QW ) with an impurity or quantum dot
(QD).

The properties of electron transport such as the transmission proba-
bility (TP ) and reflection probability (RP ) through a quantum wire
(QW ) with an impurity are analyzed [8]. The electrical properties of
this system are discussed, which is characterized by being of atomic
size.

Figure 2.1: Representation of a one-dimensional Quantum Wire (QW ).

The QW (See figure 2.1) is modeled by means of a Tight Binding
Hamiltonian with interaction to first neighbors, which is given by [1,
9–11]:

Ĥ =
N∑
n=1

εnc
†
ncn +

N∑
n=1

Vn,n−1, c
†
ncn (2.1)

where εn is the energy of the nth atomic site (or quantum dot), c†n(cn) is
the creation (destruction) operator and Vn,n−1 is the coupling between
the nth and (n+ 1)th site [12].

The eigen-states of said Hamiltonian Ĥ can be described by |ψ⟩ =∑
n an|n⟩, which satisfy periodic conditions1, or its corresponding dual

component (⟨ψ| =
∑

n′ an′⟨n′|), where an is the probability amplitude
to find an electron at the nth site of QW .

On the other hand, when determining the expected value of the
Hamiltonian given by ⟨ψ|Ĥ|ψ⟩ =

∑
n′ an′⟨n′|Ĥ

∑
n an|n⟩, and applying

the respective properties of the creation operators2 and destruction3,
1Bloch states: describes the plane wave function of a particle (such as an electron) in a periodic medium (like

a crystal lattice), multiplied by a periodic wave function due to the lattice, which allows describing the motion of
several electrons from a single electron in a crystal lattice [13,14]

2c†n|n⟩ =
√
n+ 1|n+ 1⟩

3cn|n⟩ =
√
n|n− 1⟩
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as well as the evaluation of the Kronecker delta4, we get to obtain a
dynamic or motion equation given by:

εan = εnan + Vn,n+1an+1 + Vn,n−1an−1, (2.2)

where ε = εn + 2Vn,n±1 cos k, is known as the dispersion relation5 that
characterizes a monatomic linear chain (or QW ).

For this case, the QW system is taken with all its atoms or QDs

characterized by having a site energy εA, the bonding or coupling to
first neighbors is given by Vn,n±1 = VAA and the dispersion relation is
equal to ε = εA + 2VAA cos k. Now, considering said QW , with an

Figure 2.2: QW with an impurity at the site n = 0.

impurity located at the site n = 0 and energy ε0 = εB (see figure 2.2), 
and couplings to first neighbors (between impurity and QD) given by 
V0,1 = V0,−1 = VBA = Vc and Vn,n±1 = VAA = Va (∀ n < −1 and ∀ n > 1), 
the equation (2.2) becomes:

[(εA − εB) + 2Vacosk]a0 = Vca1 + Vca−1 (2.3)

Likewise, for n = 1 where ε1 = εA and for n = −1 where ε−1 = εA the 
equation (2.2) is respectively given by:

(2Vacosk)a1 = Vaa2 + Vca0 (2.4)

and,

(2Vacosk)a−1 = Vaa−2 + Vca0 (2.5)

Taking into account the boundary conditions where is fulfilled that
there is a wave incident by the left side of the impurity, giving place
to a wave transmitted by the right side and another reflected by the
left side, whose amplitudes defined as t(ε) and r(ε), respectively, are

4δn,n′ = 1 (si n = n′); δn,n′ = 0 (si n ̸= n′); δn′,n+1 = ⟨n′|n+ 1⟩; δn′,n−1 = ⟨n′|n− 1⟩
5This relation describes the effect that the dispersion of the medium has, in this case the monatomic linear chain,

on the properties of the wave associated with the electron that travels within that medium. Where ε is the energy
of the incident wave and k is the wave number equal to 2π/λ [13, 14].
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given by [2,10]:

an =

{
eikn + r(ε)e−ikn for n ≤ −1

t(ε)eikn for n ≥ 1
(2.6)

The equations (2.4), (2.5) and (2.6) can be related to determine
that the probability amplitude a0 of finding an electron at the site
n = 0, which is given by:

a0 =
Va
Vc
t(ε) =

Va
Vc

(1− r(ε)) (2.7)

From the equation (2.7) can be inferred that t(ε) = 1 − r(ε), and 
together with determining the amplitudes a1 and a−1 the reflection 
coefficient is  obtained by:

r(ε) =
Vaε− + 2(V 2

a − V 2
c )cosk

2V 2
c e

ik − (Vaε− + 2V 2
a cosk)

(2.8)

where ε− = εA − εB.
With the reflection amplitude (r(ε)) of the equation (2.8), the re-

flection p robability R (ε) c an b e o btained b y m eans o f t he relation 
R(ε) = rr∗ given by:

R(ε) =
[Vaε− + 2(V 2

a − V 2
c )cosk]

2

(Vaε− − 2V 2
c cosk)[Vaε− + 2(V 2

a − V 2
c )cosk] + 4V 4

c

(2.9)

As these transmission and reflection probabilities comply with T (ε)+
R(ε) = 1, which is equivalent to the conservation of current, or in gen-
eral of unitarity, that is, each incident particle will be transmitted or
reflected with a probability T (ε) o R(ε) respectively, therefore, said
transmission probability T (ε) can also be determined by means of the
relation T (ε) = 1−R(ε).

Figures 2.3(a) and 2.3(b) represent the reflection and transmission
probability respectively, for aQW system with an impurity, taking into
account that εA = 0.3 eV , εB = −0.3 eV and the respective couplings
are given by Va = −0.8 eV and Vc = −0.3 eV . Thus it is inferred that
the electron probability transmission is maximum when the reflection
probability is minimum [2,15].

Is also saw, that the transmission probability through the quan-
tum system with an impurity shows a resonant tunneling regime and,
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Figure 2.3: (a) Reflection probability and (b) Transmission probability for a QW with an impurity.

therefore, a unit peak in the transmission is observed. This resonant
peak is associated with the eigenvalue of the impurity depending on
the coupling with the atomic linear chain.

Now, the transport properties are analyzed considering theQW with
an impurity, but this time in the form of a linear chain of quantum
dots (QDs) coupled perpendicularly to the QW forming a T, as was
analyzed by Orellana et al. [20] and as is represented in the figure 2.4.

Figure 2.4: QW with lateral coupling to an array of QDs.

At this point, it is important to clarify to the reader that the
methodology and results of the transport’s study through this sys-
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tem were carried out by Orellana et al. [7]; for what is wanted in this 
section, to reproduce said results and from them vary some parameters 
of which were not done in the mentioned work. This is done in order to 
analyze the transport properties, observe other behaviors in addition 
to those reported and be able to compare them with those obtained 
for this same system but with Green functions in the next section of 
this document.

The formation of this system consists of N quantum dots, with 
energy levels or sites εl and connected by an interface V0 through the 
atomic site n = 0 of QW [1, 16, 7].

The system is modeled using a non-interacting Anderson tunneling
Hamiltonian (Ĥ) [17] given by:

Ĥ = ĤQW + ĤI + ĤQD (2.10)

where,

ĤQW = ν
∑
i̸= j

c†ncn

ĤQD =
N∑
l=1

εld
†
ldl +

N−1∑
l=1

( Vl,l+1d
†
ldl+1 + h.c)

ĤI = V0(d
†
1c0 + c†0d1)

(2.11)

where c†n(cn) is the operator creation (destruction) of an electron on
the n site of the QW , ν is the coupling between the energetic sites in
the QW , d†l (dl) is the operator creation (destruction) of an electron on
the site l of the impurity or array of QDs, Vl,l+1 (where l ̸= 0) is the
coupling between the QDs and V0 is the coupling between the array of
QDs and the QW .

Taking into account that the eigenstates of Ĥ are given by |ψ⟩ =∑∞
j=−∞ akj |j⟩+

∑N
l=1 b

k
l |l⟩, where akj is the probability amplitude of find-

ing an electron at the site j del QW y bkj is the probability amplitude
of finding an electron at site l in the array of QDS in a k state [18], the
expected value (⟨ψ|Ĥ|ψ⟩) is evaluated, arriving to a system of linear
and independent equations given by:

εakj = ν(akj−1 + akj+1) + V0b
k
1δj0

εbkl = εlb
k
l + Vl,l−1b

k
l−1 + Vl,l+1b

k
l+1,

(2.12)
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where ε = 2ν cos k, is the dispersion relation of a monatomic linear
chain such as QW with εa = 0.

Taking the first equation of (2.12) with j = 0 and the second equa-
tion of (2.12) with l = N we have respectively:

εak0 = ν(ak−1 + ak1) + V0b
k
1

εbkN = εNb
k
N + VN,N−1b

k
N−1

(2.13)

Taking into account that b0k = a0k and V1,0 = V0, the amplitudes bkN 
can be found recurrently, and especially for N = 1 with a continuous 
fraction is given by [8, 7].

bk1 =
V0a

k
0

QN
, (2.14)

where said continuous fraction is given by:

QN = ε− ε1 −
V 2
1,2

ε− ε2 −
. . .

ε− εN−1 −
V 2
N−1,N

ε− εN

(2.15)

Substituting the equation (2.14) in the first equation of (2.13) gives:

εak0 = ν(ak−1 + ak1) +
V 2
0

QN
ak0 (2.16)

Knowing the amplitudes given by the equation (2.16), which 
as-sumes that electrons are described by an incident, reflected and 
trans-mitted wave for a k-state [9], it can be established that:

akj =

{
eikj + re−ikj for j < 0

teikj for j > 0
(2.17)

Evaluating the equation (2.17) for j = −1, 1 and j = 0 (from which
is obtained that t(ε) = 1 + r(ε)) to replace it in the equation (2.16),
the transmission (t(ε)) and reflection (r(ε)) amplitudes respectively
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are found by:

t(ε) =
2iv sin k

2iv sin k + V 2
0

QN

r(ε) =−
V 2
0

QN

2iv sin k + V 2
0

QN

(2.18)

Taking into account that Γ(ε) = V 2
0

2ν sin(k) , the expressions for t(ε) and

r(ε) as a function of Γ(ε), are given by:

t(ε) =
QN

QN + iΓ

r(ε) =
iΓ

QN − iΓ

(2.19)

Finally, the transmission amplitude of the equation (2.19) is multi-

plied by its respective complex conjugate expression (T (ε) = tt∗), thus 
obtaining, the transmission probability (T (ε)) given by:

T (ε) =
Q2

N

Q2
N + Γ2

(2.20)

Taking the expression given by (2.20), will be possible to evaluate
and determine the transmission probability (T (ε)) for N = 1, 2, 3,
resulting the expressions respectively given by:

T (ε)(N=1) =
(ε− ε1)

2

(ε− ε1)2 + Γ2
, (2.21)

T (ε)(N=2) =
[(ε− ε1)(ε− ε2)− V 2

c ]
2

[(ε− ε1)(ε− ε2)− V 2
c ]

2 + (ε− ε2)2Γ2
(2.22)

y

T (ε)(N=3) =
(ε− ε1)(ε− ε2)(ε− ε3)− V 2

c [(ε− ε1) + (ε− ε3)]

(ε− ε1)(ε− ε2)(ε− ε3)− V 2
c [(ε− ε1) + (ε− ε3)] + [(ε− ε2)(ε− ε3)− V 2

c ]
2Γ2

(2.23)
The figure 2.5 represents the transmission probability as a function

of the incident electron energy, for N = 1, 2 and 3 QDs coupled to the

QW for values of εl = 0 eV and Vc = Γ = 1.0 eV  6.

6The results presented in this section for these values were reproduced taking into account the work of Orellana 
et al. [7]
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Figure 2.5: Transmission probability as a function of the incident electron energy for N = 1 (blue line),

N = 2 (red line) and N = 3 (black line) for values of εl = 0 eV and Vc = Γ = 1.0 eV .

As we can see, the transmission probability for N = 1 (blue line) 
presents a single antiresonance at ε = 0 eV , that is, when the incident 
energy of the electron coincides with the energy of the only QD cou-
pled laterally to the QW , the transmission probability is zero and the 
reflection is maximum 7.

In the case where N = 2 (Figure 2.5, red line), was taken V1,2 = Vc
(coupling between the QDs located in sites 1 and 2), finding that the
system presented two antiresonances in the energy values given by

ε =
1

2
(ε1+ ε2)±

1

2

√
(ε1 − ε2)2 + 4V 2

c and a single resonance in ε = ε2.

Finally for N = 3 (Figure 2.5, green line), is observed that the sys-tem 
with ε1 = ε2 = ε3 y V1,2 = V2,3 = Vc, has three antiresonances and two 
resonances. Taking into account the expression (2.23) of the trans-
mission probability for this case, the three mentioned antiresonances 
are found when:

(ε− ε1)(ε− ε2)(ε− ε3)− V 2
c [(ε− ε1) + (ε− ε3)] = 0, (2.24)

7The resonances and/or antiresonances presented in each of the results are explained by the Fano effect, which is 
described in more detail at the end of this section.
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and in this case as ε1 = ε2 = ε3 results:

(ε− ε1)
3 − V 2

c (2(ε− ε1)) = 0, (2.25)

and doing λ = ε− ε1 is obtained that::

λ3 − 2V 2
c λ = 0,

λ(λ2 − 2V 2
c ) = 0,

(2.26)

finding two possibilities: The first that λ = 0 and the second that
λ2 − 2V 2

c = 0, therefore, we see that the three antiresonances are
found when ε = ε1, ε = ε1 +

√
2Vc and ε = ε1 −

√
2Vc.

We can also find two resonances, where is known that T (ε) = 1 for
the same conditions in which ε1 = ε2 = ε3 in the form:

(ε− ε1)
3 − 2V 2

c (ε− ε1)

(ε− ε1)3 − 2V 2
c (ε− ε1) + [(ε− ε1)2 − V 2

c ]
2Γ2

= 1

(ε− ε1)
3 − 2V 2

c (ε− ε1) = (ε− ε1)
3 − 2V 2

c (ε− ε1) + [(ε− ε1)
2 − V 2

c ]
2Γ2

0 = [(ε − ε1)2 − Vc
2]2Γ  (ε − ε1)2 − Vc

2 = 0

(ε− ε1)
2 = V 2

c

ε− ε1 = ±Vc (2.27)

getting two resonances when ε = ε1 + Vc and ε = ε1 − Vc.
This result can be seen more clearly when the expression (2.23) is

evaluated, where the variation of the coupling energies Vc and Γ with
ε1 = ε2 = ε3 = 0 eV as shown in figures 2.6(a) and 2.6(b)respectively.

For either of the two cases (figuras 2.6(a) o 2.6(b)), the antireso-
nances in the transmission probability are independent of Γ as could be
deduced. For the case where Vc is varied and especially for three values
highlighted in the upper panel of the figure 2.6(a) where Vc = 0.5 eV
the antiresonances in ε = −0.74 eV, 0 eV and 0.74 eV are presented;
for the case where Vc = 1.5 eV in ε = −2.12 eV, 0 eV and 2.12 eV three
resonances are presented and finally for Vc = 2.5 eV the resonances
are finding in ε = −3.53 eV, 0 eV and 3.53 eV . For this last case, the
antiresonances of the ends cannot be verified due to the energy window
(−3.0 eV to 3.0 eV ) taken in the figure.

Another characteristic to observe in the transmission profile when Vc
varies, is that as said coupling between the QDs increases, the width
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of each resonance increases and therefore the bandwidth increases pro-
portionally to 2Vc. These results are consistent with those found by [6],
for this class of low-dimensional systems.

Figure 2.6: Transmission probability as a function of the incident electron energy for N = 3, with ε1 =

ε2 = ε3 = 0 eV (a) Varying Vc, Γ = 1.0 eV and (b) varying Γ, Vc = 1.0 eV .

On the other hand, the transmission probability profile varying Γ
and with Vc = 1 eV (Figure 2.6 (b)), is characterized by having an
almost constant behavior, i.e., the antiresonances will always be found
at ε = −1.41 eV, 0 eV and 1.41 eV and resonances around ε = −1.0 eV
y 1.0 eV , with small variations in the bandwidth, which decreases
as Γ increases, since, as Γ is a function of V 2

0

2ν sin(k) (as mentioned),
a strong coupling regime will be presented around small values of Γ
where V0 > ν and a weak coupling regime where V0 < ν and the width
of each resonance in T (ε) decreases.

It is important to highlight and as observed, both Γ and Vc are
parameters that can be controlled independently and at the same time
experimentally in devices used in nanoelectronics [16,19].

Continuing with the system of N = 3 for a array of QDs in T-
shaped, the effect of the variation in the site energies of the QDs is
analyzed. In the figure 2.7 the transmission probability as a function
of the incident electron energy for N = 3 and Vc = Γ is represented,
taking into account that the energy value varies for ε1 at site N = 1
(figure 2.7 a), ε2 at site N = 2 (figure 2.7 b) and ε3 at the site N = 3
(figure 2.7 c), for the values of ε1,2,3 = 0 eV when they remain constant.

In the case where ε1 (figure 2.7a), we find that the antiresonances
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have a shift to the right, and are obtained by solving the equation
ε3 − ε1ε

2 − 2V 2
c ε + V 2

c ε1 = 0. Particularly for ε1 = −1.0 eV (blue
line) the antiresonances are found at ε = −1.8 eV,−0.45 eV, 1.25 eV ;
for ε1 = 0 eV (red line), the three antiresonances are at ε = 0 eV
and when ε1 = 1.0 eV (green line) the antiresonances are at ε =
−1.25 eV, 0.45 eV, 1.8 eV for Vc = 1.0 eV .

In the same way, the resonances can be calculated, which are found
at ε = ±Vc, result of solving the equation (ε−ε2)(ε−ε3)−V 2

c = 0. Said

Figure 2.7: Transmission probability as a function of the incident electron energy for N = 3 and Vc = Γ =

1.0 eV . (a) Varying ε1 and ε2,3 = 0 eV , (b) Varying ε2 and ε1,3 = 0 eV , (c) Varying ε3 and ε1,2 = 0 eV .

resonances can be observed in figure 2.7 a, at the energy ε = ±1 eV ,
where is clear that it depends only on Vc.

In the figure 2.7b, the profile of T (ε) is presented as a function of the
incident electron energy and the energy ε2 for the same system with
three QDs. In this behavior is observed that the three antiresonances
are presented, together with two resonances where the transmission
probability is maximum. The difference with the previous case (figure
2.7a) is that, one of its antiresonances remains constant around ε =
0 eV . The above, can be deduced from the equation (2.24), where

ε1 = ε3 = 0 to find the antiresonances at ε = 0 and ε =
ε2±

√
ε22+8V 2

c

2 ,
solving the equation ε2(ε − ε2) − 2V 2

c ε = 0, and its corresponding

resonances in ε =
ε2±

√
ε22+4V 2

c

2 solving the equation ε(ε− ε2)− V 2
c = 0

where we can see the maximums in the transmission probability.

For the case where ε3 varies, we have the profile of T (ε) for the array
of QDs with N = 3 in figure 2.7c. In this case, the behavior is similar
to that presented in 2.7a, finding the antiresonances when solving the
equation ε3 − ε3ε

2 − 2V 2
c ε + V 2

c ε3 = 0, howeve, the difference is that
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the maximums in the T (ε) or resonances are in non-constant energy

values equal to ε =
ε3±

√
ε23+4V 2

c

2 .
On the other hand, it is important to note that when the quan-

tum dot arrangement is greater than N = 3 (as analyzed), i.e., as the
amount of QDs coupled laterally to the QW increases, increases in
the same way, the amount of antiresonances (N) and the number of
resonances (N − 1), maintaining the band’s width and a certain sym-
metry behavior with respect to the value of the energy of εl, showing
a parity effect in the transmission function, that is, when N = odd an
antiresonance will occur at ε = εl and when N = even a resonance
around the same value (ε = εl), as can be seen in the figure 2.8a (N =
even) and 2.8b (N = odd) [16,20].

The transmission probability profile shown in figure 2.8 for N >

3 is calculated using the equation (2.20), taking into account that
Vl−1,l = Vc, εl = ε0 and particularly QN is determined by means of the
recurrence expression given by:

QN = (ε− ε0)xN , (2.28)

where xN = 1 − α
xN−1

and α ≡ V 2
c /(ε − ε0)

2. For N = 1, 2, 3, ... we
start with initial conditions of x1 = 1, in this way the expression is
generalized for any value of N QDs, making use of the recurrence
presented in the QN term of the transmission probability.

Figure 2.8: Transmission probability as a function of the incident electron energy and Vc for values of

εl = 0, Γ = 1.0 eV . (a) For N = 8 QDs and (b) N = 11 QDs

It is evident that figure 2.8 shows the dependence of T (ε) with the
variation of Vc, showing a behavior similar to that presented in figure

2.6 (a).
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Finally, and to complement this section, is essential to identify the
effect generated by the antiresonances/resonances presented in quan-
tum transport through systems such as the one presented. This effect
is known as Fano Effect.

The Fano effect is the result of the interference between the state of
a discrete energy channel and the states corresponding to the energy
continuum, in this case, it happens for a quantum dot embedded in a
medium that presents a continuum of its own energies.

Nanotechnology has made it possible to study many important de-
vices (sensors, chips, fibers, etc.), opening new horizons with its ap-
plications where fundamental physical phenomena play an important
role in the efficiency of most of them, such as the transport of wave ex-
citations [16]. Often, the propagation waves are dispersed in different
paths, and consequently, the phenomena of constructive interference
(increase in the amplitude of the transmission resonance) and destruc-
tive interference (suppression of transmission resonance) appear.

The Fano effect, whose purpose is to analyze the main characteristics
caused by a close coexistence of resonance in transmission and reso-
nance in reflection, can be reduced to the interaction of a discrete (lo-
calized) state with a continuous state of the propagation modes, due to
at the superposition principle of quantum mechanics when two states
are coupled by paths different producing interferences. Therefore, Fano
resonances can originate from observing the absorption spectral lines.

According to the above and using a perturbative scheme, Fano ex-
plained the appearance of asymmetric resonances. He considered a
new state called ”prediagonalized”, generated by the coupling between
a discrete bound state with another state on the continuum. Such pre-
diagonalized state may or may not have a clear physical analogy, but
serves in any case as a convenient mathematical construction to solve
the problem.

As a result, Fano obtained the formula for the resonance profile of
a scattering section, given by:

σ =
(ϵ+ q)2

2
(2.29)

ϵ + 1
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continuous state) and a reduced energy form ϵ defined by 2(E−EF )/Γ.
EF is an energy resonant and Γ is the width of the autoionized state.
The formula 2.29 suggests that there is exactly one maximum and one
minimum in the Fano profile where σmin = 0 when ϵ = −q, and σmax = 1
+ q2 when ϵ = 1/q.

In the limit that |q| → ∞ the transition to the continuum is very
weak, and the shape of the line is fully determined by the transition
through the discrete state only with the standard Lorentz profile of a
Breit-Wigner resonance.

When the asymmetric parameter q is of the order of unity in both
the continuous and discrete transition, they have the same resulting
shape in the asymmetric profile, with a maximum value of Emax =
EF + Γ/(2q) and a minimum value over Emin = EF − Γq/2.

In the case when the asymmetric parameter is zero (q = 0), the
main characteristic of a Fano resonance is presented describing a sym-
metrical dip, sometimes also called an anti-resonance.

This characteristic given in the Fano resonance explains the possibil-
ity of destructive interference, which leads to asymmetric line shapes.

The effective resonance frequency of the discrete level EF can be
somewhere between the maximum and minimum of the asymmetric
profile, and the parameter q defines the relative deviation. Therefore,
in the situation where |q| → ∞ the resonant frequency coincides with
the maximum of the profile, while in the case when q = 0, the reso-
nant frequency coincides with the minimum, for q = 1 the resonant
frequency is exactly in the middle distance between the minimum and
maximum.

The Fano formula has been used successfully in adaptation and ex-
planation of experimental data in different fields of physics (from Fano
1964; to Wickenhauser et al., 2005 [19–21]), and as we saw in this
section, the Fano effect, characterized by the presence of the Fano
resonances, is present in the transport of charge through an array of
quantum dots QDs.
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Chapter 3

Green’s functions and Quantum
transport properties

3.1 Introduction to Green’s functions

Due to their diversity, Green’s functions have been applied in differ-
ent fields of physics such as statistical mechanics, solid-state physics,
field theory, nuclear physics, among others, turning out to be a pow-
erful mathematical tool in obtaining the solution of physical systems
involving many mutually interacting particles 1.

The Green functions contain information on relevant properties of
the system including: the energy of the ground state, the energy and
half-life of the excited states, the average value of any operator of
a body in the ground state, the response to external disturbances,
partition function and therefore of thermodynamic functions (entropy,
density of levels, etc.). Regarding these external perturbations, a first
analytical approach to the transport problem in disordered systems
was proposed by Dyson [1], who, taking into account a disordered
one-dimensional chain of harmonic oscillators 2, He was able to find
an expression for the density of states using the method of the Green
functions [2–4].

In this chapter, the time-independent Green functions (behaviors
in the steady state) are used to determine some properties of electric
transport and to compare the results with those given in the previous

1For which it makes use of perturbation theory to expand them into a perturbative series based on precise rules,
to find the contribution of the n-th order in the disturbance, being able to represent employing Feynman diagrams.

2Each oscillator coupled to its nearest neighbors by harmonic forces, the inertia of each oscillator and the strength
of each coupling being a random variable based on a known statistical distribution law. The theory applies equally
to a chain of masses connected by elastic springs and making mechanical vibrations, or to an electrical transmission
line composed of alternating inductances and capacitances with random characteristics.
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section and which were determined using wave functions.
In general, the Green functions can be defined as the solutions of

inhomogeneous differential equations of the type:

[z − L(r)]G(r, r′, z) = δ(r − r′) (3.1)

where r and r′ are subject to certain boundary conditions, z = λ+ iη

is a complex and L(r) is a differential operator independent of time,
hermitic and having a set complete of eigenfunctions ϕn(r), such that:

L(r)ϕn(r) = λϕn(r) (3.2)

which satisfies the same boundary conditions of G(r, r′, z) and can be
considered as orthonormal without loss of generality. Green’s function
can be written in terms of the energy eigenvalues of the form:

G(z) =
∑
l

|ϕl⟩⟨ϕl|
z − L

=
∑
n

|ϕn⟩⟨ϕn|
z − λn

+

∫
dec

|ϕec⟩⟨ϕec|
z − λec

, (3.3)

where the sums and integrals run over the discrete and continuous
states of energy respectively.

Considering a Tight Binding Hamiltonian operator (L = H) H and
z = E + iη, the equation for Green’s function can be written as:

[E −H]G(r, r′, E) = δ(r − r′) (3.4)

If the eigenvalues of H are En and the eigenfunctions are defined as
ψn(r), Green’s function is defined by:

G(r, r′, E) =
∑
n

ψn(r)ψ
∗
n(r

′)

E − En
(3.5)

he eFor the Hamiltonian∑N 
ca

†
se given by t quation (2.1), where we can

define to H0 = n=1 εncncn and V =
∑N

n=1 Vn,n−1c
†
ncn, in such a way

that H = H0 + V and G0 = 1
E−H0

is the Green’s function associated
with H0, therefore, the Green’s function of H can be written as:

G(E) =
1

E −H
=

1

E −H0 − V
=

1

G−1
0 − V

= G0(E)[1−G0(E)V ]−1

= G0(E) + G0(E)V [G0(E) + G0(E)V G0(E)...] G(E)
= G0(E) + G0(E)V G(E)

(3.6)
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thus resulting, an equation of motion or equation known as the Dyson
equation, which can be represented in real space by the completez
relation (

∑
k |k⟩⟨k| = 1), as follows:

⟨n|G(E −H)|n′⟩ = δnn′ (3.7)

and further defining Gnk = ⟨n|G|k⟩, Hkn′ = ⟨k|H|n′⟩, ⟨n|k⟩ = δnk and
making effective the definition of Kronecker delta (n = k) results:

EGnn′ −
∑
k

GnkHkn′ = δnn′ (3.8)

l

Now calculating Hkn′ = ⟨k|∑H|n′⟩, using∑the equation (2.1) in the 
Dirac representation (H = |l⟩εl⟨l| + l,m |l⟩Vl,m⟨m|) with dumb

indices and Kronecker deltas δkl y δkm results:

Hkn′ = εkδkn′ + Vkn′ (3.9)

Replacing the equation (3.9) in (3.8) we have:

(E − εn′)Gnn′ = δnn′ +
∑
k

Vkn′Gnk (3.10)

The equation (3.10) is known as the dynamic equation for electrons.
Since the Tight Binding Hamiltonian is being considered, the transfer
integrals Vnk are different of zero only between neighbors closest to
each other, so the dynamic equation can be written more explicitly as:

(E − εn′)Gnn′ = δnn′ + Vn′,n′−1Gn,n′−1 + Vn′,n′+1Gn,n′+1 (3.11)

Is evident that the method of Green’s functions can give a clearer
idea of the bound states as well as the density of states. If the Green’s
function of a medium is known, in principle the Green’s function for a
disturbed system could be calculated. Using this formulation, we can
compute the Green’s function of undisturbed and perturbed periodic
one-dimensional models [2, 5].

Known the formalism of Green’s functions, is used in this section to
calculate some transport properties in low dimensional systems such
as quantum wires QW or quantum dot array QDs

Applying the Dyson equation we analyze the transmission probabil-
ity for systems of one, two and three QDs placed in a linear position,
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two and three QDs in the form of a T and three QDs in the form of a
cross; each one of these systems being between two metallic contacts.

When the systems have more than one QD, in addition to the
Green’s functions, the real system’s renormalization or decimation
scheme is used to simplify its solution. The renormalization method
is a method that transforms the real space into an effective space that
generates the systematic reduction of the Hamiltonian dimension, that
is, the set of linear equations that characterize the system becomes a
set of non-linear equations with energies effective couplings and cou-
plings with fewer degrees of freedom. For this reason, to calculate the
transport properties in this work, the renormalization process is car-
ried out under the inclusion of Feynman paths using Green functions,
which can be considered as propagators that carry the information of
charge transport through the quantum system and provide an alterna-
tive in the solution of the Schrödinger equation in a numerically and
analytically stable way [6–12].

After having the renormalized quantum system and in the case of
obtaining a one-dimensional system, the Green’s function is calculated
(which would be the basis for the transmission probability calcula-
tions), employing the Dyson equation (3.10), and written more gener-
ally as:

Gij(w) = δijgi(w) + gi(w)
∑
l ̸=i

tilGij(w), (3.12)

where w = E − iη is the analytical extension of the energy for the
complex plane (with η infinitesimal), gi(w) = 1/(w− εi) is the atomic
local green’s function and the functions Gij(w) represent the electron
propagator with energies w between the sites (i, j). Once the Green’s
function of the effective linear system is known, the transmission prob-
ability (T (E), without taking into account the spin) is calculated given
by the Fisher-Lee relation:

T (E) = Tr
[
ΓLGrΓRGa

]
. (3.13)

Here Γα = i
(
Σα − Σα†) is the matrix corresponding to the spectral

density of the left(right) contacts (L(R)). Due to that one-dimensional
systems are analyzed, the equation (3.13) can be written as:

T (E) = ΓL
11Γ

R
NN |Gr

1N |
2 , (3.14)
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where Gr
1N corresponds to the matrix element of the retarded Green’s

function Gr of the system, and ΓL
11, Γ

R
NN are the only non-zero elements

of the spectral density Γα.

Figure 3.1: Linear conductor between left (L) and right (R) metal contacts.

The Green’s function Gr
1N for those systems that are between two

contacts as shown in the figure 3.1, is determined by taking the Dyson’s
equation of the form:

G1N = G0
1N +G0

11

∑
k

V k
LGLN

k +G0
1N

∑
k

V k
RGRN

k, (3.15)

taking into account thatGLN
k = GL

k0VL
kG1N , and, GRN

k = GR
k0VR

kGNN

the equation (3.15) takes the form:

G1N = G0
1N +G0

11

∑
k

|V k
L|2GL

k0G1N +G0
1N

∑
k

|V k
R|2GR

k0+GNN ,

(3.16)
now defining ΣL =

∑
k |V k

L|2GL
k0 and ΣR =

∑
k |V k

R|2GR
k0 we obtain

that:
G1N = G0

1N +G0
11ΣLG1N +G1NΣRGNN . (3.17)

However, we must leave the Green’s function G1N in terms of the
local Green’s functions G0

ij, where i, j represent the sites in the chain,
therefore we take GNN in the expression (3.17) and is left in terms of
these local Green’s functions, obtaining:

GNN =G0
NN +G0

N1

∑
k

V k
LGLN

k +G0
NN

∑
k

V k
RGRN

k

=G0
NN +G0

N1

∑
k

|V k
L|2GL

k0G1N +G0
NN

∑
k

|V k
R|2GR

k0 +GNN

=G0
NN +G0

N1ΣLG1N +GNN
0ΣRGNN

GNN =
G0

NN +G0
N1ΣLG1N

(1−GNN
0ΣR)

.

(3.18)
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Replacing 3.18 into 3.17 we have:

G1N = G0
1N +G0

11ΣLG1N +G0
1NΣR

[G0
NN +G0

N1ΣLG1N

(1−GNN
0ΣR)

]
G1N =

G0
1N

(1−GNN
0ΣR)

[
1−GNN

0ΣR + ΣRGNN
0
]
+[G11

0ΣL −G11
0ΣLΣRGNN

0 +G1N
0ΣRΣLGN1

0

(1−GNN
0ΣR)

]
G1N

G1N =
G0

1N

(1−GNN
0ΣR)

+
[G11

0ΣL(1− ΣRGNN
0) +G1N

0ΣRΣLGN1
0

(1−GNN
0ΣR)

]
G1N

G1N

[
1−GNN

0ΣR −G11
0ΣL(1− ΣRGNN

0)−GN1
0ΣRΣLG1N

0
]
= G1N

0

G1N

[
(1−G11

0ΣL)(1−GNN
0ΣR)−GN1

0G1N
0ΣRΣL

]
= G1N

0

finally,

G1N =
G1N

0

(1−G11
0ΣL)(1−GNN

0ΣR)−GN1
0G1N

0ΣRΣL

(3.19)

Now, taking ΣL = ΣR ≡ Σ = iΓ/2, the equation (3.19) is reduced
to:

G1N =
G0

1N

(1 + iG0
11Γ/2)

2 + (G0
1NΓ/2)

2
(3.20)

Once the Green’s function G1N has been determined and using the
Fischer-Lee relation (Equation (3.14)), the transmission probability
through a linear system connected to two contacts is given by:

T (E) =
(ΓG0

1N)
2

| (1 + iG0
11Γ/2)

2 + (G0
1NΓ/2)

2 |2
(3.21)
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which can be expressed in the form:

T (E) =
(G0

1NΓ)
2

|1 + iG
0
11Γ
2 + (G

0
11Γ
2 )2 + (

G0
1NΓ
2 )|2

=
(G0

1NΓ)
2

|1 + Γ2

4 [(G
0
1N)

2 − (G0
11)

2] + iG0
11Γ|2

=
(G0

1NΓ)
2

[1 + Γ2

4 ([(G
0
1N)

2 − (G0
11)

2] + iG0
11Γ][1 +

Γ2

4 ([(G
0
1N)

2 − (G0
11)

2]− iG0
11Γ]

=
(G0

1NΓ)
2

[1 + Γ2

4 [(G
0
1N)

2 − (G0
11)

2]]2 + (G11Γ)2

(3.22)

3.2 Properties of quantum transport through systems with
QDs and QW using Green’s functions.

In this section, the properties of quantum transport through systems
with QDs and QW are analyzed using Green functions, however, when
obtaining the different results in the transmission probability of each
of the systems, a comparison is making with the results obtained in the
transmission profile using wave functions, whose results were analyzed
in the previous chapter.

3.2.1 Transmission probability through a quantum dot (QD).

The system studied in this section is represented by a QD which is
coupled between two leads or metal contacts left (L) and right (R)
through the interface ΓL,R respectively, as can be seen in figure 3.2.

Figure 3.2: A QD between two contacts left (L) and right (R).

Said system of a QD is modeled through a Tight Binding Hamilto-
nian given by the equation (2.1) of the form:

H = HQD +HL +HI (3.23)
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where HQD corresponds to the Hamiltonian of the QD and (HL, HI)
is the Hamiltonian of the leads (Left and Right) and interaction QD
-Leads respectively, which are defined as :

HQD = ε0c
†
0c0

HL =
∑
kL

εkLd
†
kL
dkL +

∑
kR

εkRd
†
kR
dkR

HI = ΓL

∑
kL

d†kLc0 + ΓR

∑
kR

d†kRc0 + h.c.,

(3.24)

where c†0 is the operator creating an electron at the 0 place of the QD,
d†kL,R

is the operator creating an electron in a kL,R state with energy
εkL,R

, ΓL,R is the coupling between each Lead with the QD system and
h.c. is the complex conjugate of the Hamiltonian.

With the Hamiltonian established, the Fisher Lee’s function (Equa-
tion (3.13)) is applied to calculate the transmission probability, the
Green’s function of the entire quantum system is determined through
the Dyson equation (3.12), which takes the form:

G00 = g0 + g0νGL0 + g0νGR0, (3.25)

where g0 =
1

z−ε0
, con z = ε−iη and η → 0, is the local Green’s function

of the QD with energy ε0, and the second terms of (3.25) correspond to
the bondings between the QD and the left and right leads respectively.
Defining G(L,R)0 as GL0 = gLνG00 and GR0 = gRνG00 and solving G00,
the equation (3.25) is given by:

G00 =
g0

1− g0ν2gL − g0ν2gR
, (3.26)

which, by doing algebraic treatments and defining some physical quan-
tities3, we obtain the Green’s function of the QD system, coupled to
contacts given by:

G00 = G0 =
1

(ε− ε0 − Λ) + iΓ
(3.27)

Once this Green’s function (3.27) has been obtained and by means of
the Fisher Lee’s equation (Equation(3.13)) for the QD which is given

3Local Green’s function: g0 = 1/(ε − ε0); Self-energies: Σ(L,R) = g(L,R)ν
2 = −νeik, Σ(L,R) = Re[Σ(L,R)] +

iIm[Σ(L,R)], Λ = Re[ΣR] +Re[ΣL]; System-Lead coupling: Γ = Im[ΣR] + Im[ΣL]
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by T (ε) = Tr[ΓLΓR|G0|2], where ΓL = ΓR = Γ is the coupling integral
between the QD and the left and right contacts respectively, finally
an equation is reached for the probability of transmission of a charge
that crosses the QD from the left contact to the right given by:

T (ε) =
Γ2

(ε− ε0 − Λ)2 + Γ2
. (3.28)

With the resulting equation (3.28) of the Transmission probability
through a QD, it is evaluated to obtain the Transmission profile given
in figure 3.3 (black line). At the same time, is possible to compare
said profile with the Transmission profile given for an impurity found
inside a QW (Figure 2.2) and is represented in figure 2.3 (b). As
expected and can be seen, the transmission probability through the
QD shows a resonant tunneling regime and, therefore, a unit peak in
transmission associated with the eigenvalue of the QD depending on
the coupling (Γ) with the left and right contacts, as observed in the
atomic linear chain with an impurity (Figure 2.3 (b)). The difference
lies, in the methodology used with wave functions (Figure 3.3-Red
line) and Green functions (Figure 3.3-black line) and some additional
coupling parameters that are taken into account within the process
using wave functions, and which are implicit within the self-energy
parameters Σ and couplings Γ when the process with Green’s functions
is used. These parameters are broken down in table 3.1.

Green’s Functions Waves Functions

T (ε) = Γ2

(ε−ε0−Λ)2+Γ2 T = 1− [Va(εa−εb)+2(V 2
a −V 2

c )cosk]2

[Va(εa−εb)−2V 2
c cosk][Va(εa−εb)+2(V 2

a −V 2
c )cosk]+4V 4

c

ε0 = −0.3eV ε0 = εb = −0.3eV
Γ = −0.2eV Vc = −0.3eV , Va = −0.8eV and εa = 0.3eV

Table 3.1: Energy parameters and couplings used in the calculation of the transmission probability through a QD

taking into account each of the methods: Green’s functions and wave functions.

3.3 Transmission probability through two QDs.

The system of two quantum dots coupled in the growth direction to 
the metallic contacts (Left and Right leads) as shown in figure 3 .4, is 
modeled through a Tight Binding Hamiltonian given by the equation 
(2.1) of the form:

H = HQD +HL +HI (3.29)

97



Chapter 3. Green’s functions and Quantum transport properties

Figure 3.3: Comparison of the transmission probability as a function of the incident electron energy: (black line)

Transmission probability through a QD using Green’s functions (GF ), (red line) Transmission probability through

impurity or QD applying Wave functions (WF ).

where HQD corresponds to the Hamiltonian of the two QDs and (HL,
HI) are the Hamiltonians of the leads (Left and Right) and interaction
QD-Leads respectively, defined by:

HQD =
2∑

n=1

εnc
†
ncn +

2∑
n=1

vn,n+1c
†
ncn+1,

HL =
∑
kL

εkLd
†
kL
dkL +

∑
kR

εkRd
†
kR
dkR

HI = ΓL

∑
kL

d†kLc1 + ΓR

∑
kR

d†kRc2 + h.c.,

(3.30)

where c†n is the operator creating of an electron at the n site of the
QD with energy εn, d

†
kL,R

is the operator creating an electron in a state
kL,R with energy εkL,R

, ΓL,R is the coupling between each lead with
the system of the two QDs, vn,n+1 is the coupling between the QDs

(which in this case is vn,n+1 = V12) and h.c. is the complex conjugate
of the Hamiltonian. As in the case for a QD and with the Hamilto-
nian established for the system of two QDs, the Fisher Lee’s function
(Equation (3.14), for a one-dimensional system) is applied to calculate
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Figure 3.4: System of two QDs linearly connected to leads (Left and Right) respectively.

the transmission probability, where, in this case, N = 2.

For this, the Green’s functions G0
11 = G0

NN and G0
1N of the quantum

system of the two QDs are determined through the Dyson equation
(3.12), which takes the form:

G0
11 = g1 + g1V12G

0
21, (3.31)

G0
21 when also calculated from the Dyson equation (3.12), resulting

in G0
21 = g2V21G

0
11 and replacing in the equation (3.28), the Green’s

function G0
11 = G0

22 given by:

G0
11 = G0

22 =
g1

1− g1g2V 2
12

(3.32)

Now, taking the equation G0
21 = g2V21G

0
11 and replacing in it the

Green’s function G0
11 to obtain G0

12, where G0
12 = G0

21 y V21 = V12
results:

G0
12 =

g1g2V12
1− g1g2V 2

12

(3.33)

The equations (3.32) and (3.33) are replaced in the equation (3.22)
with N = 2 (System of two QDs coupled one-dimensionally), to obtain
the Transmission probability of the total system QDs+Leads given by:

T (E) =
(G0

12Γ)
2

[1 + Γ2

4 [(G
0
12)

2 − (G0
11)

2]]2 + (G11Γ)2
(3.34)

Taking T (E) = 1 in the equation (3.34) in order to find the resonant
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peaks in the transmission for the system of two QDs we obtain:

(G0
12Γ)

2 =

[
1 +

Γ2

4
[(G0

12)
2 − (G0

11)
2]

]2
+ (G0

11Γ)
2

Γ2[(G0
12)

2 − (G0
11)

2]−

{
1 +

Γ2

2
[(G0

12)
2 − (G0

11)
2] +

[
Γ2

4
[(G0

12)
2 − (G0

11)
2]

]2}
= 0

[Γ2[(G0
12)

2 − (G0
11)

2]]2 − 8Γ2[(G0
12)

2 − (G0
11)

2] + 16 = 0

[Γ2[(G0
12)

2 − (G0
11)

2]− 4]2 = 0
(3.35)

Replacing the equations (3.32) and (3.33) into (3.35) and taking
V12 = V for the special case where g1 = g2 =

1
ε−ε1

finally is get:

ε = ε1 ±
√

4V 2 − Γ2

4
(3.36)

The behavior of the expression (3.34) for the transmission probabil-
ity and the resonant peaks when T (E) = 1 is observed in the figure
3.5.

In the figure 3.5(a) is possible to observe the transmission probability
as a function of the energy with that the charge carrier enters the
system, varying the coupling potential (Γ), where V = 0.2eV and
the site energies of each of sites is given by ε1 = ε2 = −0.2 eV . Is
important to note that when Γ ∼ 0 eV there are two resonances, which
coincide with the eigenvalues of the states of each of the QDs, equal
to −0.4 eV and 0 eV ; these values can be calculated by diagonalizing
the Hamiltonian HQD given in the equation (3.30) or by the equation
(3.36) for Γ = 0 eV .

On the other hand, the same behavior is presented, where the band-
width is proportional to 2V in this class of low-dimensionality sys-
tems, as could be observed for the system of an array of QDs coupled
to a QW [20]. This bandwidth (for the case in which the coupling
(V ) between the QDs is constant) does not vary notably with the in-
crease of Γ, however, can be seen that an increase in the amplitude
is generated of T (E) due to the hybridization between the delocated
electronic states of the metallic contacts and the localized states of
the linear system of QDs, leading to behaviors within weak or strong
regimes, depending on whether Γ is less or greater with respect to V ,
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Figure 3.5: Transmission probability as a function of energy, (a) varying (Γ), (b) varying (V ), (c) varying (ε1),

and (d) varying (ε2).
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i.e., if Γ ≤ V a weak coupling regime will be presented where the two
resonances for any value of Γ are generated, as can be seen in the figure 
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taken in which Γ = 0.2 eV producing these resonant peaks in the energy
values ε = −0.37 eV, −0.03 eV , which can be verified by evaluating the
equation (3.36). Now, if Γ > V is in a strong coupling regime and the
eigenstates of the QDs hybridize generating a single state, as can be
verified by the equation (3.36) for a particular case where Γ = 0.4 eV
resulting a resonance around ε = −0.2 eV (figure 3.5 (a), top panel-red
line), with a bandwidth approximately equal to 2V , as already
mentioned.

The figure 3.5(b) shows the transmission probability T (E) as a func-
tion of energy, varying the potential V between the QDs and with en-
ergy values for each QD given by ε1 = ε2 = −0.2 eV and Γ = 0.1 eV .
Is clear to observe that for values V ≪ Γ the behavior is similar to
that presented in figure 3.5(a), where a hybridized state occurs within
a strong coupling regime (see figure 3.5(b), top panel-blue line) and
whose eigenvalue is approximately equal to ε = −0.2 eV . As V in-
creases, where V ≥ Γ, the bandwidth increases proportionally to 2V
generating a separation of the resonances and keeping the intensity at
the values of T (E), reaching a limit where these resonant peaks are
so far apart that their electronic behavior resembles a decoupled QDs

system.

Figures 3.5(c) and 3.5(d) show the profile of the transmission proba-
bility as a function of the incident electron energy, varying the site ener-
gies ε1 and ε2 respectively, keeping the fixed parameters of V = 0.2 eV ,
Γ = 0.1 eV and ε1,2 = −0.2 eV when one of the two does not vary.

As can be seen and regardless of the variation of ε1 or ε2, there
will always be two resonances that coincide with the eigenvalues of
the Hamiltonian HQD given in the equation (3.30) and evaluated by

the expression ε =
(ε1+ε2)±

√
(ε1+ε2)2−4(ε1ε2−V 2)

2 . Table 3.2 shows some of
these eigenvalues for different energies of ε1 y ε2.

The difference between Figures 3.5(c) and 3.5(d) lies in the ampli-
tude of each peak, due to a resonant tunneling effect. To understand
these energies where resonances occur, the system of two quantum dots
or impurities is taken, analogous to a system of two potential barri-
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ε1/ε2(eV ) ε(1)(eV ) ε(2)(eV )

−2.0 −0.18 −2.02
−1.5 −0.17 −1.53
−1.0 −0.15 −1.05
−0.5 −0.1 −0.6
0.0 0.12 −0.32
0.5 0.55 −0.25
1.0 1.03 −0.23
1.5 1.52 −0.22

Table 3.2: Eigenvalues for different energies of ε1 y ε2.

ers, between which there is a finite potential well, where it is known 
that within this type of potentials contains a finite number of bound 
states [13,14], alternating from the ground state. Said bound states or 
energies allowed within the well make the effect of resonant tunneling 
possible.

When a particle penetrates the potential barriers4, the reflections
that occur between them5 cancel out coherently, giving instead of a
total transmission and, therefore, for the case where the barriers are
symmetrical (ε1 = ε2), the resonant tunneling is complete generating
two resonances with the same transmission amplitude and equal to
unity. In the case of the figures 3.5(c) and 3.5(d) can be observed
when ε1 = −0.2 eV or ε2 = −0.2 eV respectively.

When there are two asymmetric barriers, where ε1 ̸= ε2, two res-
onances are generated, but one of them does not reach the unity in
transmission, i.e., the system isn’t transparent for this resonant en-
ergy. The asymmetry in the energy values of the barriers makes that
the reflections that occur between them are not completely canceled,
therefore, the resonance generated will be due to a quasi-stationary
level between the asymmetric barriers, and consequently, the coher-
ence caused by the backscatter is lost.

Figure 3.6 shows a resonant tunneling scheme for the system of the
two asymmetric quantum dots, where the blue barriers represent the
potential barriers with varying ε1,2 energy.

This phenomenon of resonances can be exploited in the development
of mesoscopic devices, which operate as filters [15], since when particles
with energies lower than the potential barrier’s height enter on the

4Where the energy is adjusted to the quasi-stationary levels of the well.
5Inside the potential well.
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Figure 3.6: Resonant tunneling scheme for two asymmetric barriers.

device, only those with energy-adjusted to the resonant energy, will
pass through the heterostructure containing the two barriers; while
the others will be practically stopped in their entirety, and as the
incidence energy increases, the transmission coefficient tends to unity.
Can also be said that, when the probability of transmission is minimal
or null, the particles tend to remain trapped between the barriers for
a life’s period [16].

3.4 Comparison with a system of wells and barriers

The transmission probability of a linear two impurities system con-
nected to two contacts can be approximated using an analogous model
of wells and barriers [17, 18] and scan the energies of the electron in-
cident on this system and calculate the probability of transmission
through it.

Figure 3.7 above shows a system of three potential barriers, all char-
acterized by a height Vb, width Lb and two wells of width Lw in which 
the potential is equal to 0 eV. By connecting this system to two metal 
contacts, it is possible to calculate the electron probability transmis-
sion from the emitter to the collector. The transmission probability
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will be maximum when the energy of these incident electrons exactly
coincides with the energy of the quasi-stationary states inside the well
system. Two of these states have also been included in this figure,
in red the quasi-stationary state with the lowest energy which clearly
corresponds to a symmetric state of energy E1, and in blue color the
following state of asymmetric behavior of energy E2.

Figure 3.7: The upper figure shows a system with two wells and three barriers, two quasi-stationary
electronic states with energies E1 and E2 are also included. The figure below is the analogous system
of two linear impurities.

The wave functions of this well system are obtained by solving the 
Schr¨odinger equation by imposing open boundary conditions. The 
lower Figure 3.7 shows the modeled system that corresponds to two im-
purities with their energies ε1 and ε2, coupled via potential V12, and 
coupled to two metallic contacts by means of the potential Γ. The 
figure 3.8 shows the comparison for the transmission probability of the 
system of two impurities in linear arrangement (dashed red curve) ob-
tained by means of the method of Green’s functions, and the transmis-
sion probability of the system of two quantum wells and three barriers 
(solid black line) [19] obtained by means of Schrödinger equation. The 
parameters used for the calculations of both models are presented in 
table 3.3, where the first f our r ows c orrespond t o p arameters o f the 
Green functions and the last three are parameters associated with the
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wells and barriers system. As is evident, for the calculated parameters,
the transmission probability of the well system adequately models the
system of two linear impurities that for this case are coupled since the
coupling potential is about three orders of magnitude smaller than the
site energy of each impurity. In this regime we see that both models
account for the probability of electronic transmission in a completely
equivalent way.

Figure 3.8(a) shows the transmission probability for a coupled well
system, for these parameters there is an overlap between the trans-
mission peaks due to the two states within the system or equivalently
for the two site energies for the case of impurities. It should be noted
that, for these parameters, the transmission function is identical for
both systems, that is, the wells and barriers system adequately models
the transmission probability of the two impurities system.

Figure 3.8: Comparison between the transmission probability for two linear impurities (dashed red
line) with that obtained for a system of two quantum wells (solid black line). (a), (b) and (c)
correspond to the three sets of parameters presented in table 3.3.

The figure 3.8(b) again represents the transmission probability of
both models, for this case the height of the potential barriers in the
well system has been decreased, which has as a consequence that the
transmission function no longer presents the same width for the two
states in this system, and since the state with the lowest energy E1 is
the state with the longest average life time for electrons (peak on the
left), it presents a small but appreciable decrease in width compared
to the higher energy state E2 (peak on the right) which is a state with
a shorter average lifetime for the charge carriers. On the other hand,
in the system of two impurities, this difference in the average width
for the two transmission peaks does not appear. For the parameters
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calculated in this case, the overlap between the transmission peaks
is no longer present as in Figure 3.8(a), this indicates a decoupling
between the wells and between the impurities.

Parameter Fig. 3.8(a) Fig. 3.8(b) Fig. 3.8(c)
Γ 5.1 meV 2.5 meV 0.5 meV
V12 4.8 meV 5.8 meV 4.6 meV
ε1 0.1313 eV 0.1055 eV 0.1314 eV
ε2 0.1313 eV 0.1055 eV 0.1314 eV

Vb 0.5 eV 0.3 eV 0.5 eV
Lb 5.4 nm 3 nm 3 nm
Lw 4 nm 4 nm 4 nm

Table 3.3: Parameters used for the simulation of figure 3.8.

In Figure 3.8(c), note again that both models are quite similar and
the transmission probability of the well system fits the modeled im-
purity system quite well. In this case, the height of the potential
barriers has been increased 0.2 eV more than in figure 3.8(b). As a
consequence, the states are now both closer to the bottom of the well
and therefore both have a similar average life time for charge carriers
and this translates into a very close average width for both transmis-
sion peaks. For these parameters, there is again a very good similarity
between the transmission probability of the well system and the two-
impurity system. Note that in this case the transmission peaks are
totally separated, which indicates that both the two wells and the two
impurities correspond to a decoupled system.

In conclusion, it has been shown that when the potential in the well
and barrier system is high enough, the electronic states are closer to the
bottom of the well and, therefore, the mean width of each transmission
peak is similar and is in this case in which the transmission probability
of the wells and barriers system is more similar to that obtained for
the system of two impurities linearly coupled to two contacts.

3.5 One-dimensional system of three QDs

As for the case with two QDs (figure 3.4), the system with three QDs

connected linearly with two contacts as shown in figure 3.9, is modeled
through a Tight binding Hamiltonian given by the equation (3.30), the
difference is that in the Hamiltonian HQD the sum goes from n = 1
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to n = 3 and there are couplings between the QDs given by vn,n+1 =
V12, V23.

Figure 3.9: One-dimensional system of three QDs connected to two leads.

With said Hamiltonian established for the system of three QDs,
the Fisher Lee function (Equation (3.14)) is applied to calculate the
transmission probability (same as the previous cases with N = 1, 2
respectively), where, in this case N = 3.

For this, the Green functions G0
11 = G0

NN and G0
1N of the quantum

system of the three QDs are determined through the Dyson equation
(3.12), resulting in the expressions:

G0
13 =

g1g2g3V1,2V2,3
1− g1g2V 2

1,2 − g2g3V 2
2,3

, and

G0
33 =

g3(1− g1g2V
2
1,2)

1− g1g2V 2
1,2 − g2g3V 2

2,3

(3.37)

Obtained the Green’s functions G0
11 and G

0
13 through the equations

(3.37), they are replaced in the equation (3.22) with N = 3 (System
of three impurities or QDs coupled one-dimensionally), to obtain the
Transmission probability of the total system QDs+Leads given by:

T (E) =
(G0

13Γ)
2

[1 + Γ2

4 [(G
0
13)

2 − (G0
11)

2]]2 + (G11Γ)2
(3.38)

In the particular case of having three impurities with the same site
energy, where ε1 = ε2 = ε3 ≡ ε0, and with the coupling between them
given by V1,2 = V2,3 ≡ v, the Green’s functions given in the equation
(3.37) take the form:

G0
13 =

g30v
2

1− 2g20v
2
, and

G0
33 =

g0(1− g20v
2)

1− 2g20v
2

(3.39)
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The behavior of the expression (3.38) for the transmission probabil-
ity and the resonant peaks when T (E) = 1 is observed in the figure
3.10.
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Figure 3.10: Transmission probability, (a) varying Γ (b) varying V12, (c) varying (V23), (d) varying ε1, (e)

varying ε2 and (f) varying ε3.

As in the case of two impurities, the symmetrical nature of the
transmission probability is noted. As Γ increases, there is an increase
in the amplitude of the resonance peaks, this increase being more sig-
nificant for the resonances of the extremes, while the central resonance
increases in amplitude, but in a milder way. This increase in the width
of each resonance is due to the hybridization between the delocated
electronic states of the metallic contacts and the localized states of
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In the figure 3.10(a) we can see the transmission probability as a
function of the energy with which the charge carrier enters the system,
varying the coupling potential (Γ) of the linear system with the con-
tacts, where V = 0.2 eV and the site energies of each of them is given
by ε1 = ε2 = ε3 = −0.2 eV . Is important to note that when Γ ∼ 0 eV
there are three resonances, which coincide with the eigenvalues of the
states of each of the QDs, equal to (−0.48,−0.2, 0.08) eV ; these values
can be calculated by diagonalizing the Hamiltonian HQD given in the
equation (3.30).
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the linear system of QDs, leading to behaviors within weak or strong
regimes depending on whether Γ is less than or greater than V12 or V23;
i.e., if Γ is less than these couplings, a weak coupling regime will oc-
cur; if Γ is greater than said couplings, a strong coupling regime will
be presented and the eigenstates of the QDs will hybridize, generat-
ing that the resonances overlap and the bandwidth increase, therefore,
the charge carriers can be transported more easily from the source to
drain.

On the other hand, in the figures 3.10(b) and 3.10(c) the behavior of
the transmission probability can be observed (with Γ = 0.1 eV , ε1 =
ε2 = ε3 = −0.2 eV ) as a function of the energy, varying V12 and V23 re-
spectively, presenting three resonances around the eigenvalues, which
can be easily determined by diagonalization of the Hamiltonian, re-
sulting in the resonances in values of ε = ε1 y ε = ε1 ±

√
V 2
12 + V 2

23.

These profiles also show a behavior similar to what occurred in the
system with two QDs, where bandwidth increases proportionally to
2V12 or 2V23, the difference between these two profiles lies, in that
the states are hybridized in certain regions when the strong regimes
are present, comparing Γ with one of the two couplings V12 or V23 as
mentioned above. Moreover, when the value of V12 or V23 is very large,
the system acts as if it were decoupled and therefore the conductance
tends to decrease.

Figures 3.10(d), 3.10(e) and 3.10(f) show the transmission proba-
bility profile as a function of the incident electron energy, varying the
site energies ε1, ε2 and ε3 respectively, keeping the fixed parameters of
V = 0.2 eV , Γ = 0.1 eV and ε1,2,3 = −0.2 eV when one of the three
does not vary. As can be seen and regardless of the variation of ε1,
ε2 or ε3, there will always be three resonances that coincide with the
eigenvalues of the Hamiltonian HQD given in the equation (3.30).

The tables 3.4, 3.5 and 3.6 show some of these eigenvalues for dif-
ferent energies of ε1, ε2 and ε3 respectively.

As happened in the system with two QDs, the difference of these last
profiles where the energies of each QD vary, lies in the amplitude of
each peak due to a resonant tunneling effect. For this system of three
QDs, it is taken analogous to a system of three potential barriers, i.e.,
two potential wells are formed between the three barriers.
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ε1 (eV) ε(1)(eV ) ε(2)(eV ) ε(3)(eV )

−2.0 −2.02 −0.39 0.01
−1.5 −1.53 −0.38 0.014
−1.0 −1.05 −0.37 0.02
−0.5 −0.62 −0.32 0.04
0.0 −0.45 −0.11 0.16
0.5 −0.42 −0.03 0.56
1.0 −0.41 −0.02 1.03
1.5 −0.41 −0.01 1.52

Table 3.4: Eigenvalues for different values of ε1.

ε2(eV ) ε(1)(eV ) ε(2)(eV ) ε(3)(eV )

−2.0 −2.04 −0.2 −0.16
−1.5 −1.56 −0.2 −0.14
−1.0 −1.09 −0.2 −0.11
−0.5 −0.67 −0.2 −0.03
0.0 −0.4 −0.2 0.2
0.5 −0.3 −0.2 0.6
1.0 −0.26 −0.2 1.06
1.5 −0.25 −0.2 1.54

Table 3.5: Eigenvalues for different values of ε2.

When a particle collides on the potential’s barriers, the reflections
that occur between them are coherently canceled, giving rise to a total
transmission and therefore, for the case where the barriers are symmet-
ric (ε1 = ε2 = ε3), the resonant tunneling is complete, generating three
resonances with the same transmission amplitude and equal to unity.
In the figures 3.10(d), 3.10(e) and 3.10(f) these resonances can be ob-
served when ε1 = −0.2 eV , ε2 = −0.2 eV y ε3 = −0.2 eV respectively
(Central zone of each of the figures).

When there are three asymmetric barriers where ε1 ̸= ε2 = ε3,
ε1 = ε3 ̸= ε2 or ε1 = ε2 ̸= ε3 three resonances are generated, but two
of them do not reach the unity in transmission, that is, the system is
not transparent for those resonant energies.

The asymmetry in the energy values of the barriers makes that the
backward reflections that occur between them are not completely can-
celed. Therefore, it produces a non-zero reflection and the resonance
that is generated will be due to a quasi-stationary level within the two
asymmetric wells between the barriers. When the symmetry between
the barriers does not exist, coherence is lost, and the transmission co-
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ε3(eV ) ε(1)(eV ) ε(2)(eV ) ε(3)(eV )

−2.0 −2.02 −0.38 0.01
−1.5 −1.53 −0.38 0.01
−1.0 −1.05 −0.37 0.02
−0.5 −0.62 −0.32 0.04
0.0 −0.45 −0.11 0.16
0.5 −0.42 −0.04 0.56
1.0 −0.41 −0.02 1.03
1.5 −0.41 −0.01 1.52

Table 3.6: Eigenvalues for different values of ε3.

efficient does not reach the value of one, for two of three potential
barriers.

3.6 T-shaped System with two QDs between leads.

The system studied in this section is represented by two QDs in T-
shaped, coupled to two metal contacts left (L) and right (R) through
the interface ΓL,R respectively, as can be seen in figure 3.11.

Figure 3.11: Dos puntos cuánticos en forma de T acoplado a dos contactos metálicos.

Said system is modeled through a Tight Binding Hamiltonian given
by the equation (6.11) in the same way as the equation (3.23); the
difference is in the Hamiltonian HQD, which is given by:

HQD =
2∑

n=1

εnc
†
ncn +

2∑
n=1

vn,n+1c
†
ncn+1, (3.40)

where εn = ε0,1 and vn,n+1 = V10 (see figure 3.11).
With the Hamiltonian established, the Fisher Lee’s function is ap-

plied to calculate the transmission probability (Equation (3.13)), the
Green’s function of the entire quantum system is determined through
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the Dyson equation (3.12), following the same procedure as the equa-
tions (3.25), (3.26) and (3.27), obtaining the expression for the trans-
mission probability given by:

T (ε) =
Γ2

(ε− ε̃0 − Λ)2 + Γ2
(3.41)

where ε̃0 is the effective energy of the site, resulting from the process of
renormalizing the system of twoQDs vertically coupled by V10 applying
the Dyson equation (3.12) in the form:

G00 = g0 + g0V10G10 (3.42)

with G10 = g1V10G00 resulting:

G00 =
g0

1− g0g1V10
2 = g̃ =

1

ε− ε̃0
(3.43)

From the expression (3.43) is easy to show that ε̃0 = ε0 +
V 2
10

ε−ε1
.

Figure 3.12 shows the transmission probability calculated by the
equation (3.41) (Black line), for energy and coupling values given in
table 3.7 (Left column). At the same time, in this figure 3.12 the
transmission probability has been graphed by evaluating the expres-
sion (2.21), which was determined using wave functions (Red line), in
order to compare two methods to determine the said probability of
transmission through a system of two QDs or impurities in T-shaped.

Green’s Functions Wave’s Functions

T (ε) = Γ2

(
1−g0g1V10

2

g0
−Λ)2+Γ2

T (ε) = (ε−ε1)
2

(ε−ε1)2+Γ2

ε0 = ε1 = −0.3eV ε1 = −0.3eV

Γ = 8eV Γ =
V 2
0

ν , ν = 8eV
V10 = −0.3eV V0 = −0.3

Table 3.7: Expressions and values for the transmission probability function determined by the Green’s functions

(Left column) and wave’s functions (Right column) for a T-shaped System with two QDs between leads.

As expected, the two methods to determine the transmission prob-
ability and shown in figure 3.12 have a large percentage of agreement,
the difference lies in the parameters that are taken for the values of Γ,
since that the expressions for T (ε) given in table 3.7 have small varia-
tions concerning this parameter, and which is defined in each process

113



Chapter 3. Green’s functions and Quantum transport properties

Figure 3.12: Transmission probability as a function of the incident electron energy for the system of two QDs in

T-shaped, applying Green functions (Black line) and wave functions (Red line).

when wave or Green’s functions are taken respectively and from which
explained earlier.

On the other hand, the behavior observed in the profile T (ε) (figure 
3.12), is characterized by having an antiresonance in ε = ε1, which can 
be verified by equating to zero the expressions (2.21) using wave’s func-
tions or (3.41) using Green’s functions. This antiresonance is known 
as Fano antiresonance, which was already explained in section 2.2.

Figure 3.13 shows the transmission probability as a function of the 
incident electron and Γ, for values of ε0 = ε1 = 0 eV and V10 = Γ = 
1.0 eV . As can be seen, the width of the band on the two sides of 
the antiresonance increases as Γ increases, and therefore the ampli-
tude in the carrier conductance increases. This behavior is due to the 
hybridization of the localized states of the quantum system with the 
delocalized states of the contacts, as happened in the systems analyzed 
in the previous sections.

    
Figure 3.14 shows the profile of T (ε) as a function of ε, for variations 

of ε0 (figure 3.14 (a)), ε1  (figure 3.14 (b))  and the  coupling V10 between
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Figure 3.13: Transmission probability as a function of the incident electron energy (ε) and the coupling (Γ), for

a T-shaped system with two QDs between contacts.

the QDs (figure 3.14(c)). As can be seen, for any of the three profiles,
there  are  two  resonances  that  coincide  with  the eigenvalues of the
the Hamiltonian HQD given in the equation (3.40) and evaluated by

the expression ε =
(ε0+ε1)±

√
(ε0+ε1)2−4(ε0ε1−V 2

10)

2 ; as well as an antireso-
nance in ε = ε1, which coincides with the value of the energy of the
QD transversely coupled. In the table 3.8 some eigenvalues have been

ε0/ε1(eV ) ε(1)(eV ) ε(2)(eV )

−1.5 −2.0 0.5
−1.0 −0.4 0.62
−0.5 −1.28 0.78
0.0 −1.0 1.0
0.5 −0.78 1.28
1.0 −0.62 1.62
1.5 −0.5 2.0

Table 3.8: Eigenvalues for different energies of ε1 y ε2.

calculated for the variation of ε0 and ε1, which are the same, regard-
less of which of the two (ε0 or ε1) varies, and can be located in figures
3.14(a) and 3.14(b) respectively where the two resonances (T (ε) = 1)
for these values are presented. At the same time in the table 3.9, some
eigenvalues have been set, when V10 varies, which can be located in the
resonances presented in the figure 3.14(c). It should be noted that the
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V10(eV ) ε(1)(eV ) ε(2)(eV )

−1.5 −1.5 1.5
−1.0 −1.0 1.0
−0.5 −0.5 0.5
0.0 0.0 0.0
0.5 −1.0 1.0
1.0 −0.5 0.5
1.5 −1.5 1.5

Table 3.9: Eigenvalues for different energies of V10.

Figure 3.14: Transmission probability for a T-shaped system with two QDs as a function of ε, varying: (a) ε0,

(b) ε1 and (c) V10.

antiresonance, which is presented at ε = ε1, is constant for any value
of ε0 or V10 in figures 3.14(a) and 3.14(c), while for figure 3.14(b) the
antiresonance varies depending on the value of ε1, as expected.

3.7 T-shaped System with three QDs between leads.

The system studied in this section is represented by three QDs in T-

shaped, coupled to two metal contacts left (L) and right (R) through
the interface ΓL,R respectively, as can be seen in figure 3.15.
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Figure 3.15: T-shaped system with three QDs coupled to two electrodes
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Said system is modeled through a Tight Binding Hamiltonian given 
by the equation (2.1) in the same way as the equation (3.23); the 
difference i s in the Hamiltonian HQD, which i s given by:

HQD =
3∑

n=1

εnc
†
ncn +

3∑
n=1

vn,n+1c
†
ncn+1, (3.44)

where εn = ε0,1,2 and vn,n+1 = V10, V21 (see figure 3.15).
Each site with energy εn has an associated local undisturbed Green’s

function, therefore, the use of the Dyson equation (3.12) allows us to
write the equations of motion of the electron at each site with the
interaction of its first neighbors:

G00 =g0 + g0V01G10

G10 =g1V01G00 + g1V12G12

G12 =g2V12G10

(3.45)

solving the system of equations (3.45), we find that:

G00 =
g0(1− g1g2V

2
12)

1− g0g1V 2
01 − g1g2V 2

12

. (3.46)

In this way, the system has been reduced to a single effective site
with an effective Green function G00 = g̃0, to then apply the same
equation (3.41) and evaluate the respective transmission probability.

This system is similar to a quantum wire with lateral coupling
of two quantum dots (N = 2), which was previously studied using
wave’s functions and is evidenced in the transmission probability pro-
files found using Green’s functions.
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Figure 3.16 shows the transmission probability as a function of the
incident electron for a T-shaped system with three QDs for the values
of ε0 = ε1 = ε2 = 1.0 eV , varying Γ with V01 = V12 = 1.0 eV (figure
3.16(a)), varying V01 with Γ = V12 = 1.0 eV (figure 3.16(b)) and
varying V12 with Γ = V01 = 1.0 eV (figure 3.16(c)).

As can be seen, in any of the T (ε) profiles, regardless of which
parameter is varying, three resonance and two anti resonances are
present, as expected.These resonances coincide with the eigenvalues
of the system, which can be found analytically by diagonalizing the
Hamiltonian of the system (equation (3.44)).
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As can be seen, in any of the T (ε) profiles, regardless of which
parameter is varying, three resonance and two anti resonances are
present, as expected.These resonances coincide with the eigenvalues
of the system, which can be found analytically by diagonalizing the
Hamiltonian of the system (equation (3.44)).

It is important to note that the variation of Γ (Figure 3.16(a)) causes
that the electron’s transmission probability to change from a weak
coupling regime (Γ << V01 = V12) to a strong coupling regime (Γ ∼
V01 = V12), where the bandwidth around the resonances increases,
giving clear evidence of the hybridization of the localized electronic
states of the system with the delocalized states of the electrodes, as
mentioned in the previous cases.

On the other hand, the variations of V10 and V21 in T (ε) (Figures
3.16(b) and 3.16(c) respectively) generate similar behaviors, firstly, the
bandwidth measured between the two extreme resonances is equal to
2V10 or 2V21, and secondly, the eigenvalues of the resonances are the
same for any value of these couplings. The difference lies in the
bandwidth around each resonance, because it can be in a hybridization
state or not, as already mentioned.

Figure 3.17(a) shows the transmission probability as a function of the 
energy with variations of site energy ε0, in which a lateral shift is observed 
in  the  maximum  values  of the  resonant peaks, to the  right  for  positive 
values  and to  the  left  for  negative  values  of  ε0,  this  shift  is  observed 
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Figure 3.16: Transmission probability T (ε) for a T-shaped system with three QDs for the values of ε0 = ε1 = ε2 = 
1.0 eV , varying (a) Γ with V01 = V12 = 1.0 eV , (b) V01 with Γ = V12 = 1.0 eV and (c) V12 with Γ = V01 = 1.0 eV.
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Figure 3.17: Transmission probability T (ε) for a T-shaped system with three QDs for the values of: Γ = V01 = V12 = 1.0 eV , and 
variations in site-specific energies. (a) Variaci´on energ´ıa propia ε0, con ε1 = ε2 = 1.0 eV (b) Site-specific energy variation ε1, 
with ε0 = ε2 = 1.0 eV , and (c) Site-specific energy variation ε2, with ε0 = ε1 = 1.0 eV

in the maximum values of the resonant peaks, to the right for positive
values and to the left for negative values of ε0, this shift represents the
changes in the system’s eigenenergies. It should be noted that positive
values of ε0, are taken, the shift of the resonant peaks is accompanied by
a decrease in the peak width in the left and central lateral resonances,
while the right lateral resonance widens with the increase in energy ε0,
in a similar way when negative values of ε0 are taken, the shift of the
resonant peaks is accompanied by a decrease in the peak width in the
right and central lateral resonances, while the left lateral resonance
widens with the decrease (towards values more negative) of energy ε0.
On the other hand, despite the energy shifts and variations presented
by the resonant peaks, the antiresonances remain fixed for the same
energy values ε, this confirms that the reflections and interferences in
the electron wave are due to the configuration of Lateral coupling of
sites the ε1 and ε2 with their coupling properties and not are due to the
site ε0.

When making variations in the energy of the ε1 and ε2 sites (fig-
uras 3.17(b) y 3.17(c) respectively) the behavior observed is similar
to found and analyzed in the quantum wire system with two laterally
coupled sites, in which for large (and small) values of ε1 with respect
to the other site energies, the system behaves as a single site system
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(with energy around ε0), see Figure 3.17(b), and for large (and small)
values of ε2 relative to the other site energies, the system behaves as
a two-site system (or a wire with lateral coupling of a QDs or site N
= 1). In the two cases of energy variations ε1 and ε2, the shifts in
the antiresonances are observed, showing that the interference of the
electronic wave depends on the laterally coupled sites.

3.8 Three-QDs system with cross-coupling-leads at the in-
termediate site

Figure 3.18: Three-QDs system with cross-coupling-leads at the intermediate site

The system studied in this section is represented by three QDs with
energies ε0, ε1 and ε2 in “cross-shaped” where the coupling to the metal
contacts occurs at the QD with energy ε0, as can be to seen in figure
3.18. Each site has an associated local undisturbed Green function,
and as in the previous cases, the use of the Dyson equation (3.12)
allows us to write the equations of motion of the electron at each site
with the interaction with their first neighbors

G00 =g0 + g0V01G10 + g0V02G20

G10 =g1V01G00

G20 =g2V02G00

(3.47)

solving the system equations (3.47), we find that:

G00 =
g0

. (3.48)
1 − g0g1V012 − g0g2V022

In this way, the system has been reduced to a single effective site with
an effective Green function G00 = g˜, to then apply the same equation 
(3.41) and evaluate the respective-transmission probability.
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Figure 3.19 shows the transmission probability as a function of the 
incident electron for a ”cross-shaped” system. Figure 3.19(a) corre-
sponds to the variations of coupling Γ (with, ε1 = ε2 = ε3 = 0 eV 
and V01 = V02 = 1 eV ) from the weak coupling regime to the strong 
coupling regime, where the characteristic shape of the transmission 
with two resonant peaks they are symmetrical with respect to ϵ = 0, 
for some specific energy values that reach the maximum transmission 
value, while for ϵ = 0 it falls to zero in a marked antiresonance. Reso-
nances and antiresonance occur around the eigenvalues, which can be 
easily determined by diagonalization of the √Hamiltonian, resulting in 
the resonances in values of ε = ε1 y ε = ε1 ± V12

2 + V232

As in the cases previously studied in the strong coupling regime,
the resonant peaks acquire a considerable width, indicating that the
conduction of the electron through the system can occur for a greater
range of energy values.

Despite the system is conformed by three QDs, the transmission
probability has a behavior that resembles the T-shaped system with
two QDs (it has two resonances and one antiresonance), that shows
that the interference of the electron wave occurs in the same way in the
two laterally coupled sites, this behavior occurs since the two coupled
sites have the same site energies and couplings, marking an evident
symmetry in the system.

Figure 3.19(b) corresponds to the results of the transmission prob-
ability as a function of energy with coupling variations V02, where it is
observed that as the coupling value V02 increases the central antireso-
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Figure 3.19: transmission probability function T for a system of three sites in the form of a ”cross” for the values:

ε0 = ε1 = ε2 = 0 eV , and variations in the couplings (a) Coupling variation Γ, with V01 = V02 = 1.0 eV (b)

Coupling variation V02 with Γ = V01 = 1.0 eV
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nant peak, in ε = 0 eV , remains fixed at this value, on the contrary,
the two resonant peaks show a symmetric distance from the central an-
tiresonance, increasing the energy gap generated between maximums.
This behavior occurs in the same way when variations of the V01 cou-
pling are made.

Figure 3.20(a) shows transmission probability as a function of the
energy with variations of the energy ε0, in which a lateral shift is
observed in the maximum values of the resonant peaks, to the right
for positive values and to the left for negative values from ε0, this
shift represents the changes in the system’s eigenenergies. It should
be noted that when positive values of ε0 are taken, the shift of the
resonant peaks is accompanied by a decrease in the peak width in the
left lateral resonance, while the right lateral resonance widens with
increasing energy ε0, similarly when taking negative values of ε0 the
shift of the resonant peaks is accompanied by a decrease in the peak
width in the right lateral resonances, while the left lateral resonance
widens with the decrease (towards more negative values) of the energy
ε0. On the other hand, despite the energy shifts and variations that
resonant peaks present, the antiresonance remains fixed for the energy
value ε = 0.

Figure 3.20(b), shows transmission probability as a function of the
energy with variations of the energy ε2, in which the particular case
studied can be observed where ε1 = ε2 = ε0 = 0 eV (green line) in
which presents symmetry in the laterally coupled sites since their site
energies are equal, as previously analyzed the curve presents two res-
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Figure 3.20: Transmission probability T for a three-site system in the form of a ”cross” for the values: Γ = V01 =

V02 = 1.0 eV , and variations in site-specific energies. (a) Site-specific energy variation ε0, with ε1 = ε2 = 1.0 eV

(b) Variation of eigenenergy ε2, with ε0 = ε1 = 1.0 eV
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onant peaks and an antiresonance, however as the site energy value
of one of the sites increases laterally coupled (keeping the other pa-
rameters fixed) an additional antiresonance appears that presents a
right lateral shift when the value of the site energy is increased and
towards the left when it decreases, these variations break the symme-
try that was presented in the particular case in which ε1 = ε2 and
shows the interference of electrons for different values at the laterally
coupled sites that coincide with the eigenvalues of energy sites. This
is verified, for example in the blue curve in the upper panel, in the
transmission profile shown for ε1 = 0 eV and ε2 = 1 eV where it is
evidenced that the antiresonances have their fair minimum value in
those same values, being the antiresonance at ε = 0 eV corresponding
to the interference of the electron at the site ε1 and the antiresonance
at ε = 1 eV corresponding to the interference of the electron on the
site ε2.
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Schrödinger Poisson simulations of a high-frequency resonant tunnel-
ing diode oscillator, Journal of Computational Physics, 239, 2013,
187-205, doi.org/10.1016/j.jcp.2012.12.009.

125



References

[19] Shaffa Almansour, Theoretical study of electronic properties of
resonant tunneling diodes based on double and triple AlGaAs barri-
ers, Results in Physics 17 (2020) 1030892.

[20] P. A. Orellana, F. Domı́nguez-Adame, I. Gómez, and M. L. Ladrón
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Chapter 4

Derivation and Applications of the
Numerov Method

4.1 Definition and derivation of the method

Before starting with the formal derivation of the method, we will give
a brief explanation about the systems that will be taken as an ex-
ample for the application of the method, these systems are known as
quantum wells and can be obtained in different shapes, lengths of the
well or height of potential barriers. Depending on these three parame-
ters, as well as the materials used for its growth, changes in electronic
properties may occur that lead to changes in optical properties such as
absorption, refractive index, among others. Taking advantage of these
characteristics, this type of system has multiple applications in de-
vices such as solar cells [1,2], photo detectors [3,4], resonant tunneling
diodes [5, 6], among others.

Numerov’s method is a numerical method of solving ordinary differ-
ential equations of the second order [7], particularly equations of the
form:

d2y(x)

dx2
+ f(x)y(x) = 0 (4.1)

Differential equations of this form arise naturally in many one-
dimensional physical problems. In this section we will study the par-
ticular problem of an electron confined in a potential well, this physical
situation is described by means of the Schrödinger equation, in which
the eigenvalues and eigenfunctions will be calculated by implementing
the Numerov method.
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The first step is to develop the algorithm that gives us a general solu-
tion to equation (4.1). For the solution y(x) in equation (4.1) let’s do
a Taylor expansion around the point x0:

y(x) = y(x0)+y
′(x0)(x−x0)+

1

2
y′′(x0)(x−x0)2+

1

3!
y′′′(x0)(x−x0)3+

1

3!
y′′′(x0)(x−x0)3

+
1

4!
y′′′′(x0)(x− x0)

4 +
1

5!
y′′′′′(x0)(x− x0)

5 +O6, (4.2)

where O6 corresponds to terms of 6 order and higher. Defining h =
x− x0, then the above equation can be rewritten as:

y(x0+h) = y(x0)+y
′(x0)h+

1

2
y′′(x0)h

2+
1

3!
y′′′(x0)h

3+
1

4!
y′′′′(x0)h

4+
1

5!
y′′′′′(x0)h

5+O6,

(4.3)
in general, the point x0 is an arbitrary point and it could be true that
x > x0, in this case h > 0, but in the same way it could be true that
x < x0, then h < 0, suppose that h > 0 in the previous equation, then
to include the entire x axis we must write a similar equation for h < 0,
taking h = |h|, this equation would take the form:

y(x0−h) = y(x0)−y′(x0)h+
1

2
y′′(x0)h

2− 1

3!
y′′′(x0)h

3+
1

4!
y′′′′(x0)h

4− 1

5!
y′′′′′(x0)h

5+O6,

(4.4)
the requirement now is to discretize the space in a grid of points, which
in this case is one-dimensional and corresponds to the x axis. It must
be taken into account that h is the difference between two successive
points of the grid, then h = xn+1−xn, with this discretization equations
(4.3) and (4.4) take the form:

yn+1 = yn + y′nh+
1

2
y′′nh

2 +
1

3!
y′′′n h

3 +
1

4!
y′′′′n h

4 +
1

5!
y′′′′′n h5 +O6, (4.5)

and

yn−1 = yn − y′nh+
1

2
y′′nh

2 − 1

3!
y′′′n h

3 +
1

4!
y′′′′n h

4 − 1

5!
y′′′′′n h5 +O6, (4.6)

where it has been taken into account that y(xn) = yn. Summing the
equations (4.5) and (4.6),
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yn+1 + yn−1 = 2yn + y′′nh
2 +

1

12
y′′′′n h

4 +O6. (4.7)

Using y′′n = −fnyn, and inserting into equation (4.7):

yn+1 + yn−1 = 2yn − fnynh
2 +

1

12
y′′′′n h

4 +O6, (4.8)

to evaluate the term y′′′′n , let’s write (4.7) up to order 2,

yn+1 + yn−1 = 2yn + y′′nh
2 +O4, (4.9)

solving for the y′′n:

y′′n =
yn+1 − 2yn + yn−1

h2
+O2, (4.10)

taking into account that y′′′′n = (y′′n)
′′, then applying this to equation

(4.10):

y′′′′n = (y′′n)
′′ =

y′′n+1 − 2y′′n + y′′n−1

h2
+O2, (4.11)

replacing with equation (4.1),

y′′′′n =
−fn+1yn+1 + 2fnyn − fn−1yn−1

h2
+O2, (4.12)

multiplying by h4,

y′′′′n h
4 = −fn+1yn+1h

2 + 2fnynh
2 − fn−1yn−1h

2 +O6. (4.13)

Now replacing (4.13) in (4.8):

yn+1+yn−1 = 2yn−fnynh2+
−fn+1yn+1h

2 + 2fnynh
2 − fn−1yn−1h

2

12
+O6,

(4.14)

yn+1+
fn+1yn+1h

2

12
= 2yn− yn−1−

5fnynh
2

6
− fn−1yn−1h

2

12
+O6, (4.15)

yn+1

(
1 +

fn+1h
2

12

)
= 2yn

(
1− 5fnh

2

12

)
− yn−1

(
1 +

fn−1h
2

12

)
+O6,

(4.16)
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yn+1 =
2yn

(
1− 5fnh

2

12

)
− yn−1

(
1 + fn−1h

2

12

)
(
1 + fn+1h2

12

) +O6 , (4.17)

this equation corresponds to an approximate solution of equation (4.1)
with an error of order h6. As the differential equation is of order 2,
then to obtain the particular solution, it is necessary to give two initial
values that are y0 and y1, to evaluate y2 and follow the recurrence to
obtain the term yN for a mesh of N points.

4.1.1 Application of the method to the one-dimensional Schrödinger
equation

As the objective of this chapter is to apply this method to the solution
of the one-dimensional time-independent Schrödinger equation, for an
electron confined to an arbitrary potential, the initial step is write this
equation in atomic units, so it takes the form (4.1).

−hbar2

2m0

d2ψ(X)

dX2
+ V ∗(X)ψ(X) = E∗ψ(X), (4.18)

in this equation X is measured in meters, for our atomic units we 
must measure X in Bohr radios, that is X = xa0, where x is now 
measured in units of a0, taking into account that a0 = (4πε0hbar2)/
(m0e

2) = 0.529 × 10−10 m. With this change, equation (4.18) takes the 
form:

−hbar2

2m0a20

d2ψ(x)

dx2
+ V ∗(x)ψ(x) = E∗ψ(x). (4.19)

On the other hand, both V ∗ and E∗ are measured in Joules, in our
system of atomic units we require these two quantities in Rydberg

which is equivalent to Ry =hbar2 /(2m0a
2
0) = 13.6 eV, then V ∗ = V Ry 

and E∗ = E Ry, where both V and E are measured in units of Ry. With 
this change, equation (4.19) takes the form:

−Ry
d2ψ(x)

dx2
+ V (x)Ryψ(x) = ERyψ(x), (4.20)

dividing both sides of the equality by Ry:
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− d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x), (4.21)

defining f(x) = E − V (x), we finally obtain:

d2ψ(x)

dx2
+ f(x)ψ(x) = 0. (4.22)

This is the Schrödinger equation in atomic units, where the energy is
obtained in Ry and the lengths are given in a0. Note that this equation
has exactly the same mathematical form as equation (4.1), therefore
the solution for the electron wave function must also be in the form of
(4.17),

ψn+1 =
2ψn

(
1− 5fnh

2

12

)
− ψn−1

(
1 + fn−1h

2

12

)
(
1 + fn+1h2

12

) . (4.23)

This solution corresponds to the wave function of an electron con-
fined to a potential V (x) with energy E.

4.2 Application of the method to quantum wells of different
shapes

We compile a few examples of interesting finite well potentials and
analyse if the resulting Schrödinger equation can be solved analytically.
We also find the wavefunctions and energies for the first three quantum
levels using the Numerov’s method and compare them with the finite
element method with the software Comsol Multiphysics [8, 9].

4.2.1 Finite Potential Well

The finite potential well, can be considered an extension of the infinite
potential well, in which a particle is confined in a ”box”, but which
has ”walls” of finite potential. The finite square well quantum model
(FSW) is a well known subject in most books of quantum mechan-
ics (QM) [10]. The study of the solution of this type of system can
be derived from the Schrödinger equation for a finite potential well,
which seeks to describe the particle energy states, which are within
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the well, for this type of problem there are exact solutions. In this
section we found the solution for the finite square well using the Nu-
merov’s method and its first three energy states were calculated using
the bisection method.

The equation for the finite potential well is given by, Fig. 5.1:

V (x) =

0 if |x| ≤ L

2
.

V0 othewise
(4.24)

In regions I and III, the general solution is a linear combination of
exponentials with the same form, but with different constants, given
by the following equations

ψ0 = A exp (k0x) x < 0, (4.25)

ψ2 = B exp (−k0x) L < x, (4.26)

in region II, you have the general solution for the infinite square well

ψ1 = C exp (−ik1x) +D exp (ik1x) 0 < x < L, (4.27)

where, A, B, C y D, are constants. k0 and k1, correspond to the
wave numbers associated with the corresponding regions and have an
implicit dependence on the energy of the electron.
The figure 5.1 show the square potencial well a function of position, in
which we can observe the location of the three corresponding regions
for this potential, for a shaft width L = 4nm and V0 = 0.3 eV,

In Figure 5.2, the wave functions are shown for the three lowest
states of a finite potential well. We can see that the wave function
of the ground state and the second excited state show symmetry with
respect to zero and that the first excited state is asymmetric with
respect to the same point, this behavior of the wave functions is typical
for this type of potential.

Comparison with the Finite Element Method (FEM)
Table 4.1 shows the results obtained from the first three energies

using Numerov’s method and finite elements, it can be noted that, for
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Figure 4.1: Finite potential well as a function of position x. The width of the well and the height
of the potential are given by L = 4nm and V0 = 0.3 eV respectively.

Figure 4.2: Wave functions for the three lowest states of a finite potential well, L = 4nm and
V0 = 0.3 eV.

this well, there are no differences in the corresponding energies using
the two methods. With this, it can be said that Numerov’s method is
very precise to find the energies of the system.

4.2.2 V-shaped Potential Well

The equation for the V-shaped potential well is given by:

V (x) =


2V0
L

|x| if |x| ≤ L

2
.

V0 othewise
(4.28)

A graph of this potential is presented in Fig. 4.3.
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Energy level Numerov (eV) FEM (eV)
1 0.0169 0.0169
2 0.0668 0.0668
3 0.1474 0.1474

Table 4.1: Comparison of the first three electronic states using Numerov’s method and the finite
element method (FEM) for the finite squared well.



Chapter 4. Derivation and Applications of the Numerov Method

Figure 4.3: V-shaped potential well as a function of position x. For the particular example of the
figure, L = 4nm and V0 = 0.3eV.

potencial has even symmetry, therefore we expect the wavefunctions to
be either odd or even. In table 4.2, we compare the results for energies.

The energies that arise from the solution of the Schrödinger equation
for this system, using the two methods, are shown in Table 4.2. In this
case, energy differences of 6 × 10−3 eV are observed for the ground
state, 1.2× 10−3 eV for the first excited state, and 1.8× 10−3 eV in the
second excited state. However, the discrepancies between energies are
small, so the method gives accurate results for the V-shaped well.

Energy level Numerov (eV) FEM (eV)
1 0.0962 0.0968
2 0.2197 0.2209
3 0.2961 0.2943

Table 4.2: Comparison of the first three electronic states using Numerov’s method and the finite
element method (FEM) for the V-shaped potential well.

The confining potential is symmetric about zero, therefore the wave
function for the ground state and the second excited stated also sym-
metric, and the first excited stated is antisymmetric, with even (first
and third state) and odd (second state) symmetries. For the third

134

In Fig. 4.3, we plot Eq. 4.28, taking as parameters L = 4 nm
and V0 = 0.3 eV. The well has a shape similar to a V. We notice the
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state the wave function is located close to the continuum, since its 
corresponding energy is close to the value of the barrier (see Fig. 4.4).

4.2.3 Parabolic Potential

We have a parabolic potential well (see Fig. 4.5), with symmetric
barriers of V0 = 0.3 eV and length of L = 4nm, the described potential
is given by the following mathematical expression:

V (x) =


4V0x

2

L2
if |x| ≤ L

2
.

V0 othewise
(4.29)

Figure 4.5: Parabolic potential well as a function of position x. For the particular example of the
figure, L = 4nm and V0 = 0.3 eV.
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Figure 4.4: First three wave functions for the V-shaped potential as a function of position x. For
the particular example of the figure, L = 4nm and V0 = 0.3 eV.
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To solve the problem using Numerov method, a mesh composed of
4000 points spaced at 0.001 each was used. The energies and wave
functions for the first 3 states are shown in Fig. 4.6. Note that poten-
tial has even symmetry, for that reason the resulting wave functions
are even or odd, for example, the first state is even, the second state
is odd, and so on.

Figure 4.6: Parabolic potential well and wave functions as a function of position x. For the
particular example of the figure, L = 4nm and V0 = 0.3 eV.

Another problem with parabolic potential and exact solution is the
harmonic oscillator, the difference is that the potential barriers are in-
finite, where the energies can be calculated by means of the expression
4.30. The characteristic of this system is that the energy levels of the
particles confined in the well are spaced by the same amount h̄ω, where
the basic state is h̄ω/2 [11].

En =

(
n+

1

2

)
h̄ω . (4.30)

Energy level Numerov (eV) FEM (eV)
1 0.0529 0.0534
2 0.1581 0.1595
3 0.2574 0.2590

Table 4.3: Comparison of the first three electronic states using Numerov’s method and the finite
element method (FEM) for the parabolic potential well.

In this case, the wave functions retain the symmetry as in the previ-
ous one (V-shaped quantum well), however, the eigenvalues obtained
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are different despite having the same length and the same potential
value on the barrier. This can be associated with the shape of the
confinement potential.

4.2.4 Asymmetric Potential Well

We have the potential well with barriers of different heights, the Schrödinger
equation of a wave function with a penetration decays exponentially
in the classically forbidden region [11]. The potential well is given by
the following function,

V (x) =


V0 if x <

L

2

0 if |x| ≤ L

2
.

1.5V0 if x >
L

2

(4.31)

Whose corresponding graph is shown in Fig. 4.7

Figure 4.7: Asymmetric potential well as a function of position x. For the particular example of
the figure, L = 4nm and V0 = 0.3 eV.

The solutions of the Schrödinger equation in the regions (I), (II) and
(II) are respectively,

ψI(x) = A exp (kIx) +B exp (−kIx) k2I =
2m (V0 − E)

h̄2
, (4.32)
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ψII(x) = C exp (ikIIx) +D exp (−ikIIx) k2II =
2mE

h̄2
, (4.33)

ψIII(x) = E exp (kIIIx) + F exp (−kIIIx) k2III =
2m (1.5V0 − E)

h̄2
,

(4.34)
ψI(x) and ψIII(x) they must tend to zero when x becomes large, for

this B and E have to be zero. Then the new wave functions are

ψI(x) = A exp (kIx) k2I =
2m (V0 − E)

h̄2
, (4.35)

ψII(x) = C exp (ikIIx) +D exp (−ikIIx) k2II =
2mE

h̄2
, (4.36)

ψIII(x) = F exp (−kIIIx) k2III =
2m (1.5V0 − E)

h̄2
. (4.37)

In this problem a mesh made up of 4000 points spaced at 0.001 each
was used, it is possible to use a larger mesh to increase precision, but
it requires more computation time. The Fig. 4.8 shows the energies
and wave functions corresponding to the first three states.

Figure 4.8: Asymmetric potential well and wave functions as a function of position x. For the
particular example of the figure, L = 4nm and V0 = 0.3 eV.

To check the efficiency of the method, the same problem is solved
using the finite element method through the COMSOL Multiphysics
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5.4 software using an extremely fine mesh for better results. The table
4.4 shows the results of the first three energies using each method.

Energy level Numerov (eV) FEM (eV)
1 0.0174 0.0171
2 0.0689 0.0679
3 0.1526 0.1505

Table 4.4: Comparison of the first three electronic states using Numerov’s method and the finite
element method (FEM) for the asymmetric potential well.

It can be noted that there is a discrepancy of 3 × 10−3 eV for the
ground state, 1× 10−3 eV for the first excited state, and 2.1× 10−3 eV
for the second excited state, this can be associated with the mesh that
was used to perform the calculation using the Numerov method. How-
ever, it can be concluded that Numerov’s method produces acceptable
results and that it is very useful for solving Scrödinger’s equation in
this type of system.

The confinement potential is asymmetric with respect to the heights
of the barrier. The ground state is symmetric, the first excited state is
antisymmetric, since the wave function is odd and the second excited
state even though the wave function is even, it is not symmetric, due
to the edge effects of the barriers.

4.2.5 Sawtooth potencial

The sawtooth potential has the shape of Fig. 4.9 and its mathematical
expression is given by:

V (x) =


V0
L
x+

V0
2

if |x| ≤ L

2
.

V0 othewise
(4.38)

The potential outside the well has been fixed in V0 = 0.3 eV.

By means of Numerov’s method it is possible to solve the Schrödinger
equation to find a set of eigenvalues and eigenfunctions of the electron
confined in the potential, for the particular case of this potential, the
solutions take the form presented in Fig. 4.10,

Figure 4.10 shows the form of the sawtooth potential that is included
as V∗ in equation 4.18, the ground state and the first two excited states
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Figure 4.9: Sawtooth potential as a function of position x. With, L = 4nm and V0 = 0.3 eV.

Figure 4.10: Sawtooth potential and first three wave functions as a function of position x. With,
L = 4nm and V0 = 0.3 eV.

of the system are also presented with their corresponding energies and
located according to the dashed lines. Note the asymmetry of the
states caused by the non-symmetric form of the confining potential.

The one-dimensional Schrödinger equation can also be solved through
the finite element method (FEM), in this case, this method has been
implemented by means of the COMSOL Multiphysics software, in ta-
ble 4.5 the comparative results of both methods are presented for the
first three confined levels,

As we can see in the previous table, the difference in energy between
both methods for the ground state is only 1 × 10−4meV, it must be
taken into account that for the FEM a mesh of 1000 points has been
taken. For the second state the difference between both methods is
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Energy level Numerov (eV) FEM (eV)
1 0.1115 0.1114
2 0.2132 0.2131
3 0.2917 0.2893

Table 4.5: Comparison of the first three electronic states using Numerov’s method and the finite
element method (FEM) for the sawtooth potential well.

still 1× 10−4meV and for the third state, it is 2.4× 10−3meV, which
is a greater difference and could be caused by the greater difficulty of
both methods to find states with higher energies and therefore very
close to the continuum.

4.3 Conclusions

Numerov’s method presents quite good results in general for the case
of calculated one-dimensional potentials, comparing it with the finite
element method (FEM), the value for the obtained eigenvalues is quite
close both for the ground state and for the first excited states. On the
other hand, perhaps the fundamental advantage of this method is its
easy analytical demonstration and its numerical implementation.

For the case of the finite square potential, wave functions symmetric
with respect to zero were obtained for the ground state and the second
excited state, and asymmetric for the first excited state with respect
to the same point. The results of the energy values found by means of
the numerov method and those obtained by means of the finite element
method by means of the comsol program, were approximately equal,
which rectifies the effectiveness of the method that we study in this
chapter.

4.4 Algorithm implementation

The following is the algorithm implemented in Python for the appli-
cation of the Numerov method. The first part of the code is basic to
implement the calculation package, graph and export the results.

from numpy import *
from pylab import *
import matplotlib.pyplot as plt
import pandas as pd

141



Chapter 4. Derivation and Applications of the Numerov Method

Next, the potentials for each of the resolved structures are defined:

Squared potential

def V(x):
if x<-L/2:

y=V0

if np.abs(x)<=L/2: y=0 if
x>L/2:

y=V0

return y

Asymmetric potential

def V(x):
if x<-L/2:

y=V0

if np.abs(x)<=L/2: y=0 if
x>L/2:

y=1.5*V0

return y

Sawtooth potencial

def V(x):
if x <= -L/2:
return V0
if x >= L/2:
return V0
else:

return (V0/L)*(x + L/2)

Parabolic potential

def V(x):

if np.abs(x)<=L/2.0:

y=(4*V0/(L*L))*x*x

else:

y=V0

return y
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V-shaped potential  

y=V0

def V(x):
if np.abs(x)<=L/2.0:
y=V0*abs(2*x/L) else:
return y

The next step is to write the potential in Rydbergs and the lengths
in Bohr radious since these are the inputs for the code:

L_well = 4
V_well = 0.3

# Well length in nm #
Potential in eV

Ry = 13.6 ao =
0.0529

# 1 Ry = 13.6eV # 1 ao
= 0.0529nm

# Potential in Rydberg RyV0 = V_well/Ry L =
L_well/ao N =

5001

xmin = -6*L xmax =
6*L

# Well length in Bohr radious ao # Total
points in the mesh
# left border
# Right border

dx = (xmax - xmin)/N # Step

x = arange(-4/ao, 4/ao,dx) # Mesh

plt.plot(x, [V(i) for i in x]); # Show the graph
df = pd.DataFrame({’x’: x*ao, ’V’: [V(i)*Ry for i in x]})
# Stores the data frame
np.savetxt(’Potential.dat’, df, delimiter="\t")  # Export the potential

Now we must define the function f(x) as in the equation 4.22,

def f(x,E): return E
- V(x)
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At this point it is necessary to program the equation 4.17, which has
as input parameters, the function f , the energy E, the points in the
boundary of the mesh xi and xf , number of points a evaluate n and a
vector with two inputs that gives the value of the wave function at the
first two points of the mesh, these are initial values for the Numerov
method,

=def numerov(f, par_ener, xi, xf, n, psi_in): h (xf 
- xi)/(1.*n)
x = arange(xi,xf+h,h)
psi = zeros(shape(x)[0])
psi[0] = psi_in[0]
psi[1] = psi_in[1]
for i in range(2,shape(x)[0]):
f1 = (2.0 - 5.0*h**2*f(x[i-1],par_ener)/6.0)*psi[i-1] f2 = (1.0+ 
h**2*f(x[i-2],par_ener)/12.0)*psi[i-2] f3 = 1.0 +
h**2*f(x[i],par_ener)/12.0

psi[i] = (f1 - f2)/f3
return x, psi

Since an input parameter is the energy E, it can be calculated using
a bisection algorithm [12],

def find(n):
i = 0
e = 0.0
de = 0.01
while i<n:
x, y1 = numerov(f,e,-L,L,4000,[0.0,1e-8]) x, y2 = 
numerov(f,e+de,-L,L,4000,[0.0,1e-8]) if
y1[-1]*y2[-1]<0.0:

i += 1
e1 = e
e = e + de
e2 = e
else:

e = e + de
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ea = e1
eb = e2
ec = (ea + eb)/2.0
x, ya = numerov(f, ea, -L, L, 4000, [0.0, 1e-8]) x, yc = 
numerov(f, ec, -L, L, 4000, [0.0, 1e-8]) while
fabs(yc[-1]) > 1e-6:
if ya[-1]*yc[-1] < 0.0:
eb = ec
ec = (ea + eb)/2
else:

ea = ec
ec = (ea + eb) / 2.0
x, ya = numerov(f, ea, -L, L, 4000, [0.0, 1e-8]) x, yc = 
numerov(f, ec, -L, L, 4000, [0.0, 1e-8]) return ec

At this point it only remains to call the functions to calculate the
eigenvalues and the corresponding eigenfunctions,

e1 = find(1) e2 = 
find(2) e3 = 
find(3)

print(’e1 = ’,e1*Ry)

print(’e2 = ’,e2*Ry)

print(’e3 = ’,e3*Ry)

x, psi1 = numerov(f, e1, -L, L, 4000, [0.0, 1e-8]) x, psi2 = numerov(f, e2, -L, 
L, 4000, [0.0, 1e-8]) x, psi3 = numerov(f, e3, -L, L, 4000, [0.0, 1e-8])

plt.plot(x*ao, 1000*psi1 + e1*Ry);

plt.plot(x*ao, 1000*psi2 + e2*Ry);

plt.plot(x*ao, 1000*psi3 + e3*Ry);

plt.plot(x*ao, [V(i)*Ry for i in x]);

145



References

[1] M. A. der Maur, G. Moses, J. M. Gordon, X. Huang, Y. Zhao,
and E. A. Katz, Temperature and intensity dependence of the open-
circuit voltage of InGaN/GaN multi-quantum well solar cells, Sol.
Energy Mater. Sol. Cells 230, 111253 (2021).

[2] M. Verma and G. P. Mishra, Voltage preserved GaInP single junc-
tion solar cell using type-A InP multiple quantum well structure with
enhanced efficiency, Optik 220, 165113 (2020).

[3] M. S. El Tokhy and I. I. Mahmoud, Detectivity analysis of infrared
photodetector devices under nonuniform distribution of quantum well
and wire, Optik 227, 166113 (2021).

[4] S. Ghosh, B. Mukhopadhyay, G. Sen, and P. K. Basu, Performance
analysis of GeSn/SiGeSn quantum well infrared photodetector in ter-
ahertz wavelength region, Physica E Low Dimens. Syst. Nanostruct.
115, 113692 (2020).

[5] M. Ahmadzadeh, A. Ghadimi, and S. A. Sedigh Ziabari, Exter-
nal quantum efficiency of a resonant tunneling diode photo detec-
tor: Structural parameters and wavelength dependencies, Optik 221,
165265 (2020).

[6] M. A. Md Zawawi and M. Missous, Design and fabrication of low
power GaAs/AlAs resonant tunneling diodes, Solid State Electron.
138, 30–34 (2017).

[7] Hairer, Ernst, Nørsett, Syvert P., Wanner, and Gerhard, Solv-
ing Ordinary Differential Equations I. Nonstiff Problems., 2nd ed.
Berlin: Springer, (1993).

[8] COMSOL Multiphysics, v. 5.4 ; COMSOL AB: Stockholm, Sweden,
2020.

146



References

[9] COMSOL Multiphysics Reference Guide; COMSOL: Stockholm,
Sweden, 2012.

[10] A. Al-Ani, and K. Abid, Solving Schrödinger Equation for Finite
Potential Well Using the Iterative Method, Al-Nahrain Journal of
Science. 22, 52-58 (2019).

[11] P. Harrison, Quantum Wells, Wires and Dots: Theoretical and
Computational Physics of Semiconductor Nanostructures, Second
Edition, John Wiley & Sons, Ltd, ISBN:9780470010792 (2005).

[12] G. Corliss, Which Root Does the Bisection Algorithm Find?, Siam
Review 19, 325-327 (1977).

147



Chapter 5

Electromagnetically Induced
Transparency (EIT)

This chapter is dedicated to the development of the expression for sus-
ceptibility considering the coupling between an atomic system modeled
by a three-level system (three orthogonal states) with two external
electromagnetic fields [1]. This topic is extensively studied in vari-
ous current works [2–8]. In Fig. (5.1) the scheme of this situation is
presented, where the ground state is characterized by the vector |b⟩,
the highest state as |a⟩ and an intermediate state |c⟩, the system is
immersed in two electromagnetic fields, a probe field of frequency ν

that couples the states |b⟩ with |a⟩ and a control field of frequency νµ
that couple the states |c⟩ and |a⟩ (the coupling between the |b⟩ and |c⟩
state is dipolarly prohibited). The calculations are based on a semi-
classical approach where the atomic system is a quantum system and
the external fields are classical fields. In this development a lambda-
type arrangement is considered, therefore, there is no strong dipolar
coupling between |b⟩ and |c⟩.

The Hamiltonian of the system is given by:

Ĥ = Ĥ0 + Ĥ1, (5.1)

where Ĥ0 is the Hamiltonian of the atomic system and Ĥ1 represents
the interaction of the atomic system with radiation. The three-level
system corresponds to a complete basis, therefore, it is possible to
write the completex relation, Î = |a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|, where Î is the
identity operator in the base. Now, we can express the atomic system
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Figure 5.1: Systematic representation a three-level system in a lambda-type arrangement. ν and
νµ are the frequencies associated with the probe and drive fields respectively.

Hamiltonian using this left and right operator,

Ĥ0 = ÎĤ0Î , (5.2)

replacing the Î operator,

Ĥ0 = (|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)Ĥ0(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|), (5.3)

making the products explicitly,

Ĥ0 = |a⟩⟨a|Ĥ0|a⟩⟨a|+|a⟩⟨a|Ĥ0|b⟩⟨b|+|a⟩⟨a|Ĥ0|c⟩⟨c|+|b⟩⟨b|Ĥ0|a⟩⟨a|+|b⟩⟨b|Ĥ0|b⟩

⟨b|+ |b⟩⟨b|Ĥ0|c⟩⟨c|+ |c⟩⟨c|Ĥ0|a⟩⟨a|+ |c⟩⟨c|Ĥ0|b⟩⟨b|+ |c⟩⟨c|Ĥ0|c⟩⟨c|,
the non-diagonal terms like ⟨a|Ĥ0|b⟩, ⟨a|Ĥ0|c⟩, ⟨b|Ĥ0|a⟩, ⟨b|Ĥ0|c⟩, ⟨c|Ĥ0|a⟩
and ⟨c|Ĥ0|b⟩ are canceled because the atomic system Hamiltonian cor-
responds to a diagonal matrix. On the other hand, since each state
|n⟩ corresponds to an eigenstate of the Hamiltonian Ĥ0, then it is true
that, Ĥ0|n⟩ = h̄ωn|n⟩, with n = a, b, c, where ωn is the energy associ-
ated to the n state. The above result in the Hamiltonian associated to
the atomic system with the form:

Ĥ0 = h̄ωa|a⟩⟨a|+ h̄ωb|b⟩⟨b|+ h̄ωc|c⟩⟨c| . (5.4)

For the interaction Hamiltonian, we must take into account that there
are two external fields in the system (probe and drive fields). In this
case, we can consider that for both fields, the radiation is given with
linear polarization in x, with this consideration, we can express the
interaction Hamiltonian as follows:

Ĥ1 = −e x̂ E(t)− e x̂ Eµ(t), (5.5)
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where e is the electronic charge, E(t) and Eµ(t) are the electric fields

associated with the probe and drive respectively. As with Ĥ0, it is
possible to act on the left and right with the identity operator to use
the completex relation again,

Ĥ1 = Î Ĥ1 Î , (5.6)

replacing the Î operator, and by using the Eq. (6.6),

Ĥ1 = (|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)Ĥ1(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|) ,

Ĥ1 = −e(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)x̂(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)E(t)
−e(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)x̂(|a⟩⟨a|+ |b⟩⟨b|+ |c⟩⟨c|)Eµ(t)

It is clear that the terms ⟨a|x̂|a⟩, ⟨b|x̂|b⟩ and ⟨c|x̂|c⟩ correspond to
zero integrals due to the states symmetry, what’s more, the ⟨b|x̂|c⟩
and ⟨c|x̂|b⟩ terms are zero because of the lambda arrangement, thus,
we obtain the following expression:

Ĥ1 = [−|a⟩(e⟨a|x̂|b⟩)⟨b| − |b⟩(e⟨b|x̂|a⟩)⟨a|]E(t)+
[−|a⟩(e⟨a|x̂|c⟩)⟨c| − |c⟩(e⟨c|x̂|a⟩)⟨a|]Eµ(t) .

We can define the electric dipole matrix element as Pij = e⟨i|x̂|j⟩ =
(e⟨i|x̂|j⟩)† = (e⟨j|x̂|i⟩)∗ = P ∗

ji, with this definition, the last equation
takes the form,

Ĥ1 = −PabE(t) |a⟩⟨b| − PacEµ(t) |a⟩⟨c|+ h.c. , (5.7)

where h.c. is the hermitian conjugate.
The equation 5.7 is still not the most convenient to use, an expres-

sion where the Rabi frequency is associated to the excited state and the 
intermediate state would be convenient. The fields E(t) and Eµ(t) of 
equation (5.5) are classical fields, we can express them as follows: E(t) 
= E cos(νt) and Eµ(t) = Eµ cos(νµt), where E and Eµ are the amplitudes 
associated with the probe and drive fields with frequencies ν and νµ 
respectively. We can define ϕ and ϕµ for the phases associ-ated with the 
dipole operator matrix elements Pab and Pac, obtaining Pab = |Pab|e−iϕ 

and Pac = |Pac|e−iϕµ . In this way, we can define the Rabi frequency 
associated with each of the couplings:
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Ω =
|Pab|E
h̄

and Ωµ =
|Pac|Eµ
h̄

. (5.8)

To obtain the equation of the dipole electric moment for the probe
and control fields we can write Pab and Pac in terms of the Rabi fre-
quency,

Pab =
h̄Ω

E
e−iϕ and Pab =

h̄Ωµ

Eµ
e−iϕµ , (5.9)

it is convenient to rewrite the fields in their exponential form,

E(t) =
E
2
(e−iνt + eiνt) and Eµ(t) =

Eµ
2
(e−iνµt + eiνµt) , (5.10)

taking into account the Eqs. 5.9 and 5.10, we can express the term 
Pab E(t) of equation (5.7) in a new form:

PabE(t) =
h̄Ω

E
e−iϕ · E

2
(e−iνt + eiνt) ,

PabEµ(t) =
h̄Ω

2
(e−iϕe−iνt) +

h̄Ω

2
e−iϕeiνt ,

The second term of the expression PabE(t) does not contribute sig-
nificantly in the calculation of the electronic population, by using the
rotating wave approximation we can see that the term is of high oscil-
lations, then PabE(t) is written as follows:

PabE(t) =
h̄Ω

2
e−iϕe−iνt . (5.11)

In the same way we calculate PacEµ(t),

PacEµ(t) =
h̄Ωµ

2
e−iϕµe−iνµt . (5.12)

Replacing (5.11) and (5.12) in (5.7):

Ĥ1 = −
(
h̄Ω

2
e−iϕe−iνt

)
|a⟩⟨b| −

(
h̄Ωµ

2
e−iϕµe−iνµt

)
|a⟩⟨c|+ h.c. .

(5.13)

From Eq. 5.9 we obtain Ωe−iϕ = PabE/¯h, replacing in Eq. (5.13) we 
obtain the interaction Hamiltonian between the system with the
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external fields Ĥ1 in a explicit form in terms of the amplitude of the
probe field E , the associated dipole moment Pab, the external frequency
ν and the Rabi frequency of the system Ωµ,

Ĥ1 = −Pab

2
Ee−iνt |a⟩⟨b| − h̄Ωµ

2
e−iϕµe−iνµt |a⟩⟨c|+ h.c. . (5.14)

We can use the Von Neumann equation to analyze the time evolution
by means of the density operator,

∂ρ̂

∂t
= − i

h̄

[
Ĥ, ρ̂

]
− 1

2

{
Γ̂, ρ̂

}
, (5.15)

we must take into account that
[
Ĥ, ρ̂

]
is a commutator and

{
Γ̂, ρ̂

}
is

an anticonmutator. To calculate the matrix elements of this equation,
we must expand the products and use the completex relation between
operators, with an arbitrary matrix element the last equation can be
written as,

ρ̇ij = − i

h̄

∑
k

(Hikρkj − ρikHkj)−
1

2

∑
k

(Γikρkj + ρikΓkj) , (5.16)

the terms Γkj and Γik are dissipative elements and can be expressed

as Γnm = ⟨n|Γ̂|m⟩ = Υnδnm with n,m = {a, b, c} where δnm is the
Kronecker delta. From the above, we see that Γ is a diagonal matrix,
secondly, the term Υn is inversely proportional to the state decay times,
additionally, since states |b⟩ and |c⟩ are not dipolarly coupled, thus,
the decay time for these states will be very high and consequently the
Γ associate with the coupling between these states will be smaller.

To calculate the matrix element of ρab we make i = a and j = b in Eq. 
(5.16),

˙ρab = − i

h̄

∑
k

(Hakρkb − ρakHkb)−
1

2

∑
k

(Γakρkb + ρakΓkb) , (5.17)

˙ρab = − i

h̄
[Haaρab − ρaaHab +Habρbb − ρabHbb +Hacρcb − ρacHcb]
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− 1

2
[Γaaρab + ρaaΓab + Γabρbb + ρabΓbb + Γacρcb + ρacΓcb] , (5.18)

the non-diagonal terms of Γ have been canceled, at this point it is 
necessary to explicitly calculate the matrix elements associated with 
the complete Hamiltonian Ĥ

0 + Ĥ
1, this is easy to do by means of 

equations (5.4) and (5.14),

Haa = ⟨a|Ĥ0|a⟩+ ⟨a|Ĥ1|a⟩ = h̄ωa , (5.19)

Hab = ⟨a|Ĥ0|b⟩+ ⟨a|Ĥ1|b⟩ = −Pab E
2

e−iνt , (5.20)

Hbb = ⟨b|Ĥ0|b⟩+ ⟨b|Ĥ1|b⟩ = h̄ωb , (5.21)

Hac = ⟨a|Ĥ0|c⟩+ ⟨a|Ĥ1|c⟩ = −h̄Ωµ

2
e−iϕµ e−iνµt , (5.22)

Hcb = ⟨a|Ĥ0|b⟩+ ⟨a|Ĥ1|b⟩ = 0 , (5.23)

considering Γaa = Γbb ≡ Υ1 and replacing equations (5.19 - 5.23) in (5.18):

˙ρab = − i

h̄
[h̄ωa ρab +

Pab E
2

e−iνtρaa −
Pab E
2

e−iνtρbb − h̄ωb ρab

−h̄Ων

2
e−iϕµ e−iνµtρcb]−

1

2
[Υ1ρab +Υ1 ρab] ,

˙ρab = −iωa ρab+iωb ρab−
iPab E
2h̄

e−iνt ρaa+
iPab E
2h̄

e−iνt ρbb+
i

2
Ωµ e

−iϕµ e−iνµt ρcb−Υ1 ρab ,

defining ωab = ωa − ωb, a final equation is obtained for the matrix
element ρab,

˙ρab = −(iωab +Υ1) ρab −
iPab E
2h̄

e−iνt(ρaa − ρbb) +
i

2
Ωµe

−iϕµe−νµtρcb .

(5.24)

In the same way, we can calculate the term ρ˙cb making i = c and j = 
b in Eq. (5.16),
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˙ρcb = − i

h̄

∑
k

(Hckρkb − ρckHkb)−
1

2

∑
k

(Γckρkb + ρckΓkb) , (5.25)

expanding the summation,

˙ρcb = − i

2
[Hcaρab − ρcaHab +Hcbρbb − ρcbHbb +Hccρcb − ρccHcb]−

− 1

2
[Γcaρab + ρcaΓab + Γcbρbb + ρcbΓbb + Γccρcb + ρccΓcb] , (5.26)

once again the terms corresponding to non-diagonal Γ have been
canceled. Following the same steps as in the calculation of ρab, the
matrix elements are obtained,

Hca = −h̄Ωµ

2
eiϕµ eiνµt , (5.27)

Hab = −Pab E
2

e−iνt , (5.28)

Hcb = 0 , (5.29)

Hbb = h̄ ωb , (5.30)

Hcc = h̄ ωc , (5.31)

considering Γbb = Γcc ≡ Υ3 taking into account that they are asso-
ciated to the same transition, and replacing equations (5.17 - 5.31) in 
(5.26):

˙ρcb = − i

h̄

[
−h̄Ωµ

2
eiϕµ eiνµt ρab +

Pab E
2

e−iνt ρca − h̄ωb ρcb + h̄ωc ρcb

]
−

− 1

2
[Υ3 ρcb +Υ3 ρcb] . (5.32)

It is pertinent to remember that Υ3 will have a very small value
because the time for electronic decay between these states will be very
high, removing the parentheses in the last equation,
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˙ρcb = iωbρcb−iωc ρcb−
iPab E
2h̄

e−iνt ρca+
iΩµ

2
eiϕµeiνµt ρab−Υ3ρcb , (5.33)

defining ωcb = ωc − ωb, and rearranging terms, it is finally obtained,

˙ρcb = −(iωcb +Υ3) ρcb −
iPab E
2h̄

e−iνt ρca +
iΩµ

2
eiϕµeiνµt ρab . (5.34)

Similarly, we can calculate the term ρ˙ac by doing i = a and j = c in 
the equation (5.16),

˙ρac = − i

h̄

∑
k

(Hakρkc − ρakHkc)−
1

2

∑
k

(Γakρkc + ρakΓkc) , (5.35)

expanding the summations,

˙ρac = − i

h̄
[Haaρac − ρaaHac +Habρbc − ρabHbc +Hacρcc − ρacHcc]

− 1

2
[Γaaρac + ρaaΓac + Γabρbc + ρabΓbc + Γacρcc + ρacΓcc] , (5.36)

the procedure is similar to the one already presented, it is easy to
see that the matrix elements have the form,

Haa = h̄ ωa , (5.37)

Hac = −h̄Ωµ

2
e−iϕµ e−iνµt , (5.38)

Hab = −Pab E
2

e−iνt , (5.39)

Hbc = 0 , (5.40)

Hcc = h̄ ωc , (5.41)

making Γaa = Γcc ≡ Υ2 and replacing the Eqs. (5.37 - 5.41) in Eq.
(5.36),
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˙ρac = − i

h̄

[
h̄ωa ρac +

h̄Ωµ

2
e−iϕµ e−iνµt ρaa −

Pab E
2

e−iνt ρbc −
h̄Ωµ

2
e−iϕµ e−iνµt ρcc − h̄ωc ρac

]
−

− 1

2
[Υ2 ρac +Υ2 ρac] , (5.42)

defining ωac = ωa − ωc and regrouping, we finally obtain,

˙ρac = −(iωac +Υ2) ρac −
i

2
Ωµ e

−iϕµ e−iνµt (ρaa − ρcc) +
iPab E
2h̄

e−iνt ρbc .

(5.43)
The absorption in the system is proportional to the density matrix

associated with the transition |b⟩ → |a⟩, ρab. We can consider as initial
condition the system is in the ground state, this means that at time
t = 0 all electronic population are in |b⟩, this implies that ρ

(0)
bb = 1 and

in the state |a⟩ and |c⟩ we will have zero ρ
(0)
aa = ρ

(0)
cc = 0, remembering

that the diagonal terms of the density matrix are associated with the
probability density of each state. In the same way we can consider
ρ
(0)
ca = 0 which corresponds to the fact that there are no excitations in

the system for t = 0. Let’s make ρab = ρ̃ab e
iνt and ρcb = ρ̃cb e

−i(ν+ωca)t

where ρ˜ab and ρ˜cd have no time dependency. By evaluating in the 
equation (5.24),

(5.44)
with t = 0,

−iνρ̃ab = −(iωab +Υ1)ρ̃ab −
iPab E
2h̄

(ρ(0)aa − ρ
(0)
bb ) +

i

2
Ωµe

−iϕµρ˜cb ,

reorganizing terms and applying the initial conditions for ρ
(0)
aa and

ρ
(0)
bb ,

0 = −(Υ1 + i(ωab − ν)) ρ̃ab +
iPab E
2h̄

+
i

2
Ωµe

−iϕµ ρ˜cb , (5.45)

defining the detuning ∆ = ωab − ν as the difference between the
transition energy between |b⟩ and |a⟩ states and the energy of the
probe field, we obtain
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0 = −(Υ1 + i∆)ρ̃ab +
iPab E
2h̄

+
i

2
Ωµe

−iϕµρ˜cb . (5.46)

Secondly, by using the expressions ρab = ρ˜ab e
iνt and ρcb = ρ˜cb e

−i(ν

+ωca)t in the equation (5.34),

−i(ν + ωca)ρ̃cb e
−i(ν+ωca)t = −(iωcb +Υ3) ρ̃cb e

−i(ν+ωca)t − iPab E
2h̄

e−iνtρca

+
i

2
Ωµ e

iϕµ eiνµtρ̃ab e
−iνt ,

evaluating for t = 0,

− i(ν +ωca) ρ̃cb = −(iωcb +Υ3) ρ̃cb −
iPab E
2h̄

ρ
(0)

ca
+
i

2
Ωµ e

iϕµ ρ̃ab , (5.47)

rearranging terms,

0 = −(Υ3 + i(ωcb − ωca − ν)) ρ̃cb +
i

2
Ωµ e

iϕµ ρ̃ab , (5.48)

let’s see that,

ωcb − ωca = ωc − ωb − ωc + ωa ,

ωcb − ωca = ωa − ωb ,

ωcb − ωca = ωab ,

by using this result in (5.48), remembering the detuning definition,

0 = −(Υ3 + i∆) ρ̃cb +
i

2
Ωµ e

iϕµ ρ̃ab . (5.49)

From this last equation, let’s solve for the term ρ̃cb,

ρ̃cb =
iΩµ e

iϕµ

ρ̃ab , (5.50)
2 (Υ3 + i∆) 

replacing Eq. (5.50) in (5.46):

0 = −(Υ1 + i∆) ρ̃ab +
iPab E
2h̄

+
i

2
Ωµ e

−iϕµ
iΩµ e

iϕµ

2 (Υ3 + i∆)
ρ̃ab ,
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simplifying,

0 = −(Υ1 + i∆) ρ̃ab +
iPab E
2h̄

−
Ω2

µ ρ̃ab

4 (Υ3 + i∆)
,

solving for ρ̃ab,[
(Υ1 + i∆) +

Ω2
µ

4 (Υ3 + i∆)

]
ρ̃ab =

iPab E
2h̄

,

4 (Υ1 + i∆)(Υ3 + i∆) + Ω2
µ

4 (Υ3 + i∆)
ρ̃ab =

iPab E
2h̄

,

ρ̃ab =
4 iPab E (Υ3 + i∆)

2h̄ [4 (Υ1 + i∆) (Υ3 + i∆) + Ω2
µ]
,

ρ̃ab =
iPab E (Υ3 + i∆)

2h̄ [(Υ1 + i∆) (Υ3 + i∆) + Ω2
µ/4]

, (5.51)

remembering that ρab = ρ̃ab e
−νt, then we finally get,

ρab =
iPab E (Υ3 + i∆) e−iνt

2h̄[(Υ1 + i∆) (Υ3 + i∆) + Ω2
µ/4]

. (5.52)

From the Eq. (5.10), it is had that by means of the rotating wave 
approximation only a part of the field contributes s ignificantly to  the 
electronic population between the levels |b⟩ and |a⟩, this part is given 
by E(t) = E e−iνt/2, in the same way, the macroscopic polarization 
will be given by P (t) = ℘ e−iνt/2, where ℘ is the complex polarization 
of the system. From the above, we can write complex polarization in 
terms of macroscopic polarization as,

℘ = 2P (t) eiνt . (5.53)

To obtain an expression for the polarization of the system due to
the |b⟩ → |a⟩ transition, then the wave function of the system can be
approximated as a linear combination of these states,

|ψ(t)⟩ = Ca(t) |a⟩+ Cb(t) |b⟩ , (5.54)

on the other hand, the macroscopic polarization can be calculated
as,
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P (t) = e ⟨ψ(t)|x|ψ(t)⟩ =

P (t) = e (C∗
a(t) ⟨a|+ C∗

b (t) ⟨b|)x (Ca(t) |a⟩+ Cb(t) |b⟩) =

P (t) = eC∗
a(t)Cb(t) ⟨a|x|b⟩+ eCa(t)C

∗
b (t) ⟨b|x|a⟩ =

P (t) = Ca(t)C
∗
b (t)Pba + h.c. , (5.55)

where the integrals equal to zero have been canceled and the defi-
nition of electric dipole moment that was already used in Eq. (5.7). 
Similarly, the density matrix associated with state in Eq. (5.54) is 
given by,

ρ = |ψ(t)⟩⟨ψ(t)| =

ρ = (Ca(t) |a⟩+ Cb(t) |b⟩) (C∗
a(t) ⟨a|+ C∗

b (t) ⟨b|) =

ρ = |Ca(t)|2 |a⟩⟨a|+Ca(t)C
∗
b (t) |a⟩⟨b|+C∗

a(t)Cb(t) |b⟩⟨a|+|Cb(t)|2 |b⟩⟨b| ,
(5.56)

according to Eq. (5.52), let’s calculate the element ρab,

ρab = ⟨a|ρ|b⟩ = C∗
a(t)Cb(t) , (5.57)

replacing Eq. (5.57) in (5.55),

P (t) = Pba ρab + h.c. =

P (t) = P ∗
ab ρab + h.c. , (5.58)

where it has been used that Pba = P ∗
ab. As in Eq. (5.53) the rotating

wave approximation has been used, in the same way in Eq. (5.58) we
must stay with only one of the terms to be consistent P (t) ≈ P ∗

ab ρab,
replacing this result in Eq. (5.53),

℘ = 2P ∗
ab ρab e

iνt , (5.59)

this result can be equated with the complex polarization definition,

℘ ≡ ε0 χ E = 2P ∗
ab ρab e

iνt , (5.60)

where ε0 is the vacuum permittivity, χ the system susceptibility and 
E the field amplitude. Solving for ρab in (5.60),

159



Chapter 5. Electromagnetically Induced Transparency (EIT)

ρab =
ε0 χ E
2P ∗

ab

e−iνt , (5.61)

equating this last equation with (5.52),

iPab E (Υ3 + i∆) e−iνt

2h̄[(Υ1 + i∆) (Υ3 + i∆) + Ω2
µ/4]

=
ε0 χ E
2P ∗

ab

e−iνt ,

χ =
i|Pab|2 (Υ3 + i∆)

h̄ε0 [(Υ1 + i∆) (Υ3 + i∆) + Ω2
µ/4]

,

χ =
i|Pab|2Υ3 − |Pab|2∆

h̄ε0
[
Υ1Υ3 + iΥ1∆+ iΥ3∆−∆2 + Ω2

µ/4
] . (5.62)

It is necessary to know the real part and the complex part of the
susceptibility of the system to calculate the absorption, to obtain these
expressions, let’s do the substitutions,

α = −|Pab|2∆ ,

β = |Pab|2Υ3 ,

λ = Υ1Υ3 −∆2 + Ω2
µ/4 ,

σ = Υ1∆ + Υ3∆ ,

with these substitutions, Eq. (5.62) takes the simple form,

χ =
α + iβ

h̄ε0 (λ+ iσ)
, (5.63)

multiplying up and down by (λ− iσ),

χ =
(α + iβ) (λ− iσ)

h̄ε0 (λ+ iσ) (λ− iσ)
,

regrouping terms

χ =
(αλ+ βσ)− i(ασ − βλ)

h̄ε0(λ2 + σ2)
. (5.64)

Defining the susceptibility as χ = χ′ + i χ ′′, where χ ′ and χ ′′ are the 
real part and imaginary part respectively, with this consideration, of 
Eq. (5.64) is obtained that:
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χ′ =
αλ+ βσ

h̄ε0 (λ2 + σ2)
, (5.65)

and

χ′′ =
βλ− ασ

h̄ε0 (λ2 + σ2)
, (5.66)

returning to the original variables,

χ′ =
(−|Pab|2∆) (Υ1Υ3 −∆2 + Ω2

µ/4) + (|Pab|2Υ3) (Υ1∆+Υ3∆)

h̄ε0 ((Υ1Υ3 −∆2 + Ω2
µ/4)

2 + (Υ1∆+Υ3∆)2)
,

(5.67)
and

χ′′ =
(|Pab|2Υ3) (Υ1Υ3 −∆2 + Ω2

µ/4)− (−|Pab|2∆) (Υ1∆+Υ3∆)

h̄ε0 ((Υ1Υ3 −∆2 + Ω2
µ/4)

2 + (Υ1∆+Υ3∆)2)
,

(5.68)
simplifying, the real part of the susceptibility is finally obtained as,

χ′ =
Na |Pab|2∆
h̄ ε0 Z

[
Υ3 (Υ1 +Υ3) +

(
∆2 −Υ1Υ3 − Ω2

µ/4
)]
, (5.69)

similarly, the imaginary part of susceptibility,

χ′′ =
Na |Pa|2

h̄ ε0 Z

[
∆2 (Υ1 +Υ3)−Υ3

(
∆2 −Υ1Υ3 − Ω2

µ/4
)]
, (5.70)

where Z =
(
∆2 −Υ1Υ3 − Ω2

µ/4
)2

+ ∆2(Υ1 + Υ3)
2 and Na is the

number density of atoms in the system.
When ∆ = 0, which indicates that the probe field is in resonance

with the transition between states |b⟩ and |a⟩, it is obtained,

χ′ = 0 and χ′′ = −Na |Pab|2

h̄ ε0 Z

Υ3

Υ1Υ3 + Ω2
µ/4

. (5.71)

It is evident that the imaginary part of the susceptibility is propor-
tional to Υ3, remembering that Υ3 is the decay rate between states
|b⟩ and |c⟩ and since these states are not coupled, then Υ3 → 0 which
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implies that χ′′ ≈ 0. The above indicates that the absorption tends to
zero, thus the radiation is not being absorbed when the system is in
resonance with the probe field (ωab = ν), the system behaves as if it
were transparent to this radiation (remembering that this should be
the point of maximum absorption). This process is known as electro-
magnetically induced transparency. The effect depends on the Rabi
frequency of the drive field and the decay rate between states |b⟩ and
|c⟩.

Figure 5.2: real χ′ and imaginary χ′′ part of susceptibility as a function of normalized detuning
∆/γ (γ = Υ1).

It is convenient to define t he α  a nd β  p arameters s uch t hat Υ 3 = 
α Υ1 and Ωµ = β Υ3 are fulfilled, c learly, α  < < β  must b e m et to 
ensure that there is no dipole coupling between states |b⟩ and |c⟩. The 
Fig. (5.2) shows the real and imaginary part of the susceptibility given 
by the Eqs. (5.69) and (5.70) as a function of the normalized detuning 
∆/γ where γ = Υ1 has been done, α = 10−4 eV and β = 2 eV have been 
taken for this figure. The red curve in this figure is proportional to the 
absorption in the system, clearly in the resonance (∆/γ → 0) the 
absorption tends to zero, which implies that the system is transparent 
under the probe field.
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Chapter 6

Nonlinear optical properties

6.1 Introduction

The general theory of the nonlinear optical response must be adapted
to the situation of low dimensional systems in which the spectrum
of energy states may have a contribution of discrete energies apart
from the continuous states associated with subbands corresponding
to free movements with effective mass along one or two dimensions.
The situation in which we have a completely discrete spectrum is the
quantum heteroestrucuture case, which is analogous to the resulting
atomic case. The works of Rosencher and Bois [1] and Ahn and Chuang
[2] were those who entered the formalism developed in the 1960 years
to the situation of systems as we are concerned. Now will present a
detailed derivation of the first and third-order absorption coefficients as
well as the first and thir-order change in the refractive index coefficient
in the scheme of reference [2] which was developed for the case of a
quantum well. However, the scheme is directly extended to quantum
wires, rings and dots.

6.2 Density Matrix Equations

Lets consider a system in the presence of an optical radiation of fre-
quency ω with polarization along the z-axis. Lets denote ρ̂, Ĥ0, M̂ and
E(t) as the density matrix for one electron, the unperturbed Hamil-
tonian of the system, the electric dipole operator and the intensity of
the electric field of the optical radiation of frequency ω respectively.

The density matrix equation for one electron with intraband relax-
ation is given by

164



Chapter 6. Nonlinear optical properties

∂ρ̂

∂t
=

1

ih̄

[
Ĥ0 − M̂Ê(t), ρ

]
− 1

2

[
Γ̂(ρ̂− ρ̂(0)) + (ρ̂− ρ̂(0))Γ̂

]
, (6.1)

where ρ̂(0) is the unperturbed density matrix and Γ̂ is a phenomeno-
logical operator responsible of the damping due to electron-phonon,
electron-electron and other interaction processes. We assume that Γ̂
is a diagonal matrix and its element Γmm is the inverse of the relaxing
time for the estate |m⟩. To simplify the analysis we focus on two-level
systems (|1⟩, |2⟩).

The incident monochromatic field is defined as

E(t) = ℜ(E0e
−iωt) =

1

2
E0e

−iωt +
1

2
E0e

iωt = Ẽe−iωt + Ẽeiωt (6.2)

The diagonal elements of the Γ̂ operator are given by

⟨1|Γ̂|1⟩ = γ11 = 1/τ1 , ⟨2|Γ̂|2⟩ = γ22 = 1/τ2 (6.3)

We can solve equation (6.1) through a perturbative series in ρ̂ as

ρ̂(t) =
∑
n

ρ̂(n)(t) (6.4)

In thermal equilibrium, the density matrix ρ̂(0) is a diagonal matrix
where its diagonal elements are the superficial thermal population.
Lets call ρ̂

(n)
11 = ⟨1|ρ̂|1⟩, ρ̂(n)12 = ⟨1|ρ̂|2⟩, ρ̂(n)21 = ⟨2|ρ̂|1⟩, ρ̂(n)22 = ⟨2|ρ̂|2⟩.

The matrix ρ̂ has the hermiticity property ρ12(t) = ρ∗12(t).

Replacing equation (6.4) in equation (6.1), we obtain

∑
n

∂ρ̂

∂t
=

1

ih̄

∑
n

[
(Ĥ0 − M̂E(t))ρ̂(n) − ρ̂(n)(Ĥ0 − M̂E(t))

]
− 1

2

∑
n

[
Γ̂(ρ̂(n) − ρ̂(0)) + (ρ̂(n) − ρ̂(0))Γ̂

]
(6.5)

Note that we can write∑
n

ρ̂(n) − ρ̂(0) =
∑
n

ρ̂(n+1) (6.6)

165



Chapter 6. Nonlinear optical properties

then,∑
n

∂ρ̂

∂t
=

1

ih̄

∑
n

[
(Ĥ0 − M̂E(t))ρ̂(n) − ρ̂(n)(Ĥ0 − M̂E(t))

]
− 1

2

[
Γ̂
(∑

n

ρ̂(n+1)
)
+
(∑

n

ρ̂(n+1)
)
Γ̂

]
(6.7)

With the last expression we can calculate ⟨2|∂ρ̂∂t |1⟩, so

∑
n

∂ρ
(n)
21

∂t
=

1

ih̄

∑
n

[
⟨2|(Ĥ0 − M̂E(t))ρ̂(n)|1⟩ − ⟨2|ρ̂(n)(Ĥ0 − M̂E(t))|1⟩

]
− 1

2

∑
n

[
⟨2|Γ̂ρ̂(n+1)|1⟩+ ⟨2|ρ̂(n+1)Γ̂|1⟩

]
(6.8)

Having present that Ĥ0|m⟩ = Em|m⟩, we have∑
n

∂ρ
(n)
21

∂t
=

1

ih̄

∑
n

[
E2⟨2|ρ̂(n)|1⟩ − ⟨2|M̂ρ̂(n)|1⟩E(t)− E1⟨2|ρ̂(n)|1⟩

+ ⟨2|ρ̂(n)M̂ |1⟩E(t)
]
− 1

2

∑
n

Introducing the completeness relation given by,

|1⟩⟨1|+ |2⟩⟨2| = 1, (6.10)

we obtain∑
n

∂ρ
(n)
21

∂t
=

1

ih̄

∑
n

[
(E2 − E1)ρ

(n)
21 − ⟨2|M̂(|1⟩⟨1|+ |2⟩⟨2|)ρ̂(n)|1⟩E(t)

+ ⟨2|ρ̂(n)(|1⟩⟨1|+ |2⟩⟨2|)M̂ |1⟩E(t)
]
− 1

2

∑
n

[
⟨2|Γ̂(|1⟩⟨1|+ |2⟩⟨2|)ρ̂(n+1)|1⟩

+ ⟨2|ρ̂(n+1)(|1⟩⟨1|+ |2⟩⟨2|)Γ̂|1⟩
]

(6.11)

Some algebraic steps and remembering that Γ̂ only have diagonal
elements we arrive at∑

n

∂ρ
(n)
21

∂t
=

1

ih̄

∑
n

[
(E2 − E1)ρ

(n)
21 − (M21ρ

(n)
11 +M22ρ

(n)
21 )E(t) + (M11ρ

(n)
21 +M21ρ

(n)
22 )E(t)

]
−

∑
n

1

2

( 1

τ2
+

1

τ1

)
ρ
(n+1)
21 (6.12)
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Regrouping the order of some terms and setting E21 = E2 − E1 ,∑
n

∂ρ
(n)
21

∂t
=

1

ih̄

∑
n

[
E21ρ

(n)
21 − (ρ

(n)
11 − ρ

(n)
22 )M21E(t)− (M22 −M11)ρ

(n)
21 )E(t)

]
−

∑
n

γ12ρ
(n+1)
21 (6.13)

where
γ12 = γ21 =

1

2

( 1

τ1
+

1

τ2

)
(6.14)

Using the fact that ρ
(0)
21 = ρ

(0)
12 = 0 we have∑

n

ρ
(n)
21 =

∑
n

ρ
(n+1)
21 (6.15)

which allows us to write∑
n

∂ρ
(n+1)
21

∂t
=

∑
n

[ 1

ih̄
E21 − γ12

]
ρ
(n+1)
21 −

∑
n

1

ih̄
(ρ

(n)
11 − ρ

(n)
22 )M21E(t)

−
∑
n

1

ih̄
(M22 −M11)E(t)ρ

(n)
21 . (6.16)

Finally, the last equation implies that — Note that it was not re-
defined the index of the sum. This is done with the idea of obtaining
recurrence relations —

∂ρ
(n+1)
21

∂t
=

[ 1

ih̄
E21 − γ12

]
ρ
(n+1)
21 − 1

ih̄
(ρ

(n)
11 − ρ

(n)
22 )M21E(t)

− 1

ih̄
(M22 −M11)E(t)ρ

(n)
21 . (6.17)

Following an analogous procedure, we can obtain similar expres-
sions:

∂ρ
(n+1)
12

∂t
=

[ 1

ih̄
E12 − γ21

]
ρ
(n+1)
12 − 1

ih̄
(ρ

(n)
22 − ρ

(n)
11 )M12E(t)

− 1

ih̄
(M11 −M22)E(t)ρ

(n)
21 ). (6.18)

and

∂ρ
(n+1)
22

∂t
= −γ22ρ(n+1)

22 − 1

ih̄
(M21ρ

(n)
12 −M12ρ

(n)
21 )Ẽ(t), (6.19)
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and also

∂ρ
(n+1)
11

∂t
= −γ11ρ(n+1)

11 − 1

ih̄
(M12ρ

(n)
21 −M21ρ

(n)
12 )Ẽ(t), (6.20)

In the last equations we have that M11 = ⟨1|M̂ |1⟩, M12 = ⟨1|M̂ |2⟩,
M21 = ⟨2|M̂ |1⟩, and M22 = ⟨2|M̂ |2⟩. Equations (6.17 – 6.20) can
be solved by writing the density matrix elements in terms of sums
proportional to exp(±iωt) and equating terms in both sides of the
equations with same temporal dependence. In this calculations we
neglect terms that correspond to higher harmonics which correspond to
successive absorption and emissions of photons. We are only interested
in the steady state, therefore the nth order perturbative term, ρ(n) , is
written as

ρ̂(n)(t) = ˆ̃ρ(n)(ω)e−iωt + ˆ̃ρ(n)(−ω)eiωt (6.21)

which is valid for odd n. When n is even, only DC terms are dominant.

If we set n=1 en equation (6.21) we have

ρ̂(1)(t) = ˆ̃ρ(1)(ω)e−iωt + ˆ̃ρ(1)(−ω)eiωt (6.22)

and taking n=0 in (6.17) we have an equation for ρ
(1)
2 1(t) as,

∂ρ
(1)
21

∂t
=

[ 1

ih̄
E21 − γ12

]
ρ
(1)
21 − 1

ih̄

[
(ρ

(0)
11 − ρ

(0)
22 )M21E(t) + (M22 −M11)E(t)ρ

(0)
21

]
.(6.23)

Remembering that ρ
(0)
21 = 0, we obtain

∂ρ
(1)
21

∂t
=

[ 1

ih̄
E21 − γ12

]
ρ
(1)
21 − 1

ih̄
(ρ

(0)
11 − ρ

(0)
22 )M21Ẽ(t). (6.24)

Therefore we can replace equations (6.2) and (6.22) to solve the
last equation. After performing some algebraic steps and equating
coefficients of exp(iωt), we have

− iωρ̃
(1)
21 (ω) =

[ 1

ih̄
E21 − γ12

]
ρ̃
(1)
21 (ω)−

1

ih̄
(ρ

(0)
11 − ρ

(0)
22 )M21Ẽ(t), (6.25)

which enables us to obtain ρ̃
(1)
ba (ω) so

ρ̃
(0)
21 (ω) =

ẼM21(ρ
(0)
11 − ρ

(0)
22 )

(E21 − h̄ω − ih̄γ12)
. (6.26)
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Now, our task to calculate the term ρ̃
(3)
21 (ω). For that purpose we

must choose n = 2 in equation (6.17)

∂ρ
(3)
21

∂t
=

[ 1

ih̄
E21 − γ12

]
ρ
(3)
21 − 1

ih̄

[
(ρ

(2)
11 − ρ

(2)
22 )M21E(t) + (M22 −M11)E(t)ρ

(2)
21

]
.(6.27)

At the same time we take n = 3 in equation (6.21) to get

ρ(3)(t) = ˆ̃ρ(3)(ω)e−iωt + ˆ̃ρ(3)(−ω)eiωt (6.28)

Right now we proceed as before, replacing equations (6.2) and (6.28)
in (6.27) and equating terms of exp(−iωt). We also clarify that the

terms ρ
(2)
11 (t), ρ

(2)
22 (t), and ρ

(2)
21 (t), are rectification terms that do not

change in time and we can directly replace them by ρ̃
(2)
11 (0), ρ̃

(2)
22 (0),

and ρ̃
(2)
21 (0) respectively, therefore

−iωρ̃
(3)
21 (ω) =

[
1

ih̄
E21 − γ12

]
ρ̃
(3)
21 (ω)−

1

ih̄

[
(ρ̃

(2)
11 (0)− ρ̃

(2)
22 (0))M21Ẽ + (M22 −M11)Ẽρ̃

(2)
21 (0)

]
(6.29)

Manipulating this equation allows us to obtain ρ̃
(3)
21 (ω) as

ρ̃
(3)
21 (ω) =

Ẽ

E21 − h̄ω − ih̄γ12

[
(ρ̃

(2)
11 (0)−ρ̃

(2)
22 (0))M21+(M22−M11)ρ̃

(2)
21 (0)

]
(6.30)

Our target is to find the difference (ρ̃
(2)
11 (0)− ρ̃

(2)
22 (0)). We must use

equations (6.19) and (6.20) to accomplish this. So,

∂ρ
(2)
22

∂t
= −γ22ρ(2)22 − 1

ih̄
(M21ρ

(1)
12 −M12ρ

(1)
21 )E(t). (6.31)

and

∂ρ
(2)
11

∂t
= −γ11ρ(2)11 − 1

ih̄
(M12ρ

(1)
21 −M21ρ

(1)
12 )E(t). (6.32)

Focusing in equation (6.32)and knowing that ρ
(2)
11 is a rectification

term, we have that ∂ρ
(2)
11

∂t = 0. We also have to replace ρ
(1)
21 and ρ

(1)
12 by

their steady components, i.e, taking t = 0 in equation (6.22). As well,
we take the DC component of E(t), Ẽ, then

0 = −γ11ρ(2)11 (0)−
Ẽ

ih̄

[
M12(ρ˜21

(1)
(ω) + ρ˜21

(1)
(−ω)) − M21(ρ˜12

(1)
(−ω) + ρ˜12

(1)
(ω))

]
(6.33)
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The terms ρ̃
(1)
21 (ω) and ρ̃

(1)
21 (−ω) are known as non-resonant terms

which can be calculated in the same manner of equation (6.26). They
are given by

ρ̃
(3)
21 (−ω) =

ẼM21(ρ
(0)
11 − ρ

(0)
22 )

(h̄E21 + h̄ω − ih̄γab)
(6.34)

and

ρ̃
(3)
12 (ω) =

ẼM21(ρ
(0)
11 − ρ

(0)
22 )

(h̄E21 + h̄ω + ih̄γab)
(6.35)

As we can see, these last two terms present a dependence of h̄E21+h̄ω
in their denominators, that cannot have the possibility of entering in
resonance in any time. By this fact, we will neglect them in the rest
of our calculations, then

0 = −γ11ρ̃(2)11 (0)−
Ẽ

ih̄

[
M12ρ̃

(1)
21 (ω)−M21ρ̃

(1)
12 (−ω)

]
(6.36)

Manipulating this expression we obtain ρ̃
(2)
aa (0) as

ρ̃
(2)
11 (0) =

iẼ

γ11h̄

[
M12ρ̃

(1)
21 (ω)−M21ρ̃

(1)
12 (−ω)

]
(6.37)

Now, we need to replace ρ̃
(1)
21 (ω), which is given by (6.26) and ρ̃

(1)
12 (−ω)

that can be obtained in the same way as (6.26) or simply replacing
ω → −ω in equation (6.35). After replacing the mentioned expres-
sions and doing some mathematical steps we have

ρ̃
(2)
11 (0) = − 2Ẽ2|M21|2(ρ(0)11 )− ρ

(0)
22 )γ12

γ12

[
(E21 − h̄ω)2 + (h̄γ12)2

] (6.38)

Following a similar procedure and noting that |M21|2 = |M12|2 and

γ12 = γ21 , we can find ρ̃
(2)
22 (0) as

ρ̃
(2)
22 (0) =

2Ẽ2|M12|2(ρ(0)11 − ρ
(0)
22 )γ12

γ22

[
(E21 − h̄ω)2 + (h̄γ12)2

] (6.39)

where |M21|2 =M21M12.
Finally, using (6.38) and (6.39), we arrive at

ρ̃
(2)
11 (0)− ρ̃

(2)
22 (0) = −2Ẽ2

(
1

γ11
+

1

γ22

)
|M12|2(ρ(0)11 )− ρ

(0)
22 )γ12[

(E21 − h̄ω)2 + (h̄γ12)2
] (6.40)
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Lets obtain now ρ̃
(2)
ba . We must use (6.16) with n = 1 and remem-

bering that we are only interested in steady terms. Then

∂ρ
(2)
ba (0)

∂t
=

[ 1

ih̄
E21 − γ12

]
ρ
(2)
21 (0)−

1

ih̄
(ρ

(1)
11 (0)− ρ

(1)
22 (0))M21Ẽ

− 1

ih̄
(M22 −M11)Ẽρ̃

(1)
21 . (6.41)

Since ∂ρ
(2)
21 (0)
∂t = 0 and using (6.22) with t = 0, we obtain

0 =
[ 1

ih̄
E21 − γ12

]
ρ
(2)
21 (0)−

1

ih̄

(
ρ
(1)
11 (ω) + ρ

(1)
11 (−ω)− ρ

(1)
22 (ω)− ρ

(1)
22 (−ω)

)
M21Ẽ

− 1

ih̄
(M22 −M11)Ẽ(ρ̃

(1)
21 (ω) + ρ̃

(1)
21 (−ω)). (6.42)

Continuing with ρ̃
(1)
11 (ω) from the use of (6.38) and taking n = 0, we

have

∂ρ
(1)
11

∂t
= −γ11ρ(1)11 − 1

ih̄
(M12ρ

(0)
21 −M21ρ

(0)
12 )E(t), (6.43)

and emphasizing again that ρ
(0)
21 = ρ

(0)
12 = 0,

∂ρ
(1)
11

∂t
= −γ11ρ(1)11 , (6.44)

Once again, using (6.22) and equating terms of exp(iωt), it is pos-
sible to obtain

ρ̃
(1)
11 (ω)(γ11 − iω) = 0, (6.45)

which implies that ρ̃
(1)
11 (ω) = 0. In the same way ρ̃

(1)
11 (−ω) = ρ̃

(1)
22 (ω) =

ρ̃
(1)
22 (−ω) = 0 .

With these last results and neglecting the non-resonant term ρ̃
(1)
21 (−ω)

we have

0 =
[ 1

ih̄
E21 − γ12

]
ρ̃
(2)
21 (0)−

Ẽ

ih̄
(M22 −M11)ρ̃

(1)
21 (ω). (6.46)

Manipulating this expression we obtain ρ̃
(2)
ba (0), and replacing (6.26),

ρ̃
(2)
21 =

Ẽ2M21(M22 −M11)(ρ
(0)
11 )− ρ

(0)
22 )

(E21 − ih̄γ12)(E21 − h̄ω − ih̄γ12)
. (6.47)
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Replacing (6.40) and (6.47) in equation (6.30) and performing some
mathematical steps we finally arrive at

ρ̃
(3)
21 (ω) =

ẼẼ2M21(ρ
(0)
11 − ρ

(0)
22 )

(E21 − h̄ω − ih̄γ12)

[
2
(1/γ11 + 1/γ22)|M12|2γ12
(E21 − h̄ω)2 + (h̄γ12)2

− (M22 −M11)
2

(E21 − ih̄γ12)(E21 − h̄ω − ih̄γ12)

]
. (6.48)

In the spirit of the last derivations, and using previous results, it
is possible to calculate the terms ρ̃

(3)
22 (ω) and ρ̃

(3)
11 (ω). However, such

terms, as is mentioned in the work of Ahn and Chuang [2] are negligible
at the time of evaluating the third order absorption coefficient. These
terms are

ρ̃
(3)
22 (ω) =

2iẼẼ2|M21|2

(h̄ω + ih̄γ22)
ℑ

[
(M22 −M11)(ρ

(0)
11 − ρ

(0)
22 )

(E21 − ih̄γ12)(E21 − h̄ω − ih̄γ12)

]
(6.49)

and

ρ̃
(3)
11 (ω) = −2iẼẼ2|M21|2

(h̄ω + ih̄γ11)
ℑ

[
(M22 −M11)(ρ

(0)
11 − ρ

(0)
22 )

(E21 − i¯hγ12)(E21 − ¯hω − i¯hγ12)

]
Here, ℑ denotes imaginary part.

6.3 Linear and non-linear absorption coefficients

With the results of the last section we can calculate the linear and
non-linear absorption coefficients in quantum systems. The electronic
polarization P (t) and the optical susceptibility χ(t) which arise as
consequence of the optical field E(t) can be expressed through the
dipolar operator M̂ and the density matrix as

P (t) = ϵ0χ(ω)Ẽe
−iωt + ϵ0χ(−ω)Ẽeiωt =

1

V
Tr(ρ̃M̃), (6.51)

where V is the volume of the system, ϵ0 is the permittivity of the
vacuum and Tr denotes the trace over the diagonal elements of the ma-
trix ρ̃M̃ . The susceptibility χ is related with the absorption coefficient
α(ω) as

α(ω) = ω

√
µ

ϵR
ℑ(ϵ0χ(ω)) (6.52)
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where µ is the permeability of the system, ϵR is the real part of the
permittivity and χ(ω) is the Fourier component of χ(t) with depen-
dence exp(?iωt). We can write the polarization as

P (t) =
1

V

[
⟨1|ρ̃M̃ |1⟩+ ⟨2|ρ̃M̃ |2⟩

]
. (6.53)

Introducing the completeness relation and using (6.4), we have

P (t) =
1

V

∑
n

[
ρ
(n)
11 M11 + ρ

(n)
12 M21 + ρ

(n)
21 M12 + ρ

(n)
22 M22

]
. (6.54)

With the aid of (6.21)

P (t) =
1

V

∑
n

[
ρ̃
(n)
11 (ω)M11 + ρ̃

(n)
12 (ω)M21 + ρ̃

(n)
21 (ω)M12 + ρ̃

(n)
22 (ω)M22

]
e−iωi ϖ.

(6.55)

Choosing n = 1, using (6.51), taking away the non-resonant term,

equating terms of e−iωt and remembering that ρ̃
(1)
11 (ω) = ρ̃

(1)
22 (ω) = 0,

allow us to write

ϵ0χ
(1)(ω)Ẽ =

1

V
ρ̃
(1)
21 (ω)M12 (6.56)

Figure 6.1: The optical absorption coefficients calculated as a function of the incident photon
energy and the width of the square GaAs-AlGaAs quantum well, for linear polarization. In (a)
linear absorption coefficients α(1), (b) nonlinear absorption coefficients α(3), (c) total absorption
coefficients α(t).

Solving for ϵ0χ
(1)(ω), replacing (6.26), taking its imaginary part and
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α(1)(ω) = ω

√
µ

ϵR

|M12|2

V

(ρ
(0)
11 − ρ

(0)
22 )h̄γ12

(E21 − h̄ω)2 + (h̄γ12)2
(6.57)

Defining συ = (ρ
(0)
11 −ρ

(0)
22 )/V as the three-dimensional concentration

of electrons in the system, we have

α(1)(ω) = ω

√
µ

ϵR

|M12|2συh̄γ12
(E21 − h̄ω)2 + (h̄γ12)2

(6.58)

Following a similar procedure we can find a third-order expression,
we are able to begin with

ϵ0χ
(3)(ω)Ẽ =

1

V

[
ρ̃
(3)
11 (ω)M11 + ρ̃

(3)
12 (ω)M21 + ρ̃

(3)
21 (ω)M12 + ρ̃

(3)
22 (ω)M22

]
(6.59)

Neglecting the non-resonant term ρ̃
(3)
ab (ω) , remembering that, as we

said before, the terms ρ̃
(3)
aa (ω) and ρ̃

(3)
bb (ω) just induce a small contri-

bution that we can avoid in our calculations. Solving for ϵ0χ
(3)(ω),

replacing equation (6.48), taking its imaginary part and using (6.52),
we can obtain

α(3)(ω, I) = −ω
√
µ

ϵR
Ẽ2|M12|2συ

ℑ
[

1

(E21 − h̄ω − ih̄γ12)

{
2γ12(γ11 + γ22)|M12|2

γ11γ22[(E21 − h̄ω)2 + (h̄γ12)2]
− (M22 −M11)

2

(E21 − ih̄γ12)(E21 − h̄ω − ih̄γ12)

}]
.

(6.60)

Defining the intensity I of the electromagnetic field through the
equation

Ẽ2 =
I

2ϵ0nrc
(6.61)

where c is the speed of light of the vacuum and nr is the refractive
index of the medium, we have

In the second line of the previous equation two terms clearly can
be identified. The first one is proportional to the fourth power of
the inter level matrix element, whereas the second term depends of
the difference between the intra level matrix elements. This second
part goes to zero for symmetric heterostructures whereas is finite when
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asymmetries are included via changes in the composition, via boundary
conditions or via effects of external proves. Note that the third order
correction depends of the intensity of the incident radiation. And that
for zero energy of the incident photon also goes to zero in the same
way observed for the first order term correction.

{
ℑ
[

1

(E21 − h̄ω − ih̄γ12)

2γ12(γ11 + γ22)|M12|2

γ11γ22[(E21 − h̄ω)2 + (h̄γ12)2
]

(M22 −M11)
2

(E21 − ih̄γ12)(E21 − h̄ω − ih̄γ12)

}]
.

(6.62)

As a fact of simplicity, lets choose γ11 = γ22, which implies that
γ122 = γ11 = γ22, so

γ12(γ11 + γ22)

γ11γ22
= 2. (6.63)

Taking the imaginary part of equation (6.62) and performing a
lengthly algebra leads to a more manageable expression for the third-
order absorption coefficient as

α(3)(ω, I) = −ω
√
µ

ϵR

I

2ϵ0nrc

|M12|2συh̄γ12
[(E21 − h̄ω)2 + (h̄γ12)2]2

×
[
4|M12|2 −

(M22 −M11)
2(3E2

21 − 4h̄ωE21 + h̄2(ω2 − γ2 ))

E2
21 + (h̄γ12)2

]
12

With (6.58) and (6.63), the optical absorption coefficient is given by

α(t)(ω, I) = α(1)(ω) + α(3)(ω, I). (6.65)

6.4 Linear and non-linear changes in the refractive index

In order to calculate the changes in the refractive index, we follow a
procedure which is analogous to the one of the last section. In this
time, we start with the fact that the change in the refractive index is
related with the optical susceptibility through the equation

∆n(ω)

nr
= ℜ

(
χ(ω)

2n2r

)
. (6.66)

175

(6.64)



Chapter 6. Nonlinear optical properties

Figure 6.2: The total change in the refractive index coefficients calculated as a function of the
incident photon energy and the width of the square GaAs-AlGaAs quantum well, for linear polar-
ization.

Using equation (6.56), introducing the previous definitions and tak-
ing the real part of the expressions, allow us to find an expression for
the linear change in the refractive index, therefore

∆n(1)(ω)

nr

= συ |M12|2

2n2r ε0

E21 − h̄ ω

(E21 − h̄ ω)2 + (h̄ γ12)2
(6.67)

Lets calculate now the third order correction to the change in the
refractive index parting from equation (6.59), which after the prelimi-
nary considerations, can be written as

χ(3)(ω) =
1

V Ẽϵ0
ρ̃
(3)
21 (ω)M21. (6.68)

Using (6.48) and (6.68) in (6.66) and taking into account the defi-
nitions for συ and I, we obtain

∆n(3)(ω)

nr

= −I|M12|2συ
4n3rϵ0c

ℜ
{

E21 − h̄ω − ih̄γ12
[(E21 − h̄ω)2 + (h̄γ12)2]2

×
[
4|M12|2 −

(M22 −M11)
2(E2

21 + ih̄γ12)(E21 − h̄ω + ih̄γ12)

E2
21 + (h̄γ12)2

]}
.

(6.69)

If use the relation c2 = 1/ε0µ and manipulate the equation through
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a long algebra, we can arrive at

∆n(3)(ω)

nr
=

|M12|2συ
4n3rϵ0c

µcI

[(E21 − h̄ω)2 + (h̄γ12)2]2

[
4(E21 − h̄ω)|M12|2 −

(M22 −M11)
2

E2
21 + (h̄γ12)2

× {(E21 − h̄ω)[E21(E21 − h̄ω)− (h̄γ12)
2]− (h̄γ12)

2[2E21 − h̄ω]}
]

(6.70)
Therefore, the total change in the refractive index is given by

∆n(ω, I)

nr
=

∆n(1)(ω)

nr
+

∆n(3)(ω, I)

nr
(6.71)

6.5 Non-linear optical rectification, second and third har-
monic generator

In Eqs. 6.72, 6.73 and 6.74 are shown the expressions for the non linear
optical rectification (NOR), second harmonic generator (SHG) and
third harmonic generator(THG) optical properties, with the radiation
polarization taken in the z-direction following Rosencher et al. [1], this
are obtained by means of the compact density matrix formalism. We
use the energy structure consists of two for NOR, and three and four
levels intrasubband transitions for SHG and THG,respectively.

χ
(2)
0 =

4 e3 ρv

ε0 h̄
2 µ201 δ01

ω2
10 (1 + Γ2/Γ1) + (ω2 + Γ2

2)(Γ2/Γ1 − 1)

[(ω10 − ω)2 + Γ2
2] [(ω10 + ω)2 + Γ2

2]
, (6.72)

χ
(2)
2ω =

e3 ρv

ε0 h̄
2

M10M20M12

(ω − ω01 − iΓ)(2ω − ω20 − iΓ/2)
, (6.73)

χ
(3)
3ω =

e4 ρv

ε0 h̄
3

M10M30M12M23

(ω − ω01 − iΓ)(2ω − ω20 − iΓ/2)

1

(3ω − ω30 − i Γ/3)

Parameters used in these equations are defined as: ρv is the elec-
tronic density, Mij = ⟨ψi|e z|ϕj⟩, (i, j = 1, 2, 3, 4) is the off-diagonal
matrix element, ωij = (Ei − Ej)/h̄, (i, j = 1, 2, 3, 4) is the frequency
associated with the transition energies, and Γ is the damping term as-
sociated with the lifetime of the electrons involved in the transitions.
Note that in the expressions obtained can infer the presence of reso-
nant peaks in optical properties coefficients when the photon energy
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coincides with the transition energy between the two states involved
and exactly at the same energy value, the change of refractive index it
will always be zero.

Figure 6.3: The nonlinear optical rectification coefficients calculated as a function of the incident
photon energy and the width of the square GaAs-AlGaAs quantum well, for linear polarization.

Figure 6.4: The second harmonic generator (SHG) calculated as a function of the incident photon
energy and the width of the square GaAs-AlGaAs quantum well, for linear polarization.
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Figure 6.5: The third harmonic generator (TGH) calculated as a function of the incident photon
energy and the width of the square GaAs-AlGaAs quantum well, for linear polarization.
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Study of delta-doped quantum wells
Energy levels and applications in the terahertz region
First Edition

Quantum wells, quantum wires, quantum dots. These are terms that have become familiar not only
to specialists in physics and semiconductor technology but also to the common public. But these
structures of nanoscopic dimensions appeared several decades ago in the vision of renowned
specialists in these materials and, as a reality, after it was possible to develop epitaxial crystal growth
techniques and methodologies that allow ultra-precise control of the deposition of atomic monolayers.
The 1980s witnessed a steady increase in research work on these structures. The subsequent decades
have seen the consolidation of a branch that has redefined solid-state physics and, in particular,
semiconductor physics. Although these three classes of systems began to be studied, at least from a 
theoretical point of view, almost simultaneously, the attention of the first years was much more inclined 
towards quantum wells.
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