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PREFACE 

For its fifth edition, KePASSA goes back to Logroño, where the series of 
workshops was kicked off in 2014. 

The workshop aims to gather worldwide experts in the field of orbit propagation 
who deliver talks of top-notch scientific content in an informal, friendly and relaxed 
environment. 

Orbit propagation, the main topic of the workshop, is one of the most challenging 
and complex aspects of astronautics and will play a key role in ensuring the 
sustainable use of space. The continuous development and upgrade of orbit 
propagation techniques is instrumental for tackling most of the SSA challenges, 
e.g. those posed by the imminent realization of mega-constellations, the creation 
of sensors capable of tracking hundreds of thousands of objects, and the 
implementation of a space traffic management and control system.

To allow researchers to present last-minute results KePASSA is a presentation-
only workshop, although proceedings are edited when a sufficient number of 
authors requires it. Stimulating scientific discussions, creation of partnership and 
collaborations will be facilitated by the warm hospitality of La Rioja, its people, its 
food and, importantly, its wine. We are looking forward to meeting you soon and 
celebrating together another successful KePASSA meeting! 



AIMS AND SCOPE 

The workshop will be an opportunity to showcase the progress made since our 
last meeting in Logroño 2019 in the following topics: 

• Analytical, semi-analytical, and numerical propagation methods
• Hybrid and statistical methods
• Uncertainty quantification and propagation
• State vector representation, orbital elements/coordinates
• Long-term and short-term propagation
• Resonances and chaos
• Series expansions
• Special functions
• Non-gravitational perturbations
• High fidelity models
• Symbolic computation
• Software packages for orbit propagation
• Third body and time dependence in the analytical method
• End-of-life disposal
• Collision probability computation
• Planetary protection
• High-Earth Orbits and Highly-Elliptical Orbits
• Relative dynamics

SPECIAL SESSIONS 

     
• Perturbation theory
• Resonances and chaos
• Hybrid and statistical methods
• Collision probability computation
• Uncertainty quantification and propagation
• Mission design
• Perturbation modeling and integration
• Relative dynamics

! Analytical, semi-analytical, and numerical propagation methods
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Friday, June 24, 2022 

Session: Perturbation modeling and integration  

10:05-10:22 h Dynamical geometry associated with the collision  
manifold in the circular restricted three-body problem 
J. Fitzgerald, S. Ross 

10:22-10:39 h Canonical Modeling of The Solar Radiation Pressure 
Perturbation - N. Vegh, V. Martinusi  

10:39-10:56 h  CUDA implementation of the first derivative of the  
gravity potential - C. Rubio, J. Gonzalo, J. Siminski, 
A. Escapa 

10:56-11:13 h CUDAjectory: a GPU-based software for massive parallel 
orbit propagation (VIDEO)
A.F. Inno, C. Colombo, A. Masat, L. Bucci, F. Renk   

11:13-11:30 h Time integrator for second order in time problems
B. Bujanda, A. Duque 

11:30-11:50 h Coffee break 

Session: Relative dynamics 

11:50-12:07 h A Curvilinear Generalization of the Yamanaka-Ankersen 
State Transition Matrix 
A. Martínez-Cacho, C. Bombardelli 

12:07-12:24 h Influence of Apophis' spin axis variations on a spacecraft 
during the 2029 close approach with Earth 
S. Aljbaae, A.F.B.A. Prado, J. Souchay, V. Carruba

12:24-12:41 h Formation design selection based on time and cost of reset 
D. Menzio, A. Mahfouz, F. Dalla Vedova, H. Voos 

12:41-12:58 h A Closer Look at Two-Line Elements Data 
A. Ciccarelli, C. Bombardelli 

13:00-13:15 h  KePASSA Closing 

13:15-14:45 h Lunch time 

Activity: Solar de Samaniego Winery + Laguardia Tour 

Extra cost: 70 € including Bus + activities
Bus: · 17:15 h - AC Hotel La Rioja 

· 17:25 h - Fuente de Murrieta

18:00 h 1 hour-visit (museum and winery)
Ends with a taste of 2 wines and tapas.

19:30 h 1 hour-visit (Laguardia and calado -old underground winery)
Ends with a taste of wine 

20:30 h Tapas in Laguardia in its festivity of St. Juan  
Return: at 23:00/23:30 h 
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11:53-12:10 h Deep learning for all-vs-all conjunction detection
E. Stevenson, V. Rodriguez-Fernandez, H. Urrutxua,
D. Camacho 

12:10-12:27 h Fast Orbit Propagation for Conjunction Screening
A. Rivero, C. Bombardelli, R. Vázquez 

12:30-14:00 h Lunch time 

Session: Uncertainty quantification and propagation   

14:17-14:34 h A convex optimisation-based approach to detect and  

estimate manoeuvres - L. Pirovano, R. Armellin  

14:34-14:51 h Assessment of uncertainty propagation techniques to study the topology of the space resident population
M. Romano, T. Carletti, A. Lemaitre, J. Daquin 

14:51-15:08 h Cislunar Space Domain Awareness: Improved 
characterization and uncertainty quantification
P. Machuca, A.J. Rosengren 

15:08-15:25 h Combining Taylor polynomials and multifidelity dynamics  
for the efficient propagation of uncertainties in orbital 
mechanics - A. Fossà, R. Armellin, E. Delande, 
M. Losacco, F. Sanfedino 

15:25-15:42 h Non-linear Set Propagation with Generalised Equinoctial 
Orbital Elements - M. Hallgarten La Casta, 
L. Sánchez Fernandez-Mellado, D. Amato, M. Vasile 

15:45-16:05 h Coffee break 

Session: Mission design 

16:05-16:22 h Disposal Options below the GEO protected region (VIDEO)
D.K. Skoulidou, S. Lemmens 

16:22-16:39 h Preliminary analysis of an active debris removal mission 
for large constellations: A Constraint Programming  
methodology - A. Barea, J. L. Gonzalo, C. Colombo, 
H. Urrutxua 

16:39-16:56 h GPU-assisted search for low-cost transfers between  
 whiskered tori, with applications to resonance transfers 
 in a restricted 4-body model - B. Kumar, R. Anderson, 
R. de la Llave 

16:56-17:13 h  Shape-based low-thrust trajectory optimization enhanced 
 via orthogonal functions, collocation and regularization
S. Cuevas del Valle, H. Urrutxua, P. Solano-López

17:13-17:30 h Orbit Transfer using Theory of Functional Connections  
via change of variables (VIDEO)
A. Kardec de Almeida Junior, A. F. B. A. Prado, D. Mortari 

17:30-17:47 h On optimal trajectories of solar sails (VIDEO)
A. Herasimenka

21:00-23:55 h Cocktail and Gala Dinner at Delicatto Restaurant 
Bus: · 20:30 h - AC Hotel La Rioja 

· 20:40 h - Fuente de Murrieta 

Session: Resonances and chaos 

16:30-16:47 h iochroma asteroid family resonance perturbations (VIDEO) 
A. Rosaev 

16:47-17:04 h A detailed dynamical model for inclination-only dependent 
lunisolar resonances. Effects on the ”eccentricity growth” 
mechanism - E. Legnaro, C. Efthymiopoulos  

17:04-17:21 h An Arnold diffusion mechanism for the Galileo satellites
A. Pousse, M. Giralt, I. Baldomá, M. Guardia, E.M. Alessi 

17:21-17:38 h Fourier Expansion of the $J_2$ Potential as a Prelude to 
Resonant Orbit Control Theory - N. Nailhot, P. Gurfil   

17:38-17:55 h Lagrangian Descriptors for global dynamics (VIDEO)
J. Daquin, R. Pedenon-Orlanducci, M. Agaouglou, 
G. Garcıa-Sanchez, A. M. Mancho 

17:55-18:12 h Low energy interplanetary trajectories using multiple 
gravity assists - M. Werner, S. Ross  

18:12-18:29 h Lunar mean-motion and secular resonances
A. J. Rosengren, Di Wu, L. Dell'Elce  

Thursday, June 23, 2022 

9:00-9:35 h Plenary. A natural perturbation treatment of the Molniya  
orbital behavior, based on the TLE data set - E. M. Alessi  

Session: Hybrid and statistical methods 

9:35-9:52 h Improving the force model of SGP4 using Neural Network
H. Carrillo, E. Segura, R. López, J. F. San-Juan

9:52-10:09 h Apply the hybrid orbit propagator to the association 
problem in the GEO region 
J. F. San-Juan, R. López, C. Yanez, M. Higueras 

10:09-10:26 h Manoeuvre detection based on S3TSR data
R. Vazquez, J.M. Montilla, J. C. Sanchez, 
J. Galan-Vioque, J. Rey, J. Siminski 

10:30-10:45 h Coffee break  

Session: Collision probability computation 

10:45-11:02 h Analysing transport phenomena in orbital conjunctions 
R. Molina, G. Escribano, M. Sanjurjo-Rivo 

11:02-11:19 h  Astrodynamical methods for collision avoidance automation
J. Siminski, K. Merz, V. Schaus 

11:19-11:36 h Automation of the collision risk management from
conjunction data message reception up to the decision- 

 making - A. Petit, R. Lucken, S. Redel, F. Deleflie, 
V. Morand, F. Laporte 

11:36-11:53 h Covariance determination for uncertainty realism in  
collision probability estimates
A. Cano, A. Pastor, E. Arias, D. Sáez, J. Míguez, 
M. Sanjurjo-Rivo, D. Escobar 

PROGRAMME 

Wednesday, June 22, 2022 

9:00-9:15 h Reception  

9:15-10:00 h Opening ceremony 

10:15-10:50 h Plenary. Long-term numerical propagation for earth  
orbiting satellites - D. A. Vallado  

10:50-11:15 h Coffee break  

Session: Analytical, semi-analytical, and numerical  
propagation methods 

11:15-11:32 h  Bringing in break-up events within a space objects  
catalogue - A. Pastor, J. Siminski, G. Escribano,  
M. Sanjurjo-Rivo, D. Escobar

11:32-11:49 h Efficient Numerical Solution of the Low-Thrust  
Lambert's problem - L. Dell'Elce, A. J. Rosengren  

11:49-12:06 h Flyby dynamical characterisation with Jacobian 
eigenvalues - A. Masat, C. Colombo, A. Boutonnet 

12:06- 2:23 h Semi-analytical propagation of NEO binaries: the history  
of the Janus mission targets 1991 VH and 1996 FG3
O. Fuentes-Muñoz, A. Meyer, D. J. Scheeres 

12:23-12:40 h  Single-averaged analytical model for low-thrust  
collision avoidance manoeuvres
J. L. Gonzalo, C. Colombo 

12:40-12:57 h Dynamics of a Close Earth Satellite by Picard Iterations
M. Lara 

13:00-14:20 h Lunch time 

Session: Perturbation theory

14:30-14:47 h Statistical analysis of the long-term dynamical  behavior 
of uncontrolled geostationary satellites near an unstable  
equilibrium point (VIDEO)  
R. Flores, M. Pontani, E. Fantino 

14:47-15:04 h Improving long-term special perturbations efficiency for  
Low Earth Orbits - D. Amato, D. A. Vallado  

15:04-15:21 h Simultaneously Quasi-Critical and Quasi-Heliosynchronous 
Orbits - R. Vilhena de Moraes, M. L. Galhego da Costa,  
A. F. B. A.Prado, J. P. S. Carvalho  

15:21-15:38 h Semi-analytical computation of center-stable and 
center-unstable manifolds in the geostationary belt
M. Barcelona, À. Haro, J-M. Mondelo 

15:38-15:55 h Validation of GTDS and DSST Standalone versions  
against precise orbit ephemerides
P. Cefola, J. Stratford, R. López, J. F. San-Juan 

15:55-16:12 h Remarks on The Super-integrability of Dynamical 
Systems - V. Martinusi  

16:15-16:30 h Coffee break 



Plenary: 

DAVID A. VALLADO 
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Session 1: 

ANALYTICAL, SEMIANALYTICAL, 
AND NUMERICAL PROPAGATION 

METHODS 
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Bringing in break-up events within a space objects catalogue

Alejandro Pastor∗1, Jan Siminski†2, Guillermo Escribano‡3, Manuel Sanjurjo-Rivo§3, and Diego Escobar¶1

1GMV, 11 Isaac Newton, 28760 Tres Cantos, Madrid, Spain
2Space Debris Office, Robert-Bosch-Straße 5, 64293 Darmstadt, Germany

3University Carlos III of Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain

1 Introduction

The 18th Space Defense Squadron (SDS) maintains
one of the most complete and publicly available cata-
logue of space objects. It is published on Space-Track
[1] and contains more than 25,000 objects of which
more than half are classified as fragmentation debris.
With the improvements in the Space Surveillance and
Tracking (SST) sensor technologies, it is expected a
significant increase in complexity of catalogue build-
up and maintenance activities.

Break-up events represent the dominant source of
objects in space catalogues. The number of such
events includes explosions, collisions or anomalous
events resulting in fragmentation and is estimated to
be higher than 630 known events until now [2]. The
contribution of each event towards the overall space
objects population is complex and diverse. Two of
the most massive events, involving a number of frag-
ments in the order of the thousand are the Fengyun
1C anti-satellite weapon test in 2007 and the acciden-
tal collision of Cosmos 2251 and Iridium 33 in 2009,
accounting for over 30% of all catalogued space ob-
jects until December 2021. In 2021, three main break-
up events happened: the failure of NOAA 17 (10th
March), an accidental collision of YunHai 1-02 with a
small mission-related debris object (18th March) and
the destruction of Cosmos 1408 in an anti-satellite
weapon test (15th November). As of today, the num-
ber of detected and catalogued fragments by the 18th
SDS associated to these events is 115 (1 decayed), 37
(4 decayed) and 1561 (243 decayed) objects respec-
tively [1].

The early detection of the fragments generated dur-
ing these irregular events, almost four per year on
average over the last decade, poses a complex chal-
lenge for space objects catalogue build-up and main-
tenance processes. Fragments are a dense cloud of
debris, making the identification of individual objects
difficult. Then, a trade-off between detection time

∗Email: apastor@gmv.com
†Email: jan.siminski@esa.int
‡Email: guescrib@ing.uc3m.es
§Email: msanjurj@ing.uc3m.es
¶Email: descobar@gmv.com

and reliability arises, where time favours the spread-
ing of the objects along the orbit, thus reducing the
probability of false associations and the uncertainty
of the estimated trajectories. Latter step could be
performed when sufficient data is available. However,
the provision of Space Situational Awareness (SSA)
products and services during the few first days af-
ter a break-up event can be crucial to avoid colli-
sions between the fragments and other space objects,
particularly in highly congested regimes, as in Low
Earth Orbit (LEO). Reducing the time required to
establish the trajectories of the fragments may en-
able the execution of collision avoidance manoeuvres
of operational satellites with manoeuvre capabilities,
and analyse potential collision cascade events which
may endanger the space environment. The evolution
of the cataloguing process of the fragments from Cos-
mos 1408 is a clear example of this complexity: 185
fragments detected and catalogued two weeks after
the event (1st December), 718 the next month (903
total as of 1st January) and 494 the month follow-
ing that (1397 total as of 1st February) [9]. Figure 1
[6] shows the number of tracked fragments for which
orbit data was published on Space-Track [1].

Figure 1: Cosmos 1408 debris fragments tracked to
date [6].

This work tackles the whole cataloguing process af-
ter a break-up event, starting from a catalogue with
no fragments from the fragmentation under-analysis,
and until a well-established orbit is obtained for all
the fragments. The procedure makes use of a ground-

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        9 
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based radar sensor network, as well as the subsequent
maintenance of the orbits. Association and catalogue
maintenance performance is analysed on a time ba-
sis. This includes the confusion matrix evolution (true
positives, false positives, and false negatives) during
both the track-to-track and track-to-orbit association,
as well as the accuracy of the estimated trajectories of
the fragments. The considered metrics aim at evalu-
ating the robustness and efficiency of the framework,
conceived for real operational environments. Results
include the distributions of the figure of merit of the
hypotheses during the association processes. The as-
sociation process is formulated as a function of orbital
elements, association time and time since the break-
up, among other attributes identified specific to frag-
mentation events. In addition, the temporal evolution
of the accuracy of the catalogued orbits is evaluated
and discussed, along with their corresponding uncer-
tainty.

2 Simulated dataset

Given the lack of publicly available sensing data about
the Cosmos 1408 break-up event, the population of
fragments have been simulated. Since the first anal-
yses on the resulting debris cloud suggested a distri-
bution of fragments not matching the National Aero-
nautics and Space Administration (NASA) Standard
Breakup Model (SBM) [5], we have used publicly
available Two Line Elements (TLEs) [1] to simu-
late the fragments trajectory. Firstly, Cosmos 1408
TLE data was fitted to obtain a state vector at the
pinch point (15th November 2021 at around 2:50 UTC
[4, 3]). Secondly, the delta-v of each of the fragments
(with respect to the parent object state at the pinch
point) was obtained using TLE data as observations.
Thirdly, trajectories of all the fragments were ob-
tained by propagating the previously obtained states
with a high-fidelity dynamical model. The resulting
fragments’ trajectories distributions and its consisten-
cies are compared against NASA SBM and publicly
available Gabbard plots. Finally, observations from a
ground-based sensor network are simulated, including
standard known sensor measurement noises.

3 Methodology

The simulated observations, packed as tracks, are
provided to an operational multi-sensor multi-target
track-to-track association framework [8] in charge of
grouping tracks belonging to the same objects. In
this context, a hypothesis, H, represents an associa-
tion of N tracks, {Ti}i=1, ...,N , assumed to have been
originated from a common object. To resolve the am-
biguity, particularly shortly after the event, hypothe-
ses are generated, scored, pruned, and promoted, as
shown in Figure 2 [8], leading to the initialisation of

new objects in the catalogue. These steps include sev-
eral gating and complexity reduction techniques to fil-
ter out most of the false hypotheses and thus avoid a
brute-force approach.

Generation

New tracks

Scoring

PruningPromotion

SENSOR 
NETWORK

CATALOGUE

New objects

Non-promoted 
hypotheses

(Merging)

Figure 2: Steps of the track-to-track association
methodology [8].

The generation step is in charge of creating new
hypotheses by combining two already existing ones.
Therefore, from two hypotheses of N tracks, HA and
HB , a new one, HA∪HB , of N+1 tracks is generated,
i.e.:

HA ∪HB =

{
N−1⋃
k=1

Tk

}
∪ {TA,N} ∪ {TB,N}

Tk = TA,k = TB,k ∀k = 1, . . . , N − 1

(1)

where Tα,k is the k-th associated track of Hα. Note
that according to the condition imposed before on the
number of tracks of the new hypothesis, it is required
that HA and HB have all but one track (N -th) in
common.

Not all possible track combinations are considered
during hypotheses generation since it would lead to a
computationally unaffordable growth of the hypothe-
ses tree. The following gating criteria are considered
in this step:

1. Lower bound time span: the time span between
the associated tracks must be higher than a cer-
tain fraction of the average orbital period, to

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        10 
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avoid associating tracks that are not sufficiently
spaced in time (undesirable situation in terms of
orbit observability).

2. Upper bound time span: the time span between
the associated tracks must be lower than certain
number of days to avoid dynamical model mis-
matching.

3. Estimated state difference: the difference be-
tween the estimated states is evaluated to avoid
combining two associations that clearly belong to
different orbital regions.

The figure of merit used for the scoring of a hy-
pothesis consists in the difference between the actual
observations, z, and the a-posteriori computed ob-
servations, ẑ, projected on the a-priori measurement
covariance P 0

z [8], i.e.:

d2 (H) =
1

|H|
∑
T ∈H

1

|T |
∑
z∈T

(z − ẑ)
T (

P 0
z

)−1
(z − ẑ)

(2)
where P 0

z is the a-priori covariance of the mea-
surements, a diagonal matrix containing the squared
sigma of the expected noise of each measurement of
the corresponding observation, assumed to be zero-
mean Gaussian, and |·| denotes cardinality. Note that
this figure of merit is a reduced chi-squared statis-
tic (when the number of observations is much greater
than the number of estimated parameters) and can
also be seen as a Mahalanobis distance but evaluated
in the measurement space rather than in the orbit
space and projected in the a-priori covariance space.
This figure of merit is used for hard decisions, such
as hypothesis pruning (upper-bound threshold) and
hypothesis promotion (lower-bound threshold).

This work follows [7] but considering radar instead
of optical sensors and thus, a more challenging sce-
nario from the cataloguing point of view given the
greater number of fragments and dynamical model
complexity: LEO instead of Geostationary Earth Or-
bit (GEO). Besides, not only the catalogue build-up
process is tackled but also the maintenance counter-
part. To do so, once the fragments are detected and
catalogued, we correlate incoming tracks with the or-
bits via track-to-orbit association and update the es-
timated trajectory via orbit determination. This alle-
viates the track-to-track association and enables the
update of the orbital estimates, required for maintain-
ing the catalogue.

Finally, the use of dynamical models of varying fi-
delity, including analytical, semi-analytical and nu-
merical propagators, during the track-to-track asso-
ciation, track-to-orbit correlation and orbit determi-
nation processes is investigated to enable a real-time
capability while not jeopardising the accuracy of the
final SSA products.
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Abstract

An algorithm for the numerical solution of low-thrust
Lambert’s problem is proposed. After averaging the
extremal flow of the optimal control Hamiltonian,
a one-parameter family of reduced-order two-point
boundary value problems is solved. Sensitivities of the
shooting function are then used in conjunction with
an ad hoc near-identity transformation between aver-
aged and osculating variables to achieve an accurate
solution for all longitudes of the departure and arrival
orbits. Hence, a single simplified shooting problem
has to be solved to approximate the solution for any
combination of departure and arrival dates (i.e., to
draw a pork chop chart). Both the averaged flow and
the near identity transformation are efficiently evalu-
ated via the fast Fourier transform algorithm, yielding
a fully numerical procedure.

1 Introduction

Lambert’s problem in its classical form consists in
finding a Keplerian orbit joining two position vectors
in a given transfer time. Solutions of this problem
are extensively used for preliminary mission design
since they offer the identification of launch opportu-
nities and a rough evaluation of their cost by assum-
ing impulsive maneuvers at the two boundary points.
Specifically, pork-chop charts are maps of ∆V as a
function of departure and arrival dates generated by
recursively solving Lambert’s problems. Recent in-
terest was brought to the low-thrust counterpart of
the problem. Because impulsive maneuvers are not
allowed, the entire state vector is imposed at the two
boundaries. Differently of the original problem, no ex-
act closed form solution is available, so that assump-
tions on the shape and thrust direction are introduced
to achieve efficient solutions [1] [2]. Equivalent of pork
chop charts for low-thrust problems are referred to as
bacon plots [3].

In our view, two problems need to be addressed
when tackling low-thrust transfers on a fixed maneu-
vering time. First, minimum thrust magnitude neces-

∗Email: lamberto.dell-elce@inria.fr.
†Email: ajrosengren@eng.ucsd.edu.

sary to carry out the maneuver has to be identified.
Second, once a sufficiently-large thrust is chosen, min-
imum energy maneuvers can be found. This talk fo-
cuses on the first problem. A numerical methodology
based on the averaging of the extremal flow of the op-
timal control system [4] is proposed. First, a reduced-
order solution of the averaged Two-point boundary
value problem (TPBVP) parametrized by the costate
of the fast variable is solved. This step requires the
solution of a single shooting problem followed by a
numerical continuation procedure. This problem is
independent of the thrust magnitude. The second
step consists in identifying the costate of the fast vari-
able (which is an integral of motion for the averaged
system) for the desired boundary conditions. This is
achieved by imposing a first-order conservation of the
Hamiltonian at the two boundaries. Third, sensitiv-
ity of the shooting functions are computed. Finally,
the thrust magnitude is identified by reconstructing
a first-order approximation of the fast variables from
the averaged solution.

2 Low-thrust Lambert’s problem

Denote by I a set of integrals of motions of the two
body problem (specifically, we use equinoctial ele-
ments) and by ϕ ∈ S1 the mean longitude. Hereafter,
I and ϕ are referred to as slow and fast variables, re-
spectively. Let t0 and tf be the desired departure and
arrival dates. We are interested in finding the mini-
mum thrust magnitude, ε, necessary to carry out the
transfer between two Keplerian orbits with elements
(I0, ϕ(t0)) and (If , ϕ(tf )) in a time tf − t0. The op-
timal control problem that we tackle is

min ε subject to:

d I

d t
= ε

m∑
i=1

f i(I, ϕ)ui

dϕ

d t
= ω(I) + ε

m∑
i=1

gi(I, ϕ)ui

I(t0) = I0, ϕ(t0) = ϕ0

I(tf ) = If , ϕ(tf ) = ϕf

‖u‖ ≤ 1 ∀ t ∈ [t0, tf ]

(1)
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where m = 3, and u is the control variable taking
values in the unit sphere of Rm. Vector fields f i and
gi are periodic with respect to the fast variable, and
they are deduced by the Gauss variational equations
(GVE) of the orbital elements set at hand.

The pre-Hamiltonian of Problem (1) is defined as

H′ = pϕ ω(I) + ε
m∑
i=1

[pI · f i(I, ϕ) + pϕgi(I, ϕ)]ui

(2)
where pI and pϕ denote adjoints of slow and fast vari-
ables, respectively. Application of Pontryagin maxi-
mum principle (PMP) yields the control action of the
extremal flow u∗(I, ϕ,pI , pF ), namely

u∗ = arg max
‖u‖≤1

H′ (I, ϕ,pI , pϕ, ε,u) =
H

‖H‖

where the i-th component of H is Hi = pI ·f i(I, ϕ)+
pϕgi(I, ϕ). Replacing u∗ into Eq. (2) yields the
Hamiltonian of the extremal flow:

H = pϕ ω(I) + εK(I,pI , ϕ, pϕ)

where K := ‖H‖. Transversality conditions are such
that adjoints are free at both t0 and tf , so that nec-
essary conditions for the optimality of Problem (1)
are satisfied by finding a zero of the shooting function
S(pI(t0), pϕ(t0), ε) defined as

S(pI(t0), pϕ(t0), ε) =

 I∗(tf )− If
ϕ∗(tf )− ϕ(tf )
‖pI(0)‖ − 1


where I∗(tf ) and ϕ∗(tf ) denote trajectories of I and
ϕ emanated by H with initial conditions I0, ϕ(t0),
pI(t0), pϕ(t0), and small parameter ε. The last equa-
tion of S is an arbitrary normalizing condition due to
the homogeneity of H with respect to adjoints.

3 Averaged problem

States and adjoints are decomposed as

I = J + ενI(J ,pJ , ϕ)

pI = pJ + ενpI (J ,pJ , ϕ)

ϕ =
ψ

ε
+ νϕ(J ,pJ , ϕ)

pϕ = ε
(
pψ + νpϕ(J ,pJ , ϕ)

)
Hereafter, J and pJ are referred to as averaged state
and adjoint, and ν· denote short periodic variations.
The adjoint pψ is well defined when ε approaches zero
as discussed in [4].

3.1 Averaged shooting problem

The averaged Hamiltonian is defined as

H = ω(J)pψ +
1

2π

∫ 2π

0

K(J ,pJ , ϕ, 0) dϕ

Rescaling time as dτ = εdt yields the averaged
shooting function

S(pJ (0), τf |J0,Jf , pψ) =

[
J∗(τf )− Jf
‖pJ (0)‖ − 1

]
(3)

We note that Problem (3) is independent of both ε
and ψ. The notation S(J(0), τf |J0,Jf , pψ) is intro-
duced to emphasize that J(0) and τf are shooting
variables, whereas J0, Jf , and pψ are parameters.

3.2 Short-periodic variations

Short-periodic variations of slow variables, νI , and of
adjoints, νpI , νpϕ are obtained by solving

ω (J)
∂ νI

∂ ϕ
=
∂ K

∂ pI
− ∂ K

∂ pI

ω (J)
∂ νpI

∂ I
= −∂ K

∂ I
+
∂ K

∂ I
− ∂ ω

∂ I

∣∣∣∣
J

νpϕ

ω (J)
∂ νpϕ
∂ ϕ

= −∂ K
∂ ϕ

+
∂ K

∂ ϕ∫ 2π

0

νI dϕ =

∫ 2π

0

νpI dϕ =

∫ 2π

0

νpϕ dϕ = 0

Denote by [f ]k the k-th coefficient of the Fourier series
of a function f , and by i the imaginary unit. The
formal solution of Eq. 3.2 is

νI = − i

ω(J)

∑
k∈Z0

1

k

[
∂ K

∂ pI

](k)
∂ ω

∂ I
eikϕ

νpI =
i

ω(J)

∑
k∈Z0

1

k

{[
∂ K

∂ I

](k)
− [K]

(k) ∂ ω

∂ I

}
eikϕ

νpϕ = −K (J ,pJ , ϕ, 0)−K (J ,pJ )

ω(I)

We note that νpϕ establishes a first-order equiva-
lence between the original and averaged Hamiltoni-
ans. Short-periodic variations can be efficiently eval-
uated by means of the fast Fourier transform (FFT).

4 Algorithm for the generation of bacon plots

We propose an algorithm for the generation of first-
order solutions of Problem (1).

1. Solve the average problem

∀ pψ ∈
[
pminψ , pmaxψ

]
find pJ

pψ
0 , τ

pψ
f s.t.:

S
(
pJ

pψ
0 , τ

pψ
f |I0, If , pψ

)
= 0

We note that the same initial conditions of the
osculating problem are used. After finding the
solution for pψ = 0, a numerical continuation
scheme can be used.
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2. Find compatible adjoint of fast variable

find pψ s.t.:

νpψ
(
I0,pJ

pψ
0 , ϕ(t0)

)
= −pψ,

νpψ

(
I0,pJ

(
τ
pψ
f

)
, ϕ(tf )

)
= −pψ,

3. Compute sensitivities

find δτf , δpJ0, δ∆ψ s.t.:

∂ S

∂ τf
δτf +

∂ S

∂ pJ
δpJ = − ∂ S

∂ pJ0

δpJ0 −
∂ S

∂ Jf
δJf

δ∆ψ =
∂∆ψ

∂ τf
δτf +

∂∆ψ

∂ pJ0

δpJ0 +
∂∆ψ

∂ J0
δJ0

where δJ0 and δJf are evaluated by means of
the near-identity transformation as

δJ0 = −νI
(
I0,pJ

pψ
0 , ϕ(t0)

)
,

δJf = −νI
(
If ,pJ

(
τ
pψ
f

)
, ϕ(tf )

)
.

4. Identify minimum ε

Find ε s.t.:

mod

(
∆ψpψ

ε
, 2π

)
= ϕ(tf )− ϕ(t0)− δ∆ψ

(4)

We stress that all steps only use the average sys-
tem and the near-identity transformation. The small
parameter, ε, only appears at the left-hand side of
Eq. (4), whereas the right-hand side is independent of
ε.

Recursively evaluating the algorithm for various de-
parture and arrival dates allow to generate pork-chop
charts of the minimum thrust force necessary to carry
out the maneuver.

Concerning the complexity of the methodology:
Step 1 implies first the solution of one average prob-
lem for pψ = 0 (this is the only shooting problem that
has to be solved without a priori knowledge). Then,
differential continuation can be used to obtain the so-
lution in the range

[
pminψ , pmaxψ

]
. Step 2 involves the

zero search of algebraic equations. Step 3 requires the
solution of (n+ 1)-dimensional linear systems.
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1 Introduction

The detection of flybys in the numerical propagation
of interplanetary trajectories is a key aspect to en-
able planetary protection analyses. Their much faster
dynamics, compared to the pure heliocentric motion,
hinders the development of advanced orbital integra-
tors: regularisation-based approaches and variation of
parameters implementations are extremely sensitive
on close approach events, and may fail in correctly
predicting their effect on the propagated trajectory.
Switching the integration/regularisation centre to the
flyby body in case of close approaches is an effec-
tive workaround to retain all the benefits of advanced
propagation techniques [1]. Nonetheless, this philos-
ophy requires to properly define and, consequently,
detect possible flyby events.

The commonly used concepts all rely on the defi-
nition of a spherical region that surrounds any solar
system planet. In general, the stronger the gravita-
tional field of the minor body, the larger its associated
sphere. Sphere of influence (SOI) and Hill’s sphere
are the two usually adopted definitions. The former
approximates the distance from the minor body where
either the planet or the Sun can be considered as a
perturbation of the other dynamics. The latter ap-
proximates the distance of the Lagrange points L1

and L2 from the planet [3]. Differently from these
definitions, Debatin et al. [2] used the eigenvalues of
the dynamics’ Jacobian to measure the relative mag-
nitudes of the contribution of the different bodies in
an N-body system, and used it as robust step control
mechanism. Similarly, Romano [5] used this criterion
to detect flybys in planetary protection analyses.

This work analyses flybys from a different perspec-
tive. Rather than building on a concept based on equi-
librium distances, the dynamical nature of the close
approach is emphasised. The eigenvalues of the three-
body problem dynamics’ Jacobian leads to an analyti-
cal solution for a spheroidal locus of points that locally

*Email: alessandro.masat@polimi.it. PhD Candidate, De-
partment of Aerospace Science and Technology.

�Email: camilla.colombo@polimi.it. Associate Professor,
Department of Aerospace Science and Technology.
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highlights which body is contributing the most to the
dynamics variation. The results are also compared
against the Circular Restricted Three-Body Problem
(CR3BP) zero-velocity curves concept.

2 Jacobian eigenvalues for flyby detection

The dynamics’ Jacobian is traditionally linked to the
step size control for general numerical simulations.
In particular, the maximum eigenvalue influences the
stability of the numerical scheme [4]. Contrarily to
predictor-corrector integrators (e.g. the Runge-Kutta
family), the knowledge on the dynamics Jacobian is
exploited to minimise the truncation error. In the or-
bital dynamics case, the work of Debatin et al. [2]
used an analytical approximation of the maximum
Jacobian eigenvalue of the N-body dynamics, build-
ing a fast integration algorithm with step size control.
They approximate the square of the maximum Jaco-
bian eigenvalue λ2

max as the sum of the squares of all
the separate two-body Jacobian eigenvalues:

λ2
max ≈

N∑
i=1

λ2
i =

N∑
i=1

2µi∣∣r− ri
∣∣3 (1)

with the subscript i denoting the i-th body, r the
position and µi the gravitational parameter. This ap-
proximation becomes particularly reliable far from the
boundaries of any sphere of influence/Hill’s sphere,
since in these regions either the Sun or the planet
flown by heavily dominates the dynamics.

The later work of Romano [5] used a similar ap-
proximation approach to implement a flyby detection
criterion. If the ratio between the eigenvalues of a
given planet and the Sun grows above a user-specified
tolerance, then a flyby event is detected. Romano
also showed that this criterion encompasses the usu-
ally defined sphere of influence/Hill’s sphere, in the
case of threshold set equal to 1.

3 Dynamical meaning in the Three-body problem

The barycentric three-body Jacobian J is defined as:

J =

[
0 I
G 0

]
(2)
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with 0 and I the 3 × 3 null and identity matrices,
respectively, and G defined as:

G =
2∑

i=1

Gi =
2∑

i=1

µi∣∣di|5
(
|di

∣∣2I− 3did
T
i

)
(3)

with di = r − ri. It can be proved that, in the two-
body case, λj,J ≡ λ2

j,G, with j = 1, 2, 3, and λ2
max,G

is defined as in Equation (1) [5]. λ2 appears only
on the right-hand side because the properties of the
determinant of block-square matrices are introduced
to compute the eigenvalues of J.
Approximating the dynamics as if only the cur-

rently dominant body 1 was present reflects on the
approximated Jacobian as G ≈ G1. The matrix Ja-
cobian error becomes equal to G2. Since any Gi is
symmetric (Equation (3)), its euclidean matrix norm
equals its spectral radius, i.e.

∣∣Gi

∣∣
2

≡ ρ
(
Gi

)
≡

λmax,Gi
. In other words, the maximum eigenvalue

of G2 directly measures the error of G ≈ G1.
The color scale in Figure 1 shows the maximum

Jacobian error values in the space near Jupiter, i.e.
max

[
λmax,Sun/λmax, λmax,Jup/λmax

]
, on the plane

containing Jupiter’s orbit about the Sun. Rather than
crossing a fixed-shape spheroid, the proposed visuali-
sation highlights the smooth transition nature of fly-
bys. Even if fast, the whole continuous domain is
crossed, starting from the interplanetary space, pass-
ing through a region where none of the two bodies
dominates the gravitational acceleration change, and
finally reaching a far greater planetary effect at low al-
titudes. Two higher error regions, called ”Thickened
regions” in Figure 1, appear nearly perpendicularly
to the Sun-Jupiter direction. The possible reason of
their appearence is explored in Section 5.

Figure 1: Jupiter’s Jacobian percent error (color
scale), compared against Hill’s surfaces (dotted) and
SOI (dashed).

Equivalently, this criterion highlights the highest

curvature regions of the three-body gravitational po-
tential V = −µ1/

∣∣d1

∣∣−µ2/
∣∣d2

∣∣, since it can be proved
that G ≡ Hessian(V ). In other words, the space re-
gions determining a flyby may be identified by the
local curvature of the gravitational potential.

4 Analytical loci of points

Replacing the G,J subscript notation with the body
names, a direct comparison can be made with the
parametrisation λmax,Jup/λmax,Sun = γ. As done
in Figure 1, centering the reference frame on Jupiter
leads to an analytical expression for the spheroidal
loci with common γ, whose radius r̃ is:

r̃(θ) = rSun−Jup

−α cos θ +
√
α(1− α sin2 θ)

1− α
(4)

with θ the angle between the direction of r̃ and the
direction identified by the line connecting the Sun and
Jupiter, and α = (γµJup/µSun)

2/3. The 2/3 exponent
arises because of the third power of the eigenvalue
expression (Equation (1)), and a squaring taken to
remove the square root of the vector norm operator.

Figure 2 extends Figure 1, comparing the analytical
loci of points obtained with Equation (4) against the
computed values of the Jacobian error (on the color
scale), for γ equal to 0.1, 1, and 10. The cases γ =
0.1, 10 (dashed red lines) well bound the regions where
the Jacobian approximation error is higher than 10%.
Thickened regions aside, the case γ = 1 (solid red
line) perfectly predicts the ”critical” distances where
the error is maximised.

Figure 2: Jupiter’s Jacobian percent error (color
scale), compared against Hill’s surfaces (dotted), SOI
(dashed), and analytical loci of points (red).

The ”critical” spheroid (parametrised by γ = 1)
can be used as robust flyby detection criterion, assess-
ing if and when a propagation crosses that boundary,
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aiming to the minimisation of the truncation error in-
troduced by the interrupted integration. In fact, for
the Sun-Earth case this distance falls within the min-
imum error range identified by Amato et al. [1].

5 Visualisation in the CR3BP

The CR3BP provides further insight on the nature
of the thickened regions observed in Figures 1 and
2. Figure 3 shows the perfect alignment of the
zero-velocity surfaces, plotted as grey/shadowed ar-
eas, with the Jacobian error, on the plane containing
Jupiter’s orbit about the Sun. The red lines repre-
sent different values of γ, equal to 1 (solid), 0.1 or
10 (dotted) and 0.01 (dashed). The selected Jacobi
constant to plot the zero-velocity surfaces was only
chosen to highlight their alignment with the thick-
ened regions, without particular meaning. On the
zero-velocity curves the kinetic energy content of the
test particle, the centrifugal reaction due to the non-
inertial rotating frame, and the gravitational attrac-
tion of both bodies all balance out. Simplifying the
dynamical model along this curves may become inac-
curate, particularly if close to the Hill sphere bound-
aries, as highlighted by the thickened error regions.
In other words, the mutual effect of the two bodies on
how the dynamics changes is more prominent along
the zero-velocity surface direction, on a wider region
than the sole ”critical spheroid”.

Figure 3: Jupiter’s Jacobian percent error (color
scale), compared against Hill’s surfaces (dotted), SOI
(dashed), analytical loci of points (red), and zero-
velocity surfaces (grey/shadowed).

6 Conclusion

This work proposes a flyby characterisation approach
that accounts for the dynamical nature of the en-
counter, focussing on the changes on the dynamics

caused by the body flown by. The actual smooth
transition of the motion from interplanetary to plan-
etary is also modelled, highlighting regions of space
where none of the two body is clearly dominating, and
approximating the dominance that each body has in
each point of the planet neighbourhood.

Apart from the regions nearby the critical distance
and along the zero-velocity curves, the proposed para-
metric analytical model accurately predicts the loci of
points of common Jacobian error. Setting the param-
eter equal to 1 allows the use of the ”critical” spheroid
as robust flyby detection criterion. Additionally, fu-
ture works will analyse whether this criterion is also a
suitable approach to improve the characterisation of
shallow encounters.

Deeper details on the model will be given in the
oral presentation, as well as further insight on the
comparison with the CR3BP regime and the relation
with zero-acceleration saddle points.
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Abstract

The orbits of small bodies in the Solar system ex-
perience fast changes during planetary encounters
and slowly evolve under secular long-term perturba-
tions. We present a semi-analytical propagation tool
that combines the two effects into a single simulation
framework for rapid, long-term propagation of small
bodies in the inner solar system. The perturbed ana-
lytical propagation is interrupted to numerically solve
the detected planetary close encounters. The orbits
of binary asteroids are sensitive to the perturbation
of planetary close encounters. Thus, we study the
orbital history of binary asteroids (35107) 1991 VH
and (175706) 1996 FG3, that will be visited by the
NASA SIMPLEx mission Janus in 2026. As a result
we obtain statistics of the close encounters that could
disrupt the relative orbit of the binaries along their
history.

1 Introduction

The study of primitive bodies in the solar system can
provide an understanding of the formation and evo-
lution of the solar system. The Near-Earth Object
(NEO) population provides a unique opportunity to
investigate and understand these processes, as they
have been transported close to Earth from their pre-
vious lives in the main asteroid belt. This interest has
led agencies around the world to promote a number
of past [1, 2], present [3] and future NEO exploration
missions[4] like mission Janus, that will visit NEO bi-
naries (35107) 1991 VH and (175706) 1996 FG3[5].

The long term evolution of NEOs is driven by their
secular interaction with the planets of the solar sys-
tem and close planetary encounters[6]. We develop a
semi-analytical propagation tool that combines secu-
lar perturbation solutions and the detection and solu-
tion of planetary encounters. Once a close encounter
is detected, the variation in the heliocentric elements
of the asteroid is computed numerically. The vari-
ation is computed by a quadrature of the Lagrange
Planetary Equations in which we assume the unper-
turbed trajectory of the flyby in the dynamics. Then,

∗Corresponding Author: oscar.fuentesmunoz@colorado.edu

the perturbed propagation is continued until the next
encounter. As the orbit drifts in the inner solar sys-
tem close encounters are possible with different plan-
ets and in different conditions. Using an analytical
method for a large fraction of the simulation time
speeds up the propagation. In [7] we provide a thor-
ough comparison of the different elements of the sim-
ulation framework with numerical integration to val-
idate the overall statistics of long-term simulations.

At least 15% of the population of near-Earth aster-
oids are binaries, and many of them are found in a
stable state. However, close encounters can perturb
the orbit and spin state of binary systems. In this pre-
sentation we study the evolution of two binary aster-
oids: (35107) 1991 VH and (175706) 1996 FG3. Using
radar and photometry data, it was determined that
(175706) 1996 FG3 is in a stable state whereas (35107)
1991 VH is in a chaotic state [8, 9]. This chaotic state
could be explained by a planetary close encounter that
could have happened recently[10]. For this reason, we
study the long-term dynamics of the orbits of the two
targets and characterize the frequency of these dis-
ruptive encounters.

2 Semi-analytical propagation methodology

2.1 Analytical long-term dynamics

The gravitational interaction between N-bodies can
be modelled by studying the relevant terms in the
perturbing gravitational potential and solving the La-
grange Planetary Equations. The first-order solu-
tion for the secular perturbation is known as Laplace-
Lagrange theory[11]. The Laplace-Lagrange theory is
an accurate representation of the long-term motion
of the planets in the Solar System. For this reason,
this is the model chosen to track the planets over the
long-term simulations. In addition, it can be used
including only Jupiter as a solution for the secular
dynamics of NEOs.
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2.2 Planetary Close Encounters

The effect of a planetary encounter on the heliocen-
tric orbit can be computed with analytical, semi-
analytical or numerical methods. The analytical so-
lution of close encounters is obtained by mapping the
asteroid to the planetocentric frame[12, 13]. How-
ever, this approach is limited in applicability to very
close encounters and asteroids not co-moving with
the planet. Semi-analytical tools are convenient for
the resolution of distant encounters[14]. In this
work we use an integration of Lagrange Planetary
Equations[15, 7] assuming the unperturbed trajectory
of the flyby in the perturbing potential.

3 Simulation Results

3.1 Semi-analytical long-term dynamics

The chaotic nature of the orbital dynamics in the in-
ner Solar System implies that the study of the or-
bital evolution over long timescales should be done
statistically. Given the uncertainty in the orbit so-
lution of an asteroid, we can sample a large number
of particles and study the dynamical paths that the
different particles take. Because of the sensitivity to
initial conditions in planetary encounters, very well
determined distributions diverge in a few centuries
to widely different paths. We demonstrate these ef-
fects by propagation of 1000 particles that sample un-
certainty distributions around (35107) 1991 VH for
1Myrs, as shown in Figure 1.

Figure 1: 1Myr Monte Carlo semi-analytical propa-
gation of asteroid (35107) 1991 VH. Grey: individual
runs. Black: median of 1000 runs. Elements shown
are perihelion distance, eccentricity, inclination, argu-
ment of the ascending node, argument of perihelion.
Extracted from [7].

Figure 1 shows how the initially close distribution
becomes a wide statistical distribution when propa-
gated far into the past. The orbit evolution of (35107)
1991 VH is mostly a spread around the initial condi-
tions.

After a few hundred thousand years the longi-
tude of the perihelion becomes uniformly distributed,
whereas the evolutions of q,e,i are better described by
a random walk. In [7] we parametrize this models to
effectively compare the stochastics of the long-term
dynamics of the examples studied.

3.2 Binary asteroid disruption

The statistics of close encounters that are recorded
during the semi-analytical propagation can be used
to estimate the frequency in which encounters excite
the relative orbits of binary systems. The effect of an
encounter on the binary orbit can be computed ana-
lytically [16, 17]. Meyer & Scheeres, 2021[9] provided
a thorough study of the perturbation and disruption
of binary systems during planetary close encounters.

For singly synchronous binary asteroids the pertur-
bation can be studied analytically as the variation in
the Keplerian elements of the binary. The analyti-
cal expressions in [16] are used here as an estimate of
the variation as a function of the relative velocity and
distance of closest approach.

Using the results of [9] we can define thresholds on
how close and slow must encounters be to cause a cer-
tain level of excitation of the binaries. Figure 2 shows
these results as the contours in the background. We
defined low excitation as an average variation in bi-
nary eccentricity of 0.1, and high excitation the vari-
ation in eccentricity of 1, which would mean the com-
plete disruption of the binary.

Here we study two binary asteroid systems to esti-
mate the probability that they have been excited re-
cently and along their long-term histories: the targets
of the Janus mission, (35107) 1991 VH and (175706)
1996 FG. We overlap all the planetary close encoun-
ters found below 0.003au (1 LD = 0.0025au). The
Earth (blue) and Mars (red) encounters are shown in
Figure 2.

Figure 2: Potentially disruptive encounters of (35107)
1991 VH in the last 1Myr. Left: Contours of the
excitation thresholds and recorded encounters with
Mars (orange), Earth (blue). Right: probability of
excitation over the simulation time.
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If we count the encounters found below the previous
thresholds over time, we can estimate the probabilities
that these exciting encounters occurred. These results
indicate that at least a low excitation is frequent along
the orbital histories of these binaries.

4 Conclusions

Using the semi-analytical propagation tool we repli-
cate the main dynamical effects in long-term numeri-
cal integration of asteroids in the inner solar system.
We estimate which close encounters can cause signifi-
cant perturbations in the binary systems (35107) 1991
VH and (175706) 1996 FG. By sampling a large num-
ber of particles from the orbit uncertainties in both
binary systems we estimate that some disruption is
expected in a million year timescale. The damping
of these perturbations from energy dissipation will
have to be considered to better understand the cur-
rent states of the two systems.
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Abstract

Analytical models for low thrust collision avoidance
manoeuvres in Earth orbit are proposed, based on a
single-averaging of Gauss’s planetary equations over
one revolution of the eccentric anomaly. The equa-
tions are linearised in the small thrust acceleration to
separate dynamics over the tangential and normal di-
rections. A piecewise quasi-optimal thrust orientation
profile is then defined from an impulsive manoeuvre
model.

1 Introduction

The increasing market penetration of low thrust
propulsion solutions, together with the growth in
satellite traffic and debris accumulation, fosters
the need for improved tools for collision avoidance
(COLA) activities. Low thrust propulsion provides
a higher propellant efficiency at the cost of a lower
maximum thrust. This reduction in control author-
ity increases the complexity of manoeuvre design and
requires longer execution times. These aspects are
particularly challenging for COLA, because the occur-
rence of a close approach (CA) potentially requiring
to implement a collision avoidance manoeuvre (CAM)
can only be predicted with a limited warning time
(typically up to a week [1]). Furthermore, the opera-
tor will normally prefer to delay the CAM decision as
much as possible, to avoid unnecessary service disrup-
tions and propellant use in case updated conjunction
data confirms that the risk is below decision thresh-
olds. Regarding traffic increase, there is a trend to-
wards reducing operator workload through AI-based
tools to assist decision making procedures [2, 3] and
increasing the level of COLA autonomy of space-
craft [4]. One example is SpaceX’s Starlink, that
incorporates an automatic COLA system (although
little information is publicly available).

Analytical and semi-analytical CAM models can
be a powerful tool to address some of these
challenges. They provide low-computational-cost,
medium-accuracy solutions useful for preliminary risk

∗Email: juanluis.gonzalo@polimi.it
†Email: camilla.colombo@polimi.it

assessment, parametric and sensitivity analyses, ini-
tial guess generation for high-accuracy numerical
methods, and support for the training of AI and
machine learning models. In recent works, the au-
thors have proposed a series of analytical and semi-
analytical models for constant low thrust CAMs
[5, 6, 7, 8, 9]. They are based on single-averaged solu-
tions of Gauss’s planetary equations over the eccentric
anomaly, with different approaches for the recovery
of fast periodic oscillations and time law characteri-
sation. The results obtained so far demonstrate the
good performance of the tangential model when ad-
equate choices are made for the short periodic and
time law characterisation.

This work overviews the main outcomes from the
tangential model, and presents new developments for
CAMs with a generic in-plane orientation. The equa-
tions of motion are linearised for small thrust magni-
tude, allowing to separate the tangential and normal
contributions. A model for normal CAM is derived,
following the same structure of the tangential one. Al-
though for most orbital elements the solution is sim-
ple, the argument of pericentre and time law involve
several elliptic integrals that must be adequately sepa-
rated into their secular and short-period evolutions to
reach accurate and computationally efficient expres-
sions. Then, the quasi-optimal orientation of thrust is
approximated in a piecewise fashion leveraging previ-
ous impulsive CAM models. This allows to construct
a model for a low thrust CAM by separating it into a
sequence of thrust and coast arcs

2 Dynamical model

The displacement in the plane of the nominal CA
due to a low-thrust CAM is modelled as proposed
in [6, 7, 8, 9]. Particularly, the change in orbital el-
ements at the time of closest approach (TCA) is ob-
tained from Gauss’s planetary equations, and then
mapped to changes in position and velocity through
linearised relative motion equations around the nomi-
nal trajectory. This work focuses on the modelling of
the change of orbital elements α = [a, e, i,Ω, ω,M ]T

due to a generic in-plane CAM.

The evolution of α in time is given by Gauss’s plan-
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etary equations:

dα

dt
= G(α, t;at) (1)

where t is time, and at is the perturbing acceleration.
From now on, it is assumed that the only accelera-
tion present corresponds to an in-plane CAM. Fur-
thermore, for small acceleration magnitude at = |at|,
Eq. (1) can be linearised in at and the contribu-
tions from the tangential and normal components
can be treated separately, similar to the approach by
Gao [10].

2.1 Variable change and time law

For each thrust orientation, Eq. (1) is averaged over
one revolution in eccentric anomaly E. To do this, a
change of independent variable from t to E is required.
An approximate differential time law for E(t) is ob-
tained by taking the derivative of Kepler’s equation
assuming constant a and e over one revolution. While
this hypothesis on a and e is consistent with the aver-
aging procedure, numerical tests showed an important
error contribution from the time law. This is because
the angular reference for the osculating E changes due
to thrust; while this effect is not included in the dif-
ferential time law derived from Kepler’s equation, it
can be incorporating through an apse-line correction
from the osculating change in ω.

An alternative approach is to consider Gauss’s dif-
ferential equation for E. The Kepler’s-based time law
is then identified as the solution neglecting the direct
effect of thrust on E; from now on, it will be referred
to as zeroth-order time law. Using the full differential
equation for E to perform the change of independent
variable and expanding up to first order in at, the dif-
ferential equations for α remain the same as for the
zeroth-order time law, while a differential time law of
first order in at is obtained, no longer requiring the
apse-line correction.

2.2 Secular and short-periodic terms

The Gauss’s planetary equations in E for both tan-
gential and normal constant thrust can be integrated
to obtain solutions in terms of incomplete elliptic inte-
grals. However, having to evaluate special functions
at each time step has an impact on computational
cost. Instead, the single-averaged solution for α is
expressed as a secular term plus short-period oscilla-
tions. The secular terms are linear, with slopes func-
tion of complete elliptic integrals that only need to be
evaluated once for the nominal orbital elements of the
orbit. The short-period corrections are expressed as
a series expansion on the reference eccentricity, and
contain sinusoidal harmonics multiple of one revolu-
tion in E. The number of harmonics retained is a
function of the order of the expansion in eccentricity.

The decomposition into secular and short-period
terms for ω under constant normal thrust is partic-
ularly challenging, and has been performed as part of
this work. The process revealed that the expansion
of the oscillatory term scales well with eccentricity,
while the accuracy of the secular evolution degrades
rapidly if a full series expansion is considered rather
than treating it as a combination of complete ellip-
tic integrals. This supports previous findings that the
expansion in small e behaves well even for nominal
orbits in the geostationary transfer orbit (GTO) re-
gion [9].

2.3 Piecewise thrust orientation

The previous model characterises the displacement at
TCA due to a constant CAM applied for a time ∆t
before CA. By patching a sequence of thrust and coast
arcs, it is possible to model more complex, multi-
revolution CAM profiles. The orientation of at on
each thrust arc can be approximated as the impulsive
one at a point of the arc (e.g., the middle point). Fol-
lowing the impulsive model in [5], this orientation is
obtained as the eigenvector associated to the largest
eigenvalue of the state transition matrix relating ve-
locity changes at CAM time to position changes at
TCA. Alternatively, for given covariance matrices of
spacecraft and debris at TCA, the eigenproblem for
minimum collision probability can be used instead.
Furthermore, it can be proven that the eigenvalue
magnitude is a proxy for how efficient it is to perform
the CAM at that point. This can be used to automat-
ically set the relative weights between thrust magni-
tude at the different arcs, as well as to set thrust/coast
conditions, reducing the free parameters of the design
problem.

3 Numerical results

A test case corresponding to a single constant tangen-
tial thrust arc followed by a coast arc is presented. A
spacecraft on a GTO is selected, as a worst-case sce-
nario for the errors due to the series expansion in e
for the short-period terms. The spacecraft chosen is
SDO T2, a 12U CubeSat, whose Keplerian elements at
epoch t0 =2022-05-05T10:28:43 according to Space-
Track1 are α = [ 24208.529 km, 0.72823, 26.4980 deg,
318.9837 deg, 179.9623 deg, 357.3555 deg]. Its nomi-
nal period is T = 10.42 h. At t0, a zero-miss distance
CA with a debris is assumed, with relative velocity
vs/c − vdeb = [0.34, 0.58, 0.22] km/s in Earth-centred
inertial (ECI) frame. Figure 1 shows the deflection
achievable in the encounter plane δb (where b is the
miss distance) and the numerical error of the ana-
lytical model compared to a high-accuracy numerical
solution δbnum, for a thrust acceleration of 10−7 m/s

2

1https://www.space-track.org
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Figure 1: Deviation in the plane of the CA (top) and
error of the analytical model (bottom) for a GTO test
case.

and different lengths of the thrust arc, ∆tCAM, and
coast arc, ∆tf . Errors remain small except for very
short ∆tCAM and ∆tf , which are not interesting from
a practical point of view because they correspond to
very small deviations. In this region, the separation in
secular and short-period terms is not yet adequately
developed from a dynamical perspective, and the later
are dominating (with higher associated errors).

4 Conclusions

An analytical CAM model based on the single-
averaging of Gauss’s planetary equations has been
presented. New contributions with respect to pre-
vious works focus on the introduction of the solu-
tion for normal thrust, the separation of a generic
in-plane thrust orientation into tangential and nor-
mal contributions, and the approximation of a CAM
profile through coast and thrust arcs with thrust ori-
entation and relative magnitude derived from the im-
pulsive CAM model.
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The proliferation of crowded constellations of small
satellites in low Earth orbit (LEO), ranging from the cur-
rent 150 units of Planet Labs1 to the eventual 42000 pro-
grammed for SpaceX’s Starlink satellite megaconstella-
tion,2 is producing a revival in the use of simple analytical
solutions of the artificial satellite problem, which fit quite
well for their design and operation [1]. This fact motivates
me to revisit the main effects on the LEO dynamics of the
gravitational disturbances of Keplerian motion. As is well
known, they are due to the dominant effect of the Earth’s
zonal harmonic of the second degree, whose nondimen-
sional coefficient is customarily denoted J2 [2].

Beyond the integrable equatorial case [3] the J2 prob-
lem lacks of the needed integrals that would guarantee the
existence of a closed form solution [4]. Nevertheless, the
non-integrability can be ignored in practice for the small
value of the Earth’s J2 “ Op10´3q ą 0, which makes the
size of the regions in which chaos may emerge negligible
[5]. Indeed, machine-precision accuracy can be preserved
for long times with high order perturbation solutions of the
J2 problem [6]. However, the length of the series involved
in this kind of solution, together with the inadequacy of
the J2 model for simulating the real dynamics of circum-
terrestrial orbits, makes that highly accurate solutions of
the J2 problem are of limited interest in practice.

Conversely, the bulk of the J2 dynamics is captured by
much simpler intermediary orbits, which share the mean
dynamics of the satellite problem at least up to OpJ2q ef-
fects. To wit, on average, the intermediary orbit must un-
dergo a small linear variation of the right ascension of the
ascending node, and a small but steady motion of the ar-
gument of the perigee in the orbital plane. These gen-
eral properties of the oblateness perturbation are usually
derived from an average representation of the disturbing
function D of the J2 problem [7]. That is,

xDyM “
1

2π

ż 2π

0

D dM “
1

4
J2
µ

p

R2
C

p2
η3

`

1´ 3c2
˘

, (1)

where µ is the gravitational parameter, RC is the Earth’s
equatorial radius, p “ aη2, a is the orbit semimajor axis,
η “ p1´ e2q1{2, e is orbital eccentricity, c is the cosine of
the orbit inclination I , and M is the mean anomaly [8].
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J. Roa, Sr. GNC Engineer at Starlink, SpaceX, are happily acknowledged.

1www.planet.com/our-constellations/ (as May 3, 2022).
2www.space.com/spacex-starlink-satellites.html (as May 3, 2022).

Replacing (1) in the variation of parameters equations,
we readily obtain the well-known mean variations of the
right ascension of the ascending node Ω and the argument
of the perigee ω. Namely,

dΩ

dt
“ ´nJ2

R2
C

p2
3

2
c,

dω

dt
“ nJ2

R2
C

p2
3

4
p5c2 ´ 1q, (2)

where n “ pµ{a3q1{2 is the mean motion. While (2) rea-
sonably agrees with the average dynamics, the average rate
of variation of the mean anomaly obtained with this pro-
cedure [9, 10, 11]

dM

dt
“ n` nJ2

R2
C

p2
3

4
ηp3c2 ´ 1q, (3)

soon yields large in-track errors with respect to which
would be expected from a OpJ2q average solution. Rather
than starting from an average disturbing function, I will
show that the mean rate in (3) is amended when the av-
erage dynamics is computed by neglecting the periodic
terms from the true solution. The latter is obtained using
Picard’s constructive proof for the existence and unicity of
solutions to ordinary differential equations [12].

Thus, let

dξi
dτ

“ χipξj , τq, ξipτ0q “ ξi,0, i, j “ 1, . . .m, (4)

be a first order differential system in which τ is the in-
dependent variable, and ξi are m dependent variables. As-
suming that the functions χi are analytic, they are replaced
by corresponding Taylor series expansions in powers of
∆τ “ τ ´ τ0. When constraining to such interval ∆τ
that the differences ξj ´ ξj,0 remain small enough, these
differences can be neglected, and hence an analytical ap-
proximation to the solution of (4) is computed from the
convergent sequence

ξi,k “ ξi,0 `

ż τ

τ0

χirξj,k´1pτ, ξj,0q, τ sdτ, (5)

which starts from ξi,1 “ ξi,0 `
şτ

τ0
χipξj,0, τqdτ .

I apply this procedure to the variations of the traditional
Keplerian variables a, e, I , Ω, ω, and M , whose detailed
expressions can be consulted elsewhere [13]. However, to
deal with strict elements the variation of M is replaced by
[7]

dβ

dt
“

dM

dt
´

c

µ

a3
. (6)
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Still, M is present in the variation equations through its
implicit dependence on the true anomaly f . Then, in order
for the variation equations to take a form amenable to so-
lution by Picard iterations, the integration is carried out in
a fictitious time τ , given by the differential relation

dt “ pr2{Gqdτ, (7)

where G “
?
µp is the specific angular momentum.

Comparison of (7) with Kepler’s law of areas shows that
τ evolves at the same rate as the argument of the latitude.
Alternatively, for an OpJ2q solution the fictitious time can
be replaced by f as the independent variable [14, 15].
Then, the variations in the physical time are replaced by

dξj
df

“
r2

G

dξj
dt
, j “ 1, . . . 6, (8)

which are integrated in closed form of the eccentricity by
Picard iterations starting from the initial values a0, e0, I0,
Ω0, ω0, and β0 “ 0, for f0. The first iteration results in

a1 “ a0 ` a0εra1,Ppfq ´ a1,Ppf0qs

e1 “ e0 ` εre1,Ppfq ´ e1,Ppf0qs

I1 “ I0 ` εcrI1,Ppfq ´ I1,Ppf0qs

Ω1 “ Ω0 ´ 6εc∆M ` εcrΩ1,Ppfq ´ Ω1,Ppf0qs

ω1 “ ω0 ` 3εp5c2 ´ 1q∆M ` εrω1,Ppfq ´ ω1,Ppf0qs

β1 “ 3εηp3c2 ´ 1q∆M ` εrβ1,Ppfq ´ β1,Ppf0qs
(9)

where ε “ 1
4J2R

2
C{p

2, ∆M “M´M0, and ξ1,P are such
trigonometric polynomials that xξ1,PpfqyM “ 0. Refer to
[13] for detailed expressions.

Next, M1 “ M0 ` β1pfq `
?
µ
şt

t0
a1ptq

´3{2 dt, from
(6), where the integrand a1ptq´3{2 is replaced by an OpJ2q
approximation to obtain a solution in closed form of e.
Thus,

M1 “M0 ` n
˚pt´ t0q ` ε rMPpfq ´MPpf0qs , (10)

in which

n˚ “ n
“

1` 3εηp3c2 ´ 1q ` 3
2εa1,Ppf0q

‰

, (11)

and the detailed form of MP can be consulted in [13].
Finally, from (7),

t “ t0 `

ż f

f0

“`

1´ e21
˘

a1
‰3{2

p1` e1 cos fq2µ1{2
df. (12)

Note that, in a typical ephemeris evaluation, the errors in-
troduced in the physical time determination may be as im-
portant as those of the elements [16].

Removing the purely periodic terms ξ1,Ppfq from (9)
it is readily obtained that, in the approximation provided
by the first Picard iteration, the semi-major axis, eccen-
tricity, and inclination, remain constant on average. On
the other hand, (2) is recovered by differentiation of the
secular terms of Ω1 and ω1 with respect to the physical

time. Analogously, the removal of purely short-period
terms from (10) shows that, at the precision of the first
Picard iteration, M advances, on average, at the rate n˚

given in (11), thus amending (3) with the additional term
3
8nJ2pRC{pq

2a1,Ppf0q.
The accuracy of the first Picard iteration with respect

to the true, numerically integrated solution is illustrated in
the left column of Fig. 1 for an example eccentric orbit
with a0 “ 9500 km, e0 “ 0.2, I0 “ 20˝, Ω0 “ 6˝,
ω0 “ 274˝, and M0 “ 0 (µ “ 398600.4415 km3{s2,
RC “ 6378.1363 km, J2 “ 0.001082634). The mild
behavior of the errors of M is due to the new secular term
in (11). It can be checked that when n˚ is replaced in
(10) by (3), the error of M grows by about two orders
of magnitude at the end of the one-day interval shown in
the current example, reaching an amplitude close to 1˝ —
or about 200 km along-track as opposed to the km level
reached when using (11).

The first iteration of Picard’s method misses the long-
period effects of the true solution, which are clearly appar-
ent in Fig. 1 coupled with the short-period errors. A refine-
ment of the analytical solution that captures non-resonant
long-period effects of the dynamics is obtained by an ad-
ditional iteration of (5). To OpJ2q, the whole procedure is
equivalent to substituting M by n˚t in (9), and replacing
the appearances of the constant ω0 throughout ξ1,P by the
low frequency ωpfq ” ω0 ` 3p5c2 ´ 1qpεfq [13].

The improvements produced by the second Picard itera-
tion are illustrated in the right column of Fig. 1. While the
errors start with the same amplitudes as before, the influ-
ence of the long-period terms becomes now evident, and
the amplitude of the errors remains mostly constant along
the propagation, improving the errors with respect to the
first Picard iteration by about one order of magnitude at
the end of the one-day propagation interval. Remaining
secular and long-period components are a consequence of
the OpJ2q truncation of the Picard iterations solution.
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Figure 1: Errors of the first (left column) and second Picard iteration (right colum) of the test orbit [13].

[7] R.H. Battin. An Introduction to the Mathematics and Meth-
ods of Astrodynamics, Revised Edition. AIAA Education
Series. AIAA, Reston, VA, 1999.

[8] M. Lara, Hamiltonian Perturbation Solutions for Space-
craft Orbit Prediction, De Gruyter Studies in Mathematical
Physics, 54, De Gruyter, Berlin/Boston, 2021.

[9] Y. Kozai. The motion of a close earth satellite. Astron J 64
(1959), 367–377.

[10] W.M. Kaula. Theory of Satellite Geodesy. Blaisdell,
Waltham, MA, 1966. Reprint: Dover, Mineola, NY, 2000.

[11] F.L. Markley & J.F. Jeletic. Fast orbit propagator for graph-
ical display. J Guid Control Dynam 14 (1991), 473–475.

[12] W. Hurewicz. Lectures on Ordinary Differential Equations,
2nd Edition. The M.I.T. Press, Cambridge, MA, 1970.

[13] M. Lara. Earth satellite dynamics by Picard iterations,
preprint, 2022, arXiv:2205.04310

[14] A.E. Roy. Orbital Motion, 4th edition. Institute of Physics
Publishing, Bristol, UK, 2005.

[15] J. Herrera-Montojo, H. Urrutxua, & J. Peláez. An asymp-
totic solution for the main problem, paper AIAA 2014-
4155 (2014), 19 pp.

[16] M. Lara. Note on the analytical integration of circumterres-
trial orbits, Adv Space Res, 69 (2022), 4169–4178.

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        26 

https://arxiv.org/abs/2205.04310




Session 2: 

PERTURBATION THEORY 



5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

Statistical analysis of the long-term dynamical behavior of uncontrolled
geostationary satellites near an unstable equilibrium point

Roberto Flores*1, Mauro Pontani�2, and Elena Fantino�3
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1 Introduction

The long-term dynamics of decommissioned space-
craft in geostationary orbit is an area of active re-
search due to its implications for the continued safe
operation of communication satellites (see, for ex-
ample, [1, 2]). In [3] we determined that moderate
changes on the initial conditions can lead to vastly
different longitudinal motion patterns. For some com-
binations of initial longitude and epoch (which influ-
ences the solution through the positions of Sun and
Moon) the sensitivity is so extreme that it was not
possible to obtain a converged trajectory beyond a
horizon of 60 years. To improve the understanding
of the phenomenon and better characterize the sensi-
tivity to initial conditions, we present a Monte Carlo
simulation of bundles of uncontrolled spacecraft re-
leased near one of the unstable equilibrium points.
Contrary to initial expectations, it is found that the
bundles can maintain high spatial coherence over time
scales of decades. These intervals of ordered behavior
are interspersed with sudden increases in scatter. The
time interval between these abrupt changes is very
close to the precession period of the orbital plane due
to the combined effects of lunisolar perturbations and
Earth’s polar flattening. This is strongly suggestive
of a connection between the two phenomena.

2 Numerical model

In a previous study [3] it was determined that the
most relevant perturbations for our problem are the
harmonics of Earth’s gravity field up to degree and
order 8, solar radiation pressure and lunisolar third-
body perturbations.

*Email: rflores@cimne.upc.edu
�Email: mauro.pontani@uniroma1.it
�Email: elena.fantino@ku.ac.ae. Corresponding author

2.1 Earth orientation modeling

The state vector of the spacecraft is integrated in
an ECI (Earth Centered Inertial) reference aligned
with ICRF (International Celestial Reference Frame).
The non-uniform terrestrial gravitational field is com-
puted in the ITRF (International Terrestrial Refer-
ence Frame), requiring a coordinate transform to take
into account precession and nutation of Earth’s ro-
tational axis. We used the IAU 2000/2006 com-
bined precession-nutation model [4] based on the non-
rotating CIO (Celestial Intermediate Origin). This
paradigm supersedes classical models based on the
ascending node, offering important efficiency advan-
tages. For the scope of our calculations, an accu-
racy of 1 arcsec is sufficient. Further improvements
would require including polar motion, which is not
predictable with current technology [5] (i.e., it can
only be measured a posteriori). To improve the com-
putational efficiency, we used a reduced version of the
precession-nutation model based on [6], but modified
to maintain an accuracy of 1” over 500 years instead
of a century.

2.2 Terrestrial gravity field modeling

To model Earth’s gravitational field, we followed the
guidelines from the IRS Conventions 2010 standard
[7]. It establishes EGM2008 [8] as the recommended
geopotential model with some adjustments: (i) the
progressive drift of the zonal harmonics up to degree
4 is included with a linear correlation; (ii) the origi-
nal value of J2 is replaced with an improved estima-
tion based on 17 years of SLR (Satellite Laser Rang-
ing) which is expected to improve on the 4 years of
GRACE (Gravity Recovery and Climate Experiment)
data used in EGM2008. The harmonic synthesis is
based on the modified forward row recursion scheme
from [9]. It is suitable for ultra-high-degree expan-
sions (N > 2000) and has been vectorized to improve
performance in current CPU architectures.
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2.3 Third-body graviatational perturbations

To compute the position of the Earth and the Moon,
we used tabulated orbital elements obtained from
JPL’s Solar System Dynamics website [10]. To re-
cover the elements at an arbitrary date, the table is
interpolated using cubic splines. To improve the accu-
racy of the calculation, third-body perturbations are
computed using the modified Battin form [11] which
mitigates the ill-conditioning due to the large differ-
ence between the orbital radius of the satellite and
the Earth-Sun distance.

2.4 Solar radiation pressure perturbation

The acceleration due to solar radiation pressure has
been estimated assuming a spherical satellite with
perfect reflectivity and a mass-to-area ratio of 300
kg/m2. The eclipses are modeled assuming a cylin-
drical Earth shadow.

2.5 Numerical integration

Our orbit propagation suite [12] integrates the equa-
tions of motion in Cartesian coordinates. For this
work, we used an adaptive embedded Runge-Kutta
(RK) scheme of orders 7(8) derived by Fehlberg [13].
We used linear extrapolation, retaining the 8th order
solution.

3 Trajectory propagation

We assumed that a satellite inside its standard opera-
tional window loses control suddenly. We generated a
collection of trajectories using slightly different initial
positions to asses the evolution of the scatter with
time. It is common practice among satellite opera-
tors to maintain an operational window of +/- 0.05º
around the nominal position. This is slightly more
stringent than ITU requirements [14]. We assumed
that leaving the operational window is a rare occur-
rence, corresponding to a 3σ event. Thus, the stan-
dard deviation of the initial angular position would be
0.016º. We generated a binormal distribution of longi-
tudes and latitudes centered on the point of maximum
instability (165.3ºE), that serves as initial condition
for the trajectory propagation. In reality, the longi-
tude and latitude of the satellite are not randomly
distributed, but depend on the station keeping strat-
egy. However, given that our goal is to study the
dynamical properties of the system instead of the pe-
culiarities of each operator, we deem this approach
acceptable. Furthermore, we can analyze if the evolu-
tion in time affects the normality of the distribution.

Figure 1: Longitude mean and std. dev.

3.1 Initial results

For the first batch of simulations, we used as initial
epoch January 1, 2020 at 0:00 UTC (JDN 2458849.5),
because it is one of the dates investigated in [3]. For
each trajectory in the bundle, the initial altitude is de-
termined with an iterative solver, in order to obtain
a period of one stellar day. This is required because,
due to the irregularities in the gravitational field, the
height is different from the ideal value for a spherical
Earth (the satellites must be placed approximately
600 m higher). While the change in orbital radius
seems small (1 part in 70 000), the effect on the or-
bital period is important. If left uncompensated, it
would cause the cloud of satellites to drift rapidly in
longitude.

The trajectories have been propagated for 120 years
to include two full cycles of precession of the orbital
plane (which changes its inclination by 15º over a span
of 52 years, see [3]). Figure 1 shows the evolution of
the mean and standard deviation of longitude for a
bundle of 600 trajectories. The most striking feature
is the small scatter during the first 50 years, with a
sudden increase afterwards.

To highlight the change in behavior, the first 50
years are shown in Figure 2, where we see that the
scatter remains below 1.5º most of the time. The
short period (2 years) drops in dispersion correspond
to passages through the unstable equilibrium points,
where the longitudinal drift slows down and causes
the trajectories to regroup.

In Figure 3, we see that the sudden increase in lon-
gitude scatter coincides with the end of an inclination
cycle. Note that the scatter of the inclination remains
below 0.035º for the 120 years of the simulation. This
agrees very well with the prediction of the simplified
analytical model [3].

To test changes in normality of the trajectory bun-
dle, we computed the excess kurtosis and skewness
(which are null for normally distributed variables) of
the longitude distribution (Figure 4). There is a dras-
tic change after 50 years, with both parameters in-
creasing by several orders of magnitude in the times-
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Figure 2: Longitude mean and std. dev.

Figure 3: Inclination mean and std. dev.

Figure 4: Longitude exc. kurtosis and skewness.

pan of a decade, and then leveling off at a new value
indicating a large departure from normality.

4 Conclusions

We found that the scatter of a bundle of trajecto-
ries departing from the point of maximum instability
shows an irregular behavior. There are periods of lim-
ited changes separated by short episodes of increase
in dispersion. Simulations with different initial epoch
have shown that these episodes do not always coin-
cide with the minimum of the inclination cycle, but
their separation in time remains close to 50 years. Nu-
merical experiments also demonstrated that the phe-
nomenon remains after removing solar radiation pres-
sure and gravity harmonics of degree 4 and higher.
This hints to connection with the mechanism respon-
sible for the complex longitudinal behavior (see [3]).

Funding acknowledgements: Khalifa University’s
internal grants CIRA-2021-65 (8474000413) and KU-
SPSC (8474000336); Severo Ochoa Programme for
Centres of Excellence in R&D (CEX2018-000797-S).
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1 Introduction

Currently, the defining challenge for Space Surveil-
lance and Tracking (SST) is the exponential increase
in tracked objects in LEO. The primary reasons for
this rapid increase are the introduction of the SpaceX
Starlink constellation (along with others that are
under development, such as OneWeb and Amazon
Kuiper), and the introduction of new sensor systems
that are expected to successfully decrease the mini-
mum size detection threshold down to one centimetre.
It is reasonable to assume that future SST activities
will need to track and perform routine conjunction
analysis on a number of objects in excess of 100 000
in the near future, most of these orbiting in LEO.
This translates into a need for accurate and efficient
orbit propagation algorithms, which underpin orbit
determination methods at the core of SST.

The long-term propagation of low Earth satellite
orbits has classically relied on semi-analytical tech-
niques based on the method of averaging, which pro-
vide significant computational savings compared to
special perturbations when the characteristic time
scales of the perturbations are well separated from
the orbital period. However, the accuracy of semi-
analytical approaches is intrinsically limited by the
approximations that make the averaging process fea-
sible [1]. For instance, the process commonly starts
from truncated series expansions in small parame-
ters, in which orders higher than the second and cou-
pling terms among different perturbations are often
(although not always) neglected. Most importantly,
the accuracy in osculating position and velocity is
intrinsically limited by the fidelity of the mean-to-
osculating transformation for the theory under con-
sideration. The fact that semi-analytical propagators
work in mean element space also results in a conse-
quence of particular importance to obtain accurate
propagations, which can be crucial for the reproduc-
tion of trajectories in sensitive dynamical regimes [2].
Initial conditions for a semi-analytical method must
be assigned in mean element space to avoid initial er-
rors that will, in general, experience secular growth.

∗Email: d.amato@imperial.ac.uk.
†Email: dvallado@comspoc.com.

However, operational measurements and ephemerides
are commonly available in osculating space, and the
osculating-to-mean transformations depend on the de-
tails of the particular averaging theory under consid-
eration. The highest accuracy for the osculating-to-
mean transformation can be obtained through Precise
Conversion of Elements (PCE), that is by using differ-
ential corrections to find the mean initial conditions
corresponding to a given osculating state. Being an
iterative process, PCE is computationally expensive
and may partially offset the computational efficiency
advantage of semi-analytical methods [3].

In this talk, we will focus on several practical as-
pects aimed at improving orbit propagation efficiency
in the Low Earth Orbit regime with special perturba-
tions methods as an extension of the THALASSA or-
bit propagation code [1], which offer a potential alter-
native to semi-analytical methods for long-term prop-
agation. Because special perturbations work in oscu-
lating space, there is no need for any osculating-to-
mean transformations or PCE. THALASSA has been
shown to be particularly efficient for highly ellipti-
cal orbits, MEOs, and GEOs. However, there has
been limited focus on improving its efficiency and ac-
curacy for LEO orbits, which are the focus of this talk.
In particular, we focus on the selection and efficient
implementation of perturbations within the physical
model, a study of numerical integrator performance
along with different formulations (extending those in
References [4, 5]), and on the implementation pro-
gramming language.

2 Physical model

The perturbations to be included in the physical
model must be selected and modelled carefully to
improve the overall computational efficiency of the
code. The primary additional orbital perturbations
to include are expanded gravitational fields and at-
mospheric models. The gravitational field is of impor-
tance because newer models rely on increasingly large
numbers of coefficients; for instance, the state-of-the-
art EGM-08 is a 2160 × 2160 model. The efficient
calculation of the Legendre polynomials and associ-
ated functions for such large models is a critical step.
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Figure 1: Position error components (in km) of interpolated ephemerides with respect to JPL DE ephemerides over about
11 years. Solar differences (left) and lunar differences (right). Note the difference in scales.

Currently, THALASSA relies on the Pines method
[6], which has been shown to achieve an improvement
of about 30% in computational cost over the classi-
cal Legendre recursion formulas, besides avoiding the
singularities at the poles for the perturbing accelera-
tions. We evaluate the improvement in computational
efficiency obtained by adopting improved geopotential
computational techniques [7]. The specification of the
transformations between the celestial (Earth-centered
Inertial) and terrestrial (Earth-centered, Earth-fixed)
reference frame is also important for the calculation of
the geopotential. Here, we choose to implement the
IAU 2006/2000 CIO series transformations to move
between inertial and Earth-fixed coordinates. Be-
cause the series summations include several thousand
terms, it’s possible to pre-calculate the XYs series co-
efficients and perform a simple interpolation.

Regarding the modelling of atmospheric density,
there are numerous atmospheric models to choose
from. MSIS-00 is a convenient, well used model for
our implementation [8]. While it suffers from some
known biases in temperature and species composition
[9], it offers a modestly good method of incorporating
geomagnetic and solar flux indices into the propaga-
tion effort.

Third body perturbations also can assume various
forms to achieve different accuracies. The JPL DE
series are generally regarded as the most accurate val-
ues but calculating the Sun and Moon position vec-
tors throughout a propagation scheme can be com-
putationally intensive. As shown in fig. 1, a simple
interpolation scheme can recover the Sun and Moon
positions over 11 years to under 2 km and 50 km, re-
spectively, while being cheap to evaluate.

Due to the aleatoric uncertainty in modelling per-
turbations (in particular atmospheric drag for LEO)
it is not useful to propagate LEO orbits with models
of extremely high fidelity without having accurate in-
formation on the object characteristics. For instance,

if the attitude or the drag coefficient of the object are
unknown, the advantage in accuracy resulting from
using very high degrees and orders for the geopoten-
tial might be overshadowed by the mismodelling of
the atmospheric drag. Given these considerations, we
characterise the accuracy gains deriving from includ-
ing high-fidelity perturbations and from the integrator
tolerance in terms of a trade-off with respect to the
required computational cost.

To test the accuracy of the approach, we use the
Consolidated Predicted Format (CPF) ephemerides
that are independently generated. In general, these
ephemerides are accurate to the few meter range,
which is sufficient for our application. Using the CPF
ephemerides, we quantify the increase in accuracy
(and CPU time) gained when gradually increasing
the complexity of the model (including the reference
frame implementation here).

3 Numerical integrator and formulation

Besides the overall computational performance, sev-
eral practical criteria must be considered when choos-
ing a numerical integration scheme, especially if it
is to be applied to the integration of regularised
equations of motion. A differentiable solution is of-
ten required between the integration nodes of time-
marching numerical schemes (this is often called dense
output). This is the case when the solution is required
at fixed time steps when using a variable-timestep in-
tegrator. This is also a crucial capability when using
regularised formulations, whose independent variable
is fictitious time. Ideally, the solution would be of
the same order of accuracy everywhere in the propa-
gation interval, however this is not always achievable
without incurring in increased function calls and thus
computational cost. In conjunction with dense out-
put, another desirable aspect for a numerical integra-
tion scheme is the availability of reliable root-finding
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methods. These are required for returning the solu-
tion values at given epochs when the physical time is
a dependent variable, or for conjunction analysis.

Through the collection of numerical integration
schemes in the DifferentialEquations.jl Julia
package, we study the numerical performance of
integrator-formulation pairs, extending the work in
Reference [4]. We use the criteria described above to
refine the integrator choice depending on the partic-
ular application.

4 Julia for astrodynamics applications

The THALASSA orbit propagation code had been
originally implemented in Fortran 95. Although For-
tran remains one of the most common languages for
astrodynamics applications, research user experience
in the past three years has evidenced several issues
arising when using the code across different architec-
tures, especially when external libraries are needed.
Although the latest Fortran standards provide an ex-
cellent set of extensions to the programming language,
their implementation into compilers working across all
platforms is often slow. Using the latest Fortran fea-
tures often results in compiler errors when the code
must be run on architectures that are different from
that on which the code has been developed.

Therefore, we choose Julia as the implementation
language for a new version of THALASSA, which is
under development as a self-contained Julia package.
Benchmarks show that the numerical performance of
Julia is close to that of C++ and Fortran for several
astrodynamics problems [10, 11], whereas its syntax is
relatively close to that of MATLAB and Python. Ju-
lia is under active development and runs on all main
platforms, which is expected to reduce portability is-
sues. We compare the performance of the new THA-
LASSA version in Julia to the original Fortran version
in the solution of orbit propagation toy problems.
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Simultaneously Quasi-Critical and Quasi-Heliosynchronous Orbits
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3CETENS, Federal University of Recôncavo da Bahia, Feira de Santana, Brazil.

The classic values of critical inclination are 63.43◦

and 116.57◦ for the direct and retrograde orbits re-
spectively when only secular terms due to central
body oblateness are considered in the gravitational
potential.(GARFINKEL, 1960; MERSMAN, 1962;
LUBOWE, 1969; ALLAN, 1970; HUGHES, 1981).
These values are found by equating the temporal vari-
ation of the argument of pericenter to zero. The incli-
nation values for sun-synchronous orbits are by their
turn constant and retrograde for each fixed pair of
semimajor axis and eccentricity, and they are found
by equating the temporal variation of the longitude
of the ascending node to angular velocity of the cen-
tral body around the Sun.(HANSON, 1961; PARK;
JUNKINS, 1995)

If sectoral terms are also included into disturbing
function the equations of motion become coupled,
turning the search for critical and heliosynchronous
inclinations much more complex than the classic case.
Thus it is necessary to treat the problem with a dif-
ferent approach from the classic one in order to find
them.

Following [Tzirti et al. (2009)], the quasi-critical incli-
nation concept was refined and based on it the quasi-
heliosynchronous inclination concept was introduced
on previously works(COSTA et al., 2019; COSTA,
2020; COSTA et al., 2020) with the aim to propose
a different method from what are found in the lit-
erature(DE SAEDELEER; HENRARD, 2005; CAR-
VALHO et al., 2009) to search for those special incli-
nations when the dynamic model adopted takes into
consideration other disturbing terms in addition to
the zonal ones.

It was defined as quasi-critical the inclination that
given as initial condition makes the argument of
pericenter remain on average constant and as quasi-
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heliosynchronous the one that makes the orbital plane
precess on average with the same central body angu-
lar velocity around the Sun. In this way, both are the
generalizations of the critical and heliosynchronous
inclinations respectively when the equatorial elliptic-
ity effects are also considered into the gravitational
potential in addition to the oblateness of the cen-
ter body.(TZIRTI et al., 2009; COSTA et al., 2019;
COSTA, 2020; COSTA et al., 2020)

The hamiltonian formalism together with the De-
launay action-angle variables were used. A syn-
odic reference frame was defined to eliminate the ex-
plicit temporal dependence of the hamiltonian func-
tion corresponding to the sectoral perturbation.(DE
SAEDELEER; HENRARD, 2005; DE SAEDELEER;
HENRARD, 2004; CARVALHO et al., 2009; GI-
ACAGLIA et al., 1970; NIE; GURFIL, 2018;
PALACIÁN, 2002) The first order average equations
of motion were obtained through the elimination of
the short-period terms (HORI, 1966; CARVALHO et
al., 2009; NIE; GURFIL, 2018; TZIRTI et al., 2009).
And the decoupling of the average equations of mo-
tion was treated by the hamiltonian function of the
system.(COSTA, 2020; COSTA et al., 2020)

An optimization approach was applied to find
them.(COSTA et al., 2019; COSTA, 2020; COSTA
et al., 2020; FRIEDLANDER, 1994; WALTZ et al.,
2006; LUENBERGER; YE, 2008) The technique em-
ployed verifies whether an arbitrary initial inclination
given as initial guess minimizes the absolute value of
the area between the curves that describe the tempo-
ral variation of the argument of pericenter according
to the averaged model considered and its frozen value
(time derivative equals zero).(COSTA et al., 2019;
COSTA, 2020; COSTA et al., 2020) In a similar man-
ner, the technique verifies whether an arbitrary initial
inclination minimizes the absolute value of the area
between the curves that describe the temporal varia-
tion of the longitude of the ascending node according
to the averaged model and its desired value for the
sun-synchronous case (orbital plane precessing at the
same rate as the central around the Sun).(COSTA et
al., 2019; COSTA, 2020; COSTA et al., 2020) The
orbits which are solutions of the initial value prob-
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lems formed by the equations of motion and the op-
timal initial conditions were named quasi-critical and
quasi-heliosynchronous, respectively.

During the studies described above it was verified the
existence of inclinations of artificial satellites which
are both quasi-critical and quasi-heliosynchronous at
same time around some natural bodies of the Solar
System whose ratios between oblateness and equato-
rial ellipcity were small. It was decided to analyze
such phenomenon.

Therefore, the main goal of the current work is
to present the results obtained from those analy-
ses. The problem is modeled as a nonlinear op-
timization problem whose objective function is the
quasi-heliosynchronous condition with an equality
constraint being the quasi-critical condition and other
inequality constraints inherent to the sphere of influ-
ence of the central body. The solutions are found
using a barrier method that alternates between lin-
ear search and trust regions.(FRIEDLANDER, 1994;
WALTZ et al., 2006; LUENBERGER; YE, 2008)

Optimal initial conditions which are simultaneously
quasi-critical and quasi-heliosynchrounous are found.
And, therefore, optimal trajectories which are simul-
taneously quasi-critical and quasi-heliosynchronous
around natural bodies with small ratio J2/C22 are
found and presented.

Keywords. Canonical perturbation theory, quasi-
critical orbits, quasi-heliosynchronous orbits, non-
linear programming, space vehicle around planetary
satellites.
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1 Introduction

This talk is devoted to present a methodology for
the computation of center-stable and center-unstable
manifolds of fixed points in Hamiltonian systems us-
ing the parameterization method. We introduce a
new parameterization style that uncouples the hyper-
bolic part from the central one in the system of re-
duced equations, providing parameter space with fiber
structure. The method is applied to the computation
of center-stable and center-unstable manifolds of the
center×center×saddle fixed points of the geostation-
ary belt. Results are presented on the accuracy of
the planar and vertical families of Lyapunov periodic
orbits.

2 The model

The equations of motion at the Earth gravitational
field expressed in a body-fixed coordinate frame are
denoted as

Ż = F (Z), (1)

for Z = (x1, . . . , x6) being x1, x2, x3 the position
of the body and x4, x5, x6 its momenta. This au-
tonomous system of differential equations is Hamilto-
nian with

H =
1

2
(x24 +x25 +x26)+ω(x2x4−x1x5)−U(x1, x2, x3),

where ω is the angular velocity of the Earth and U is
its gravitational potential considered as an expansion
of truncated spherical harmonics series of degree and
order 8 [5].
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Pj x1 (km) x2 (km) x3 (km)

P1 10913 40696 −0.135 · 10−2

P2 −40041 13112 8.345 · 10−5

P3 −11083 −40650 −0.137 · 10−2

P4 41286 −8408 0.421 · 10−2

Table 1: Positions of the fixed points of system (1).

As it is well known, system (1) presents 4 equilib-
rium points for which F (Pj) = 0, j = 1, . . . , 4 [3].
Their corresponding positions are given in Table 1.

The eigenvalues of these fixed points are

SpecDF (Pj) = {±iα(j)
1 ,±iα(j)

2 ,±iα(j)
3 }, j = 1, 3

SpecDF (Pj) = {±iω(j)
p ,±iω(j)

v ,±λ(j)}, j = 2, 4,

(2)

with specific values presented in Table 2. Then,
they exhibit two different linear behaviors: P1 and
P3 are center×center×center while P2 and P4 are
center×center×saddle. For the case of the unstable
equilibrium points, the Lyapunov’s Center Theorem
applies for both pair of complex eigenvalues giving
rise to two parametric families of periodic orbits born
at the equilibrium point. Each one of these families
spans a 2-dimensional manifold which is tangent to
the real and imaginary part of the eigenvectors asso-
ciated to each ±iωp,v at the equilibrium point [4, 6].
For P2 and P4, these two families are known as the
planar and vertical Lyapunov families of periodic or-
bits, since the eigenvectors of the two pair of complex
eigenvalues have small vertical component and small
planar component, respectively.

Pj α1 α2 α3

P1 7.30027 · 10−5 7.29972 · 10−5 9.87534 · 10−8

P3 7.30027 · 10−5 7.29972 · 10−5 8.03249 · 10−8

Pj λ ωp ωv

P2 9.32958 · 10−8 7.29974 · 10−5 7.30027 · 10−5

P4 8.66383 · 10−8 7.29973 · 10−5 7.30027 · 10−5

Table 2: Eigenvalues of the differential of the vector
field in (1) evaluated at its fixed points.
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3 Parameterization method for center-unstable
and center-stable manifolds

By means of the parameterization method we find
invariant manifolds of these unstable fixed points.
We start by diagonalizing system (1) via the change
Z = Pj + Qz, in such a way that the new system of
ODE ż = G(z) has the origin as a fixed point and the
differential of the vector field evaluated at the new
fixed point is diagonal made by the eigenvalues of
Table 2. Let us denote by W : Cd → C6 the pa-
rameterization of the manifold and f : Cd → Cd, the
reduced vector field for this new system, so that the
differential equations for of the reduced vector field
are ṡ = f(s). So, by taking d = 5 and a correct
ordering of the eigenvectors with the central part at
the beginning, we will obtain the center-stable or the
center-unstable manifolds. This is done, by solving
the invariance equation

G(W (s)) = DW (s)f(s), (3)

order by order for W and f expressed as power series
expansions. In this way, at the coefficient level, we
obtain the cohomological equations for each order k,

(〈λ̄,m〉 − λi)W i
m + f im = Ri

m, i ∈ {1, . . . , d}
(〈λ̄,m〉 − λi)W i

m = Ri
m, i ∈ {d+ 1, . . . , n},

(4)
where i denotes the component of the vector, m =
(m1, . . . ,md) are the exponents of each si satisfying
that |m| = k, λi are the eigenvalues of the fixed
point conveniently ordered, R is computed from all
the known terms up to order k − 1.

At each order k, in order to solve the first part of
equation 4 we can either (a) take W i

m = 0 and f im =
Ri

m or (b) take f im = 0 and W i
m = Ri

m/(〈λ̄,m〉 − λi).
In case (b), it is necessary to not have inner reso-
nances, while to solve the second part of the coho-
mological equation one needs not to have cross res-
onances. A style of parameterization is a rule that
determines the choice between (a) and (b) as a func-
tion of (i,m).

In [1] there is a rule to define parameterization
styles (called mixed there) that allow us to com-
pute W (s) in a way that sub-manifolds of the form
{si1 = si2 = · · · = siJ = 0} are invariant by the
flow. In this work, we introduce an additional rule
that allows us to uncouple the last equation of the
reduced system ODE from the remaining ones, this
is: if f(s) = (f1(s), . . . , fd(s)), f i(s) does not depend
on sd for i = 1, . . . , d − 1. This is achieved by tak-
ing f im = 0, W i

m = Ri
m/(〈λ̄,m〉 − λi) if md 6= 0 for

1 ≤ i ≤ d − 1. In this way, parameter space can be
considered a fibered space in which the base of the
fibers is described by the first d − 1 coordinates and
the last one is the coordinate in each fiber.

4 Computation of Lyapunov families and error es-
timation

In order to give an idea of the size of the neighbor-
hood in which the computed expansions are accurate
we compute a planar and vertical families of Lya-
punov orbits and perform an error estimation [2]. The
computed parameterizations are obtained by means
of a mixed uncoupling style in which we set d = 4
to obtain the center manifold and d = 5 to obtain
the center-stable or center-unstable manifold together
with the uncoupling of the last component. In the
first case, we ask the submanifolds {s3 = s4 = 0} and
{s1 = s2 = 0} to be invariant, while in the second case
we need to add the condition {s5 = 0} to be invariant
as well. In this way, thanks to the choice of the order
of the eigenvectors, the planar Lyapunov family is de-
scribed by orbits of the form (s1, s2, 0, 0, 0), while the
vertical one is given by (0, 0, s3, s4, 0) in parameter
space.
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Figure 1: Errors in the orbit for different orders of
the expansions and in terms of the amplitude of the
planar and vertical orbits (km).

In order to quantify the accuracy of the expansions,
we take the error in the orbit as a metric. This is,
given an initial condition s in parameter space for
any of both family of orbits, the error in the orbit is
given by

eO(T, s) = sup
t∈[0,T ]

||W (φt(s))− Φt(W (s))||, (5)

for T the period of the orbit, Φt the flow of the original
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vector field in (1) and φt the flow of the reduced vector
field.

Then, for different values of initial conditions of the
form (0, s2, 0, 0, 0) and (0, 0, 0, s4, 0) that constitute
initial conditions for planar and vertical Lyapunov or-
bits respectively, the error in the orbit is computed.
This is done for different orders of the expansions and
it is also compared with respect to the amplitude of
the orbit for the fixed point P2 . In Figure 1 we dis-
play the evolution of this error for different orders of
the expansions k = 4, 6, 8, 10, 12, 14, 16 from top to
bottom. It can be seen that the error increases at
the same time the amplitude does, which means it is
larger when the orbit reaches higher levels of energy.
This behavior is more noticeable in the case of the
planar family.
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Figure 2: Representation in 3D of the family of planar
and vertical orbits in original coordinates and with
respect to the Earth with expansions of order 12.

Taking a fixed order k = 12 for the expansions,
which provides an accurate approximation in a mod-
erately large neighborhood, we display some of these
orbits for both families in terms of the original coordi-
nate frame and taking kilometers as units for the axes.
This is done in Figure 2 top. Figure 2 bottom shows
the position and size of these orbits with respect to
the Earth.

5 Conclusions

The performed error estimation give us an idea of the
degree of the accuracy of the computed expansions
via parameterization method. These results are useful

in order to determine for which levels of energy the
parameterizations are still valid. The talk will present
results not only for Lyapunov orbits but for whole iso-
energetic slices of the center manifold. Computations
related to the hyperbolic part will also be included.
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Abstract

GTDS [1, 2, 3, 4] has played a significant role in Space
Research: as an orbit propagation (OP) and determi-
nation (OD) suite, as a prototype for subsequent oper-
ational systems, and as a platform for Astrodynamics
education and research. This research includes en-
hancement of the physical models, development of the
Draper Semi-analytical Satellite Theory (DSST) OP
method [5, 6], development of DSST Weighted Least
Squares and Kalman Filter OD methods [7, 9, 10],
test of other analytical and semi-analytical propaga-
tors, and port to several operating systems. This ef-
fort has led to new operational orbit determination
systems and standalone tools and libraries in classi-
cal programming languages such as Fortran, C/C++,
and Java and interfaces with Python and Julia. Given
these applications, it is essential to understand the ac-
curacy of the GTDS physical models and the DSST
algorithm in their different versions. The recent avail-
ability of independent, very precise orbit ephemerides
offers new opportunities to evaluate the accuracy and
the computational efficiency of the current version of
GTDS and the Fortran, C/C++, and Java DSST
Standalone implementations [11, 12, 13, 14]. We
started the investigation by considering the Jason-
2 and Lageos-2 orbits. The Jason-2 satellite is in a
near circular orbit at 1330 km, and is perturbed by
the geopotential, lunar-solar, and solar radiation pres-
sure. The Lageos-2 is in a less circular orbit at 5780
km. Very precise ephemeris for both orbits is available
from the NASA Crustal Dynamics Data Information
System (CDDIS). Our general approach is to least-
squares fit the GTDS Cowell and the GTDS DSST
orbit propagators to the CDDIS orbits. For Jason-2,
with a one minute spacing between the ECEF vec-
tors and a one-day fit span, the GTDS Cowell or-

∗Email: paulcefo@buffalo.edu.
†Email: jacob.stratford00@gmail.com.
‡Email: rosario.lopez@unirioja.es.
§Email: juanfelix.sanjuan@unirioja.es.

bit propagator fits the CDDIS data with a converged
iteration position residual RMS of 1.5 meters (Fig-
ure 1). The ECEF x and y residuals (both the posi-
tions and velocities) exhibit a 12-hour signature en-
velop with multiple higher frequencies. The ECEF z
residuals exhibit only the multiple higher frequencies.
For the GTDS DSST fit, the converged iteration posi-
tion residual RMS increases to 2.1 meters (Figure 2).
Similar Cowell and DSST least-squares fits were con-
ducted for the Lageos-2 case. The GTDS Cowell orbit
propagator fits the CDDIS data for Lageos-2 with a
converged iteration position residual RMS of 1.37 me-
ters (Figure 3). Again, the ECEF x and y residuals
exhibit a 12-hour envelop with multiple higher fre-
quencies. The ECEF z residuals exhibit only the mul-
tiple higher frequencies. For the GTDS DSST fit, the
converged iteration position residual RMS increases
to 3.9 meters (Figure 4).

For the Jason-2 case, the envelops of the DSST
residual plots follow the envelops for the respective
Cowell residual plots. However, there are additional
periodic terms in the DSST residual plots. These ad-
ditional frequencies are intermediate between the high
frequencies and the 12-hour terms in Figure 1.

The differences between the DSST and Cowell
residuals are larger for the Lageos-2 case than for the
Jason-2 case. Also, the 12-hour signature seems less
obvious in some of the Lageos-2 DSST plots. This
suggests that the increase in the Lageos-2 DSST resid-
uals is connected to the treatment of the lunar-solar
perturbations.

In the full paper, we plan a more detailed analy-
sis of the differences between the DSST and Cowell
residuals for each of the orbital cases.
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Figure 1: Jason-2 GTDS Cowell DC Converged Iteration ECEF Measurement Residuals (EGM96 50x50, Jacchia-
Roberts, Lunar Solar Point Masses, SRP, SET, J2000 Integration Coordinate System) (position differences are
in meters and velocity differences are in cm/sec).

Figure 2: Jason-2 GTDS DSST DC Converged Iteration ECEF Measurement Residuals (GGM01S 50x50, Lunar
Solar Point Masses, SRP, SET, J2000 Integration Coordinate System) (position differences are in meters and
velocity differences are in cm/sec).

Figure 3: Lageos-2 Cowell DC Converged Iteration ECEF Measurement Residuals (EGM96 50x50, Jacchia-
Roberts, Lunar Solar Point Masses, SRP, SET, J2000 Integration Coordinate System) (position differences are
in meters and velocity differences are in cm/sec).
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Figure 4: Lageos-2 GTDS DSST DC ECEF Measurement Residuals (GGM01S 50x50, Lunar Solar Point Masses,
SRP, SET, J2000 Integration Coordinate System, DSST Short-period model: SPGRVFRC set to complete model,
SRP short period motion, Short-Period J2 partials ) (position differences are in meters and velocity differences
are in cm/sec).
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Setty, and P. J. Cefola, “Migration of the DSST Stan-
dalone to C/C++,” Advances in the Astronautical
Sciences, vol. 160, pp. 2419–2437, 2017, paper AAS
17-369.

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        43 



5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

Remarks on The Super-integrability of Dynamical Systems

Vladimir Martinusi*1

1Department of Aerospace Engineering & Asher Space Research Institute,
Technion – Israel Institute of Technology

Abstract

The super-integrability plays a fundamental role in
Astrodynamics, since its properties are indirectly
used in canonical perturbation theory involving Lie
transforms. The present work emphasizes that any
integrable dynamical system (in the sense of the
Liouville-Arnold theorem) is in fact maximally super-
integrable. As a practical application, the complete
reduction of some relevant classical dynamical sys-
tems is presented in an algebraically explicit closed-
form.

1 Introduction

A Hamiltonian system with its phase space of dimen-
sion 2N , N ≥ 1, is said to be super-integrable [1] if
it possesses n independent (in the sense of the Pois-
son brackets) first integrals, n > N , and the energy-
level sets are compact. Complete integrability (in the
sense of the Liouville-Arnold Theorem [2, 3]) requires
only a number of integrals equal to half the dimen-
sion of the phase space (including the Hamiltonian
itself). The maximal super-integrability of a dynam-
ical system implies that it has exactly 2N − 1 inde-
pendent first integrals, and therefore the Hamiltonian
can be written as a function of only one momentum.
Such example is the classical Kepler problem where
the Hamiltonian, expressed with respect to the De-
launay variables (l, g, h, L,G,H) , has the expression:

HK = − µ2

2L2
(1)

The dependence of the Hamiltonian of only one
momentum is of vital importance in the Lie-Deprit
canonical perturbation theory [4], since it makes the
homological equation

{Wn,HK} = H0,n −Hn,0 (2)

reducible to a simple quadrature:

Wn = − 1

n

∫
(H0,n −Hn,0) dl (3)

*Email: vmartinusi@technion.ac.il

Because of the explicit outcome of Eq. (3), it is
possible to explicitly determine each term of the Lie
transform asymptotical expansion that converts the
new (or primed variables) into the osculating ones,
thus building an approximate solution to the non-
integrable, perturbed original dynamical system.

The present work proves that any integrable dy-
namical system (in the sense of Liouville) is locally
reducible to a maximally super-integrable dynami-
cal system. Moreover, when the system is super-
integrable (i.e. the Hamiltonian can be expressed as
a function of exactly N independent first integrals),
this reduction is always made by an explicit contact
transformation.

2 Completely Integrable Dynamical Systems

Definition 1 A Hamiltonian system with its phase
space P of dimension 2N, N ≥ 1, is said to be com-
pletely integrable if there exist the functions Ik :
P → R, k = 1...N − 1 such that

{Ik, Im} = 0, {Ik,H} = 0, m = 1..N − 1 (4)

where H is the Hamiltonian.

Corollary 2 If a Hamiltonian system is completely
integrable, then there exist N − 1 independent func-
tionals Ik, k = 2..N, and two functions r,R : R → R
such that the Hamiltonian can be expressed as:

H = H (r,R, I2, .., IN ) (5)

and:
{Ik, Im} = 0 {Ik,H} = 0

{r,R} = 1 {r, Im} = 0

{R, Im} = 0

{r,H} =
∂H
∂R

{R,H} = −∂H
∂r

(6)

where 2 ≤ m ≤ N.

Corrolary 2 implies that the phase space can be
reparametrized, after a canonical transformation, by
the generalized coordinates r, qk and by their conju-
gates R, Ik, k = 2...N. Assume that there exists a
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region of the phase space where the equation:

H (r,R, I2, .., IN ) = L1 (7)

can be solved for R1, yielding:

R = F (r, L1, I2, .., IN ) (8)

Denote

q =
[
r q2 ... qN

]T
I =

[
R I2 ... IN

]T
Q =

[
Q1 ... QN

]T
L =

[
L1 ... LN

]T
Consider the canonical transformation

(q, I)→ (Q,L)

generated by the function W =W (q,L):

W =

∫ r

ρ(L)

F (s, L1, L2, .., LN ) ds+
N∑
k=2

qkLk (9)

such that:

Q =

[
∂W
∂L

]T
, I =

[
∂W
∂q

]T
(10)

Here ρ (L) denotes one root of the equations in x :

F (x, L1, I2, .., IN ) = 0

and we impose that this root is simple.
It follows that:

Qk = qk +

∫ q1

u(L)

∂F

∂Lk
(s, L1, L2, .., LN ) ds (11)

I1 = R1 (12)

Im = Lm, 2 ≤ m ≤ N (13)

Consequently, the Hamiltonian system has been re-
duced to its Darboux form [5], namely:

H = L1 (14)

so it is maximally superintegrable, its 2N−1 constants
being Q2, ..., QN and L1, ...LN .

Theorem 3 A completely integrable Hamiltonian
system is locally maximally super-integrable.

3 Super-Integrable Dynamical Systems

If a dynamical system with phase space of dimen-
sion N has more than N independent first integrals,
then of course the Hamiltonian is one of them and
the rest can be organized (after a canonical change

of variables) into a subset of a set of canonical vari-
ables. The most general case is when the Hamiltonian
is expressed such hat exactly N first integrals other
than the Hamiltonian are emphasized, so let us as-
sume that:

H = H (I1, ...IN ) (15)

The constants Ik can be organized as being the
conjugate momenta in a set of canonical variables
(q, I). Consider the canonical transformation (q, I)→
(Q,L) by the function W =W (Q, I):

W = Q1H (I1, ...IN ) +
N∑
k=2

QkIk (16)

It follows that:

q =

[
∂W
∂I

]T
, L =

[
∂W
∂Q

]T
(17)

yielding:

Q = Mq (18)

Lm = Im, 2 ≤ m ≤ N (19)

L1 = H (I1, ...IN ) (20)

where M is the inverse of the Jacobian matrix

M =
∂ (H, I2, ...IN )

∂ (I1, I2, ...IN )
(21)

It follows that if a Hamiltonian system is displayed
in its minimal super-integrable form (for example, the
case where it has been reduced to action-angle vari-
ables), there exists an explicit canonical transforma-
tion that reduces it to its Darboux form, namely the
Hamiltonian itself is one of the canonical variables.
The statement that any Hamiltonian system that has
been reduced to action-angle variables is maximally-
super-integrable is a weaker form of Theorem 3.

4 Applications

4.1 Complete reduction of Brouwer’s solution to
the Main Problem in Artificial Satellite The-
ory

At second order, Brouwer’s integrable approximation
[6] is expressed in Delaunay elements as:

H2 = − µ2

2L2
+J2F1 (L,G,H) +

J2
2

2
F2 (L,G,H) (22)

making it suitable for the approach in presented in
Section 3. In order to emphasize the Keplerian nature
of the fully-reduced system, let us impose that the
canonical change of variables that completely reduces
the problem is generated by:

W = Q1
µ√

−2H2 (L,G,H)
+Q2G+Q3H (23)
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yielding:

G1 = G; H1 = H (24)

l1 = (−2H2)
3/2

[µ∂LH2]
−1
l (25)

g1 = g − ∂GH2 [∂LH2]
−1
l (26)

h1 = h− ∂HH2 [∂LH2]
−1
l (27)

and the fully reduced Hamiltonian:

H2 = − µ2

2L2
1

(28)

4.2 Complete Reduction of Deprit’s Radial Inter-
mediary

Consider (r, θ, ν, R,Θ, N) the set of canonical polar-
nodal variables [7] and the second order Deprit radial
intermediary [8, 9]:

H2 = H0 +H1 +
1

2
H2 (29)

H0 =
1

2

(
R2 +

Θ2

r2

)
− µ

r

H1 =
µk

2pr2
(
1− 3c2

)
H2 =

3k2

4

Θ2

p4r2

(
7c2 − 1

3

)
with

k =
J2r

2
eq

2
; p =

Θ2

µ
; c =

N

Θ
(30)

Before proceeding with the full reduction, introduce
the new set of canonical variables (r, ϕ, υ,R, p, c) ,
where p, c are defined in Eq. (30) and:

ϕ =
µ

2
√

Θ
(cθ + ν) ; υ = Θν (31)

The Hamiltonian H2 from Eq. (30) becomes:

H2 =
1

2

(
R2 +

µp

r2

)
− µ

r
(32)

+
µk

2pr2
(
1− 3c2

)
+

3k2

4

µ

p3r2

(
7c2 − 1

3

)
Denote ∆ = 1 + ∂pF (p, c) . The transformation:

ϕ1 =
ϕ

∆
(33)

υ1 = υ − ϕ

∆
∂cF (p, c) (34)

p1 = F (p, c) (35)

to (r, ϕ1, υ1, R, p1, c) is canonical, with F (p, c) defined
as:

F (p, c) = p+
k

2p

(
1− 3c2

)
+

3k2

4p3

(
7c2 − 1

3

)
(36)

The Hamiltonian H2 from Eq. (32) is reduced to the
Hamiltonian of a Keplerian motion:

H2 =
1

2

(
R2 +

µp1
r2

)
− µ

r
(37)

that can be, if prefered, fully reduced to the Darboux
form by applying the considerations from Section 2.

5 Conclusions

It has been proved that any integrable system is maxi-
mally super-integrable, and thus reducible to the Dar-
boux coordinates, where the Hamiltonian itself is one
of the canonical variables (making time its conjugate
coordinate). Two methods of reduction were pre-
sented, one when the Hamiltonian is displayed in its
Liouville form (N first integrals that are in involu-
tion) or in its action-angle form (the latter producing
an explicit canonical transformation to the reduced
form). The result has been applied to show that, in
fact, any integrable approximation in Astrodynamics
is locally reducible to a classical Kepler problem.
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Iochroma asteroid family resonance perturbations
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Abstract

The dynamics of very young compact asteroid clus-
ter associated with asteroid 39991 Iochroma is stud-
ied. It is shown that Iochroma family lie between two
three body resonances 3A-3J-1M and 2A-5J-3S and
perturbed by both of them. It is remarkable, that
one part of the family is perturbed mostly 3A-3J-1M
resonance when other part by 2A-5J-3S resonance. In
this paper we approximated the orbital elements of all
members of Iochroma family by harmonic oscillations
with different frequencies.

Based on these approximations, we have deter-
mined the position of these resonances and boundary
between them.

Additionally, we report about one new member of
Iochroma family: (2016 UT3).

1 Introduction

The cluster associated with asteroid 39991 Iochroma
(1998 HR37) was discovered by Pravec & Vokrouh-
licky (2009) [1]. The cluster consists of 5 members
with relative velocity smaller than 20 m/s. The four
secondaries were discovered in 20052008. We have
repeated search for new orbits in vicinity Iochroma
cluster by the Lowell observatory catalogue on date
15 June 2021 and have found only one new member:
2016 UT3. The values of proper elements calculated
by Knezevic & Milani [2] were given from AsDys site
in Table 1. The values of Lyapunov Characteristic
Exponents are significantly different between 1.87 and
32.03 Myrs. It notes that orbits of clusters have dif-
ferent stability by some reasons, maybe due to reso-
nances.

∗Email: hegem@mail.ru.

However, there is no detailed study of this group of
minor planets up to present. Even the age of 39991
(1998 HR37) association long time had not be esti-
mated. Only recently, Pravec et al in paper [3] give
two estimations for the age of family 190+200

−100 kyrs and

140+130
−70 kyrs.

Here we report about our studying this cluster, in-
cluding age estimation, important resonances search
for and recent dynamical evolution.

2 Numeric integration and approximation

To study the dynamic evolution of asteroid families in
this paper, the equations of the motion of the systems
were numerically integrated orbits over 800 kyr using
the N-body integrator Mercury and the Everhart in-
tegration method.

To the nominal resonance position calculation, we
use values of semimajor axis of planets, averaged over
time of integration: 1.52368 AU for Mars, 5.20259
AU for Jupiter, 9.5549 AU for Saturn always in this
paper.

To study interaction considered pair with resonance
and to determine position of resonance center (chaotic
zone center) we apply integration of orbits of asteroid
with significant values of Yarkovsky effect (A2 = 1 ×
10−13 and different gravitation perturbations.

In the present paper we suppose the following ap-
proximation expressions for the orbital elements by
method [4]:

Ω = Ω0 + st+ a1 cos s1t+ b1 sin s1t+ ...

ω̂ = ω̂0 + gt+ a1 cos g1t+ b1 sin g1t+ ...
(1)

3 Results

In result we have obtained that Iochroma family is
unique: it lies between two three-body mean motion
resonances and perturbed both of them. The nearest
3-body resonance to the Iochroma family is: 3-3J-1M
(δ = +0.00041 AU from core of family) at 2.445415
AU (2.4454751 AU by Smirnov & Schevchenko [5]).
When we use integration with only Jupiter and Mars
perturbations and Yarkovsky effect we immediately
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Table 1: Proper elements of Iochroma family (26.20.2020)

Asteroid g,”/yr s,”/yr e a, AU LCE

39991 Iochroma 41.9146 -46.3827 0.159164 2.44472 3.52
340225 (2006 BR54) 41.9146 -46.3823 0.159154 2.44472 3.24
349730 (2008 YV80) 41.9174 -46.3845 0.159162 2.44476 1.87
428243 (2006 YE19) 41.9192 -46.3851 0.159156 2.44479 11.26
513212 (2005 UU94) 41.9462 -46.384 0.158685 2.44528 8.07

Figure 1: The semimajor axis evolution of 428243 (2006 YE19) with large Yarkovsky effect (A2 = 1013) Mars
and Jupiter perturbations.

detect it. The chaotic zone center by numeric integra-
tion data is about 2.44502 AU (δ =+0.00039 AU from
nominal position) for the 3-3J-1M resonance (Figure
1). The nearest (and most perturbed) to the reso-
nance asteroids are (428243) 2006 YE19 and (513212)
2005 UU94. But when we use only Jupiter and Sat-
urn perturbations and Yarkovsky effect, we detect
perturbations with center about 2.44450 AU. Most
probably, it is 2-5J-3S resonance with nominal po-
sition at 2.445661 AU (2.445333 AU by Smirnov &
Schevchenko [5]) (δ=-0.00116 AU from nominal posi-
tion).

However we note some shift of Jupiter-Saturn-
asteroid resonance relative the nominal resonance po-
sition. Therefore we have the problem of the ex-
act identification of this resonance and its interaction
with 3J 1M -3A resonance and effect on Iochroma
family dynamics.

Using our approximation (1) for eccentricity, we de-
tect the resonance related perturbations and calculate
the positions of the 3-3J-1M and 2-5J-3S resonances.

The results are in the fine agreement with numerically
detected position of resonances.

4 Conclusions

The dynamics of very young compact asteroid clus-
ter associated with asteroid 39991 Iochroma is stud-
ied. It is shown that Iochroma family lie between two
three body resonances 3A-3J-1M and 2A-5J-3S and
perturbed by both of them. The interaction between
close resonances can leads to their overlapping and as
consequence, to arise of chaos.
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Abstract

We focus on inclination-only dependent lunisolar res-
onances, which shape the dynamics of a MEO object
over secular time scales (i.e. several decades). Fol-
lowing the formalism of [4], we discuss an analytic
model yielding the correct form of the separatrices
of each one of the major lunisolar resonances in the
”action” space (i, e) (inclination, eccentricity) for any
given semi-major axis a. We then highlight how our
method is able to predict and explain the main struc-
tures found numerically in Fast Lyapunov Indicator
(FLI) cartography. We focus on explaining the de-
pendence of the FLI maps from the initial phase of
the argument of perigee ω and of the longitude of
the ascending node Ω of the object and of the moon
ΩL. In addition, on the basis of our model we dis-
cuss the role played by the Ω− ΩL and the 2Ω− ΩL

resonances, which overlap with the inclination-only
dependant ones as they sweep the region for increas-
ing values of a, generating large domains of chaotic
motion. Our results provide a framework useful in de-
signing low-cost satellite deployment or space debris
mitigation strategies, exploiting the natural dynam-
ics of lunisolar resonances that increase an object’s
eccentricity up until it reaches a domain where fric-
tion leads to atmospheric re-entry.

1 Introduction

The work we are going to discuss is an extension on
[4].

For a long time the problem of lunisolar resonances
has remained quite underrated, but it gained more
and more interest with the increased awareness of the
threat imposed by space debris. Indeed, the possibil-
ity has been demonstrated to design low cost end-of-
life (EoL) disposal strategies exploiting resonant ef-
fects that increase an object’s eccentricity up until it

∗Email: legnaro@academyofathes.gr
†Email: christos.efthymiopoulos@math.unipd.it
We acknowledge the support of the Marie Curie Initial Train-
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reaches a domain where friction leads to atmospheric
re-entry (see [2], [6], [3], [1] and references therein).

Our main contributions in the present work can be
summarized as follows.

• We provide an analytic framework useful to un-
derstand the structure of all inclination-only de-
pendent lunisolar resonances and to compute the
correct form of their separatrices in the ”action”
space (i. e. the space of the elements (e, i)) (see
Figure 2). Our analysis extends the one done
in [4] by providing a more detailed treatment of
the crossing domain of each lunisolar resonance
with the Ω − ΩL and 2Ω − ΩL resonances. As
an example, we will provide all the details for
the particular case of the 2g resonance. Results
for all the major lunisolar resonances (the g + h,
2g + h, 2g, 2g − h, g − h) are summarized in the
form of tables with numerical coefficients in the
appendix.

• We show the correspondence between the theo-
retical phase portraits at each resonance and the
numerical stability maps computed by the ”Fast
Lyapunov Indicator” (FLI, see [5]).

• We provide quantitative estimates for the maxi-
mum eccentricity, as a function of the initial in-
clination, which can be reached via the ”eccen-
tricity growth” mechanism, separately for each
resonance, providing also the limits in inclina-
tion within which the mechanism is active, as
well as the dependence of these limits on the ini-
tial phases Ω,ΩL. In fact, analogously to [4], we
identify these limits by the values of the inclina-
tion that marks the transition of circular orbits
(e = 0) from stable to unstable via an analogue
of the Konzai mechanism.

2 The Hamiltonian Model

Consider a MEO object under the influence of the
Earth, the Moon and the Sun in an Earth-centered in-
ertial frame. We assume circular orbits for the Moon
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and the Sun, where the longitude of the solar ascend-
ing node is constant: ΩS = 0. Since we are interested
in the secular dynamics, we perform an average on
the short-periodic terms.

3 Analytic Theory

The steps we follow in order to study a particular res-
onance are the following. Consider an inclination-only
dependent lunisolar resonance σ = k1ω + k2Ω (with
k1 ̸= 0) located at i⋆. First, we look for a suitable set
of coordinates to study the resonance. We do so by
looking for a canonical trasformation to resonant vari-
ables JR, JF , uR, uF ) where uR is related to the reso-
nant angle k1ω + k2Ω and uF is a fast angle. Finally,
by introducing Poincaré variables X =

√
2JR sinuR,

Y =
√
2JR cosuR, we arrive at a resonant form of

the Hamiltonian H(X,Y, JF , uF , A,ΩL). The canon-
ical change of variables f is chosen so that H is a
polynomial in the variables X and Y .
Next, in order to better understand the dynamics,

we look for an integrable approximation of the Hamil-
tonian H. We first derive an analytic approximation
for JF (t), and then to plug it inside the full Hamil-
tonian. By averaging over the angles we will end up
with an integrable model of the dynamics in the vari-
ables X and Y .

4 Conclusions

This derived integrable model allows gives phase por-
traits (show at the bottom of Figure 2) that allow to
predict the shape of FLI maps, since these show the
intersection with a scanning direction given by the
angle uR with the figure-8 separatrix.

Also, the model can be used to compute the limit-
ing values i1 and i2 within which circular orbits are
unstable. This can be used to estimate the width in
inclination of a given resonance for any semi-major
axis a.

We built our integrable model assuming a single
resonance. Because of this, the prediction of the sep-
aratrices is accurate far from the intersections with
the Ω−ΩL and 2Ω−ΩL resonances, but in any case
the prediction of the width of the resonance is al-
ways quite accurate. Moreover, we have seen how
our model is able to explain the dependence of the
FLI maps from the phases of the angles ω,Ω and ΩL

(see Figrue 3): given a particular resonance, the com-
bination of the angles ω and Ω gives the value of the
angle uR which defines the direction in which the inte-
grable phase portrait is seen. Then, the initial phase
of ΩL affects the shape of the central manifold (the
whole phase portrait is moved up or down) and the
angle Ω defines where we are on a particular torus of
the central manifold. So in this way the instability
region where the central manifold becomes normally

hyperbolic is shifted along the two limiting tori. Such
prediction is shown on the left of Figure 1.

Figure 1: (Left) Theoretical amplitude of the reso-
nances considered in this paper as a function of the
altitude. The resonances are: g + h (red), 2g + h
(green), 2g (blue), 2g − h (magenta), g − h (cyan),
and in gray the Ω−ΩL (lower) and 2Ω−ΩL (higher).
(Right) Analytical 3D representation of the 2g + h
resonance.
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[4] Jérôme Daquin, Edoardo Legnaro, Ioannis Gkolias,
and Christos Efthymiopoulos. A deep dive into the
2g + h resonance: separatrices, manifolds and phase
space structure of navigation satellites. Celestial Me-
chanics and Dynamical Astronomy, 134(1):1–31, 2022.
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Figure 2: Analytic predictions for the vertical (left) and horizontal (right) scanning direction. Blue lines in the
FLI maps correspond to the fast drift planes for i1 and i2.

Figure 3: Analytic bounds of the hyperbolic region against an FLI map for the resonance 2g + h at 20000 km.
The bounds are shifted along the tours for different values of Ω0.
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1 Introduction

The proliferation of space debris orbiting Earth has
stimulated the investigations on their dynamical en-
vironments and, especially, on the effect of the small
disturbing forces that act on their long-term dynamics
(see, e.g., [1], [2]). Among them, the third-body per-
turbation of the Sun and the Moon generate complex
resonant structures that provide non trivial behaviors
and chaotic motion (see, e.g.,[3]). As a matter of fact,
these resonances, together with the ones associated
with the solar radiation pressure, organize the distri-
bution of space debris for high-altitude orbits in the
long term in the same way as mean-motion resonances
create instabilities in the Solar system. It is enough
to mention the so-called Kirkwood gaps of the Aster-
oid Belt, located exactly at mean-motion resonances
of low order with Jupiter (see, e.g, [4]). In-depth in-
vestigations of resonances represent an effective mean
to mitigate the space debris problem (see, e.g., [5]).
Their understanding may provide natural mechanisms
that allow to control the long-term dynamics of satel-
lites and, therefore, manage the space traffic. In this
framework, we will discuss about the dynamics of a
test-particle in the 2g + h resonance, where g is the
argument of perigee and h the longitude of the as-
cending node of its orbit.

The first part of the talk, sketched in Sect. 2, will be
dedicated to formulate the problem and present a per-
turbative scheme that leads to an integrable Hamil-
tonian which gives a complete understanding of the
resonant dynamics. Then, recalling that the Galileo
constellation orbits the Earth in a small neighborhood
of the 2g + h resonance, we will discuss about the
topology of the phase space in the case of a Galileo
navigation satellite (see Sect. 3). Finally, going back
to the full problem, we will outline our strategy step
by step in order to obtain a rigorous proof of Arnold
diffusion in the considered problem (see Sect. 4). As
proposed by Daquin et al.[6], this mechanism of dif-
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fusion may provide a practical application in order to
manage the end-of-life of the Galileo constellation by
pumping-up the eccentricity of the orbit and slowly
guiding the satellites to a reentry in the Earth’s at-
mosphere.

2 Modeling the problem

We consider the dynamics of a test particle whose Ke-
pler motion around Earth is disturbed by the secular
and quadrupolar approximations of the geopotential
(usually known as the J2 effect) and of the third-body
perturbation due to the Moon. The Delaunay action-
angle variables are introduced in order to preserve the
symplectic geometry of the problem:

L =
√
µa, G = L

√
1− e2, H = G cos I,

l = M, g = ω, h = Ω,

where µ is the mass parameter of the Earth and
(a, e, I,Ω, ω,M) denote respectively the semi-major
axis, the eccentricity, the inclination with respect to
the equatorial plane, the longitude of the node, the
argument of the perigee, and the mean anomaly of
the particle.

The problem is approached through the perturba-
tion theory. For that purpose, we define the small pa-
rameter α = a/aM which characterizes the distance
of the Moon (aM denotes the semi-major axis of the
Moon) with respect to the orbit of the satellite. In
that framework, the Hamiltonian of the problem can
be written

HK(L) + H0(L,G,H) + α3HIM
1 (L,G,H, g, h, t).

where HK is the unperturbed Kepler motion of the
particle, while H0 and HIM

1 model respectively the
variations generated by the Earth’s J2 effect and by
the Moon. For the sake of conciseness, the readers
are referred to the paper [7] for the detailed expres-
sions of each term. We only point out that the Moon’s
disturbing effect depends on time since its orbit is in-
clined with respect to the ecliptic (IM ' 5˚), and
experiences a linear drift in the longitude of the node,
with a period of about 18.6 years.
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2.1 The “2g + h” resonance

Our work focuses on a peculiar region of the phase
space for which the solutions are characterized by
a resonant angle x = 2g + h that oscillates around a
given value. At first order, the unperturbed Hamil-
tonian (α = 0), which is integrable, reveals the loca-
tion of the resonance in the phase space, that is for
all G 6= 0 and H = G cos I? with a critical inclina-
tion I? ' 56.06˚ in the prograde case1. Besides, in
a small enough neighborhood of I?, the angular vari-
ables evolve at different rates, g and h being “fast”
angles with respect to x which undergoes a “slow”
drift in O(|I − I?|). In the full problem (α > 0),
the phase space is no more integrable, however the
timescales separation still remains as long as |I − I?|
and α are small enough. A classical way to take ad-
vantage of this feature consists in introducing a suit-
able set of action-angle variables. We propose the
symplectic transformation

Υ : (l, L, x, y, h,Γ, t) 7→ (l, L, g,G, h,H, t)

such as

y =

√
µa

2

√
1− e2, Γ =

√
µa

2

√
1− e2 (2 cos I − 1) ,

in order to deal with a resonant action y that only
depends on the variations of the eccentricity. Hence,
the variations of the inclination are deduced from Γ.

2.2 A suitable perturbative treatment

The Hamiltonian of the full problem is time-
dependent due to motion of the Moon’s node with
respect to the ecliptic. In order to overcome this dif-
ficulty, a first reduction is performed by considering
the orbit of the Moon in the ecliptic plane, that is, for
IM = 0, which makes the longitude of the ascending
node not defined. In that framework, the full problem
becomes the perturbation of an autonomous Hamilto-
nian by a remainder in O(α3IM).

The autonomous Hamiltonian has 3 degrees of free-
dom, with a conserved quantity L. Another reduc-
tion is possible by exploiting the timescales separation
and replacing the original Hamiltonian by another
one in which the fast oscillations have been removed.
In other words, we perform an averaging of the au-
tonomous Hamiltonian over the the fast angle h. Ac-
cording to the perturbation theory, the autonomous
Hamiltonian is mapped to the averaged one added to
a remainder in O(α6).

As a consequence, the two steps of reduction pro-
vide an averaged Hamiltonian

HK + H0 ◦Υ + α3

∫ 2π

0

H0
1 ◦Υdh,

1The retrograde case located in I? ' 110.99˚ will not be
considered during the talk.
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Figure 1: Location of the three families of fixed points, de-
noted “e = 0”, “x = 0” and “x = 180˚” in the dimensionless
action space (Γ/L, y/L). Blue and red curves correspond re-
spectively to segment of centers and saddles. Green, purple
and yellow areas are associated with 3 different topologies of
phase portraits.

that only depends on (L, x, y,Γ) and for which L and
Γ are first integrals. Considering L and Γ as param-
eters, the description of the phase portrait obtained
for various values of Γ allows to understand the global
dynamics of the 2g + h resonance.

3 The resonant dynamics of a Galileo satellite

From now on, we consider a Galileo satellite that or-
bits Earth at a = 29600 km, that is, for a small pa-
rameter α = 0.077. The explicit expressions of H0

and H0
1 given in [7] combined with our perturbative

scheme provide a family of integrable Hamiltonian,
parametrized by Γ, that can be written as follow:

HΓ(x, y) = y−5(A+ α3
√
BC cosx)

where A, B and C are polynomial functions in (Γ, y).
For each value of Γ, the derived equations of motion

allow to compute fixed points that necessarily satisfy
one of the following conditions:

e = 0, e > 0 with x = 0, e > 0 with x = 180˚.

For each condition, a one-parameter family of fixed
points is highlighted while the Hessian matrix of the
Hamiltonian provides the evolution of its stability. We
point out that the resonant variables (x, y), derived
from the Delaunay coordinates, have an important
failing, that prevents from computing the stability of
the fixed points associated with the circular orbit.
This difficulty is overcome with the introduction of
canonical polar coordinates

(ξ, η) =
√

2L− 4y (cos(x/2), sin(x/2))
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Figure 2: Phase portrait of the averaged Hamiltonian for
a Galileo satellite (α = 0.077) with Γ/L = cos I − 1/2 and
I = 56˚.

that are equivalent to (e cos(x/2), e sin(x/2)) for
quasi-circular orbits.

Figure 1 depicts the location and stability of the
three families of fixed points in the dimensionless ac-
tion space (Γ/L, y/L). The families “x = 0” and
“x = 180˚” extend from either side of the critical
inclination. By varying Γ, “x = 0” remains a center,
while “x = 180˚” and “e = 0” bifurcate. Hence, by
varying Γ, three topologies of phase portraits can be
identified: a saddle and a center, respectively in e = 0
and x = 0 in the green region, two saddles and two
centers, respectively in e = 0, x = 180˚ and x = 0,
x = 180˚ in the purple region, and a saddle and two
centers, respectively in x = 180˚, e = 0 and x = 0
in the yellow region. As a consequence, as depicted
in the phase portrait of Fig. 2, for a Galileo satel-
lite in circular orbit with I = 56˚ (green region), a
small departure in eccentricity will necessarily lead to
a slow increasing of the eccentricity that can reach
high values, comparable to the one associated with
the collision orbit with the Earth’s surface (e ' 0.78).
Two dynamics are possible: a resonant motion inside
the separatrix with x and e that oscillate respectively
around 0˚ and e ' 0.55 with large amplitudes, and a
non-resonant motion with x that circulates.

4 A strategy to prove Arnold diffusion

Our aim is to obtain a rigorous proof of existence of a
drift in actions, that may increase the eccentricity of
a Galileo satellite in the full problem. A normally hy-
perbolic invariant manifold (NHIM), that has stable
and unstable invariant manifolds will be a key tool to
construct the drifting orbits.

The ideal case given by our integrable approxima-
tion of the problem provides a global understanding

of the “2g + h” resonance. More precisely, for a fixed
value of energy, the dynamics is foliated by two dimen-
sional invariant tori with constant Γ (either resonant
or non-resonant depending on the value of Γ). For
each value of Γ belonging to a given non empty range
[Γ−,Γ+], the averaged Hamiltonian has a saddle in
ξ = η = 0, and the union of these saddles forms a
NHIM.

Going back to the non-averaged problem defined by
the Hamiltonian with IM = 0, Γ is not integrable any
more but the energy is still preserved. In physical
terms, the eccentricity cannot increase significantly.
In that framework, we will show that each saddle be-
comes now a hyperbolic periodic orbit implying that
the considered NHIM is foliated by invariant two di-
mensional tori.

In the full problem given by IM > 0, the time de-
pendence due to the motion of the Moon’s node is
added and the energy is not a first integral anymore.
The dynamics in the NHIM will be more complicated,
but expected to be IM-close to integrable (we recall
that IM ' 5˚). In such a case, the homoclinic struc-
tures constructed in the previous steps will be used in
order to obtain Arnold diffusion orbits. Through this
strategy, we will build orbits that travel along the in-
variant manifolds and undergo an increase of energy
corresponding to a drift in eccentricity.
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1 Introduction

Recently, the use of a Fourier series approximation has
been successfully used to design low-thrust trajecto-
ries [1, 2]. A Fourier series representation of the thrust
vector components, and their secular effect on the av-
eraged orbital elements, has also been developed [3],
finding that the averaged dynamics depend only on 14
thrust Fourier coefficients. This method has been fur-
ther used in the solution of orbital targeting problems
[4]. The set of 14 thrust Fourier coefficients was later
reduced to a set of 6 essential coefficients, which allow
for efficient control of the orbital elements [5]. Fourier
decomposition of thrust has also been applied to cre-
ate an artificial resonance with the orbital dynamics,
yielding fuel-efficient cross-track maneuvering [6].

Further work has developed the Fourier series rep-
resentation of the thrust and the resulting change in
orbital elements in terms of the mean anomaly [7].
This provides some significant advantages relative to
the use of the eccentric anomaly, because the mean
anomaly is proportional to time, such that the Fourier
series truly constitutes a spectral decomposition. Nie
and Gurfil [7] introduced the concept of resonant con-
trol, which involves an artificial resonance between
the control and the corresponding coefficients of the
Gauss variational equations. By examining the sec-
ular change of the orbital elements through averag-
ing, it was shown that this technique can improve fuel
consumption and/or transfer time relative to previous
methods.

This research aims to extend the concept of reso-
nant control to a perturbed space environment. In the
current work, we present the first step towards build-
ing a resonant control formalism under perturbations.
In particular, we present a complete Fourier series
expansion of the J2 potential and the corresponding
variational equations. We compare the Fourier-based
expansion to exact integration and to Brouwer’s so-
lution, so as to assess the order of the Fourier series
required to capture the dominant effects of the per-
turbation. The expansion of the J2 perturbation into
a Fourier series and the incorporation thereof into the

∗Email: mailhotn@campus.technion.ac.il
†Email: pgurfil@technion.ac.il

Lagrange planetary equations constitutes an impor-
tant result on its own right. In fact, this result can
potentially be a generating mechanism for a new arti-
ficial satellite theory, competing with well-established
theories such as Brouwer’s and Kozai’s theories. It
is planned to use the obtained spectral decomposi-
tion in order to compare propagation of orbits to
semianalytical theories. It will be examined whether
the newly-developed formalism can be used for short-
period and/or long-period elimination without using
Hamiltonian-mechanics-based generating functions.

To incorporate the J2 perturbation into the reso-
nant control formalism, it must be represented as a
Fourier series. This can be achieved by first devel-
oping the Fourier series in mean anomaly of the per-
turbing potential.

2 Approach

The perturbing potential due to the J2 zonal har-
monic is given by [8]

R = −
µJ2r2eq

2a3 (1− e2)3
(1 + e cos f)3

(
3 sin2 (ω + f) sin2 i− 1

)
(1)

where req is the mean equatorial radius. This can be
expanded as

R = R0

(
C5 cos5 f + C4 cos4 f (2)

+ C3 cos3 f + C2 cos2 f + C1 cos f + C0 (3)

+ S4 cos4 f sin f + S3 cos3 f sin f + S2 cos2 f sin f (4)

+ S1 cos f sin f) (5)

where

R0 = −
µJ2r

2
eq

2a3 (1− e2)
3 (6)

and

C =

 C0

...
C5

 =


3 sin2 i cos2 ω − 1

9e sin2 i cos2 ω − 3e
9e2 sin2 i cos2 ω + 3 sin2 i

(
sin2 ω − cos2 ω

)
− 3e2

3e3 sin2 i cos2 ω + 9e sin2 i
(
sin2 ω − cos2 ω

)
− e3

9e2 sin2 i
(
sin2 ω − cos2 ω

)
3e3 sin2 i

(
sin2 ω − cos2 ω

)


(7a)

S =

 S1

...
S4

 =


6 sin2 i sinω cosω

18e sin2 i sinω cosω
18e2 sin2 i sinω cosω
6e3 sin2 i sinω cosω

 (7b)
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The trigonometric functions of f can all be expanded
into a Fourier series in M .

To illustrate the subtlety of such expansions, we will
detail herein, as an illustrative example, the expansion
of cos2 f . Since cos2 f is an even periodic function of
M ,

cos2 f = A0 +
∞∑
k=1

Ak cos kM (8)

The constant term is given by

A0 =
1

2π

∫ π

−π
cos2 fdM =

1

2π

∫ π

−π

(cosE − e)2

1− e cosE
dE

(9)
define the complex variable z , eiE so

dE =
−i
z
dz (10a)

cosE =
1

2

(
z +

1

z

)
(10b)

1

1− e cosE
= −2

e

z

(z − α) (z − β)
(10c)

where

α =
1 +
√

1− e2
e

, β =
1−
√

1− e2
e

(11)

Note that αβ = 1 and 0 < β < 1 < α. Then Eq. (9)
becomes

A0 =
1

2π

∮
C

i

2e

(
z2 − 2ez + 1

)2
z2 (z − α) (z − β)︸ ︷︷ ︸

f(z)

dz (12)

where C is the unit circle in the complex plane. The
integral is evaluated using the residue theorem. The
integrand has two singular points in C, z1 = 0 and
z2 = β. The residues of the integrand at these points
are

Res
z=z1

f (z) = lim
z→0

[
d

dz

i

2e

(
z2 − 2ez + 1

)2
(z − α) (z − β)

]
= −

i

2e
(4e− β − α)

(13a)

Res
z=z2

f (z) = lim
z→β

[
i

2e

(
z2 − 2ez + 1

)2
z2 (z − α)

]
=

i

2e

(
β2 − 2eβ + 1

)2
β (β2 − 1)

(13b)

The constant term, Eq. (12), is then

1

2π
2πi

[
−
i

2e
(4e− β − α) +

i

2e

(
β2 − 2eβ + 1

)2
β (β2 − 1)

]

= −
β
(
2e2 − 4eβ + β2 + 1

)
e (β2 − 1)

= 2−
1

e2
+

√
1− e2

(
1− e2

)
e2

(14)

The other terms are given by

Ak =
1

π

∫ π

−π
cos2 f cos kMdM =

1

π

∫ π

−π

(cosE − e)2

1− e cosE
cos kMdE

(15)

Using the identity

exp (ikM) =
∞∑

n=−∞
Jn (−ke) exp [i (n+ k)E]

=
∞∑

n=−∞
Jn (−ke) zn+k (16)

and the aforementioned complex change of variables
the coefficient becomes

Ak =
1

π

∞∑
n=−∞

Jn (−ke)

∮
C

i

2e

(
z4 − 4ez3 +

(
4e2 + 2

)
z2 − 4ez + 1

)
zn+k−2

(z − α) (z − β)
dz

=
1

π

∞∑
n=−∞

Jn (−ke)
i

2e (α− β)∮
C

(
z4 − 4ez3 +

(
4e2 + 2

)
z2 − 4ez + 1

)
zn+k−2

(
1

z − α
−

1

z − β

)
︸ ︷︷ ︸

f(z)

dz

(17)

Due to the presence of the term zn+k−2, the residue
cannot be evaluated as before and it must instead be
obtained from the Laurent expansion. The integral
part of this can be split into integrals of the form∮
C

f (z) dz =

4∑
m=0

am

∮
C

zmzn+k−2
(

1

z − α
− 1

z − β

)
dz

(18)
substituting the expansions

1

z − α
= −

∞∑
l=0

(
1

α

)l+1

zl = −
∞∑
l=0

βl+1zl (19a)

1

z − β
=
∞∑
l=0

βlz−l−1 (19b)

we arrive at the Laurent expansion

zmzn+k−2
(

1

z − α
− 1

z − β

)
= −

∞∑
l=0

βl+1zm+n+k+l−2 + βlzm+n+k−2−l−1

(20)

The residue of this series is the coefficient for which
the power of z is equal to −1.

Res
z=0

=

{
−βl+1 m+ n+ k + l − 2 = −1

−βl m+ n+ k − 3− l = −1
(21)

Solving for l and substituting results in

Res
z=0

=

{
−β−m−n−k+2 m+ n+ k − 2 ≤ 0

−βm+n+k−2 m+ n+ k − 2 ≥ 0
= −β|m+n+k−2|

(22)
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Thus the integral part of the coefficient becomes∮
C

f (z) dz

= 2πi
[
−β|n+k+2| + 4eβ|n+k+1|

−
(
4e2 + 2

)
β|n+k| + 4eβ|n+k−1| − β|n+k−2|

]
(23)

And overall the coefficients are

Ak =
1

2
√

1− e2

∞∑
n=−∞

Jn (−ke)[
β|n+k+2| − 4eβ|n+k+1| +

(
4e2 + 2

)
β|n+k|

− 4eβ|n+k−1| + β|n+k−2|
]

(24)

Alternatively,

Ak =
1

2
√

1− e2

∞∑
n=−∞

Jn (−ke)aTg (25)

where

a =
[

1 −4e 4e2 + 2 −4e 1
]T

(26)

and

g =
[
g0 g1 · · · g4

]T
(27)

gj = β|j+n+k−2|, j = 0, 1, . . . 4

The other functions of f in Eq. (5) can be obtained
in a similar fashion.
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Abstract

We report on a new global dynamics indicator based
on the theory of Lagrangian Descriptors. The diag-
nostic, valid for discrete and continuous multidimen-
sional systems, is used for discriminating between or-
dered and deterministic chaotic motions. Its imple-
mentation does not require the computation of the
tangent vector dynamics (no variational equations
needed) and is based solely on the knowledge of or-
bits on finite time window. We have benchmarked
the tool against several discrete and continuous mod-
els by reproducing phase portraits obtained either
through iterations of the mapping or portrayed by
stability maps (computed with variational indicators).
The method succeeds in revealing the topology of the
phase spaces, and in particular the geography and in-
teractions among resonances in nearly-integrable set-
tings. The indicator thus appears to be relevant for
the fields of celestial mechanics, astrodynamics and
dynamical astronomy.

1 Introduction

This contribution reports on the new global dynamics
indicator we introduced in [1]. The indicator is apt
to demarcate chaotic and ordered motions for au-
tonomous multidimensional velocity fields and their
discrete time analogue. The method is based on the
theory of Lagrangian Descriptors (LDs) rooted in the
study of oceanographic and geophysical flows [4].

For the sake of brevity, let us focus predominantly
on the formalism related to the continuous case. We
consider the differential system,

ẋ = f(x), x ∈ D ⊂ Rn, (1)

∗Email: jerome.daquin@unamur.be. F.R.S.-FNRS fellow
†Email: remi.pedenon-orlanducci@ensta-paris.fr
‡Email: makrina.agaoglou@icmat.es. Juan de la Cierva In-
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where the vector field f ∈ Ck, k ≥ 1. From a gen-
eral perspective, and to paraphrase [5], a Lagrangian
Descriptor is a functional that considers a bounded,
positive quantity that is an intrinsic geometrical or
physical property of the dynamical system along a
trajectory. For an initial condition x0 ∈ D and a final
time t > 0, the LD associated to x0 and t takes the
form

LD(x0, t) =

∫ t

−t

(g ◦ h)
(
ϕs(x0)

)
ds, (2)

where ϕs denotes the flow at time s supposedly de-
fined on I = [−t, t]. The choice of the observables g
and h determines what is averaged along the trajec-
tory. A popular choice in the literature is h = f (i.e.,
the velocity field itself) and g(•) = ∥•∥2 the Euclidean
L2-norm. Under this choice, Eq. (2) becomes

LD(x0, t) =

∫ t

−t

∥ẋ(s)∥2 ds, (3)

and represents the length of the trajectory computed
over the time window1 [−t, t] and passing through x0

at time t = 0. The analogue of Eq. (3) for the discrete
mapping xn+1 = F (xn) reads

LD(x0, n) =
n−1∑
j=0

√∑
i

(xi
j+1 − xi

j)
2, (4)

where xi
j denotes the i-th component of x at time j.

In what follows, we consider time windows of the form
[0, t] or J0, nK.

2 Regularity of the LD metric and the ∥∆LD∥
chaos indicator

In order to highlight the driving principles of the LD,
it is instructive to consider the integrable pendulum

H(I, ϕ) =
I2

2
− cosϕ, (5)

1We refer to [7] for a geometrical and intrinsic counterpart
of the temporal LD proposed in Eq. (3) developed for integrable
models.
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Figure 1: Phase space of H and Hµ, µ = 0.1, and
LD landscapes computed along the red dashed lines
at t = 100. The LD metric becomes singular when
the action crosses the separatrix (vertical gray lines)
and is irregular within the hyperbolic domain.

and the periodically perturbed Hamiltonian

Hµ(I, ϕ, t) =
I2

2
− (1 + µ cos t) cosϕ, (6)

where (I, ϕ) ∈ R × T, µ ∈ R is a parameter. When
µ = 0, Hµ reduces to H. The parameter µ measures
the “distance” with respect to the integrable pendu-
lum. The Fig. 1 presents the phase spaces of H and
Hµ, µ = 0.1, obtained respectively using the level-
set method and by iterating the stroboscopic map
associated to Hµ (snapshots of the dynamics at ev-
ery T = 2π period). The computations of the LD
landscapes encapsulate the key-point in detecting hy-
perbolic structures with the LD method, to know, the
loss of regularity of the LD application when crossing
hyperbolic structures. Besides a few simple exam-
ples where rigorous proofs have been termed (linear
saddle, and rotated version of it, see [5, 3]), no gen-
eral results have been established. The idea that the
LD metric should be regular on regular motions, and
non-differentiable on hyperbolic domains appears as
an ansatz.

Nevertheless, building further on this assumption,
we find convenient to introduce the norm of the Lapla-
cian of the LD (as we work in finite dimension, norms
are equilvalent. In the following, we use the L1-norm).
This scalar measures the regularity of the LD metric.
Let us denote by x = (x1, . . . , xn) the initial condi-
tion, and let t be the final time. One introduces the
quantity

∥∆LD(x, t)∥ =

∥∥∥∥∥
n∑

i=1

∂2LD(x, t)

∂x2
i

∥∥∥∥∥ =
n∑

i=1

∣∣∣∣∂2LD(x, t)

∂x2
i

∣∣∣∣ .
We claim that ∥∆LD∥ is a relevant global chaos indi-
cator.

3 Validation

The ∥∆LD∥ indicator has been validated against sev-
eral discrete and continuous models for which stability
maps, computed with a corpus of variational indica-
tors, might be found in the literature. The models we
considered in [1] include the two-dimensional standard
map (SM), a 4-dimensional nearly-integrable mapping
supporting a dense web of resonances, the 2 degree-of-
freedom (DoF) Hénon-Heiles systems and the 3-DoF
Froeschlé-Guzzo-Lega (FGL) system. For the sake of
concision, we exemplify our results for the SM and
the FGL Hamiltonian.

3.1 The standard map

The SM is a paradigmatic area-preserving map with
a rich dynamical template [6]. The smooth map

(x, y) 7→ (x′, y′) = fk(x, y), (7)

is defined on T× R as

fk :

{
x′ = x+ y + Fk(x) mod 1,

y′ = y + Fk(x),
(8)

where Fk(x) = −k sin(2πx)/(2π). The map is inte-
grable for k = 0, and contains resonant domains, or-
ganised in chains, as soon as k ̸= 0. The resonant do-
mains are related to the existence of periodic orbits,
possibly unstable, and thus coming with stable and
unstable manifolds. When increasing the strength of
the perturbation k, the width of the various resonant
domains increase and have the possibility to overlap.
This produces connected chaotic paths in the phase
space. We refer to [6] for omitted details.

Fig. 2 shows the phase space analysis obtained ei-
ther by iterating the mapping or by computing the
∥∆LD∥ indicator for k = 0.6 and k = 1 over a fine
mesh of initial conditions. Note that Eq. (4) is com-
puted without the mod 1 in Eq. (8). The ∥∆LD∥
indicator recovers indisputably the geometry of the
various “separatrices,” and the fine distribution of or-
dered and chaotic motions.

3.2 The Froeschlé-Guzzo-Lega Hamiltonian

The FGL Hamiltonian refers to the 3-DoF Hamilto-
nian

Hϵ =
I21
2

+
I22
2

+ I3 + ϵf(ϕ1, ϕ2, ϕ3), (9)

where (I, ϕ) ∈ R3 × T3 and

f(ϕ1, ϕ2, ϕ3) =
1

(cosϕ1 + cosϕ2 + cosϕ3 + 4)
. (10)

For k = (k1, k2, k3) ∈ Z3
⋆, the dense set of unper-

turbed resonances

k · ∂IH0 = k1I2 + k2I2 + k3 = 0, (11)
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Figure 2: (Top line) Phase space of the SM for k = 0.6
obtained by iterating trajectories up to the final time
n = 750 (left panel) and using the ∥∆LD∥ indicator
computed at n = 150 (right panel). (Bottom line)
Same computations performed with k = 1.

Figure 3: ∥∆LD∥ stability maps at several scales asso-
ciated to the FGL Hamiltonian of Eq. (9) for ϵ = 0.001
(top line), ϵ = 0.01 (middle line) and ϵ = 0.04 (bot-
tom line). The ∥∆LD∥ indicator recovers resonant
and chaotic templates.

translates as straight lines into the (I1, I2) action
plane. Fig. 3 presents the evolution of the resonant
web for increasing values of the perturbing parameters
at various scales of the (I1, I2) plane. The computa-
tional setup (final time, choice of the sections, resolu-
tion of the mesh of initial conditions) follows strictly
the seminal work of [2] for which Fast Lyapunov In-
dicator (FLI) maps have been computed. The agree-
ment between the ∥∆LD∥ and FLI analysis advocates
for the use of ∥∆LD∥ as global chaos indicator.

4 Conclusion

This contribution has introduced a new global dynam-
ics indicator based on the Lagrangian Descriptor the-
ory. The ∥∆LD∥ indicator, derived from the Lapla-
cian of the LDs, encapsulates the regularity of the
LD metric. It is able to discriminate between ordered
and chaotic motions. The tool has been benchmarked
against several multidimensional discrete and contin-
uous models. In particular, resonant and chaotic tem-
plates can be recovered through ∥∆LD∥ cartography.
The ∥∆LD∥ indicator does not rely on the tangent
vector dynamics and has thus the benefit to be free of
variational equations. This property, already handy
by itself, also implies a computational advantage over
variational methods.
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Abstract

Much effort in recent times has been devoted to the
study of low energy transport in multibody gravita-
tional systems; despite continuing advancements in
computational abilities, such studies can often be de-
manding or time consuming in the 3-body and 4-body
settings. In this work, the Hamiltonian describing the
planar circular restricted 3-body problem is rewritten
for systems having small mass parameters (µ � 1),
resulting in a 2D symplectic twist map describing suc-
cessive Keplerian orbits altered by close approaches
with the secondary. This map, like the true dynam-
ics, admits resonances and other invariant structures
in its phase space – particularly, the map contains ro-
tational invariant circles reminiscent of McGehee’s in-
variant tori, adding a new quantitative description to
existing chaotic zone estimates about the secondary.
In absence of invariant circles barring motion, the
map primarily serves as a tool for rapidly investigat-
ing naturally occurring transfers between loose orbits
about each secondary in the patched 4-body problem.
Any identified transfers could then be refined in the
continuous system. In this work, the projection of the
McGehee torus within the interior realm is identified
and quantified, and a transfer from Earth to Venus is
exemplified.

1 Introduction

Transfer between gravitational bodies can be well
approximated by patching the corresponding 4-body
problem into separate 3-body problems. In its sim-
plest form, the system is planar and the secondaries
orbit the primary in circular fashion. This provides
the ability to use more widely understood and de-
veloped toolkits of the PCR3BP to analyze transfers
within the 4-body problem. Particularly, some ques-
tions of interest include:

• Is a transfer possible?

• Can a transfer be found?

• Over what timescale does the transfer occur?
∗Email: m.werner@vt.edu.
†Email: sdross@vt.edu.

2 A return map at apoapse and periapse

A reduced order model of the PCR3BP for mass pa-
rameters µ � 1, where the motion of the particle
is largely Keplerian about the primary, developed by
Ross and Scheeres [3] is expressed(

ωn+1

Kn+1

)
︸ ︷︷ ︸

xn+1

=

(
ωn − 2π(−2Kn+1)

−3/2

Kn + µf(ωn; ā, ē)

)
︸ ︷︷ ︸

F(xn)

, (1)

where x = (ω,K) ∈ S1 × R are the phase space vari-
ables on the cylinder and f : S1 → R is the kick func-
tion parameterized by the elements (ā, ē) ∈ R× (0, 1).
The (approximated) Poincaré map of the restricted
problem, F, is referred to as the Keplerian map.

identify

Figure 1: Generic shape of the kick function.

The map (1) captures the particle’s 2-body orbital
elements ω and K, respectively denoting the rotating
frame’s argument of periapse and Keplerian energy,
using a Poincaré section at apoapse (periapse) within
the interior (exterior) realm. In either case, the mo-
tion loosely shadows the manifold emanating from its
corresponding libration point (i.e. L1 (L2) for interior
(exterior) motion) and is governed by the Tisserand
parameter.

C =
1

a
+ 2

√
a(1− e2) (2)
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Figure 2: Growth of the chaotic zone near the secondary for a fixed Jacobi constant.

3 Boundary of chaos – rotational invariant circles

One notable property of the map is that transport be-
comes impossible when reduced to the 2-body prob-
lem, where µ = 0 [3]. In the language of symplectic
twist maps, each of these orbits {xn | n ∈ Z} for any
initial angle ω0 ∈ S1 and every initial energy K0 < 0
forms a rotational invariant circle (RIC) [2]. Most
of these invariant objects are destroyed when µ is in-
creased from 0, yet some persist near the secondary.

The significance of these circles is that they are
complete barriers to transport in the (ω,K) phase
space, thus limiting the range that gravitational as-
sists can transport a particle in a given 3-body system;
the nearest circles are the invariant tori harking back
to McGehee [1]. The region between the secondary
and its nearest RIC defines a chaotic zone

rRIC = 1± aRIC(1∓ eRIC), (3)

where a = −1/2K, e = e(a;C) follows from (2), and
the top (bottom) sign indicates exterior (interior) mo-
tion. Likewise, the distance from the primary defin-
ing the extent of the transport from the secondary is
aRIC(1± eRIC).

For a fixed energy, the circles are typically found to
surround first order resonances, with higher order res-
onances filling the gaps as the mass parameter µ varies
as shown in Fig. 2. This boundary of the chaotic zone
lies far beyond the sphere of influence and Hill sphere
[3]; it extends the estimate of Wisdom [5] by consider-
ing the chaotic zone along the energy surface provided
by the Tisserand parameter (instead of along e = 0).

3.1 Identifying RICs

A useful property of rotational invariant circles on the
cylinder is that they form graphs [2]; that is, a = a(ω)
is a smooth function of the angle ω on an RIC. To find

the first circle, the phase space is searched for each
µ by (pseudo)randomly picking initial conditions x0

increasingly distant from the secondary and testing if
the resulting orbit after a sufficient number of iterates
could be smooth. That is, the resulting orbit is neither
chaotic, a librational circle, nor a cantorus.

Figure 3: Left: A cantorus. Right: A chaotic orbit.
Both orbits are shown in (ω, a) space and closely re-
semble (indeed, are near) an RIC, but cannot be RICs
themselves due to multivaluedness.

Rather quickly, non-RIC orbits can be identified
and eliminated by checking their arc length, ampli-
tude, and gradient; difficulty arises when attempting
to discern unresolved cantori from an RIC, though
this is typically not an issue since the RIC is nearby
anyways.

3.2 Possibility of a transfer

Given a fixed energy and a pair of 3-body systems,
where one is normalized in the other’s units such that
the semimajor axes of the secondaries are 1 and A,
a transfer will be possible if the corresponding RICs
exist beyond the switching orbit; see Fig. 4. Such an
orbit is given by the intersection of energy surfaces
provided by the Tisserand parameter (2).
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Figure 4: Configuration of RICs for possible transfer.

4 Interplanetary transfer

Transit in the phase space can be understood via lobe
dynamics (or turnstiles) [3, 4]. Each lobe is a re-
gion of phase space bounded by segments of the stable
and unstable manifolds of the Keplerian map’s hyper-
bolic fixed points. For computational purposes here,
such lobes have finite area and, hence, nonzero mea-
sure. Given the possibility (realized by a sufficiently
large, transitable portion of phase space unimpeded
by RICs), initial conditions effecting a transfer can
be found by randomly sampling the phase space.

Orbits of the Keplerian map (1) are iterated start-
ing from the initial condition x0 until within an ε-
neighborhood of the corresponding 3-body system’s
libration point and switching orbit (provided that x0

is suitable for transport). By continuity, there ex-
ists an initial condition nearby that exactly reaches
these destinations, though x0 typically suffices since
the exact initial condition can be difficult to find.

4.1 Earth to Venus

Using an energy corresponding to the Jacobi constant
(and associated Tisserand parameter) C = 3, which
is a proxy for the energies of L1 and L2, a transfer
between Earth and Venus is found using the method
described above. In units of the Sun-Earth system
(so that all distances are AU), the parameters used to
define the kick functions, point of switching, etc. are
found in Table 1. Note that only the semimajor axis
is needed since the eccentricity is induced by (2); the
reference trajectory r̄ parameterizes the kick function
with the elements ā and ē in accordance with (1). To
renormalize in terms of the Sun-Venus system, one
simply takes a 7→ a/A, where A = 0.723 AU is the
semimajor axis of Venus.

The particle’s trajectory is shown in Fig. 5. In
forward time, the particle departs from a loose cap-
ture around Earth represented as Wu

E(L1), the un-
stable manifold of L1 into the interior realm of the
Sun-Earth system. The particle repeatedly interacts
with Earth until reaching the switching orbit, where it
then enters (leaves) the Sun-Venus (Sun-Earth) sys-
tem. Through the same means, the particle makes
its approach near W s

V (L2), the stable manifold of L2

from the exterior realm of the Sun-Venus system.

Table 1: Earth-Venus transfer parameters
Wu

E(L1) r̄E Switch r̄V W s
V (L2)

a 0.953 0.905 0.858 0.808 0.758

S Sun

Venus

Earth

Figure 5: Earth-Venus transfer using multiple gravity
assists (shown is every 50th iterate).

The time required for this transfer is 1391 years.
While faster transfers may exist, such a result indi-
cates that naturally occurring interplanetary transfer
typically takes thousands of years. However, interse-
lenial systems (i.e. between moons of a planet) of-
ten must overcome much less distance while retaining
sizeable mass parameters; in this regard, transfer can
be expected to occur on the scale of several years [3].
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Abstract

The nonlinear astrodynamics in the cislunar space be-
yond the geosynchronous belt (xGEO), encompass-
ing secular, resonant, chaotic, close-encounter, and
manifold dynamics, is dramatically different than the
weakly perturbed Keplerian approach used for over a
half century for the detection and tracking of objects
near Earth. Yet, to date, only the relatively short
timescale dynamics of libration-point orbits (LPOs)
and and their associated invariant manifolds have
been partially coupled with the cardinal questions and
problems posed by cislunar space situational aware-
ness (SSA). Here, we uncover the foundational dy-
namics in the entire cislunar regime, including lunar
mean-motion resonances (MMRs) and secular reso-
nances, which have hitherto not been rigorously in-
vestigated, to holistically improve SSA capabilities
beyond the traditional geocentric domains.

1 Introduction

For the investigation of the Earth’s magnetosphere
and the interplanetary space outside of it, satellites
with orbits of high eccentricity, large semi-major axis,
and multi-day period are often used . Under the influ-
ence of the Moon and the Sun, a highly eccentric orbit
of a deep space probe can become nearly circular or
a nearly circular orbit might become eccentric, while
orbital inclination may also exhibit large shifts. For
orbits where the semi-major axis is a substantial frac-
tion of the Moon’s, several orbital revolutions may be
sufficient to lower the perigee height below the Earth
if an unfavorable orbital configuration is chosen [1].
Among the first and perhaps the most interesting of
this class of very distant, highly eccentric satellites
was the Soviet space probe, Luna 3 (1959 Theta 1),
which circumnavigated the Moon (passing through its
sphere of influence) and returning to the Earth on a
new elliptical trajectory. Luna 3 twice suffered close
approaches with the Moon, and despite having an ini-
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tial perigee height outside of the GEO belt, after only
11 revolutions it plummeted to Earth [2].

The Interstellar Boundary Explorer (IBEX) and the
Transiting Exoplanet Survey Satellite (TESS), two
modern Luna-3 like orbits, are distinguished by their
high apogee distances and lunar mean-motion reso-
nance (MMR) phasing [?, ?]. IBEX (2008-051A),
with its nominal mission lasting only 2 years, had to
change its operational orbit for its extended mission
to avoid violating altitude and eclipse mission con-
straints. Its nominal orbit turned out to be chaotic
and unpredictable beyond 2.5 years, as a result of
significant lunar perturbations, and IBEX was sub-
sequently placed in a novel 3:1 MMR with the Moon
(PM/3). Following suit, TESS (2018-038A) orbits in a
2:1 lunar MMR (PM/2), which was established using
a lunar swing-by maneuver.

While mean-motion resonances (MMRs) (commen-
surabilities of orbital periods) constitute one of the
most important and far-reaching aspects of dynamical
astronomy, they have remained seriously underrated
in Earth-satellite dynamics in part because the orbits
of most traditional satellites are too low to be affected
by mean-motion commensurabilities. What are the
Kirkwood gaps of cislunar space? This question is of
great current interest for mission planners now that
we are locating our space-based assets, such as the
IBEX and TESS, in predominant lunar MMRs that
have hitherto only been treated in piecemeal. Here,
we uncover the lunar mean-motion and secular res-
onances that significantly affect the structure of cis-
lunar space beyond GEO and provide global maps
of the principal heteroclinic connections between the
various resonance regions that form the basic skeleton
of dynamical transfers.

2 Numerical Investigations

The dynamical classification of trajectories can be in-
vestigated numerically using the broad family of Lya-
punov and affiliated indicators. Many first-order sta-
bility indicators, including the fast-Lyapunov indica-
tor (FLI) and Mean Exponential Growth factor of
Nearby Orbits (MEGNO) method, are based on the
propagation of the variational system and on the mon-
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itoring of the stretching of the tangent vector with
time [3]. These robust stability indicators can be used
to locate the orbital resonances that significantly af-
fect the global structure of phase space, as well as
to capture and reveal space manifolds. Furthermore,
these state-of-the-art tools can be used to treat both
geocentric and selenocentric orbits (governed by the
perturbed two-body problem) and libration-point or-
bits (governed by the restricted three-body problem)
in a more holistic framework.

Writing the n-dimensional dynamical system in
first-order autonomous form, ẋ = f(x), where
x ∈ Rn and f : Rn → Rn represents the vector field,
the variational system in R2n can be stated as

ẋ = f(x), ẇ =
(∂f(x)

∂x

)
w,

where w ∈ Rn stands for the deviation (or tangent)
vector. The FLI follows from the variational system
and enables the discrimination between ordered and
chaotic motions.

The indicator at time t is defined by:

FLI(x(0), t) ≡ sup
τ≤t

log ||w(τ)||.

FLI increases almost linearly with time for chaotic or-
bits, and approximately logarithmically for the regu-
lar motions. The MEGNO is two times the difference
between the FLI and its time-average and has been
adopted in the REBOUND software package [4], which
forms the basis for these investigations. The computa-
tion of the FLI or MEGNO on two-dimensional grids
of initial conditions provides a clear qualitative repre-
sentation of the underlying phase-space structures.

3 Preliminary Results

As an example of how the proposed global-stability
approaches can aid in mission design and analysis and
cislunar SSA, consider the NASA IBEX satellite. As
described earlier, IBEX’s nominal orbit turned out
to be chaotic and unpredictable as a result of signifi-
cant lunar perturbations, and IBEX was subsequently
placed in a novel resonant orbit with the Moon that
is stable to this day. Figure 1 shows that an a pri-
ori analysis of the global phase space, as permitted
by the FLI or MEGNO, would not only ensure that
missions have predictable behaviors over the nomi-
nal (and possibly extended) scenario, thus avoiding
an IBEX-like situation, but that such spacecraft can
safely meet their demise through Earth reentry (with-
out the need to make future significant orbital adjust-
ments á la ESA’s INTEGRAL mission [5]).

The precarious state of IBEX’s nominal operational
orbit, perched on the threshold of chaos, is clearly re-
vealed by Figure 1 (top panel). A full understand-
ing of the nature and consequences of the chaos in

Figure 1: MEGNO maps of the entire cislunar region be-
yond MEO, adopting a dynamical model in REBOUND that
contains the Sun and Moon as perturbers. The map sam-
ples over a dense grid of initial values of (a, e), where the
initial inclination i, argument of perihelion ω, longitude of
ascending node Ω, and mean anomaly M are set equal to
that of the orbits of IBEX (top) and TESS (bottom). Sta-
ble orbits appear with a darker color, while lighter regions
correspond to chaotic orbits. The locations of IBEX and
TESS are given by the red dot. The phase space region
near the Moon is highly chaotic.

these environments would have certainly helped in
the early design phases of the mission. Such knowl-
edge was partially used in the design of TESS’s orbit
[6], located in Figure 1 (bottom panel) in a narrow
strip of stability; however, there remain many unre-
solved issues with our understanding of lunar MMRs,
for which the numerical and theoretical underpinnings
of this work will help needed shed light on.

4 Concluding Remarks

A many-sided and detailed investigation of the reso-
nant structure of xGEO space, aside from its own par-
ticular significance, is of prime importance for SSA be-
yond GEO as such resonances significantly affect the
global structure of orbital phase space. Furthermore,
the manifolds emanating from unstable first-order
MMRs, which can enable rapid dynamical transfers,
have been largely underappreciated and unexplored
in the planetary-science context [7] and only recently
investigated in the astrodynamics of icy-world mis-
sions [8]. These voids in fundamental knowledge is a
central motivation of this work.
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Abstract

In this talk, I will summarize the main results ob-
tained, with other collaborators, by analyzing 42
TLEs historical time series of the Molniya satellite
constellation. The constellation is put in a dynam-
ical environment so rich that it represents a per-
fect testbed for different numerical and analytical ap-
proaches to explain the main features of the long-term
behavior (of about 40 years) in eccentricity and semi-
major axis.

1 Introduction

The Molniya constellation was one of the first space
constellations, if not the first one, to be put in orbit
in the mid ’60s. To cover the Russian territory, the
orbit of the satellites was designed to satisfy these
very peculiar features:

• it is a highly elliptical orbit (a ≈ 26650 km, e ≈
0.73), so it is subject to the perturbation of both
the atmospheric drag and the third body (Moon
and Sun) gravitational attraction;

• it is semi-synchronous with a period of about 12
hours, so it is in 2:1 resonance with the period of
rotation of the Earth;

• the argument of pericenter is frozen with respect
to the perturbation due to the oblateness effect.
This is achieved because the inclination is set at
i ≈ 63.4◦, value that also corresponds to a luniso-
lar resonance.

In the past works [1, 2, 3, 4], we analyzed the long-
term behavior in eccentricity and semi-major axis ex-
hibited by the Two-Line Elements (TLE) datasets
corresponding to 42 Molniya satellites. Here, I will
describe the main dynamical features identified and
the main tools used. The final aim is to look for a
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synergy between the pseudo-observational data and a
natural perturbation approach.

In Fig. 1, we show some illustrative examples of
the long-term evolution analyzed. The time series
cover a timespan of about 40 years. The evolution
in eccentricity (in the middle) shows a periodic be-
havior with different components, while the evolution
in semi-major axis (on the left) can be of 4 types: if
the pericenter altitude (on the right) gets lower than
250 km, then the semi-major axis experiences signif-
icant jumps; otherwise we have a periodic behavior
that can change amplitude over time.

In the first part of the talk, I will explain how
we characterize and rank the periodic components of
the eccentricity evolution, while in the second part I
will show how we can explain the intermittency phe-
nomenon in semi-major axis (Fig. 1, bottom row).

2 Eccentricity evolution

Following [2], a numerical propagator has been set up
to find out the simplest dynamical model that is able
to follow the eccentricity evolution corresponding to
the TLEs. The equations of motion considered ac-
count only for the oblateness effect and the lunisolar
perturbations, the former averaged on the orbital pe-
riod of the spacecraft, the latter also with respect to
the orbital period of the third body. A hierarchy of
models has been tested up to order 4. In addition,
a Lomb-Scargle analysis has been performed to sin-
gle out the main frequencies of the eccentricity time
series. It turns out that, in the cases where the semi-
major axis does not experience large variations, the
eccentricity can be modeled by accounting for the pe-
riodic components corresponding to the following ar-
guments:

1. 2ω (Moon and Sun),

2. 2ω + Ω (Moon and Sun),

3. 2ω − Ω (Moon and Sun),

4. Ω (Moon and Sun),

5. 2ω + Ω− ΩMoon,
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Figure 1: Behavior in semi-major axis (left), eccentricity (middle) and pericenter altitude corresponding to the
TLEs analyzed. Figures from [2].

6. Ω− ΩMoon,

7. 2ω + ΩMoon,

8. 2ω − ΩMoon,

9. 2ω − Ω + ΩMoon.

where ω and Ω are the argument of pericenter and the
longitude of the ascending node, respectively, of the
orbit of the satellite taking as reference the equatorial
plane, while ΩMoon is the longitude of the ascend-
ing node of the Moon, taking as reference the ecliptic
plane. In the timespan analyzed, the main periods
detected are the ones associated with the following
frequencies

• 2ω̇ + Ω̇ (about 7 years),

• 2ω̇ + Ω̇Moon (about 25 years),

• 2ω̇ + Ω̇− Ω̇Moon (about 11 years).

In [3], we have demonstrated that the above terms can
be justified only by ranking the terms of the lunisolar
expansion not with respect to their amplitude (i.e.,

the coefficient in front of the cosine term), but with
respect to this amplitude and the frequency of the
argument of the cosine term. In particular, if we write
the Hamiltonian due to the lunisolar perturbation in
a general form as

H(G,H, g, h;L) = C0A0(G,H;L)+
∑
α

CαAα(G,H;L) cos(ϕα),

where (G,H, g, h;L) are Delaunay elements, then the
long-term behavior in G can be written [5], under
generic assumptions of linearity for the evolution of
ϕα, as

∆G =
∑
α

CαAα
ϕ̇α

∂ϕα
∂g

[
cos(ϕα,0)− cos(ϕα,T )

]
.

If we consider a ranking based only on CαAα instead
on CαAα

ϕ̇α
, we can justify only the first 5 positions in

the enumeration above.

3 Semi-major axis evolution

For the semi-major axis evolution, we have focused
our efforts to explain the so-called intermittency phe-
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Figure 2: Intermittency phenomenon detected for
some satellites for the semi-major axis evolution.
Adapted from [2].

nomenon. As shown in Fig. 2, with this we mean
that the upper bound of the semi-major oscillation
changes. All the details of what follows are given in
[4].

We have adopted a hierarchy of models account-
ing for the tesseral contribution, averaged over the
corresponding fast variable, and the doubly-averaged
lunisolar perturbation. More specifically, by consider-
ing only the oblateness effect and the first term in the
tesseral expansion at order 2, we deal with an inte-
grable model that has one elliptic and one hyperbolic
equilibrium points corresponding to the Molniya semi-
major axis. At the same time, other two terms in the
same tesseral expansion are resonant, but the location
of the equilibrium points and the width of the corre-
sponding libration regions is such that they are con-
tained in the main resonant domain. This means that
the dynamics is not expected to exhibit large chaotic
seas, but only a mild chaotic behavior in the neighbor-
hood of the separatrices of the integrable model. This
is confirmed by moving from the 1 degree-of-freedom
model to a 2 degree-of-model and computing a suit-
able Poincaré section. The mild chaotic behavior is
the responsible for the intermittency phenomenon. A
satellite that moves in the vicinity of the separatrix
can alternate from the libration region to the circu-
lation region and viceversa, every time it gets close
enough to the hyperbolic periodic orbit, thanks to the
chaotic nature of the corresponding neighborhood.

The coupling between the tesseral perturbation and
the lunisolar one is obtained by computing FLI maps
for two additional dynamical models, that consider
the third-body effect on the argument of pericenter
and on the eccentricity (and inclination). In the for-
mer case, the perturbation is weak, while in the latter
the region filled by the hyperbolic manifold turns out
to be larger and more structured.

As a final confirmation, satellites Molniya 1-69 and
Molniya 1-87 have been located in the FLI maps.
They actually orbit in the hyperbolic tangle, as shown
in Fig. 3.

Figure 3: Location of satellite Molniya 1-69 pro-
jected into the FLI map. Courtesy of Jerome Daquin,
adapted from [4].

4 Open points

The TLEs data sets offer a unique opportunity to an-
alyze the long-term behavior of the Molniya orbits
and to test different numerical and dynamical sys-
tems theory tools. What is left is to use the same data
to model effectively the tesseral-lunisolar-atmospheric
drag coupling and to understand the change in the os-
cillation that can occur in the semi-major evolution
for some satellites (Fig. 1 third row on the left). Also,
according to our analysis the eccentricity evolution
does not show, in the timespan considered, a chaotic
behavior. This seems somehow not in agreement with
the KePASSA 2019 competition, but it might be ex-
plained either in relation to the semi-major axis evolu-
tion or to the initial value of the pericenter argument.
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1Scientific Computing & Technological Innovation (SCoTIC), University of La Rioja, Logroño, La Rioja, Spain.

Abstract

The trajectory of any resident space object (RSO)
can be determined using three different orbit propaga-
tion methods. Special Perturbation (SP) propagators
use numerical techniques to integrate the equations
of motion, including a complete and accurate force
model. SP propagators provide very accurate orbit
predictions, but the high computational cost limits
the performance of this approach. General Pertur-
bation (GP) propagators apply perturbation theories
to develop an approximate analytical solution to the
equations of motion. GP propagators consider sim-
plified force models, which limit their accuracy. How-
ever, these propagators perform much faster than nu-
merical methods. Finally, the third type is the semi-
analytical propagators, which combine the strengths
of SP and GP propagators. In either case, an orbit
propagation program depends uniquely on the initial
states and some physical parameters to make its pre-
dictions.

The hybrid methodology was introduced in 2008. It
is a non-invasive technique that improves the accuracy
of any orbit propagator without increasing the com-
putational cost. This methodology has been applied
to different SP, GP and semianalitical propagators.
In [1, 2] different families of hybrid orbit propagators
based on statistical time series techniques were devel-
oped, whereas in [3, 4, 5] the proposed propagators
were based on machine learning techniques.

In this work, we apply the hybrid methodology to
improve the force model and the integration method
of the well-known SGP4 orbit propagator [6, 7] using
neural network (NN). The new propagator is named
HSGP4. The NN is trained using the difference in the
argument of latitude between accuracy ephemeris and
SGP4 for Galileo-type orbits.

For this experiment, we consider 180 of the 312 time
series used in [5]. This reduced set only includes time
series with positive trends in the first revolutions, of
which approximately 60%, 110 series, are used during
the training and validation processes of the forecast-
ing model. In contrast, approximately 40%, 70 series,
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†Email: edna-viviana.segura@alum.unirioja.es.
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are reserved for evaluating the generalization capabil-
ity of the model. On the other hand, each of the 110
series is divided into two subseries: 14 revolutions,
which represent approximately 200 hours, constitute
the training interval used for fitting the model’s pa-
rameters and the following 6 revolusions are used for
validation. It is worth noting that the first two revo-
lutions are necessary to start the network predictions.

The NN architecture [8, 5] consists of an input layer
of 169 neurons, two hidden layers with 256 and 128
neurons, and an output layer with one neuron. The
first hidden layer applies a linear function as acti-
vation function, whereas the exponential linear unit
(elu) for the second. The batch size parameter is 64,
and the optimizer to determine weights and bias of
the connection among the nodes was given by adam
(adaptive moment estimation). The cost function to
use in this work will be the popular error score RMSE
(root mean square error).

Fig. 1 shows the box-and-whisker plots of the dis-
tance errors between AIDA and SGP4 for the 110
TLEs of the predictive model. The time span con-
sidered is up to 12 days from the epoch of the TLE.
The relatively small values of the median in this Fig-
ure is a consequence that more of the 50% of the time
series εθ have small values of the trend components.

Figure 1: Box-and-whisker plots showing the distance
error (km) between AIDA and SGP4 for the sample
of 110 TLEs and a time span of 12 days.

Fig. 2 shows the box-and-whisker plots of the dis-
tance errors between AIDA and BestHSGP4 for the
dataset of 110 TLEs. The BestHSGP4 propagator
is obtained when the time series of the error is zero,
εθ = 0, that is, θAIDA = θSGP4. Compared with the
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previous box plot, whereas the maximum distance of
SGP4 is approximately 68.94 km after twelve days,
the maximum error of BestHSGP4 is reduced to only
1.96 km.

Figure 2: Box-and-whisker plots showing the distance
error (km) between AIDA and BestHSGP4 for the
sample of 110 TLEs and a time span of 12 days.

Fig. 3 shows the box-and-whisker plots of the dis-
tance error between AIDA and SGP4 for the unseen
70 TLEs used for testing the predictive model. The
time span considered in this process is also 12 days.
In this sample, the maximum distance error of SGP4
is approximately 23.88 km after twelve days, this is
about 45 km less than the dataset used to create the
predictive model. The outliers from the eight day are
due to the dispersion of the time series εθ.

Figure 3: Box-and-whisker plots showing the distance
error (km) between AIDA and SGP4 for the sample
of 70 TLEs and a time span of 12 days.

Fig. 4 shows the box-and-whisker plots of the dis-
tance errors between AIDA and BestHSGP4 for the
same 70 TLEs set. The Fig. 2 indicates that the the
magnitude of the BestHSGP4 distance error obtained
with the 70 TLEs set is similar to the 110 TLE set.

Once the NN model has been trained and included
in the hybrid propagation module (HSGP4), we eval-
uate the performance of the new propagator. First,
the HSGP4 is compared with SGP4 so as to assess
how well the model fits at 2, 4, 6, 8, 10, and 12 days
of propagation for the known 110 TLEs used when
the model was fit. Fig. 5 depicts the box-and-whisker
plots of the distance errors between AIDA and HSG4.

Figure 4: Box-and-whisker plots showing the distance
error (km) between AIDA and BestHSGP4 for the
sample of 70 TLEs and a time span of 12 days.

Figure 5: Box-and-whisker plots showing the distance
error (km) between AIDA and HSGP4 for the sample
of 110 TLEs and a time span of 12 days.

The capacity of generalization on the HSGP4 is
evaluated on the remaining unseen 70 time series set.
Fig. 6 depicts the box-and-whisker plots of the dis-
tance error between AIDA and HSG4.

The Q3 value of the BestHSGP4 is small during
the twelve propagation days and their values similar
to the obtained with the 110 TLE set. However, the
value of HSGP4 grows as quickly as the previous 110
but remains slight below the SGP4 value, less than 1
km. It is due to the values of the trend of the 70 TLE
set is less than the 110 set.

Figure 6: Box-and-whisker plots showing the distance
error (km) between AIDA and HSGP4 for the sample
of 70 TLEs and a time span of 12 days.

The two TLE datasets used for training and testing
the HSGP4 propagator follow the same behaviour, as
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can be seen in Fig. 5 and 6.

Fig. 7 and 8 show two of the best predictions of the
argument of latitude of the 70 time series set. The
forecasting model only needs the first two revolutions
to inicializate the calculus process. In both cases, the
model initially reproduces the periodic behaviour of
the series. However, as time progresses, the neural
network model loses its capability to recognize this
periodic pattern while maintaining the trend.

Table 1 and 2 show the distance error between
HSGP4 and AIDA for the TLEs 9 and 23. As can
be seen, the distance error of HSGP4, in both TLEs,
is close to the obtained with BestHSGP4 and reduced
by approximately 45 km respect to SGP4
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Figure 7: Red represents the predictions of the argu-
ment of latitude using the HSGP4 propagator, while
in blue the precise data for the test TLE 9.
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Figure 8: Red represents the predictions of the argu-
ment of latitude using the HSGP4 propagator, while
in blue the precise data for the test TLE 23.

Table 1: Maximum distance errors in km between
HSGP4 and AIDA for the TLE 9 after 2, 4, 6, 8,
10, and 12 propagation days

Error 2 4 6 8 10 12
SGP4 8.36 18.03 25.82 35.07 44.71 52.41

BestHSGP4 0.88 0.94 1.07 1.46 1.74 2.09
HSGP4 0.91 1.15 1.89 3.65 4.90 5.52

Table 2: Maximum distance errors in km between
HSGP4 and AIDA for the TLE 23 after 2, 4, 6, 8,
10, and 12 propagation days

Error 2 4 6 8 10 12
SGP4 7.59 15.79 23.25 31.32 41.37 49.12

BestHSGP4 0.80 0.82 0.85 0.92 1.29 1.65
HSGP4 1.07 1.38 1.38 1.99 2.77 4.09
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I. Pastor López, P. Garćıa Bringas, H. Quintián, and
E. Corchado, Eds. Cham: Springer International
Publishing, 2022, pp. 695–705.

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        79 



5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

Apply the hybrid orbit propagators to the association problem in the
GEO region

Juan Félix San-Juan∗1, Rosario López†1, Carlos Yanez‡2, and Manuel Higueras§1

1Scientific Computing & Technological Innovation (SCoTIC), University of La Rioja, Logroño, La Rioja, Spain.
2Centre National d’Ètudes Spatiales (CNES), 18 Avenue Edouard Belin, 31401 Toulouse, France.

Abstract

Maintaining an accurate and updated catalogue of
resident space objects (RSO) is of paramount impor-
tance for Space Surveillance and Tracking (SST). The
success of catalogue maintenance is mainly driven by
the timely availability of observations and the correct
association of these observations to the catalogued ob-
jects. The latter task can significantly contribute to
the computational effort needed in the whole cata-
loguing chain. The inputs for the association problem
are the catalogue of objects at a given time –including
extended state vector, associated uncertainty and ob-
ject characteristics– and a set of observations at a
later date. One possibility is to numerically propagate
the whole RSO population with the highest accuracy
to the observation date to apply the association algo-
rithms (global nearest neighbor, for instance) to the
objects that are likely to be within the field-of-view
of the sensor. Another possibility, more efficient in
time, is to pre-filter a reduced sub-population, apply-
ing the previous procedure with an analytical or semi-
analytical solution and then using the time-consuming
and highly accurate numerical propagator only to that
sub-population. The drawback of this alternative is
that the accuracy of the analytical or semi-analytical
solution can lead to filter out potential candidates and
miss the correct global association. Therefore, the use
of hybrid propagators, combining the rapidity of an-
alytical or semi-analytical propagators and the accu-
racy of numerical ones, is a promising alternative.

In many applications, a compromise between accu-
racy and efficiency must be established, based on a
variety of criteria. High-fidelity propagation models
usually require step-by-step propagation by using nu-
merical methods, which are computationally intensive
because they rely on small step sizes. However, sim-
plified models may admit analytical solutions, which
alleviate the computational burden. In either case,
the orbit propagation program relies uniquely on the
∗Email: juanfelix.sanjuan@unirioja.es. Research supported

by Centre National d’Ètudes Spatiales.
†Email: rosario.lopez@unirioja.es.
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initial conditions, as well as on the propagation model,
to make its predictions. On the other hand, the col-
lection of past ephemerides can be used to improve
orbit predictions by taking non-modeled effects into
account.

Indeed, developing a new hybrid modeling approach
to address the problem of accuracy inspired us to ap-
ply non-invasive techniques, such as machine learn-
ing or statistical time series techniques, to forecasting
methods. This approach, proposed by San-Juan et al.
[1, 2, 3, 4], asses that the hybrid modelling approach
for orbit propagation is feasible and comparable to
traditional models, improving their accuracy in most
cases. Basically, this methodology investigates the
main dynamical effects provided by any orbit propa-
gator and make important contributions modelling its
error and emulating other non-modelled dynamics.

The first step to develop a hybrid version of SGP4
is to understand the behavior of this propagator dur-
ing the considered interval of time. To assess this,
data from a space catalogue with 510 TLEs down-
loaded from Space Track1 from different GEO orbits
have been propagated using the analytical propaga-
tor SGP4 and PSIMU2, a high-accuracy orbital prop-
agator developed by the Centre National d’ÃĽtudes
Spatiales (CNES).

PSIMU is implemented in Java and includes the
following perturbation forces: geopotential acceler-
ation computed up to an arbitrary degree and or-
der for the harmonics, atmospheric drag, solar radia-
tion pressure, rediffused solar radiation pressure, third
body perturbations from Sun and Moon, and ocean
and terrestrial tides. PSIMU implements a Dormand-
Prince of 8th order with variable step-size and uses
PATRIUS (PATrimoine de base siRIUS)3. It is the
reference low level library used for mathematical and
flight dynamics functions, as well as other supplemen-
tary libraries. The perturbation model taking into ac-
count in PSIMU includes Earth’s gravitational field
(up to 8 × 8), solar radiation pressure models with
A/m = 1, 0.5, 0.1, 0.05, 0.01, 0.001 m2/kg, and third

1https://www.space-track.org
2https://logiciels.cnes.fr/en/content/psimu
3https://logiciels.cnes.fr/en/content/patrius
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body point mass force models.
On the other hand, SGP4 is based on the analytical

theories of the artificial satellite of [5] and [6]. Ini-
tially, the perturbations modelled by SGP4 consisted
of only zonal gravitational terms (up to J4) and drag
based on the work of [7]. When Molniya and geosta-
tionary orbits became more common, deep space mod-
elling (Simplified Deep-space Perturbation-4, SDP4)
was integrated into SGP4 [8, 9]. This included the
lunisolar effects, and resonance effects of tesseral har-
monics developed by [10].

In this study, for each TLE of our sample and differ-
ent values of A/m, twenty days of accuracy numerical
pseudo observations were generated with PSIMU, us-
ing as initial conditions the osculating elements pro-
vided by SGP4 at the same epoch tTLE for each previ-
ous defined TLE. After that, a new TLE is calculated
using a differential corrector method from the arc of
tTLE +10 days given by PSIMU. Finally, ten back-
ward and forward propagation days are done using
SGP4 from the new TLE. From now, the set of TLE
given at the epoch tTLE +10 will be considered as our
new TLE sample, one for each value of A/m making
a total of 3060 TLEs. It is worth noting that this sce-
nario intends to simulate the same scenario given in
the association problem in which during the process
a high accuracy propagation can be obtained.

Then, we calculate the time series of the error
εxt = xPSIMU

t − xSGP4
t , where x represents any

set of variables, such as cartesian, Delaunay, polar-
nodal, or equinoctial elements, xPSIMU

t is the pseudo-
observation given by PSIMU at epoch t, and xSGP4

t is
the data obtained from SGP4 at the same epoch. The
six time series εxt contain the complete information
related to SGP4 errors, which are caused by the per-
turbation forces not taken into account by the SPG4
algorithm and by the integration method used with
this analytical propagator.

In order to understand the real influence that each
variable, as well as some of their combinations, may
have on the accuracy of the SGP4 propagation for
GEO orbits, an Exploratory Data Analysis (EDA)
is performed for the TLEs considered in this study.
The variables and their combinations are ranked in
terms of their capability to reduce the distance er-
rors of SGP4 propagations. The main conclusion of
this analysis is that the argument of the latitude θ
and the argument of the node ν using the polar-nodal
set allow reducing the distance error of SGP4 for all
considered TLEs by modeling the evolution of their
error.

An EDA of the distance error between PSIMU and
SGP4, and PSIMU and the optimum hybrid SGP4
propagator (OptHSGP4) for a given predictive hori-
zon t is performed as a second step. The OptHSGP4
propagator is obtained when the time series of the er-
rors are zero, εθ = εν = 0, that is, θPSIMU = θSGP4

and νPSIMU = νSGP4.
In a third step, a preliminary analysis of the time

series of error εθ and εν is done. The analysis ex-
amines the approximate entropy (ApEn) during the
training period. The training period is given in satel-
lite revolutions and it varies between 3 and 10 revolu-
tions. Approximate entropy was introduced to quan-
tify the amount of regularity and the unpredictability
of fluctuations in a time series. A low entropy value
indicates that the time series is deterministic; a high
value indicates randomness.

The four step applies the seasonal Autoregressive
Integrated Moving Average (ARIMA) and Exponen-
tial Smoothing (E) forecasting methods to each time
series εθ and εν . The number of points per revolution
considered is 12, whereas the trained period varies be-
tween 3 and 10 revolutions. In this report, the total
number of models (M) evaluated has been 48960 (510
TLEs × 2 time series × 8 trained periods × 6 A/m
values). From the combination of the two forecasting
methods, four hybrid propagators have been devel-
oped: HSGP4(A,A), HSGP4(A,E), HSGP4(E,E) and
HSGP4(E,A). In the cases of distance error improve-
ment respect to SGP4, the EDA analysis includes box-
and-whisker plots, outliers analysis, the relationship
between the TLEs and the magnitude of their errors
These models, automatically generated, can be used
as a first attempt at classifications in function of the
TLE. Finally, from these four hybrid propagators we
derive the best hybrid combination (BestHSGP4) and
try to identify what conditions allow to select the best
combination. In the cases that there is no improve-
ment in the distance error of SGP4, the time series
are identified and their shapes characterized.

Figure 1: Box-and-whisker plots of the distance error
(km) between PSIMU and the four hybrid SGP4, the
BestHSGP4 and OptHSGP4 propagatosr for a time
span of 10 days and A/m = 1m2/kg.

Figure 1 and 2 show the box-and-whisker plots
of the distance error (km) between PSIMU and the
four hybrid SGP4, the BestHSGP4 and OptHSGP4
propagators for a time span of 10 days and A/m
= 1, 0.001m2/kg. The forecasting model have been
training using 10 satellite revolutions. The distance
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Figure 2: Box-and-whisker plots of the distance error
(km) between PSIMU and the four hybrid SGP4, the
BestHSGP4 and OptHSGP4 propagators for a time
span of 10 days and A/m = 0.001m2/kg.

error can be reduced from about 80% in the case of
low A/m value to 35% in the case of high A/m value
at 10 propagation days for the 75% of the cases.

Figure 3: Percentage of forecasting models of the
BestHSGP4 propagator for a time span of 10 days
and A/m = 1m2/kg.

Figure 4: Percentage of forecasting models of the
BestHSGP4 propagator for a time span of 10 days
and A/m = 0.001m2/kg.

Figure 3 and 4 plot the percentage of forecast-

ing models of the BestHSGP4 propagators with the
previous assumptions. The BestHSGP4 propagator
improves from almost 100% in the best case (A/m
= 0.001m2/kg) to 65% in the worse case (A/m =
1m2/kg).
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Abstract

This work outlines and assesses several metrics for
the detection of manoeuvres from radar data. The
surveillance radar provides precise tracking informa-
tion, i.e. ranging and line-of-sight, for objects in Low-
Earth orbit. The main starting assumption is that the
object under analysis has an orbit known some time
before the manoeuvre takes place, which in turn hap-
pens before the radar data is obtained. The orbit may
possibly also have been computed with radar data (a
filter combining orbit determination and manoeuvre
detection was also developed and is briefly commented
on at the end of this work). The detection metrics are
based on reachability analysis of the state (correlating
its prediction set with the next track from the radar)
and use of attributables. Two metrics are presented:
one based on the Mahalanobis distance, and another
on stochastic optimal control theory. They are imple-
mented using the free low-level space dynamics library
OREKIT. Results are given based on real data from
the Spanish Space Surveillance and Tracking (S3T)
surveillance radar (S3TSR), with manoeuvre informa-
tion and ephemerides obtained from ESA and DLR to
assess the results.

1 Introduction

In the field of Space Surveillance and Tracking (SST),
accurate orbital determination and manoeuvre detec-
tion is of upmost importance to infer objects’ orbital
information and their future behaviour, as well as to
be able to carry out tasks such as prediction of po-
tential conjunctions with operating satellites, taking
avoidance orbital corrections, predicting re-entries,
identifying fragmentations or updating orbital ele-
ments of known satellites, among others.

Satellites performing unknown manoeuvres pose a

∗Email: rvazquez1@us.es
†Email: jmontillag.es
‡Email: jsanchezm.es
§Email: jgv@us.es
¶Email:jreyb@indra.es
‖Email:Jan.Siminski@esa.int

challenge when trying to associate the new collected
observations (obtained by laser, radar, or by any other
means from the SST infrastructure) with the previ-
ously known reference orbits (which are stored in SST
catalogues). Indeed, one of the main motivations of
manoeuvre detection is that it can significantly re-
duce the number of uncorrelated targets detected by
the SST sensors infrastructure. Most of these uncor-
related objects are just known satellites, which have
performed unpublished manoeuvres (typically while
not being observed), in such a way that their new
orbits do not match with the predictions.

This work (an extended version of which has al-
ready been submitted to a journal, see see [1] for the
preprint) presents two metrics for the detection of ma-
noeuvres in Low Earth Orbit (LEO) from radar data.
An initial validation of the metrics is provided with
real tracks from S3TSR [2], the Spanish surveillance
radar developed, installed and validated by Indra with
the funding of the Spanish Government under the
technical and contractual management of ESA on be-
half of Centro de Desarrollo Tecnólogico e Industrial
(CDTI). Manoeuvre information and ephemerides are
obtained from ESA/ESOC and DLR/GSOC to assess
the results, for a number of selected scenarios. The
final aim is to have these metrics integrated in the
Spanish SST (S3T) Cataloguing system in order to
provide routine automatic manoeuvre detection ca-
pabilities to the system in the future.

2 Manoeuvre Detection Metrics

This Section introduces the metrics used in the paper
as well as one of the main tools on which the metrics
are based, namely the concept of attributables.

2.1 Attributables

Radar tracks are composed of a number of plots (typi-
cally 5-20 per track). At each plot, the radar provides
range (ρ), range-rate (ρ̇), elevation (El) and azimuth
(Az) observables. In order to compare tracks with dif-
ferent lengths, the information of all plots is combined
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into a single value. For that porpuse, the theory of at-
tributables [3, 4] is used; it allows to “compress” sev-
eral measurements into a single, higher-quality mea-
surement, fitting a batch of measurements into a sin-
gle polynomial expression.

Fitting the information of the observables indepen-
dently is one option, but it is possible to improve the
uncertainty of the resulting virtual measurement if
one incorporates the definition of range-rate into the
modelling, so that it shares the parameters with the
range (see [1] for details). The method manages to
average out noise and reduce the standard deviation
of the virtual range and range-rate observables.

2.2 Mahalanobis Distance Metric (MD)

The first metric is based on comparing the range
and range-rate attributable obtained from measure-
ments with the ones predicted from the initial orbit,
by means of the Mahalanobis distance [4], a measure
of the distance between a point P and a distribution.

Assume that at the start time, one knows the ini-
tial position and velocity and its associated covariance
matrix; and the attributable time ta, one knows the
virtual values of range, range-rate, azimuth and eleva-
tion, as well as the associated uncertainty in the form
of a covariance matrix. Through a Monte Carlo-type
propagation, one propagates a cloud of initial sam-
ple points up to time ta, obtaining a “cloud” of pro-
jected measurements, from which one can obtain its
mean (which we denote as the projected attributable)
as well as the associated uncertainty in the form of a
covariance matrix.

Then, the real and projected attributable can be
compared. If no manoeuvre has been performed, one
would expect that their difference should be close to
zero; and the covariance of the difference can be ap-
proximated as the sum of the covariances of the real
and projected attributables. Thus, under an assump-
tion of normality, the computed difference should be-
long to a normal distribution of zero mean with the
obtained covariance This can be checked through the
Mahalanobis distance (MD), which can give a proba-
bility of belonging to the distribution (see [1] for de-
tails), since it follows a χ2(·, n) distribution with as
many degrees of freedom n as the number of consid-
ered observables. Considering only range and range
rate, the probability would be computed as follows:

pMD = max{0, 2(χ2(MD; 2)− 0.5} (1)

This way, if the MD has a probability of 50% or less
of occurring (a selected threshold), it is assumed that
there is no manoeuvre, to reduce false positives. If the
MD has a probability of more than 50% of happening,
then it is scaled; thus, if one gets, e.g., a probability
of a certain MD of 80%, the probability of manoeuvre
becomes 60%.

2.3 Control Distance Metric (∆V )

The second metric is based on the use of stochastic op-
timal control theory. Following previous works [5, 6]
one can compute a distribution of the required ma-
noeuvre that connects the uncertain orbit with the
(also uncertain) measurement. This distribution can
then be used to obtain the likelihood of a manoeuvre
having been performed and represents a proper met-
ric of the distance between the orbit and the mesure-
ments. The optimal control problem is posed as fol-
lows:

min
u

∫ ta

t0

uT (t)u(t)dt

s.t. x′(t) = f(x(t), u(t), t)

x(t0) = x0

h(x(tf )) = [ρ ρ̇]
T

(2)

In (2), the initial point x0 is known from the precise
orbit whereas the function h at the final point repre-
sents the function relating position and velocity with
range and range-rate (the most precise measurements)
which should take the value obtained with attributa-
bles. The function f represents the orbital dynamics,
including any modelled perturbations. The problem
is solved with CasADi [7], an open-source solver for
MATLAB, with a multiple shooting method discretiz-
ing the orbital dynamics in N time intervals; for each
of these, since impulses are small, the orbital dynam-
ics is replaced with a linearized model obtained from
OREKIT (computing the State Transition Matrix),
with the discrete ∆V s applied at the beginning. As a
first step, the problem has been solved in a determin-
istic way. Since the solution is fast (seconds or less),
to incorporate the stochasticity of the problem (both
in initial orbit and measurements), a Monte Carlo
algorithm is implemented as a simple, albeit rather
time-consuming, solution.

The ∆V distribution is obtained both for the com-
puted and the projected attributable, as in Section
2.2. Then, the distributions are compared to deter-
mine which one is “smaller”. A novel metric based
on the smaller percentiles (initial tails of the distribu-
tion) was developed as follows. The percentile 10% is
computed for the non-manoeuvred distribution (pro-
jected attributable) obtaining ∆V10 and now one com-
putes from the potentially manoeuvred distribution
(computed attributable) the probability p = P (∆V <
∆V10). Then:

p∆V = max 0, 0.1(0.1− p) (3)

This way, if p is above 10% the probability becomes
zero (the lower tail of the potentially manoeuvred dis-
tribution is the left of the non-manoeuvred distribu-
tion) and if it is below 10%, the difference is multiplied
by 10 (thus, having 0 probability of being below ∆V10

would represent a 100% probability of manoeuvre).
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3 Real Results

A total of 15 scenarios were selected, using radar data
obtained from S3TSR; manoeuvre information and
precise ephemerides are obtained from ESA/ESOC
and DLR/GSOC. The satellites under consideration
were Sentinel-1A, Sentinel-1B, Sentinel-2A, Sentinel-
2B, Swarm-C, TerraSAR-X and TanDEM-X. In total,
158 segments (which were defined as the interval af-
ter one radar track up to the next and lasted from 12
hours to more than 48 hours in some cases) were con-
sidered, 24 of them with manoeuvres and 134 without
manoeuvres, to assess not only the capability of the
metrics to detect manoeuvres but also to avoid false
positives. From the precise ephemerides, an OREKIT
propagator was developed to best fit the ephemerides
by taking into account gravity harmonics (up to order
40), third-body perturbations (Sun and Moon), solar
radiation pressure and drag (with the NRLMSISE-00
atmosphere model).

3.1 MD probability metric results

The metric was able to detect only about 42% of ma-
noeuvres, even with some of them being rather in-
tense. The rate of false positives was quite good on
the other hand (3%). Most false positives present
less than 10 plots in the track following the manoeu-
vre. Thus, the main cause of false positives is tracks
with a low number of plots. Most false negatives were
on segments of length equal to or larger than one
day. Thus, the main cause of false negatives is longer
propagations accumulating additional propagation er-
ror. Sometimes these longer propagation periods are
due to missed radar observations right after the ma-
noeuvre. The most challenging scenarios are those
with TanDEM-X/TerraSAR-X due to the abundance
of manoeuvres (all segments have at least one) and
the scarcity of data. This metric performs poorly in
those scenarios compared with the other scenarios.

3.2 ∆V probability metric results

The metric detected 54% of manoeuvres, a more pos-
itive results than the MD metric, but in need of im-
provement. The rate of false positives was worse,
about 8%. The causes of errors are similar as for
the MD metric. However, as opposed to it, this met-
ric performed excellently in TanDEM-X/TerraSAR-X
scenarios compared with the other scenarios.

4 Conclusions and Future Work

Two metrics for the detection of manoeuvres in LEO
from radar data have been presented. Real data was
used to validate the metrics, detecting about half the
manoeuvres, with a low rate of false positives. Thus,
the metrics can be considered a promising start, but

are in need of further improvement. The main identi-
fied difficulty was the scarcity of measurements (low
number of tracks resulting in long propagation times
without information and/or low number of plots). Fu-
ture expansion of the capabilities of S3TSR may im-
prove the quality of the metrics, as well as considering
other sources of data. The aim is to have these metrics
integrated in the S3T Cataloguing System in order to
provide routine automatic manoeuvre detection capa-
bilities to the system in the future.

An extended version of this work has already been
submitted to a journal, see see [1] for the preprint.
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Abstract

Given the conjunction geometry between two objects
in orbit is inherently defined by the intersection be-
tween their respective orbital planes, it is reasonable
to study the dynamical evolution of their relative po-
sition when one of them is located along such intersec-
tion. Methods for determining the probability of col-
lision are either computationally intensive or referred
to a specific time of closest approach. Identifying the
domain of attraction for a collision, i.e. the region
within the initial probability distribution that leads
to a minimum distance below a prescribed threshold,
can aid in providing accurate estimates for collision
probability computations.

1 Introduction

Computationally efficient methods for determining
the probability of collision between two objects in
orbit are crucial for the continuation of Earth orbital
activities. The number of objects in Earth orbit capa-
ble of producing a catastrophic collision is currently
on the order of 105. Continuously monitoring these
objects and foreseeing close approaches among them
thus requires a huge computational effort. Driven by
this requirement, operational methods for determin-
ing the probability of collision between two objects
typically depend on linear-gaussian and geometric
assumptions that have been shown to fail for certain
type of approaches, e.g. low velocity encounters.
Various works have been proposed to overcome these
limitations, but their associated computational cost
is still beyond the current industry capabilities.

Within this work, the authors propose to study the
transport phenomena in the dynamical system that
models a collision in orbit. Through appropriate co-
ordinate transformations, it is possible to efficiently
explore the initial probability distribution function of
the state of both objects with the aim of determining
the domain of attraction of a potential collision. The
latter could be extremely useful in the computation
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of the probability of collision as defined by the inte-
gral over all possible state realizations that lead to a
minimum distance smaller than certain threshold.

2 Conjunction Geometry

For a collision to occur between two objects in or-
bit, both objects need to be located at one of the two
orbital plane intersections. The direction of such in-
tersections is commonly referred to as relative line of
nodes and is defined by

nc = ± h1 × h2

|h1 × h2|
, (1)

where hi = ri×vi is the angular momentum vector of
object i. Under the assumption of Keplerian dynam-
ics, i.e. the only forces acting on the subjects are due
to a central gravity field modeled as a restricted two-
body problem, the necessary conditions for a collision
reduce to:

1. The radii of both orbits along the collision direc-
tion should be coincident. This is measured by
the quantity

Γc = 1− r2,c
r1,c

, (2)

being ri,c = (h2
i /µ)/(1+ ei cos νi,c) and cos νi,c =

nc · ei/ |ei|. Note that in Keplerian motion this
angle remains constant for each relative node.

2. Both objects need to be located at a common
orbit intersection point, which can be measured
by the angular distance

∆c = ν2(tc,m)− ν2,c. (3)

This distance corresponds to the phase between
the collision anomaly of object two ν2,c, i.e. the
angular position of the secondary that complies
with the orbital intersection, and the actual an-
gular position of the secondary ν2(tc,m) when
the primary is located at its respective collision
anomaly, i.e. ν1(tc,m) = ν1,c. Under Keple-
rian assumptions, the time invested by object 1
to reach the collision direction can be computed
from Kepler’s equation√

µ

a31
(tc,0 − t0) =

(E1,c − E1,0)− e1 (sinE1,c − sinE1,0) ,

(4)

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        87 



5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

where tc,m = tc,0 + mT1 and T1 is the orbital
period of the primary. In a similar fashion,
the corresponding true anomaly of the secondary
ν2(tc,m) can be derived from√

µ

a32
(tc,m − t0) =

(Em
2,c − E2,0)− e2

(
sinEm

2,c − sinE2,0

)
.

(5)

Moreover, the change in eccentric anomaly be-
tween two consecutive passages of the primary
through a relative node can be computed as

2π

√
a31
a32

=

(Em+1
2,c − Em

2,c)− e2
(
sinEm+1

2,c − sinEm
2,c

)
.

(6)

Appropriate thresholds may then be set for the dis-
tance in the conjunction map ξ = [Γ, ∆]T . Assuming
a combined hard body radius Rc = 10 m, such thresh-
olds would be Γth ∼ 10−6 and ∆th ∼ 10−6 for a typi-
cal LEO encounter at an altitude of 1, 000 km. Simi-
larly, a conjunction in the Geostationary region with
the same Rc would require distances in the conjunc-
tion map on the order of Γth ∼ 10−7 and ∆th ∼ 10−7.

3 Assessment of the approach

The proposed mapping based on relative orbital ge-
ometry has been successfully applied to collision risk
analysis, allowing to efficiently determine the Earth’s
orbital congestion (see [3]). Within this work, we
want to explore the capabilities of the method and,
in particular, determine the ability to approximate
the dynamical evolution of the conjunction geometry
in an efficient manner.

In fact, we seek to perform low order approximations
to the difference between the predicted mapping at
the closest approach ξ(tc,m)kep under Keplerian mo-
tion, and the reference mapping ξ(tc,m) computed
using high-fidelity propagation. To validate the ap-
proach, a Monte Carlo simulation has been carried
out for a representative LEO test case based on the
Iridium-Kosmos 2009 collision [1]. The initial state of
the objects is assumed to follow a Gaussian distribu-
tion with mean states at the initial epoch t0 = 2009
FEB 03 20:01:28.126 UTC

rECI
1 (t0) =

 1286.102
−1129.618
−6957.400

 , vECI
1 (t0) =

 −3.970654
6.062485
−1.718518



rECI
2 (t0) =

 6308.427
3294.617
−916.8711

 , vECI
2 (t0) =

 −0.158786
2.243546
7.103635



expressed in km and km/s. The initial co-variance is
assumed equal for both objects and given by

PRTN (t0) = diag


41.42
2533
70.98

5.744 · 10−3

1.049 · 10−5

1.091 · 10−6


expressed in m2 and m2/s2. N = 500 samples are
drawn from a Gaussian distribution combining both
objects, and then propagated with a deterministic
dynamical model considering drag [4], solar radiation
pressure, Earth’s non spherical gravity up to degree
and order 10 and the Sun and Moon as third bodies.
A total propagation time of 7 days is set in order to
cover the reference collision epoch t∗c = 2009 FEB 10
16:55:59.806 UTC.

Figure 1 depicts the distribution of the distance of
closest approach with respect to the occurrence epoch.
Note there is a color code indicating the Mahalanobis
distance of each sample with respect to the initial dis-
tribution, defined as

dM,i =

√[
x1,i − x1

x1,i − x1

]T [
P 0
0 P

]−1 [
x1,i − x1

x1,i − x1

]
where both x and P are referred to t0. While most
of the particles that lead to minimum distances lower
that 1 km correspond to high probability (low dM )
regions, there is an even higher portion of particles
that lead to higher distances within the gross of the
initial distribution. This suggests that the domain
of attraction of a potential collision may not present
a smooth behavior in the probability space. In
addition, the scatter in the time of closest approach
(TCA) suggests that analyses based on a single
reference epoch may not be sufficient to determine
the set of states that lead to collision, note that
relative velocities are of the order of 10 km/s for this
particular case.

Fig. 2 shows the conjunction geometry at the first
node passage with a colormap indicating the distance
of closest approach. Note that at this specific pass
(referred to tc,0), the two objects are separated by an
angular distance of 75o and there is not a clear re-
gion that leads to (future) lower minimum distances.
Nonetheless, one can apply the same mapping to a fu-
ture conjunction (referred to tc,m) assuming Keplerian
motion, obtaining the distribution shown in Fig. 3.
Therein, one can see that the samples are somehow or-
dered so there is a clear relation between ||ξkep(tc,m)||
and ||r1,c − r2,c||. Thereafter, the transport of parti-
cles that lead to collision cannot be characterized as
a two-dimensional transformation T ′ : R2 → R2 but
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Figure 1: Minimum distance as a function of time.
Here t∗c is the reference collision epoch and dM is the
Mahalanobis distance with respect to the initial sam-
pling distribution.

Figure 2: Conjunction geometry at first node passage.

requires analyzing the complete dimensionality of the
state, thus the mapping T : R12 → R2. As a con-
sistency check, if the projection onto the conjunction
plane is performed for the particles propagated using
the high-fidelity dynamical model, the resulting dis-
tribution is very similar to the one predicted by the
Keplerian model (see Fig 4).

4 Preliminary conclusions

Statistical numerical integration has shown that there
is a class of two-dimensional mappings that naturally
captures the dynamical evolution of a conjunction in
orbit. Moreover, this mapping is not referred to a
specific conjunction geometry but simply the one that
leads to the closest approach, thus being free from any
temporal or spatial limitation. Based on these prelim-
inary results, it is possible to determine the domain of
attraction of a collision, as suggested by the extreme
value theory. The authors propose to 1) derive a low-

Figure 3: Conjunction geometry at closest approach
under Keplerian dynamics.

Figure 4: Conjunction geometry at closest approach
with high-fidelity propagation.

order expansion of the effect of orbital perturbations
in the conjunction geometry or 2) utilize sequential
sampling methods to approximate the domain of at-
traction of the collision in lieu of developing efficient
methods for computing the probability of collision.
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1 Introduction

The growth in launch traffic and the emergence of
large constellations, the continuing occurrence of frag-
mentations, and the improved capabilities of surveil-
lance systems increases the number of detected close
approaches in space and consequently also the need
for automated collision avoidance manoeuvre plan-
ning, coordination, and execution. Collision avoid-
ance is already part of routine operations for space
missions. It is a labor-intensive task requiring ex-
pert knowledge to identify critical events out of hun-
dreds of potential close approaches per satellite every
week. The main objectives of the “Collision Risk Es-
timation and Automated Mitigation” cornerstone in
ESA’s Space Safety programme are the reduction of
operator and analyst efforts by automating the deci-
sion process, shortening the time between manoeuvre
decision and close approach, and decreasing the num-
ber of false alerts.

2 Astrodynamical methods

Various research and development activities have been
started in the framework of the programme corner-
stone in the past two years to investigate the differ-
ent aspects of collision avoidance automation. These
activities require the development of new supporting
astrodynamical theories and methods, e.g.: the ro-
bust design of trajectories avoiding multiple encoun-
ters; the early identification of events that require mit-
igation; collision probability computation under large
uncertainties; data fusion of multiple catalogues; ef-
ficient on-board computations, early identification of
manoeuvrable spacecraft where the reachable domain
intersects the target orbit. The next two sections dis-
cuss two of these aspects: the introduction of new
decision metrics into an operational process and the
identification of manoeuvrable spacecraft for avoid-
ance coordination.

2.1 Operational process

The collision avoidance process is based on the pre-
dicted orbit of the operated spacecraft (target) and

∗Email: jan.siminski@esa.int

conjunction data messages provided by space surveil-
lance systems. For ESA supported missions the pro-
cess is described in [5]. The data messages contain
state and covariance information of catalogued ob-
jects (chasers) at the time of closest approach for all
events with the miss-distance inside a screening vol-
ume around the target. The actionable events from
this large set of conjunctions are identified by moni-
toring the probability of collision, but also other pa-
rameters that describe the quality of data, any trends
or large variability. The probability of collision is
then compared against a predefined reaction thresh-
old, which is often selected to reduce the collision risk
over the lifetime of the mission to an acceptable level.
This threshold assessment can be performed before
the launch and also considers fuel constraints [6]. Col-
lision probabilities are then re-computed and events
re-evaluated whenever new data arrives, i.e. when the
flight dynamics team updates the predicted trajectory
for the target or when new chaser data is received in
a conjunction data message. The avoidance decision
process therefore requires a time-series analysis, which
is considered in the performed machine learning activ-
ities using conjunction data [9].

The improved detection performance of new space
surveillance systems will increase the number of
tracked small debris pieces. The orbital uncertainty
for these currently not catalogued objects may be
large depending on number of observations used for
the orbit determination. Similarly, large manoeuve
campaigns e.g. the orbit raising during initial orbit
acquisition, lead to larger uncertainties for the target
satellite.

These large uncertainties complicate the interpre-
tation of the collision probablity as a criterion due to
the so-called dilution of probability [1, 2]. Alternative
metrics such as confidence interval intersection have
been proposed [2], but operationally they can be dif-
ficult to implement as it constraints the amount of
safe trajectories during the planning process [5]. The
collision probability, however, may underpredict the
criticality of the situation and then may suddenly in-
crease once new data arrives. As collision avoidance is
a real-time process, the next data update in principle
reduces the uncertainty and this information can be
used.
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One idea to overcome the limitations of the colli-
sion probability is to consider the effect of future data
updates already in the planning process. The GNSS-
derived orbit determination update for the target will
provide a state estimate with a predictable covariance.
This future covariance can be used to constrain the
expected probability of collision for the next update.
This means that an event with a time of close ap-
proach after the predicted next update can be classi-
fied early as a false alarm or potentially critical. For
chaser updates the effect of the next update is not as
predictable as for target, but this can be at least ap-
proximated with a feasible range from historic data,
as e.g. performed in [7]. The next collision probabil-
ity estimate can then be bounded by maximizing the
collision probability within the expected uncertainty
range.

2.2 Operator coordination

Before executing any avoidance manoeuvres, the op-
timised trajectory must be screened against the cata-
logue and coordinated with other operators to avoid
potentially other, new high-risk approaches. Manoeu-
vre plans as well as orbit predictions are currently
directly exchanged between spacecraft operators for
each event individually, but the increased number of
operational satellites creates the necessity to establish
a more efficient exchange mechanism between opera-
tors. This concurrent coordination will become an un-
manageable task in a future with an increasing launch
rate and deployments of smaller satellites and large
constellations.

In order to initiate avoidance manoeuvre coordi-
nation, manoeuvreable spacecraft in close proximity
must be identified. This can be achieved by flag-
ging spacecraft as manoeuvrable on coordination plat-
forms developed in the programme activities. How-
ever, in case of unregistered spacecraft such an auto-
mated exchange will not be possible and any avoid-
ance action may require additional contact attempts
or safety margins. Additionally, uncoordinated ma-
noeuvre plans lead to sudden appearance of conjunc-
tion events, which cannot be avoided any more due to
limited reaction time.

Several approaches have been developed to identify
manoeuvrable spacecraft, e.g. in [4, 3]. These meth-
ods detect maneouvre activity in the orbital state
time-series from public catalogues. Similarly, historic
data can be used to learn manoeuvre patterns and
predict future states [8]. The exact estimation is how-
ever challenging with no a-priori knowledge on the
strategy and optimisation constraints, especially for
low-thrust orbit control and initial orbit acquisition.
The inferred manoeuvre pattern or identified manoeu-
vre capabilities of spacecraft can then be used to com-
pute a reachable domain of the post-manoeuvre state

and allow early detection of possible close approaches
in advance.

3 Summary

The presentation outlines the operational require-
ments for mathematical methods which are needed
to enable future safe operations, summarises first
findings from the currently running activities, and
presents internal analysis results, i.e. introduction
and assessment of alternative collision probability
methods, and Delta-V metrics to identify manoeu-
vrable spacecraft in close proximity that need to be
monitored.
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Abstract

The automation of the risk management is a major
issue for the sustainability of space activities. The
number of conjunction alerts is increasing and it will
soon overwhelm space traffic management services. In
this paper, a bottleneck like conjunction assessment
with all catalogued space objects and the detection
of past manoeuvres and the prediction of the future
ones for secondary objects involved in conjunctions
are studied. Solutions are integrated in a simulator of
space traffic management challenging our capacity to
minimize human interventions.

1 Introduction

Since a couple of years, evolutions of the space traf-
fic management systems are investigated to overcome
the new challenges due to the significant increasing
number of satellites and space debris but also the
diversity of new actors involved (historical operators
or new operators of large constellations, universities,
startups). A consequence of this change of paradigm
is the growing number of conjunction alerts emitted
by a conjunction assessment (CA) provider. All do
not lead to a collision but a collision risk assessment
has to be made and if the risk is above a given thresh-
old, then a collision avoidance manoeuvre can be trig-
gered. The intensification and a complexification of
the space traffic has rendered classical approaches un-
adapted to the current situation.

In the framework of the EUSST, a consortium in-
cluding Share My Space, the Institut de Mécanique
Céleste et de Calcul des Éphémérides (IMCCE) and
Quasar Science Resources, was mandated by the Cen-
tre National d’Études Spatiales (CNES) to study
blocking points for the automation of space traffic
management and to propose a simulator of such a

∗Email: alexis.petit@sharemyspace.space.
†Email: romain.lucken@sharemyspace.space.
‡Email: sacha.redel@obspm.fr.
§Email: florent.deleflie@obspm.fr.
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system to this end. The study focuses on the fol-
lowing works : The characterisation of the secondary
objects involved in a conjunction, The optimisation
of the conjunction screening, The simulation of the
decision tree of a space traffic management system
leading to the final decision to perform or not a ma-
noeuvre. The final purpose is to assess the extent to
which the automation can be applied to quantify the
cases where human actions are still required.

2 Secondary object classification

Increasingly more satellites are launched each year,
whether it be by small or large operators, in LEO,
MEO or GEO, using chemical or electrical propul-
sion. Therefore, their orbital behaviors differ accord-
ing to their strategies, for example during orbit rais-
ing phase or to perform station keeping. Without sys-
temic communication of ephemerides including sched-
uled manoeuvres by operators, the risk management
based only on SP ephemerides computed and provided
by the 18th Space Defense Squadron (SDS) can lead
to wrong decisions and, in worst cases, to a catas-
trophic collision event. Thus, the characterisation of
secondary behavior i.e. if a satellite is able to maneou-
vres or not, and the prediction of a future manoeuvre
is crucial.

For this purpose, the historical state vectors are
a valuable source of data for manoeuvre operations
detection. Two types of data are provided by the 18
SPC:

• Two-line element (TLE) sets are public data
available through the 18 SDS plaform (www.
space-track.org), and they contain mean or-
bital elements of an object in the TEME frame.
The TLE are in the public domain and their ac-
curacy is limited. They are provided for about
22,000 objects non-classified by the US Air Force,
and refreshed at a variable rate, typically 12
hours.

• SP vectors are generated by 18 SDS using the
Special Perturbation theory and contain osculat-
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ing elements of an orbiting object. The positions
and velocities of the object are given in TEME
frame and generated once a day. The state vector
epoch can vary from an object to another.

A first method is well suited to historical TLE
data [5]. It allows to detect abrupt changes in the
orbital parameters such as the semi-major axis for
in-plane manoeuvres or inclination for out-of-plane
ones. Temporal windows are fitted using polynomi-
als and the filtered differences are computed between
each adjacent window. The identification of peaks can
then be applied to detect anomalous behavior in the
filtered semi-major axis/inclination differences.

A second method is based on the use of SP vectors,
which are osculating elements, yielding more preci-
sion in manoeuvre detection. Given a pair of SP vec-
tors separated by one day, the algorithm numerically
cross-propagates (forward/backward) the trajectories
with high-fidelity force models. The relative distance
between the two propagated ephemerides can then be
computed. The existence of large discrepancies typi-
cally indicates that a manoeuvre has been performed
between the two observations, therefore the mini-
mum relative distance corresponds to the most likely
epoch of the manoeuvre. The delta-V magnitude of
the detected manoeuvre can be retrieved at the es-
timated epoch by interpolating the relative velocity.
Besides leading to reliable detection of small chemical
manoeuvres (typically at millimeter-per-second accu-
racy), the main benefit of this method is that it al-
lows to detect low-thrust manoeuvres by applying the
cross-propagation iteratively.

3 Screening All versus All

Conjunction assessment is a major issue for coll-
sion risk assessment. It is mainly performed by CA
provider like the 18 SDS but screening is required
if new data is available, for example if a new satel-
lite ephemeride is generated for collision avoidance
manoeuvre. As the number of objects is growing,
whether it be due to the annually increasing amount
of satellite launches, or to new detected objects, the
US catalog will soon reach about 30 000 space objects.
A population of N space objects leads to N(N − 1)
pairs to examine or about 900 millions of pairs for the
US catalog expected for the following years.

Fortunately, filters can be applied sequentially to
exclude pairs of objects where a close approach is im-
possible [1] [2]. These are described below:

• Altitude filter: It computes maximum apogees
and minimum perigees at the middle epoch of a
given interval and compares the values to exlude
incompatible orbits.

• Inter-orbit distance filter: It computes the Min-
imum Orbital Intersection Distance (MOID) us-
ing osculating elements at the middle epoch of
the time interval. The variation of the inter-orbit
distance due to perturbations is taken into ac-
count.

• Time filter: The temporal filter determines the
interval of time where each object is at the in-
tersection nodes of the orbits. Only both in this
place they have a possibility to have a dangerous
conjunction.

On each dangerous interval, the Time of Closest
Approach (TCA) and the miss distance between two
objects are calculated. We implemented a solution us-
ing Chebyshev Proxy Polynomials (CPP) [3] [4]. This
method proposes to fit the derivative of the relative
distance function with CPP and to use an efficient lin-
ear algebra library to extract the roots. These roots
correspond to the extrema of the relative distance
function, and to the TCA and the miss distance in
consequence. If the miss distance is lower than a user-
defined threshold, typically 5 km for LEO and 10 km
for GEO/MEO, a dangerous conjunction is identified.

Moreover, the use of multi-threading with an op-
timisation of memory management was also imple-
mented to deal with more than 20 000 ephemerides.
To this end, ephemerides were converted into binary
format to allow faster access and to reduce the mem-
ory needed to store all of them. Multi-threading was
used on groups of objects, sorted by semi-major axis,
to have an efficient process allowing to reach the re-
markable performance of less than 2 hours for approx-
imately 21 000 objects.

4 Simulation of a space traffic management sys-
tem

A simulator was developed to process conjunction
alerts as Conjunction Data Messages (CDM) received
from the 18th Space Control Squadron (SCS). It in-
cludes risk assessment, charaterisation of the sec-
ondary objects, and a collision avoidance manoeuvre
module providing the final decision to perform a ma-
noeuvre or not. The purpose is the assessment of the
number of interactions with other entities (satellite
operators/owners, data providers) and the number of
cases for which human intervention is required, rep-
resenting a limit to automation.

Based on the CNES Java libraries, the simulator
interacts with a database containing data relative to
catalogued objects, space vectors (TLE or SP), satel-
lite operator/owner names and coordinates, historical
manoeuvres, pattern-of-life and conjunction events.
In Figure 1, the flowchart of the simulator is provided.
A configuration file allows to setup the parameters
of the CDM processing such as collision probability
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threshold or scenarios for collision avoidance manoeu-
vres. Moreover, it allows to specify the CDM of in-
terest in a large dataset of historical CDM referenced
in an indexation table. Then, conjunction events re-
lated to missions on specific orbits or a timespan can
be selected. The outputs as log files contain all taken
actions or interactions with other actors. It outputs
as well some interesting metrics on the automation
as given by the Figure 2 where the number of CAM
design operations, human actions and planned CAM
are provided.

Figure 1: Flowchart of the simulator dealing with
CDM to assess conjunction risk and make the deci-
sion to perform a manoeuvre or not. The simula-
tor interacts with a database of space objects data
in particular a database of historical manoeuvres and
pattern-of-life computed with the tool MANEXT.

Figure 2: Number of actions related to collision avoid-
ance manoeuvres simulated for a GEO satellite using
low-thrust propulsion over a period of one year.

5 Conclusions

The management of the space traffic is very challeng-
ing for the years to come. It requires the improvement

of the current state-of-the art, in particular to over-
come the increasing quantity of data to process. A
change of paradigm is arriving with large fleets of sev-
eral hundreds or thousands of satellites, leading to a
tremendous number of conjunction alerts, overwhelm-
ing operators.

The automation of the risk assessment and decision-
making is becoming a standard. In this context, the
simulator developed in this study is a unique tools
to test assumptions, new algorithms or rules of the
space traffic and giving a feedback of their efficiency.
In addition, the improvement of the efficiency of the
“all versus all” conjunction screening now achievable,
lowering the computation time to a few hours, and
the characterization of manoeuvring satellite are two
major milestones solving bottlenecks in automation.
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Sanjurjo-Rivo2, and Diego Escobar1

1GMV, 11 Isaac Newton, 28760 Tres Cantos, Madrid, Spain
2University Carlos III of Madrid, Av. de la Universidad 30, 28911 Leganés, Madrid, Spain

1 Introduction

Due to the ever-increasing population of Earth-
orbiting objects, either operational or debris, the
quality of Space Situational Awareness (SSA) services
becomes crucial for the safety and sustainability of
space operations. Reliable conjunction detection and
collision risk assessment activities are required, es-
pecially for over-crowded regions such as Low Earth
Orbits (LEO) or Geostationary Orbits (GEO) where
most of the space activity occurs. The main objec-
tive of collision risk analysis is to provide a Probabil-
ity of Collision (PoC), one of the main metrics used
by the satellite operators to design possible Collision
Avoidance Manoeuvres (CAM). Therefore, more reli-
able estimates of the PoC can improve the decision-
making process of the conjunction events, reducing
the amount of unnecessary collision avoidance ma-
noeuvres and thus, increasing the mission lifespan and
decreasing operator efforts.

Most PoC computation algorithms rely on the state
uncertainty, generally represented by a covariance ma-
trix as obtained from typical Orbit Determination
(OD) processes. Many existing OD processes are
based on batch least-squares estimator, which pro-
vide the orbit estimate (state and covariance) as nom-
inal output, assuming that measurements are suffi-
cient and available. Along this process, the dynamical
model is usually deterministic, and the only source of
uncertainty considered is the measurement noise [1].
The resulting covariance matrix is known as the noise-
only covariance [2]. However, one of the main sources
of uncertainty during OD and subsequent propaga-
tion are the errors in the underlying dynamical mod-
els, which are typically disregarded [3, 2]. Neglect-
ing the dynamical models uncertainty leads to overly-
optimistic covariance matrices which are not represen-
tative of the actual uncertainty of the estimate (i.e.
not realistic) [4]. The loss of the covariance realism,
regardless of undersized or oversized estimations, has
a significant impact on the PoC reliability [5, 6].

In operational scenarios, simple techniques are re-
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quired to improve covariance realism. A widely ap-
plied technique is the covariance scaling, this is, in-
flating the covariance with a certain scalar factor.
Some authors propose the computation of such scal-
ing based on increasing the initial position uncertainty
to match the velocity error [7]. Others explore the
use of the Mahalanobis distance of the orbital differ-
ences to find the scale factor for both the primary
and secondary object, based on the analysis of histor-
ical information of the conjunction event [8]. These
methods lead to the so-called Scaled PoC. One of the
main drawbacks of covariance scaling techniques is
that a single factor is applied to the complete covari-
ance matrix, similar to a safety factor, losing the phys-
ical sense of the covariance inflation. For instance,
the uncertainty related to the atmospheric density in
LEO accumulates mostly in the direction of the veloc-
ity, which cannot be characterised by a single scaling
factor for the entire covariance matrix.

A different method for covariance realism improve-
ment is presented in this work, introduced in previ-
ous studies [9] and more recently in [10, 11]. The
methodology, detailed in Section 2, is based on the
consider parameter theory and the χ2 distribution,
using the orbital differences between estimated and
predicted orbits to infer the variance of the consid-
ered parameters introduced in the dynamical model.
One of the benefits of the presented approach is that
a clear traceability of the uncertainty sources is kept,
maintaining the physical interpretation of the covari-
ance correction and improving the covariance realism
by targeting specific uncertainty sources.

In this work, we present the main concepts behind
this covariance determination methodology, highlight-
ing the main ideas and covariance realism improve-
ment results. Once introduced the methodology to
improve the realism of the estimated covariance, we
want to analyse its impact in the computation of the
PoC. The objective is to compare the PoC impact of
this consider parameter correction of the covariance
with the performance of other scaling factor methods
that are widely used for PoC, such as the Scaled PoC
method of Kp-Ks. For this purpose, different simu-
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lated scenarios will be designed, in this case focusing
on High Interest Events with different collision geom-
etry (head-on and lateral), and also in a well known
collision event such as the Cosmos-Iridium. The sim-
ulation process is not limited to the conjunction event
itself, but also the population of estimated and pre-
dicted orbits required for the proper functioning of the
covariance determination methodology must be simu-
lated accordingly, introducing realistic uncertainty in
the dynamical models.

2 Methodology

A very brief description of the covariance determina-
tion methodology is provided next, based on previous
works [10, 11, 9]. The proposed covariance determina-
tion method improves the realism of the covariance by
characterising the dynamic and measurement models’
uncertainty using the consider parameter theory. A
set of uncertain parameters are included in the un-
derlying dynamical models, in such a way that the
model uncertainty is represented by the variance of
these parameters. These parameters are assumed to
follow a zero-mean Gaussian distribution, and an un-
known variance a-priori (ci ∼ N

(
0, σ2

i

)
, i = 1, · · · , n)

The estimated covariance is affected by the variance
of the introduced parameters as [1]

Pc = Pn +KCKT ∈ Rny×ny (1)

K = Pn

(
HT

y WHc

)
∈ Rny×nc (2)

where ny is the dimension of the state, Hy corre-
sponds to the Jacobian of the observations with re-
spect to the estimated state, W is the weighting ma-
trix containing the expected noise of each measure-
ment and the possible correlation among the mea-
surements and C is a diagonal matrix containing the
variance of the consider parameters, of size nc. There-
fore, the consider covariance is obtained as the sum
of the noise-only covariance and a covariance correc-
tion, which depends linearly on the consider parame-
ter variances.

The main drawback of the consider parameter the-
ory is that realistic variances of the consider param-
eters are not known a-priori. The covariance deter-
mination process that is applied in this work infers
the variance of the consider parameters based on the
observed distribution of the Mahalanobis distance of
the differences between predicted and estimated or-
bits. By comparing orbit estimations (backed-up by
observations) with orbits propagated using the same
dynamical model, the error present in the models are
expected to be observable within the orbital differ-
ences, and they shall follow a χ2 distribution under
Gaussian assumption provided that the covariance is
realistic.

The Mahalanobis distance (dM ) is a well-known
statistical metric that describes how far a state y(t)
is from a certain reference yref (t), projected into the
covariance space [12]:

d2M = (y − yref )
T
(P+Pref )

−1
(y − yref ) (3)

where P and Pref are the covariance matrices of
the state and the reference, respectively. Combining
Equations 1 and 3, we obtain

d2M (t) =
∆y(t)T∆y(t)

Ψ (t, t0) (Pn +KCKT )Ψ (t, t0)
T
+Pref

(4)
where ∆y(t) = yext(t) − yref (t). Ψ represents

the extended State Transition Matrix (including both
state and sensitivity matrices) [2], applied to propa-
gate linearly the covariance to the desired comparison
epoch. The reference orbit yref (t) that is required for
the Mahalanobis distance can correspond to a precise
ephemeris information of a known object, but it is
also showed in [9, 10, 11] that estimated orbits can
be used as reference as well, not requiring external
sources of ephemeris. Equation (4) allows to com-
pute the Mahalanobis distance at any epoch along the
propagation arc as a function of the consider parame-
ter variances contained in matrix C, assuming that a
batch least-squares parameter estimation process has
been performed, followed by a propagation step.

Therefore, the proposed covariance determination
methodology consists in, given a population of orbits
from a certain object, finding the variance of the con-
sider parameters (included in matrix C) so that the
observed d2M distribution resembles the theoretical χ2

distribution. This is achieved in a muti-variable min-
imisation process, where Empirical Distribution Func-
tion (EDF) statistics are used as cost function, such
as Cramer-von-Mises or Kolmogorov-Smirnov statis-
tics [13].

3 Covariance determination results

The proposed methodology has been validated in a
realistic simulated scenario in [9] and more recently
in [10, 11]. It has been applied as well to real data
of Sentinel 3A [9], also showing a significant improve-
ment in the realism of the covariance. Here we present
some examples of the covariance realism enhancement
achievable with the proposed covariance determina-
tion methodology. Figure 1 below shows the final dis-
tribution of the d2M population after the minimisation
process, in this case using 3 degrees of freedom (po-
sition covariance), for a LEO object. Three different
consider parameters were included in this analysis,
representing the uncertainty in the drag force (drag
coefficient, area, mass and atmospheric density), the
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uncertainty in the prediction of the space weather
proxies and the uncertainty in the range bias. The
resulting variance of the consider parameter is very
similar to the input uncertainty in the system, and the
final distribution matches properly the theoretical χ2

one, confirming that the selected dynamic model is
satisfactory. Additionally, the Cumulative Distribu-
tion Function (CDF) of the distribution without ap-
plying any consider parameter correction is depicted
in black, showing that in the presence of model errors,
the noise-only covariance is not realistic.

Figure 1: d2M distribution with optimum consider co-
variance results. Input test uncertainty were: σAE =
20%; σRB = 20m; σPE = 3 %/day. From [10].

To assess the covariance realism, covariance con-
tainment tests can be applied [7, 14] to assess the
amount of samples of the population that lay inside
the covariance ellipsoid, comparing it against the the-
oretical expectations of a multivariate Gaussian dis-
tribution. Table 1 shows containment results with
the proposed covariance determination methodology,
at several propagation days for different covariance
ellipsoids. The average containment obtained with
this methodology is similar to the theoretical expec-
tations, which is one indicator of covariance realism.
The average containment obtained when no consider
parameter correction is applied has been included as
baseline. Additionally, the realism of the noise-only
covariance does not hold when model uncertainty is
present in the system.
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Abstract

This paper explores the use of different deep learn-
ing techniques for detecting conjunction events in an
efficient and accurate way for improved space situ-
ational awareness. Framing the problem as a ma-
chine learning classification task, we present the per-
formance of different data representations and model
architectures on a realistic all-vs-all dataset generated
using the CNES BAS3E space surveillance simulation
framework, and compare the approaches to opera-
tionally used classical filters in screening performance
and computational efficiency. Finally, we also inves-
tigate a novel methodology for improving the perfor-
mance and generalisation ability of the models using
a pre-trained orbit model, ORBERT, based on self-
supervised learning techniques.

1 Introduction

Ensuring the safety and sustainability of space opera-
tions in the New Space era is an ever-increasing chal-
lenge for Space Traffic Management (STM), in which
one of the most important activities is the detection
and prevention of on-orbit collisions. Although many
conjunction events involving active satellites may be
safely evaded through collision avoidance manoeuvres,
albeit with significant effort, conjunctions between
two non-manoeuvrable space debris objects are far
more frequent, and threaten both the safety of cur-
rent day space assets as well as the long-term usabil-
ity of the space environment [1]. The so-called all-vs-
all problem, for which conjunctions are screened for
over all possible sets of catalogued objects, is there-
fore crucial to space situational awareness (SSA), but
is a computational challenge owing to the vast and
growing number of possible conjunction pairs. To ad-
dress the challenges posed by the scale and complexity
of these activities, one emerging approach is the ex-
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ploitation of recent advancements in the fields of ma-
chine learning (ML) and, in particular, deep learning
(DL) [2, 3], a subfield of machine learning that uses
neural networks with multiple hidden layers, enabling
its models to outperform classical machine learning
algorithms in both accuracy and scalability.

In this work, we propose to apply these techniques
to the problem of efficient large-scale conjunction de-
tection, and investigate whether they can be used to
accurately identify high risk conjunction cases whilst
simultaneously reducing computational expense. In
our approach, we therefore do not propose to replace
the entire conjunction assessment pipeline with an
end-to-end black box artificial intelligence (AI) sys-
tem, but rather use it as an efficient first filter or
initial screening to complement existing systems, as
illustrated in Figure 1. This enables a significantly
reduced set of high risk candidates to be passed to
pre-existing operationally used, and trusted, numer-
ical or analytical methods for performing further re-
finement and collision risk evaluation. Here, we em-
ploy a realistic dataset of conjunction pairs in Low
Earth Orbit (LEO) over a typical 7-day screening pe-
riod, and present an analysis of different deep learning
techniques which can be used to address and aid in
this problem.

2 Conjunction dataset

We base our data-driven approach on a conjunction
dataset that was generated using the CNES BAS3E
(Banc d’Analyse et de Simulation d’un Systeme de
Surveillance de l’Espace – Simulation and Analysis
Bench for Space Surveillance System) space surveil-
lance simulation framework [4] for all catalogued ob-
ject pairs in LEO over a 7-day screening period. For
this, we considered the two-line element set (TLE)
LEO population on the 1st of June 2020, as retrieved
from space track, which comprised 18415 objects, and
consequently 170 million possible conjunction pairs.
These objects were propagated over a 7-day period
using a full force model, accounting for atmospheric
drag and Sun and Moon third body perturbations,
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Figure 1: Illustration of machine learning screening
concept to aid and complement existing operational
all-vs-all conjunction assessment.

and checked pairwise for conjunctions using a dis-
tance based threshold of 20 km (spherical shape of
the safety volume). 1.5 million close conjunction cases
were found as a result, forming less than 1% of the
total number of object pairs, and thus the dataset
can be seen to be both of a large-scale and highly
imbalanced nature. Owing to the large number of ob-
ject pairs, this process was extremely computationally
expensive, taking approximately 4 days of computa-
tion time on the CNES High Performance Computing
(HPC) service, which demonstrates the interest of in-
vestigating ML screening techniques for current and
future space object populations.

3 Training a conjunction detection model

Based on this dataset, we phrase the concept of con-
junction detection as a machine learning classification
task. In this way, a machine learning model learns to
predict a binary class as to whether a given object pair
will have a conjunction over the next 7 days, based on
orbital data as input, and class labels (conjunction or
no conjunction) provided by BAS3E [2]. The trained
model can then be used to predict and subsequently
filter or discard non-conjunction pairs based on their
orbital data, thus reducing the computational burden
on the full operational all-vs-all conjunction assess-
ment procedure.

In this work, we explored the use of different data
representations and architectures for this task, focus-
ing on two main families of models, tabular models
based only on initial states, and more complex time
series models based on full ephemerides. Comparing
these approaches to classical filtering techniques such
as the apogee-perigee and path geometric filters [5],

as well as the ephemeris based “smart sieve” [6], we
found that these models can offer improvements both
in filtering performance and computational expense.
There is, however, a trade-off between the additional
accuracy gained by using more complex models, that
can better capture the effects of perturbations to-
wards the end of the screening period, and the ad-
ditional computation expense required for both train-
ing and inference of such models. A second trade-off
is present between the overall accuracy of the model,
and the number of False Negatives (FNs) generated by
the model, conjunction cases which are misdiagnosed
as non-conjunction cases and thus wrongly, and po-
tentially critically, discarded by the screening process.
Several methods were developed for forcing the impor-
tance of these cases including weighted loss functions,
and the tuning of the class probability threshold to
ensure that only cases for which the model has high
confidence are rejected, which we translate into an
operator constraint.

Although this approach was found to be promis-
ing and competitive on in-distribution data, over the
same epochs and altitude regime as the training data,
some weaknesses were identified in the ability of the
models to generalise out of distribution. To account
for this, we are investigating the use of pre-trained or-
bit models to better inform the conjunction detection
models on orbit behaviour in different perturbation
regimes.

4 Pre-training an orbit model

Pre-training a model is the first important step in
transfer learning, in which the weights of a model
trained on a “pretext task” can be updated (or “fine-
tuned”) on a final task, commonly known as the down-
stream task, to improve downstream performance and
efficiency. This pre-text task may be different to the
downstream task, allowing the pre-trained model to
capture fundamental representations from a large un-
labelled dataset that may aid in the final task. For
example, in the field of Natural Language Process-
ing (NLP), pre-training a language model to predict
missing words or phrases from a large corpus of un-
labelled text enables the model to learn meaningful
language representations, which can then be used for
downstream tasks such as sentiment analysis, to pre-
dict whether a given phrase is positive or negative.
This approach makes use of a novel technique called
self-supervised learning, so-called because the labels
used for training are embedded in the data itself.

Taking inspiration from these techniques, we in-
stead construct a pre-trained orbit model that is able
to leverage large quantities of readily available or-
bital data to learn meaningful orbit representations,
which can in turn be used to improve the performance
of downstream SSA tasks such as conjunction detec-
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Figure 2: Analogy of the proposed pre-trained orbit
modelling approach with that used in the domain of
Natural Language Processing (NLP).

tion [3] (see Figure 2). Our orbit model, ORBERT
(named after Google’s breakthrough BERT language
model [7]), is trained using a self-supervised approach
for time series [8], where, instead of masking words
or phrases, sections of orbit ephemeris are masked,
and the model tasked with their reconstruction. This
enables it to learn meaningful orbit representations
which can be passed to orbit-related tasks, as illus-
trated in Figure 3. To promote generalisation, we
can include ephemerides from a variety of different
epochs and altitude regimes in the pre-training set
to cover different perturbation regimes to train OR-
BERT. These learnt weights may then be used to
initialise the training of our downstream conjunction
detection classifier, passing on an underlying under-
standing of the perturbing forces affecting space ob-
jects, to provide better conjunction predictions on the
final testing set.
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Abstract

Predicting the risk of a collision in space has become
a increasingly challenging task, given the steady in-
crease of number of objects in space. In this pre-
diction, the first step that needs to be performed
is on-orbit conjunction assessment (CA) or conjunc-
tion screening (CS), a process that iteratively identi-
fies close approaches between resident space objects
(RSOs) in a time horizon of a few days (typically
5-10 days). The United States 18th Space Control
Squadron (18 SPCS) performs CS of the whole 18
SPCS catalogue of roughly 25,000 objects using re-
stricted high accuracy catalogue data (HAC) as well
as ephemeris data provided by different spacecraft
owner/operators (O/O). A CS operation can also be
performed by an O/O starting from the operational
orbit file of a specific satellite to identify close ap-
proaches between the covered satellite mission (the
“target object”) and an accessible space catalogue of
“chaser objects”. The screening frequency is normally
once every 24 hours but can be increased to once
every 8 hours for conjunctions belonging to a con-
cern list. The task of detecting all close approaches
for a large population of RSOs is highly demand-
ing from the computational time point of view and
the use of conjunction filters (or other filters) as well
as extremely fast propagation methods is paramount.
Here, we propose the use of advanced orbital motion
formulations coupled to simple fixed-step numerical
integrators to reduce the computation time to a min-
imum while retaining sufficient conjunction detection
accuracy. The tradeoff between computation time and
accuracy while considering covariance limitations of
available ephemeris data is discussed in detail.

1 Introduction

Predicting the risk of a collision in space has become a
increasingly complex and challenging task for control
centers in charge of space monitoring, given the steady
increase of number of objects in space. Indeed, in re-
cent years, several companies have started the deploy-
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ment of large constellations of small to medium-sized
satellites, which will considerably increase the com-
plexity of space operations. Two dozen companies,
when taken together, have proposed placing well over
20,000 satellites in orbit in the next 10 years [1]; to put
this number into perspective, one must take into con-
sideration that only around 8000 objects were placed
in Earth orbit since the beginning of the space age. In
addition, one must take into account the population
of space debris; in fact, the number of small orbital
debris in near-Earth space is several orders of mag-
nitude greater than the number of large, cataloged
space objects and is growing progressively [2].

Thus, the risk of losing a satellite during a collision
is not negligible [3] and such an event would not only
result in the destruction of the two objects, but also
in the creation of a large amount of debris, which can
in turn produce more collisions; thus it is in every-
one’s best interest to avoid collisions from happening.
A primary example took place on 10 February 2009,
when two intact satellites, Cosmos 2251 and Iridum
33 collided at an altitude of 789 km above Siberia [4],
generating thousands of debris. Cosmos 2251 was
a Strela-2 Russian spacecraft used for military com-
munications, which had been decommissioned more
than ten years earlier. Iridium 33 was an operational
spacecraft of the homonymous private constellation
satellite phone services. The event boosted the cata-
logued population in Low Earth Orbit by more than
40%. The effect of this event extended beyond or-
bits close to the originating objects. For instance, the
ISS had to perform collision-avoidance manoeuvres
in 2014 due to fragments generated in the Cosmos-
Iridium event [5], five years later than the event hap-
pened.

To manage the risk of collision, operators use the
available space surveillance data, which allows them
to predict close encounters (a few days in advance),
assess the threat level by computing the probability
of collision, and then, if deemed necessary, carry out
a collision avoidance maneuver, which slightly alters
the satellite’s trajectory so it passes a safe distance
away from the dangerous object. The first step in
the process is to find close approaches between ob-
jects of interests and other objects. This is accom-
plished by conjunction screenings, in which the pre-
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dicted positions of the primary object and all other
space objects that survive a previous filtering process
are compared [6]. The filtering process is performed
in order to reduce the computational load as there are
pair of objects that can never lead to a collision, to
cite a very basic example, objects in LEO vs. objects
in GEO.

While conjunction analysis methods are functional
at the present, the tremendous increase in the space
object population that is expected in the next few
years will require screening processes to be adapted
to deal with larger volumes of data [7]. This works
aims to reduce the computational load, without loss of
accuracy, for the processes of conjunction screening,
including the use of conjunction filters, both of which
are defined next in more detail in Sections 2 and 3,
respectively. We then introduce our ideas to close
approach detection in Section 4, to be presented at the
workshop, and finish with some concluding remarks in
Section 5.

2 Conjunction Screening

On-orbit conjunction assessment (CA) or conjunction
screening (CS) is a process that iteratively identi-
fies close approaches between resident space objects
(RSOs) in a time horizon of a few days (typically
5-10 days). The United States 18th Space Control
Squadron (18 SPCS) performs CS of the whole 18
SPCS catalogue of roughly 25,000 objects using re-
stricted high accuracy catalogue data (HAC) as well
as ephemeris data provided by different spacecraft
owner/operators (O/O). The screening frequency is
normally once every 24 hours but can be increased
to once every 8 hours for conjunctions belonging to a
Concern List [8].

In particular, a CS operation can be performed by
an O/O starting from the operational orbit file of a
specific satellite to identify close approaches between
the covered satellite mission (the target object) and
an accessible space catalogue of chaser objects. Of-
ten, publicly available 18 SPCS TLEs are the only
source of information fully accessible by the O/O.
Privileged access data are sometimes available; for in-
stance, CNES satellite operators can access data from
the French GRAVES radar-based space surveillance.

Typically, a CS process can be performed based
on a miss-distance criterion (which is equivalent to
a spherical screening volume), a more accurate ellip-
soidal screening volume accounting for the typically
larger along-track uncertainty of an RSO, or a colli-
sion probability computation. In the last case, scaled
covariances can be adopted to account for the ex-
pected shrinking of the uncertainty region following
new observations before the TCA [9].

One crucial aspect of the CS process is the need to
make it automated in order to reduce the process risk.

The conjunction screening process can be computa-
tionally intensive and is usually performed following
an iterative process that starts with a set of filters
(typically apogee-perigee filter, orbit path filter, time
filter, see [10]) before more accurate computations can
be carried out.

3 Conjunction Filters

The calculation of collision probabilities between
RSOs is highly computationally intensive and there-
fore, it is imperative to remove the RSO pairs that
have practically no chance of collision from the search
space. The classical preliminary conjunction screen-
ing methods proposed in the literature (e.g. the work
of Alfano and Finkleman [10]) could be in principle ex-
tended to the low-thrust problem but this would likely
result in a considerable loss of efficiency/effectiveness.
Already for the unperturbed problem, for instance,
Alfanos classical filters (apogee/perigee, orbital path
and time filter) require some padding or buffering to
account for the difference between the mean and real
orbit due to short-periodic effects and uncertainties,
and the tuning of the padding is a delicate (and risky)
operation.

Recent ideas on the concept of “space occu-
pancy” [11] can allow to improve the efficiency of
these filters. Space occupancy is defined as the do-
main occupied by an individual satellite as it moves
along its nominal orbit under the effects of environ-
mental perturbations throughout a given interval of
time. Considering the domain occupied by an RSO
throughout a given timespan (in this case the typical
1-week screening window) and using analytical rela-
tions derived from frozen orbit theory (see [11]), it
is possible to establish whether or not two RSOs can
have overlapping SOVs. A non-overlap condition will
lead to discard a pair of objects from further analysis.

4 Close Approaches Detection

The close approach detection, with a typical 1-week
search horizon, will be addressed using a combina-
tion of fixed-step propagation and recursive interpo-
lation using, for both tasks, the GEqOEs formula-
tion (see [12] for more details). Crucially, the use of
GEqOEs will allow much wider integration and inter-
polation steps compared to state-of-the-art propaga-
tors . We envision the possibility of selecting an ad-
equate step size depending on the class of orbit (e.g.,
GEO, GTO, LEO, etc) for maximum computational
performance.

We will present some initial results of our work;
in particular, a preliminary study of the conjunction
screening process and propose the use of advanced or-
bital motion formulations based on GEqOEs coupled
to simple fixed-step numerical integrators to reduce
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the computation time to a minimum while retaining
sufficient conjunction detection accuracy. The trade-
off between computation time and accuracy while con-
sidering covariance limitations of available ephemeris
data will be discussed in detail.

5 Concluding remarks

Predicting risks of collisions in space is becoming a
complex and daunting task, given the steady increase
of number of objects in space due to the deployment of
large constellations and the already large population
of space debris. The first step to be performed is on-
orbit conjunction screening, a process that iteratively
identifies close approaches between resident space ob-
jects. The task of detecting all close approaches for a
large population of objects is highly demanding from
the computational time point of view and the use
of conjunction filters (or other filters) as well as ex-
tremely fast propagation methods is paramount. We
will present our initial findings aiming to reduce the
computational load of these processes, without signif-
icant loss of accuracy.
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1 Introduction

Since the advent of the space era, the number of resi-
dent space objects (RSOs) has grown and with it the
problem of accurately determining their state. This is
fundamental to maintain a collision-free environment
in space, predict space events and perform activities.
One of the many tasks pertaining to space situational
awareness (SSA) is thus to build and maintain a cat-
alogue of RSOs. While building the catalogue, it is
important to associate multiple observations to the
same object to perform orbit determination (OD) and
improve the orbit’s knowledge [1, 2]. To maintain the
catalogue, RSOs need to be timely re-observed and
the new observations need to be statistically compati-
ble with the known object. Most association routines
assume natural motion of the body in between ob-
servations, with association metrics deciding whether
observations belong to the same RSO. However, ac-
tive RSOs may perform manoeuvres which are not
included in the dynamical model used for association.
This mismodelling deteriorates the association rou-
tine, creating a mismatch where on the one hand an
unknown RSO is detected - the new observation - and
on the other hand a known object stops being updated
- the spacecraft before the manoeuvring event. This
paper outlines a new step to be added to the catalogue
maintenance where a manoeuvre profile is estimated
to connect two otherwise uncorrelated orbits and re-
cover the association.

2 Problem formulation

In order to make the description clearer, refer to fig. 1
for the following paragraph. Suppose two states - the
outcome of an OD - are available at two epochs t0 and
t1, simplified with a black dot and a shaded ellipse,
(X0,0,Σ0,0), (X1,1,Σ1,1). The state at the earliest
epoch is propagated forward to the second one, de-
termining a reference trajectory, the white line with
black squares, (X0,1,Σ0,1). The propagated and de-
termined states will not correlate with typical data
association techniques [3, 4, 1], but correlation may

∗Email: laura.pirovano@auckland.ac.nz
†Email: roberto.armellin@auckland.ac.nz

be recovered assuming a manoeuvre has happened.
The proposed methodology considers the implemen-
tation of an impulsive maneuver ∆vi at every node in
which the reference trajectory is discretised i ∈ [0, N ],
the black squares, where i = 0 coincides with t0 and
i = N with t1.
State transition matrices (STMs)

(
Mi ∈ R6x3

)
are

used to map these maneuvers’ effects forward in time,
as shown by the red and green dashes. For example,
a manoeuvre performed at node i will be mapped at
node j > i with

∆Xj,δvi =

[
j∏

k=i

Mk,i

]
∆vi. (1)

The final deviation due to the cumulative effect of all
manoeuvres until t1 is then:

∆X1,δv =
N∑
i=0

[
N∏
k=i

Mk,i

]
∆vi. (2)

STMs
(
Ri ∈ R6x6

)
are also used to map a deviation

∆X0 in the initial state forward in time (blue dashes):

∆X1,δX0 =
N∏

k=0

(Rk)∆X0. (3)

The cumulative effect of all manoeuvres and initial
deviation allows the state at t1 to reach the desired
location.

The goal is to find the trajectory with the least
amount of propellant used:

min
N∑
i=0

∥δvi∥, (4)

having the δv components at each node, the state
at each node X, and the initial and final deviations
δX0, δX1 as optimisation variables (9N + 12 vari-
ables), meeting the following constraints:

• maximum ∆v at each node (which defines the
impulsive or low-thrust nature of the maneuver)

∥δvi∥ ≤ ∆vM ∀i ∈ {1, . . . , N} (5)
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Figure 1: Initial trajectory and linear influence of initial deviation and mid-course manoeuvres to match final
deviation.

• maximum variation on initial and final states
to account for the OD uncertainty, in the form
the Mahalanobis distance, through a chi-square
quantile with confidence level α:

1

2
δXT

j Σ(j,j)δXj ≤ qχ2(α, 6) = M j = 0, 1 (6)

• continuity of the trajectory, where X̃i is the ini-
tially propagated state at node i while Xi is the
state optimisation variable at node i:

Xi+1− [Ri|Mi]

[
Xi

δvi

]
= X̃i+1− [Ri|Mi]

[
X̃i

0

]
(7)

• matching of the propagated maneuvered state
with the final state:

X0,1 +∆X1,δX0
+∆X1,δv = X1,1 + δX1. (8)

The problem is purposely handled with linear and
quadratic constraints to obtain a convex optimisation
formulation, for which convergence and a global min-
imum are ensured. Slack variables for the δvs mag-
nitude and Mahalanobis distance are introduced to
transform the objective function into a linear one and
enforce bounds on the ∆v and δX magnitude with
second-order cone constraints, to finalise the convex-
ification of the problem. Indeed, a quadratic con-
straint can become a second-order cone with the fol-
lowing variable transformation:

1
2x

TAx+ aTx ≤ b ⇐⇒ (w, z,y) ∈ Qr,

where

{
y = Fx, Q = FFT ,
z = 1, w = b− aTx

(9)

Hence:
eq. (5) ⇐⇒ (2vM , 1, δvi) , (10)

and
eq. (6) ⇐⇒

(
2M, 1,

√
Λ−1QδXj

)
, (11)

where Σ(j,j) = QΛQT . Once the optimization is com-
pleted, the reference trajectory is updated with the
optimal maneuver. The accuracy of the final orbit
is checked by accurate forward propagation. If con-
straints are not met to a prescribed accuracy, the pro-
cedure is repeated following a standard successive con-
vex optimisation approach, hence modifying eq. (7)
introducing an iteration counter k:

Xk
i+1 − [Ri|Mi]

[
Xk

i

δvk
i

]
= X̃i+1 − [Ri|Mi]

[
Xk−1

i

δvk−1
i

]
.

(12)
An infeasible flag from the optimization process
means that there can’t be a maneuver specified by
the constraints that can correlate the two objects,
and non-correlation is concluded.

Reference trajectories and state transition ma-
trices are developed in C++ using the library
Differential Algebra Computing Engine (DACE) 1

and the accurate numerical propagator Accurate
Integrator for Debris Analysis (AIDA) [5]. The
Matlab interface of the optimizer MOSEK2 is used
to solve the problem with the primal-dual interior-
point method for conic quadratic optimization. In
principle, any type of coordinates can be chosen
for the state representation. However, modified
equinoctial elements were chosen because of the
easiness to set bounds on the nodes variation and
lack of singularities.

3 Keeping a statistical approach

The optimisation finds a deterministic path for this
two-boundary value problem. However, the initial
and final deviations hold a statistical meaning: the
further from the mean states the final solution is, the

1https://github.com/dacelib/dace
2http://docs.mosek.com/9.0/toolbox/index.html
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Figure 2: Manoeuvre estimation for two states retrieved one week apart for METEOSAT-8. An East-West station
keeping (EWSK) manoeuvre is estimated and statistical properties are retrieved with the conjugate unscented
transform (CUT)-4.

less probable the path found is to happen. By simply
constraining the initial and final deviations to be less
than a value as in eq. (6), the optimiser will see the
deviations as “free propellant” hence taking full ad-
vantage of them, but actually creating the least prob-
able path. For this reason, ∆X0 and ∆X1 cannot
be determined within the optimisation but need to
be determined beforehand. The fourth order CUT
[6] was chosen to do so: by running the optimisation
N2+2N +1 times, where N = 12 is the dimension of
the problem, it is possible to reconstruct a-posteriori
the first four momenta of the final distribution, thus
making it possible to analyse the effect of uncertainty
in the states on the overall maneuver existence and
estimation. Sigma points drawn from the initial and
final covariance bound the initial and final deviations,
so that the constraint in eq. (6) is substituted by:[

δX0,0

δX1,1

]
i

= ∆X12x1
CUT4,i i ∈

{
1, . . . , N2 + 2N + 1

}
.

(13)

4 Example: METEOSAT EWSK manoeuvre

To test the optimisation and statistical handling of the
uncertainty, a manoeuvre is here reconstructed fol-
lowing the availability of two states with covariances
from EUMETSAT weekly newsletter. The data pot
also includes the type of manoeuvre and manoeuvre
time, but not the profile. Given the long window of
time between the two available states, a filter is ini-
tially applied to only consider one day where to look
for a manoeuvre. To do so, the two states are for-
ward and backward propagated to find the instant in
time where they were the closest, and a symmetric 1-
day window is considered around that point. Figure 2
shows the manoeuvre time-profile in R, T, and N and
the boxplot of the manoeuvres magnitude per compo-
nents (1-2-3) and overall (4) in the right plot. A clear
manoeuvre is visible in the tangential direction, where
the 3σ uncertainty is well above zero. Preliminary re-
sults are encouraging, but further testing is necessary

to make sure that all regimes and manoeuvre types
can be handled with successive convexification.
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1 Introduction

Currently, more than 23,000 objects orbiting around
the Earth are catalogued and tracked. However,
only 6% represent actually active satellites, while
the rest is composed by defunct spacecraft, rocket
stages, and mission-related and fragmentation debris.
The number of new satellites is consistently rising
due to a higher importance of space in economic
and geo-political matters, with megaconstellations
representing the new frontier of space exploitation.
Currently, in low-Earth orbit alone, hundreds of
close approaches between catalogued space residents
are notified to satellite operators per week, in pos-
sible collision scenarios, and several fragmentations
occur every year adding new debris to the population.

The WALSAT (WALlonia Space Awareness Tech-
nology) project proposes a novel method to study
the topology of the space resident population from
a complex system perspective using network theory.
The population is embedded into a network: each
node represents a space object, and links between
them represent a conjunction event between any
two objects occurring within a given time period. A
weight can be assigned to each link depending on
the characteristics of the collision, such as distance,
collision probability, etc. The obtained network is
analysed using metrics such as degree, centrality,
and clustering coefficient. This complex system
approach allows to rank and classify sensitive objects
or groups of objects contributing the most to the
overall collision risk.

A first approach to use networks to study the evo-
lution of collisional risk was made by Lewis et al. [1],
who used simulated future launches and fragmenta-
tions to study the evolution of the space population,
which was embedded building multi-relational net-
works. The resulting network was used to identify

*Email: matteo.romano@unamur.be, BEWARE2 fellow
�Email: timoteo.carletti@unamur.be
�Email: anne.lemaitre@unamur.be
§Email: jerome.daquin@unamur.be, F.R.S.-FNRS fellow

candidates for Active Debris Removal missions with
the goal of reducing the overall collision risk and de-
bris production rate.

In this work, we present a network embedding
which weights the links considering the probability
of impact during a conjunction. The probability is
estimated from the state uncertainty distributions of
the two objects involved at the moment of the con-
junctions, which is in turn estimated by propagat-
ing an initial covariance matrix associated to each
orbital state. Various uncertainty propagation tech-
niques will be presented to show their effects on the
network topology and the resulting ranking of objects
based on the network properties and the collisional
risk, considering both the numerical accuracy and the
computational cost in the assessment.

2 Methodologies

2.1 Dataset

In this work, the space population is described
by data obtained from a reference database in
the form of Two-Line Elements (TLEs) [2]. The
database is the NORAD catalogue accessible online via
the Space-Track portal (https://www.space-track.
org/#recent), which is updated daily with the TLEs
of most trackable space resident objects.

2.2 Orbital propagation

The orbital states represented by the TLEs are propa-
gated forward in time for a given time period to obtain
ephemeris tables for each object. The propagation is
performed using different propagators to exploit the
characteristics of each:

� SGP4 (Simplified General Perturbations No. 4),
as known, is an analytical propagator which
allows fast evaluations of orbital states start-
ing from TLEs, with an accuracy limited to
timescales of a few days due to the approxima-
tions of the analytical model and the quality of
the information provided by TLEs [3, 4];

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        108 

https://www.space-track.org/#recent
https://www.space-track.org/#recent


5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

� NIMASTEP, initially developed at the University
of Namur, is a numerical propagator able to in-
tegrate osculating motion in Cartesian coordi-
nates over longer time scales using a high-fidelity
dynamic model including several perturbations
[5, 6, 7]

� NEPTUNE (NPI Ephemeris Propagation Tool with
Uncertainty Extrapolation, https://github.

com/Space-Systems/neptune), developed at the
European Space Agency, is also a high-fidelity
numerical propagator integrating the osculating
state in Cartesian coordinates, with the addition
of covariance matrix propagation using varia-
tional equations to integrate the state error tran-
sition matrix [8, 9].

2.3 Network embedding

The network is built by detecting close conjunctions
between each pair of objects using a three-filter se-
quence to prune the population and reduce the com-
putational load [10]. The resulting network is com-
posed by the objects experiencing a conjunction be-
tween them below a given threshold distance.

2.4 Uncertainty propagation methods

The initial state uncertainty is defined as a 6x6 co-
variance matrix in Cartesian coordinates. The prop-
agation of the initial covariance matrix is performed
in different methods [11]:

� Monte Carlo (MC) simulation, which consists of
the propagation of a large number of initial condi-
tions obtained by “perturbing” the reference ini-
tial state according to the uncertainty distribu-
tion;

� the Extended Kalman Filter (EKF), already im-
plemented in NEPTUNE, which consists in a local
linearisation of the dynamics allowing to prop-
agate the initial covariance by integrating the
State Transition Matrix alongside the orbital
state;

� the Unscented Transformation (UT), which con-
sists in the propagation of a subset of points
which are representative of the initial uncertainty
distribution using the fully non-linear dynamics;

� the integration of the Fokker-Plank equation,
which is a partial differential equation describing
the evolution in time of an uncertainty distribu-
tion subjected to the dynamics of the system.

3 Preliminary results

Figures 1, 2, and 3 show two clusters of a network ob-
tained by embedding the space objects in the daily
NORAD catalogue during the month of February.

Figure 1: Two isolated components of the network.

The database was accessed every day, and each TLE
was propagated forward over a period of 5 days, re-
coding all conjunctions with other objects within a
distance of 5 km. These results do not consider the
collision probability, only the occurrence of conjunc-
tions.

Figure 1 generically represents the two isolated clus-
ters, while Figures 2 and 3 highlight different proper-
ties of the networks: respectively, degree and between-
ness. The degree of a node is defined as the number
of links it is connected to, representing the number of
other objects encountered by any given one. Between-
ness is instead defined as the number of shortest paths
between any two nodes pass through a given node, as
a measure of how central each node is within the net-
work: here it highlights which nodes act as “bridges”
between different groups.

By analysing the networks using various properties,
the differences in their topologies become more evi-
dent, as each node has a different weight on the overall
collisional risk.

4 Conclusions

This work will present a comparison of different uncer-
tainty propagation methods to assess their accuracy
and computational costs in the embedding of the net-
work. Considerations will be made depending on the
feasibility of their use for the network embedding and

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        109 

https://github.com/Space-Systems/neptune
https://github.com/Space-Systems/neptune


5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

Figure 2: Highlighting the degree of the nodes in the
network.

Figure 3: Highlighting the betweenness of the nodes
in the network.

on the effect on the topology of the network itself, to
measure the robustness of the embedding with respect
of the uncertainty treatment.
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Cislunar Space Domain Awareness:
Improved characterization and uncertainty quantification

Pablo Machuca∗1 and Aaron J. Rosengren†1
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1 Introduction

Cislunar space is expected to be increasingly popu-
lated in the coming decades. The dynamical complex-
ity of the environment and wide range of available or-
bits pose a significant new challenge for Space Domain
Awareness (SDA); namely, the catalog maintenance
of xGEO (beyond GEO) objects. The intrinsic sta-
bility/instability of orbits, increasingly complex tra-
jectory designs, plethora of station-keeping strategies,
and limited visibility windows necessitates a better
understanding of this non-traditional orbital environ-
ment. Accordingly, we aim to provide: (1) a robust
characterization of the cislunar multi-body dynami-
cal environment geared towards typical scenarios of
interest; (2) an intuitive, familiar parametrization to
describe the motion of xGEO objects; and (3) an un-
certainty quantification analysis of the orbit determi-
nation (OD) process, with the overall goal of under-
standing how uncertainties affect viewing geometries
and observation campaigns for catalog maintenance.

Specifically, we reproduce and characterize relevant
mission profiles in the Circular Restricted Three-body
Problem (CR3BP) and in an ephemeris model, in-
cluding: (a) transfers between quasi-periodic halo or-
bits (including that baselined for the Lunar Gateway);
(b) transfers into distant retrograde orbits (DROs),
which have been proposed as parking orbits for inter-
planetary missions; and (c) lunar mean-motion reso-
nance orbits (MMRs), like those used by the IBEX
and TESS spacecraft. We then propose a parameter-
ization approach to describe such trajectories based
on piecewise orbital elements (geocentric or seleno-
centric, as the physical picture dictates). We show
that, despite the non-Keplerianity of such orbits, the
classical elements are still well defined and can provide
an intuitive and useful representation of characteristic
xGEO trajectories. Finally, we model and propagate
uncertainties involved in the OD process to better un-
derstand the inherent sensitivities that plague cislu-
nar space, and we highlight their implications to view-

∗Email: pmachucavarela@ucsd.edu. Research supported by
the Air Force Office of Scientific Research, under grant agree-
ment FA9550-21-1-0191.

†Email: ajrosengren@ucsd.edu.

ing geometries, required revisit rates, and surveillance
volumes for improved catalogue maintenance.

Some preliminary results are summarized herein,
with a focus on the family of halo orbits around the
second Earth-Moon Lagrange point (L2).

2 Sample mission scenario

The multi-body dynamics of cislunar space offer a
wide range of orbits that permit more complex trajec-
tory designs and mission profiles. We begin our anal-
ysis by reproducing cislunar trajectories that may be
of interest to future missions. As a sample scenario,
we consider the family of Southern L2 halo orbits and
transfers between such orbits. Halo orbits around L2
have been proposed for payloads supporting lunar ex-
ploration and communication [1, 2, 3], including the
Lunar Gateway [4, 5], and also as parking orbits for
the efficient insertion of satellites into low-Earth or-
bit [6]. A variety of halo orbits may be employed in
the future, from those originating in the vicinity of
the Lagrange point, up to near-rectilinear halo orbits
(NRHOs) with closer lunar passages.

In this scenario, we consider a spacecraft that is
initially stationed along a Southern 9:2 resonant orbit
around L2, such as that baselined for the Lunar Gate-
way, which then transfers to a smaller halo orbit in the
vicinity of L2 through a total of 12 intermediate or-
bits (Fig. 1). This scenario may be representative of a
spacecraft leaving the Lunar Gateway with the intent
of departing the Earth-Moon system through lower-
energy halo orbits [4]. It also allows us to consider
a range of halo orbits along the Southern L2 family,
including the natural motion along such orbits and
transfer maneuvers from/to these orbits.

Periodic orbits are initially computed in the CR3BP
and then transitioned into quasi-periodic orbits in the
ephemeris model. This approach allows us to assess
the utility of the CR3BP for the identification and
characterization of features and general trends, and
to identify differences in the orbital-element repre-
sentation. Furthermore, transfer arcs between halo
orbits leverage unstable and stable manifold trajecto-
ries associated to the departure and arrival halo or-
bits: an approach that may become standard in cislu-
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(a) CR3BP model. (b) Ephemeris model.

Figure 1: Transfer from L2 Southern 9:2 resonant NRHO to a smaller halo orbit through a chain of 12
intermediate orbits.

nar space. Note, however, that the resulting transfer
arcs—departure/arrival trajectories that actually in-
tersect each other in position—are generally close to
but may not necessarily remain on the invariant man-
ifolds of the departure/arrival orbits.

It is worth highlighting here that the design of
transfer trajectories assumes impulsive maneuvers in
both models, but the design process is done sepa-
rately for the CR3BP and for the ephemeris model. In
both models, we leverage invariant manifold dynam-
ics to generate initial guesses for the departure/arrival
transfer arcs, but the time of flight along halo or-
bits and the location of maneuvers, magnitudes, and
transfer times may differ between both models. As a
result, the whole CR3BP transfer takes a total of 343
days and 631 m/s, and the ephemeris-model transfer
takes 557 days and 1140 m/s instead.

Lastly, no claim is made on the optimality of the
transfers, and, indeed, it is likely that lower ∆v trans-
fers may be found (although of the same order of
magnitude). This scenario, nevertheless, allows us
to consider a range of maneuver locations—at per-
ilune, apolune, and intermediate points—and magni-
tudes (between 7 m/s and 35 m/s in the CR3BP, and
between 2 m/s and 97 m/s in the ephemeris model).

3 Orbital-element parametrization

In search of an intuitive parametrization approach to
describe the potentially complex motion of xGEO ob-
jects, we considered a piecewise representation based
on orbital elements: selenocentric if within the Moon’s
Hill sphere, or geocentric if outside of it. We found
that the instantaneously-inertial Earth-Moon synodic
reference frame provides the most insightful represen-
tation for (quasi-) periodic orbits. It is observed that,
in such a frame, the orbital elements describing the
shape and size of halo orbits (semi-major axis and ec-
centricity), and also the elements describing the orbit
orientation (inclination, argument of periapsis, and

longitude of the ascending node), all display repeti-
tive, nearly-cyclical patterns. Such patterns are per-
fectly periodic along halo orbits in the CR3BP, and
a similar trend, but not periodic, is observed in the
ephemeris model. As an example, Fig. 2 illustrates
the behavior of the semi-major axis along the CR3BP
and ephemeris-model transfers.

The geocentric semi-major axis is illustrated in
black in Fig. 2, and the selenocentric semi-major axis
is illustrated in grey. It is observed that a contin-
uous representation of trajectories can be provided
by this piecewise orbital-element parametrization. In
particular, long segments along the halo orbits remain
outside the Moon’s Hill sphere, and the switch to se-
lenocentric elements occurs only at perilune passages.

It is further observed that the oscillation in or-
bital elements is smaller for orbits closer to the Moon
(left-most orbits in Fig. 2), which effectively resemble
highly-elliptical circumlunar orbits. For those orbits
that are closer to the Lagrange point (right-most or-
bits), third-body dynamics are more prominent and
result in larger orbital-element oscillations. Further-
more, the oscillations along transfer arcs generally
remain within the bounds defined by the departure
and arrival orbits. This holds true for nearly fuel-
optimal transfer arcs that remain close to the man-
ifolds. Transfers that employ larger ∆v maneuvers,
however, such as those providing shorter-duration
transfer arcs, may result in orbital-element oscilla-
tions beyond the range imposed by the departure and
arrival orbits.

Additionally, maneuvers, which are modeled here
as instantaneous changes in velocity, are observed to
result in sudden changes in orbital elements too, and
so discontinuities in orbital parameters may be lever-
aged to identify orbital transfers. As a general trend,
it is observed that larger ∆v maneuvers may lead to
larger changes in orbital elements, but the magnitude
of these changes also depends on factors like the di-
rection and location of these impulsive maneuvers.
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(a) CR3BP model. (b) Ephemeris model.

Figure 2: Evolution of geocentric (left) and selenocentric (right) semi-major axis along chain of halo orbits.

4 Next steps

Preliminary results show that, despite the non-
Keplerianity of cislunar trajectories, geocentric and
selenocentric orbital elements are still well defined and
can provide an insightful, familiar representation of
scenarios of interest. Such an approach is also ap-
plied to DROs and to MMRs, and the usefulness of
such a representation will be discussed further.

In support of SDA efforts, we also model the OD
process and characterize the accuracies to be expected
along such scenarios, through a Monte Carlo analysis.
See Fig. 3 for a transfer from a 9:2 NRHO to a 13.8-
day DRO.

Figure 3: Evolution of OD accuracy along transfer
from L2 Southern 9:2 resonant NRHO to 13.8-day

DRO.

Clouds of uncertainty are forward propagated to
assess the sensitivity of cislunar trajectories, and the
evolution of these uncertainties is ultimately linked
back to viewing geometries, required revisit rates,
and surveillance volumes for proper detection, identi-
fication, tracking, and cataloguing of the soon-to-be-
populated cislunar space.
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1 Introduction

Accurate propagation of uncertainties is central in
Space Surveillance and Tracking (SST) applications.
Since an analytical solution to the Uncertainty Prop-
agation (UP) problem does not exist in the nonlin-
ear orbital dynamics, several methods have been pro-
posed to approximate the transformed state Proba-
bility Density Function (PDF) [1]. A novel multifi-
delity (MF) method to tackle the nonlinear orbit UP
problem is presented in this work. This approach fo-
cuses on computational efficiency while guaranteeing
an high accuracy for the final estimate. The state
PDF is approximated as a Gaussian Mixture Model
(GMM) whose number of components is adapted on-
line to match the specified accuracy [2]. Each Gaus-
sian kernel is propagated in the Differential Algebra
(DA) framework [3] as a second-order Taylor polyno-
mial and a Nonlinearity Index (NLI) is defined to de-
tect any departure from linearity within its domain of
definition. When the NLI crosses the imposed thresh-
old, the propagation is halted, the polynomial is split
according to a preselected splitting library and the
propagation is resumed on the newly generated ker-
nels. The hypothesis of quasi-linearity of the trans-
formation is thus locally satisfied. This splitting tech-
nique is named LOADS (Low-Order Automatic Do-
main Splitting) [4] in agreement to the ADS algorithm
originally proposed byWittig et al. [5] for higher-order
Taylor expansions. To further improve the computa-
tional efficiency, multifidelity techniques [6] are em-
ployed to perform most of the computations in low-
fidelity (LF) dynamics while propagating the kernels
means in high-fidelity (HF) to preserve the accuracy
of the final estimate. The impact of different orbit
state parametrizations on the final number of GMM
components is also analyzed, demonstrating that a
proper selection of coordinates preserves Gaussianity
for longer time spans.

∗Email: alberto.fossa@isae-supaero.fr

2 Multifidelity Uncertainty Propagation

The multifidelity approach comprises four main steps
detailed in Sections 2.1 to 2.4

1. run the LOADS algorithm in LF dynamics

2. propagate the kernel means in HF dynamics

3. correct the LF solution with the HF samples

4. estimate the final PDF from the MF solution

Uncertainties on the input state x are assumed
Gaussian with known mean µX and covariance PX .
The DA vector input to step 1 is computed as

[x] = µX + V ·
{
c
√
λ · δx

}
(1)

with c confidence interval, λ,V eigenvalues and eigen-
vectors of PX such that PX = V ΛV T with Λ =
diag(λ) and δx first-order deviations around µX . [x]
is then associated to a single Gaussian kernel with
weight α = 1, mean µX and covariance PX .

2.1 LOADS-GMM algorithm

Consider the nonlinear transformation f : Rn → Rm

defined as y = f(x). The LOADS-GMM algorithm
maps the input [x] through f and computes the NLI
on the output [y]. If it exceeds the imposed threshold,
the polynomial [x] and associated kernel (α,µX ,PX)
are split into three new polynomials and components,
and mapped again through f . They are otherwise
stored together with the output [y]. The result is a
recursive algorithm which terminates after the NLIs
of each component satisfy the imposed threshold. To
perform the split, a univariate splitting library is used.
These libraries are obtained by minimizing the L2 dis-
tance between the standard Gaussian distribution and
a univariate GMM with L = 3 components [2, 7].

2.2 High-fidelity samples

Outputs of the previous step comprise the initial and

final polynomials [x(p)], [y
(p)
LF ] and Gaussian kernels

(α(p),µ
(p)
X ,P

(p)
X ) for all P components obtained eval-
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is now evaluated point-wise on each kernel mean µ
(p)
X

(equal to the constant part of [x(p)]) to obtain an ac-
curate reference yHF for the subsequent correction.

2.3 Multifidelity correction

The LF solution is corrected by re-centering the previ-

ously computed Taylor expansions [y
(p)
LF ] on the newly

obtained references y
(p)
HF ∀p = 1, . . . , P such that

[y
(p)
MF ] = y

(p)
HF +

{
[y

(p)
LF ]− y

(p)
LF

}
(2)

2.4 Final PDF estimate

The output PDF pY is approximated as a GMM
whose components means and covariances are com-
puted from the MF solution obtained in Eq. (2).
For each component, Unscented Transform [8] sigma
points {xs}s=1,...,Ns

are drawn from the initial distri-

bution N (µ
(p)
X ,P

(p)
X ). The polynomial [y

(p)
MF ] is then

evaluated in x
(p)
s ∀s and the propagated mean and

covariance obtained from the output samples y
(p)
s as

µ
(p)
Y =

Ns∑
s=1

wsy
(p)
s

P
(p)
Y =

Ns∑
s=1

ws

(
y(p)
s − y

(p)
Y

)(
y(p)
s − y

(p)
Y

)T

(3)

with ws sigma points weights. The transformed PDF
is finally given by

pY (y) ≃
P∑

p=1

α(p)pN

(
y;µ

(p)
Y ,P

(p)
Y

)
(4)

3 Numerical Applications

The algorithm described in Section 2 is now ap-
plied to the problem of nonlinear orbit UP and its
performances assessed against reference MC simula-
tions. Three test cases are analyzed: High Earth
Orbit (HEO), Low Earth Orbit (LEO) and Medium
Earth Orbit (MEO) regimes. Nominal initial condi-
tions (ICs) are given in Table 1.

Regime a, km e i, deg

HEO 35 000.0 0.2 0.0
LEO 6678.0 0.01 0.0
MEO 29 600.135 0.0 56.0

Table 1: Nominal initial conditions

The initial covariances are expressed in cartesian
parameters with diagonal elements set to σ2

x = σ2
y =

1.0 km2, σ2
vx = σ2

vy = 1.0m2 s−2 in HEO, σ2
x =

1.69 km2, σ2
y = 0.25 km2, σ2

vx = 6.25m2 s−2, σ2
vy =

25.0m2 s−2 in LEO and σ2
x = 0.25 km2, σ2

y = σ2
z =

1.0 km2, σ2
vx = σ2

vy = σ2
vz = 0.25m2 s−2 in MEO.

Omitted parameters are set to zero.
The LF dynamical model used with the LOADS-

GMM algorithm of Section 2.1 is the analytical SGP4
theory with deep space corrections for the HEO and
MEO test cases. The HF samples are then propa-
gated numerically in the perturbed Keplerian dynam-
ics. The following forces are included: 8 × 8 Earth
non-uniform gravity field, Sun and Moon third-body
attraction, Solar Radiation Pressure (SRP) with um-
bra and penumbra transitions, atmospheric drag for
the LEO regime. ICs are propagated for two revolu-
tions of the corresponding nominal orbits.

Agreement to the reference MC simulations is
demonstrated plotting the isoprobability contours of
the final state PDF on top of the propagated MC sam-
ples. Projections onto the x− y plane of the position
uncertainties for the HEO and LEO cases are shown
in Figs. 1 and 2 respectively. These plots show that
the strongly non-Gaussian PDF is correctly captured
by its GMM approximation.
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Figure 1: Isoprobability contour for HEO case
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Figure 2: Isoprobability contour for LEO case
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The accuracy of the solution is assessed comput-
ing the Root Mean Square Error (RMSE) between
expected samples, obtained with point-wise propaga-
tions in HF, and actual ones, obtained by evaluating

the Taylor polynomials [y
(p)
MF ]. The RMSE never ex-

ceeds 10.0m in position and 10.0mms−1 in velocity
for all scenarios.

To analyze the impact of the state parametrization
on the number of GMM components, simulations are
carried out in cartesian parameters, equinoctial ele-
ments, Modified Equinoctial Elements (MEEs) and
alternate equinoctial elements [9]. Both true and
mean longitudes L, λ are used as fast variable where
applicable. Results are summarized in Table 2. Carte-
sian parameters are clearly the most nonlinear since
they lead to the largest number of kernels required to
describe the transformed PDF. On the opposite side,
the use of alternate elements with λ as sixth coordi-
nate results in a quasi-linear transformation which is
correctly captured by a single polynomial. Equinoc-
tial elements and MEEs stand in between.

HEO LEO MEO

Parameters L λ L λ L λ

Cartesian 6561 - 2187 - 729 -
Equinoctial 3115 3 277 3 9 1

MEEs 2187 729 2221 83 243 3
Alternate 729 1 93 1 1 1

Table 2: Number of GMM components

The computational load of the multifidelity method
is then compared to that of its fully high-fidelity coun-
terpart. For the second, the LOADS-GMM is run di-
rectly with the HF dynamics and no correction step
is performed. A 15 to 20 times speedup is observed in
favor of the MF approach for which most of the time
is spent in step 2. This fact is more marked in LEO
where low altitude and inclusion of atmospheric drag
force further slow down the numerical integration.

4 Conclusions

A novel multifidelity approach to the problem of non-
linear Uncertainty Propagation (UP) is presented.
This method approximates the transformed Proba-
bility Density Function as a Gaussian Mixture Model
whose number of components is adapted online for
maximum efficiency. Differential Algebra (DA) tech-
niques are used to propagate the Gaussian kernels
using second-order Taylor polynomials. A DA-based
measure of nonlinearity is introduced to detect depar-
ture from linearity within the domain of each expan-
sion and trigger automatic splits if needed. The pro-
posed method is applied to the problem of orbit UP
and three test cases are analyzed. Agreement to ref-
erence MC samples is demonstrated both visually and

computing the Root Mean Square Error between ex-
pected and actual samples. The multifidelity method
guarantees a 15 to 20 times speedup with respect to
its fully high-fidelity counterpart.
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1 Introduction

Due to the non-linearity of orbital motion, the propa-
gation of uncertainty on the state of a spacecraft is a
challenging and computationally intensive task. Most
of the uncertainty quantification methods in orbital
mechanics represent uncertainty through Probability
Density Functions (PDFs) in Cartesian coordinates.
This approach is relatively simple and physically in-
tuitive; however, the uncertainty realism is rapidly
lost due to the non-linearity of the system even in the
unperturbed (Keplerian) case. Therefore, the repre-
sentation of the uncertainty of a spacecraft in a state
space in which non-linearities evolve slowly is partic-
ularly attractive.

2 Generalised Equinoctial Orbital Elements
(GEqOEs)

Equinoctial Orbital Elements (EqOEs) are a set of
orbital elements which are similar to traditional Ke-
plerian orbital elements, albeit with several improve-
ments, most notably the removal of singularities expe-
rienced for orbits approaching either zero eccentricity
or inclination.

A recently introduced version of EqOEs, known as
GEqOEs, embeds the perturbing potential in the def-
inition of the elements, further improving their per-
formance over classical EqOEs in the presence of per-
turbations [1]. This formulation provides more linear
propagation of states, and is therefore better suited
for uncertainty propagation, as shown previously by
other authors using linear methods such as State
Transition Matrices (STMs) [2].

In this work, we use GEqOEs for uncertainty quan-
tification through non-linear techniques. These meth-
ods are currently being integrated in the Robust State
Estimation (RSE) module of CASSANDRA, a suite of
tools for automated Space Environment Management
(SEM) under development at the University of Strath-
clyde [3]. Uncertainty in orbital states is propagated
in CASSANDRA by propagating sets of states and
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deriving the PDF through sampling, as opposed to
directly propagating the PDF itself. This operation
can be conducted in two separate ways: with non-
intrusive methods, or with intrusive methods; each
designed to propagate large sets of states at a lower
overall computational cost.

3 Non-intrusive Methods

Non-intrusive methods assume that the orbital prop-
agator is a “black box”, where its internal operations
are unknown by CASSANDRA. The advantage of this
method is that little work is required to integrate new
propagators into the RSE module, other than a wrap-
per for Input/Output (I/O).

The non-intrusive method reduces the computa-
tional cost of propagating large sets of states by prop-
agating a smaller subset of states [4]. This subset is
obtained by using stochastic collocation, more specifi-
cally with Smolyak sparse grids [5] in this case, which
builds a grid of points from the initial set of states.
Once the points in the grid are propagated using the
corresponding orbital propagator, a surrogate model
that maps the initial states with all the possible prop-
agated states is built. In this work, the surrogate uses
Chebyshev polynomials as basis functions. The prop-
agated state of the remaining points in initial set is
then obtained by evaluating the surrogate model.

Evaluation of the surrogate model is inexpensive
relative to the computational cost of propagating the
entire initial set; therefore, significant performance
gains can be realised. Significant improvements in
capturing the propagation of the set, as a whole, were
made by generating the surrogate model in GEqOE
space, as opposed to Cartesian space, as shown in
Figures 1 and 2. The accuracy of the methods was
measured using the Root-Mean-Square Error (RMSE)
relative to a Monte Carlo analysis. For any given de-
gree, the accuracy of the surrogate created in GEqOE
space outperforms the equivalent Cartesian surrogate.
The inclusion of execution time (Table 1) highlights
that for a similar execution time, GEqOE-based sur-
rogates provide significant improvements in accuracy.
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Figure 1: Final position errors of the non-intrusive
methods, with respect to a Monte Carlo simulation,
as a function of the degree of the sparse grid.

Figure 2: Final velocity errors of the non-intrusive
methods, with respect to a Monte Carlo simulation,
as a function of the degree of the sparse grid.

Table 1: Execution time using the non-intrusive
method with 104 samples. The execution time of a
reference Monte Carlo simulation was 118.75 s.

Polynomial
Degree [-]

Number of
points [-]

Execution time [s]

Cartesian GEqOE

0 1 0.05683 0.0954

1 13 0.2331 0.2575

2 97 1.3588 1.7226

3 545 7.0568 8.6102

4 2561 31.8146 39.4057

5 10625 131.758 161.298

4 Intrusive Methods

Intrusive methods remove the assumption that the or-
bital propagator is a “black box”, and remove the use
of a surrogate model. Instead, the polynomials are
propagated directly using Polynomial Algebra (PA).
This is a technique where values in the set of real num-
bers are replaced with polynomials, forming an alge-
bra with the inclusion of the necessary mathematical
operations, such as addition, subtraction, multiplica-
tion, and division. Entire continuous sets of states can
be propagated via this method, removing the require-
ment for a surrogate model as all the samples can be
propagated in one execution of the propagator.

Implementing the PA-based methods revealed sev-
eral key restrictions which, although not preventing
the use of the methods, must be considered for their
effective implementation. These were found to affect
both the PA-based methods in general, independently
of the space used for propagation; and the GEqOE
implementation specifically.

The J2-term perturbation revealed that numerical
issues can arise from the truncations that occur within
PA when multiplying or dividing. This perturbation
is particularly sensitive to polynomial truncation error
due to the high order inverse of the radial distance
required to calculate both the perturbing acceleration
(∝ r−5), and the perturbing potential (∝ r−3). This
numerical issue can be bypassed by propagating in
non-dimensional form, in this case using the initial
semi-major axis, and the gravitational parameter as
scaling factors.

The implementation of GEqOEs with PA high-
lighted one of the limitations of PA-based meth-
ods: their inability to handle discontinuities with-
out special considerations. The initial conversion into
GEqOEs, as described in [1], uses traditional Keple-
rian elements, however these are subject to a number
of discontinuities, particularly for orbits with very low
eccentricities and/or inclinations. The initial conver-
sions for two of the six GEqOEs were redefined purely
in terms of the angular momentum vector, hence by-
passing the discontinues, and enabling the propaga-
tion of these elements with PA.

PA-based set propagations in GEqOEs were found
to outperform the equivalent in Cartesian by approx-
imately 2.5 times for a given accuracy (using RMSE)
in the final set of states of a Low Earth Orbit (LEO)
test case, as illustrated in Figures 3 and 4. The rel-
ative performance of Cowell’s method and GEqOEs
is highlighted by using Pareto fronts. This method,
typically used in the field of multi-objective optimi-
sation, shows the most optimal solutions relative to
multiple metrics, in this case for minimising both the
solution error and the execution time.
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Figure 3: Final position errors of the intrusive meth-
ods, with respect to a Monte Carlo simulation, as a
function of execution time.

Figure 4: Final velocity errors of the intrusive meth-
ods, with respect to a Monte Carlo simulation, as a
function of execution time.

5 Conclusions

In this presentation, non-intrusive and intrusive set
propagation methods using GEqOEs are presented,
discussing their implementation into CASSANDRA,
an automated SEM tool under development at the
University of Strathclyde.

For non-intrusive methods, surrogate models built
in GEqOE space are shown to provide significantly
improved results over models built in Cartesian space;
and for intrusive methods, GEqOEs are shown to ob-
tain a significant reduction in execution time of up to
2.5 times for a given solution accuracy, compared to
traditional Cowell’s method.

The challenges which were faced during the inte-
gration, both for non-intrusive and intrusive meth-
ods, for propagating uncertainty in orbital states will
be highlighted; centring on the restrictions that must
be considered when using PA-based methods for orbit
propagation, and the analytical and numerical tech-
niques available to mitigate any potential issues.
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1 Introduction

The Geosynchronous Orbital region (GEO) is the sec-
ond most populated region after the Low Earth Or-
bital region. Since the late 90’s, the IADC guideline
[1] related to the disposal of a spacecraft placed in
GEO suggest the usage of near-circular “graveyard”
orbits above the GEO protected region (super-GEO)
and provide a formula to target a minimum perigee
altitude to minimise long term interference. Numer-
ous studies have been performed for the stability of
the disposal orbits in this region, and in recent years
these have been extended with dynamical studies for
highly-inclined GEO orbits ([4]-[9]).

Most of the GEO satellites have been launched into
their operational orbits via a Geostationary Transfer
Orbit (GTO), but in recent years the opportunities
for direct-to-GEO missions have been increasing. For
example, the new Ariane 6 launch and older Atlas V
vehicles offers such a service. The IADC guidelines,
for direct injection of payloads into near GEO, sug-
gest to insert the upper stage and payload directly
into a disposal orbit above or below the GEO pro-
tected region and to have the payload then perform a
manoeuvre to place itself into GEO.

International space debris mitigation implementa-
tion strategies derived from the IADC guidelines or re-
lated standards have given indications on apogee lim-
its below the GEO protected region (e.g. lower than
550 km) that avoid long-term interference[2]. How-
ever, those limits are not as well studied as those for
the disposal of spacecraft above the GEO region. On
the other hand, there were 127 rocket bodies found
crossing the GEO protected region in 2020, where a
significant number of them were placed in altitudes
lower that the GEO region (sub-GEO)[3]. Hence, a
detailed study on the dynamics of the objects in the
near GEO region, with focus on the sub-GEO region is
relevant to define guidance on where to dispose space
objects without risking long term interference.

The main goal is to investigate if an apogee formula,
similar to the IADC perigee formula, can be applica-
ble for the sub-GEO region for long periods of orbital
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motion. For convenience, a given form is sought:

∆Q = (rGEO −Q) = ∆Qo + br · Cr ·
A

m
, (1)

where ∆Q = (rGEO −Q) is defined as the apogee
difference limit, with rGEO the geosynchronous semi-
major axis1, Q the maximum compliant apogee limit
for every initial condition, ∆Qo (constant term) is the
apogee difference limit due to lunisolar and gravita-
tional perturbations (i.e., no SRP), A/m is the area-
to-mass ratio, Cr is the reflectivity coefficient, and
br term is multiplied with the effective area-to-mass-
ratio of the space object. Note that ∆Q is increasing
as Q is decreasing. As a consequence ∆Q is increasing
as a is decreasing given a fixed e.

2 Results

For this purpose, a propagator suitable for satellite
motion is used to numerically construct the limit
cases. The dynamical model taken into account in the
propagator is the geopotential up to 2 degree and or-
der (J22), lunisolar perturbations, and SRP (cannon-
ball model). For finding the formula, several thousand
of fictitious orbits are propagated for a time span of
100 years, starting from epoch 2027/12/22 00:00:00
UTC and lunisolar configurations that maximize the
effect of the perturbations that could lead to drifting
in the GEO protected region. For direct-to-GEO mis-

sions, a limitation in e ≤ 0.003, i ≤ 18◦, A
m ≤ 0.02m2

kg ,

Cr ∈ [1, 2] is considered.
∆Qo is found to be increasing linearly as function of

i by analysing the simulations without the SRP effect.
The maximum complaint ∆Qo values correspond to
the highest examined e values. Figure 1 shows the
maximum compliant ∆Qo as function of i, for various
e values (distinguished by various colours). The green
line corresponds to the final form for ∆Qo, ∆Qou (i) =
(235 + 2 · i)km.
From the simulations that include the SRP effect,

the br term, which is the ratio of increasing of the
compliant ∆Q w.r.t. Cr · A/m term, is increasing
as function of i. The maximum br values are found
for the lowest examined e values. Figure 2 shows the
maximum br, as function of i, for various e values

1rGEO ≃ 42165km
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Figure 1: Maximum compliant ∆Qo as function of
i, for various e values (colour). The green line cor-
responds to the final form for ∆Qo, ∆Qou (i) =
235 + 2 · i (km).

Figure 2: Maximum br term, as function of i, for
various e values (colour). The black line corresponds
to final form for the br term, bru (i) = 943 + 0.2 · i2
(km·kg·m−2 ).

(distinguished by various colours ). The black line
corresponds to the final form for the br term, bru (i) =
943 + 0.2 · i2 (km·kg·m−2 ). It is assumed that it
should be always above of the br values used for the
computation.

Hence, the final apogee formula has the form (in
km):

∆Qu

(
i, Cr,

A

m

)
= ∆Qou (i) + br (i) · Cr ·

A

m

∆Qu

(
i, Cr,

A

m

)
= 235+2 · i+

(
943 + 0.2 · i2

)
·Cr ·

A

m
(2)

The formula is applicable for e ≤ 0.003, i ≤ 18◦,
A
m ≤ 0.02m2

kg , Cr ∈ [1, 2], is expressed in osculating el-
ements terms, and is achieved using results from runs
with starting epoch 2027/12/22 00:00:00 UT. Figure

Figure 3: Maximum compliant ∆Qu as function of
A/m, and for the minimum and maximum examined
values of i and Cr.

Figure 4: ∆V required to reach a geostationary orbit
from sub-GEO region with respect to the apogee dif-
ference ∆Q. The colour denotes the inclination of the
starting orbit

3 shows ∆Qu as function of A/m, and for the mini-
mum and maximum examined values of i and Cr. For
i = 0 and i = 18◦, maximum compliant ∆Q is found
between 235− 610km and 270− 680km, respectively.

Finally, the cost in ∆V terms to reach a geosta-
tionary orbit from the sub-GEO region is computed
[10]. Figure 4 shows that ∆V ≤ 50m/s feasible for
starting and target orbits with difference in inclina-
tion ∆i ≤ 0.5◦ and ∆Q = rGEO −Q < 400km for the
starting orbit.
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1 Introduction

The formation of high-density clusters of spaceborne
objects poses a significant risk for the sustainability
of future space operations. This is particularly criti-
cal for regions of special operational interest, such as
Low Earth Orbit (LEO) or Geostationary Orbit, be-
cause it could render them unusable for their future
exploitation. Currently, several initiatives to deploy
large constellations in the LEO region are being car-
ried out. It is expected that the operation of such
constellations will include the end-of-life deorbiting
of their defunct satellites. Nevertheless, the failure
of said disposal processes poses a threat, not only
for the space environment, but also for the constel-
lation performance. This has motivated the assess-
ment of the feasibility of constellation-servicing debris
removal missions. In particular, the Sunrise project,
funded by the European Space Agency (ESA), intends
to identify affordable active debris removal strategies
for large constellations in LEO. Moreover, this project
plans to develop the necessary technologies to perform
these missions so as to, eventually, provide a compet-
itive service in the international market. Under this
project, a consortium comprising D-Orbit SpA and
Politecnico di Milano has completed the phase A de-
sign for this service [1, 2, 3].

As the objects to be removed in constellation-
servicing debris removal missions are not known be-
forehand, the preliminary design of such missions re-
quires an exhaustive analysis of complex mission con-
figurations, especially when dealing with the coordi-
nation of several servicing satellites. Constraint Pro-
gramming is a classical artificial intelligence paradigm
characterised by its flexibility for the modelling of
complex problems. In the field of space operations,
this approach has been successfully used for mission
planning and scheduling [4]. This work proposes a
framework that leverages the strengths of Constraint
Programming for the preliminary analysis of space
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missions. Specifically, it uses constraint propagation
and search techniques to thoroughly explore the con-
figuration space of a mission in an efficient manner.
Consequently, it is able to quantify the performance
of precomputed mission choices with respect to the
mission requirements, as well as generate new ones
that optimise such performance.

The proposed methodology has been particularised
for an application case involving an active debris re-
moval mission for large constellations in LEO. This
case comprises servicing satellites that install deor-
biting kits in each of the failed satellites associated to
them, except for the one removed in the last place.
This way, the servicing satellite will only transport
this object, while the deorbiting kits will carry out
the disposal of the rest of them. A preliminary mis-
sion analysis developed under ESA’s Sunrise project
has been evaluated [1]. New values for the semima-
jor axes of the phasing orbits and the inclinations of
the injection and drifting orbits have been computed.
Thus, significantly reducing the mission time, while
complying with a predefined ∆V budget.

2 Problem description

The problem at hand involves a LEO constellation
comprising several orbital planes with failed satellites,
which will be cleared by a set of servicing satellites.
Each servicing satellite is assigned a subset of the
constellation planes and will install deorbiting kits to
each of its corresponding targets, save for the last of
them, which will be directly removed by the servicing
satellite. This way, each of the deorbiting kits, as well
as the servicing satellite, will transport a target to its
corresponding disposal orbit.

In particular, all the servicing satellites will be in-
jected into the same orbit, where they will coast until
they achieve the Right Ascension of Ascending Node
(RAAN) of their first associated constellation plane.
This RAAN variation is exclusively produced by the
nodal drift resulting from the J2 perturbation. Then,
each servicing satellite will rendezvous with each of
the targets within that plane to deploy the deorbit-
ing kits. After that, they will transfer to a drifting

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        124



5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

orbit so that they can achieve the RAAN of the next
constellation plane to be cleared. This process is re-
peated until every servicing satellite has cleared its
associated planes and is located in a disposal orbit,
along with the last target.

3 Methodology

The resolution of a Constraint Programming prob-
lem involves the interaction of two different processes,
namely constraint propagation and search. The pur-
pose of the constraint propagation process is twofold.
On the one hand, it checks the feasibility of a given
constraint for the considered variable domains (i.e., if
there is at least one possible value assignment, from
the domains of the considered variables, that fulfills
such constraint). On the other hand, it prunes values
from the variable domains that cannot appear in a
feasible solution.

In general, the use of constraint propagation alone
does not guarantee the determination of a feasible
solution (or infeasibility) of the problem. However,
this can be achieved with the inclusion of an addi-
tional search process. This process follows a divide-
and-conquer approach to split the variable domains
of the original problem, thus partitioning it into sev-
eral subproblems. The purpose of this technique is to
obtain subproblems simple enough so that the con-
straint propagation process is able to determine their
feasibility.

Consequently, the usual workflow of Constraint
Programming alternates the constraint propagation
and search processes until a feasible solution of one of
the subproblems is found or the infeasibility of all the
subproblems is demonstrated. However, in the par-
ticular case addressed in this work, the whole set of
feasible solutions of the problem has to be determined.
Therefore, every single one of the subproblems has to
be demonstrated to be feasible or infeasible.

The general resolution process of Constraint Pro-
gramming problems has been tailored to solve the
mission analysis problem at hand. This particular
process (Figure 1) involves the partitioning of the
search space of the concerning problems into problem
instances. The feasibility of each of those problem in-
stances with respect to a series of constraints (i.e., the
mission requirements) is evaluated. If the feasibility
(or infeasibility) of a problem instance is unambigu-
ously determined, a domain pruning process will eval-
uate the implications of its feasibility for the rest of
the problem instances. In turn, if the feasibility of a
problem instance is inconclusive, it is partitioned into
simpler instances, which will be later evaluated in a
similar fashion.

The feasibility of an instance depends on a set of
controlled and uncontrolled variables, and it is deter-
mined by means of bounding the range of constraint
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Figure 1: Problem resolution process.

values that would be obtained for that set of vari-
ables. As such bounds are not unique, two possi-
bilities have been considered. On the one hand, the
feasibility bounds are obtained when using both the
controlled and uncontrolled variables to minimise (or
maximise) the constraint value. On the other hand,
the optimality upper bound is obtained when using
the controlled variables to minimise the constraint
value, while the uncontrolled variables try to max-
imise it. Consequently, the optimality bounds pro-
vide a tighter interval, but are more computationally
expensive.

4 Results

The considered application case involves a constella-
tion comprising twelve orbital planes. Its associated
performance baseline involves two different scenarios.
On the one hand, Scenario 1 considers nine objects to
remove within each of the constellation planes, such
that each of those planes has associated its own servic-
ing satellite. On the other hand, Scenario 2 also in-
volves removing nine objects with each satellite. How-
ever, in this case, those objects are distributed among
two adjacent constellation planes. Moreover, the mis-
sion requirements impose a maximum mission time
and a ∆V budget.

The problem instances that partition the search
space of the problem can be defined with (N,P ) tu-
ples, where N is the number of objects to be removed
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Figure 2: Problem instance feasibility diagram.

and P is the number of constellation planes in which
they are distributed. Figure 2 shows the results of
computing the feasibility bounds for the (N,P ) prob-
lem instances of up to nine objects, where the green
instances are feasible in any case, the red ones are
always infeasible and the yellow ones are inconclu-
sive. In particular, this figure depicts the problem in-
stance diagrams for the servicing satellites that serve
the planes closer to and farther from the injection or-
bit, respectively labeled as minimum and maximum
drift cases. It has to be noted that the feasibility of
both mission time and ∆V requirements is consid-
ered in such diagrams, i.e., if one of those constraints
is infeasible for an instance, such instance is deemed
infeasible. In turn, for an instance to be feasible, both
requirements have to be feasible for the whole variable
domain.

It can be seen that Scenario 1 is feasible in any case.
In turn, for Scenario 2, the fulfilment of the mission
requirements is not guaranteed, even for the servicing
satellite with minimum drift. So as to improve the
mission performance for Scenario 2, the semimajor
axes of the phasing orbits and the inclinations of the
injection and drifting orbits have been considered as
controlled variables. A dual based method has been
used to optimise such controlled variables [5], thus
obtaining the optimality bounds associated to their
new values. Figure 3 compares the feasibility and op-
timality bounds of the mission time, for each of the
servicing satellites considered in Scenario 2. It has to
be noted that the ∆V budget requirement is fulfilled
by every servicing satellite for both the feasibility and
optimality bounds. It can be observed that the op-
timised mission parameters significantly reduce the
mission time. In fact, this new mission configuration
is able to fulfill both of the mission requirements for
every problem instance of Scenario 2.
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Figure 3: Mission time bounds.
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Abstract

When the planar circular restricted 3-body problem
is periodically perturbed, most unstable periodic or-
bits become invariant tori. However, 2D Poincaré
sections no longer work to find their manifolds’ in-
tersections; new methods are needed. In this study,
we first present a method of restricting the intersec-
tion search to only certain manifold subsets. We then
implement this search using Julia and OpenCL, rep-
resenting the manifolds as discrete meshes and us-
ing methods inspired by computer graphics collision
detection algorithms with GPUs to find approximate
intersections of the manifolds. After some demonstra-
tions using the comparatively simpler Jupiter-Europa
planar elliptic RTBP model, we apply the tools to
the problem of finding low-cost transfers from Jupiter-
Ganymede to Jupiter-Europa resonances in a Jupiter-
Europa-Ganymede planar restricted 4-body model.

1 Introduction

In the planar circular restricted 3-body problem
(PCRTBP), at each mean motion resonance, fami-
lies of stable and unstable periodic orbits exist over a
range of energy levels. Of these, the unstable resonant
orbits possess attached stable and unstable invariant
manifolds. Owing to the Chirikov resonance-overlap
criterion, it is the intersection of manifolds from dif-
ferent resonances that generates global chaos and en-
ables large-scale natural transport across the system
phase space. This instability in turn can be profitably
leveraged for the purposes of low-energy space mission
trajectory design. Indeed, prior studies have used the
stable and unstable manifolds of resonant periodic or-
bits for mission design in the Jupiter-Europa [1] and
Saturn-Titan [6] PCRTBP systems.

In the PCRTBP, due to the presence of the con-
served energy integral of motion, it is possible to

∗Email: bkumar30@gatech.edu. Research supported
by NASA Space Technology Research Fellowship, grant
80NSSC18K1143

†Email: Rodney.L.Anderson@jpl.nasa.gov.
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find heteroclinic and homoclinic connections rela-
tively easily. As the phase space is 4-dimensional, fix-
ing an energy level restricts the dynamics to a 3D sub-
manifold, and the Poincaré section further reduces the
dimensionality of the system to 2D. Since the mani-
folds of the periodic orbits are 2D cylinders in the full
phase space, taking the Poincaré section reduces the
manifolds to 1D curves in the section, so the problem
of finding connections between periodic orbits reduces
to finding the intersection of two 1D manifold curves
in a 2D plane; this is done in many studies e.g. [2, 4].

When the PCRTBP is subjected to a time-periodic
Hamiltonian forcing, however, two things occur. First
of all, there is no longer a constant energy integral
of motion. Second of all, the unstable periodic or-
bits from the PCRTBP persist not as periodic orbits,
but as mostly quasi-periodic orbits in the new system
[5]. By considering stroboscopic maps instead of the
continuous-time flow, we can take these quasi-periodic
orbits to be invariant 1D tori (circles) in the 4D map
phase space, with 2D cylindrical stable and unstable
manifolds. Even though the map-invariant manifold
dimension is the same as the PCRTBP, in the absence
of the energy integral, the usual method of using a 2D
Poincaré section to find intersections of the manifolds
for heteroclinic connections will not work. Also, man-
ifold intersections in the perturbed system will occur
at isolated points, rather than along continuous tra-
jectory curves. Hence, a different method of searching
for and computing homoclinic and heteroclinic con-
nections in the full 4D phase space is required.

One reason that periodically-forced PCRTBP sys-
tems are important is that the effect of a third large
body on the spacecraft motion can be modeled as such
a system. A common feature of the previously men-
tioned research into mean motion resonances has been
that the search for connections was done between dif-
ferent resonant orbits, but for all orbits resonant with
the same moon. However, when designing multi-moon
tours of planetary systems, it is necessary to transition
from orbits resonant with one moon to those resonant
with a different moon. And in the region where this
transition must occur, the gravitational influence of
both moons plays an important role, motivating the
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use of restricted 4-body models to study the dynamics
and possible trajectories for the spacecraft.

In this study, we develop tools to very quickly
search for near-intersections of stable and unstable
manifolds of whiskered tori in such periodically-forced
PCRTBP models. These near-intersections in turn
can serve as initial candidates for a two-point bound-
ary value problem solver when trying to compute a
true intersection. Furthermore, even when one is un-
able to correct a near-intersection into a true inter-
section, these near-intersections may still be useful as
low-∆v maneuver opportunities. Indeed, we investi-
gate transfer options between Jupiter-Ganymede and
Jupiter-Europa resonances in a planar concentric cir-
cular restricted 4-body model; although thus far we
are still searching for true heterocliinc connections,
the approximate intersections found still are of use.

2 GPU-assisted manifold mesh intersection search

As was mentioned earlier, using stroboscopic maps
instead of the periodically-forced continuous-time flow
reduces the dimensionality of the objects and phase
space considered, so defining F : R4 → R4 as the
stroboscopic map, we henceforth consider F -invariant
objects rather than the flow-invariant ones.

In earlier work [5], we developed methods for
efficient computation of F -invariant tori as well
as Fourier-Taylor parameterizations of their lo-
cal stable/unstable manifolds in periodically-forced
PCRTBP models. By numerically integrating points
found using these stable/unstable local manifold pa-
rameterizations, we were also able to to find discrete
quadrilateral (quad) mesh representations of the glob-
alized stable/unstable torus manifolds. The first part
of this study presents very fast computational meth-
ods for finding intersections of these 2D manifold
meshes, which in turn give near-intersections of the
true continuous manifolds.

Before working directly with manifold meshes, we
are able to partition the global manifolds into subsets
we call layers; for the unstable manifold Wu, the lay-
ers are denoted Un, n ∈ Z and for the stable manifold
W s, the layers are denoted Sn, n ∈ Z. Each manifold
is the disjoint union of all its layers, whose key prop-
erty is that F (Un) = Un+1 and F (Sn) = Sn−1. When
searching for heteroclinic connections, this property
allows us to restrict the search for manifold inter-
sections to only pairs of layers of form (Uñ, Sñ) and
(Uñ, Sñ−1) for ñ ∈ Z without loss of generality.

After identifying the pairs of manifold layers which
need to be checked for intersection, we take the mesh
subsets corresponding to those layers, and develop a
method which very quickly identifies the quad pairs
(one unstable quad, one stable quad) which inter-
sect, as well as computing the intersections. For this,
checking each unstable quad with each stable quad for

Figure 1: Uniform grid spatial partitioning.

an exact intersection can be prohibitively expensive;
thus, we use a two-phase approach inspired by 3D
computer graphics collision detection algorithms. The
first phase of our method is the broad phase, where
a potentially (but not certainly) intersecting set of
quad pairs is identified using very simple and compu-
tationally inexpensive computations. This eliminates
the very vast majority of the quad pairs from further
consideration. After this, the narrow phase entails ap-
plying the exact quad-quad intersection test (which
is itself comprised of 4 triangle-triangle intersection
tests) to only the potentially intersecting quad pairs.

The broad phase is comprised of 3 steps; the first
step, done on the CPU, is a uniform grid spatial parti-
tioning, where we sort the quads into boxes such that
only two quads overlapping the same box may inter-
sect, as schematically illustrated in Figure 1. Note
that this is linear in the number of quads, not quad
pairs. The next step, done on the GPU, is to carry
out a bounding box test in parallel on all the pairs
of quads identified by the spatial partitioning; this is
illustrated in Figure 2. The last broad test, also done
on the GPU, checks whether one quad of a pair is on
the same side of the planes formed by the vertices of
the other quad; if so, they cannot intersect. Finally,
the narrow phase is a CPU linear-algebra based test
for the triangle pairs which were not eliminated by the
rough test. The algorithm is programmed using Julia
along with the OpenCL.jl library for the bounding-
box test, which allows for the code to work with both
Nvidia and AMD GPUs, as well as multicore CPUs
in case no GPU is available.

We used a Jupiter-Europa planar elliptic RTBP
model for computational benchmarking of these tools,
finding near-intersections of unstable manifolds of a
3:4 resonant orbit with the stable manifolds of a 5:6
resonant orbit, both globalized out to 14 layers. The
near-intersection search took only approximately 11-
12 seconds on a 2019-era consumer laptop as well as a
desktop with a 2011-era CPU and 2016-era consumer-
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Figure 2: Illustration of bounding box test in 2D

grade GPU to process all of these layers, demonstrat-
ing the effectiveness of the tools developed here.

3 Search for low-cost Jupiter-Ganymede to
Jupiter-Europa resonance transfers

With algorithms for finding manifold near-
intersections developed, we next apply them to
the previously mentioned problem of transitioning
from resonant flybys of one moon to a resonance
with a different moon. Obviously, this problem
cannot be addressed in the PCRTBP which does
not contain both moons (unless one patches together
two PCRTBP models). Thus, to study the Jupiter-
Ganymede to Jupiter-Europa resonance problem, we
use a planar concentric circular restricted 4-body
model (CCR4BP) to model the spacecraft motion,
assuming that Europa and Ganymede revolve in
coplanar, concentric circles around Jupiter.

After applying the tools of our previous paper [5] to
compute the tori and manifolds at Jupiter-Europa and
Jupiter-Ganymede resonances, we use the algorithm
of the previous section to search for near-intersections.
Doing this, we found near-intersections of unstable
manifolds of both 7:5 and 3:2 Jupiter-Ganymede res-
onant tori with stable manifolds of 3:4 Jupiter-Europa
resonant tori. Indeed, the 3:2 Jupiter-Ganymede
to 3:4 Jupiter-Europa near-intersection case is not
altogether unexpected, given the 2:1 Laplace reso-
nance between Europa and Ganymede’s orbits around
Jupiter.

4 Conclusion

We presented an overview of our methodology for us-
ing GPUs, combined with the concept of manifold
layers, for rapidly finding near-intersections of torus
manifolds. These algorithms improve upon our pre-
vious work [3], and should also be possible to gen-
eralize to higher dimensional manifolds in higher-
dimensional phase space, by replacing quads (which
can be divided into triangles) with prisms comprised
of higher-dimensional simplices. Using our tools, we
demonstrated a variety of low-cost transfer options
from various Jupiter-Ganymede resonances to the 3:4
Jupiter-Europa resonance. Further work is ongoing

to search for true heteroclinic connections between
Jupiter-Ganymede and Jupiter-Europa resonances.
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Abstract

This work investigates novel aspects and approaches
to previously-developed shape-based methods for op-
timal control and navigation problems in astrody-
namics. The main contributions of our research re-
fer to the introduction of new functional descriptions
of the orbital motion, along with sampling point lo-
cations compliant with collocation theory, and hy-
bridized with classical regularization techniques, in
order to enhance the numerical performance of the
proposed algorithms.

1 Introduction

Shape-based methods have gained increasing atten-
tion within the astronautical community in recent
times, with extensive applications within optimiza-
tion problems. The rationale behind such methodolo-
gies lies in exploiting particular functions to represent
the orbital motion of the system, typically a space-
craft. Such analytical expressions, usually given by
direct application of the boundary conditions of the
problem, enable a quick and fast generation of pre-
liminary mission design trajectories or initial guesses,
which may undergo further refinement within more
complex optimization solvers. Clearly, the function
in-use is a key element of the methodology, whose
fundamental features define the radius of convergence
of the algorithm together with the intrinsic capabili-
ties of the method to represent complex dynamics and
associated solutions.

Shape-based methods for trajectory design were
first introduced by Petropoulos and Longuski [1], by
selecting an exponential sinusoid function to describe
the trajectory of a low-thrust accelerated spacecraft.
Thereafter, sinusoids have been a traditional choice to
represent spacecraft dynamics for other applications
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[3]. Wall and Conway [6] presented inverse polynomi-
als to match the spacecraft boundary conditions and
its intrinsic dynamics. More recently, Xie et al. [7]
suggested a rapid shaping method based on the radial
coordinate form of the initial and target orbits, and
Roa et al. [4] introduced the concept of generalized
logarithmic spirals in a series of works.

Orthogonal polynomial bases, as well as general spi-
rals, have been used massively in direct transcrip-
tion optimal control solvers and numerical approxi-
mation across a wide range of fields, from Fluid Me-
chanics to Astrodynamics. However, they are not of-
ten selected to construct shape-based methods for or-
bital mechanics applications. More recently, Taheri
[5] introduced a shape-based formulation to describe
spacecraft trajectories based on a finite Fourier se-
ries. Based on these latter results, Hou et al. [8, 2]
presented a shape-based method to design the 3D
trajectories of electric solar wind sails, relying on a
Bézier curves approximation, which builds upon the
family of Bernstein polynomials. Despite their suc-
cessful application to this low-thrust trajectory design
optimization, their mathematical formulation has not
been completely explored yet to its full potential, nor
their numerical and computational advantages have
been exploited. In addition, despite some recent work
on optimal control [9], general shape-based methods
have not been employed as a core optimization en-
gines, but as a low-cost, fast technique to generate
dynamically-compliant trajectories to be refined af-
terwards in more detail design phases.

This work presents a novel approach to tackle opti-
mization problems in astrodynamics using enhanced
shape-based methods, together with a real assessment
of the viability of these algorithms as general opti-
mization solvers. Two specific problems are mainly
studied: the design of orbital transfers for active de-
bris removal missions and orbit determination for pro-
pelled spacecraft. In particular, we introduce new
functional representations of the system’s time evo-
lution by means of an orthogonal version of the Bern-
stein polynomials family, in order to enhance the al-
gorithm’s numerical behaviour and improve on it con-
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vergence properties. Additionally, a direct perfor-
mance comparison is performed and presented against
classical orthogonal bases, which have still not been
employed in this methodology. The optimization-
associated collocation problem is then reformulated,
initially on the natural nodes of the selected func-
tional bases and then in regularized coordinates, to
explore the solution’s intrinsic features and dynam-
ics. Research on the effect of the collocation mesh
on the final optimal solution is also conducted and
presented. Finally, several benchmark missions are
introduced and solved by the proposed techniques for
demonstration purposes.

2 Shape-based methods

A great variety of methods have been developed for
numerically solving optimal control problems. Due to
their numerical performance and ease of pose, direct
transcription methods, despite not being the most ac-
curate, are among the most extensively used. Direct
transcription methods project the state evolution and
the control input onto given functional bases and pose
a discretized Non Linear Programming (NLP) Prob-
lem to solve the given general Bolza problem of inter-
est [10].

Shape-based methods, which show different for-
mulations, are closely related to direct transcription
solvers, as they also project the state of the system
onto given selected functional bases. However, when
compared against each other, all shape-based meth-
ods impose boundary conditions into the solution by
quasi-analytically selecting appropriate constants or
weights in the state functional expansion. This allows
for a quick generation of boundary-compliant initial
guesses for optimization solvers (notably, for direct
transcription ones) as long as the selected functional
base is able to capture the problem’s intrinsic dynam-
ical features.

In our particular case, additionally to imposing
boundary conditions as already explained, when used
as a general NLP optimization core, shape-based
methods minimize the problem’s cost function by se-
lecting the optimal weights for each of the function of
the base used in the state expansion. Such cost func-
tion shall be expressed as a residual of the state func-
tional series and the problem’s dynamics, therefore
intrinsically imposing dynamic and path constraints
at prescribed, discrete sampling points on the inde-
pendent variable in the equations of motion.

3 Orthogonal functional bases

Shape-based methods are primarily constructed upon
the selection of an appropriate functional basis on
which to decompose the orbital motion evolution.

Such selection may be accomplished by balancing dif-
ferent criteria, from the computational cost and com-
plexity of evaluating the function to its analytical ex-
pression and suitableness to express the problem dy-
namics. Despite the existence of a vast number of op-
tions, previous work have focused on a really narrow
range of bases, whose mathematical and approxima-
tion properties are still to be objectively explored. In
particular, in spite of showing clear advantages within
general optimization algorithms, to the best of our
knowledge, orthogonal polynomials have not been in-
troduced into the topic, so their behavior and actual
performance is still to be unveiled.

Firstly, this work presents a novel approach to
the application of Bézier curves to these optimiza-
tion problems using an alternative functional basis;
in particular, an orthogonal version of their generat-
ing Bernstein polynomials are proposed, to enhance
their numerical behaviour and improve on their con-
vergence. Secondly, the use of additional orthogonal
bases is investigated, such as that of Chebyshev or
Legendre, due to the intrinsic benefits they may bring
when constructing shape-based methods upon them.
Finally and as further discussed, direct comparison
is performed between the different functional bases
considered, together with exploring the intrinsic ap-
plications and characteristics of each of them.

4 Nodal and regularized discretization grid

One of the main drivers of the performance of the
algorithm is the trajectory sampling grid, given by
the discretization of the independent variable of the
problem. This work introduces two major novelties
from which the overall performance of the algorithm
may benefit.

Up to now, previous work has focused on func-
tional discretization and interpolation by means of
non-optimal node selection techniques. Specifically,
shape-based method have relied on classical colloca-
tion nodes, such as those of Legendre-Gauss-Radau or
Legendre-Gauss-Lobatto [2], to define the trajectory
sampling points, i.e. the time instants at which both,
the control and dynamic constraints are evaluated.
While this may show advantages when the optimal
solution is then used as an initial guess in an spectral
optimization solver, based on such classical nodes, it
does not exploit the intrinsic approximation capabili-
ties of the selected functional bases, nor they minimize
the approximation error as compared to using their
natural collocation nodes [11]. By exploiting the nat-
ural formulation of these polynomials, the numerical
performance of these curves, as used in shape-based
methods, is increased: their interpolation accuracy is
not only ensured but the problems-at-hands dimen-
sionality is also reduced, with clear advantages within
standard optimization NLP solving techniques.
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However, the definition of this discretization grid by
means of a time-like variable may not be the optimal
choice, due to the intrinsic dynamics of the Keple-
rian gravitational problem. Although applied to per-
turbed trajectories, orbital regularization techniques
may also provide a particularly interesting approach
to express the problem’s dynamic constraints. They
enable the definition of linearly-spaced grid points in
a fictitious time scale, while ensuring to capture the
natural features of the optimal solution trajectory and
associated orbital motion evolution.

5 Applications and benchmark missions

The proposed algorithms and techniques are demon-
strated and validated within several end-to-end low-
thrust mission design cases, as shown in Figure 1.
Specifically: 1) low-thrust transfers within low Earth
orbit are solved using low-order, orthogonal func-
tions to illustrate the performance of the proposed
enhancements in orbit raising problems and active
debris removal missions for towing defunct satellites;
and 2) preliminary orbit determination for low-thrust
propelled spacecraft is achieved by re-purposing the
proposed shape-based techniques, thus demonstrating
their suitability to perform orbit determination with
the presence of thrusting trajectory arcs. The compu-
tational benefits of this novel formulation are shown
by confronting them in the aforementioned missions
against other traditional approaches: the use of other
mentioned orthogonal polynomial bases, and the al-
ready described Bézier functions. The effect of sev-
eral regularization techniques and the resulting regu-
larized sampling points is also studied, together with
their benefits and possible added drawbacks.

Figure 1: LEO low-thrust orbit transfer in normalized
coordinates.

6 Conclusions

This work presents an extended formulations of
shape-based methods for general astrodynamics op-
timization problems, with particular applications
within low-thrust trajectory optimization. Such

methodology enables a low-cost NLP optimization to
replace classical direct transcription optimal control
problems. New functional bases on which to express
the system’s motion are presented together with their
performance comparison against classical orthogonal
polynomials. Additionally, time regularization is em-
ployed to construct a sampling grid that exploits the
natural features of orbital motion, thus enhancing the
performance of shape-based methods. Several bench-
mark missions are presented and solved using the
aforementioned techniques to demonstrate their capa-
bilities in real mission scenarios. Finally, new ideas,
extensions and follow-up work for the presented opti-
mization techniques are introduced and discussed.
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1 Introduction

The Theory of Functional Connections (TFC) is a new
important and recent mathematical framework [1, 2]
providing efficient solving methods to constrained op-
timization problems. This mathematical tool allows
to transform constrained optimization problems, such
as Boundary Value Problems (BVP), into uncon-
strained ones. This is done by deriving constrained ex-
pressions, which are functionals with embedded con-
straints. These functionals reduce the whole function
space (where to search the solution) to just the func-
tion subspace that fully satisfying the problem con-
straints. This way the constrained problem is trans-
formed into an unconstrained problem that can be
solved using more simple, robust, accurate, fast and
reliable methods. As an example, a BVP on a linear
ODE is directly solved by linear least-squares.

The TFC framework is fully developed for linear
constraints. Therefore, its technique to solve ODE is
straightforward in the case where the constraints of
the problem are linear on its variables [3, 4]. On the
other side, it may be harder to be used in the case the
constraints are nonlinear in the variables, where the
constrained expression mathematical form obtained
from the solution of the functional coefficients may
not be unique. Furthermore, the TFC technique may
be hard to be used for multidimensional problems sub-
ject to constraints in which the variables are coupled,
i.e. in the case where one dependent variable depends
on the value of another dependent variable. For in-
stance, a kind of constraint where x(t) depends on the
values of y(t) at a specified time.

In this work, we show that a class of astrodynamics
problems - whose constraints are given by the mission
- can be solved using the mathematical framework
provided by the TFC [5, 6] after a proper change of
coordinates. In these problems, the constraints are
initially written in non-linear and coupled mathemat-
ical forms when classical rectangular coordinates are

∗Email: allan.junior@inpe.br Reseach supported by
FAPESP - São Paulo Research Foundation through grants
2018/07377-6 and 2016/24561-0.
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used. A new system of coordinates is used to trans-
form the non-linear constraints into linear ones. Fur-
thermore, the change of the coordinates is also used to
decouple the variables of the constraints. Therefore,
the TFC technique can be used to solve the ordinary
differential equations under the constraints of the mis-
sion.

An application is done for an orbit transfer of a
spacecraft around the Earth under the perturbation
of the Moon. A proper change of coordinates is done
by taking the advantage of symmetries of the system.
After that, the TFC technique is applied to find nu-
merical solutions for the One Tangent Burn transfer
method.

2 The Theory of Functional Connections

In this section, the univariate TFC technique to solve
the BVP is briefly summarized, with the required con-
ditions to be applied. Essentially, the TFC technique
reduces the space of all possible functions to its sub-
space in which the functions must satisfy the con-
straints of the problem. The TFC involves a func-
tional interpolation in which the constraints of the
problem are analytically embedded in an expression
called the constrained expression. The general equa-
tion to derive the constrained expression comes from

x(t, g(t)) = g(t) +
n∑

k=1

ηk(t, g(t)) sk(t) (1)

where n is the number of constraints, g(t) is the
free function, the sk(t) constitute a set of n support
functions, which must be linearly independent, and
ηk(t, g(t)) are unknown functional coefficients. The
unknown functional coefficients are determined using
Eq. (1) subject to the constraints of the problem un-
der consideration. After that, they are substituted in
Eq. (1) to form the constrained expression, in which all
the constraints of the astrodynamic (physical) prob-
lem are mathematically embedded.

After substituting the constrained expression into
the differential equation, a new differential equation
arises written in terms of g(t), instead of x(t). Note
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that this new differential equation is subject to no
constraints. The free function g(t) is then expressed
as a linear combination of a set of basis function given
by orthogonal polynomials:

g(t) =
m∑
j=0

ξj hj(t) (2)

where m is the number of basis functions, ξj (for
j = 0, 1, · · · ,m) are unknown coefficients, and hj (for
j = 0, 1, · · · ,m) are orthogonal polynomials. The
Chebyshev polynomials - which are used in this re-
search - are defined only in the range t ∈ [−1, 1],
hence an appropriate change of units of time must
be done accordingly. In order to solve the problem,
it is enough to find the unknown coefficients ξj (for
j = 0, 1, · · · ,m). Hence, the new differential equation
is discretized for a set of N values of time t. The best
points of t to be chosen is to use Chebychev-Gauss-
Lobato nodes [7], which can be evaluated as

ti = − cos
( iπ
N

)
for i = 0, 1, · · · , N (3)

The system of N equations with m unknowns is then
solved for the ξj (for j = 0, 1, · · · , N) coefficients
using the nonlinear least-squares numerical method.
The iterative process is written in Python language,
and it uses an automatic differentiation and just-
in-time (JIT) compiler [8, 9, 10]. More details of
the TFC technique to solve ODE can be found in
[1, 4, 11, 12].

3 Results

The Hohmann transfer is a particular case of the one-
tangent burn transfer method [13] in the case where
the time T of the transfer (without perturbation) is
Th = (π/2)

√
(r0 + rf )3/µ. This kind of transfer can

be seen in Fig. 1 from an initial circular orbit of radius
r0 to another circular final orbit of radius rf . In this
figure, the red dots represent the trajectory for the
Hohmann transfer, the blue dots represent the trajec-
tory when the tie of transfer is lower than the time of
the Hohmann transfer, and the green dots represent
the trajectory when the time of transfer is higher the
the Hohmann transfer. The three constraints of the
one-tangent burn transfer are:

1. The radius of the initial orbit is r0

2. The radius of the final orbit is rf

3. The velocity is tangent to the path when t = 0

Using the TFC framework combined with an appro-
priate change of variables, the solution to the transfer
satisfying the three constraints shown above can be
obtained for a satellite under perturbations.

Earth

r0

rf

T=Th

T < Th

T > Th

Figure 1: The one-tangent burn transfer trajectories
from r0 to rf for different values of time of flight.
The trajectory in red is coincident with the Hohmann
transfer.
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Abstract

Trajectory design and maintenance of solar
sails in orbit about a celestial body can be
formulated as control problems with positiv-
ity constraints. We propose a methodology
to find the optimal control action aimed at
enforcing and maximizing the displacement
of the sail toward an arbitrary direction. A
thorough analysis of the switching function
is carried out to deduce an upper bound on
the number of bangs between controlled and
coasting arcs. The solution of the optimal
control problem is achieved by first leveraging
on convex programming to obtain an excellent
initial guess of the co-state variables, followed
by a multiple shooting scheme. Hence, the
entire methodology does not need any initial
guess.

1 Introduction

A large body of literature on solar sailing
focuses on the mathematical formulation and
numerical solution of optimal interplanetary
transfers [1]. Our goal is to propose an op-
timal feedback algorithm which relies on so-
lution of an optimal control problem to move
the sail toward a desired direction of the phase
space after one orbital period. By maximiz-
ing the rate of change of an arbitrary func-
tion of orbital elements, available contribu-
tions on local optimal feedback strategies de-
velop laws that maximize the projection of the
displacement toward the gradient of the afore-
mentioned function. Conversely, our formula-

∗Email: alesia.herasimenka@univ-cotedazur.fr.
Research supported by European Space Agency

tion enforces the exact direction of the dis-
placement while maximizing its magnitude.
This is of use to size the sail to compensate
a given orbital perturbation or to develop a
simple feedback control strategy for a rectilin-
ear transfer in the orbital elements space. Af-
ter detailing necessary conditions for optimal-
ity of the optimal control problems (OCP),
inspection of the switching function reveals
that the number of bangs between controlled
and coasting arcs is smaller than 6. This re-
sult entails clear consequences on the com-
plexity of the control structure. Numerical
solution is then achieved by means of shoot-
ing techniques in two step: first, a convex
optimization problem is solved to get an ex-
cellent initial guess of the adjoint variables.
This solution is associated to a feasible but
sub-optimal control action. Then, multiple
shooting method is implemented to obtain the
optimal solution. Hence, no initial guess is re-
quired by the overall methodology.

2 Parametrization of the control set and
equations of motion

Controlling sail’s attitude, i.e., the nor-
mal vector n̂, allows to change the direction
and magnitude of the resulting solar radiation
pressure (SRP). A reliable inference of optical
coefficient is indeed mandatory to accurately
estimate the mapping between n̂ and fSRP .

Solar sail dynamics is conveniently modeled
as a nonlinear control-affine system, where
the control variable is homogeneous to the

force vector, namely u :=
fSRP
ε(r�)

. Control
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set U ⊂ R3 is then given by:

U =

{
fSRP (n̂)

ε(r�)
, n̂ ∈ R3, ‖n̂‖ = 1

}
.

Figure 1 shows the projection of U on the
plane generated by n̂ and ŝ for various optical
properties. The set is a surface of revolution
with axis ŝ, and it is non-convex unless reflec-
tivity coefficient ρ = 1. Note that the interior
of the surface is not part of U . Although sails
are designed to be as ideal as possible, par-
tial absorption of the energy is unavoidable
in real-life applications and optical properties
exhibit degradation with time.

0 1 2

-1

0

1

0

0.25

0.5

0.75

1

Figure 1: Control sets for different reflectivity
coefficients. Here, uX is the projection of u
toward ŝ, while uY and uZ are orthogonal
components.

Solar sail in orbit around a celestial body
is considered in this study. Equations of mo-
tion are written in a set of Keplerian-like or-
bital elements, which leverages on the axial
symmetry of the problem with respect to the
Sun’s direction. Motion of slow elements, I,
is governed by

d I

d t
= εF (I, f)u

where f is the true anomaly.

3 Optimal control over one orbital period

An optimal control law allowing to real-
ize the desired maneuver for a sail orbiting
around a planet or an asteroid might have
multiple applications. First, it can impose
physical properties of the sail for feasibility
of an observation mission: for example, how
large might be the sail in order to be able
to stay on the same orbit and compensate an
orbital perturbation. Another direct applica-
tion is control law used in the context of a
deorbiting mission using solar sail.

Because of its control-affine character, the
Hamiltonian associated to the slow-state vari-
ables is given by:

HI = H0 + uH1 = H0 + ε u pδIF (I, f) (1)

with H0 part of Hamiltonian independent
on the control u, pδI ∈ M1,5(R), ‖pδI‖ =
1, the adjoint vector and F (I, ϕ) the ma-
trix associated to Gauss variational equations
(GVE). An important simplification occurs
by assuming that the slow state I can be con-
sidered as fixed for one orbital period. Thus,
with I = Ī, pδI = p̄I , F (I, ϕ) = F̄ (Ī , ϕ) and
Pontryagin maximum principle (PMP) is re-
duced to choose the control such that

u∗ = arg max
u∈U

uH1 max
u∈U

u p̄I F̄ (Ī , ϕ).

Given that Ī and p̄I are fixed and variations
of F̄ (Ī , ϕ) are only due to the fast variable ϕ,
one can geometrically distinguish two differ-
ent cases of PMP. Consider a convex cone Kα

tangent to the control set U . For illustration
only, let us project the dynamics p̄I F̄ (Ī , ϕ)
of the system in the two-dimensional coor-
dinates system (u1, u2). According to PMP,
the control should be chosen as to maximize
the scalar product up̄I F̄ (Ī , ϕ). Therefore, two
different cases should be considered depend-
ing on relative position of p̄I F̄ (Ī , ϕ) and the
polar cone Ko

α, as shown in Fig. 2.
The optimal control problem that we for-

mulate, as mentioned afore, consists in mov-
ing the system exactly in the desired direction
of slow variables dI . Therefore, we need first
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Figure 2: Geometrical illustration of PMP: if
p̄I F̄2(Ī , ϕ) ∈ Ko

α, u = 0; if p̄I F̄1(Ī , ϕ) /∈ Ko
α,

u is such that maxu∈U u p̄I F̄ (Ī , ϕ).

to impose the constraint of parallelity given
by δI(2π) ‖ dI . Transversality conditions give
a constraint on the adjoint vector: pĪ ·dI = 0.

The optimality of the solution is measured
with Mayer cost that corresponds to maxi-
mization of the displacement ζ while respect-
ing the constraint of moving the system ex-
actly and only according to dI . Finally, the
OCP is:

max δI(ϕf ) · dI = ζ subject to

δI ′(ϕ) = ε
∑
i

uiF̄i(Ī , ϕ), u ∈ U

δI(ϕf ) =

∫ ϕf

ϕ0

δI ′ dϕ = ζdI

δI(ϕ0) = 0, δI(ϕf ) ‖ dI
pĪ · dI = 0

ϕ0 = 0, ϕf = 2π,

where δI is the displacement.
In order to use indirect shooting methods,

we need first a reliable initial guess. The
initial conditions can be obtained by solving
a convex optimization problem by approxi-
mating the original control set by a convex
bounded cone. A delicate choice of cone ap-
proximation allows to find the admissible non-
optimal controls. For this reason, the convex
cone is bound at the points of tangency, as
shown in Fig. 3.

Once we have the initial guess, different
strategies might be adopted to solve the initial
problem with a real control set, such as mul-
tiple shooting or continuous differentiation.

Figure 3: Approximation of the control set by
a cone bounded at the points of tangency.

An important observation made after solv-
ing the initial problem using multiple shoot-
ing method is a possible change of structure
between the solutions obtained for a bounded
convex cone and the real control set. Indeed,
by replacing the bounded cone with a real set,
we ”inflate” the set on the right side. The
optimal solutions will be either situated on
the ”inflated” part of the control set or the
zero. Therefore, the solution has a bang-bang
structure (since the control set doesn’t in-
clulde its interior). Moments of switches can
be predicted using a switch function based on
geometrical representation of the PMP. In
fact, by transorming classical GVE to make
them exact trigonometric polynomials in f ,
the H1 given by Eq. (1) is an exact trigono-
metric polynomial. Therefore, one can find
the switch function as well as its zeros. Fi-
nally, a multiple shooting method with auto-
matic detection of structure is used to find the
solutions.
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Abstract

In the circular restricted three-body problem, the
linearized phase space structure about the Lagrange
points controls dynamical transit at low energies be-
cause the geometry of the zero-velocity curve forces
the particle to pass through neighborhoods surround-
ing the equilibria. At high energies, the zero-velocity
curve disappears, so the Lagrange points no longer
dominate the dynamics. Recent numerical research
has revealed the existence of “arches of chaos” which
dramatically affect the courses of high-energy solar
system trajectories. We demonstrate through nu-
merical and analytical techniques that the arches of
chaos coincide with the finite-time stable and unstable
manifolds to the singularities at the primaries. Un-
der Levi-Civita regularization, the singularities can be
viewed as collision manifolds and the finite-time stable
and unstable manifolds can be viewed as approaching
the collision manifolds asymptotically, which enables
the use of linearization techniques. These lineariza-
tion techniques, as well as numerical experiments,
yield insight into the local geometry.

1 Introduction

Investigating the topological structures that under-
lie particle dynamics in higher-fidelity models such as
the circular restricted three body problem (CR3BP)
is a critical area of research in astrodynamics. Some
of these structures and their implications for space-
craft transport are well-understood—one example is
the manifold geometry emanating from the CR3BP
Lagrange points that controls transit throughout the
CR3BP at low energies [1]—whereas the identification
and analysis of others is a topic of active study. For
example, a recent study by Todorović et al., which ap-
plied the finite Lyapunov indicator (FLI) to solar sys-
tem dynamics, has revealed the existence of “Arches
of Chaos” stretching throughout phase space [2]. Ini-
tial conditions on either side of these structures di-
verge dramatically under the flow. In this work, we

∗Email: joshfitz@vt.edu.
†Email: sdross@vt.edu.

demonstrate that the arches of chaos may be iden-
tified with the stable and unstable manifolds to the
singularities in the CR3BP.

2 The Levi-Civita Regularization

The CR3BP Hamiltonian in the planar case is as fol-
lows [1]:

HCR3BP =
1

2

(
p2x + p2y

)
−xpy +ypx−

1− µ

r1
− µ

r2
(1)

ri is the distance between the particle and the ith
primary, i ∈ 1, 2, and µ is the mass parameter. The
Hamiltonian diverges as ri → 0, and so singularities
are present at the locations of the primaries, creat-
ing challenges for numerical and analytical investiga-
tion in arbitrarily small neighborhoods about the two
masses.

To resolve these difficulties, we utilize the Levi-
Civita regularization, which reformulates the CR3BP
in order to remove one of the singularities from the
system. We assume that the singularity to be regu-
larized is the singularity about m2. Then, the Levi-
Civita regularization recasts the phase space variables
into the following form [3]:

x− 1 + µ = u2
1 − u2

2,

y = 2u1u2,

px =
U1u1 − U2u2

2 |u|2
,

py − 1 + µ =
U1u2 + U2u1

2 |u|2

(2)

with |u|2 = u2
1 + u2

2. In addition, the standard time
t is rescaled into the Levi-Civita time τ according to
the conversion equation

dt = |u|2 dτ . (3)

Regularization recasts the singularity as a collision
manifold [4] which is included within the Levi-Civita
phase space. Regularization, in addition to its ana-
lytical value, also facilitates numerical investigation:
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Figure 1: A schematic of the numerical experiment
for examining how trajectories on either side of the
stable manifold to the singularity move throughout
phase space. The red and dark blue trajectories are
generated at an initial radius rce but have θ̇ < 0 and
θ̇ > 0, respectively. They reflect one choice of θ, but
a whole family of trajectories for different values of θ
must be generated in order to match + and - pairs
along the detection radius rd. We integrate forwards
and backwards and then match those + and - tra-
jectories whose final position in backwards time was
nearest to each other; in the schematic, the red - tra-
jectory has been matched with a light blue + tra-
jectory, generated in the same way as the dark blue
trajectory for a different value of θ. We then compare
the pre-encounter, four-dimensional phase space dis-
tance dpre with the post-encounter distance dpost for
each matched pair.

attempting to integrate the standard CR3BP equa-
tions of motion in the vicinity of the singularity of-
ten causes the algorithm to fail as the step size be-
comes too small. Performing the procedure in the
Levi-Civita equations of motion and then converting
to and from standard form as required is a very effi-
cient workaround.

3 Linearization of the Collision Manifold

The Hamiltonian for the system becomes

HLCR =

(
U1 + 2|u|2u2

)2
8

+

(
U2 − 2|u|2u1

)2
8

− |u|6

2
− µ− |u|2

(
E +

(1− µ)2

2

)
−

(1− µ)|u|2
(

1√
1 + 2(u2

1 − u2
2) + |u|4

+ u2
1 − u2

2

)

- -0.5 0 0.5
0

0.5

1

1.5

2

Figure 2: The + and - trajectories have an es-
sentially constant, very small initial separation pre-
encounter, but post-encounter their separation varies
significantly depending on the angle along the de-
tection circle (in this case, we use θ+post, the post-
encounter angle of each + trajectory, as the angle for
identifying and sorting matched pairs of + and - tra-
jectories).

where E is the HCR3BP energy of the trajectory
under consideration. HLCR is defined at the collision
manifold; although E diverges, |u|2 = 0, and so the
Hamiltonian overall does not diverge. Furthermore,
the right-hand side of the equations of motion asso-
ciated with this Hamiltonian is equal to zero at the
collision manifold, and so the singularity becomes an
equilibrium point under Levi-Civita regularization.

We demonstrate that linearizing this singularity re-
veals it to be a saddle × saddle point in Levi-Civita
space. Although the point itself is excised from the
phase space when converted back to the standard
CR3BP, the local geometry about the point is pre-
served, and so linearizing the collision manifold is key
to understanding the dynamical geometry in standard
form.

4 Sample Numerical Results

4.1 Quantifying divergence due to the manifolds

We investigate the collision manifold and its stable
and unstable manifolds using numerical experiments
in order to develop intuition regarding the nature of
the system.

For example, consider only the stable manifolds
for simplicity. In m2-centered polar coordinates[
r θ ṙ θ̇

]
T
, initial conditions sufficiently close to

the singularity along the stable manifolds have the
form

[
r 0 ṙ 0

]
T
for 0 < r ≪ 1 and ṙ ≫ 1. One

can consequently construct initial conditions on either
side of the stable manifold that narrowly miss the sin-
gularity and whose local closest encounter distance to
the singularity is given by rce. These initial conditions
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Figure 3: A portion of the semi-major axis/eccentricity plot of the Arches of Chaos given in [2], overlaid with the
closest encounter distances of trajectories integrated within the basic CR3BP. The structures correspond almost
exactly.

are given by
[
rce θ 0 ±θ̇

]
T
where θ ∈ [−π, π), θ̇

is chosen to target a desired energy, and the choice
of ± determines the side to which these initial con-
ditions belong. For convenience, we call trajectories
with positive θ̇ “+ trajectories” and trajectories with
negative θ̇ “- trajectories.”

We integrate + and - trajectories forwards and back-
wards until they intercept a detection radius rd ≫ rce
around m2 in both directions. + and - trajectories are
matched into pairs based on which trajectories in each
set had the closest pre-encounter angles along the detec-
tion radius with respect to each other. We then compare
the pre-encounter distance dpre and post-encounter dis-
tance dpost for each matched pair of + and - trajectories
(see Figure 1). We discover that different intercept an-
gles along the detection circle yield noticeably different
post-encounter distances between + and - trajectories
even though they start with the same extremely small
pre-encounter distances (see Figure 2).

4.2 Replication of the arches

One very straightforward numerical experiment that
demonstrates the connection between the stable and un-
stable manifolds to the singularities and the Arches of
Chaos is to integrate grids of initial conditions and then
to determine the minimum encounter distance of each
trajectory to the singularity. By definition, trajectories
with closer encounters to the singularity are closer to ly-
ing on the stable and unstable manifolds. By generating
and plotting initial conditions in the same manner as in
[2], the resultant structures can be compared (see Fig.
3).
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Abstract

The Solar Radiation Pressure (SRP) represents a rel-
evant perturbing factor for a spacecraft with a large
cross-sectional area to mass ratio exposed to the Sun.
The paper presents a fist-order fully analytic solution
to the orbital motion of such spacecraft, providing
closed-form expressions for the variations of the or-
bital elements due to the SRP. The model shows that
the effect of the SRP reduces significantly the inter-
planetary orbit insertion impulsive velocity.

1 Introduction

The solar radiation pressure (SRP) is a relatively
weak perturbation that needs to be taken into account
when very high-accuracy orbit prediction is required.
For interplanetary missions, on the other hand, the
SRP becomes the main perturbing force influencing
the spacecraft’s orbit. Consequently, the question of
incorporating this force into the analytical modeling
and prediction of the orbit becomes relevant.

The most efficient perturbation models in Astrody-
namics are developed by making full use of the tools
of symplectic geometry. In such models, the system is
modeled by using the framework of Hamiltonian me-
chanics, and the small perturbations are approached
by using the classical perturbation theory. Two fun-
damental perturbation methods exist, the Poincaré-
von Zeipel method [1, 2] and the Lie-Hori-Deprit
method [3, 4, 5]. These methods are based on the
same concept: the original dynamical system, usually
highly non-integrable, is transformed through special-
ized mathematical tools, into a simplified version that
satisfies the integrability requirement. In many cases,
for such integrable system an analytic solution can be
found.

The apparent drawback of the aforementioned
methods is that these very efficient (and globally
valid) approaches are applicable only for conservative
systems, namely for the particular situation when the
force is derived from a potential scalar function [6].

*Email: nir.vegh@campus.technion.ac.il
�Email: vmartinusi@technion.ac.il

Two relevant perturbations in Astrodynamics do
not exhibit this conservative feature (and they allow
the system to exchange energy with the environment):
the atmospheric drag (acting upon satellites orbit-
ing Earth at altitudes smaller than 800 kilometers)
and the solar radiation pressure (acting upon any ob-
ject that receives an influx of photons from a nearby
source).

The present work offers an analytic solution to the
heliocentric orbital motion perturbed by the solar ra-
diation pressure. By using the method of doubling
the variables [7] (dubbed Hamiltonization by some au-
thors [8]), the non-integrable, non-canonical dynam-
ical system is first transformed into a conservative
one, and the new system is treated with the tools
of the classical aforementioned canonical perturbation
methods. In the end, an analytical model is offered,
the equations of motion being expressed in a closed
form. The given solution involves only purely alge-
braic methods and has the same numerical complex-
ity as the solution of the unperturbed Kepler problem
itself.

2 Method of Solution

2.1 Canonical Extension of Dynamical Systems

Consider a n ≥ 1 DOF dynamic system expressed as
a set of 2n first-order differential equations:{

q̇k = fk (q1, ...qn, p1, ...pn)
ṗk = Fk (q1, ...qn, p1, ...pn)

, k ∈ {1, ...n} (1)

If the dynamic system is non-conservative, it is impos-
sible to bring Equations (1) to a canonical form. To
overcome this issue, the following procedure (similar
but not identical to the one suggested by Birkhoff [7])
is introduced. Denote:

q = [q1, ...qn]
T

; p = [p1, ...pn]
T

f = [f1, ...fn]
T

F = [F1, ...Fn]
T

Define the mirror variables:

Q = [Q1, ...Qn]
T

; P = [P1, ...Pn]
T
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such that:
Q̇l =

n∑
k=1

(
Pk
∂fk
∂ql
−Qk

∂Fk
∂ql

)
Ṗl =

n∑
k=1

(
−Pk

∂fk
∂pl

+Qk
∂Fk
∂pl

) , l ∈ {1, ...n}

and define the functional K : (Rn)
×4 → R:

K (q,Q,P,p) = PT f −QTF (2)

Then in the extended 4n dimensional space, the vari-
ables

Θ =
[
qT ,QT

]T
; Π =

[
PT ,pT

]T
are canonical, since they satisfy Hamilton’s canonical
equations

Θ̇k =
∂K
∂Πk

; Π̇k = − ∂K
∂Θk

; k ∈ {1, ...2n} (3)

The original dynamic system has been embedded into
a canonical one, described by Equations (3). The
Hamiltonian flow is defined by the vector-valued func-
tion:

X =
[
qT ,QT ,PT ,pT

]T
Ẋ = J4n

[
∂K
∂X

]T
(4)

where

J2m =

[
Om Im
−Im Om

]
, m ≥ 1

When the original system (1) is subject to a per-
turbation depending on a small parameter, canonical
perturbation methods may now be applied to the ex-
tended system (3). Note that the mirror variables Q
and P do not interfere in the variation of the orig-
inal q,p (the new variables have no effect on the
dynamics of the original system whatsoever). These
variables are used only as a tool for embedding the
non-conservative system into a conservative (Hamil-
tonian) one. Equations (1) can be recovered from the
first and the last n equations in Equation (3):

q̇k =
∂K
∂Pk

= fk (q1, ...qn, p1, ...pn) (5)

ṗk = − ∂K
∂Qk

= Fk (q1, ...qn, p1, ...pn)

2.2 The Hamiltonized System

The motion under the influence of the SRP dynami-
cal system that is not conservative. A Hamiltoniza-
tion procedure is used as follows. First, define the
set of mirror variables Q = [Qa, Qe, Qi]

T
,P =

[PM , Pω, PΩ]
T

and determine the Hamiltonian de-
scribing the motion in a 12-dimensional phase space
(by using Equation (2)).

X = [M,ω,Ω, Qa, Qe, Qi, PM , Pω, PΩ, a, e, i]
T

K (X) = ṀPM + ω̇Pω + Ω̇PΩ − ȧQa − ėQe − i̇Qi

In this way, a canonical system has been obtained.
From this point, any canonical perturbation method
is at reach.

Practically, in the discussed case, the extended sys-
tem has the Hamiltonian K = K (X):

K (X) = nPM (6)

+
β

Gr

η

e2

[(
κ− e2 − σ2

)
dr

− (2 + κ)σdθ]PM

+
β

Gr

[
−κ (1 + κ)

e2
dr +

(2 + κ)σ

e2
dθ

− c sin θ

s
dh

]
Pω

+
β

Gr

sin θ

s
dhPΩ

− β

Gr

2a (1 + κ)

η2
[σdr + (1 + κ) dθ]Qa

− β

Gr

[
σ (1 + κ)

e
dr

+

(
κ2 + 2κ+ e2

)
e

dθ

]
Qe

− β

Gr
cos θdhQi

2.3 The Reduced (Averaged) System

After formulating the osculating system in its Hamil-
tonian form, the averaged system’s Hamiltonian is:

M (Y) = nPM − 2n
β

µ
drPM

(7)

− 2β

ηG
dθQa

− βeη

aG (1 + η)
dθQe

and its solution is expressed with respect to the inde-
pendent variable τ as:

M (τ) = M0 + (1− 2A)τ
ω (τ) = ω0

Ω (τ) = Ω0

i (τ) = i0

The full set of 6 analytical equations that describe
the variation of the orbital elements are:

τ =
1

B

[
η − η0 + ln

(
1− η
1− η0

)]
a = a0

(
(1− η) η0

(1− η0) η

)2

M = M0 +
1− 2A

B

[
η − η0 + ln

(
1− η
1− η0

)]
i = i0

ω = ω0

Ω = Ω0

(8)
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with:

η =
√

1− e2; η0 =
√

1− e2
0

2.4 The Contact Transformation

In order to complete the full approximated solution
to the original system, the infinitesimal contact trans-
formation that stems from the perturbation method
needs to be determined. Once this is done, the orbit
propagation paradigm is completed. The orbit prop-
agation algorithm takes an initial condition in the
original, 3-DOF (six dimensional phase space) sys-
tem, and Hamiltonizes it to create a new Hamilto-
nian osculating system within a 12 dimensional phase
space. The Hamiltonized problem is projected onto
the averaged system using the inverse contact trans-
formation to obtain the initial conditions of the av-
eraged system, Y0 = Y(t0) = CT−1 (X0). Given
those mean initial conditions, the system is analyti-
cally propagated to find the future mean state for any
Y(t) such that t > t0. Having calculated the mean
state in the desired future time, the contact transfor-
mation is used once again to approximate the future
osculating state at time t being X̃(t) = CT

(
Y(t)

)
=

X(t) +O
(
εj
)
, where j is the order of approximation.

In this case: j = 1 , ε = βµ−1. After having approx-
imated the future state of the osculating system, the
original system’s state is retrieved.
The homological equation yields successively [5]:〈

K̃β=0|WXY

〉
= M̃ − K̃

〈n0PM |WXY 〉 = M̃ − K̃

−∂WXY

∂M
=

1

n0

(
M̃ − K̃

)
(9)

Equation (9) is solved via a simple quadrature, and
the analytical expression of the infinitesimal contact
transformation is:

∆M = εηe−1

{(
2e2

1 + κ
− 1

)
σdr (10)

− [κ+ ln (1 + κ)] dθ]

∆ω = ε
{
σe−1dr + e−1 [κ+ ln (1 + κ)] dθ (11)

− cξdh}
∆Ω = εξdh (12)

∆a = 2εaeη−2 [κdr (13)

−
(
f − E +

1 + κ+ σ

1 + κ
σ

)
dθ

]
∆e = ε [κdr (14)

−
(
f − E +

η − η2 + 1 + κ

1 + κ
σ

)
dθ

]
∆i = −ε

[(
f − E

η

)
cosω (15)

+ ln (1 + κ) sinωdh]

where f is the true anomaly, E is the eccentric
anomaly and:

ξ =
η ln (1 + κ) cosω − (ηf − E) sinω

ηs

ε = βn0 (µne)
−1

3 Conclusions

Describing a physical system using an analytical
model is extremely beneficial for both computational
and qualitative reasons. On the computational part,
we have managed to introduce explicit algebraic equa-
tions that allow an instantaneous approximated prop-
agation of a spacecraft’s state to any future time,
given a set of initial conditions. Numerical simula-
tions have shown the order of magnitude of the er-
rors involved in such a first-order approximation. On
the qualitative part, the equations that were obtained
exposed new insights regarding the long term effect
of the SRP on a satellite. The separation between
the mean SRP effect and its periodic parts allowed a
deeper and more intuitive understanding of the dy-
namics of the system.
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1 Introduction

The demand for more efficient and faster orbital prop-
agation algorithms is increasing with the advent of
large satellite constellations and the ever growing
number of space debris [1]. These algorithms are
needed to propagate all satellites in a catalogue, e.g.
to determine close approaches or to correlate new
observations, playing the Low Earth Orbit (LEO)
regime a special role. This task is computationally
expensive. One way to optimize it is parallelizing al-
gorithms, models, or to perform the whole propaga-
tions using Graphics Processor Units (GPUs).

We present the preliminary results for a highly opti-
mized Compute Unified Device Architecture (CUDA)
version [2] of the geopotential spherical harmonic ex-
pansion based on the Cunningham method [3] and
its gradient (first-order). The proposal includes sev-
eral variants with different tradeoffs between speed
and accuracy. Its performance was evaluated against
GMAT [4], GODOT [5], and Orekit [6] astrodynamics
packages.

We also explored the suitability of variants with
mixed (single and double) precision arithmetic. The
mixed precision version performs all the internal com-
putations in single precision arithmetic with the ex-
ception of some input data and the final summations
that are computed in double precision arithmetic.

2 Results

The precision of the CUDA double variant, repre-
sented in Figure 1, is comparable to the other as-
trodynamics frameworks. The relative error is that
of the first-order gradient (acceleration) of the geopo-
tential, degree 100, with respect to the colatitude for
the considered CUDA case. As a reference solution
for computing such error, we took the same accelera-
tion, but evaluated in quadruple precision arithmetic.
The errors for the mixed precision version, Figure 2,
run from 10−7.7 to 10−6.5.
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Figure 1: Maximum relative errors of the accelera-
tion components of the geopotential (degree 100) as
a function of the colatitude for the double precision
CUDA version.

Figure 2: Maximum relative errors of the accelera-
tion components of the geopotential (degree 100) as
a function of the colatitude for the mixed precision
CUDA version.

We checked the usability of that mixed precision
version for LEO by means of a satellite propagation,
comparing its induced distance error with that of the
others perturbations. The selected satellite was the
IceSat (NORAD ID 27642), propagated from the TLE
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at epoch Feb 19, 2003. The satellite follows a near-
circular orbit at the height of 598.7 km. The impact in
the distance error after four days of propagation for
the different perturbations is represented in Fig. 3.
The induced error level due to using mixed precision
was of the same order of magnitude as the spherical
harmonic contributions of degrees higher than 100 and
much smaller than the other considered perturbations
(relativity, ocean tides, SRP, albedo, solid tides, third
body, and drag).

Figure 3: Distance errors caused by the different per-
turbations to an IceSat satellite numeric propagation.
The 12× 12 mp, 30× 30 mp, and 100× 100 mp lines
represent the error caused by the mixed precision with
respect to the double precision CUDA versions of the
same degree.

In terms of execution speed, Figure 4, the GPU
version is not competitive with respect to the most
efficient Central Processing Unit (CPU) implementa-
tions for low degree-order and one single computation.
For high degree-order (greater than 150 degree), the
CUDA variants are faster than CPU implementations

as expected due to the reduction of the algorithmic
complexity from O(n2) to O(n).

Figure 4: Single geopotential gradient computation
times. Measured as the mean value of ten compu-
tations after a warm-up of another ten. The CUDA
versions were executed in a NVIDIA GeForce GTX
1050i.

In the case of multiple simultaneous computations,
they can reach very high speed-up ratios for both the
mixed and double precision versions, as can be ob-
served in Figure 5. Given that the errors introduced
by the mixed precision formulation are of the same
order as of a spherical harmonic expansion truncated
at degree 100, we consider the CUDA mixed preci-
sion variant the best solution to perform massive LEO
propagations.

Figure 5: Speed-up ratios with respect to single-core
CPU for 2000 simultaneous gradient computations in
GPU. The CUDA versions were executed in Tesla
V100-SXM2 (V100 in legend) and NVIDIA A100-
SXM4 (A100 in legend) GPUs.
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1 Introduction

Graphics Processing Units (GPU)s provide much
higher instruction throughput and memory band-
width than a Central Processing Unit (CPU) within a
similar price range [1]. High-efficiency GPU software
can exploit this benefit and grant a huge computa-
tional time speed-up with respect to classical CPU
programs, up to two order of magnitude. Recently,
the employment of GPUs for space mission design-
related programs is increasing. Orbit propagation
software are suited to be accelerated by graphic cards,
allowing to propagate tens of thousands bodies in par-
allel. However, the difficulties related to implement-
ing efficient GPU algorithms for orbital interference
and event detection during the propagation make the
usage of graphic-cards less appealing. Moreover, GPU
programming can be hard, and it is not the focus
of space engineers. GPU software are particularly
powerful in large-scale analyses, such as Monte-Carlo
methods or grid search optimisations. However, han-
dling the consequent huge sets of output arrays com-
plicates the development of the software itself.

The aim of the work is to tackle the described prob-
lems suggesting some event detections algorithms that
exploit logical arithmetic to efficiently run in a GPU
based application, as well as efficient techniques to
handle the outputs.

The work presents the development of the event
detection algorithms in CUDAjectory, an open source
orbit propagation GPU software available under Eu-
ropean Space Agency (ESA) Community License, re-
cently developed by the mission analysis team of ESA.
The developments focus on the implementation of four
algorithms: close-approach, Low Earth Orbit (LEO)
protected region, Geostationary Earth Orbit (GEO)
protected region, and massless bodies collision. A sig-
nificant part of the work is also devoted to lower the
computational effort of the output handling, which
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is a significant bottleneck of GPU/CPU interaction.
The ultimate goal for the software is to enrich its in-
terference and detection capabilities in order to in-
crease both the amount of analyses perform-able and
the user pool, particularly focusing on large-scale sim-
ulation for planetary protection applications.

2 Brief overview of CUDAjectory

CUDAjectory is written in C++, CUDA and Python.
It is optimised to propagate millions of bodies, called
samples, on GPUs. The output consists in the final
states of the samples and the events detected dur-
ing the propagation. The user can exploit multiple
gravity models and orbital perturbations to tune the
accuracy of the simulation to their needs.

The propagation of each sample is carried on with
the patched conic approach [2]. An event algorithm
detects the change of Sphere Of Influence (SOI) and
updates the integration centre of each sample. An-
other algorithm detects the collisions between the
samples and the celestial bodies. The third event
detection algorithm available is the close-approach,
which outputs the points of closest approach to each
celestial body. The goal and the development of the
algorithm is presented in Section 3.

The position and velocity vector of celestial bod-
ies is retrieved at running time by exploiting plane-
tary ephemerides. The ephemerides data are an in-
put of the simulation and must be passed using the
NAIF-JPL Satellite and Planet Kernels (SPK) for-
mat. Many SPK types exist, and CUDAjectory is
currently compatible with respect to SPK types 2 and
3 only. These two file formats are optimised to evalu-
ate planetary motions [6].

In CUDA, the main functions executed on GPUs
are called kernels, and are issued by the CPU. The
samples are propagated in parallel by the computa-
tional units of the GPUs. In CUDAjectory, the sim-
ulation is divided in multiple sequential kernels, each
one performing N consecutive integrational steps,
where the amount of consecutive steps can be tuned
by the user. This simulation layout comes from a
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previous optimisation of the ephemerides evaluation
described in details in [3, 4]. After the execution of
each kernel, the partial output containing the even-
tual events detected and the intermediate states of
the samples is post-processed and the useful data are
saved.

3 Close-approach algorithm

The goal of the close-approach algorithm is to de-
tect the nearest point of each sample with respect
to its closest celestial body during the propagation.
The outcomes of the algorithm can be utilised by the
users for multiple purposes, for example to check and
identify potentials fly-by happened during the prop-
agation. The algorithm exploits a bisection-like pro-
cedure to converge at the event condition. The it-
erations are performed imposing the next time step
according to the range rate (rr), which is the radial
component of the relative velocity between a sample
and its closest celestial body:

rr =
rrelk · vrel

k

||rrelk ||
(1)

where the subscript k indicates the closest celestial
body. When the range rate is equal to zero, the sam-
ple is in its close-approach. The iterations start when
the algorithm detects a change of sign of the range
rate; the event is contained in the time interval be-
tween that epoch (tb) and the epoch at previous inte-
gration step (ta). Fig. 1 shows the timeline during the
propagation of a sample, together with its sign of the
range rate function, supposing that the integration is
carried on for 100 steps.

Figure 1: Timeline of the close-approach event during
the propagation of a sample.

The rationale of the loop is to half the time interval
at every iteration taking the part in which the event is
contained, until a tolerance is met, like in a bisection.
The algorithm imposes the integration step accord-
ingly. Logical arithmetic is used to keep the number
of if-else statements as low as possible, in order reduce
the warp divergence (i.e. a typical GPU performance
issue in which threads are stalled because of branch-
dependant instructions) [1].

4 Earth protected regions algorithms

The goal of the LEO and GEO protected region algo-
rithms is to detect the conditions at which the sam-
ples cross one of the boundaries of the two regions.
This implementation aims to extend the simulation
capabilities to Earth planetary protection and space
debris analyses. Fig. 2 shows the conventions adopted
to define the protected regions, according to the Inter-
Agency space Debris coordination Committee (IADC)
space debris mitigation guidelines [5].

Figure 2: Earth protected regions - IADC conventions
[5]

The work presents the reasons why a bisection-like
method is not a robust choice for these two algo-
rithms. Instead, an adaptive step refinement proce-
dure is used to update the next time step according to
a prediction of the altitude and the latitude (for the
GEO algorithm only). Calling the altitude z, the lat-
itude l, and the time step interval h, the predictions
are:

zn+1 ≈ zn + żnhn+1

ln+1 ≈ ln + l̇nhn+1

(2)

where indicates n the current time step. Eq. (2)
are based on a linear extrapolation of the first order
derivatives. The derivative of the altitude is given by
the radial velocity of the sample, while the deriva-
tive of the latitude is approximated with the back-
wards finite difference of the latitude between two
time steps. The predictions in Eq. (2) depend on the
next time step interval (hn+1) which is not known in
advance. However, the work proposes a robust way to
predict its worst possible value related to the integra-
tor scheme used in the software. The predictions are
used to identify potential crossings over the LEO or
GEO boundaries at running time. If this happens, the
step is adjusted in order to converge at the predicted
crossed boundary.

5 Massless bodies collision algorithm

The Massless bodies collision algorithm is aimed at
finding the collisions between the samples and a set of
user-defined bodies. The radius of the collision sphere
around each body is defined by the user. The mass-
less bodies are modeled as orbiting points without a
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proper mass. Consequently, the gravity acceleration
acting on the samples is not perturbed by this set of
bodies and the integrational step-size is not intrinsi-
cally refined by the integrator. The massless bodies
are not propagated by CUDAjectory. The goal is to
utilise a user-prompted ephemerides file to evaluate
the position and velocity of the requested massless
bodies.

As presented in Section 2, the current compatibility
of CUDAjectory with respect to SPK types limits the
possibility to provide data for non-planetary bodies.
For this reason, the work focused on the analytical im-
plementation of the Libration points motion, in order
to be utilised as massless bodies. Libration points are
equilibrium points under the influence of a primary
and a secondary mass [2].

The proposed algorithm exploits an adaptive step
refinement procedure based on the prediction of the
distance (d) between each sample and a massless
body, to converge at the detection. The prediction
is computed as:

dn+1 ≈ dn + ḋnhn+1

The derivative (ḋn) is given by the range rate, com-
puted as in Eq. (1).

Since the Libration points are modelled as massless
points, the time steps are not automatically refined
in the proximity of the points themselves during the
integration. As a consequence, the linear first order
extrapolation is not robust enough. In order to im-
prove the robustness of the prediction, the algorithm
also uses the magnitude of the sample velocity instead
of the range rate, which represents an upper boundary
of the range rate itself.

6 Software optimisation

In its early implementation, the output handling of
CUDAjectory took more than the 99% of the total
computational time in most of the simulations, rep-
resenting a huge execution bottleneck. This part of
the work was aimed at optimising the computational
time of the output handling, in order to make the soft-
ware much faster than orbit propagation packages on
CPUs. The implementation is based on the usage of
a common data-type structure to contain the kernel
output of every event detection algorithms, improving
the final results retrieval efficiency. Since the detec-
tions are mutually exclusive, a single common data
structure is allocated for each time step and for each
sample. The size of the whole allocation can be in the
order of tens of GigaBytes (GB). As a consequence,
simulations are often limited by the memory capac-
ity of the computer and the user must decrease the
number of samples to be propagated. For this reason,
the work focuses on the minimisation process of the

common data structure size, performed to reduce the
total memory required.

Nowadays, operating systems deal with the so
called virtual memory to store the applications data.
The required memory is divided in small chunks of
few KiloBytes (KB), called pages. When the required
memory is higher than the physical memory available,
the operating system relocates some pages from the
physical memory into additional virtual pages. The
additional pages are temporarily stored in the com-
puter storage, causing a huge performance bottleneck
in many applications. The optimised output handler
ensures that the physical memory is enough to store
all the required data, without using additional vir-
tual pages and consequently avoiding potential bot-
tlenecks.

CPU memory allocations are pageable by default,
which means that can be moved into the storage
if needed. It is possible to request physical, non-
pageable memory, which is called pinned or page-
locked memory. The optimised output handler ex-
ploits the mapped pinned memory, which is a specific-
type of pinned memory, to allocate the kernel output
and to further improve the performance.

7 Final remarks

The paper will present the development of the CUD-
Ajectory software and its powerful application possi-
bility to massive orbit propagation problems, such as
planetary protection studies. The improvement with
respect to previous versions of the software will be
shown, emphasizing the additional features developed
throughout this work, in order to give a clear under-
standing of the rationale for the chosen solutions, and
showing where additional margin for improvement is
available, paving the way for future works on the soft-
ware.
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Abstract

We present a new method in order to realize an effi-
cient temporal integration of Initial Boundary Value
Problems of second order in time. Such method can
be used to approximate the solution of these prob-
lems combined with an adequate spatial discretiza-
tion. The goal of this time integration technique is,
among others, the decrease in the number of time
steps that must be carried out, adjusting the size of
such steps to the behavior of the solution.

1 Introduction

It is well known that the partial differential equa-
tions of second time order together with adequate ini-
tial and boundary conditions allow the modeling of a
large number of physical situations, for example, in
strength of materials. Let u(x, t) be the solution of
such problem which admits a general formulation as



∂2u

∂t2
(x, t) + A(x, t)u(x, t) = f(x, t),

with (x, t) ∈ Ω× [t0, T ] ,

u (x, t0) = u0(x), with x ∈ Ω,

∂u

∂t
(x, t0) = u1

0(x), with x ∈ Ω

Bu(x, t) = g∂(x, t), with (x, t) ∈ ∂Ω× [t0, T ] ,
(1)

being x = (x1, · · · , xn)
T ∈ Ω ⊂ Rn the spatial vari-

ables, f(x, t) is the source term, B is the boundary
operator, u0(x), u1

0(x) and g∂(x, t) are initial and
boundary data. We will also assume enough smooth-
ness and compatibility conditions on the data. A(x, t)
is a linear differenctial operator of order d ∈ N which
contains the spatial derivatives. In the wave equation

A(x, t) =
n∑

i=1

4xi
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and in the Euler-Bernoulli equation

A(x, t) =
n∑

i=1

42
xi
.

Last equation is also called the beam equation for n =
1, the membrane equation if n = 2 and the generalized
membrane equation for n ≥ 3.

A common way to solve (1) is the method of
lines, this technique combine a spatial discretization
(Finite Differences, Finite Element, Spectral meth-
ods,. . . ) with a time discretization (Runge-Kutta
(RK), Runge-Kutta-Nyströn (RKN), . . . ). Both dis-
cretizations can be made in any order, we can dis-
cretize firstly in space or in time. The final result will
be the same, but the theoretical study of the process
will be lightly different. If the spatial discretization is
firstly made, a family of Stiff Initial Value Problems
is obtained:


U ′′(x, t) + Ah(x, t)U(x, t) = fh(x, t),

with (x, t) ∈ Ωh × [t0, T ] ,

U (x, t0) = U0(x), with x ∈ Ωh,

U ′ (x, t0) = U1
0 (x), with x ∈ Ωh,

(2)
here h is the size of the mesh Ωh, Ah(x, t) is dis-
cretization of the operator Ah(x, t) by including the
boundary conditions.

The numerical integration of (2) can be made by
using both explicit or implicit RK classical methods,
nevertheless to use this methods we have to double
the dimension of the problem which implies increas-
ing (sometimes in a very important way) the compu-
tational cost. To avoid this problem have been de-
signed methods like RKN methods (see [4]). In both
cases, the explicit methods have the disadvantage of
requiring some restrictions between the spatial and
temporal step, which can entail a high computational
cost; the implicit methods have the drawback of high
computational costs per time step, due to the high
dimension and complexity of the systems involved

The Alternating Direction Implicit (ADI) methods
were designed to avoid this type of disadvantages for
some concrete problems. The same design idea in a
more general context permit us to integrate PVI of
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first order (by using FSRK methods) and second or-
der by means FSRKN methods (see [1]). The main
additional advantage of such schemes is their uncon-
ditional convergence and low cost per time step. The
only requirement is realize a suitable splitting of the
space differential operator Ah(x, t) as a sum of simpler
operators in a certain sense.

Classically another improvement that has been
searched is the change of the temporal step by adapt-
ing it to the behaviour of the solution (see [2],[3],[5]).
The use of embedded pairs permits us to study ad-
equately the local error estimation and in this way
to adapt adequately the time step obtaining a better
solution with lower computational cost.

2 The method

An FSRKN method of s stages and m levels applied
to solve problem (2) is a numerical algorithm given
by:

Kn,i = Un + ciτVn +

+ τ2
m∑
l=1

i∑
j=1

al,ij (−Ahl(tn,j)Kn,j + fhl(tn,j)) ,

i = 1, . . . , s,

Vn+1 = Vn + (3)

+ τ

m∑
l=1

s∑
j=1

bl,j (−Ahl(tn,j)Kn,j + fhl(tn,j)) ,

Un+1 = Un + τVn +

+ τ2
m∑
l=1

s∑
j=1

βl,j (−Ahl(tn,j)Kn,j + fhl(tn,j)) .

Here the spatial operator and the source term has
been decompose as

Ah =
m∑
l=1

Ahl, and fh(t) =
m∑
l=1

fhl(t)

respectively. The operators Ahl must be verify
some properties such as being self-adjoint and neg-
ative semi-definite among other. Similarly to RK
or RKN methods Kn,i are the intermediate stages,
i = 1, . . . , s, and (Un, Vn)T is the numerical approxi-
mation to the exact solution (Uh(tn), U ′h(tn))T .

In order to apply adequately (3) it is necessary to
impose the following restrictions among their coeffi-
cients, if

al̄,ij 6= 0, βl̄,j 6= 0 or bl̄,j 6= 0

then

al,ij = 0, βl,j = 0, bl,j = 0, ∀ l 6= l̄ and ∀ i,

where tn,j = tn + cjτ and tn = nτ , n = 1, . . . , N , the
time step is τ = T/N and N the number of steps. A

tableau, which is similar to Butcher’s tableau for RK
methods, can be used to express these coefficients

c A1 . . . Am

βT
1 . . . βT

m

bT1 . . . bTm

=

c1 a1,11 am,11

...
...

. . .
...

. . .

cs a1,s1 · · · a1,ss . . . am,s1 · · · am,ss

β1,1 · · · β1,s . . . βm,1 · · · βm,s

b1,1 · · · b1,s . . . bm,1 · · · bm,s

.

The solution of an IVP can exhibit a very differ-
ent behaviour depending on the region due to the
variation in the magnitude of the derivatives of the
function. In such cases the adaptation of the time
step (by decreasing it when the slope increase or de-
crease quickly and by increasing it when the slope re-
mains stable) has been showed as an important tool.
To avoid this inconvenience embedded pairs are used.
The idea is to construct two FSRKN methods of dif-
ferent order in such a way that the lower order method
is embedded inside the higher order method. This
way, at each step we calculate two methods with just
one set of stages and an estimate of the local error
can be found. Selecting a tolerance for the local error
and a criteria for the next step size one obtains an
adaptive step size method.

We will present the first embedded pair FSRKN
designed, which is a pair 2(1) of four stages a two
levels. It is a very simple method, but it opens the way
to the building of another methods of higher order.
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1 Introduction

The work of Yamanaka and Ankersen (hereafter YA)
in [1] represents a breakthrough in the modelling of
relative motion along close Keplerian orbits. In that
paper, the authors were able to obtain a fully analyt-
ical state transition matrix (STM) starting from the
linearized equations of relative motion with respect to
a Keplerian elliptical orbit, also known as Tschauner-
Hampel (TH) equations. Since that proposed STM
works for an arbitrary value of the nominal orbit ec-
centricity it is considered a milestone result in astro-
dynamics and is widely employed in the literature. A
fundamental, often overlooked, step in the derivation
of the YA STM, is the use of a “pulsating” reference
length unit very similar to the one employed in the
Nechvile curvilinear coordinates for the study of the
restricted three-body problem.

In this work, we rewrite the relative motion equa-
tions in pulsating cylindrical coordinates, then lin-
earize them obtaining a curvilinear analogue of the
TH equations, and finally obtain a curvilinear ana-
logue of the YA STM. The advantage of working with
curvilinear coordinates instead of Cartesian ones has
already been analyzed, for example in [2][3] for a cir-
cular case with a cylindrical system, and in [4] for an
elliptical orbit with a spherical one. Here, we apply
the cylindrical coordinates STM to the propagation of
orbit uncertainties showing an improvement in uncer-
tainty realism compared to the Cartesian case in the
great majority of relevant space situational awareness
applications.

2 Curvilinear system definition

Let us use the distance from the target to the cen-
tral body in each instant of time, R = p/γ(ν), as a
pulsating unit of distance, where γ(ν) = 1 + e cos ν
and p = a(1 − e2), being a, e and ν the semi-major

∗Email: alicia.martinez.cacho@upm.es. Research supported
by a PhD grant under UPM “Programa Propio”.

†Email: claudio.bombardelli@upm.es. Research supported
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axis, eccentricity and true anomaly of the target’s or-
bit, respectively. Using this, we define the in-plane
curvilinear coordinates, that appear on Figure 1, as:1

ρ =

√
(1 + x)

2
+ (y)2 − 1, (1)

θ = atan2∗(y, 1 + x), (2)

where the position of the chaser relative to the tar-
get in the local-horizontal (LVLH) frame, with the
orthonormal basis {i, j,k} (Figure 1)2, is:

d = xi+ yj+ zk. (3)

The out-of-plane curvilinear coordinate coincides with
the Cartesian one, that is, the mentioned z.

Figure 1: Relative motion geometry using the instant
radious of the target as the unit of distance.

3 State transition matrix in curvilinear coordi-
nates

First of all, we need the equations of motion in the
curvilinear coordinates. These are:

ρ′′ − 2θ′ − 3

γ
ρ = aiρ +

1

γ
agρ

θ′′ + 2ρ′ = aiθ

z′′ + z =
1

γ
agz,

(4)

1The function atan2∗ is mod (atan2(x, y) + 2π, 2π).
2Notice that the basis {i′, j′,k′} corresponds to the perifocal

coordinate system.
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where the right side contains the non-linear terms:

aiρ = θ′
2
(1 + ρ) + 2θ′ρ,

agρ = −2ρ+ 1− (1 + ρ)

[(1 + ρ)2 + z2]
3/2

,

aiθ =
2ρ′(ρ− θ′)

1 + ρ
,

agz = z − z

[(1 + ρ)2 + z2]
3/2

.

(5)

These equations are obtained following a procedure
similar to the one used in [2], but with an elliptical
orbit for the target instead of a circular one. The true
anomaly of the target is used as the independent vari-
able (whose derivatives are indicated with primes).

The linearized version of these equations has the
same structure as the TH equations:

ρ′′ − 2θ′ − 3

γ
ρ = 0

θ′′ + 2ρ′ = 0

z′′ + z = 0.

(6)

This similarity allows us to obtain a STM similar to
the YA one by following the same mathematical devel-
opment followed in [1]. Hence, the problem has to be
subdivided in the out-of-plane and in-plane motions.

3.1 Out-of-plane

In the out-of-plane motion, curvilinear and Cartesian
coordinates coincide. 3 Therefore, the STM coincides
too, being:[

z
z′

]
=

1

γν−ν0

[
c s
−s c

]
ν−ν0

[
z0
z′0

]
, (7)

where c = γ cos ν and s = γ sin ν.

3.2 In-plane

In this motion, cylindrical and Cartesian coordinates
differ. However, as the equations have a similar struc-
ture, the curvilinear STM can be obtained following
the same procedure depicted in [1]. The result is:


ρ
θ
ρ′

θ′

 =


0 s c (2− 3esJ)
−1 c (1 + 1/γ) −s (1 + 1/γ) −3γ2J
0 s′ c′ −3e

(
s′J + s/γ2

)
0 −2s −2c+ e −3 (1− 2esJ)


ν


K1

K2

K3

K4

 (8)


K1

K2

K3

K4

 =
1

e2 − 1


3e(s/γ)(1 + 1/γ) e2 − 1 2− ec es(1 + 1/γ)
−3(s/γ)(1 + e2/γ) 0 c− 2e −s(1 + 1/γ)

−3(c/γ + e) 0 −s −c(1 + 1/γ)− e
3γ + e2 − 1 0 es γ2


ν0


ρ0
θ0
ρ′0
θ′0

 , (9)

3Notice that in [1] the coordinate y is oriented following the
direction of −h (being h the angular momentum vector of the
target) while in our system z is oriented towards h.

where J(ν) =
∫ ν

ν0

dν

γ2(ν)
=

µ2

h3
(t − t0), being µ the

gravitational parameter of the central body and h the
angular momentum of the target.

4 Uncertainty Realism

One important application of the STM is the uncer-
tainty propagation. Hence, it is of high interest the
evaluation of the performance in uncertainty propa-
gation of the new curvilinear STM by comparing it
with the YA STM performance. This is carried out
by means of the Uncertainty Realism which is evalu-
ated using the Cramer-von Mises (CvM) test of the
Mahalanobis distance distribution. The details of this
test can be found in [5].

Considering an initial Gaussian Probability Density
Function (PDF) and its corresponding set of orbital
states sampled, the CvM test evaluates if the Maha-
lanobis distance of the samples follows a chi-squared
distribution for each epoch. When this is achieved
the PDF remains Gaussian, thus the uncertainty is
realistic. The Mahalanobis distance is defined as:

Mi(xi;µ,P) = (xi − µ)TP−1(xi − µ), (10)

where, at each time instance, xi is the ith sample
state propagated with a full nonlinear orbital dynam-
ics model, µ is the mean of the set of samples and
P is the linearly4 propagated covariance matrix. The
covariance matrix propagation is done by:

P(t) = Φ(t, t0)P(t0)Φ
T (t, t0), (11)

where Φ(t, t0) is the STM in the corresponding space.

4.1 Test conditions

In this work, the CvM test is performed in Cartesian
coordinates using YA STM and in curvilinear coordi-
nates with the STM obtained in section 3. In both
cases the set of samples has a size of N = 10000 and
the test is performed with a 99.9% confidence level.
This pair of confidence level and N implies that the
covariance is realistic while the value of the CvM test
statistics remains lower than 1.16204 [6]. The set of
samples is propagated using Matlab’s ode45 and a
Keplerian dynamic model.

5 Results

There are two different orbits to be studied whose ini-
tial orbital elements are shown in Table 1 and whose
initial covariance matrices written in the LVLH frame

4Notice that the CvM test can be used with nonlinear co-
variance propagation methods. However, as our interest lies
on the study of a STM, only the linear propagation has been
considered

 KePASSA-22. 22‐24 June. 2022 in Logroño, Spain        158 



5th International Workshop on Key Topics in Orbit Propagation Applied to SSA, Logroño, June 22-24, 2022

are shown in Table 2. When performing the test for
the curvilinear STM, the covariance matrix is trans-
formed by the full nonlinear elements conversion.

Type rp (km) e i (◦) Ω (◦) ω (◦) M (◦)
GEO 42164.1 0 0 0 0 0
LEO 7000 Variable 25 120 0 180

Table 1: Initial orbital elements

Case σx (m) σy (m) σz (m) σẋ (m/s) σẏ (m/s) σż (m/s)
GEO 1000 3000 5000 0.3 0.1 0.4
LEO 100 300 500 0.03 0.01 0.04

Table 2: Initial Covariance in LVLH frame

The first case of study is a GEO with a TLE-like co-
variance matrix. The values of the covariance matrix
have been obtained after analyzing the position and
velocity uncertainty for different satellites in GEO,
whose data were obtained as two-line elements (TLEs)
from the webpage https://www.space-track.org/.
As for the second case, it corresponds to a LEO that
is studied for different eccentricities: from the circular
case to e = 0.8 in intervals of 0.1. For this case, the
covariance matrix selected is the the GEO TLE-like
covariance reduced by a factor of 10.

The Cramer-von Mises (CvM) test statistics for the
circular cases, that is, the GEO and the circular LEO
is shown in Figure 2. In both cases, the CvM test fails
before 1 orbital period with the Cartesian YA STM
whereas with the curvilinear STM the realism is main-
tained for more than 10 orbits for GEO and more than
16 orbits for the circular LEO. Therefore, in these
cases curvilinear coordinates provides a huge improve-
ment in realism with respect to Cartesian ones.

Figure 2: CvM test statistics for: left, GEO; right,
circular LEO

Figure 3 shows the results for two of the eccen-
tricities studied for the eccentric LEO: the smallest,
e = 0.1, and the highest, e = 0.8. For e = 0.1, the re-
alism is maintained for half an orbit for YA STM and
around 4 orbits for curvilinear STM. This result en-
tails a better performance with the curvilinear STM
again. Regarding the case of e = 0.8, both YA and
the curvilinear STM provide the same results. As we
can see in the right graphics of figure 3, the test fails
before 1 orbital period, which is a poor result.

Figure 3: CvM test statistics for the LEO case with:
left, e = 0.1; right, e = 0.8

Eccentricity
STM 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Cart 0.47 0.52 1.32 1.38 1.42 1.45 1.46 0.49 0.48
Curv 16.48 4.25 2.37 2.35 2.37 2.4 2.42 1.47 0.48

Table 3: Number of orbital periods for the CvM test
before failure for LEO

The results obtained for the rest of the eccentricities
are summarized in table 3. As for the Cartesian YA
STM, the realism breaks down after only half an orbit
or one orbit and a half for all the cases considered.
On the other hand, the curvilinear STM maintains
covariance realism for a considerably higher number
of orbits as long as the eccentricity is not too high.
This advantage decreases as the eccentricity grows,
disappearing for eccentricities higher than 0.7 where
both Cartesian and curvilinear coordinates perform
poorly.
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1 Introduction

Tumbling asteroids belong to a group of objects,
whose angular velocity vector is unaligned with any
of its principal axes of inertia. This leads to chal-
lenging efforts to model the trajectory of any space-
craft designed to orbit these bodies. The PHA aster-
oid (99942) Apophis (2004 MN4) is one of the largest
tumbling asteroids to have a very close approach to
Earth at a distance of ∼38 000 km from the Earth’s
center, on April 13th.,2029, where dramatic changes
in its orbit will be observed.(J. et al., 2005; Souchay
et al., 2018) modeled the important changes in the
rotational parameters of the axis of rotation. In this
work, a preliminary analysis of the orbital dynam-
ics of a spacecraft in orbit close to Apophis is pro-
vided. The gravitational field of the target is repre-
sented by a cloud of point-masses system distributed
inside its polyhedral shape. The impact of the close
approach with our planet on the spacecraft is ana-
lyzed considering the gravitational perturbations of
the planets on the Solar System, the Solar radiation
pressure (SRP), and also the effects of the changes of
spin state due to the terrestrial torques. A 60-days
integration is carried out ranging 43 days before and
16 days after the encounter. In a very large major-
ity of cases, the spacecraft undergoes a collision or
escape due to the perturbation caused by the close
encounter. A time-series prediction with Neural Net-
works in Python with Keras is used to classify orbits
based on a relationship between the difficulty in the
prediction and the stability. This method can isolate
the most regular orbits in the system. A good corre-
lation was found between the Time-Series prediction
approach and MEGNO or the Perturbation Map. A
sliding mode control theory is applied to solve the sta-
bilization problem for the system. With a total ∆V
of 0.495 m/s, we successfully stabilized an orbit with
an initial semimajor axis of 0.5 km.

*Email: safwan.aljbaae@gmail.com

2 Dynamical model

The equations of motion used here are referred to an
inertial reference frame with origin on the centre of
mass of the asteroid. We considered the gravitational
influence of the planet-size bodies of our Solar System.

r̈ = Ur +
14∑
i=1

Gmi

( ri − r

|ri − r|3
− ri
|ri|3

)
+ νPR (1)

where, νPR represents the acceleration due to the
SRP considering the shadowing phenomenon (Aljbaae
et al., 2021a), applied for an OSIRIS-REx-like space-
craft with a reflectance of 0.4 and a mass-to-area ratio
of 60 kg.m−2. Ur is the gradient of the gravitational
potential of the asteroid, calculated from a sum of
3996 points after rotating the polyhedral shape about
the origin, in terms of longitude, obliquity, and pre-
cession (Aljbaae et al., 2021b).

Figure 1: Minimum and Maximum variations of the
orientation of Apophis spin axis.
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3 Results

In Fig. 2, we show the final states of the orbits inte-
grated for 40-days and 60-days. We notice that the
large majority of the orbits (∼ 95%) collide or escape
from the system just after the close encounter with
our planet, whereas the totality of orbits are bounded
before. We also remark that the initial Apophis spin
orientation slightly affects the distribution of the col-
liding and escaping orbits.

Figure 2: Characterization of the orbits around
Apophis for 40 days and 60 days time span starting
from March 1, 2029.

3.1 MEGNO algorithm (Mestre et al., 2011)

A global dynamics insight is obtained by calculating
the average of the relative divergence of the orbit.

MEGNO =
2

T

T∑
k=1

k ln

(
δ(k)

δ(k − 1)

)
(2)

where, δ(k) represents the deviation vector in the
phase space, and T is the time of integration. The
larger MEGNO values correspond to a higher degree
of chaos and a higher chance of instability.

Figure 3: MEGNO dynamical maps for the spacecraft
orbits around the Apophis system.

3.2 Perturbation Map of type II (Sanchez and
Prado, 2019)

In this method, we calculate the perturbations of en-
ergy undergone by the spacecraft.

PIii =
1

T

∫ T

0

〈a, v

|v|
〉dt, (3)

where, a is the acceleration due to the whole pertur-
bations of the orbital motion, v is the velocity of the
spacecraft, T is the final time of the integration. This
approach gives a good indication of the variation of
energy caused by the perturbations.

Figure 4: Perturbation maps of type II (PMap) for a
spacecraft orbiting around Apophis.

3.3 Time-Series prediction

This method consists in using a sequence of random
variables to create a model fitted to historical data
and to apply it to predict the future. The dataset
for each orbit consists of 6 features (positions and ve-
locity), recorded every 30 seconds. The first 90% of
the points in each orbit (54 days) are used to train
the model and predict the position of the spacecraft
during the last 6 days of the orbit. The area between
the predicted and real data (A) is used to classify the
orbits. The smaller the area, the more predictable the
orbit, which makes the spacecraft mission much easier
to be mapped and planned out.

Figure 5: Example of a regular and an irregular orbit
for a spacecraft orbiting around Apophis.
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Figure 6: Forecasting maps using the Time-Series pre-
diction for orbits around Apophis.

The coherence between the three methods pre-
sented above, using the Pearson correlation coefficient
is presented in Fig. 7.

Figure 7: Correlation matrix for the three methods
used to investigate the phase space structure associ-
ated to Apophis.

3.4 Orbital control around (99942) Apophis

In order to solve the stabilization problem for the sys-
tem around Apophis, we applied the sliding mode con-
trol theory, controlling only the geometry of the orbit,
trying to keep the orbital elements nearby the desired
values Negri and Prado (2020a,b). In Fig. 9 and 8 we
present an example of orbit successfully stabilized us-
ing a total ∆V of 0.495 m/s for 60 days of operation.

Figure 8: The control components of the orbit shown
in Fig. 9

Figure 9: Controlled orbit close to (99942) Apophis,
in the inertial frame. a0 = 0.5 km, e0 = 0.2, i0 =
180◦, and other orbital parameters are fixed to 0.
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1 Introduction

Formation flying is a distributed satellite architecture
that foresees two or more spacecraft orbiting in a pre-
defined configuration and synchronizing their opera-
tions. Combining their instruments results in an im-
proved spacial and temporal sensing ability that could
not be achieved with a single satellite. Several appli-
cations benefit of this architecture: in particular, ele-
vation [15] and cloud [21] profiles mapping, geolocal-
ization [11], high resolution imagery, gravimetry [22],
and magnetometry [9], but also, technology demon-
strations preparing for active debris removal [10] and
on-orbit servicing [24].

These complex missions could have not been con-
ceived without the efforts of great astrodynamicists.
Several models were developed from the Clohessy-
Wiltshare [8] to account for different perturbations,
induced by an elliptic orbit of the chief satellite [23]
or/and the oblateness of the main body [20, 1, 25].
For Earth-like bodies, the J2 effect induces short-,
long-period and secular variations that affect the con-
figuration of the satellites [7]. Schaub and Alfriend
noticed that, in first order approximation, the conju-
gate momenta of the mean elements remains constant
while the mean angles grow linearly. With a thought-
ful selection of semi-major axis, eccentricity and in-
clination difference, it is possible to nullify these rates
and to bound the motion of the deputy satellites to
the chief for few periods [18]. An equivalent reduc-
tion of the longitude of the ascending node and the
mean argument of the latitude rates can be obtained
constraining the along-tracks drift and negating ei-
ther the differential nodal precession or the differen-
tial perigee rotation [2]. Gurfil derived an analytical
expression for the inter-satellite distance [12] that was
used by Nie to determine conditions for the fifferen-
tial nodal precession (DNPN), the differential periap-
sis drift (DPRN) and minimum acceleration (MAC)
[17]. Nie showed that by minimizing the initial drift
rate, it is possible to determine solutions in mean el-
ements difference that remain within a 5% margin of

∗Email: davide.menzio@uni.lu
†Email: ahmed.mahfouz@uni.lu
‡Email: dallavedova@luxspace.lu
§Email: holger.voos@uni.lu

the mean inter-satelite distance for about a year.

A different approach is the one of Koon et al. [14],
that proposed to initialize the satellite orbits on the
center manifold of the periodic orbit that appears in
the Routh-reduced system perturbed by zonal har-
monics [6]. Nevetheless, upon conversion in osculating
elements, the configuration does not survive for more
than few days under the effect of the natural drifts.
Xu et al. obtained yearly bounded formations by
matching the nodal periods and the RAAN drift rates
of the psuedo-circular and pseudo-elliptical orbits [26].
Baresi and Scheeres explicitly computed the quasi-
periodic invariant tori within the center manifolds of
the periodic orbit via a stroboscopic approach and
used it to determine trajectories that remain bounded
around Earth [5, 4] and asteroids [3].

A notable mention is the integrable intermediary of
Lara that captures not only secular variations but also
short and long period ones [16]. Based on the obser-
vation that the analytical solution of the approxima-
tion are 1:1 resonant orbit at the critical inclination,
Gurfil showed that initializing the chief satellite on
a frozen orbit can reduce the inter-satellite distance
growth rate [13].

In this work, we rely on the analytical conditions
derived by Nie and Gurfil [17] to initialize orbit of
the chief and the deputy satellites. We evaluate dif-
ferent sets of mean elements of the chief and deputy
in term of maximum and minimum inter-satellite dis-
tance variation, the time within the bounds and the
cost of resetting the orbit to the initial conditions.

2 Methodology

When the conjugate momenta of chief and deputy dif-
fer, the relative distance between the two is subjected
to a secular growth. This can be prevented by negat-
ing the along-track drift:

δṀ + δω̇ + δΩ̇ cos i0 = 0,

and either the differential nodal precession δΩ̇ = 0
or the differential perigee drift δω̇ = 0, resulting in
the DNPN and DPRN conditions for the semi-major
axis and eccentricity differences, respectively:
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DNPN :

 δa0 = − (3η0+4)J2R
2
e(5 sin 2i0+2 tan i0)

16aη4
0

δi0

δe0 =
η2
0 tan i0

4
√

1−η2
0

δi0
,

DPRN :

 δa0 = − (3η0+4)J2R
2
e(14 sin 2i0+5 sin 4i0)

16aη4
0(5 cos 2i0+3)

δi0

δe0 =
5η2

0 sin 2i0

2
√

1−η2
0(5 cos 2i0+3)

δi0

where a, e, i, Ω, ω and M are the semi-major axis,
eccentricity, inclination, longitude of the right ascen-
sion, argument of the periapsis and mean anomaly
of the chief, delta consists in the mean elements dif-
ference between the chief and the deputy, and the
subscript 0 is associated to the initial condition from
which the propagation is started. Moreover, η0 is de-
fined as,

η0 =
√
1− e20.

This result can be further improved by minimising
the distance drift rate, assuming that there the semi-
major axis and eccentricity differences are propor-
tional to the inclination difference:

MAC :
{

δa0 = k∗1δi0 δe0 = k∗2δi0 ,

where the expression for k∗1 and k∗2 can be retrieved
from [17].

Nie and Gurfil also proposed two constraints that
should help in reducing the distance drift:

1. a negative initial drift rate for DNPN, DPRN and
MAC conditions;

2. a minimum initial drift rate for the MAC con-
dition, given an initial distance and inclination
difference.

If the first condition offers a set of inequality con-
straints that help choosing the mean angles difference
of the deputy satellite, the latter provides their exact
solutions [17].

In this paper, we evaluate the role of the initial
semi-major axis of the chief satellite, ranging from
400 to 800 km in altitude, the initial inclination dif-
ference of the deputy and the initial inter-satellite dis-
tance, so that the latter varies between 10 and 1000
km. The other orbital elements of the chief are fixed
to 0.05 value of eccentricity, 48 or 88 degrees of in-
clination as per [18, 17], 0 degrees of right ascension,
90 degrees of argument of the periaspsis and 0 de-
grees of mean anomaly. The initial semi-major axis,
eccentricity, right ascension, argument of the periap-
sis and mean anomaly differences are determined for
the given set of initial inclination difference and ini-
tial inter-satellite distance obtained from the MAC
condition with minimum initial drift rate.

Different combinations of initial semi-major axis of
the chief, initial inclination difference of the deputy

and initial inter-satellite distance are evaluated in
term of the time and cost of reset. The time of
reset is obtained halting the propagation once the
maximum osculating distance exceeds twice the initial
value while the cost of reset accounts for the delta-v
needed to restore the orbit of the deputy to its initial
values.

To do so, a Lyapunov-based nonlinear controller is
employed. The asymptotic stability of the controller
is proven in [19], where the ideal control action is mod-
eled as a continuous acceleration in the LVLH frame of
the chief spacecraft. The control acceleration vector
is generated according to the following control law:

u = −P (B⊺B)
−1

B⊺eerr, (1)

where P is a scalar control gain, e being the vector
of the mean Keplerian elements, eerr = ed − ereq is
the error signal fed to the controller, with ereq and
ed being the required and the actual mean Keplerian
elements of the deputy spacecraft, and

B :=
∂ėd
∂u

is the Jacobian matrix of the deputy’s mean elements
with respect to the control acceleration, derived from
the Gauss variational equations. The full expression
can be found in [19].

Representing the contour levels associated time and
cost of reset superimposed, we hope to shed some light
on which are the best combination of initial inclina-
tion difference of the deputy and inter-satellite dis-
tance for a different initial semi-major axis of the chief
satellite.

This work will support LuxSpace in deploying a two
satellite formation performing performing bistatic sar
imagery at 450 km altitude relyin on inter-satellite
link and low-trhust propulsion.
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1 Introduction 

Two-Line Elements (TLEs) data are a key source of 

information to understand the evolution of the 

cirmcumterrestrial space environment. The Two-Line 

Elements (TLEs) that result from Simplified General 

Perturbation 4 (SGP4) orbit determination allow 

rapid, modestly accurate propagation of the entire 

trackable population of now roughly 20,000 resident 

space objects. Excluding military restricted assets, 

TLE data are the only openly available, comprehensive 

catalogue of space objects and this database supports 

many technical analyses[1]: the Space Debris Office at 

ESA predicts conjunction events based on Two-Line 

Element (TLE) data obtained from the US Space 

Surveillance Network[2]. In [3] TLE data are a source 

to estimate satellite lifetime. In addition, collision risk 

assessment and avoidance has become critical and has 

attracted significant research attention. However, 

frequent maneuvering affects spacecraft operational 

life, and reduces space mission continuity[4]. It would 

be an asset if each active space object in orbit would 

be capable of constructing its SSA and compute at 

least a rough probability of collision using publicly 

available data, such as the TLE. This would primarily 

lower the ground workload[5], releasing it from the 

screening task for detecting collisions. Second, the 

owner of a constellation could optimize collision 

avoidance maneuvers taking into account collision 

probability with other bodies[6]. Due to data errors and 

forecast errors, the intersection relationships errors 

inevitably exist. The lack of uncertainty information of 

TLEs has initiated numerous studies into the accuracy 

of TLEs, methods for estimating their covariance, and 

improvements to their accuracy[7]. There is a wide 

range of methods that allow the uncertainty 

information to be estimated. These approaches differ 

greatly in complexity, accuracy and applicability[8]. 

Much has been said about the accuracy of TLEs 
compared to true data. For instance, the typical at-
epoch position accuracy from TLEs for a large Low-
Earth orbit object is an easily memorizable figure of 
1000m/200m/300m in the along-track/radial/cross-
track directions. However, little has been said about the 
accuracy limitations of propagated TLEs and the impact 
of the update frequency, especially when it comes to 
employ TLEs data to monitor conjunctions. 

The aim of this work is to provide a deeper analysis 

of TLEs accuracy of both LEO and GEO 

objects considering the frequency of updated TLE 

data. The analysis is performed exploiting high-

accuracy data from DORIS integrated radio-

positioning (for LEO) and Wide Area Augmentation 

System (WAAS) satellites in GEO, as well as a 

high-fidelity in-house propagator. A comparison 

with available covariance data from 

conjunction data messages (CDMs) is also 

performed. Finally, the implications for conjunction 

screening (CS) and collision avoidance 

maneuvering (CAM) are discussed. 

2 TLE frequency 

In order to develop a complete analysis of the 

accuracy of TLEs, it is very important to focus the 

attention on the epoch at which TLE are collected 

and then released. TLEs are not a real time epoch 

measurement. This is because the TLE is moved to 

the last ascending node before release for 

distribution for LEO satellites. Thus, the time 

interval between consecutive data is integer 

multiple of the orbital period of the satellite, that 

is about 100 minutes, with a tolerance of 0.1 orbits 

(10 minutes). The frequency of TLE data can vary 
from 2 orbits up to 15 orbits as shown in Fig. 1
obtained for Jason 3 satellite in 9 months of 

observation. This has a consequence in the 
practical  applications of TLEs.  Unless  the  event
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This assumption is not valid for GEO satellites, 
otherwise it will be available, in the best case, only 
one TLE per day. Frequency for a GEO satellite 
(ANIK F1-R) are reported in Fig. 2. Note that on

x-axis are reported the hours, not the orbits as in

the previous plot.

Fig. 2 TLE frequency for ANIK F1-R satellite (GEO) 

Consequently, to perform an accurate TLE analysis, 

two main steps have to be conducted: 

• At-epoch accuracy: analysis of TLE accuracy

as they are released from US Space
Surveillance Network;

• Propagated-state accuracy: in this case TLEs

are the input of a numerical propagation the

aim of which is to obtain the state of the

satellite at an epoch between consecutive TLE.

3 At-epoch accuracy 

The accuracy of the at-epoch TLE state has been 

calculated for LEO and GEO satellite comparing the 

TLE data with two high-accuracy databases, which are 

respectively DORIS data for LEO satellites and WAAS 

catalogue for GEO satellite. 

Each TLE has been propagated until the closest DORIS (or 
WAAS for GEO) data available with a high-accuracy 
orbital propagator. Considering that DORIS data have a 
frequency of 60 seconds and WAAS data are collected each 
256 seconds, the time span of the propagation is relatively 
short. This step is fundamental to have a clear idea of 
initial error of TLE considering that they will be 
propagated in the next step, which is the main goal of this 
work. Results show that, as already known, position error 
is smaller than 1 km for LEO satellite and below 40 km for 
GEO satellite. Analysis have been repeated for different 
LEO satellite equipped with a DORIS receiver and 
different GEO satellite for which WAAS data were 
available. 

4 Propagated state Accuracy 

The greatest contribution of this paper is the analysis of 
the TLE when they are propagated with a high-accuracy 
numerical propagator in. According to the goals, different 
LEO satellites have been selected to perform a forward 
propagation until the Medium Julian Date (JDM) between 
consecutive TLE. Note that JDM epoch is not a random 
choice, but it has been considered that for epoch after JDM 
it is possible to perform a backward propagation from

the successive TLE in order to reduce the time of the 

propagation. Also in this case, JDM state has been 

compared to the closest DORIS data; for this reason, a 

second short (less than 30 seconds) propagation is 

necessary. Magnitude of error is increased after the 

propagation as shown for JASON 3 satellite in Fig. 3. 

Errors are projected along normal/tangential/out-of-

plane local reference frame. 

that has to be study is exactly at the passage of the ascending node, it is 
necessary to perform a numerical propagation of TLE data to study the 
phenomenon at the epoch of interest. 

Fig. 1 TLE frquency for JASON 3 satellite (LEO) 

Fig. 3 Position error at JDM for Jason 3 satellite 

Results show that tangential position error is still the 

dominant component of error and that due to the 

propagation the error goes up to 6 km. At this point, 

the results have been reworked considering that each 
TLE has been propagated until JDM, and t his  means
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Filtering the error of propagated state in these 4 groups 

show that the accuracy of the position along the 

tangential axes is strongly influenced by the classes of 

frequency selected: it is smaller that 1 km for group 1 

and 2, goes to 2 km for group 3 and reaches an error of 
4 km only for the 3% of the TLE grouped. Mean and 

standard deviation for different number of revolutions 

are also reported in Table 1, which shows how the 

accuracy is influenced by the frequency of TLE and, 
consequently, the duration of the propagation. 

Table 1 Mean and standard deviation of position magnitude and 

tangential position error for different number of revolutions 

Position magnitude [m] Position error along 𝑢𝑡 [m] 

Number of 

revs 
Mean 
𝝁 

Std 
𝝈 

Mean 
𝝁 

Std 
𝝈 

2 447,65 306,71 -99,72 494,28 
6 963,96 908,75 -285,6 1289,47 
11 1683,58 1557,45 -458,24 2258,54 
14 1798,76 2299,34 -1362,96 2644,25 

5 Conclusions 

Two-Line Elements (TLE) data represent a 
fundamental tool in orbital dynamics and Space

Situational Awareness sector. However, TLEs does contain 
non-negligible inaccuracies and it is necessary to take them 

• Group 1: frequency smaller than 2 orbits;

• Group 2: frequency between 3 and 4 orbits;

• Group 3: frequency between 5 and 8 orbits;

• Group 4: frequency higher than 9 orbits.

that the duration of the propagation is directly related 

to the TLE frequency. Therefore, considering that the 

along track component of error increases with the 

interval of the propagation, a possible approach to 

better understand the results to divide TLE into classes 

of frequency. Four different classes of frequency have 

been individuated and named “group” as shown: 

into account when performing a collision prediction, an 
orbit reconstruction or whatever. For LEO and GEO

satellite it is possible to state from previous analysis 

that the position error is respectively 1 km and 40 km. 

In most of the applications it is not possible to find a 

TLE and the epoch of interest, so a propagated state 

has to be obtained. In applying this process, it is 

firstly necessary to use a high-accuracy orbital 

propagator. Anyway, the error can strongly increase 

with the propagation, and it is influenced by the 

duration of the propagation and the frequency of 

TLE. 
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