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Prólogo 

 

 

Al publicar la primera edición de este libro titulado Ciencia del 

Muestreo, en inglés Sampling Science, reviso y amplío el libro con 

el mismo título, del mismo autor y del publicador Bubok, y 

proporciono los razonamientos matemáticos sobre los que se basan 

los métodos inferenciales de uso común en el muestreo y la 

estimación en poblaciones finitas. 

 Estos procedimientos son los más objetivos que conozco 

entre los métodos estadísticos inferenciales, ya que no hay que 

suponer que la población es de algún modo “sin comprobación 

posible” como ocurre en la mayor parte de teorías de inferencia 

estadística y de predicción. Además, la aleatorización y sus 

propiedades son características que “el investigador controla y no 

tiene que suponer” a su vez que se comporta de algún modo 

determinado como ocurría en la inferencia paramétrica clásica, la 

bayesiana, la no paramétrica, etc. basadas en poblaciones con 

función de densidad (o en gran parte de modelos de distribución 

probabilística) y en datos observados. En nuestro libro entendemos 

que los datos son medidas objetivas y exactas de la realidad física 

que nos rodea y que podemos observar, cuantificando las 

observaciones. 

 El conocimiento objetivo de características poblacionales que 

deben ser conocidas con cierta precisión, para corregir cualquier 

deficiencia o atender nuevas necesidades sociales requiere el uso 

de métodos libres de hipótesis subjetivas o no comprobadas en la 

práctica. La teoría inferencial en poblaciones finitas que 
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desarrollamos aporta sólidos conceptos y resultados matemáticos 

que permiten conocer estas características con métodos objetivos, 

sencillos, precisos, rápidos y económicos en comparación con la 

realización de censos que observen toda la población para conocer 

con perfección todos los datos de interés, como ocurre con la 

estadística descriptiva que tiene los métodos más objetivos, pero 

no son de tipo inferencial sino determinístico. Cuando hablamos de 

una población finita y de una función paramétrica definida, 

hablamos de realidades que existen en el mundo real, no son 

operaciones derivadas de suposiciones teóricas como ocurre en la 

teoría inferencial clásica estadística. 

El único camino que garantiza que el diseño muestral no es 

un mero instrumento de estudio teórico y que se lleva a la práctica 

es mediante la identificabilidad de las unidades de la población 

finita, siendo estas unidades accesibles u observables para obtener 

el dato de ser seleccionada la unidad en la muestra efectiva. Sin 

estos requisitos el estudio inferencial es exclusivamente teórico sin 

capacidad para seleccionar muestras de unidades del contexto real 

al que se trata de aplicar estos conceptos basados en realidades que 

existen y comprobamos en la práctica de una encuesta o de un 

estudio por muestreo que busca la información donde está, en el 

mundo real, no en el ámbito de las meras ideas que no buscan 

conocer y obtener información para cambiar el mundo con el mejor 

sentido del bien común o para hacer auténtica una investigación 

social, sanitaria o política entre otras posibles aplicaciones como 

también son las de ingeniería, banca, etc. 

 El manual puede considerarse un libro de referencia en 

asignaturas de Teoría de Muestras en estudios de Estadística en el 

Grado en Ciencias Matemáticas o similares másteres y asignaturas 

de doctorado, o en el Grado en Ciencias Estadísticas, en Ciencias 

Económicas y Empresariales, en Economía, y en Administración y 
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Dirección de Empresas, así como en Sociología, Ciencias de la 

Salud, e Ingeniería. También para estudio e investigación. 

Requiere conocimientos básicos de Teoría de la Probabilidad, 

Esperanza Matemática y Varianza de una variable aleatoria 

discreta, que son también expuestos. Sin duda aportará mayor 

objetividad a los métodos estadísticos estudiados en Escuelas 

Técnicas Superiores de Ingeniería, y en Ciencias de la Salud, lo que 

conllevará una perspectiva más objetiva en sus tradicionales 

formaciones estadísticas. A modo de ejemplo, y para los lectores 

que ya manejen con facilidad los conceptos explicados en este 

libro, les recomiendo la lectura del artículo de Ruiz Espejo (2018f) 

sobre diseño de experimentos desde una perspectiva objetiva de 

muestreo de poblaciones finitas. 

En este libro también reviso y actualizo otros dos de los que 

soy autor, editados por Lulu Press, y presento los argumentos y 

fundamentos que sustentan la mayor o menor objetividad científica 

y ética entre una selección de métodos de inferencia estadística 

estudiados tradicionalmente en las universidades de todo el mundo 

y especialmente en titulaciones en Estadística y en Ciencias 

Matemáticas, para ser aplicados en el mundo real y práctico con el 

mayor rigor teórico y aplicado. 

Con este fin se presentan resumidos y comentados los 

fundamentos científicos de la tesis doctoral del autor y que 

defendió en la Facultad de Ciencias Políticas y Sociología de la 

Universidad Pontificia de Salamanca, con el título Observaciones 

a los Métodos Estadísticos de Investigación del Bienestar Social 

en el Marco Global (Madrid, 2003a). 

El programa de doctorado al que se adscribió la tesis en 

aquellos años era Globalización, Desarrollo y Bienestar Social. 

Estaba en boga el estudio de la Globalización como una concepción 

del mundo y de las relaciones humanas que se fundamentaban en 
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el uso social de las nuevas tecnologías, como alternativa a una 

concepción socialista o capitalista de entender la economía y la 

sociedad, que ya se consideran limitadas o abocadas al fracaso 

porque no ponen al hombre como fin sino como medio del que 

servirse los grupos dominantes para alcanzar otros fines 

generalmente centrados en el bienestar de estos grupos y 

ralentizando el desarrollo y el bienestar social de los menos 

cercanos al poder político a los que se considera solo medios para 

aquellos fines. Sin embargo, hoy podemos decir que la 

Globalización ha servido hasta ahora también a los grupos políticos 

y gubernamentales dirigentes que tratan de imponerse con mayor 

poder e influencia sobre el ciudadano más allá de las fronteras 

naturales que circunscribían su influencia y gobierno hasta ahora, 

y llegando a crear serios problemas al desarrollo de regiones y 

pueblos. 

Una alternativa propuesta para superar estas deficiencias del 

capitalismo, del socialismo y del globalismo es el cristianismo, y 

su aplicación de la Doctrina Social de la Iglesia Católica a la 

empresa y a la vida, que busca el bien común. 

El cristianismo vinculado a su comunidad o entorno de 

actividades de las empresas está inspirado en las enseñanzas y el 

Magisterio de la Iglesia, y pone como fin de dichas actividades al 

hombre y sus cercanos, que las realiza en continuo camino hacia el 

conocimiento de Dios, su cercanía, y la trascendencia de nuestra 

actuación y vida con sentido común y atendiendo las necesidades 

espirituales y materiales de los que nos rodean, siendo, dando y 

sirviendo. 

En este libro trato de dar los argumentos lógicos que daría un 

científico y la verdad revelada que aportaría un cristiano para 

discernir qué tipo de inferencia es objetiva y creíble, y cuáles no lo 
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son tanto, atendiendo razones y verdades de fe que espero que 

todos compartan porque no hay sino una buena intención de guiar 

a la verdad de los fundamentos de sabiduría cristiana y de ciencia, 

que pueden ser básicamente comunes a la tradición judía pues hay 

muchas referencias de revelación divina que tanto cristianos como 

judíos creemos porque compartimos enseñanzas milenarias de 

revelación de Dios. Las referencias bíblicas a las que me referiré 

son extraídas de la Biblia de Jerusalén (9ª edición, Bilbao, 1999). 

La tesis doctoral que da base a esta obra se leyó en una 

universidad católica, de la Conferencia Episcopal Española, su 

director, profesor José Ramón Pin Arboledas, y el presidente del 

tribunal, profesor Francisco José Cano Sevilla, son profesionales 

universitarios y también políticos de distinta orientación a los que 

debo honra personal y agradecimiento por haber contribuido a su 

lectura y reconocimiento. 

El capítulo dedicado a la ética y filosofía del muestreo es 

relativamente breve porque no trato de ser ocioso en divagaciones 

sino que trato de dar claridad de ideas a los profesionales de la 

Estadística, tanto universitarios como de la administración, para su 

trabajo diario, así como orientar posibles futuras aplicaciones de la 

Estadística en el campo de la salud, ciencia, política, e ingeniería. 

También se han incluido las conclusiones del autor en el 

máster en Bioética, en el trabajo titulado Investigación Ética y 

Bioestadística (2014), realizado en la Universidad Católica San 

Antonio de Murcia y dirigido por el profesor Jorge López Puga. 

Toda inferencia en poblaciones finitas ha de basarse en el 

marco de la población desde el que las unidades de la población 

son accesibles al investigador por muestreo. Sin embargo, este 

marco no siempre está disponible pues implica la colaboración de 

toda la población en dar datos sensibles de su persona, vivienda, 

teléfono, etc. y no siempre es posible tener estos censos, lo que 
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limita el uso de esta ciencia del muestreo. En relación a esto 

conviene recordar el Libro Primero de las Crónicas 21,17: “Y dijo 

David a Dios: ‘Yo fui quien mandé hacer el censo del pueblo. Yo 

fui quien pequé, yo cometí el mal; pero estas ovejas ¿qué han 

hecho?...’”. En los casos en que estos datos censales, que 

identifican a las unidades de la población finita, son conocidos y 

las unidades de la población son accesibles y observables, este libro 

tiene su pleno interés práctico y objetivo para alcanzar sus fines 

científicos éticamente. También cuando las unidades no son 

personas sino objetos especialmente. 

Quiero agradecer a los publicadores la oportunidad de editar 

este libro dirigido a todos los lectores en lengua española. También 

es justo agradecer a Javier Olivera Ravasi sus 21 artículos titulados 

“Aprendiendo a pensar: lógica de los sofismas”, que han sido 

publicados en la publicación digital InfoCatolica.com entre Enero 

y Febrero de 2015 y que han dado un marco cristiano y filosófico 

clásico a mis reflexiones, quedando insertado nuestro estudio en la 

tradición católica y abierta a toda cultura virtuosa y respetuosa con 

el conocimiento, la sabiduría y la inteligencia cristianos por la 

tradición fiel al magisterio de la Iglesia. 

Debo agradecer a todos los que, presentes o ausentes, han 

contribuido a que esta publicación sea ofrecida a los lectores 

interesados en los principios éticos y morales de la ciencia 

estadística y de sus métodos de inferencia. 

Revisamos también los principios, normas y pautas éticas de 

investigación en seres humanos en sus aspectos bioestadísticos y 

aportamos métodos y referencias sobre posibles mejoras en este 

área. Algunos aspectos como voluntarios, consentimiento 

informado, tratamiento de la no respuesta, y estimación insesgada, 

son tratados con cierto detalle. Concluimos que incentivando las 
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condiciones del consentimiento, podríamos aprovechar la 

información de voluntarios en un segundo intento para inferir con 

objetividad sobre la función paramétrica de interés. Esto permite 

extraer conclusiones sobre toda la población de pacientes y no 

reducirla a la de los primeros voluntarios, pues limitarnos a la 

población de voluntarios puede determinar un sesgo en las 

estimaciones sobre la función paramétrica de interés, ya que la 

población finita de pacientes es más ámplia que aquélla. 

Este libro es, por tanto, un compendio resumido de los 

estudios y las investigaciones del autor. 

Agradezco las sugerencias del profesor Guillermo Enrique 

Ramos, de la Universidad de Morón, Buenos Aires, Argentina. 

 

Mariano Ruiz Espejo 

Madrid, Enero de 2026 
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Presentación 

 

 

Es natural y perfectamente lógico que las medidas sean exactas 

cuando nos afectan en la compra o el consumo de las personas, así 

como en la retribución por su trabajo. En la práctica muchas veces 

se presenta la situación de que queremos conocer una magnitud a 

la que contribuye cada una de las unidades de una población finita 

pero no tenemos recursos, tiempo o medios para recabar la 

información exacta de todas las unidades para proceder al cálculo 

de dicha magnitud. 

 La inferencia en poblaciones finitas consiste en un 

procedimiento de muestreo o de selección de unidades de la 

población para ser observadas o medidas con exactitud, y en un 

método de estimación que aproveche la información recabada de la 

muestra a efectos de inferir sobre magnitudes poblacionales que 

llamamos funciones paramétricas, pues dependen de todos los 

valores observables fijos en cada una de las unidades de la 

población finita. La muestra se selecciona de modo probabilístico, 

mientras que el estimador es una función de los datos muestrales 

en la recta real a la que pertenece la magnitud que queremos inferir. 

 Una propiedad de importancia de un método inferencial es su 

insesgación, que nos indica que en promedio el estimador tiene por 

esperanza matemática la magnitud que queremos inferir. La 

medida de dispersión más usada para conocer la variabilidad del 

estimador insesgado, es su varianza. En general, cuando el 
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estimador es sesgado, la medida de dispersión usada es su error 

cuadrático medio. 

 Antes de poner en práctica un método inferencial, es 

conveniente estudiar otros métodos alternativos para ser usados en 

el estudio concreto. Para ello conviene comparar los errores 

cuadráticos medios de los distintos métodos y ver en cuál de ellos 

se minimiza la variabilidad, y por tanto será más preciso que los 

restantes. En un artículo de Ruiz Espejo (1987c), se prueba la no 

existencia de estimador insesgado uniformemente de mínima 

varianza (salvo algún caso muy concreto), así como la no existencia 

de estimador uniformemente de mínimo error cuadrático medio. 

Sin embargo los métodos más precisos vienen acompañados de 

mayores costes esperados de uso, lo que les hace no ser los únicos 

a considerar. A igual coste esperado, sí tiene sentido buscar la 

mayor precisión o eficiencia. O bien, tiene sentido que a igual 

precisión, busquemos el método inferencial de menor coste 

esperado. 

 Por último, es conveniente estimar sin sesgo para el método 

inferencial concreto que hemos usado, la varianza o el error 

cuadrático medio del estimador, con la misma información 

muestral. Esto nos permitirá dar una estimación insesgada de la 

magnitud poblacional de interés, y una estimación insesgada del 

error de muestreo que tiene la estimación anterior. 

 El libro que está leyendo presenta los argumentos revelados 

y científicos que orientan en la elección de un método de inferencia 

estadística para alcanzar objetividad en las conclusiones de sus 

estudios. Es un diálogo entre la fe y la razón, entre la lógica humana 

y la revelación divina tal y como se concibe en la cultura 

judeocristiana española, europea y del mundo que respeta el 

derecho a la libertad religiosa y a la razón. 
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Es necesario contar con instrumentos de análisis, ya sea de 

estadísticas oficiales o de estudios privados, para obtener unas 

mínimas garantías de conocimiento objetivo y para alcanzar un 

mayor bienestar, que puede alcanzarse por la interiorización de la 

responsabilidad personal y por el sentido común. El trabajo se 

presenta entre dos ciencias humanas: la estadística como ciencia 

instrumental y la filosofía social como ciencia normativa, ambas 

iluminadas por la revelación cristiana. La relación entre ambas 

ciencias es evidente. Sin un contenido social la ciencia carece de 

contenido moral, pero sin instrumentos de análisis precisos los 

contenidos morales son inalcanzables en la práctica; la revelación 

cristiana orienta en la elección moral de estas decisiones. Por ello 

este trabajo oscila alternativamente entre la reflexión cristiana, la 

filosófico-social y la necesaria lógica estadística. 

La tesis en sociología del autor surgió en un contexto de 

intentar mejorar el nivel de bienestar social en una economía 

global, un problema de nuestro tiempo que aún no se ha resuelto y 

donde ofrecemos una visión y perspectiva cristiana a la resolución 

del mismo. 

El trabajo se puede enmarcar en lo que se denomina literatura 

social realizable, en el sentido de que intenta marcar un objetivo 

deseable y posible para el futuro. Para ello se dan métodos 

estadísticos para alcanzarlo, añadiendo a la revelación y a la ciencia 

humanística deseable algunos elementos lógicos de factibilidad 

concretos. 

Los principales puntos del debate se sitúan en torno al 

discernimiento entre algunas metodologías estadísticas que se 

explican en las universidades, pero que en su mayoría son muy 

frágiles a la hora de asegurar coherencia y objetividad al describir 

hechos reales de carácter natural o inferir a partir de ellos, y en 
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particular hechos de las personas o sus bienes de interés social que 

en un instante determinado se presentan en las unidades de una 

población. 

Las realidades de carácter social pueden ser y lo son en 

muchos casos cuantificables. Además las realidades sociales 

pueden ser observadas individualmente. La realidad social 

entendida como población estadística compuesta por un número 

finito de unidades (individuos, empresas, pacientes, etc.), de las 

que cada una es portadora de características cualitativas o 

cuantitativas, interesan desde puntos de vista sociales. Visto así 

tiene sentido discernir qué métodos inferenciales estadísticos son 

los que aportan objetividad y claridad en los casos prácticos. De 

otro modo el investigador social quedaría reducido a una posición 

débil, casi semántica o narrativa, a distancia de su objeto real de 

estudio si no tuviera en cuenta estas aportaciones estadísticas que 

reportan instrumentos para el conocimiento y la observación de 

fenómenos de carácter social. 

Nos planteamos qué tipo de metodologías estadísticas 

basadas en el muestreo son correctas para revelar las realidades 

cuantitativas acaecidas en un instante o periodo de tiempo 

determinado, mediante la observación y medida exacta recogida en 

datos de una parte o muestra de unidades de la población que 

estudiamos. 

La mayor parte de la Estadística universitaria actual no se 

adapta bien a las condiciones reales cuando interesa conocer 

hechos relativos a una población finita. Tratar la realidad finita 

como si no lo fuera refleja actitudes de inercia en los conocimientos 

estadísticos a costa de no aportar veracidad ni claridad al 

conocimiento real de los objetos de estudio científico. 

Así evitamos que se usurpe la realidad misma por una 

concepción subjetiva de cómo es y lo que piensa el investigador 
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estadístico de la realidad objetiva que quiere conocer mediante 

métodos inferenciales. Es por ello que no aceptamos condiciones 

distorsionadoras o inasumibles para conocer realidades del mundo 

natural objetivo. Suponer hipótesis incomprobables o que 

contradicen elementos básicos de la lógica racional aplicada a su 

materia de estudio, hacen que sus diseños estadísticos sean 

inferiores a aquellos diseños estadísticos que no vulneran la regla 

básica de aceptar la realidad tal cual es para disponer de métodos 

estadísticos lo más fiables y coherentes con las realidades que se 

les presenta. Por tanto si queremos “conocer hechos” es preciso no 

asimilar elementos extraños, innecesarios o distorsionadores para 

este fin. 

Como conclusión llegaremos a que los métodos de muestreo 

de poblaciones finitas con datos fijos proporcionan los métodos 

más objetivos y fiables entre los métodos inferenciales más 

conocidos y tratados en los cursos universitarios. Son por tanto los 

métodos realmente veraces, útiles, prácticos y lógicamente sólidos. 

El buen uso de la estadística mejorará la salud, el bienestar, la 

calidad de vida, la estabilidad social y económica, el desarrollo y 

la evolución económica de las personas, haciendo un uso cuidadoso 

de la inferencia estadística objetiva entre otras actuaciones 

necesarias, lo que aportará información precisa o confiable sobre 

aspectos sociales en los que actuar con decisiones políticas 

correctas. 

Sin embargo, los métodos de inferencia estadística tradicional 

necesitan de datos individuales verdaderos para ofrecer 

conclusiones poblacionales que pueden ser por lo general no 

verdaderas, sino solo aproximaciones aleatorias (ya que no pueden 

ser medidas todas las unidades de la población por la limitación de 

los recursos disponibles), y a veces aproximaciones meramente 

supuestas a un “valor poblacional verdadero”. Es como ocurre en 
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primer lugar en poblaciones finitas fijadas, y en segundo lugar con 

otros tipos de inferencia en que podría ser un “valor teórico o no 

real” y cuya “supuesta exactitud” estimamos. 

Al final del libro, pondremos la atención en explicar aspectos 

éticos de las normas, principios, pautas y consejos ya establecidos 

en el área de la investigación con seres humanos y destacando los 

avances bioestadísticos que suponen pasos claros en el tratamiento 

de los datos para dar luz a las cuestiones de la mejora en la salud y 

de las mejores terapias posibles en la enfermedad. 

En principio no existen límites éticos para el conocimiento de 

la verdad o en el esfuerzo humano para ello. Pero sí existen límites 

éticos precisos en cuanto al modo de obrar del hombre que busca 

dicha verdad, pues no todo lo que es “técnicamente posible” puede 

considerarse “moralmente admisible”. La ciencia y la técnica 

tienen el límite de que cada persona humana merece respeto por sí 

misma, y en esto consiste la dignidad y el derecho del ser humano 

desde el inicio de su vida (cf. Instrucción Donum Vitae, I, 1987). 

No detallaremos las fórmulas específicas que suponen los 

avances bioestadísticos, pero sí damos las referencias recientes 

donde poder encontrarlas y, en ciertos casos de éstas, con las 

demostraciones matemáticas que justifican sus propiedades 

objetivas. 

De este modo no nos limitamos a una Estadística docente 

universitaria y tradicional cuyos aspectos mejorables he tratado en 

otras publicaciones, algunas de las cuales se citan en la 

Bibliografía, sino a resultados de investigación recientes que no se 

han impartido hasta la fecha de publicación de este libro en las 

universidades en que se estudian materias similares y en las que 

podrían estudiarse nuestras sugerencias. 

Mariano Ruiz Espejo 
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Conceptos previos 

 

 

Dos conceptos que son necesarios de antemano para entender el 

presente libro son los de “Esperanza Matemática” y “Varianza” de 

una variable estadística, o en general de una variable aleatoria que 

podemos considerar discreta y con un número finito de posibles 

valores a tomar. 

En concreto, suponemos que la variable estadística o aleatoria 

𝑋  toma los 𝑧  posibles valores 𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑧  con 

probabilidades respectivas 𝑝1, 𝑝2, … , 𝑝𝑖 , … , 𝑝𝑧, verficando además 

que 𝑝𝑖 ≥ 0 para todo 𝑖 = 1, 2, … , 𝑧, y que 

∑𝑝𝑖

𝑧

𝑖=1

= 1. 

 La esperanza matemática de la variable aleatoria 𝑋 se define 

como 

𝐸(𝑋) =∑𝑥𝑖𝑝𝑖

𝑧

𝑖=1

. 

 La varianza de la variable aleatoria 𝑋 se define como 

𝑉(𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 𝐸{[𝑋 − 𝐸(𝑋)]2} = 

∑[𝑥𝑖 − 𝐸(𝑋)]
2𝑝𝑖

𝑧

𝑖=1

. 
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 Algunas propiedades del concepto de esperanza matemática 

son las siguientes, cuyas comprobaciones son relativamente 

sencillas. Sea 𝑌  la variable aleatoria que toma los valores 

𝑦1, 𝑦2, … , 𝑦𝑖 , . . . , 𝑦𝑧 con probabilidades respectivas de que ocurran 

𝑝1, 𝑝2, … , 𝑝𝑖 , … , 𝑝𝑧 . Una constante es una variable aleatoria que 

toma el valor único, la constante, con probabilidad uno, es decir es 

la misma constante en todos los casos 𝑖 en que se pueda dar el 

suceso de probabilidad 𝑝𝑖. 

 Si 𝑐 es una constante real, 

𝐸(𝑐) = 𝑐. 

 Si 𝑎 y 𝑏 son constantes reales, 

𝐸(𝑎𝑋 + 𝑏) = 𝑎𝐸(𝑋) + 𝑏. 

 Si 𝑋 e 𝑌 son variables aleatorias, 

𝐸(𝑋 + 𝑌) = 𝐸(𝑋) + 𝐸(𝑌). 

La variable aleatoria 𝑋 + 𝑌 es la suma de las variables aleatorias 𝑋 

e 𝑌, y toma los valores 𝑥𝑖 + 𝑦𝑖 con probabilidad 𝑝𝑖. 

Propiedades del concepto de varianza de una variable 

aleatoria son las siguientes, cuya comprobación es un ejercicio 

sencillo para el lector. 

 Si 𝑐 es una constante real, 

𝑉(𝑐) = 0. 

 Si 𝑎 y 𝑏 son constantes reales, 

𝑉(𝑎𝑋 + 𝑏) = 𝑎2𝑉(𝑋). 

 Si 𝑋 e 𝑌 son variables aleatorias, 

𝑉(𝑋 + 𝑌) = 𝑉(𝑋) + 𝑉(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌). 
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Donde la covarianza de las variables aleatorias 𝑋 e 𝑌 es 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) = 

𝐸{[𝑋 − 𝐸(𝑋)][𝑌 − 𝐸(𝑌)]}, 

siendo  

𝐸(𝑋𝑌) =∑𝑥𝑖𝑦𝑖𝑝𝑖

𝑧

𝑖=1

 

y  

𝐸{[𝑋 − 𝐸(𝑋)][𝑌 − 𝐸(𝑌)]} =∑[𝑥𝑖 − 𝐸(𝑋)][𝑦𝑖 − 𝐸(𝑌)]𝑝𝑖

𝑧

𝑖=1

. 

También, 𝑋𝑌  es la variable aleatoria producto de las variables 

aleatorias 𝑋 e 𝑌, que toma el valor 𝑥𝑖𝑦𝑖 con probabilidad 𝑝𝑖. 

La varianza de una variable aleatoria 𝑋 se puede definir, una 

vez definido el concepto de covarianza, por tanto, como 

𝑉(𝑋) = 𝐶𝑜𝑣(𝑋, 𝑋) = 𝐸(𝑋2) − [𝐸(𝑋)]2 = 

𝐸{[𝑋 − 𝐸(𝑋)]2}. 

 Una propiedad de la covarianza de variables aleatorias es, por 

ejemplo, que si 𝑎, 𝑏, 𝑐 y 𝑑 son constantes reales, y 𝑋, 𝑌, 𝑉 y 𝑊 

son variables aleatorias discretas tomando un número finito de 

posibles valores (con probabilidad positiva), entonces 

𝐶𝑜𝑣(𝑎𝑋 + 𝑏𝑌, 𝑐𝑉 + 𝑑𝑊) = 𝑎𝑐𝐶𝑜𝑣(𝑋, 𝑉) + 

𝑎𝑑𝐶𝑜𝑣(𝑋,𝑊) + 𝑏𝑐𝐶𝑜𝑣(𝑌, 𝑉) + 𝑏𝑑𝐶𝑜𝑣(𝑌,𝑊). 

 Si tenemos 𝑛 variables aleatorias discretas 𝑋1, 𝑋2, … , 𝑋𝑛 que 

toman los valores 𝑋𝑖 = 𝑥𝑖𝑗 con probabilidad 
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𝑝 (𝑋𝑖 = 𝑥𝑖𝑗), 

éstas variables aleatorias serán independientes si y solo si la 

probabilidad conjunta es igual al producto de las probabilidades 

marginales 

𝑝 (𝑋1 = 𝑥1𝑗 , … , 𝑋𝑛 = 𝑥𝑛𝑗) =∏𝑝(𝑋𝑖 = 𝑥𝑖𝑗)

𝑛

𝑖=1

. 

Es sencillo comprobar ahora que si 𝑋1, 𝑋2, … , 𝑋𝑛  son variables 

aleatorias independientes y 𝑓1, 𝑓2, … , 𝑓𝑛 son 𝑛 funciones reales de 

variable real cualesquiera, entonces 

𝐸 [∏𝑓𝑖(𝑋𝑖)

𝑛

𝑖=1

] =∏𝐸[𝑓𝑖(𝑋𝑖)]

𝑛

𝑖=1

. 

Aquí, si 𝑋  es una variable aleatoria y 𝑓  es una función real de 

variable real, entonces 𝑓(𝑋) es por definición la variable aleatoria 

que toma los valores 𝑥𝑗 con probabilidad 

𝑝[𝑓(𝑋) = 𝑥𝑗] = ∑ 𝑝(𝑋 = 𝑥𝑘)𝑥𝑘:𝑓(𝑥𝑘)=𝑓(𝑥𝑗)
. 

Para demostrar la propiedad basta ver que si 𝑚 es el número 

de valores posibles que pueden tomar cualquiera de las 𝑛 variables 

aleatorias discretas con probabilidad positiva (𝑚 podría ser infinito 

numerable, pero para nuestro objetivo en este libro basta que con 

que sea finito), entonces 

𝐸 [∏𝑓𝑖(𝑋𝑖)

𝑛

𝑖=1

] = 

∑ [∏𝑓𝑖 (𝑥𝑖𝑗)

𝑛

𝑖=1

]

𝑚

1𝑗,…,𝑛𝑗=1

𝑝 (𝑋1 = 𝑥1𝑗 , … , 𝑋𝑛 = 𝑥𝑛𝑗) = 
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∑ [∏𝑓𝑖 (𝑥𝑖𝑗)

𝑛

𝑖=1

]

𝑚

1𝑗,…,𝑛𝑗=1

𝑝 (𝑋1 = 𝑥1𝑗)⋯𝑝 (𝑋𝑛 = 𝑥𝑛𝑗) = 

∏[ ∑ 𝑓𝑖 (𝑥𝑖𝑗) 𝑝 (𝑋1 = 𝑥1𝑗)⋯𝑝 (𝑋𝑛 = 𝑥𝑛𝑗)

𝑚

1𝑗,…,𝑛𝑗=1

]

𝑛

𝑖=1

= 

∏[∑ 𝑓𝑖 (𝑥𝑖𝑗)𝑝 (𝑋𝑖 = 𝑥𝑖𝑗)

𝑚

𝑖𝑗=1

]

𝑛

𝑖=1

= 

∏𝐸[𝑓𝑖(𝑋𝑖)]

𝑛

𝑖=1

. 

Ya que 

∑ 𝑓𝑖 (𝑥𝑖𝑗) 𝑝 (𝑋1 = 𝑥1𝑗)⋯𝑝 (𝑋𝑛 = 𝑥𝑛𝑗)

𝑚

1𝑗,…,𝑛𝑗=1

= 

∑𝑓𝑖 (𝑥𝑖𝑗) 𝑝 (𝑋𝑖 = 𝑥𝑖𝑗)∏[∑ 𝑝(𝑋𝑘 = 𝑥𝑘𝑗)

𝑚

𝑘𝑗=1

]

𝑛

𝑘≠𝑖

𝑚

𝑖𝑗=1

= 

𝐸[𝑓𝑖(𝑋𝑖)] × 1
𝑛−1 = 𝐸[𝑓𝑖(𝑋𝑖)]. 

Una consecuencia de este resultado es que si dos variables 

aleatorias 𝑋 e 𝑌 son independientes, su covarianza es nula, ya que 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) = 0. 

También se dice entonces que las variables aleatorias 𝑋 e 𝑌 están 

incorrelacionadas, puesto que el coeficiente de correlación lineal 

de las variables aleatorias 𝑋 e 𝑌 se define como 

𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉(𝑋)𝑉(𝑌)
. 
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Y en el caso de variables aleatorias independientes 𝑋 e 𝑌, entonces  

𝜌(𝑋, 𝑌) = 0 , es decir, 𝑋  e 𝑌  son variables aleatorias 

incorrelacionadas. La propiedad recíproca no siempre es cierta, 

sino que existen variables aleatorias incorrelacionadas que son 

dependientes. 
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Capítulo 1 

Introducción 

 

 

El muestreo de poblaciones finitas es un método estadístico que 

consiste en seleccionar un subconjunto o parte de la población de 

un número finito de unidades, “subconjunto o parte” que llamamos 

“muestra”, y con la información adquirida en dicha muestra 

mediante observación o encuesta de sus unidades, realizar 

estimaciones o inferencias sobre la población finita entera o 

magnitudes de ella (como la media poblacional, el total 

poblacional, la proporción poblacional, el porcentaje poblacional, 

o la varianza poblacional) y así inferir sobre aspectos importantes 

de la población finita de los que estamos interesados en conocer. 

Al tratar de seleccionar la muestra de la población finita, 

surge de modo natural la pregunta de cómo seleccionar la muestra 

en la práctica. La respuesta viene dada por métodos probabilísticos, 

si queremos tener estimaciones insesgadas, o justas en promedio de 

las magnitudes o funciones paramétricas poblacionales. 

Estudiaremos el modelo de muestreo en el que a cada unidad 

de la población finita se le asocia un único número real “𝑦 ” 

desconocido y fijo antes de ser observado, que es el valor de la 

variable en estudio, también llamada “variable de interés”. Como 

ejemplo, la variable de interés puede ser el “número de hijos” en 

una población finita compuesta por todas las “familias de una 

región administrativa”. 
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Las unidades de la población están identificadas por un 

número que las numera a cada una. Esta identificación permite 

seleccionar la muestra de modo probabilístico, de modo que el 

estimador basado en la muestra identificada tendrá una distribución 

probabilística que depende del procedimiento de selección de 

unidades en la muestra y de los datos observados que se incorporan 

al estimador. Por ello, la distribución del estimador es algo que el 

investigador crea y controla al elegir el método de selección de la 

muestra y del método de estimación, y también depende de los 

datos fijos de la variable de interés en las unidades de la población 

finita que el investigador debe respetar al observarlos o al 

encuestar. 

Una población finita (o universo) es una colección o conjunto 

de unidades numeradas del 1 al 𝑁, es decir, el conjunto 

𝑈 = {1, 2, … , 𝑘, … , 𝑁}, 

donde el número entero 𝑁 se llama “tamaño de la población”, y 

verifica 

0 < 𝑁 <  ∞. 

La identificabilidad de las unidades permite acceder a 

cualquier unidad de la población finita, si dicha unidad es 

seleccionada en la muestra probabilística o aleatoria concreta. En 

un caso concreto esta identificabilidad puede ser el listado de 

nombres y direcciones o teléfonos de las personas que componen 

la población, o bien la localización con coordenadas GPS de la 

posición de los árboles si la población son árboles de una 

plantación. Las unidades de una población finita son identificables 

si pueden ser numeradas unívocamente de 1 a 𝑁, y el número de 

cada unidad es conocido permitiendo la accesibilidad a la unidad 

por tal número para la observación de su variable de interés. 
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Cada unidad numerada 𝑘  tiene un número 𝑦𝑘  asociado 

cuando la característica en estudio es 𝑦, resultado de la medida 

exacta y sin error de la variable 𝑦 en la unidad 𝑘. De este modo la 

“observación numerada” será el par (𝑘, 𝑦𝑘). 

El vector 𝒚 =  (𝑦1, 𝑦2, … , 𝑦𝑁) es el “vector paramétrico” de 

la población finita, en el que las unidades 𝑘  de 1  a 𝑁  están 

localizadas por su posición en el parámetro o vector 𝒚. 

El “espacio paramétrico” es el espacio 𝑁-dimensional donde 

puede variar el vector paramétrico, puede ser en el caso general ℝ𝑁 

si cualquier valor 𝑦𝑘 es un número real, ℝ+
𝑁 si cualquier valor 𝑦𝑘 

es un número real positivo, {0, 1}𝑁 si 𝑦𝑘 puede tomar el valor 0 “si 

la unidad 𝑘 no posee cierta cualidad” o el valor 1 “si la unidad 𝑘 

posee cierta cualidad”, siendo 𝑘 = 1, 2,… , ó 𝑁. 

Una función real definida sobre el espacio paramétrico se 

llama “función paramétrica”. La inferencia en poblaciones finitas 

se centra en el diseño de muestreo y en la estimación de una función 

paramétrica especificada, y a veces teóricamente sobre el propio 

parámetro 𝒚. Dos funciones paramétricas de importante relieve son 

la “media poblacional” que definimos 

𝑦̅ =
1

𝑁
∑𝑦𝑘

𝑁

𝑘=1

, 

y la “varianza poblacional” que definimos 

𝜎2 =
1

𝑁
∑(𝑦𝑘 − 𝑦̅)

2

𝑁

𝑘=1

, 

en donde 𝑦̅  aparece definida anteriormente como media 

poblacional. Por lo general la inferencia en poblaciones finitas se 

centra en inferir sobre la media poblacional, mientras que la 

inferencia sobre la varianza poblacional tiene un interés 
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suplementario al permitir a veces estimar insesgadamente esta 

función paramétrica y como consecuencia, también en muchos 

casos, permite estimar sin sesgo la varianza del estimador 

insesgado de la media poblacional. Indicamos que tanto la media 

poblacional como la varianza poblacional son dos valores reales y 

concretos, verdaderos, que existen objetivamente y por tanto tiene 

sentido estimar esas cantidades son ciertas, exactas o fijas, aunque 

desconocidas para los patrocinadores de la encuesta. Esto no ocurre 

en otros tipos de inferencia, donde solo es posible suponer la 

existencia de ciertos parámetros si la población fuera como se 

supone en dichas teorías, pero sin prueba de que esas teorías sean 

ciertas en las realidades a las que se desean aplicar. 

 Un caso particular importante de media poblacional se 

presenta cuando la variable de interés toma exclusivamente valores 

0 ó 1, y entonces recibe el nombre de “proporción poblacional”. Si 

llamamos 𝑃  a la proporción poblacional, entonces la varianza 

poblacional admite la expresión siguiente 

𝜎2 = 𝑃 − 𝑃2 = 𝑃(1 − 𝑃). 

Llamamos “muestra ordenada” a la secuencia 

𝒔 = (𝑘1, 𝑘2, … , 𝑘𝑛(𝒔)) 

tal que 𝑘𝑖 es la 𝑖-ésima unidad de la población finita según el orden 

de aparición en la muestra ordenada 𝒔 . Recibe el nombre de 

muestra ordenada porque conserva el orden en que van apareciendo 

las unidades de la población en la muestra, pudiendo aparecer 

unidades repetidas en distintos lugares de la muestra ordenada por 

un procedimiento de muestreo determinado. 

 El “tamaño muestral”, que denotamos 𝑛(𝒔), es el número de 

unidades con sus repeticiones aparecidas en la muestra ordenada 𝒔. 

Este número llamado tamaño muestral de una muestra ordenada 
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puede ser mayor que el tamaño poblacional 𝑁  cuando aparecen 

unidades repetidas en la muestra. 

 Notaremos 

𝑺 = {𝒔: 𝒔 es muestra ordenada} 

al conjunto de muestras ordenadas con un procedimiento de 

muestreo. 

 Así, por ejemplo, si la población finita es 𝑈 = {1, 2, 3} , 

muestras ordenadas pueden ser 𝒔1 = (1, 2) , 𝒔2 = (3, 1) , 𝒔3 =

(2, 2), ó 𝒔4 = (1, 3, 2, 1). 

El “tamaño muestral efectivo” de una secuencia 𝒔  es el 

número de componentes distintos que tiene, y se denota 𝜈(𝒔). Así, 

por ejemplo, 𝜈(𝒔1) = 𝜈(𝒔2) = 2 , 𝜈(𝒔3) = 1 , y 𝜈(𝒔4) = 3 . Pero 

sus tamaños muestrales son 𝑛(𝒔1) = 𝑛(𝒔2) = 𝑛(𝒔3) = 2, mientras 

que 𝑛(𝒔4) = 4. 

Dada una secuencia o muestra ordenada 𝒔, podemos construir 

el conjunto de sus unidades distintas 

𝑠 = {𝑘: 𝑘 es componente de 𝒔}, 

y entonces, 𝜈(𝒔) = card(𝑠), donde hemos denotado por card(𝑠) al 

número de unidades o elementos del conjunto 𝑠. Este número es 

siempre un número menor o igual que 𝑁 ya que el conjunto 𝑠 está 

contenido en la población finita 𝑈 cuyo cardinal es 𝑁, finito. 

 Llamamos “muestra no ordenada” a todo conjunto 𝑠 no vacío 

subconjunto de 𝑈 , es decir que verifica 𝜙 ≠ 𝑠 ⊂ 𝑈 . Se llama 

muestra no ordenada porque no influye el orden de selección de las 

componentes o unidades en el conjunto 𝑠 , así como tampoco 

influye la multiplicidad de unidades en la muestra. El conjunto de 

muestras no ordenadas y no vacías lo denotamos por 

𝑆 = {𝑠: 𝜙 ≠ 𝑠 ⊂ 𝑈} = ℘(𝑈) − {𝜙}, 
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pues coincide con el conjunto de partes de 𝑈 , excluyendo al 

conjunto vacío. Si el conjunto 𝐴 tiene card(𝐴) = 𝑁, entonces se 

demuestra matemáticamente que el cardinal del conjunto de partes 

de 𝐴 es 

card[℘(𝐴)] = 2𝑁, 

que incluye una unidad al contabilizar el conjunto vacío 𝜙. 

Por tanto al excluir como elemento al conjunto vacío dentro de 𝑆, 

resulta que card(𝑆) = 2𝑁 − 1, puesto que el conjunto de muestras 

no ordenadas 𝑆 = ℘(𝑈) − {𝜙} , y la población finita 𝑈  tiene 

cardinal 𝑁, su “tamaño poblacional” o el número de sus elementos. 

 Así, por ejemplo, si 𝑈 = {1, 2}, el conjunto de muestras no 

ordenadas será 

𝑆 = {{1}, {2}, {1, 2}} 

y card(𝑆) = 22 − 1 = 3 es el número de muestras no ordenadas 

no vacías. 

 El “tamaño muestral efectivo” 𝜈(𝑠)  de una muestra no 

ordenada 𝑠 es ahora su número de elementos, es decir 

𝜈(𝑠) = card(𝑠). 

Hemos denotado a las muestras por los símbolos 𝒔  o 𝑠 , 

respetando la inicial de “sample”, que significa “muestra” en 

inglés. 

 Llamamos “función de reducción” a la aplicación 𝑟: 𝑺 → 𝑆 

tal que 

𝑟(𝒔) = {𝑘 ∈ 𝑈: 𝑘 es componente de 𝒔} = 𝑠, 
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es decir, la función de reducción 𝑟  elimina el orden y la 

multiplicidad de las unidades de la muestra ordenada 𝒔 , 

transformándola en una muestra no ordenada 𝑠. 

Por ejemplo, si tenemos un conjunto de muestras ordenadas 

de tamaño fijo 3 , de una población finita de tamaño 3 , y una 

muestra ordenada es 𝒔 = (1, 1, 2) , entonces la función de 

reducción sobre esta muestra es 𝑟(𝒔) = {1, 2} = 𝑠 ∈ 𝑆. También 

podemos obtener en este caso la relación de reducción inversa de 

𝑠, que será 

𝑟−1(𝑠) = {(1 ,1 ,2), (1, 2, 1), (2, 1, 1), 

(1, 2, 2), (2, 1, 2), (2, 2, 1)} ⊂ 𝑺. 

 Un “diseño muestral” es una función de probabilidad sobre 𝑺 

o 𝑆. Un “diseño muestral ordenado” es una aplicación o función 

𝑝: 𝑺 → [0, 1] tal que 𝑝(𝒔) ≥ 0 para toda muestra ordenada 𝒔 ∈ 𝑺, 

y además 

∑𝑝(𝒔) = 1

𝒔∈𝑺

. 

Un “diseño muestral no ordenado” es una función 𝑝: 𝑆 → [0, 1] tal 

que 𝑝(𝑠) ≥ 0 para toda muestra no ordenada 𝑠 ∈ 𝑆, y además 

∑𝑝(𝑠) = 1

𝑠∈𝑆

. 

El diseño muestral puede introducirse a partir de un diseño 

ordenado 𝑝(𝒔), y desde éste podemos corresponder con un diseño 

no ordenado asociado del modo 

𝑝(𝑠) = ∑ 𝑝(𝒔),

𝒔∈𝑟−1(𝑠)
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siendo 𝑟−1(𝑠) = {𝒔 ∈ 𝑺: 𝑟(𝒔) = 𝑠} ⊂ 𝑺  el conjunto de muestras 

ordenadas, 𝒔, tales que reducidas por la función de reducción 𝑟 dan 

lugar a 𝑠, es decir que 𝑟(𝒔) = 𝑠. También se puede postular como 

punto de partida un diseño no ordenado. Por ejemplo, si 𝑠 = {1, 2}, 

𝑟−1(𝑠)  contiene las siguientes muestras ordenadas: 

(1, 2), (2, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), etc. No 

existe, por tanto, una biyección entre el conjunto de muestras 

ordenadas y el conjunto de muestras no ordenadas, en general. La 

función de reducción 𝑟 no es biyectiva salvo casos triviales, como 

por ejemplo, con un conjunto de muestras de tamaño fijo menor o 

igual a 1. 

Dado un diseño muestral, se define “probabilidad de 

inclusión” 𝜋𝑘 de la unidad 𝑘 ∈ 𝑈 en la muestra aleatoria 𝒔 o 𝑠, a 

𝜋𝑘 = ∑ 𝑝(𝒔)

𝒔∈𝑺𝑘

 

o bien 

𝜋𝑘 = ∑ 𝑝(𝑠),

𝑠∈𝑆𝑘

 

donde 𝑺𝑘 = {𝒔: 𝑘 ∈ 𝒔} y 𝑆𝑘 = {𝑠: 𝑘 ∈ 𝑠}, es decir 𝜋𝑘 es la suma de 

las probabilidades de las muestras, ordenadas o no, que tengan 

como componente la unidad 𝑘 ∈ 𝑈. 

La “probabilidad de inclusión de segundo orden” 𝜋𝑘𝑚 de las 

unidades 𝑘 y 𝑚 en la muestra es 

𝜋𝑘𝑚 = ∑ 𝑝(𝒔)

𝒔∈𝑺𝑘𝑚

 

o bien 
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𝜋𝑘𝑚 = ∑ 𝑝(𝑠),

𝑠∈𝑆𝑘𝑚

 

donde ahora 𝑺𝑘𝑚 = {𝒔: 𝑘,𝑚 ∈ 𝒔} y 𝑆𝑘𝑚 = {𝑠: 𝑘,𝑚 ∈ 𝑠}. En este 

caso, se suman las probabilidades de las muestras que tengan como 

componentes o elementos a las unidades 𝑘 ∈ 𝑈 y 𝑚 ∈ 𝑈. 

De modo similar se obtienen las probabilidades de inclusión 

de órdenes superiores 𝜋𝑘𝑚…𝑧. 

Un diseño ordenado 𝑝 se llama “diseño de tamaño fijo” igual 

a 𝑛, si el número de componentes de 𝒔, 𝑛(𝒔), es constante e igual 

a 𝑛  para toda muestra 𝒔 ∈ 𝑺  tal que 𝑝(𝒔) > 0 , y lo denotamos 

𝑇𝐹(𝑛). Un diseño ordenado (o no ordenado) se llama “diseño de 

tamaño efectivo fijo” igual a 𝜈, si el tamaño muestral efectivo 𝜈(𝒔) 

(o 𝜈(𝑠)) es constante e igual a 𝜈 para toda muestra 𝒔 ∈ 𝑺 (𝑠 ∈ 𝑆) 

tal que 𝑝(𝒔) > 0 (𝑝(𝑠) > 0), y lo denotaremos diseño 𝑇𝐸𝐹(𝜈). 

En general, el “tamaño muestral efectivo esperado” de un 

diseño muestral, es 

𝜈̅ = ∑𝜈(𝒔)𝑝(𝒔)

𝒔∈𝑺

 

o bien 

𝜈̅ = ∑𝜈(𝑠)𝑝(𝑠)

𝑠∈𝑆

. 

El “tamaño muestral esperado de un diseño ordenado” es 

𝑛̅ = ∑𝑛(𝒔)𝑝(𝒔).

𝒔∈𝑺

 

Ejemplo 1.1. Sea 𝑈 = {1, 2, 3, 4, 5}  y tenemos el diseño no 

ordenado siguiente: 
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𝑝({1, 2}) =
1

3
, 𝑝({3, 4, 5}) =

1

3
, 𝑝({3, 4}) =

1

3
. 

En este caso los tamaños muestrales efectivos de las muestras son: 

𝜈({1, 2}) = 2, 𝜈({3, 4, 5}) = 3, 𝜈({3, 4}) = 2. 

El tamaño muestral efectivo esperado es: 

𝜈̅ = 2
1

3
+ 3

1

3
+ 2

1

3
=
7

3
. 

Algunas de sus probabilidades de inclusión son: 

𝜋1 = 𝜋2 = 𝑝({1, 2}) =
1

3
. 

𝜋3 = 𝜋4 = 𝑝({3, 4, 5}) + 𝑝({3, 4}) =
1

3
+
1

3
=
2

3
. 

𝜋5 = 𝑝({3, 4, 5}) =
1

3
. 

𝜋1,2 = 𝜋3,5 = 𝜋4,5 =
1

3
. 

𝜋1,3 = 𝜋1,4 = 𝜋1,5 = 𝜋2,3 = 𝜋2,4 = 𝜋2,5 = 0. 

𝜋3,4 =
2

3
. 

Ejemplo 1.2. Si tenemos la población 𝑈 = {1, 2, 3, 4, 5, 6, 7} y el 

diseño muestral ordenado definido por las probabilidades 

𝑝(1, 1, 2) = 𝑝(3, 2, 5) = 𝑝(4, 6, 7) = 𝑝(6, 2, 5) = 𝑝(7, 1, 7) =
1

5
. 

Ahora los tamaños muestrales efectivos son: 

𝜈(1, 1, 2) = 𝜈(7, 1, 7) = 2, 
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𝜈(3, 2, 5) = 𝜈(4, 6, 7) = 𝜈(6, 2, 5) = 3. 

El tamaño muestral efectivo esperado es 

𝜈̅ = 2
1

5
+ 3

1

5
+ 3

1

5
+ 3

1

5
+ 2

1

5
=
13

5
. 

Algunas probabilidades de inclusión son: 

𝜋1 = 𝑝(1, 1, 2) + 𝑝(7, 1, 7) =
2

5
, 

𝜋2 =
3

5
, 𝜋3 =

1

5
, 𝜋4 =

1

5
, 𝜋5 =

2

5
, 𝜋6 =

2

5
, 𝜋7 =

2

5
, 

𝜋1,2 =
1

5
, 𝜋1,3 = 0, 𝜋1,4 = 0, 𝜋1,5 = 0, 𝜋1,6 = 0, 𝜋1,7 =

1

5
, 

𝜋2,3 =
1

5
, 𝜋2,4 = 0, 𝜋2,5 =

2

5
, 𝜋2,6 =

1

5
, 𝜋2,7 = 0, 

𝜋3,4 = 0, 𝜋3,5 =
1

5
, 𝜋3,6 = 𝜋3,7 = 0, 

𝜋4,5 = 0, 𝜋4,6 = 𝜋4,7 =
1

5
, 

𝜋5,6 =
1

5
, 𝜋5,7 = 0, 𝜋6,7 =

1

5
. 

 

Una vez que la unidad 𝑘 ha sido seleccionada en una muestra, 

se procede a su observación y medida para obtener el valor de la 

variable en estudio o variable de interés de modo exacto, 𝑦𝑘, por lo 

que disponemos del par (𝑘, 𝑦𝑘). El “censo” consiste en conocer el 

conjunto de todos los pares de este tipo, es decir, conocer el 

conjunto 

{(𝑘, 𝑦𝑘): 𝑘 ∈ 𝑈}. 
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Sin embargo, disponer de esta colección de datos puede ser de un 

trabajo muy complejo y costoso, por lo que la inferencia basada en 

unos cuantos de ellos seleccionados aleatoriamente, permite 

conocer aproximadamente mediante una estimación las funciones 

paramétricas más importantes. 

Definimos “dato ordenado” 𝒅 asociado a la muestra ordenada 

𝒔 a la secuencia 

𝒅 = ((𝑘, 𝑦𝑘): 𝑘 ∈ 𝒔). 

El conjunto de datos ordenados lo denotamos por 

𝑫 = {𝒅: 𝒔 ∈ 𝑺}. 

El “dato no ordenado” 𝑑 es el conjunto de pares asociados a la 

muestra no ordenada 𝑠, es decir 

𝑑 = {(𝑘, 𝑦𝑘): 𝑘 ∈ 𝑠}. 

El conjunto de datos no ordenados lo denotamos por 

𝐷 = {𝑑: 𝑠 ∈ 𝑆}. 

El concepto de diseño muestral puede entonces extenderse a 

los datos muestrales, ya que para toda muestra 𝑝(𝒅) = 𝑝(𝒔)  y 

𝑝(𝑑) = 𝑝(𝑠), ya que la relación entre dato y muestra es biunívoca 

y requiere haber observado la variable de interés en las unidades de 

la muestra, e incorporar dichas observaciones al dato. 

Un estimador 𝑡 es una aplicación del conjunto de datos 𝑫 o 

𝐷, y que toma valores reales, es decir 𝑡: 𝑫 → ℝ, o bien 𝑡: 𝐷 → ℝ. 

El estimador 𝑡  es una variable aleatoria discreta que toma un 

número finito de valores reales 𝑣 con la probabilidad 

𝑝{𝑡 = 𝑣} = ∑ 𝑝(𝒅)

𝒅∈𝑫: 𝑡(𝒅)=𝑣
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si nos referimos a datos ordenados, o bien, si nos referimos a datos 

no ordenados, 

𝑝{𝑡 = 𝑣} = ∑ 𝑝(𝑑)

𝑑∈𝐷: 𝑡(𝑑)=𝑣

, 

y cuya esperanza matemática es 

𝐸(𝑡) = ∑ 𝑡(𝒅)𝑝(𝒅)

𝒅∈𝑫

 

o bien 

𝐸(𝑡) = ∑ 𝑡(𝑑)𝑝(𝑑)

𝑑∈𝐷

. 

También podemos sustituir 𝒅 ∈ 𝑫 por 𝒔 ∈ 𝑺, y 𝑑 ∈ 𝐷  por 𝑠 ∈ 𝑆 

en los índices de sumación, debido a la correspondencia biunívoca 

o biyección que hay entre muestras y datos. La “varianza del 

estimador” puede definirse como 

𝑉(𝑡) = 𝐸{[𝑡 − 𝐸(𝑡)]2}, 

y el “error cuadrático medio” del estimador 𝑡  para estimar la 

función paramétrica 𝑓(𝒚) es 

𝐸𝐶𝑀[𝑡; 𝑓(𝒚)] = 𝐸{[𝑡 − 𝑓(𝒚)]2}. 

 Si el estimador 𝑡  es insesgado para estimar la función 

paramétrica 𝑓(𝒚), es decir, si 𝐸(𝑡) = 𝑓(𝒚), entonces 

𝐸𝐶𝑀(𝑡) = 𝑉(𝑡). 

Pero en general, cuando el estimador sea sesgado (es decir, si su 

esperanza matemática no coincide con la función paramétrica), no 

serán iguales el error cuadrático medio y la varianza del estimador, 

sino que 𝐸𝐶𝑀[𝑡; 𝑓(𝒚)] = 𝑉(𝑡) + {𝐵[𝑡; 𝑓(𝒚)]}2 , siendo 
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𝐵[𝑡; 𝑓(𝒚)] = 𝐸(𝑡) − 𝑓(𝒚) el sesgo de 𝑡 para estimar 𝑓(𝒚), como 

demostraremos un poco más adelante. 

 

1.1 Algunos resultados básicos 

Veamos a continuación algunos resultados matemáticos que 

justifican el uso de la varianza de una variable aleatoria. También 

veremos propiedades de los datos y de los estimadores. 

 

Desigualdad de Schwarz 

Si 𝑡1 y 𝑡2 son dos variables aleatorias o estimadores cualesquiera 

tal que 𝐸(𝑡1
2) y 𝐸(𝑡2

2) existen, entonces: 

|𝐸(𝑡1𝑡2)| ≤ √𝐸(𝑡1
2)𝐸(𝑡2

2). 

 

Demostración 

Sea 𝑥 una variable real, entonces 

0 ≤ 𝐸[(𝑡1 − 𝑥𝑡2)
2] = 𝐸(𝑡1

2) − 2𝑥𝐸(𝑡1𝑡2) + 𝑥
2𝐸(𝑡2

2). 

Como tenemos una ecuación de segundo grado que es siempre 

positiva o cero para todo valor de 𝑥, tiene a lo sumo una raíz la 

ecuación, y por tanto su discriminante tiene que ser negativo o cero. 

Es decir, 

4[𝐸(𝑡1𝑡2)]
2 − 4𝐸(𝑡1

2)𝐸(𝑡2
2) ≤ 0. 

Por lo que podemos concluir que 

|𝐸(𝑡1𝑡2)| ≤ √𝐸(𝑡1
2)𝐸(𝑡2

2). 
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Teorema 1.1. Sea 𝑡 una variable aleatoria cualquiera tal que 𝐸(𝑡2) 

existe, entonces: 

𝐸[|𝑡 − 𝐸(𝑡)|] ≤ √𝑉(𝑡). 

 

Demostración 

Haciendo uso de la desigualdad de Schwarz 

{𝐸[|𝑡 − 𝐸(𝑡)|]}2 = |𝐸[|𝑡 − 𝐸(𝑡)| ∙ 1]|2 ≤ 

𝐸{[|𝑡 − 𝐸(𝑡)|]2} ∙ 𝐸(12) = 𝑉(𝑡). 

También se puede demostrar teniendo en cuenta la 

convexidad de la función 𝑓(𝑥) = 𝑥2. Así, directamente 

{𝐸[|𝑡 − 𝐸(𝑡)|]}2 ≤ 𝐸{[𝑡 − 𝐸(𝑡)]2} = 𝑉(𝑡). 

 

Corolario 1.1. Sea 𝑡  una variable aleatoria cualquiera tal que 

𝐸(𝑡2) existe, entonces: 

𝐸[|𝑡 − 𝑓(𝒚)|] ≤ √𝐸𝐶𝑀[𝑡; 𝑓(𝒚)]. 

 

 

Demostración 

Sustituyendo en la anterior demostración 𝐸(𝑡) por 𝑓(𝒚). 

 

Por tanto, la desviación típica o raíz cuadrada de la varianza 

del estimador 𝑡 acota superiormente la desviación absoluta media 

del estimador. Esta desviación absoluta media del estimador es su 
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medida de dispersión más natural y deseable, pues mide el 

promedio de las desviaciones absolutas del estimador respecto a su 

esperanza matemática. Pero tiene el inconveniente de que sus 

propiedades matemáticas la hacen desaconsejable. Sin embargo, 

esto no ocurre con la varianza del estimador que tiene buenas 

propiedades para su utilización, y que una vez calculada o bien 

estimada, su raíz cuadrada o su desviación estándar o típica acota 

superiormente a la desviación absoluta media del estimador. De 

aquí la importancia de la función paramétrica “varianza del 

estimador”. 

Denotando por “sesgo del estimador” 𝑡  para estimar la 

función paramétrica 𝑓(𝒚), a 𝐵[𝑡; 𝑓(𝒚)] = 𝐸(𝑡) − 𝑓(𝒚), podemos 

dar otro resultado de interés. Hemos llamado 𝐵 al sesgo por su 

inicial de “bias” en inglés. 

 

Teorema 1.2. El error cuadrático medio de un estimador 𝑡 para 

estimar una función paramétrica 𝑓(𝒚), es igual a la varianza del 

estimador más su sesgo al cuadrado, es decir: 

𝐸𝐶𝑀[𝑡; 𝑓(𝒚)] = 𝑉(𝑡) + {𝐵[𝑡; 𝑓(𝒚)]}2. 

 

 

Demostración 

𝐸𝐶𝑀[𝑡; 𝑓(𝒚)] = 𝐸{[𝑡 − 𝑓(𝒚)]2} = 

𝐸{[𝑡 − 𝐸(𝑡) + 𝐸(𝑡) − 𝑓(𝒚)]2} = 

𝐸({[𝑡 − 𝐸(𝑡)] + 𝐵[𝑡; 𝑓(𝒚)]}2) = 

𝐸{[𝑡 − 𝐸(𝑡)]2} + {𝐵[𝑡; 𝑓(𝒚)]}2 + 2𝐸[𝑡 − 𝐸(𝑡)]𝐵[𝑡; 𝑓(𝒚)] = 
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𝑉(𝑡) + {𝐵[𝑡; 𝑓(𝒚)]}2. 

 

Por tanto, una propiedad importante para que el estimador sea 

eficiente es que su desviación cuadrática media sea pequeña, es 

decir que su error cuadrático medio sea pequeño. Esto puede 

conseguirse disminuyendo la varianza del estimador, y también 

disminuyendo el valor absoluto del sesgo del estimador. El sesgo 

del estimador puede ser cero, mientras que la varianza del 

estimador tendrá valor positivo en general salvo cuando se realiza 

un censo de la población o en casos muy particulares que carecen 

de relevancia para la teoría inferencial en poblaciones finitas. 

 

Teorema de la Esperanza Condicionada Promedio 

Si (𝑢, 𝑣) es una variable aleatoria que se concreta en un número 

finito de puntos tal que 𝑝(𝑢𝑖 , 𝑣𝑗) = 𝑝𝑖𝑗  (𝑖 = 1, 2, … ,𝑁; 𝑗 =

1, 2, … ,𝑀), entonces 

𝐸(𝑢) = 𝐸[𝐸(𝑢|𝑣)] = 𝐸1𝐸2(𝑢). 

 

 

 

Demostración 

𝐸[𝐸(𝑢|𝑣)] =∑𝑝∙𝑗𝐸(𝑢|𝑣𝑗)

𝑀

𝑗=1

=∑𝑝∙𝑗∑𝑢𝑖𝑝𝑖|𝑗

𝑁

𝑖=1

𝑀

𝑗=1

= 

∑∑𝑢𝑖𝑝𝑖𝑗

𝑁

𝑖=1

𝑀

𝑗=1

=∑𝑢𝑖∑𝑝𝑖𝑗

𝑀

𝑗=1

𝑁

𝑖=1

=∑𝑢𝑖𝑝𝑖∙

𝑁

𝑖=1

= 𝐸(𝑢), 
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donde hemos denotado la probabilidad condicionada 

𝑝𝑖|𝑗 =
𝑝𝑖𝑗

𝑝∙𝑗
. 

El razonamiento es válido para poblaciones infinitas cuando 

existen las esperanzas matemáticas. 

 

Teorema de Madow 

Sea 𝑡 una variable aleatoria que toma un número finito de valores 

reales. Entonces 

𝑉(𝑡) = 𝑉1𝐸2(𝑡) + 𝐸1𝑉2(𝑡). 

 

Demostración 

Sea 𝐸(𝑡) = 𝑇. Entonces 

𝑉(𝑡) = 𝐸[(𝑡 − 𝑇)2] = 𝐸1𝐸2[(𝑡 − 𝑇)
2]. 

Pero 

𝐸2[(𝑡 − 𝑇)
2] = 𝐸2(𝑡

2) − 2𝑇𝐸2(𝑡) + 𝑇
2 = 

[𝐸2(𝑡)]
2 + 𝑉2(𝑡) − 2𝑇𝐸2(𝑡) + 𝑇

2. 

Ahora se promedia sobre las concreciones de la primera etapa, y 

como 𝑇 = 𝐸1𝐸2(𝑡), 

𝑉(𝑡) = 𝐸1[𝐸2(𝑡)]
2 − 𝑇2 + 𝐸1[𝑉2(𝑡)] = 𝑉1[𝐸2(𝑡)] + 𝐸1[𝑉2(𝑡)]. 

 

 La fórmula de Madow es generalizable a tres o más etapas, 

del modo 
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𝑉(𝑡) = 𝑉1𝐸2𝐸3(𝑡) + 𝐸1𝑉2𝐸3(𝑡) + 𝐸1𝐸2𝑉3(𝑡) 

donde 

𝐸(𝑡) = 𝐸1𝐸2𝐸3(𝑡), 

etc. 

 

 Una generalización del Teorema de Madow es el resultado 

siguiente, que puede demostrarse de modo similar al ya visto 

anteriormente. Si 𝑡1  y 𝑡2  son dos variables aleatorias o dos 

estimadores, su covarianza incondicional es 

𝐶𝑜𝑣(𝑡1, 𝑡2) = 𝐶𝑜𝑣1[𝐸2(𝑡1), 𝐸2(𝑡2)] + 𝐸1[𝐶𝑜𝑣2(𝑡1, 𝑡2)], 

donde 𝐸2  es la esperanza condicional, y 𝐶𝑜𝑣2  es la covarianza 

condicional. 

El “coeficiente de correlación” entre dos variables aleatorias 

𝑋 e 𝑌, y se denota 𝜌, se define como 

𝜌 =  𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉(𝑋)√𝑉(𝑌)
. 

 

 

 

Desigualdad de Markov 

Si 𝑡 es una variable aleatoria positiva o cero, existe su esperanza 

matemática, y 𝑒 > 0 una constante real, entonces: 

𝐸(𝑡) ≥ 𝑒𝑝(𝑡 ≥ 𝑒). 
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Demostración 

𝐸(𝑡) = 𝐸(𝑡 | 𝑡 < 𝑒)𝑝(𝑡 < 𝑒) + 𝐸(𝑡 | 𝑡 ≥ 𝑒)𝑝(𝑡 ≥ 𝑒) ≥ 

𝐸(𝑡 | 𝑡 ≥ 𝑒)𝑝(𝑡 ≥ 𝑒) ≥ 𝑒𝑝(𝑡 ≥ 𝑒). 

 

Desigualdad de Chebychev 

Si 𝑡 es una variable aleatoria cuya varianza existe, y 𝑒 > 0 es una 

constante real, entonces: 

𝑝{|𝑡 − 𝐸(𝑡)| < 𝑒} ≥ 1 −
𝑉(𝑡)

𝑒2
. 

 

Demostración 

Haciendo uso de la desigualdad de Markov, 

𝑝{[𝑡 − 𝐸(𝑡)]2 ≥ 𝑒2} ≤
𝐸{[𝑡 − 𝐸(𝑡)]2}

𝑒2
=
𝑉(𝑡)

𝑒2
. 

Entonces, la probabilidad del suceso complementario es la 

buscada, que es mayor o igual a 1  menos la cota superior del 

suceso. Si fuese 𝑒 > √𝑉(𝑡), la cota inferior es 1 − 𝑉(𝑡) 𝑒2⁄ > 0. 

 

 

Generalización de la desigualdad de Chebychev 

Si 𝑡 es una variable aleatoria cuya varianza existe, 𝑓(𝒚) una 

función paramétrica cualquiera, y 𝑒 > 0  es una constante real, 

entonces: 
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𝑝{|𝑡 − 𝑓(𝒚)| < 𝑒} ≥ 1 −
𝐸𝐶𝑀[𝑡; 𝑓(𝒚)]

𝑒2
. 

 

Demostración 

La demostración es análoga a la de la desigualdad de Chebychev y 

sustituyendo ahora 𝐸(𝑡) por la función paramétrica general 𝑓(𝒚). 

También podemos razonar directamente así: 

𝐸𝐶𝑀[𝑡; 𝑓(𝒚)] = 𝐸{[𝑡 − 𝑓(𝒚)]2} = 

𝑝{[𝑡 − 𝑓(𝒚)]2 < 𝑒2}𝐸{[𝑡 − 𝑓(𝒚)]2|[𝑡 − 𝑓(𝒚)]2 < 𝑒2} + 

𝑝{[𝑡 − 𝑓(𝒚)]2 ≥ 𝑒2}𝐸{[𝑡 − 𝑓(𝒚)]2|[𝑡 − 𝑓(𝒚)]2 ≥ 𝑒2} ≥ 

𝑝{[𝑡 − 𝑓(𝒚)]2 ≥ 𝑒2}𝐸{[𝑡 − 𝑓(𝒚)]2|[𝑡 − 𝑓(𝒚)]2 ≥ 𝑒2} ≥ 

𝑝[|𝑡 − 𝑓(𝒚)| ≥ 𝑒] ∙ 𝑒2. 

Luego, 

𝑝[|𝑡 − 𝑓(𝒚)| ≥ 𝑒] ≤
𝐸𝐶𝑀[𝑡; 𝑓(𝒚)]

𝑒2
. 

O bien, 

𝑝[|𝑡 − 𝑓(𝒚)| < 𝑒] ≥ 1 −
𝐸𝐶𝑀[𝑡; 𝑓(𝒚)]

𝑒2
. 

 

Además del poder explicativo de la desigualdad de 

Chebychev en la estimación de una función paramétrica con un 

estimador insesgado de la misma, en términos de probabilidad de 

una desviación absoluta máxima, la varianza del estimador es útil 

para acotar en términos esperados a la desviación absoluta debido 

al teorema 1.1 consecuencia de la desigualdad de Schwarz. Lo 

mismo podríamos decir del error cuadrático medio del estimador, 
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que es útil para acotar en términos esperados a la desviación 

absoluta del estimador 𝑡 respecto de la función paramétrica 𝑓(𝒚), 

como consecuencia del corolario 1.1. 

Una consecuencia de la desigualdad de Chebychev es que si 

tenemos estimadores independientes 𝑡1, 𝑡2, … , 𝑡𝑢  con la misma 

esperanza matemática 𝑇, podemos decir que el estimador  

𝑡 =
𝑡1 + 𝑡2 +⋯+ 𝑡𝑢

𝑢
 

sigue siendo insesgado para estimar 𝑇, y además 

𝑝(|𝑡 − 𝑇| < 𝑒) ≥ 1 −
𝑉(𝑡1) + 𝑉(𝑡2) + ⋯+ 𝑉(𝑡𝑢)

𝑢2𝑒2
. 

 

Teorema 1.3. Si 𝑡1, 𝑡2, … , 𝑡𝑢  son 𝑢  estimadores o estadísticos 

incorrelacionados con idéntica media 𝑇  y existen sus varianzas, 

entonces un estimador insesgado de la varianza del estimador 

𝑡 =
𝑡1 + 𝑡2 +⋯+ 𝑡𝑢

𝑢
 

es el siguiente 

𝑉̂(𝑡) =
1

𝑢(𝑢 − 1)
∑(𝑡𝑖 − 𝑡)

2

𝑢

𝑖=1

=
1

𝑢(𝑢 − 1)
(∑𝑡𝑖

2

𝑢

𝑖=1

− 𝑢𝑡2). 

 

Demostración 

𝐸[𝑉̂(𝑡)] =
1

𝑢(𝑢 − 1)
{∑[𝑉(𝑡𝑖) + 𝑇

2] − 𝑢[𝑉(𝑡) + 𝑇2]

𝑢

𝑖=1

} = 
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1

𝑢(𝑢 − 1)
[∑𝑉(𝑡𝑖) − 𝑢𝑉(𝑡)

𝑢

𝑖=1

] = 

1

𝑢(𝑢 − 1)
[𝑢2𝑉(𝑡) − 𝑢𝑉(𝑡)] = 𝑉(𝑡). 

El estadístico o estimador 𝑡 es el compendio para estimar sin 

sesgo 𝑇, y 𝑉̂(𝑡) es el estimador de grupos aleatorios de la varianza 

de 𝑡. 

 

Teorema 1.4. Sean dos estrategias insesgadas de la misma función 

paramétrica 𝑓(𝑦1, 𝑦2, … , 𝑦𝑁) = 𝑓(𝒚), que denotamos por (𝑝1, 𝑡1) 

y (𝑝2, 𝑡2), siendo 𝑝1  y 𝑝2  dos diseños muestrales, y 𝑡1  y 𝑡2  dos 

estimadores asociados a sus diseños respectivos. Si la estrategia 

muestral (𝑝1, 𝑡1)  dispone de un estimador insesgado de su 

varianza, denotémosle por 𝑉̂(𝑝1, 𝑡1), entonces: 

La estrategia insesgada (𝑝2, 𝑡2)  dispone de un estimador 

insesgado de su varianza cuya expresión es 

𝑉̂(𝑝2, 𝑡2) = 𝑡2
2 − 𝑡1

2 + 𝑉̂(𝑝1, 𝑡1). 

 

Demostración 

Para ello, partimos de que por ser estrategias insesgadas 

𝐸(𝑝1, 𝑡1) = 𝐸(𝑝2, 𝑡2) = 𝑓(𝒚). 

Además, 

𝑉(𝑝1, 𝑡1) = 𝐸(𝑝1, 𝑡1
2) − [𝑓(𝒚)]2. 

Y 

𝑉(𝑝2, 𝑡2) = 𝐸(𝑝2, 𝑡2
2) − [𝑓(𝒚)]2. 
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Por tanto, 

𝑉(𝑝2, 𝑡2) = 𝐸(𝑝2, 𝑡2
2) − 𝐸(𝑝1, 𝑡1

2) + 𝑉(𝑝1, 𝑡1). 

De donde sustituyendo las funciones paramétricas del segundo 

miembro de esta última ecuación por sus respectivos estimadores 

insesgados, obtenemos el estimador insesgado 𝑉̂(𝑝2, 𝑡2)  de la 

varianza 𝑉(𝑝2, 𝑡2). En concreto, 

𝑉̂(𝑝2, 𝑡2) = 𝑡2
2 − 𝑡1

2 + 𝑉̂(𝑝1, 𝑡1). 

El estimador 𝑡1  depende del dato seleccionado con el diseño 

muestral 𝑝1, el estimador 𝑡2 depende del dato seleccionado con el 

diseño muestral 𝑝2 , y el estimador 𝑉̂(𝑝1, 𝑡1)  depende del dato 

seleccionado con el diseño muestral 𝑝1 y del estimador 𝑡1. 

Una observación a tener en cuenta es que si los diseños 

muestrales 𝑝1  y 𝑝2  no son coincidentes, entonces se tienen que 

seleccionar dos muestras, independientes o no, cada una de ellas de 

acuerdo con su diseño muestral. Si fueran coincidentes, solo sería 

necesario seleccionar una muestra de acuerdo con el diseño 

muestral común. 

 

Para finalizar este capítulo, veamos el teorema de Rao-

Blackwell que garantiza que a efectos inferenciales de la eficiencia 

de la estimación basta considerar el dato no ordenado, pues es 

suficiente para conservar la información necesaria para la 

estimación eficiente. Sin embargo, los diseños muestrales 

ordenados también se usan en la práctica porque tienen la ventaja 

de que cuando una unidad de la muestra está repetida, se puede 

ahorrar el coste en trabajo y económico de obtener el mismo dato 

para dicha unidad en las veces que se presenta con multiplicidad 

mayor o igual a 2 en la muestra ordenada. 
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Dado un estimador 𝑡(𝒅)  definido para datos ordenados, 

podemos definir el estimador asociado 𝑡∗(𝑑)  definido sobre el 

conjunto de datos no ordenados siguiente 

𝑡∗(𝑑) = 𝐸(𝑡 | 𝑑) =
∑ 𝑡(𝒅)𝑝(𝒅)𝒔∈𝑟−1(𝑠)

𝑝(𝑠)
. 

Es decir, para el dato 𝑑 el estimador 𝑡∗ toma el valor promedio de 

los valores de 𝑡(𝒅) siempre que 𝑟(𝒅) = 𝑑. Observar también que 

𝑝(𝑠) = ∑ 𝑝(𝒔)𝒔∈𝑟−1(𝑠) = ∑ 𝑝(𝒅)𝒔∈𝑟−1(𝑠) . 

 

Teorema de Rao-Blackwell 

Dado un estimador sobre datos ordenados 𝑡, el estimador asociado 

𝑡∗ sobre datos no ordenados verifica: 

1. 𝐸(𝑡∗) = 𝐸(𝑡). 

2. 𝑉(𝑡∗) ≤ 𝑉(𝑡). 

3. 𝐸𝐶𝑀(𝑡∗) ≤ 𝐸𝐶𝑀(𝑡). 

 

Demostración 

1. Como 

𝐸(𝑡∗) = 𝐸[𝐸(𝑡 | 𝑑)] = 𝐸(𝑡). 

2. Como 

𝑉(𝑡∗) = 𝐸[(𝑡∗)2] − [𝐸(𝑡∗)]2, 

y  

𝑉(𝑡) = 𝐸(𝑡2) − [𝐸(𝑡)]2, 

basta con probar que 
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𝐸[(𝑡∗)2] = 𝐸{[𝐸(𝑡 | 𝑑)]2} ≤ 𝐸[𝐸(𝑡2| 𝑑)] = 𝐸(𝑡2). 

3. Cierto porque 

𝐸𝐶𝑀(𝑡∗) = 𝑉(𝑡∗) + [𝐵(𝑡∗)]2 ≤ 𝑉(𝑡) + [𝐵(𝑡)]2 = 𝐸𝐶𝑀(𝑡), 

al ser 𝑉(𝑡∗) ≤ 𝑉(𝑡) y 𝐵(𝑡∗) = 𝐵(𝑡), ya que 𝐸(𝑡∗) = 𝐸(𝑡). 

 

1.2 Ejercicios resueltos 

 

Ejercicio 1.1. Un mismo diseño muestral y estimador insesgado se 

han empleado en dos ocasiones sucesivas independientes para 

estimar cierta función paramétrica poblacional. Obtener una 

estimación mejorada de la misma función paramétrica poblacional, 

y un estimador insesgado de su varianza. 

Solución. Sean 𝑡1  y 𝑡2  las dos estimaciones obtenidas con el 

mismo diseño muestral y estimador insesgado de 𝑇. Otro estimador 

insesgado de la misma función paramétrica 𝑇 es entonces 

𝑡 =
𝑡1 + 𝑡2
2

, 

puesto que 𝐸(𝑡) = [𝐸(𝑡1) + 𝐸(𝑡2)] 2⁄ = 2𝑇 2⁄ = 𝑇. 

Su varianza es menor que cada una de las varianzas de 𝑡1 y 

de 𝑡2, pues como 

𝑉(𝑡1) = 𝑉(𝑡2) = 𝑉, 

la varianza de 𝑡 verifica 

𝑉(𝑡) = 𝑉 (
𝑡1 + 𝑡2
2

) =
𝑉(𝑡1) + 𝑉(𝑡2)

4
=
𝑉

2
≤ 𝑉. 
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Es decir, se ha reducido a la mitad, por lo que el estimador 

propuesto 𝑡 es más preciso que 𝑡1 y que 𝑡2. 

Un estimador insesgado de la varianza de 𝑡 es el estimador 

insesgado de la varianza para grupos aleatorios que puede 

escribirse así 

𝑉̂(𝑡) =
1

𝑛(𝑛 − 1)
∑(𝑡𝑖 − 𝑡)

2

𝑛

𝑖=1

 

donde en nuestro caso, es 𝑛 = 2. Es decir, 

𝑉̂(𝑡) =
1

2
[𝑡1
2 + 𝑡2

2 − 2𝑡(𝑡1 + 𝑡2) + 2𝑡
2] = 

𝐸(𝑡1
2) − 𝑡2. 

Así pues, 

𝐸[𝑉̂(𝑡)] = 𝐸𝐸(𝑡1
2) − 𝐸(𝑡2) = 𝑉 + 𝑇2 − (

𝑉

2
+ 𝑇2) =

𝑉

2
= 𝑉(𝑡). 

 

Ejercicio 1.2. El estimador insesgado de la varianza de un 

estimador 𝑡, 𝑉̂(𝑡), ¿sirve para acotar una medida promedio de la 

desviación absoluta del estimador respecto a su media? 

Solución. Una consecuencia de la desigualdad de Schwarz es que 

si existe la varianza de 𝑡 , como ocurre en la inferencia en 

poblaciones finitas con observaciones fijas, entonces 

𝐸[|𝑡 − 𝐸(𝑡)|] ≤ √𝑉(𝑡). 

Por tanto, 

{𝐸[|𝑡 − 𝐸(𝑡)|]}2 ≤ 𝑉(𝑡). 
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Así podemos decir que el cuadrado de la desviación absoluta 

del estimador a su media, está acotado superiormente por la 

varianza del estimador. Sin embargo, aunque el estimador 

insesgado de la varianza del estimador estima sin sesgo la varianza 

del estimador, puede oscilar aleatoriamente y algún valor pequeño 

de 𝑉̂(𝑡) podría no ser cota superior del cuadrado de 

𝐸[|𝑡 − 𝐸(𝑡)|], 

que es esta última fórmula la desviación absoluta media del 

estimador. En conclusión, el estimador insesgado de la varianza no 

sirve como cota superior en general. Sin embargo, como este 

estimador de la varianza 𝑉̂(𝑡) suele converger a la varianza 𝑉(𝑡) 

cuando el tamaño muestral es suficientemente grande, tal estimador 

puede ser una buena aproximación a la cota superior 𝑉(𝑡) y valer 

como cota superior estimada del cuadrado del promedio de la 

desviación absoluta de 𝑡. 

 

Ejercicio 1.3. Aplicar la desigualdad de Chebychev para estimar 

por intervalo la media poblacional, conociendo el estimador 

insesgado 𝑡 de la media poblacional, y un estimador insesgado de 

la varianza del estimador, 𝑉̂(𝑡), que converge a 𝑉(𝑡) para muestras 

de gran tamaño. 

Solución. La desigualdad de Chebychev nos garantiza que 

𝑝{|𝑡 − 𝐸(𝑡)| < 𝑒} ≥ 1 −
𝑉(𝑡)

𝑒2
≈ 1 −

𝑉̂(𝑡)

𝑒2
. 

De esta manera, el intervalo de confianza para la media poblacional 

es 

(𝑡 − 𝑒, 𝑡 + 𝑒), 
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y tiene una probabilidad aproximadamente mayor o igual (tanto 

más aproximada cuanto la convergencia de 𝑉̂(𝑡) sea más rápida) 

que el valor estimado 

1 −
𝑉̂(𝑡)

𝑒2
. 

 

Ejercicio 1.4. La media aritmética de diez estimaciones con el 

mismo diseño muestral y estimador insesgado independiente, es 3. 

Si la suma de las estimaciones insesgadas de las varianzas de cada 

uno de los diez estimadores es 1, obtener una cota aproximada del 

nivel de confianza del intervalo (1, 5) para estimar la esperanza de 

cada uno de los diez estimadores. 

Solución. Sea la media aritmética 

𝑡 =
1

10
∑𝑡𝑖

10

𝑖=1

 

de las diez estimaciones. El intervalo de confianza para la 

esperanza de 𝑡 se obtiene con la desigualdad de Chebychev 

𝑝{|𝑡 − 𝐸(𝑡)| < 𝑒} ≥ 1 −
𝑉(𝑡)

𝑒2
≈ 1 −

∑ 𝑉̂(𝑡𝑖)
10
𝑖=1

102𝑒2
= 

1 −
1

100𝑒2
 

Como el intervalo de confianza es (1, 5) y 𝑡 = 3, resulta que la 

amplitud del intervalo es 𝑒 = 2, por lo que la cota inferior del nivel 

de confianza aproximado es 

1 −
1

100𝑒2
=
399

400
. 
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Luego, es muy probable o prácticamente casi seguro que la 

media poblacional esté en el intervalo (1, 5) . En concreto con 

probabilidad superior aproximadamente a 399 400⁄ . 

 

Ejercicio 1.5. Con los datos del Ejercicio anterior, si nos piden 

contrastar la hipótesis de que la media poblacional es 4, ¿se 

aceptará la hipótesis al nivel de confianza 399 400⁄ ? Y si la 

hipótesis fuera que la media poblacional es 6, ¿se aceptará la 

hipótesis al mismo nivel de confianza? 

Solución. Como el intervalo de confianza (1, 5) tiene un nivel de 

confianza superior o igual aproximadamente a 399 400⁄ , como 

4 ∈ (1, 5) = 𝑅 

se acepta la hipótesis de que la media poblacional sea 4 a ese nivel 

de confianza al menos, pues 4 pertenece a la “región de aceptación” 

𝑅. También, como 

6 ∉ (1, 5) 

la hipótesis de que la media poblacional es 6 se rechaza con ese 

nivel de confianza al menos, aproximadamente. Esto se debe a que 

6 no pertenece a la región de aceptación 𝑅, es decir, 6 pertenece a 

la “región crítica” o de rechazo 𝑅𝑐 = ℝ − 𝑅, complementaria a la 

región de aceptación. 

 

Ejercicio 1.6. Sea 𝑡  un estimador insesgado de la función 

paramétrica 𝛼 en una población finita con observaciones fijadas. 

¿Qué nivel de confianza mínimo aproximado nos asegura que la 

función paramétrica se encuentra en el intervalo de confianza 

(𝑡 − 𝑒, 𝑡 + 𝑒)? 
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Solución. El nivel de confianza mínimo nos viene dado por la 

desigualdad de Chebychev 

𝑝{|𝑡 − 𝛼| < 𝑒} ≥ 1 −
𝑉(𝑡)

𝑒2
 

Así el nivel de confianza mínimo para que 

𝛼 ∈ (𝑡 − 𝑒, 𝑡 + 𝑒) 

viene dado por 

1 −
𝑉(𝑡)

𝑒2
, 

de donde podemos aproximar esta cota inferior del nivel de 

confianza por 

1 −
𝑉̂(𝑡)

(𝑡 − 𝛼0)
2
 

siendo 𝑉̂(𝑡) un estimador insesgado de la varianza del estimador 𝑡, 

y 𝛼0  el valor concreto de la función paramétrica que deseamos 

contrastar o valor de 𝛼  en la hipótesis nula a contrastar. Así 

tenemos un valor aproximado del mínimo nivel de confianza que 

aceptaría la hipótesis de que la función paramétrica poblacional 𝛼 

tomara el valor 𝛼0. 

 

Ejercicio 1.7. Demostrar la siguiente relación: 

2𝑁∑(𝑦𝑘 − 𝑦̅)
2

𝑁

𝑘=1

= ∑ ∑(𝑦𝑘 − 𝑦𝑚)
2

𝑁

𝑚≠𝑘

𝑁

𝑘=1

, 

donde 
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𝑦̅ =
1

𝑁
∑𝑦𝑘

𝑁

𝑘=1

. 

Solución. Desarrollando por el segundo término de la igualdad 

pedida, 

∑ ∑(𝑦𝑘 − 𝑦𝑚)
2

𝑁

𝑚≠𝑘

𝑁

𝑘=1

= ∑ ∑(𝑦𝑘 − 𝑦𝑚)
2

𝑁

𝑚=1

𝑁

𝑘=1

= 

∑ ∑ 𝑦𝑘
2

𝑁

𝑚=1

𝑁

𝑘=1

+∑ ∑ 𝑦𝑚
2

𝑁

𝑚=1

𝑁

𝑘=1

− 2∑ ∑ 𝑦𝑘𝑦𝑚

𝑁

𝑚=1

𝑁

𝑘=1

= 

2𝑁∑𝑦𝑘
2

𝑁

𝑘=1

− 2𝑁2𝑦̅2 = 2𝑁2 (
1

𝑁
∑𝑦𝑘

2

𝑁

𝑘=1

− 𝑦̅2) = 

2𝑁2
1

𝑁
∑(𝑦𝑘 − 𝑦̅)

2

𝑁

𝑘=1

= 2𝑁∑(𝑦𝑘 − 𝑦̅)
2

𝑁

𝑘=1

. 
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Capítulo 2 

Muestreo aleatorio simple 

 

 

En este capítulo vamos a estudiar el procedimiento de “muestreo 

aleatorio simple”, al que se le suele añadir la expresión “con 

reemplazamiento”. Le llamamos así porque es el nombre que se da 

al tipo de muestreo usado en la inferencia estadística tradicional, es 

decir tomando observaciones independientes e idénticamente 

distribuidas entre las unidades de la población finita. Para las 

sucesivas selecciones de las unidades se reincorporan las unidades 

anteriormente seleccionadas, de aquí la denominación “con 

reemplazamiento”. Se le suele denotar por las siglas mas. También 

se la denota por las siglas mpir de “muestreo de probabilidades 

iguales con reemplazamiento”. 

 

2.1 Diseño mas 

El diseño de “muestreo aleatorio simple” o “muestreo aleatorio 

simple con reemplazamiento” es un diseño muestral ordenado 𝑝 

definido sobre las muestras ordenadas concretadas en las 

secuencias de tamaño fijo 𝑛. Es un diseño 𝑇𝐹(𝑛) por tanto. 

 Este diseño muestral puede definirse como el diseño 

ordenado 𝑝 sobre el conjunto de muestras ordenadas 𝑺, de modo 

que cada secuencia 𝒔 ∈ 𝑺 de tamaño muestral 𝑛(𝒔) = 𝑛 tiene una 

probabilidad de ser seleccionada 𝑝(𝒔) = 1/𝑁𝑛, y para las restantes 

secuencias 𝑝(𝒔) = 0. 
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Una caracterización de este diseño sería reproducible 

seleccionando una bola de una urna que contiene 𝑁  bolas, 

numeradas del 1 al 𝑁. Una vez seleccionada una bola, se anota su 

número como la primera componente de la secuencia y 

seguidamente se reincorpora la bola extraída a la urna, de modo 

que en la segunda selección se obtenga con igual probabilidad 

también cualquier unidad de la 1 a la 𝑁, independientemente del 

resultado de la primera extracción. Luego se reincorpora la segunda 

bola seleccionada a la urna de nuevo. Repitiendo este proceso 𝑛 

veces, se selecciona una secuencia de tamaño muestral 𝑛, con 0 <

𝑛. 

Con este diseño muestral ordenado, las distribuciones 

marginales de la secuencia son iguales e independientes entre sí. 

Existen en este diseño 𝑁𝑛 muestras ordenadas de tamaño fijo 𝑛. El 

diseño muestral verifica que  

∑𝑝(𝒔) = 𝑁𝑛
1

𝑁𝑛
= 1

𝒔∈𝑺

. 

Las probabilidades de inclusión en este diseño muestral mas 

son 

𝜋𝑘 = 𝑝(𝑘 ∈ 𝒔) = 1 − 𝑝(𝑘 ∉ 𝒔) = 1 − (1 −
1

𝑁
)
𝑛

 

para toda unidad 𝑘 de la población finita. Observar que si 𝑘𝑖 es la 

unidad 𝑖-ésima de la secuencia muestral 

𝑝(𝑘 ∉ 𝒔) =∏𝑝(𝑘𝑖 ≠ 𝑘) =∏
𝑁 − 1

𝑁
= (1 −

1

𝑁
)
𝑛𝑛

𝑖=1

𝑛

𝑖=1

. 

Las probabilidades de inclusión de segundo orden son 

𝜋𝑘𝑚 = 𝑝(𝑘 y 𝑚 ∈ 𝒔) = 1 − 𝑝(𝑘 o 𝑚 ∉ 𝒔) = 
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1 − 𝑝(𝑘 ∉ 𝒔) − 𝑝(𝑚 ∉ 𝒔) + 𝑝(𝑘 y 𝑚 ∉ 𝒔) = 

1 − (1 −
1

𝑁
)
𝑛

− (1 −
1

𝑁
)
𝑛

+ (1 −
2

𝑁
)
𝑛

= 

1 − 2 (1 −
1

𝑁
)
𝑛

+ (1 −
2

𝑁
)
𝑛

, 

para todo par de unidades 𝑘 y 𝑚 distintas de la población finita. 

 

2.2 Estimación de la media poblacional en mas 

El estimador usual de la media poblacional 𝑦̅  con este diseño 

muestral es la media muestral 𝑦̅𝒔 cuya representación es 

𝑦̅𝒔 =
1

𝑛
∑𝑦𝑘𝑖 =

1

𝑛
∑𝑦𝑘
𝑘∈ 𝒔

,

𝑛

𝑖=1

 

siendo 𝑘𝑖 la 𝑖-ésima unidad de la secuencia muestral ordenada, es 

decir cuando la muestra ordenada es 𝒔 = (𝑘1, 𝑘2, … , 𝑘𝑛). 

 Esta media muestral es insesgada para estimar la media 

poblacional. En efecto, la esperanza matemática de 𝑦̅𝒔 coincide con 

𝑦̅. 

𝐸(𝑦̅𝒔) = 𝐸 (
1

𝑛
∑𝑦𝑘𝑖

𝑛

𝑖=1

) =
1

𝑛
∑𝐸(𝑦𝑘𝑖) =

1

𝑛
𝑛𝑦̅ = 𝑦̅

𝑛

𝑖=1

, 

por distribuirse idénticamente la variable 𝑦𝑘𝑖  a la variable 𝑦 

equiprobable en todas las unidades de la población finita, es decir 

𝐸(𝑦𝑘𝑖) = 𝐸(𝑦) = 𝑦1
1

𝑁
+ 𝑦2

1

𝑁
+⋯+ 𝑦𝑁

1

𝑁
= 𝑦̅. 

Por tanto el sesgo de la media muestral con diseño mas para estimar 

la media poblacional es 
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𝐵(𝑦̅𝒔;  𝑦̅) = 𝐸(𝑦̅𝒔) − 𝑦̅ = 0. 

 La varianza de la media muestral 𝑦̅𝒔 puede obtenerse así 

𝑉(𝑦̅𝒔) = 𝑉 (
1

𝑛
∑𝑦𝑘𝑖

𝑛

𝑖=1

) =
1

𝑛2
𝑉 (∑𝑦𝑘𝑖

𝑛

𝑖=1

) = 

1

𝑛2
∑𝑉(𝑦𝑘𝑖) =

1

𝑛2
𝑛𝜎2 =

𝜎2

𝑛

𝑛

𝑖=1

, 

debido a que las variables 𝑦𝑘𝑖  son independientes e idénticamente 

distribuidas a la población con unidades equiprobables. 

 

2.3 Estimación de la varianza en mas 

Un estimador insesgado de la varianza poblacional 𝜎2  para el 

diseño mas es la cuasivarianza muestral definida como 

𝑠2 =
1

𝑛 − 1
∑(𝑦𝑘𝑖 − 𝑦̅𝒔)

2
𝑛

𝑖=1

. 

En efecto, 

(𝑛 − 1)𝑠2 =∑(𝑦𝑘𝑖 − 𝑦̅𝒔)
2

𝑛

𝑖=1

=∑(𝑦𝑘𝑖 − 𝑦̅ + 𝑦̅ − 𝑦̅𝒔)
2
=

𝑛

𝑖=1

 

∑(𝑦𝑘𝑖 − 𝑦̅)
2
+ 𝑛(𝑦̅ − 𝑦̅𝒔)

2 + 2(𝑦̅ − 𝑦̅𝒔)∑(𝑦𝑘𝑖 − 𝑦̅)

𝑛

𝑖=1

=

𝑛

𝑖=1

 

∑(𝑦𝑘𝑖 − 𝑦̅)
2
− 𝑛(𝑦̅𝒔 − 𝑦̅)

2.

𝑛

𝑖=1
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Por lo que tomando esperanzas matemáticas en el primer y el 

último miembros, tenemos que 

(𝑛 − 1)𝐸(𝑠2) =∑𝐸 [(𝑦𝑘𝑖 − 𝑦̅)
2
]

𝑛

𝑖=1

− 𝑛𝐸[(𝑦̅𝒔 − 𝑦̅)
2] = 

𝑛𝜎2 − 𝑛𝑉(𝑦̅𝒔) = 𝑛𝜎
2 − 𝑛

𝜎2

𝑛
= (𝑛 − 1)𝜎2. 

De donde deducimos simplificando que 𝐸(𝑠2) = 𝜎2, es decir que 

la cuasivarianza muestral es insesgada en el muestreo aleatorio 

simple para estimar la varianza poblacional. También podemos 

escribir que el sesgo 𝐵(𝑠2;  𝜎2) = 0 . Además 𝑠2  es estimador 

óptimo de 𝜎2 para distribución libre (Zacks, 1971, p. 150). 

 Como consecuencia, ya que la media muestral 𝑦̅𝒔  es 

insesgada para estimar la media poblacional 𝑦̅  y su varianza es 

𝜎2 𝑛⁄ , un estimador insesgado de esta varianza de la media 

muestral es 𝑠2 𝑛⁄ . También es usual denotarlo del modo 

𝑉̂(𝑦̅𝒔) =
𝑠2

𝑛
. 

Ciertamente, 

𝐸[𝑉̂(𝑦̅𝒔)] = 𝐸 (
𝑠2

𝑛
) =

1

𝑛
𝐸(𝑠2) =

1

𝑛
𝜎2 = 𝑉(𝑦̅𝒔). 

O bien, 

𝐵[𝑉̂(𝑦̅𝒔); 𝑉(𝑦̅𝒔)] = 0. 

 

2.4 Estimación del total poblacional en mas 

La función paramétrica “total poblacional” es definida como 
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𝑇 = 𝑁𝑦̅ = ∑𝑦𝑘

𝑁

𝑘=1

. 

Un estimador insesgado de 𝑇, que emplea la información del 

tamaño poblacional 𝑁, es 𝑇̂ = 𝑁𝑦̅𝒔. En efecto, 

𝐸(𝑇̂) = 𝐸(𝑁𝑦̅𝒔) = 𝑁𝐸(𝑦̅𝒔) = 𝑁𝑦̅ = 𝑇. 

La varianza del estimador 𝑁𝑦̅𝒔 es 

𝑉(𝑇̂) = 𝑉(𝑁𝑦̅𝒔) = 𝑁2𝑉(𝑦̅𝒔) = 𝑁
2
𝜎2

𝑛
. 

Un estimador insesgado de esta varianza es 𝑉̂(𝑇̂) = 𝑁2𝑠2 𝑛⁄ . En 

efecto, 

𝐸[𝑉̂(𝑇̂)] = 𝐸 (𝑁2
𝑠2

𝑛
) =

𝑁2

𝑛
𝐸(𝑠2) =

𝑁2

𝑛
𝜎2 = 𝑉(𝑇̂). 

 

2.5 Estimación de la proporción poblacional en mas 

La “proporción poblacional” 𝑃 es la función paramétrica “media 

poblacional” 𝑦̅ cuando la variable de interés 𝑦 toma valor 1 ó 0 en 

cada unidad de la población según posea o no una cualidad 

respectivamente la unidad. Por ejemplo, tener sexo varón al nacer 

una persona si la población finita es de seres humanos. La 

proporción poblacional será 

𝑃 =
1

𝑁
∑𝑦𝑘 = 𝑦̅,

𝑁

𝑘=1

 

pero ahora 
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𝑦𝑘 = {
1        si la unidad 𝑘 posee la cualidad
0  si la unidad 𝑘 no posee la cualidad

 

Se trata por tanto de un caso particular de media poblacional que 

toma valores comprendidos entre 0 y 1. 

 El estimador insesgado de la proporción poblacional 𝑃 es la 

proporción muestral 𝑃̂ = 𝑦̅𝒔, cuya varianza puede expresarse ahora 

𝑉(𝑃̂) =
𝜎2

𝑛
=
𝑃𝑄

𝑛
, 

siendo 𝑄 = 1 − 𝑃 la proporción poblacional de unidades que no 

poseen la cualidad; ya que al tomar 𝑦𝑘  valores 1 ó 0, 𝑦𝑘
2 = 𝑦𝑘 , 

deducimos que 

𝜎2 =
1

𝑛
∑𝑦𝑘

2 − 𝑦̅2 = 𝑃 − 𝑃2 = 𝑃(1 − 𝑃) = 𝑃𝑄.

𝑁

𝑘=1

 

Del mismo modo, la varianza muestral es 𝑃̂𝑄̂ = (𝑛 − 1)𝑠2 𝑛⁄ , 

siendo 𝑄̂ = 1 − 𝑃̂  la proporción muestral de unidades que no 

poseen la cualidad. Por tanto, un estimador insesgado de la 

varianza de la proporción muestral es 

𝑉̂(𝑃̂) =
𝑃̂𝑄̂

𝑛 − 1
. 

La estimación del “porcentaje poblacional” es un caso similar 

al de la “proporción poblacional”, ya que el porcentaje es la 

proporción multiplicada por 100 . El estimador insesgado del 

porcentaje 100𝑃 , es 100𝑃̂ , cuyo estimador insesgado de su 

varianza es 

𝑉̂(100𝑃̂) =
104𝑃̂𝑄̂

𝑛 − 1
. 
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Su uso es muy práctico, por ejemplo, en la estimación del 

porcentaje de voto a un partido político. 

 

2.6 Tamaño de la muestra con mas 

La pregunta que nos hacemos es ¿cuál es el tamaño muestral 𝑛 

necesario para alcanzar un “error máximo de muestreo” 𝑒 con una 

probabilidad 1 − 𝛼? A “1 − 𝛼” se le llama “nivel de confianza” de 

la estimación. En el muestreo aleatorio simple, la media muestral 

𝑦̅𝒔 verifica 

𝑝{|𝑦̅𝒔 − 𝑦̅| < 𝑒} ≥ 1 −
𝑉(𝑦̅𝒔)

𝑒2
= 1 − 𝛼. 

De esta manera obligamos a que 1 − 𝛼 sea una cota inferior del 

nivel de confianza verdadero de la estimación. Luego, 

𝛼 =
𝑉(𝑦̅𝒔)

𝑒2
=
𝜎2

𝑛𝑒2
 

que implica que 

𝑛 =
𝜎2

𝛼𝑒2
 

es el tamaño muestral que asegura tener un error absoluto máximo 

de muestreo 𝑒 con un nivel de confianza mayor o igual a 1 − 𝛼. 

Así, una vez fijados 𝑒 y 1 − 𝛼, el tamaño muestral buscado es una 

función paramétrica proporcional a la varianza muestral, por lo que 

es estimable insesgadamente por 

𝑛̂ =
𝑠0
2

𝛼𝑒2
, 
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donde 𝑠0
2  es la cuasivarianza muestral en una muestra piloto de 

tamaño 𝑛0, previa al estudio con diseño 𝑚𝑎𝑠. En el caso de estimar 

una proporción poblacional 𝑃, se verificaría 

𝑛̂ =
𝑛0𝑃̂0𝑄̂0

(𝑛0 − 1)𝛼𝑒
2
, 

siendo 𝑃̂0  y 𝑄̂0  las proporciones muestrales respectivas de la 

muestra piloto de tamaño 𝑛0. 

En el caso de la estimación de un porcentaje 100𝑃, el tamaño 

muestral estimado insesgado a partir de la muestra piloto de tamaño 

𝑛0 verificaría 

𝑛̂ =
𝑛010

4𝑃̂0𝑄̂0
(𝑛0 − 1)𝛼𝑒

2
. 

Al tratarse el diseño mas de un procedimiento de muestreo 

cuyas observaciones son idénticamente distribuidas a la población 

finita e independientes entre sí, podemos utilizar el Teorema 

Central del Límite y aproximar la distribución del estimador media 

muestral 𝑦̅𝒔 por la distribución normal de la misma media 𝑦̅ y la 

misma varianza 𝜎2 𝑛⁄ . Esto es especialmente práctico cuando el 

tamaño muestral es grande y nos permitiría obtener tamaños 

muestrales aproximados al hacer uso de la distribución normal ya 

tabulada. La idea se formaliza haciendo la aproximación a la 

distribución normal de parámetros 0  y 1 , estandarizando o 

tipificando la variable aleatoria media muestral. Como tenemos la 

distribución aproximada 

√𝑛(𝑦̅𝒔 − 𝑦̅)

𝜎
≅ 𝑁(0, 1), 

podemos buscar en las tablas de la distribución normal el valor 𝜆𝛼 

tal que 
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𝑝[|𝑁(0, 1)| < 𝜆𝛼] = 1 − 𝛼. 

Una vez obtenido el valor tabular 𝜆𝛼, tenemos que 

|
√𝑛(𝑦̅𝒔 − 𝑦̅)

𝜎
| < 𝜆𝛼 . 

Es decir, con probabilidad aproximada 1 − 𝛼 

|𝑦̅𝒔 − 𝑦̅| <
𝜆𝛼𝜎

√𝑛
= 𝑒, 

donde 𝑒  es el error absoluto máximo de muestreo que 

consideramos. De donde, despejando 𝑛  tenemos el valor 

aproximado 

𝑛 =
𝜆𝛼
2𝜎2

𝑒2
 

que puede ser estimado insesgadamente en una muestra piloto 

previa por 

𝑛̂ =
𝜆𝛼
2 𝑠0

2

𝑒2
, 

siendo 𝑠0
2  la cuasivarianza muestral piloto, que es un estimador 

insesgado de la varianza poblacional 𝜎2. 

 

2.7 Ejercicios resueltos 

 

Ejercicio 2.1. Disponemos de una población finita de tamaño 𝑁 =

5  y queremos estimar la media poblacional con diseño mas de 

tamaño fijo 𝑛 = 3. Proponer un estimador insesgado de la media 
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poblacional, estimar ésta y estimar sin sesgo la varianza del 

estimador propuesto, en estos casos: 

a) Si la muestra es 𝒔 = (1, 2, 2), 𝑦1 = 4 e 𝑦2 = 8. 

b) Si la muestra es 𝒔 = (1, 3, 2), y además 𝑦3 = 6. 

Solución. El estimador propuesto en ambos casos es la media 

muestral 𝑦̅𝒔, que es insesgado para estimar la media poblacional. 

a) La media muestral se concreta en este caso así 

𝑦̅(1,2,2) =
𝑦1 + 𝑦2 + 𝑦2

3
=
4 + 8 + 8

3
=
20

3
. 

Una estimación sin sesgo de la varianza de la media muestral viene 

proporcionada por el estimador 

𝑉̂(𝑦̅𝒔) =
𝑠2

𝑛
, 

donde 𝑛 = 3, y 

𝑠2 =
1

𝑛 − 1
∑(𝑦𝑘 − 𝑦̅𝒔)

2 =

𝑘∈𝒔

1

2
(
64

9
+
16

9
+
16

9
) =

16

3
, 

por lo que la estimación insesgada de la varianza de la media 

muestral es 16 9⁄ . 

b) 𝑦̅(1,3,2) = 6 y la estimación insesgada de su varianza es 4 3⁄ . 

 

Ejercicio 2.2. En el problema anterior, ¿qué muestra es más precisa 

para estimar la media poblacional? 

Solución. Ambas muestras ordenadas son concreciones del mismo 

diseño mas, por lo que no puede afirmarse que una muestra sea más 

precisa que otra, ya que la precisión de un estimador se define como 

la inversa de la varianza del estimador, y esta varianza incluye en 
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su cálculo a todas las concreciones de las muestras. La precisión no 

se define para una estimación a no ser que conozcamos también la 

media poblacional y calculemos su desviación absoluta; en este 

caso la estimación más precisa sería la que tenga menor desviación 

absoluta. Como desconocemos la totalidad del parámetro, no 

podemos calcular la media poblacional y por tanto tampoco la 

desviación de las dos estimaciones obtenidas a aquélla. En 

conclusión, no podemos comparar las muestras según su precisión. 

 Aparentemente la muestra más precisa es la que proporciona 

una estimación de la varianza del estimador más pequeña, 

concretamente 4 3 < 16 9⁄⁄ , pero esto no indica necesariamente 

que las estimaciones de las medias muestrales asociadas guarden 

un orden de precisión, pues se desconocen los valores 𝑦4 e 𝑦5 del 

parámetro y dependiendo de ellos pueden darse un caso u otro o 

incluso la igualdad en desviación absoluta. 

 

Ejercicio 2.3. Tenemos una población de tamaño 𝑁 = 1000  y 

queremos estimar la media poblacional con un error máximo de 

muestreo 𝑒 = 2 y con un nivel de confianza mínimo de 0.95. ¿Qué 

tamaño muestral es necesario con diseño mas para que se 

verifiquen estas condiciones? Aceptamos que de una muestra 

piloto, hemos estimado sin sesgo la varianza poblacional por 𝑠0
2 =

7. 

Solución. Aplicando la fórmula obtenida del estimador insesgado 

del tamaño muestral para cualquier caso, 

𝑛̂ =
𝑠0
2

𝛼𝑒2
=

7

0.05 ∙ 22
= 35 selecciones. 

Admitiendo la hipótesis de normalidad en la distribución del 

estimador media muestral, el valor de 𝛼 = 0.05 determina un valor 
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en las tablas de la distribución 𝑁(0, 1) de 𝜆0.05 = 1.96, por lo que 

entonces el tamaño muestral estimado sería 

𝑛̂ =
𝜆𝛼
2 𝑠0

2

𝑒2
=
1.96 ∙ 7

22
≈ 6.7 

Por lo que bastaría tomar un tamaño muestral de 7 selecciones de 

unidades. Observar que entonces el Teorema Central del Límite no 

sería aplicable a la media muestral, pues su tamaño muestral 7 es 

muy pequeño y el resultado de convergencia es asintótico, cuando 

𝑛  es grande. No obstante el uso de la aproximación por la 

distribución normal sería razonable si la población finita tuviera 

una función de cuantía uniforme discreta concentrada de modo 

cercano a la forma acampanada de aquélla. 

 En cualquier caso la interpretación es que en el primer caso 

obtuvimos un tamaño muestral válido para cualquier distribución 

uniforme discreta de la población finita y asegurando el nivel de 

confianza, mientras que en el segundo caso se hace una hipótesis 

aproximativa concreta a la distribución normal que podría fallar, y 

un nivel de confianza concreto exacto bajo dicha hipótesis falible. 

 

Ejercicio 2.4. Se desea estimar la renta total mensual de un 

colectivo de 200  trabajadores de una planta industrial. A este 

efecto, se selecciona una muestra aleatoria simple con 

reemplazamiento de tamaño 20, resultando una media muestral de 

1680  euros y una cuasivarianza muestral de 40000 euros al 

cuadrado. Proponer un estimador insesgado de la renta total, 

estimarla y estimar sin sesgo su varianza. 

Solución. En este ejercicio, el tamaño poblacional es 𝑁 = 200, 

número total de trabajadores de la planta; el tamaño muestral es 

𝑛 = 20 selecciones de trabajadores encuestados en la muestra 𝒔; la 

renta media muestral es 𝑦̅𝒔 = 1680  euros; la cuasivarianza 
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muestral es 𝑠2 = 40000 euros al cuadrado. La renta total es un 

total poblacional que puede estimarse por 

𝑁𝑦̅𝒔 = 200 ∙ 1680 = 336000 euros. 

Un estimador insesgado de la varianza del estimador 𝑁𝑦̅𝒔, 

𝑉(𝑁𝑦̅𝒔), es el estimador siguiente que se concreta en la estimación 

que le sigue 

𝑉̂(𝑁𝑦̅𝒔) =
𝑁2

𝑛
𝑠2 =

2002

20
40000 = 8 ∙  107 euros al cuadrado. 

 

Ejercicio 2.5. Se quiere conocer una estimación insesgada de la 

varianza del estimador “proporción muestral” y “porcentaje 

muestral” que ha resultado ser del 4% de productos defectuosos de 

entre 100 selecciones aleatorias por diseño mas de entre los 3546 

productos terminados en una fábrica. 

Solución. En este ejercicio, el tamaño poblacional es 𝑁 = 3546 

productos terminados, el tamaño muestral es 𝑛 = 100 selecciones 

de entre los productos acabados, la proporción muestral es 𝑃̂ =

0.04  y el porcentaje muestral es 100 𝑃̂ = 4% . Los estimadores 

insesgados de las varianzas y su concreción para la muestra 

obtenida son 

𝑉̂(𝑃̂) =
𝑃̂𝑄̂

𝑛 − 1
=
0.04 ∙ 0.96

99
≈ 0.000388 

y 

𝑉̂(100𝑃̂) = 104𝑉̂(𝑃̂) ≈ 104 ∙ 0.000388 = 3.88 
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Ejercicio 2.6. Una población finita (“universo”) 𝑈 de tamaño 𝑁 

tiene un subconjunto de unidades (que llamamos “dominio”) 𝐷 ⊂

𝑈 de tamaño 𝑀 ≤ 𝑁. Tomamos una muestra aleatoria simple de 

tamaño 𝑛 de la población finita. Demostrar que la submuestra de 

tamaño 𝑚, 0 ≤ 𝑚 ≤ 𝑛, de la muestra aleatoria simple de unidades 

que están en el dominio 𝐷 constituye una muestra aleatoria simple 

de la población finita 𝐷 de 𝑀 unidades. 

Solución. Tenemos que demostrar que la submuestra ordenada 𝒔𝑚 

de tamaño 𝑚 en 𝐷 de la muestra aleatoria simple 𝒔𝑛 de tamaño fijo 

𝑛 en 𝑈, tiene una probabilidad de selección 

𝑝(𝒔𝑚|𝒔𝑛,𝑚) =
1

𝑀𝑚
. 

Para ello usamos la definición de la probabilidad condicionada. Si 

la muestra aleatoria simple 𝒔𝑛 ha sido la muestra seleccionada, y 

𝒔𝑚 es consistente con la muestra anterior 𝒔𝑛, es decir, hay tantas 

unidades de 𝐷 en 𝒔𝑛 como unidades tiene 𝒔𝑚, 

𝑝(𝒔𝑚|𝒔𝑛,𝑚) =
1

𝑀
⋯
1

𝑀
=

1

𝑀𝑚
, 

siendo la probabilidad 𝑝(𝒔𝑞|𝒔𝑛, 𝑚) = 0 en el resto de los casos, es 

decir, cuando 𝑞  no sea el número de unidades 𝑚  de la muestra 

aleatoria simple ordenada 𝒔𝑛  en el dominio 𝐷 . En general el 

número 𝑚 es aleatorio. La distribución de probabilidad del valor 

concreto 𝑚 = 0, 1, … , 𝑛, se distribuye binomial de parámetros 𝑛 y 

𝑀 𝑁⁄ . Es decir, 

𝑝(𝑚|𝒔𝑛) = (
𝑛
𝑚
) (
𝑀

𝑁
)
𝑚

(
𝑁 −𝑀

𝑁
)
𝑛−𝑚

. 

Por lo que la probabilidad de 𝒔𝑚  condicionada a que el tamaño 

submuestral es 𝑚 es un diseño muestral ordenado caracterizado 

por ser una muestra aleatoria simple con reemplazamiento de 
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tamaño 𝑚  obtenida del dominio 𝐷 , de tamaño 𝑀 . Así, la 

distribución exacta de 𝒔𝑚  (con 𝑚  variable) condicionada a una 

muestra aleatoria simple seleccionada 𝒔𝑛 es: 

𝑝(𝒔𝑚|𝒔𝑛) = 𝑝(𝑚|𝒔𝑛)𝑝(𝒔𝑚|𝒔𝑛, 𝑚). 

 

Ejercicio 2.7. Obtener el estimador insesgado de la media 

poblacional 𝑦̅ de mínima varianza entre los estimadores de la clase 

𝑡 =∑𝑡𝑖𝑦𝑘𝑖

𝑛

𝑖=1

, 

donde 𝑘𝑖 es la 𝑖-ésima unidad seleccionada en la secuencia en la 

muestra aleatoria simple de tamaño 𝑛 de una población finita. 

Solución. La condición que el estimador 𝑡 debe cumplir para que 

sea insesgado es que 

𝐸(𝑡) = 𝑦̅, 

es decir que 

∑𝑡𝑖

𝑛

𝑖=1

= 1. 

Como la varianza de 𝑡 es 

𝑉(𝑡) = 𝜎2∑𝑡𝑖
2

𝑛

𝑖=1

, 

siendo 𝜎2 la varianza de la población finita, el problema se reduce 

a minimizar la función 𝑉(𝑡) bajo la restricción de que 𝐸(𝑡) = 𝑦̅. O 

equivalentemente, a minimizar 
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∑𝑡𝑖
2

𝑛

𝑖=1

 

sujeto a que 

∑𝑡𝑖

𝑛

𝑖=1

= 1. 

Usando la técnica de los multiplicadores de Lagrange, tenemos el 

lagrangiano 

Λ =∑𝑡𝑖
2

𝑛

𝑖=1

+ 𝜆 (∑𝑡𝑖

𝑛

𝑖=1

− 1), 

donde 𝜆 es el multiplicador de Lagrange. Resolviendo, 

∂Λ

𝜕𝑡𝑖
= 2𝑡𝑖 + 𝜆 = 0. 

Por lo que 𝑡𝑖 = 𝑐 (constante). Como la restricción es que 𝑛𝑐 = 1, 

deducimos que 𝑐 = 1 𝑛⁄ . Luego el estimador insesgado de mínima 

varianza de la media poblacional es la media muestral 

𝑡 =
1

𝑛
∑𝑦𝑘𝑖

𝑛

𝑖=1

. 

 

Ejercicio 2.8. Proponer un estimador insesgado de la media 

poblacional de una población finita 𝑈 de tamaño 𝑁 que contiene 

un dominio 𝐷  de tamaño conocido 𝑀 , en el caso (a) de que la 

muestra aleatoria simple 𝒔𝑛  de tamaño 𝑛 ≥ 2 contiene unidades 

del dominio y fuera del dominio, es decir, contiene 𝑚 (1 ≤ 𝑚 ≤

𝑛 − 1) unidades de la secuencia de la muestra en 𝐷; y en el caso 

(b) de que no sepamos si la muestra aleatoria simple de la población 
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finita contiene o no unidades del dominio y de fuera del dominio, 

o bien no sepamos el tamaño del dominio. 

Solución. En el caso (a), llamando 𝒔𝑚 a la submuestra aleatoria 

simple del dominio cuya media muestral 𝑦̅𝒔𝑚 = 𝑦̅𝑚  tiene por 

esperanza matemática 𝑦̅𝐷 = 𝑦̅𝑀, la media del dominio, y llamando 

𝒔𝑛−𝑚  a la submuestra aleatoria simple fuera del dominio cuya 

media muestral 𝑦̅𝒔𝑛−𝑚 = 𝑦̅𝑛−𝑚  tiene por esperanza matemática 

𝑦̅𝑈−𝐷 = 𝑦̅𝑁−𝑀, la media fuera del dominio, tenemos que como 

𝑦̅ =
𝑀

𝑁
𝑦̅𝑀 +

𝑁 −𝑀

𝑁
𝑦̅𝑁−𝑀, 

un estimador insesgado de la media poblacional es directamente 

𝑀

𝑁
𝑦̅𝑚 +

𝑁 −𝑀

𝑁
𝑦̅𝑛−𝑚 

que recibe el nombre de estimador posestratificado, pues hay dos 

estratos en los que se divide o clasifica la población finita: dentro 

del dominio y fuera del dominio. 

En el caso (b) la media muestral es un estimador insesgado 

de la media poblacional en cualquier caso bajo muestreo aleatorio 

simple de tamaño 𝑛, que en nuestro caso admite la expresión 

𝑚

𝑛
𝑦̅𝑚 +

𝑛 −𝑚

𝑛
𝑦̅𝑛−𝑚. 

 

Ejercicio 2.9. Demostrar que con diseño de muestreo aleatorio 

simple con reemplazamiento de tamaño 𝑛, la covarianza de dos 

medias muestrales correspondientes a dos variables definidas sobre 

la población es igual a la covarianza poblacional de ambas 

variables dividido por el tamaño muestral 𝑛. 
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Solución. Sean 𝑦 y 𝑥 las variables definidas en las unidades de la 

población. Denotamos por 𝒔  a la muestra aleatoria simple de 

tamaño 𝑛, y denotamos por 𝑖 ∈ 𝒔 a las selecciones ordenadas por 

𝑖 = 1, 2, … , 𝑛 , es decir el orden de aparición en la secuencia 

muestral. Entonces, 

𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔) = 𝐸(𝑦̅𝒔𝑥̅𝒔) − 𝑦̅𝑥̅ = 

𝐸 [
1

𝑛2
(∑𝑦𝑘𝑖
𝑖 ∈ 𝒔

)(∑ 𝑥𝑘𝑗
𝑗 ∈ 𝒔

)] − 𝑦̅𝑥̅ = 

1

𝑛2
[∑𝐸(𝑦𝑘𝑖𝑥𝑘𝑖)

𝑛

𝑖=1

+∑∑𝐸(𝑦𝑘𝑖𝑥𝑘𝑗)

𝑛

𝑗≠𝑖

𝑛

𝑖=1

] − 𝑦̅𝑥̅ = 

1

𝑛2
[𝑛𝛼11 + 𝑛(𝑛 − 1)𝛼10𝛼01] − 𝛼10𝛼01 = 

1

𝑛
(𝛼11 − 𝛼10𝛼01) =

𝜇11
𝑛
, 

donde hemos denotado los momentos 

𝛼𝑝𝑞 =
1

𝑁
∑𝑦𝑖

𝑝
𝑥𝑖
𝑞

𝑁

𝑖=1

 

y  

𝜇𝑝𝑞 =
1

𝑁
∑(𝑦𝑖 − 𝑦̅)

𝑝(𝑥𝑖 − 𝑥̅)
𝑞

𝑁

𝑖=1

. 

 

Ejercicio 2.10. Obtener un estimador insesgado de la covarianza 

poblacional a partir de una muestra aleatoria simple con 
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reemplazamiento de tamaño 𝑛  de dos variables 𝑦  y 𝑥  definidas 

sobre las unidades de la población. 

Solución. Consideramos la covarianza muestral 𝑚11  de ambas 

variables 𝑦 y 𝑥. Calculamos su esperanza matemática: 

𝐸(𝑚11) = 𝐸 [
1

𝑛
∑(𝑦𝑘𝑖 − 𝑦̅𝒔)(𝑥𝑘𝑖 − 𝑥̅𝒔)

𝑛

𝑖=1

] = 

1

𝑛
𝐸 (∑𝑦𝑘𝑖𝑥𝑘𝑖

𝑛

𝑖=1

− 𝑛𝑦̅𝒔𝑥̅𝒔) =
1

𝑛
[𝐸 (∑𝑦𝑘𝑖𝑥𝑘𝑖

𝑛

𝑖=1

) − 𝑛𝐸(𝑦̅𝒔𝑥̅𝒔)] = 

1

𝑛
{𝑛𝛼11 − 𝑛[𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔) + 𝑦̅𝑥̅]} = 

1

𝑛
(𝑛𝛼11 − 𝜇11 − 𝑛𝛼10𝛼01) =

𝑛 − 1

𝑛
𝜇11, 

puesto que 𝜇11 = 𝛼11 − 𝛼10𝛼01. Por tanto, un estimador insesgado 

de 𝜇11 es: 

𝜇̂11 =
𝑛

𝑛 − 1
𝑚11 =

1

𝑛 − 1
∑(𝑦𝑘𝑖 − 𝑦̅𝒔)(𝑥𝑘𝑖 − 𝑥̅𝒔)

𝑛

𝑖=1

. 

Este estimador recibe también el nombre de cuasicovarianza 

muestral. 

 

Ejercicio 2.11. Proponer un estimador insesgado 𝑦̂̅ de la media 

poblacional 𝑦̅ , así como un estimador insesgado 𝑉̂(𝑦̂̅)  de su 

varianza 𝑉(𝑦̂̅) , cuando se dispone de la media muestral de 

observaciones 𝑒 con errores de medida (que se aprovechan en el 

estimador 𝑦̂̅) obtenida por muestreo aleatorio simple de tamaño 𝑛, 

y esta muestra se submuestrea con diseño de muestreo aleatorio 
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simple con reemplazamiento de tamaño 𝑛′ en donde se observa el 

verdadero valor de la variable de interés 𝑦. 

Solución. El estimador insesgado 𝑦̂̅ de la media poblacional 𝑦̅, que 

aprovecha la información con errores de medida en una primera 

muestra aleatoria simple 𝒔 de tamaño 𝑛, es: 

𝑦̂̅ = 𝑒𝒔̅ + 𝑑̅𝒔′ 

Donde 𝑒𝒔̅ es la media muestral de la muestra de las observaciones 

con errores de medida (𝑒𝑘1 , 𝑒𝑘2 , … , 𝑒𝑘𝑛) , y 𝑑̅𝒔′  es la media 

muestral de la submuestra aleatoria simple 𝒔′ de tamaño 𝑛′ con la 

variable desviación 𝑑𝑘𝑖 = 𝑦𝑘𝑖 − 𝑒𝑘𝑖  con 𝑖 = 1, 2, … , 𝑛′ . 

Obviamente el estimador es insesgado, pues 

𝐸(𝑦̂̅) = 𝐸(𝑒̅𝒔) + 𝐸(𝑑̅𝒔′) = 𝑒̅ + 𝑦̅ − 𝑒̅ = 𝑦̅. 

La varianza de 𝑦̂̅, 𝑉(𝑦̂̅), se obtiene así: 

𝑉(𝑦̂̅) = 𝑉(𝑒̅𝒔) + 𝑉(𝑑̅𝒔′) + 𝐶𝑜𝑣(𝑒𝒔̅, 𝑑̅𝒔′). 

Ahora bien, 

𝑉(𝑒𝒔̅) = 𝜎𝑒
2 𝑛⁄ , 

y un estimador insesgado de esta varianza es 

𝑉̂(𝑒𝒔̅) = 𝑠𝑒
2 𝑛⁄ . 

Aplicando el teorema de Madow, 

𝑉(𝑑̅𝒔′) = 𝐸1𝑉2(𝑑̅𝒔′) + 𝑉1𝐸2(𝑑̅𝒔′), 

donde 

𝑉2(𝑑̅𝒔′) =
𝜎𝑑(𝒔)
2

𝑛′
=
(𝑛 − 1)𝑠𝑑(𝒔)

2

𝑛𝑛′
 

y  
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𝐸1𝑉2(𝑑̅𝒔′) =
(𝑛 − 1)𝜎𝑑

2

𝑛𝑛′
, 

que puede ser estimable insesgadamente por 

𝐸1𝑉2̂(𝑑̅𝒔′) =
𝑠𝑑(𝒔′)
2

𝑛′
. 

También 

𝐸2(𝑑̅𝒔′) = 𝑑̅𝒔 

de donde 

𝑉1𝐸2(𝑑̅𝒔′) =
𝜎𝑑
2

𝑛
, 

por lo que un estimador insesgado de esta última expresión es 

𝑉1𝐸2̂(𝑑̅𝒔′) =
𝜎𝑑
2̂

𝑛
=
𝑠𝑑(𝒔)
2̂

𝑛
=
𝜎𝑑(𝒔)
2̂

𝑛 − 1
=
𝑠𝑑(𝒔′)
2

𝑛 − 1
. 

Finalmente, como 

𝑒̅𝒔 =
1

𝑛
[(𝑛 − 𝑛′)𝑒𝒔̅−𝒔′ + 𝑛′𝑒𝒔̅′], 

𝐶𝑜𝑣(𝑒𝒔̅, 𝑑̅𝒔′) = 𝐶𝑜𝑣 (
𝑛′

𝑛
𝑒𝒔̅′, 𝑑̅𝒔′) =

𝑛′

𝑛

1

𝑛′
𝐸[𝜇11(𝒔)] =

𝜇11
𝑛 − 1

. 

Un estimador insesgado de esta covarianza es: 

𝐶𝑜𝑣̂(𝑒𝒔̅, 𝑑̅𝒔′) =
𝜇̂11
𝑛 − 1

=
𝑛𝜇̂11(𝒔)
(𝑛 − 1)2

=
𝑛𝑛′𝑚11(𝒔′)

(𝑛 − 1)2(𝑛′ − 1)
. 

De todo lo cual concluimos que el estimador insesgado de la 

varianza de 𝑦̂̅ es: 
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𝑉̂(𝑦̂̅) =
𝑠𝑒
2

𝑛
+
(𝑛 − 1 + 𝑛′)𝑠𝑑(𝒔′)

2

(𝑛 − 1)𝑛′
+

𝑛𝑛′𝑚11(𝒔′)

(𝑛 − 1)2(𝑛′ − 1)
, 

donde 

𝑠𝑒
2 =

1

𝑛 − 1
∑(𝑒𝑖 − 𝑒𝒔̅)

2

𝑖∈𝒔

, 

𝑠𝑑(𝒔′)
2 =

1

𝑛′ − 1
∑(𝑑𝑖 − 𝑑̅𝒔′)

2

𝑖∈𝒔′

, 

y  

𝑚11(𝒔′) =
1

𝑛′
∑(𝑒𝑖 − 𝑒𝒔̅′)(𝑑𝑖 − 𝑑̅𝒔′)

𝑖∈𝒔′

, 

donde bajo los sumatorios la expresión 𝑖 ∈ 𝒔, o 𝑖 ∈ 𝒔′, indican que 

el índice 𝑖 recorre la secuencia completa de la muestra ordenada 

respectiva. 

 

Ejercicio 2.12. Tenemos dos dominios 𝐷1  y 𝐷2  de una misma 

población finita de 𝑁  unidades, de tamaños 𝑁𝑃1  y 𝑁𝑃2 

respectivamente. El dominio 𝐷 = 𝐷1 ∩ 𝐷2  tiene un tamaño 𝑁𝑃 . 

Obtenemos una muestra aleatoria simple con reemplazamiento de 

tamaño 𝑛, y observamos las proporciones muestrales 𝑝1, 𝑝2 y 𝑝 de 

los dominios 𝐷1 , 𝐷2  y 𝐷 . Obtener la covarianza de las 

proporciones muestrales 𝑝1 y 𝑝2, y estimarla sin sesgo a partir de 

los datos que disponemos. Obtener un estimador de la covarianza 

de los indicadores de ambos dominios basado en los datos 

recogidos en la muestra aleatoria simple. 

Solución. Definimos el indicador del dominio 𝐷 a la aplicación 

𝐼: 𝑈 → {0, 1} que a cada unidad 𝑘 ∈ 𝑈 le asigna el valor 𝐼(𝑘) = 1 

si 𝑘 ∈ 𝐷 , o bien 𝐼(𝑘) = 0 si 𝑘 ∉ 𝐷 . Denotando por 𝐼1  e 𝐼2  a los 
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indicadores de los dominios 𝐷1 y 𝐷2 respectivamente, tenemos que 

si la muestra aleatoria simple es la secuencia 𝒔 = (𝑘1, 𝑘2, … , 𝑘𝑛), 

la covarianza pedida es: 

𝐶𝑜𝑣(𝑝1, 𝑝2) = 𝐸[(𝑝1 − 𝑃1)𝑝2] = 𝐸(𝑝1𝑝2) − 𝑃1𝑃2. 

Para esto es suficiente ver que: 

𝐸(𝑝1𝑝2) =
1

𝑛2
𝐸 {[∑𝐼1(𝑘𝑖)

𝑛

𝑖=1

] [∑𝐼2(𝑘𝑗)

𝑛

𝑗=1

]} = 

1

𝑛2
{∑𝐸[𝐼(𝑘𝑖)]

𝑛

𝑖=1

+∑∑𝐸[𝐼1(𝑘𝑖)𝐼2(𝑘𝑗)]

𝑛

𝑗≠𝑖

𝑛

𝑖=1

} = 

1

𝑛2
{𝑛𝑃 +∑∑𝐸[𝐼1(𝑘𝑖)]𝐸[𝐼2(𝑘𝑗)]

𝑛

𝑗≠𝑖

𝑛

𝑖=1

} = 

1

𝑛2
[𝑛𝑃 + 𝑛(𝑛 − 1)𝑃1𝑃2] =

𝑃 + (𝑛 − 1)𝑃1𝑃2
𝑛

. 

Luego, de las últimas dos cadenas de igualdades, tenemos que: 

𝐶𝑜𝑣(𝑝1, 𝑝2) =
𝑃 − 𝑃1𝑃2

𝑛
=
𝐶𝑜𝑣[𝐼1(𝑘), 𝐼2(𝑘)]

𝑛
=
𝜇11
𝑛
. 

Un estimador insesgado de esta covarianza es: 

𝐶𝑜𝑣̂(𝑝1, 𝑝2) =
𝑝 − 𝑃1𝑃2̂

𝑛
=
𝑝 − 𝑝1𝑝2
𝑛 − 1

, 

donde  

𝑃1𝑃2̂ = 𝑝1𝑝2 − 𝐶𝑜𝑣̂(𝑝1, 𝑝2) = 𝑝1𝑝2 −
𝑝

𝑛
+
1

𝑛
𝑃1𝑃2̂, 

por lo que despejando, 
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𝑃1𝑃2̂ =
𝑛𝑝1𝑝2 − 𝑝

𝑛 − 1
. 

De todo ello, tenemos el estimador insesgado de la covarianza 

poblacional: 

𝜇̂11 =
𝑛

𝑛 − 1
(𝑝 − 𝑝1𝑝2) 

que nos indicará aproximadamente la correlación positiva, nula o 

negativa de los indicadores 𝐼1 e 𝐼2 de los dominios 𝐷1 y 𝐷2 en la 

población finita completa. 

 

Ejercicio 2.13. Queremos estimar insesgadamente y con un error 

absoluto menor que 𝑒 la media poblacional 𝑦̅ mediante la media 

muestral obtenida con diseño de muestreo aleatorio simple con 

reemplazamiento. Observamos que la cuasivarianza muestral está 

acotada superiormente por la constante 𝐾  para valores de 𝑛 

moderados y grandes. ¿Qué tamaño muestral 𝑛 necesitamos para 

garantizar un nivel de confianza mayor o igual al 95%? Determinar 

la región de aceptación de un contraste de la hipótesis 𝐻: 𝑦̅ = 7, al 

nivel de confianza mayor o igual al 95%. 

Solución. Aplicando la desigualdad de Chebychev, tenemos: 

𝑝{|𝑦̅𝒔 − 𝑦̅| < 𝑒} ≥ 1 −
𝑉(𝑦̅𝒔)

𝑒2
≅ 1 −

𝑠2

𝑛𝑒2
≥ 1 −

𝐾

𝑛𝑒2
≥ 0,95 

por lo que el error absoluto máximo 𝑒 se alcanza con un nivel de 

confianza mayor o igual a 0,95 cuando, de la última desigualdad 

de la cadena de ellas, 

𝑛 ≥
𝐾

0,05 ∙ 𝑒2
 

para que se den las condiciones pedidas; concretamente el valor 

natural de 𝑛 inmediatamente superior a la constante 𝐾 (0,05 ∙ 𝑒2)⁄  
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garantiza un error absoluto en la estimación de la media 

poblacional con un nivel de confianza superior o igual 

aproximadamente al 95%. 

La región de aceptación 𝑅 pedida es entonces en la que se 

acepta la hipótesis 𝐻 si y solo si 

7 ∈ (𝑦̅𝒔 − 𝑒, 𝑦̅𝒔 + 𝑒) = 𝑅. 

 

Ejercicio 2.14. Desarrollar una función derivable dos veces en un 

entorno de un punto, y aplicarlo a la variable media muestral en el 

entorno de la media poblacional. Aproximar entonces la esperanza 

matemática de la función de la media muestral por los dos primeros 

sumandos no nulos. Aproximar la varianza de la función de la 

media muestral por el primer término de su expresión. Aplicar esta 

relación aproximada para evidenciar que la desviación cuadrática 

de la media muestral a la media poblacional dista de la varianza de 

la media muestral menos que una cantidad positiva, con una 

probabilidad aproximadamente 1  cuando el tamaño muestral 

tiende a infinito en el muestreo aleatorio simple. 

Solución. Sea la función 𝑓(𝑥) derivable dos veces en un entorno 

de la media poblacional 𝑦̅ = 𝐸(𝑦̅𝒔). El desarrollo en serie de Taylor 

de la función en la variable 𝑦̅𝒔 en un entorno de 𝑦̅ es: 

𝑓(𝑦̅𝒔) = 𝑓(𝑦̅) + (𝑦̅𝒔 − 𝑦̅)𝑓
′(𝑦̅) +

(𝑦̅𝒔 − 𝑦̅)
2

2
𝑓′′(𝑦̅) + 

𝑜[(𝑦̅𝒔 − 𝑦̅)
2] 

donde 𝑜(𝑥) es un infinitésimo de 𝑥, es decir, una función de 𝑥 tal 

que: 
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𝑜(𝑥)

𝑥
→ 0 

cuando 𝑥 → 0. 

En el desarrollo de Taylor, despreciamos el último sumando 

infinitesimal, y tomando esperanzas matemáticas en ambos 

miembros tenemos: 

𝐸[𝑓(𝑦̅𝒔)] ≅ 𝑓(𝑦̅) +
𝑉(𝑦̅𝒔)

2
𝑓′′(𝑦̅). 

De ambas aproximaciones, tenemos que: 

𝑓(𝑦̅𝒔) − 𝐸[𝑓(𝑦̅𝒔)] ≅ (𝑦̅𝒔 − 𝑦̅)𝑓
′(𝑦̅) + 

1

2
[(𝑦̅𝒔 − 𝑦̅)

2 + 𝑉(𝑦̅𝒔)]𝑓
′′(𝑦̅), 

de donde despreciando los términos siguientes del desarrollo 

aproximado, tenemos 

{𝑓(𝑦̅𝒔) − 𝐸[𝑓(𝑦̅𝒔)]}
2 ≅ (𝑦̅𝒔 − 𝑦̅)

2[𝑓′(𝑦̅)]2. 

Por tanto, tomando esperanzas matemáticas en ambos miembros, 

tenemos la aproximación 

𝑉[𝑓(𝑦̅𝒔)] ≅ 𝑉(𝑦̅𝒔)[𝑓
′(𝑦̅)]2. 

En concreto, para la función 𝑓(𝑥) = (𝑥 − 𝑦̅)2 tenemos 

𝑉[(𝑦̅𝒔 − 𝑦̅)
2] ≅ 𝑉(𝑦̅𝒔) ∙ 0

2 = 0. 

De la desigualdad de Chebychev, tenemos entonces que 

𝑝{|(𝑦̅𝒔 − 𝑦̅)
2 − 𝑉(𝑦̅𝒔)| < 𝑒} ≥ 1 −

𝑉[(𝑦̅𝒔 − 𝑦̅)
2]

𝑒2
≅ 1 

cuando 𝑦̅𝒔 → 𝑦̅, que es cierto cuando 𝑛 → ∞. 
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Este resultado es teórico porque no dispondremos en la 

práctica de la media poblacional 𝑦̅ para estimar con los valores 

(𝑦̅𝒔 − 𝑦̅)
2  a la varianza 𝑉(𝑦̅𝒔) . Sin embargo, un estimador 

insesgado de esta varianza es la cuasivarianza muestral dividida por 

𝑛 como se demuestra en este libro. En Ruiz Espejo et al. (2013) se 

proporciona además un estimador insesgado de la varianza del 

estimador insesgado de la varianza de la media muestral en 

muestreo aleatorio simple, como vimos en la sección 2.3 y 

completamos en ejercicios posteriores. 

 

Ejercicio 2.15. Estimar sin sesgo la varianza de una población 

finita a partir de la cuasivarianza muestral de una submuestra 

aleatoria simple con reemplazamiento de tamaño fijo 𝑛 , de la 

muestra ordenada de tamaño fijo 𝑚  obtenida por muestreo 

aleatorio simple con reemplazamiento de una población finita de 

tamaño 𝑁. 

Solución. Llamamos 𝑠1
2 y 𝑠2

2 a las cuasivarianzas muestrales en la 

primera fase y en la segunda fase respectivamente, es decir el 

subíndice indica la fase de muestreo a la que se refiere la 

cuasivarianza muestral. De la primera fase tenemos que 

𝐸1(𝑠1
2) = 𝜎2. 

De la segunda fase tenemos que 

𝐸2 (
𝑚

𝑚 − 1
𝑠2
2) = 𝑠1

2. 

Por lo tanto, 

𝐸1 [𝐸2 (
𝑚

𝑚 − 1
𝑠2
2)] = 𝜎2. 
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Es decir, el estimador insesgado de la varianza poblacional en 

muestreo doble o en dos fases de muestreo aleatorio simple con 

reemplazamiento, es 

𝑚

𝑚 − 1
𝑠2
2, 

donde 𝑚 es el tamaño fijo de la muestra en la primera fase, y 𝑠2
2 es 

la cuasivarianza muestral en la segunda fase de aleatorización. 

 

Ejercicio 2.16. Estimar sin sesgo el momento central poblacional 

de orden dos con una muestra aleatoria simple con 

reemplazamiento de tamaño 𝑛. 

Solución. Como 

𝜎2 = 𝛼2 − 𝛼1
2, 

tenemos que 

𝜇̂2 = 𝜎
2̂ = 𝛼̂2 − [𝛼̂1

2 − 𝑉̂(𝛼̂1)] = 

𝛼̂2 − 𝛼̂1
2 +

𝜎2̂

𝑛
. 

Despejando 𝜎2̂ tenemos que 

𝜇̂2 = 𝜎
2̂ =

𝑛

𝑛 − 1
(𝛼̂2 − 𝛼̂1

2) = 𝑠2. 

Que es la cuasivarianza muestral. Al ser invariante para 

permutaciones en la muestra ordenada, es también estimador 

insesgado óptimo para distribución libre (Zacks, 1971, p. 150). 

 



 
 

90 
 

Ejercicio 2.17. Estimar sin sesgo el momento central poblacional 

de orden tres con una muestra aleatoria simple con 

reemplazamiento de tamaño 𝑛. 

Solución. El estimador insesgado óptimo del momento central 

poblacional de orden tres, para distribución libre, es 

𝜇̂3 =
𝑛2

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3) =
𝑛2𝑚3

𝑛2 − 3𝑛 + 2
, 

donde 𝛼̂𝑗 = (1 𝑛⁄ )∑ 𝑦𝑖
𝑗𝑛

𝑖=1  es el momento muestral no central de 

orden 𝑗 , siendo 𝑦𝑖
𝑗

 la potencia 𝑗 -ésima del “ 𝑖 -ésimo valor 

observado en la muestra” que hemos denotado 𝑦𝑖 . En concreto, 

𝛼̂1 = 𝑦̅𝒔 es la media muestral. También 𝑚3 es el momento central 

muestral de orden tres, 

𝑚3 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝒔)

3

𝑛

𝑖=1

. 

 Básicamente el resultado se basa en que 

𝜇̂3 = 𝛼̂3 − 3𝛼̂2𝛼̂1 + 3𝐶𝑜𝑣̂(𝛼̂2, 𝛼̂1) + 2𝛼̂1
3 

−2𝛼̂1𝑉̂(𝛼̂1) − 2𝐶𝑜𝑣̂(𝛼̂1
2, 𝛼̂1) + 2𝐶𝑜𝑣̂[𝛼̂1, 𝑉̂(𝛼̂1)]. 

 Veamos la prueba de este modo, 

𝐸(𝛼̂3) = 𝛼3 

𝐸(𝛼̂2𝛼̂1) = 𝛼2𝛼1 + 𝐶𝑜𝑣(𝛼̂2, 𝛼̂1) 

𝐸(𝛼̂1
3) = 𝐸(𝛼̂1

2𝛼̂1) = 𝐸(𝛼̂1
2)𝐸(𝛼̂1) + 𝐶𝑜𝑣(𝛼̂1

2, 𝛼̂1) 

= [𝛼1
2 + 𝑉(𝛼̂1)]𝛼1 + 𝐶𝑜𝑣(𝛼̂1

2, 𝛼̂1) 

= 𝛼1
3 + 𝛼1𝑉(𝛼̂1) + 𝐶𝑜𝑣(𝛼̂1

2, 𝛼̂1) 

Y 
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𝐸[𝛼̂1𝑉̂(𝛼̂1)] = 𝛼1𝑉(𝛼̂1) + 𝐶𝑜𝑣[𝛼̂1, 𝑉̂(𝛼̂1)]. 

 Por todo ello, concluimos que 

𝐸(𝜇̂3) = 𝛼3 − 3𝛼2𝛼1 + 2𝛼1
3 = 𝜇3. 

 Ahora, basándonos en el resultado anterior, si −∞ < 𝜇3 <

∞ , y 𝛼̂𝑗  es el momento no central de orden 𝑗  en la muestra, 

entonces el estimador 

𝜇̂3 =
𝑛2

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3) 

es insesgado y de mínima varianza para distribución libre (en el 

sentido explicado por Zacks, 1971, p. 150). La demostración es la 

siguiente. 

𝐶𝑜𝑣̂(𝛼̂2, 𝛼̂1) =
(𝛼3 − 𝛼2𝛼1)̂

𝑛
 

=
𝛼̂3
𝑛
−
𝛼̂2𝛼̂1 − 𝐶𝑜𝑣̂(𝛼̂2, 𝛼̂1)

𝑛
. 

De donde 

𝐶𝑜𝑣̂(𝛼̂2, 𝛼̂1) =
𝛼̂3 − 𝛼̂2𝛼̂1
𝑛 − 1

. 

 Además, 

𝐶𝑜𝑣̂(𝛼̂1
2, 𝛼̂1) = 𝐶𝑜𝑣̂ (𝛼̂2 −

𝑛 − 1

𝑛
𝑠2, 𝛼̂1) 

= 𝐶𝑜𝑣̂(𝛼̂2, 𝛼̂1) −
𝑛 − 1

𝑛
𝐶𝑜𝑣̂(𝑠2, 𝛼̂1) 

=
𝛼̂3 − 𝛼̂2𝛼̂1
𝑛 − 1

−
(𝑛 − 1)𝜇̂3

𝑛2
. 

And 
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𝐶𝑜𝑣̂[𝛼̂1, 𝑉̂(𝛼̂1)] = 𝐶𝑜𝑣̂ (𝛼̂1,
𝑠2

𝑛
) =

𝜇̂3
𝑛2
. 

 Sustituyendo estos resultados en el resultado básico inicial 

tenemos que 

𝜇̂3 = 𝛼̂3 − 3𝛼̂2𝛼̂1 + 3
𝛼̂3 − 𝛼̂2𝛼̂1
𝑛 − 1

+ 2𝛼̂1
3 

−2𝛼̂1
𝛼̂2 − 𝛼̂1

2

𝑛 − 1
− 2 [

𝛼̂3 − 𝛼̂2𝛼̂1
𝑛 − 1

−
(𝑛 − 1)𝜇̂3

𝑛2
] + 2

𝜇̂3
𝑛2

 

=
𝑛2

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3). 

 

Ejercicio 2.18. Estimar sin sesgo el momento central poblacional 

de orden cuatro con una muestra aleatoria simple con 

reemplazamiento de tamaño 𝑛. 

Solución. El estimador insesgado óptimo del momento central 

poblacional de orden cuatro, para distribución libre, es 

𝜇̂4 = (1 −
3

𝑐𝑛
)
−1

[
𝑛𝑚4

𝑛 − 1
+ 3 (

𝑛 − 1

𝑛
−
1

𝑐
) 𝑠4], 

donde 𝑚4 es el momento central muestral de orden cuatro 

𝑚4 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝒔)

4

𝑛

𝑖=1

, 

𝑠4 es el cuadrado de la cuasivarianza muestral, y 𝑐 es la constante 

𝑐 =
𝑛2 − 2𝑛 + 3

𝑛(𝑛 − 1)
. 

 Para demostrarlo, tenemos que si 𝑖 ≠ 𝑗 
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(𝑦𝑖 − 𝑦𝑗)
4
= 𝑦𝑖

4 − 4𝑦𝑖
3𝑦𝑗 + 6𝑦𝑖

2𝑦𝑗
2 − 4𝑦𝑖𝑦𝑗

3 + 𝑦𝑗
4. 

Tomando esperanzas en ambos miembros de esta igualdad resulta 

𝐸 [(𝑦𝑖 − 𝑦𝑗)
4
] = 2𝛼4 − 8𝛼3𝛼1 + 6𝛼2

2. 

Por otro lado sabemos que  

𝜇4 = 𝛼4 − 4𝛼3𝛼1 + 6𝛼2𝛼1
2 − 3𝛼1

4 

y que 

𝜎4 = 𝛼2
2 − 2𝛼2𝛼1

2 + 𝛼1
4. 

De estas dos últimas fórmulas, tenemos que si 𝑖 ≠ 𝑗 

𝐸 [
1

2
(𝑦𝑖 − 𝑦𝑗)

4
] = 𝜇4 + 3𝜎

4. 

 Definimos ahora el estadístico 

𝑡 =
1

2𝑛(𝑛 − 1)
∑∑(𝑦𝑖 − 𝑦𝑗)

4
𝑛

𝑗=1

𝑛

𝑖=1

 

=
𝑛

𝑛 − 1
[𝑚4 + 3(

𝑛 − 1

𝑛
𝑠2)

2

] 

=
𝑛

𝑛 − 1
(𝛼̂4 − 4𝛼̂3𝛼̂1 + 3𝛼̂2

2). 

 Como además, 

𝐸(𝑠4) = 𝑉(𝑠2) + [𝐸(𝑠2)]2 = 

𝜇4
𝑛
−

𝑛 − 3

𝑛(𝑛 − 1)
𝜎4 + 𝜎4 =

𝜇4
𝑛
+ 𝑐𝜎4. 

Implica que 
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𝜎4 =
1

𝑐
[𝐸(𝑠4) −

𝜇4
𝑛
]. 

Donde 

𝑐 =
𝑛2 − 2𝑛 + 3

𝑛(𝑛 − 1)
. 

 De los anteriores resultados, tenemos que 

𝐸 (
𝑛

𝑛 − 1
𝑚4 + 3

𝑛 − 1

𝑛
𝑠4) = 𝐸(𝑡) = 𝜇4 + 3𝜎

4 

= 𝜇4 +
3

𝑐
[𝐸(𝑠4) −

𝜇4
𝑛
] = 𝜇4 (1 −

3

𝑐𝑛
) +

3

𝑐
𝐸(𝑠4). 

O bien, el estimador insesgado de mínima varianza para 

distribución libre de 𝜇4 resulta ser 

𝜇̂4 = (1 −
3

𝑐𝑛
)
−1

[
𝑛

𝑛 − 1
𝑚4 + 3(

𝑛 − 1

𝑛
−
1

𝑐
) 𝑠4]. 

 

Ejercicio 2.19. Proponer el valor exacto de la varianza de la 

cuasivarianza muestral, en muestreo aleatorio simple con 

reemplazamiento, y un estimador insesgado de la varianza 

propuesta. 

Solución. El valor de la varianza pedida es 

𝑉(𝑠2) =
𝜇4
𝑛
−
(𝑛 − 3)𝜎4

𝑛(𝑛 − 1)
. 

Demostrar esta fórmula teniendo en cuenta que sabemos que es 

cierta esta otra 

𝑉(𝑠2) = 𝐸(𝑠4) − 𝜎4, 
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pues si 𝑋  es una variable aleatoria entonces 𝑉(𝑋) = 𝐸(𝑋2) −

[𝐸(𝑋)]2 y como caso particular si 𝑋 = 𝑠2 es lo que hemos escrito 

antes, equivale a demostrar que 

𝐸(𝑠4) =
𝜇4
𝑛
+
𝑛2 − 2𝑛 + 3

𝑛(𝑛 − 1)
𝜎4. 

Veamos pues esta fórmula. Del Ejercicio 1.7 aplicado a una 

muestra de tamaño fijo 𝑛, tenemos que la varianza muestral es 

𝑛 − 1

𝑛
𝑠2 =

1

2𝑛2
∑∑(𝑦𝑖 − 𝑦𝑗)

2
𝑛

𝑗≠𝑖

𝑛

𝑖=1

. 

Despejando la cuasivarianza muestral tenemos que 

𝑠2 =
1

2𝑛(𝑛 − 1)
∑∑(𝑦𝑖 − 𝑦𝑗)

2
𝑛

𝑗≠𝑖

𝑛

𝑖=1

. 

Luego, 

𝑠4 =
1

4𝑛2(𝑛 − 1)2
[∑∑(𝑦𝑖 − 𝑦𝑗)

2
𝑛

𝑗≠𝑖

𝑛

𝑖=1

]

2

= 

1

4𝑛2(𝑛 − 1)2
{∑∑(𝑦𝑖 − 𝑦𝑗)

4
𝑛

𝑗≠𝑖

𝑛

𝑖=1

+ 

∑∑ ∑ (𝑦𝑖 − 𝑦𝑗)
2
[(𝑦𝑖 − 𝑦𝑚)

2 + (𝑦𝑗 − 𝑦𝑚)
2
]

𝑛

𝑚≠𝑖,𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

+ 

∑∑ ∑ ∑ (𝑦𝑖 − 𝑦𝑗)
2
(𝑦𝑘 − 𝑦𝑚)

2

𝑛

𝑚≠𝑖,𝑗,𝑘

𝑛

𝑘≠𝑖,𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

}. 

Luego la esperanza matemática de 𝑠4 será 
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𝐸(𝑠4) =
1

4𝑛2(𝑛 − 1)2
{∑∑𝐸 [(𝑦𝑖 − 𝑦𝑗)

4
]

𝑛

𝑗≠𝑖

𝑛

𝑖=1

+ 

∑∑ ∑ 2𝐸 [(𝑦𝑖 − 𝑦𝑗)
2
(𝑦𝑖 − 𝑦𝑚)

2]

𝑛

𝑚≠𝑖,𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

+ 

∑∑ ∑ ∑ 𝐸 [(𝑦𝑖 − 𝑦𝑗)
2
(𝑦𝑘 − 𝑦𝑚)

2]

𝑛

𝑚≠𝑖,𝑗,𝑘

𝑛

𝑘≠𝑖,𝑗

𝑛

𝑗≠𝑖

𝑛

𝑖=1

}. 

Ahora, como el número de sumandos del último doble 

sumatorio es 𝑛(𝑛 − 1) y pueden aparecer los cuadrados en el orden 

(𝑖, 𝑗), (𝑖, 𝑗) o bien en el orden (𝑖, 𝑗), (𝑗, 𝑖), se duplica el número de 

esperanzas matemáticas 

𝐸 [(𝑦𝑖 − 𝑦𝑗)
4
] = 𝐸(𝑦𝑖

4 − 4𝑦𝑖
3𝑦𝑗 + 6𝑦𝑖

2𝑦𝑗
2 − 4𝑦𝑖𝑦𝑗

3 + 𝑦𝑗
4) 

= 2𝛼4 − 8𝛼3𝛼1 + 6𝛼2
2 = 2(𝜇4 + 3𝜎

4), 

pues 𝑖 ≠ 𝑗. 

 En el sumatorio triple, razonando de modo similar tenemos 

𝐸 [(𝑦𝑖 − 𝑦𝑗)
2
(𝑦𝑖 − 𝑦𝑚)

2] = 𝜇4 + 3𝜎
4, 

y el número de sumandos en total es 𝑛(𝑛 − 1)(𝑛 − 2) pues hemos 

supuesto que los índices verifican 𝑗 ≠ 𝑖 = 𝑘 ≠ 𝑚 ≠ 𝑗 . Además 

debemos multiplicar el número de sumandos por 2, uno para que 

𝑘 = 𝑖 ó 𝑗 y 𝑚 ≠ 𝑖, 𝑗, 𝑘, y otro para que 𝑚 = 𝑖 ó 𝑗 y 𝑘 ≠ 𝑖, 𝑗, 𝑚. 

 El sumatorio cuádruple tiene 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3) 

sumandos y cada uno de ellos tiene por esperanza matemática 

𝐸 [(𝑦𝑖 − 𝑦𝑗)
2
(𝑦𝑘 − 𝑦𝑚)

2] = {𝐸 [(𝑦𝑖 − 𝑦𝑗)
2
]}
2
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= (2𝜎2)2 = 4𝜎4, 

donde la primera igualdad se debe a que los factores del primer 

miembro dentro de la esperanza matemática son independientes al 

ser los cuatro índices distintos dos a dos. 

 Por lo que sustituyendo en la esperanza de 𝑠4 queda 

𝐸(𝑠4) =
1

4𝑛2(𝑛 − 1)2
[2𝑛(𝑛 − 1)2(𝜇4 + 3𝜎

4) + 

4𝑛(𝑛 − 1)(𝑛 − 2)(𝜇4 + 3𝜎
4) + 𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)4𝜎4] 

=
𝜇4
𝑛
+
𝑛2 − 2𝑛 + 3

𝑛(𝑛 − 1)
𝜎4. 

Que es lo que queríamos demostrar para concluir el resultado de la 

varianza de la cuasivarianza muestral en muestreo aleatorio simple 

con reemplazamiento. Lo visto hasta aquí ha sido usado en el 

Ejercicio 2.17. 

Un estimador insesgado de esta varianza 𝑉(𝑠2) es 

𝑉̂(𝑠2) =
𝑛 − 1

𝑛2 − 2𝑛 + 3
𝜇̂4 −

𝑛 − 3

𝑛2 − 2𝑛 + 3
𝑠4. 

El estimador insesgado de 𝜇4, que aparece en el primer sumando 

del segundo término, ha sido obtenido previamente en el Ejercicio 

2.17. Para demostrar el resultado expuesto de 𝑉̂(𝑠2),  veamos que 

𝑉̂(𝑠2) = [
𝜇4
𝑛
−
(𝑛 − 3)𝜎4

𝑛(𝑛 − 1)
]

̂
=
𝜇̂4
𝑛
−

𝑛 − 3

𝑛(𝑛 − 1)
𝜎 4̂ 

=
𝜇̂4
𝑛
−

𝑛 − 3

𝑛(𝑛 − 1)
[𝑠4 − 𝑉̂(𝑠2)]. 

De donde despejando 𝑉̂(𝑠2)  tenemos finalmente el resultado 

avanzado previamente. 
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 Un ejemplo de aplicación de los resultados anteriores es el 

cálculo de la varianza del estadístico 

𝑦̅ + 𝑘𝑠2, 

siendo 𝑦̅  la media muestral, 𝑘  una constante real, y 𝑠2  la 

cuasivarianza muestral en el muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛. Dicho estadístico 𝑦̅ + 𝑘𝑠2 es 

un estimador insesgado de la función paramétrica 

𝛼1 + 𝑘𝜎
2, 

siendo 𝛼1 la media poblacional, y 𝜎2 la varianza poblacional. 

De los resultados anteriores tenemos que la varianza del estadístico 

propuesto es 

𝑉(𝑦̅ + 𝑘𝑠2) = 

𝑉(𝑦̅) + 𝑘2𝑉(𝑠2) + 2𝑘𝐶𝑜𝑣(𝑦̅, 𝑠2) = 

𝜎2

𝑛
+ 𝑘2 [

𝜇4
𝑛
−
(𝑛 − 3)𝜎4

𝑛(𝑛 − 1)
] + 2𝑘

𝜇3
𝑛
. 

En el último sumando, en el que sustituye la covarianza, hemos 

usado de un resultado demostrado anteriormente. El valor obtenido 

de la varianza del estadístico prueba que el estadístico, por ser 

insesgado, converge en probabilidad a la función paramétrica 𝛼1 +

𝑘𝜎2, ya que la varianza obtenida es un infinitésimo de orden 𝑛−1 

y haciendo uso de la desigualdad de Chebychev. Además dicho 

estadístico es insesgado y óptimo (uniformemente de mínima 

varianza) para estimar dicha función paramétrica en el modelo de 

distribución poblacional libre, ya que el estadístico es invariante 

ante permutaciones en el orden de las observaciones muestrales 

(Zacks, 1971, p. 150). Además la varianza del estadístico es 

estimable insesgadamente por el estimador “suma de los 
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estimadores insesgados óptimos de cada uno de los tres sumandos 

para distribución poblacional libre” y, como consecuencia, éste es 

además estimador óptimo o uniformemente de mínima varianza de 

la función paramétrica 𝑉(𝑦̅ + 𝑘𝑠2) para distribución poblacional 

libre. 

 

Ejercicio 2.20. Comprobar si se puede seleccionar una muestra 

aleatoria simple con reemplazamiento de tamaño fijo 𝑛  de una 

población finita de tamaño 34.629 con un generador de números 

aleatorios independientes, con distribución uniforme en el conjunto 

{0, 1, 2, … , 9} de números naturales entre 0 y 9. La selección se 

hace tomando grupos de cinco dígitos sucesivos e identificando las 

unidades poblacionales de 1 a 34.629. Si el primer grupo de cinco 

dígitos seleccionado está entre los números 00.001 y 34.629, se 

selecciona como primera unidad de la muestra aquella cuyo 

identificador sea la del indicador de ese grupo; si el grupo 

seleccionado no estuviese entre tales números, se procede a una 

nueva selección de cinco dígitos aleatorios sucesivos, y así se repite 

el proceso hasta seleccionar la primera unidad poblacional de la 

muestra. Sucesivamente se obtendrían las siguientes unidades de la 

muestra repitiendo el proceso hasta seleccionar la segunda, tercera 

y hasta la 𝑛-ésima. 

Solución. Es sencillo comprobarlo y ciertamente sí, se puede 

seleccionar así. En realidad se trata de seleccionar dígitos naturales 

o del conjunto ℕ = {1, 2, 3, … }, condicionados a que éstos tienen 

que estar comprendidos entre 1 y 34.629. La probabilidad de 

seleccionar un dígito así en cada selección independiente será 

𝑝{𝑘|{1, 2, … , 34.629}} = {
1 34.629⁄ si 𝑘 ∈ ℕ ∩ [1, 34.629]

0 si 𝑘 ∉ ℕ ∩ [1, 34.629]
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Por lo que es un procedimiento de selección de probabilidades 

iguales en el conjunto de números naturales {1, 2, … , 34.629} y 

cada selección es independiente de las anteriores. Luego es un 

diseño de muestreo aleatorio simple con reemplazamiento a partir 

de una población finita de tamaño 𝑁 = 34.629. 

 

Ejercicio 2.21. Obtener la covarianza de los estadísticos 

cuasivarianza muestral y media muestral en el muestreo aleatorio 

simple con reemplazamiento de tamaño fijo 𝑛 ≥ 2. Y obtener un 

estimador insesgado de esta covarianza. 

Solución. Partimos de la propiedad de la varianza de una variable 

estadística aplicada a una muestra de tamaño fijo 𝑛 ≥ 2, y tenemos 

que la cuasivarianza muestral es 

𝑠2 =
1

2𝑛(𝑛 − 1)
∑∑(𝑦𝑖 − 𝑦𝑗)

2
𝑛

𝑗≠𝑖

𝑛

𝑖=1

. 

Y la media muestral es 

𝑦̅𝒔 =
1

𝑛
∑𝑦𝑘

𝑛

𝑘=1

. 

Donde hemos representado por 𝑦𝑖  al 𝑖-ésimo valor que toma la 

variable de interés 𝑦  en la muestra aleatoria simple con 

reemplazamiento de tamaño 𝑛. Luego, 

𝐶𝑜𝑣(𝑠2, 𝑦̅𝒔) = 

1

2𝑛2(𝑛 − 1)
𝐶𝑜𝑣 [∑∑(𝑦𝑖

2 + 𝑦𝑗
2 − 2𝑦𝑖𝑦𝑗)

𝑛

𝑗≠𝑖

𝑛

𝑖=1

,∑ 𝑦𝑘

𝑛

𝑘=1

] = 
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1

2𝑛2(𝑛 − 1)
× 

∑∑∑[𝐶𝑜𝑣(𝑦𝑖
2, 𝑦𝑘) + 𝐶𝑜𝑣(𝑦𝑗

2, 𝑦𝑘) − 2𝐶𝑜𝑣(𝑦𝑖𝑦𝑗 , 𝑦𝑘)]

𝑛

𝑘=1

𝑛

𝑗≠𝑖

𝑛

𝑖=1

. 

Ahora, denotando por 𝛼𝑚 al momento no central poblacional 

de orden 𝑚 = 1, 2, 3, 

𝛼𝑚 =
1

𝑁
∑𝑦𝑖

𝑚

𝑁

𝑖=1

. 

Si 𝑖 = 𝑘 ó 𝑗 = 𝑘, 

𝐶𝑜𝑣(𝑦𝑖
2, 𝑦𝑘) = 𝐶𝑜𝑣(𝑦𝑗

2, 𝑦𝑘) = 𝛼3 − 𝛼2𝛼1. 

Si 𝑖 ≠ 𝑘 y 𝑗 ≠ 𝑘, 

𝐶𝑜𝑣(𝑦𝑖
2, 𝑦𝑘) = 𝐶𝑜𝑣(𝑦𝑗

2, 𝑦𝑘) = 0. 

Similarmente, si 𝑖 ≠ 𝑗 = 𝑘 ó 𝑗 ≠ 𝑖 = 𝑘, 

𝐶𝑜𝑣(𝑦𝑖𝑦𝑗 , 𝑦𝑘) = 𝛼2𝛼1 − 𝛼1
3. 

Y si 𝑖, 𝑗 ≠ 𝑘, 

𝐶𝑜𝑣(𝑦𝑖𝑦𝑗 , 𝑦𝑘) = 0. 

Por tanto, 

𝐶𝑜𝑣(𝑠2, 𝑦̅𝒔) =
1

2𝑛2(𝑛 − 1)
× 

[2𝑛(𝑛 − 1)(𝛼3 − 𝛼2𝛼1) − 4𝑛(𝑛 − 1)(𝛼2𝛼1 − 𝛼1
3)] = 

1

𝑛
(𝛼3 − 3𝛼2𝛼1 + 2𝛼1

3) =
𝜇3
𝑛
. 



 
 

102 
 

El valor 4 que aparece en la primera igualdad de la anterior serie 

de igualdades se debe a que se ha de duplicar el número de 

sumandos porque el subíndice 𝑘 puede ser igual al subíndice 𝑖 ó 

bien al subíndice 𝑗. 

Con ello hemos presentado una demostración muy sencilla, 

de poco más de una página, a este problema clásico de obtener el 

valor exacto de la covarianza de la cuasivarianza muestral y de la 

media muestral, en el muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛 ≥ 2. Como consecuencia, la 

cuasivarianza muestral y la media muestral estarán 

incorrelacionadas cuando el momento central poblacional de orden 

3 sea nulo. Otra conclusión es que ambos estadísticos en general 

no son independientes por la misma razón. Pero ya que esta 

covarianza es un infinitésimo de orden de 𝑛−1, se puede concluir 

que asintóticamente ambos estadísticos estarán aproximadamente 

incorrelacionados pues su covarianza tiende a 0 cuando 𝑛 tiende a 

infinito. El teorema de Fisher garantiza que ambos estadísticos son 

independientes cuando la población de partida es normal, pero este 

resultado demostrado en este Ejercicio 2.20 nos asegura que en una 

población finita esto no es cierto en general, es decir, no es posible 

afirmar lo que el teorema de Fisher afirma para una población 

normal cuando la población de partida es finita. Y solo se daría la 

incorrelación de ambos estadísticos cuando la población finita de 

partida tuviera un coeficiente de asimetría de Fisher 𝜇3 𝜎3⁄  igual a 

cero, donde 𝜎2 = 𝜇2 es la varianza poblacional. 

De este resultado se puede concluir que esta covarianza 

obtenida es estimable insesgadamente por 

𝐶𝑜𝑣̂(𝑠2, 𝑦̅𝒔) =
𝑛𝑚3

𝑛2 − 3𝑛 + 2
=

𝑛

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3). 

Siendo 
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𝛼̂𝑚 =
1

𝑛
∑𝑦𝑖

𝑚

𝑛

𝑖=1

, 

el momento no central muestral de orden 𝑚 = 1, 2, 3 ; y 𝑚3  el 

momento central muestral de orden 3, 

𝑚3 =
1

𝑛
∑(𝑦𝑖 − 𝛼̂1)

3

𝑛

𝑖=1

. 

Es una consecuencia casi directa del Ejercicio 2.16. 

 Un ejemplo de aplicación del resultado expuesto 

anteriormente es la obtención de un estimador insesgado óptimo 

para distribución libre del parámetro 𝛼1𝜇2. En efecto, 

𝛼1𝜇2 = 𝐸(𝑦̅𝒔𝑠
2) − 𝐶𝑜𝑣(𝑦̅𝒔, 𝑠

2). 

Luego un estimador insesgado de 𝛼1𝜇2 es el estimador 

𝑦̅𝒔𝑠
2 − 𝐶𝑜𝑣̂(𝑦̅𝒔, 𝑠

2) = 

𝑦̅𝒔𝑠
2 −

𝑛

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3) = 

𝛼̂1𝑠
2 −

𝑛

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3) = 

𝛼̂1 [
𝑛

𝑛 − 1
(𝛼̂2 − 𝛼̂1

2)] −
𝑛

𝑛2 − 3𝑛 + 2
(𝛼̂3 − 3𝛼̂2𝛼̂1 + 2𝛼̂1

3) = 

𝑛

𝑛2 − 3𝑛 + 2
[− 𝛼̂3 + (𝑛 + 1)𝛼̂2𝛼̂1 − 𝑛𝛼̂1

3]. 

Este estimador es además insesgado y óptimo para distribución 

libre por ser invariante ante permutaciones de las unidades en la 

muestra ordenada (Zacks, 1971). 
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Ejercicio 2.22. Proponer un estimador insesgado óptimo del 

producto de dos medias poblacionales de dos variables de interés. 

Solución. Básicamente partimos del producto de dos medias 

muestrales, 𝑦̅𝑥̅ , de la función biparamétrica 𝑌̅𝑋̅ . Entonces, un 

estimador insesgado de esta función biparamétrica se obtiene de la 

relación 

𝑌̅𝑋̅ = 𝐸(𝑦̅𝑥̅) − 𝐶𝑜𝑣(𝑦̅, 𝑥̅) = 𝐸(𝑦̅𝑥̅) −
𝜎𝑦,𝑥

𝑛
. 

Aquí 𝑛  es el tamaño muestral. Un estimador insesgado de la 

covarianza poblacional 𝜎𝑦,𝑥  en el muestreo aleatorio simple con 

reemplazamiento es la cuasicovarianza muestral, por lo que el 

estimador insesgado de 𝑌̅𝑋̅ resulta ser 

𝑦̅𝑥̅ −
1

𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)

𝑛

𝑖=1

. 

Aquí 𝑦𝑖 y 𝑥𝑖 son los valores de la variables de interés 𝑦 y 𝑥 para la 

𝑖-ésima observación de la muestra aleatoria simple en la misma 

unidad poblacional. Finalmente la optimalidad para distribución 

libre en las variables 𝑦 y 𝑥 se obtiene de modo similar al explicado 

con anterioridad, ya que el estimador insesgado es invariante ante 

permutaciones en el orden de la muestra ordenada obtenida por 

muestreo aleatorio simple con reemplazamiento. 
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Capítulo 3 

Muestreo irrestricto aleatorio 

 

 

En este capítulo estudiamos el diseño mia, que es un diseño no 

ordenado llamado “muestreo irrestricto aleatorio” y también es 

conocido por “muestreo aleatorio simple sin reemplazamiento” con 

probabilidades iguales. También se le denota por las siglas mpi de 

“muestreo de probabilidades iguales sin reemplazamiento”. 

 

3.1 Diseño mia 

Este diseño muestral no ordenado 𝑇𝐹(𝑛)  y 𝑇𝐸𝐹(𝑛)  es la 

distribución de probabilidad definida sobre las posibles muestras o 

subconjuntos no vacíos de tamaño 𝑛, 0 < 𝑛 ≤ 𝑁, de la población 

finita 𝑈  de tamaño 𝑁 ≥ 1 . Denotamos por 𝑠  a una de estas 

muestras conjunto de tamaño 𝑛, y el número posible de muestras 

distintas para el diseño mia es 

(
𝑁
𝑛
) =

𝑁!

(𝑁 − 𝑛)! 𝑛!
, 

que coincide con el número de combinaciones de 𝑁  elementos 

tomados de 𝑛 en 𝑛. 

El diseño mia recibe también el nombre de “muestreo 

aleatorio simple sin reemplazamiento con probabilidades iguales” 

porque si tuviéramos una urna que contuviera 𝑁  bolas 

biunívocamente numeradas de la 1  a la 𝑁 , la selección de una 
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muestra 𝑠 entre las (
𝑁
𝑛
) posibles muestras de tamaño efectivo fijo 

𝑛 se podrá realizar seleccionando una primera bola de la urna y 

anotamos su número identificador como componente de la muestra 

no ordenada o conjunto no vacío 𝑠 ; seguidamente no 

reincorporaremos a la urna la bola ya seleccionada, con lo cual la 

urna preparada para la selección de la segunda bola tendrá 𝑁 − 1 

bolas desde la 1 a la 𝑁 excluyendo la bola ya seleccionada en la 

primera selección que queda fuera de la urna, y por tanto su número 

identificativo no se podrá seleccionar en adelante. La segunda 

extracción de la urna selecciona una segunda bola que tampoco se 

reintegra a la urna y por tanto tampoco se repetirá en las siguientes 

extracciones de la urna. Así actuaríamos hasta seleccionar 𝑛 

unidades (0 < 𝑛 ≤ 𝑁) ordenadamente. 

De este modo obtenemos una secuencia (𝑘1, 𝑘2, … , 𝑘𝑛)  o 

vector 𝒔 𝑛-dimensional que tendrá como probabilidad de selección, 

haciendo uso del Teorema de Producto con sucesos dependientes, 

𝑝(𝒔) = 𝑝(𝑘1) ∙ 𝑝(𝑘2|𝑘1)⋯𝑝(𝑘𝑛|𝑘1, 𝑘2, … , 𝑘𝑛−1) = 

1

𝑁
∙

1

𝑁 − 1
⋯

1

𝑁 − 𝑛 + 1
=

1

𝑁!
(𝑁 − 𝑛)!

. 

Ahora bien, como las muestras conjunto 𝑠 o no ordenadas de 

tamaño 𝑛  están compuestas por tantas muestras vector 𝒔  como 

permutaciones de 𝑛 elementos o unidades distintas, obtenemos que 

la probabilidad de seleccionar la muestra no ordenada 𝑠 es 

𝑝(𝑠) = 𝑛! 𝑝(𝒔) = 𝑛!
1

𝑁!
(𝑁 − 𝑛)!

=
1

(
𝑁
𝑛
)
. 
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Es decir, la probabilidad total de obtener una muestra 

conjunto 𝑠  de tamaño 𝑛  con diseño mia es exactamente 1 (
𝑁
𝑛
)⁄ . 

Por tanto la suma de estas probabilidades al recorrer todas las 

posibles muestras no ordenadas 𝑠  de tamaño 𝑛  es igual a 1  por 

tratarse de una distribución de probabilidad. En efecto, si  

𝑆 = {𝑠: 𝜙 ≠ 𝑠 ⊂ 𝑈, 𝑛(𝑠) = 𝑛} 

es el conjunto de (
𝑁
𝑛
) muestras no ordenadas 𝑠 consideradas de 

tamaño muestral efectivo 𝑛  con probabilidad positiva 1 (
𝑁
𝑛
)⁄ , 

entonces 

∑𝑝(𝑠) = (
𝑁
𝑛
)
1

(
𝑁
𝑛
)𝑠∈𝑆

= 1. 

 La probabilidad de inclusión de la unidad 𝑘, 1 ≤ 𝑘 ≤ 𝑁, en 

la muestra conjunto 𝑠  con el diseño mia utilizando la regla de 

Laplace para sucesos equiprobables como es el caso, es el cociente 

entre casos favorables y casos posibles 

𝜋𝑘 = 𝑝(𝑘 ∈ 𝑠) =
(
𝑁 − 1
𝑛 − 1

)

(
𝑁
𝑛
)

=

(𝑁 − 1)!
(𝑛 − 1)! (𝑁 − 𝑛)!

𝑁!
𝑛! (𝑁 − 𝑛)!

=
𝑛

𝑁
. 

La probabilidad de inclusión de segundo orden para dos 

unidades distintas 𝑘 y 𝑚 de entre 1 y 𝑁, haciendo uso de la regla 

de Laplace, es 

𝜋𝑘𝑚 = 𝑝(𝑘,𝑚 ∈ 𝑠) =
(
𝑁 − 2
𝑛 − 2

)

(
𝑁
𝑛
)

=

(𝑁 − 2)!
(𝑛 − 2)! (𝑁 − 𝑛)!

𝑁!
𝑛! (𝑁 − 𝑛)!

= 
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𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
. 

De modo similar se obtienen las probabilidades de inclusión 

de órdenes superiores. 

 

3.2 Estimación de la media poblacional en mia 

El estimador insesgado usual de la media poblacional 𝑦̅  con el 

diseño mia, es la media muestral 

𝑦̅𝑠 =
1

𝑛
∑𝑦𝑘
𝑘∈𝑠

, 

siendo 𝑠 la muestra no ordenada o muestra conjunto de tamaño 𝑛 

seleccionada, e 𝑦𝑘  la variable de interés en la unidad 𝑘 ∈ 𝑠. En 

efecto, veamos que la media muestral 𝑦̅𝑠  con el diseño mia es 

insesgado. 

𝐸(𝑦̅𝑠) =∑𝑦̅𝑠𝑝(𝑠) =∑
1

𝑛
(𝑦𝑘1 + 𝑦𝑘2 +⋯+ 𝑦𝑘𝑛)

1

(
𝑁
𝑛
)𝑠∈𝑆𝑠∈𝑆

 

donde 𝑠 = {𝑘1, 𝑘2, … , 𝑘𝑛} , por lo que sumando tantas veces 𝑦𝑘 

como muestras 𝑠 contengan la unidad 𝑘, es decir tantas como 

card{𝑠: 𝑘 ∈ 𝑠} = (
𝑁 − 1
𝑛 − 1

), 

tenemos 

𝐸(𝑦̅𝑠) = ∑
1

𝑛
𝑦𝑘card{𝑠: 𝑘 ∈ 𝑠}

1

(
𝑁
𝑛
)
=

𝑘∈𝑈

∑𝑦𝑘
1

𝑛

(
𝑁 − 1
𝑛 − 1

)

(
𝑁
𝑛
)

=

𝑘∈𝑈
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∑𝑦𝑘
1

𝑛

𝑛

𝑁
=
1

𝑁
∑𝑦𝑘
𝑘∈𝑈

= 𝑦̅

𝑘∈𝑈

. 

 

Otra demostración de la insesgación de la media muestral 𝑦̅𝑠 

con diseño mia para estimar la media poblacional 𝑦̅ es la siguiente. 

Llamando 𝑘𝑖 a la unidad o su identificador de la población finita 𝑈 

que es seleccionada en la muestra 𝑠 con el orden 𝑖-ésimo de su 

secuencia al ser seleccionada 𝑖 = 1, 2, … , 𝑛 

𝐸(𝑦̅𝑠) = 𝐸 (
1

𝑛
∑𝑦𝑘𝑖

𝑛

𝑖=1

) =
1

𝑛
∑𝐸(𝑦𝑘𝑖)

𝑛

𝑖=1

= 𝑦̅, 

puesto que 

𝐸(𝑦𝑘𝑖) =∑𝑦𝑘𝑖𝑝(𝒔) =

𝒔∈𝑺

 

∑𝑦𝑘card{𝒔: 𝑘 es la 𝑖 − ésima componente de 𝒔}
1

𝑁!
(𝑁 − 𝑛)!𝑘∈𝑈

= 

∑𝑦𝑘
(𝑁 − 1)!

(𝑁 − 𝑛)!

1

𝑁!
(𝑁 − 𝑛)!𝑘∈𝑈

=
1

𝑁
∑𝑦𝑘 = 𝑦̅

𝑘∈𝑈

, 

ya que si la unidad 𝑘 = 𝑘𝑖 es la 𝑖-ésima unidad fijada de la muestra 

ordenada y las restantes unidades distintas no están fijadas, 

card{𝒔: 𝑘 es la 𝑖 − ésima componente de 𝒔} = 

card{𝒔: 𝒔 = (𝑘1, 𝑘2, … , 𝑘𝑖 = 𝑘,… , 𝑘𝑛)} = 

(𝑁 − 1)(𝑁 − 2)⋯ (𝑁 − 𝑖 + 1) ∙ 1 ∙ (𝑁 − 𝑖)⋯ (𝑁 − 𝑛 + 1) = 

(𝑁 − 1)!

(𝑁 − 𝑛)!
. 
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Pues (𝑁 − 1) es el número de unidades diferentes de 𝑘 = 𝑘𝑖 que 

pueden ocupar el primer lugar de la secuencia 𝒔, (𝑁 − 2) es el 

número de unidades diferentes de 𝑘1 y de 𝑘𝑖 que pueden ocupar el 

segundo lugar de la secuencia 𝒔, etc. siendo 1 el factor 𝑖-ésimo por 

ser 𝑘 = 𝑘𝑖 la única unidad que puede ocupar el lugar 𝑖-ésimo de la 

secuencia 𝒔.  

 Hemos demostrado entonces que la media muestral no tiene 

sesgo para estimar la media poblacional con diseño mia. 

 La varianza de la media muestral con diseño mia es 

𝑉(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁

𝑆2

𝑛
, 

donde denotamos 𝑆2 = 𝑁𝜎2 (𝑁 − 1)⁄  y se le denomina 

“cuasivarianza poblacional”. 

 La demostración es la siguiente: 

𝑉(𝑦̅𝑠) = 𝐸[(𝑦̅𝑠 − 𝑦̅)
2] = 𝐸 [(

1

𝑛
∑ 𝑦𝑘 − 𝑦̅

𝑘 ∈ 𝑠

)

2

] = 

𝐸 {[
1

𝑛
∑(𝑦𝑘 − 𝑦̅)

𝑘 ∈ 𝑠

]

2

} = 

1

𝑛2
𝐸 [∑(𝑦𝑘 − 𝑦̅)

2

𝑘 ∈ 𝑠

+ ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑠

] = 

1

𝑛2
{𝐸 [∑(𝑦𝑘 − 𝑦̅)

2

𝑘 ∈ 𝑠

] + 𝐸 [ ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑠

]} = 

1

𝑛2
[𝑛𝜎2 −

𝑛(𝑛 − 1)

𝑁 − 1
𝜎2] =

𝑁 − 1 − (𝑛 − 1)

𝑛(𝑁 − 1)
𝜎2 = 
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𝑁 − 𝑛

𝑁 − 1

𝜎2

𝑛
=
𝑁 − 𝑛

𝑁

𝑆2

𝑛
. 

Veamos ahora que 

𝐸 [∑(𝑦𝑘 − 𝑦̅)
2

𝑘 ∈ 𝑠

] = 𝑛𝜎2 

y que 

𝐸 [ ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑠

] = −
𝑛(𝑛 − 1)

𝑁 − 1
𝜎2. 

En efecto, 

𝐸 [∑(𝑦𝑘 − 𝑦̅)
2

𝑘 ∈ 𝑠

] = ∑ [∑(𝑦𝑘 − 𝑦̅)
2

𝑘 ∈ 𝑠

] 𝑝(𝑠) =

𝑠 ∈ 𝑆

 

∑(𝑦𝑘 − 𝑦̅)
2card{𝑠: 𝑘 ∈ 𝑠}𝑝(𝑠) =

𝑘∈𝑈

 

∑(𝑦𝑘 − 𝑦̅)
2 (
𝑁 − 1
𝑛 − 1

)
1

(
𝑁
𝑛
)
= 𝑁𝜎2

𝑛

𝑁
= 𝑛𝜎2.

𝑘∈𝑈

 

También, 

𝐸 [ ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑠

] = 

∑[ ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑠

] 𝑝(𝑠) =

𝑠∈𝑆

 

∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)card{𝑠: 𝑘,𝑚 ∈ 𝑠}𝑝(𝑠) =

𝑘≠𝑚∈𝑈
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−𝑁𝜎2 (
𝑁 − 2
𝑛 − 2

)
1

(
𝑁
𝑛
)
= −𝑁𝜎2

𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
= −

𝑛(𝑛 − 1)

𝑁 − 1
𝜎2. 

Queda comprobar que 

∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅) = −𝑁𝜎
2.

𝑘≠𝑚∈𝑈

 

En efecto, como 

∑(𝑦𝑘 − 𝑦̅) = 0,

𝑘∈𝑈

 

0 = [∑(𝑦𝑘 − 𝑦̅)

𝑘∈𝑈

]

2

= 

∑(𝑦𝑘 − 𝑦̅)
2

𝑘∈𝑈

+ ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑈

= 

𝑁𝜎2 + ∑ (𝑦𝑘 − 𝑦̅)(𝑦𝑚 − 𝑦̅)

𝑘≠𝑚∈𝑈

, 

lo que concluye la demostración. 

 

3.3 Estimación de la varianza en mia 

Veamos que la “cuasivarianza muestral” 𝑠2  es un estimador 

insesgado de la “cuasivarianza poblacional” 𝑆2 con diseño mia, y 

de este modo podremos obtener directamente estimadores 

insesgados de la “varianza poblacional” y de la “varianza de la 

media muestral” para este diseño de muestreo irrestricto aleatorio. 

 La cuasivarianza muestral es 
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𝑠2 =
1

𝑛 − 1
∑(𝑦𝑘 − 𝑦̅𝑠)

2

𝑘 ∈ 𝑠

. 

Su esperanza matemática es 

𝐸(𝑠2) =
1

𝑛 − 1
𝐸 [∑(𝑦𝑘 − 𝑦̅𝑠)

2

𝑘 ∈ 𝑠

] = 

1

𝑛 − 1
∑ [∑(𝑦𝑘 − 𝑦̅𝑠)

2

𝑘 ∈ 𝑠

] 𝑝(𝑠)

𝑠 ∈ 𝑆

, 

por lo que restando y sumando la media poblacional 𝑦̅ dentro del 

primer paréntesis, tenemos 

[(𝑦𝑘 − 𝑦̅) + (𝑦̅ − 𝑦̅𝑠)]
2 = 

(𝑦𝑘 − 𝑦̅)
2 + (𝑦̅ − 𝑦̅𝑠)

2 + 2(𝑦𝑘 − 𝑦̅)(𝑦̅ − 𝑦̅𝑠). 

Ahora, 

∑ [∑(𝑦𝑘 − 𝑦̅)
2

𝑘∈ 𝑠

] 𝑝(𝑠)

𝑠 ∈ 𝑆

= 

∑(𝑦𝑘 − 𝑦̅)
2card{𝑠: 𝑘 ∈ 𝑠}𝑝(𝑠) = 𝑛𝜎2

𝑘∈𝑈

. 

∑ [∑(𝑦̅ − 𝑦̅𝑠)
2

𝑘 ∈ 𝑠

] 𝑝(𝑠) = 𝑛𝑉(𝑦̅𝑠)

𝑠 ∈ 𝑆

. 

∑[∑ 2(𝑦𝑘 − 𝑦̅)(𝑦̅ − 𝑦̅𝑠)

𝑘 ∈ 𝑠

] 𝑝(𝑠) =

𝑠∈𝑆

 

2∑(𝑦̅ − 𝑦̅𝑠) [∑(𝑦𝑘 − 𝑦̅)

𝑘 ∈ 𝑠

] 𝑝(𝑠)

𝑠∈𝑆

= 
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−2𝑛∑(𝑦̅𝑠 − 𝑦̅)
2𝑝(𝑠) = −2𝑛𝑉(𝑦̅𝑠)

𝑠∈𝑆

. 

Luego, sustituyendo estas expresiones calculadas, 

𝐸(𝑠2) =
1

𝑛 − 1
[𝑛𝜎2 + 𝑛𝑉(𝑦̅𝑠) − 2𝑛𝑉(𝑦̅𝑠)] = 

𝑛

𝑛 − 1
[𝜎2 − 𝑉(𝑦̅𝑠)] =

𝜎2

𝑛 − 1
(𝑛 −

𝑁 − 𝑛

𝑁 − 1
) =

𝑁𝜎2

𝑁 − 1
= 𝑆2. 

Por tanto, un estimador insesgado de la varianza poblacional con 

diseño mia es (𝑁 − 1)𝑠2 𝑁⁄ , y un estimador insesgado de la 

varianza del estimador media muestral es 

𝑉̂(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁

𝑠2

𝑛
. 

 

3.4 Estimación del total poblacional en mia 

El total poblacional 𝑇 = 𝑁𝑦̅  es estimado insesgadamente por el 

estimador 𝑇̂ = 𝑁𝑦̅𝑠 con diseño mia, y su varianza es 

𝑉(𝑇̂) = 𝑁2𝑉(𝑦̅𝑠) = 𝑁
2
𝑁 − 𝑛

𝑁

𝑆2

𝑛
= 𝑁(𝑁 − 𝑛)

𝑆2

𝑛
, 

por lo que un estimador insesgado de la varianza de 𝑇̂ en mia es 

𝑉̂(𝑇̂) = 𝑁(𝑁 − 𝑛)
𝑠2

𝑛
. 

 

3.5 Estimación de la proporción poblacional en mia 

Como la proporción poblacional 𝑃  es una media poblacional 𝑦̅ 

cuando la variable de interés 𝑦𝑘 toma valores 1 ó 0 según la unidad 
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𝑘 posea o no posea una cualidad, el estimador insesgado de 𝑃 con 

diseño mia es la proporción muestral 

𝑃̂ =
1

𝑛
∑ 𝑦𝑘
𝑘 ∈ 𝑠

, 

cuya varianza es 

𝑉(𝑃̂) =
𝑁 − 𝑛

𝑁 − 1

𝑃𝑄

𝑛
, 

puesto que 𝜎2 = 𝑃𝑄, siendo 𝑄 = 1 − 𝑃 la proporción poblacional 

de unidades que no poseen la cualidad. Un estimador insesgado de 

𝑉(𝑃̂) con este diseño es 

𝑉̂(𝑃̂) =
𝑁 − 𝑛

𝑁

𝑃̂𝑄̂

𝑛 − 1
. 

 

3.6 Tamaño de la muestra con mia 

El problema que vamos a tratar de resolver es el de la 

determinación del tamaño muestral 𝑛 necesario para alcanzar un 

error máximo de muestreo 𝑒, con una probabilidad mayor o igual a 

1 − 𝛼. 

Aplicando la desigualdad de Chebychev 

𝑝{|𝑦̅𝑠 − 𝑦̅| < 𝑒} ≥ 1 −
𝑉(𝑦̅𝑠)

𝑒2
= 1 − 𝛼 

ya que no es conocida la distribución del estimador 𝑦̅𝑠 , y esta 

desigualdad asegura el resultado independientemente de su 

distribución, con solo saber que su varianza 𝑉(𝑦̅𝑠)  existe. 

Entonces, 

𝛼 =
𝑉(𝑦̅𝑠)

𝑒2
=
(𝑁 − 𝑛)𝜎2

𝑒2(𝑁 − 1)𝑛
=

𝑁𝜎2

𝑒2(𝑁 − 1)𝑛
−

𝜎2

𝑒2(𝑁 − 1)
, 
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de donde despejando 𝑛 tenemos 

𝑛 =

𝑁𝜎2

𝑒2(𝑁 − 1)

𝛼 +
𝜎2

𝑒2(𝑁 − 1)

=
𝑆2

𝛼𝑒2 +
𝑆2

𝑁

, 

donde 𝑁  es conocido, 𝛼  y 𝑒  vienen determinados en el 

planteamiento del problema por el nivel de confianza y el error 

absoluto máximo de muestreo solicitados, y 𝑆2 es la cuasivarianza 

poblacional que puede ser estimada insesgadamente por la 

cuasivarianza muestral piloto 𝑠0
2 . Si el tamaño poblacional 𝑁 es 

suficientemente grande, es decir 𝑁 → ∞ , entonces el tamaño 

muestral buscado será 𝑛∞ = 𝑆2 (𝛼𝑒2)⁄ , que puede ser estimado sin 

sesgo por 𝑛̂∞ = 𝑠0
2 (𝛼𝑒2)⁄ . Una vez obtenido éste, podemos 

expresar el tamaño muestral en general como 

𝑛 =
𝑛∞

1 +
𝑛∞
𝑁

< 𝑛∞. 

Obligando a que 𝑛∞ − 𝑛 < 1, obtenemos el primer valor de 𝑛 a 

partir del cual no se deben seguir obteniendo unidades muestrales 

pues 𝑛 alcanza el valor límite 𝑛∞. En efecto, 

𝑛∞ − 𝑛 = 𝑛∞ −
𝑛∞

1 +
𝑛∞
𝑁

= 𝑛∞ (1 −
𝑁

𝑁 + 𝑛∞
) =

𝑛∞
2

𝑁 + 𝑛∞
< 1, 

verificándose la desigualdad si y solo si 

𝑛∞
2 < 𝑁 + 𝑛∞, 

que implica 

𝑛∞
2 − 𝑛∞ = 𝑛∞(𝑛∞ − 1) < 𝑁. 
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Es decir, si 𝑛∞ = 𝑆2 (𝛼𝑒2)⁄  es el primer número natural que 

verifica que 𝑛∞(𝑛∞ − 1) < 𝑁, entonces tomaremos como tamaño 

muestral 𝑛 = 𝑛∞, y en otro caso tomamos la fórmula 

𝑛 =
𝑆2

𝛼𝑒2 +
𝑆2

𝑁

, 

estimando 𝑆2  por la cuasivarianza muestral 𝑠0
2  en una muestra 

piloto con diseño mia. En la práctica, se sustituye en estos 

razonamientos el valor teórico 𝑛∞  por su estimación insesgada 

𝑛̂∞ = 𝑠0
2 (𝛼𝑒2)⁄ , y en su caso estimamos 𝑛 por 

𝑛̂ =
𝑠0
2

𝛼𝑒2 +
𝑠0
2

𝑁

. 

 En el caso de la estimación del total poblacional 𝑇 = 𝑁𝑦̅, el 

tamaño 𝑛 de la muestra para un error absoluto máximo 𝑒 y un nivel 

de confianza mayor o igual a 1 − 𝛼, se obtiene de la desigualdad 

de Chebychev: 

𝑝{|𝑁𝑦̅𝑠 − 𝑁𝑦̅| < 𝑒} ≥ 1 −
𝑉(𝑁𝑦̅𝑠)

𝑒2
= 1 − 𝛼. 

De donde 

𝛼 =
𝑉(𝑁𝑦̅𝑠)

𝑒2
=
𝑁(𝑁 − 𝑛)

𝑆2

𝑛
𝑒2

=

𝑁2𝑆2

𝑛
− 𝑁𝑆2

𝑒2
, 

luego despejando 𝑛 

𝑛 =
𝑁2𝑆2

𝛼𝑒2 + 𝑁𝑆2
. 

 En el caso particular de la proporción muestral 𝑃̂  como 

estimador insesgado de la proporción poblacional 𝑃, el tamaño 𝑛 

muestral para un error absoluto máximo de muestreo 𝑒 y un nivel 
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de confianza mayor o igual a 1 − 𝛼 , se obtiene de aplicar la 

desigualdad de Chebychev: 

𝑝{|𝑃̂ − 𝑃| < 𝑒} ≥ 1 −
𝑉(𝑃̂)

𝑒2
= 1 − 𝛼, 

por lo que 

𝛼 =
𝑉(𝑃̂)

𝑒2
=

𝑁 − 𝑛
𝑁 − 1

𝑃𝑄
𝑛

𝑒2
=

𝑁𝑃𝑄
(𝑁 − 1)𝑛

−
𝑃𝑄
𝑁 − 1

𝑒2
, 

de donde despejando 𝑛 tenemos 

𝑛 =

𝑁𝑃𝑄
𝑁 − 1

𝛼𝑒2 +
𝑃𝑄
𝑁 − 1

. 

Cuando el tamaño poblacional 𝑁 es suficientemente grande, 𝑁 →

∞ , el tamaño muestral límite es 𝑛∞ = 𝑃𝑄 (𝛼𝑒2)⁄ . Si ahora 

dividimos en la fórmula del tamaño muestral tanto numerador 

como denominador por 𝛼𝑒2, tenemos 

𝑛 =
𝑛∞

𝑁
𝑁 − 1

1 +
𝑛∞
𝑁 − 1

=
𝑁𝑛∞

𝑁 − 1 + 𝑛∞
. 

Si ahora obligamos a que 𝑛∞ − 𝑛 < 1, tenemos que 

𝑛∞ − 𝑛 = 𝑛∞ (1 −
𝑁

𝑁 − 1 + 𝑛∞
) = 𝑛∞

𝑛∞ − 1

𝑁 − 1 + 𝑛∞
< 1 

o bien, 

𝑛∞(𝑛∞ − 1) < 𝑁 − 1 + 𝑛∞ 

o también, concluimos que si 

𝑛∞(𝑛∞ − 2) < 𝑁 − 1, 
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tomamos como tamaño muestral 𝑛 = 𝑛∞ = 𝑃𝑄 (𝛼𝑒2)⁄ , mientras 

que si 

𝑛∞(𝑛∞ − 2) ≥ 𝑁 − 1, 

tomamos como tamaño muestral el valor obtenido: 

𝑛 =
𝑁𝑃𝑄

(𝑁 − 1)𝛼𝑒2 + 𝑃𝑄
. 

En la práctica la varianza 𝑃𝑄 ha de ser estimada sin sesgo por 

𝑃𝑄̂ =
𝑁 − 1

𝑁

𝑛0
𝑛0 − 1

𝑃̂0𝑄̂0, 

siendo 𝑛0  el tamaño de la muestra piloto, y 𝑃̂0  y 𝑄̂0  son las 

proporciones muestrales respectivas en la muestra piloto. 

Sustituyendo 𝑃𝑄 por su estimador insesgado 𝑃𝑄̂, se obtienen los 

valores estimados 𝑛̂∞ y 𝑛̂. 

 

3.7 Tamaño muestral con hipótesis de normalidad 

Existen críticas para formular la hipótesis de normalidad en 

poblaciones finitas con diseño mia. La idea de estas críticas vienen 

de que el Teorema Central del Límite no es aplicable porque éste 

exige que el tamaño muestral tienda a infinito, pero en el diseño 

mia el tamaño muestral 𝑛 es el efectivo y tiene que ser menor o 

igual al tamaño poblacional 𝑁  que es finito. Otros argumentos 

debidos a la distribución del estimador fueron dados por Plane y 

Gordon (1982). Básicamente se demuestra que la distribución del 

estimador cuando 𝑛 se aproxima a 𝑁, es la misma que cuando el 

tamaño muestral es pequeño o próximo a 1, salvo un cambio o 

transformación lineal. Si la distribución del estimador no es normal 

cuando 𝑛 es pequeño, tampoco lo será cuando 𝑛 tome los valores 

mayores con diseño mia. 
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 No obstante, al estimar una proporción poblacional 𝑃  con 

diseño mia, en la práctica es usual aproximar la distribución de la 

proporción muestral 𝑃̂ por una distribución normal de media 𝑃 y 

desviación típica √𝑉(𝑃̂). En este caso, con diseño mia, el tamaño 

muestral 𝑛 para el nivel de confianza 1 − 𝛼1 = 0.955, con 𝜆𝛼1 =

2 , o bien para 1 − 𝛼2 = 0.997 , con 𝜆𝛼2 = 3 , se obtiene de la 

relación 

𝑝

{
 

 
|𝑃̂ − 𝑃|

√𝑉(𝑃̂)

< 𝜆𝛼

}
 

 

= 1 − 𝛼. 

Aquí,  

𝑉(𝑃̂) =
𝑁 − 𝑛

𝑁 − 1

𝑃𝑄

𝑛
≤

𝑁 − 𝑛

4(𝑁 − 1)𝑛
, 

pues 𝑃𝑄 ≤ 1 4⁄ . El intervalo de confianza de la proporción 

poblacional 𝑃 es 

𝑃̂ ∓ 𝜆𝛼√𝑉(𝑃̂). 

Pero este intervalo está contenido siempre en el intervalo 

𝑃̂ ∓ 𝜆𝛼√
𝑁 − 𝑛

4(𝑁 − 1)𝑛
= 𝑃̂ ∓

𝜆𝛼
2
√

𝑁

(𝑁 − 1)𝑛
−

1

𝑁 − 1
, 

por lo que fijada la semiamplitud del intervalo de confianza 𝑒, el 

intervalo de confianza 

𝑃̂ ∓ 𝑒 

se obtiene cuando 
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𝑒 =
𝜆𝛼
2
√

𝑁

(𝑁 − 1)𝑛
−

1

𝑁 − 1
, 

de donde despejando 𝑛 tenemos 

𝑛 =
𝑁

𝑁 − 1

1

4𝑒2

𝜆𝛼
2 +

1
𝑁 − 1

=
𝜆𝛼
2𝑁

4𝑒2(𝑁 − 1) + 𝜆𝛼
2 . 

 

3.8 Comparación de precisiones entre mas y mia 

La precisión de un estimador es el inverso de su varianza. Así, para 

comparar las precisiones de dos estimadores insesgados, bastará 

comparar sus varianzas. Veamos a continuación que de los 

resultados obtenidos, 

𝑉(𝑚𝑎𝑠, 𝑦̅𝒔) =
𝜎2

𝑛
 

y  

𝑉(𝑚𝑖𝑎, 𝑦̅𝑠) =
𝑁 − 𝑛

𝑁 − 1

𝜎2

𝑛
. 

Luego, 

𝑉(𝑚𝑖𝑎, 𝑦̅𝑠) ≤ 𝑉(𝑚𝑎𝑠, 𝑦̅𝒔). 

Esto hace pensar que si el muestreo irrestricto aleatorio es 

más preciso que el muestreo aleatorio simple, deberíamos usar el 

primero siempre en detrimento del segundo desde un punto de vista 

de la mejor precisión del estimador para un tamaño muestral 𝑛 

común. Sin embargo, al poder tener unidades repetidas en la 

muestra ordenada obtenida por mas, puede ser más económica en 

términos esperados la obtención de datos, pues conservando la 

variable de interés asociada a cada unidad, si ésta se repite 
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ahorraremos el costo de una nueva observación o encuesta (o 

sucesivas) de la misma unidad. Observar que el tamaño efectivo 

esperado del diseño mia es 𝑛 , mientras que el tamaño efectivo 

esperado del diseño mas es 𝜈̅ ≤ 𝑛, lo que se traduce en que tiene 

este diseño mas menor costo esperado que con el diseño mia. 

 

3.9 Ejercicios resueltos 

 

Ejercicio 3.1. Dada una población finita de tamaño 𝑁 = 2000, se 

toma una muestra de tamaño 𝑛 = 20 con diseño mia, de modo que 

la media muestral es 𝑦̅𝑠 = 537 y la cuasivarianza muestral es 𝑠2 =

100. Se pide una estimación del total poblacional, así como de la 

varianza del estimador del total poblacional propuesto, utilizando 

estimadores insesgados. 

Solución. El estimador del total poblacional es  

𝑁𝑦̅𝑠 = 2000 ∙ 537 = 1.074.000. 

Y el estimador insesgado de su varianza es 

𝑉̂(𝑁𝑦̅𝑠) = 𝑁(𝑁 − 𝑛)
𝑠2

𝑛
= 2000 ∙ 1980 ∙

100

20
= 198 ∙ 105. 

 

Ejercicio 3.2. Acotar la varianza de una proporción muestral con 

diseño mia en cualquier caso, independientemente de los posibles 

valores que pueda tomar la proporción poblacional. 

Solución. La varianza de la proporción muestral 𝑃̂, 𝑉(𝑃̂), es 

𝑉(𝑃̂) =
𝑁 − 𝑛

𝑁 − 1

𝑃𝑄

𝑛
≤

𝑁 − 𝑛

4(𝑁 − 1)𝑛
, 
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pues definiendo la función 𝑓(𝑃) = 𝑃(1 − 𝑃) = 𝑃𝑄 , ésta se 

minimiza en el punto 𝑃 = 1 2⁄ , es decir, es un punto crítico de la 

función 𝑓, pues 𝑓′(𝑃) = 1 − 2𝑃 = 0 da lugar al punto crítico 𝑃 =

1 2⁄ . Al ser 𝑓′′(𝑃) = −2 < 0, el punto crítico es un máximo de 𝑓. 

Por esto 𝑃𝑄 = 𝑃(1 − 𝑃) = 𝑓(𝑃) ≤ 𝑓(1 2⁄ ) = 1 4⁄ . 

 

Ejercicio 3.3. Calcular el tamaño muestral necesario para obtener 

un error máximo de muestreo 𝑒 = 105 al nivel de confianza 0.90 

para estimar el total de una población finita de tamaño 𝑁 =

30.000. De una muestra piloto, se estima 𝑆2 sin sesgo por 50. 

Solución. Como 1 − 𝛼 = 0.90, 𝛼 = 0.10, y entonces 

𝑛 =
𝑁2𝑆2

𝛼𝑒2 + 𝑁𝑆2
≈

9 ∙ 108 ∙ 50

0.10 ∙ 1010 + 3 ∙ 104 ∙ 50
≈ 45. 

 

Ejercicio 3.4. Una muestra aleatoria simple sin reemplazamiento 

ha sido seleccionada de la población compuesta por las familias 

residentes en cierta provincia, con objeto de estimar el número 

medio de hijos varones por familia. Se han observado 𝑛 = 10 

familias del total de las mismas que eran 39.000. Los datos fueron 

sintetizados en los estadísticos 

∑𝑦𝑘𝑖 = 19

10

𝑖=1

 

y  

∑𝑦𝑘𝑖
2

10

𝑖=1

= 71. 
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Estimar insesgadamente la media provincial de hijos varones por 

familia, y estimar insesgadamente la varianza del primer estimador. 

Solución. Como estimador de la media provincial de hijos varones 

por familia, tomamos la media muestral 

𝑦̅𝑠 =
1

𝑛
∑𝑦𝑘𝑖

10

𝑖=1

=
1

10
∙ 19 = 1.9, 

y como estimador insesgado de su varianza tenemos a 

𝑉̂(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁

𝑠2

𝑛
≈
39.000 − 10

39.000

3.877

10
≈ 0.3876, 

pues 𝑁 = 39.000, 𝑛 = 10 y 

𝑠2 =
∑ (𝑦𝑘𝑖 − 𝑦̅𝑠)

210
𝑖=1

𝑛 − 1
=
∑ 𝑦𝑘𝑖

210
𝑖=1 −

(∑ 𝑦𝑘𝑖
10
𝑖=1 )

2

10
9

=
71 −

192

10
9

, 

es decir 

𝑠2 ≈ 3.877. 

 

Ejercicio 3.5. Una industria tiene interés en conocer el tiempo 

semanal que los empleados gastan en ciertas actividades no 

productivas. Las fichas de control del tiempo de una muestra con 

diseño mia de 𝑛 = 70  empleados muestran que el tiempo 

promedio dedicado a esas actividades es de 16.45 horas, con una 

cuasivarianza muestral de 𝑠2 = 3.01. La empresa da trabajo a un 

total de 𝑁 = 1.250 empleados. Estimar el número total de horas-

hombre que se pierden por semana en tareas no productivas y dar 

una estimación de la varianza de tal estimación inicial. 
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Solución. La población consiste en 𝑁 = 1.250 empleados, de los 

que se selecciona una muestra con diseño mia de tamaño 𝑛 = 70 

empleados. La cantidad promedio de tiempo que uno de los 70 

empleados pierde es de 𝑦̅𝑠 = 16.45  horas semanales. Luego la 

estimación del total semanal de horas perdidas por los 1.250 

empleados es 

𝑇̂ = 𝑁𝑦̅𝑠 = 1250 ∙ 16.45 = 20562.5 horas. 

Un estimador insesgado de la varianza de este estimador 𝑇̂ es 

𝑉̂(𝑇̂) = 𝑁(𝑁 − 𝑛)
𝑠2

𝑛
= 1250 ∙ 1180 ∙

3.01

70
= 63425 

horas al cuadrado. 

 

Ejercicio 3.6. Para estimar la renta familiar disponible al año de 

una población, en promedio, se sabe que existen un total de 

200000 familias y que tras una encuesta piloto, se ha estimado que 

la cuasivarianza de la renta familiar es 𝑆2 ≈ 2000. Determinar el 

tamaño muestral necesario para estimar la renta familiar media 

poblacional 𝑦̅ mediante la media muestral 𝑦̅𝑠 obtenida por diseño 

mia para alcanzar un error máximo de muestreo 𝑒 = 200 euros con 

una probabilidad 1 − 𝛼 = 0.95. 

Solución. El tamaño muestral con diseño mia directamente es 

𝑛 =
𝑆2

𝛼𝑒2 +
𝑆2

𝑁

≈
2000

0.05 ∙ 4 ∙ 104 +
2000
200000

≈ 1. 

Luego con el tamaño muestral 𝑛 = 1 se obtiene una estimación de 

la media muestral con error absoluto máximo 𝑒 = 200 euros y un 

nivel de confianza mayor o igual al 95% , siempre que la 
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estimación de la cuasivarianza poblacional 𝑆2̂ = 2000  sea 

correcta. 

 

Ejercicio 3.7. Una empresa productora de aves para el consumo 

alimenticio está interesada en estimar la ganancia total de peso de 

un total de 2000  aves a lo largo de un mes mediante la 

alimentación de las aves con una ración. Frente a la alternativa de 

tener que pesar las 2000 aves un mes después, se diseña un método 

de estimación del peso total por el que se pesarán 𝑛 aves de modo 

que el error máximo de muestreo sea 3 kg. al nivel de confianza 

del 90% . Usando datos de anteriores estudios similares, se ha 

estimado la cuasivarianza muestral 𝑠2 = 40 gramos al cuadrado. 

Determinar el tamaño muestral. 

Solución. El tamaño muestral necesario para estimar el total 

poblacional es 

𝑛 =
𝑆2

𝛼𝑒2

𝑁2
+
𝑆2

𝑁

≈
40

0.10 ∙ 30002

20002
+

40
2000

≈ 163.27, 

por lo que pesando una muestra de 164  aves podemos estimar 

dicho peso total con dichos requerimientos. El valor que hemos 

dado como respuesta es el número entero siguiente al valor 

aproximado que da la fórmula del tamaño muestral. 

 

Ejercicio 3.8. Una muestra aleatoria simple sin reemplazamiento 

de tamaño 𝑛 = 100 se ha seleccionado para estimar: 

a) La fracción de los 300  estudiantes de un Instituto que 

asistirán a la Universidad. 
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b) La fracción de estudiantes que han trabajado a tiempo parcial 

durante su estancia en el Instituto. 

Sean 25 y 30 los totales muestrales de estudiantes que asistirán a 

la Universidad, y de estudiantes que han trabajado a tiempo parcial 

durante su estancia en el Instituto. Usando estos datos, estimar la 

proporción de estudiantes del Instituto que asistirán a la 

Universidad, y la de estudiantes que ha trabajado a tiempo parcial 

durante su estancia en el Instituto. Estimar sin sesgo la varianza de 

estos estimadores de las proporciones de estudiantes del Instituto. 

Solución. Las proporciones muestrales se obtienen directamente de 

los datos recogidos, 

𝑃̂1 =
25

100
= 0.25 

y 

𝑃̂2 =
30

100
= 0.3 

son los estimadores pedidos, y los estimadores insesgados de sus 

varianzas son 

𝑉̂(𝑃̂1) =
𝑁 − 𝑛

𝑁

𝑃̂1𝑄̂1
𝑛 − 1

=
300 − 100

300

0.25 ∙ 0.75

99
= 0.00126 

y  

𝑉̂(𝑃̂2) =
𝑁 − 𝑛

𝑁

𝑃̂2𝑄̂2
𝑛 − 1

=
300 − 100

300

0.3 ∙ 0.7

99
= 0.00141 

 

Ejercicio 3.9. Una empresa tiene a su cargo un total de 2000 

obreros y el jefe de personal quiere estimar la proporción de 

obreros que llevan trabajando en la empresa más de 10 años. A tal 

efecto decide realizar un sondeo entre los obreros, ya que realizar 
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un censo sería inapropiado debido a la rapidez con la que debe 

disponer de los datos. Si selecciona una muestra con diseño mia 

para estimar tal proporción, determinar el tamaño muestral 𝑛 , 

aceptando que la proporción muestral del 50%  estima 

suficientemente bien la proporción poblacional, cuando el error 

máximo admisible de muestreo es 0.1 al nivel de confianza del 

95%. 

Solución. Si la proporción muestral del 50%  estima bien la 

proporción poblacional, es que aproximadamente 𝑃 = 𝑄 = 0.5 . 

Entonces, 

𝑛 =

𝑁𝑃𝑄
𝑁 − 1

𝛼𝑒2 +
𝑃𝑄
𝑁 − 1

=

2000 ∙ 0.5 ∙ 0.5
1999

0.05 ∙ 0.12 +
0.5 ∙ 0.5
1999

≈ 400.2 

Por lo tanto, bastará tomar 401 obreros en la muestra para verificar 

todos los requisitos, uno más de la parte entera del valor obtenido 

por la fórmula general. Se toma el tamaño muestral siguiente al 

número entero que da la fórmula pues de este modo se garantiza 

que las condiciones del enunciado del ejercicio propuesto se 

verifican. 

 

Ejercicio 3.10. De una población finita se obtienen 𝑚 estimadores 

medias muestrales 𝑦̅𝑖 (𝑖 = 1, 2, … ,𝑚) independientes, cada uno de 

ellos con diseño de muestreo aleatorio simple sin reemplazamiento 

de tamaño efectivo fijo 𝑛𝑖 (𝑖 = 1, 2, … ,𝑚). Deducir el estimador 

insesgado lineal en las medias muestrales 𝑦̅𝑖 de mínima varianza. 

Solución. Buscamos el estimador insesgado de mínima varianza de 

la clase de estimadores lineales insesgados del tipo 
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𝑡 =∑𝑡𝑖

𝑚

𝑖=1

𝑦̅𝑖 . 

Como este estimador lineal es insesgado, tenemos que 

𝑦̅ = 𝐸(𝑡) =∑𝑡𝑖𝐸(𝑦̅𝑖)

𝑚

𝑖=1

= 𝑦̅∑𝑡𝑖

𝑚

𝑖=1

, 

por lo que esta condición de insesgación se traduce en que 

1 =∑𝑡𝑖

𝑚

𝑖=1

. 

La varianza del estimador 𝑡 es 

𝑉(𝑡) =∑𝑡𝑖
2𝑉(𝑦̅𝑖)

𝑚

𝑖=1

=∑𝑡𝑖
2𝑁 − 𝑛𝑖
𝑁𝑛𝑖

𝜎2
𝑚

𝑖=1

. 

Para obtener los valores concretos de 𝑡𝑖  que hacen insesgado al 

estimador lineal y que es de varianza mínima, hacemos uso del 

método de los multiplicadores de Lagrange. El lagrangiano será: 

Λ = 𝑉(𝑡) + 𝜆[𝐸(𝑡) − 𝑦̅]. 

O equivalentemente: 

Λ = 𝑉(𝑡) + 𝜆 (∑𝑡𝑖

𝑚

𝑖=1

− 1). 

Derivando parcialmente Λ con respecto a 𝑡𝑖 , e igualando a cero, 

tenemos: 

∂Λ

𝜕𝑡𝑖
= 2𝑡𝑖

𝑁 − 𝑛𝑖
𝑁𝑛𝑖

𝜎2 + 𝜆 = 0, 

de donde 
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𝑡𝑖 = −𝜆
𝑁𝑛𝑖

2(𝑁 − 𝑛𝑖)𝜎
2
= 𝑐

𝑛𝑖
𝑁 − 𝑛𝑖

. 

La constante 𝑐 se determina por la restricción de insesgación, es 

decir, 

1 =∑𝑡𝑖

𝑚

𝑖=1

= 𝑐∑
𝑛𝑖

𝑁 − 𝑛𝑖

𝑚

𝑖=1

, 

de donde 

𝑐 =
1

∑
𝑛𝑖

𝑁 − 𝑛𝑖
𝑚
𝑖=1

. 

Por tanto, el estimador insesgado de mínima varianza del tipo lineal 

𝑡 = ∑ 𝑡𝑖𝑦̅𝑖
𝑚
𝑖=1  tiene por componente 𝑡𝑖 a: 

𝑡𝑖 =

𝑛𝑖
𝑁 − 𝑛𝑖

∑
𝑛𝑗

𝑁 − 𝑛𝑗
𝑚
𝑗=1

. 

El estimador buscado es entonces 

𝑡 =∑

𝑛𝑖
𝑁 − 𝑛𝑖

∑
𝑛𝑗

𝑁 − 𝑛𝑗
𝑚
𝑗=1

𝑚

𝑖=1

𝑦̅𝑖 . 

 

Ejercicio 3.11. Indicar un estimador insesgado de la varianza, 

𝑉̂(𝑡), del estimador insesgado lineal de mínima varianza, 𝑡, para 

estimar la media poblacional 𝑦̅, que hemos obtenido en el ejercicio 

anterior. 



 

131 
 

Solución. Partimos de que un estimador insesgado de la 

cuasivarianza poblacional 

𝑆2 =
𝑁

𝑁 − 1
𝜎2 

es la cuasivarianza muestral 

𝑠2 =
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅𝑠)

2

𝑖 ∈ 𝑠

, 

donde 𝑦𝑖 es el valor observado de la variable 𝑦 en la unidad 𝑖 de la 

muestra conjunto 𝑠 de 𝑛 unidades de entre las de la población finita 

de tamaño 𝑁. 

Denotando por 𝑠𝑖
2 a la cuasivarianza muestral obtenida con la 

𝑖-ésima muestra aleatoria simple sin reemplazamiento de tamaño 

muestral efectivo 𝑛𝑖 , todas ellas en 𝑖 = 1, 2, … ,𝑚  selecciones 

independientes entre sí, llegamos al “estimador insesgado de la 

varianza” del estimador 𝑡 lineal insesgado de la media poblacional 

y de mínima varianza en su clase: 

𝑉̂(𝑡) =∑𝑡𝑖
2𝑉̂(𝑦̅𝑖)

𝑚

𝑖=1

=∑(

𝑛𝑖
𝑁 − 𝑛𝑖

∑
𝑛𝑗

𝑁 − 𝑛𝑗
𝑚
𝑗=1

)

2

𝑁 − 𝑛𝑖
(𝑁 − 1)𝑛𝑖

𝑠𝑖
2

𝑚

𝑖=1

= 

1

𝑁 − 1

∑
𝑛𝑖

𝑁 − 𝑛𝑖
𝑠𝑖
2𝑚

𝑖=1

(∑
𝑛𝑗

𝑁 − 𝑛𝑗
𝑚
𝑗=1 )

2. 

 

Ejercicio 3.12. En algunos casos, de la variable de interés 𝑦  a 

observar, sabemos que está acotada inferior y superiormente, es 

decir 𝑦𝑘 ∈ [𝑎, 𝑏] para todo valor o unidad 𝑘 ∈ 𝑈, de la población 

finita, con 𝑎  y 𝑏  constantes reales, 𝑎 < 𝑏 . Demostrar en estas 
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condiciones que la media muestral obtenida por muestreo aleatorio 

simple sin reemplazamiento de tamaño efectivo fijo 𝑛, puede llegar 

a estimar la media poblacional 𝑦̅ con un error menor que cualquier 

cantidad positiva 𝑒 > 0 para cualquier nivel de confianza prefijado 

1 − 𝛼, con 0 < 𝛼 ≤ 1. 

Solución. Para verlo, empezamos por justificar que si 𝑦𝑘 ∈ [𝑎, 𝑏], 

entonces la varianza poblacional verifica que: 

𝜎2 =
1

𝑁
∑(𝑦𝑘 − 𝑦̅)

2

𝑁

𝑖=1

≤
1

𝑁
∑(𝑏 − 𝑎)2
𝑁

𝑖=1

= (𝑏 − 𝑎)2. 

Por lo tanto 

𝑝{|𝑦̅𝑠 − 𝑦̅| < 𝑒} ≥ 1 −
𝑉(𝑦̅𝑠)

𝑒2
= 1 −

(𝑁 − 𝑛)𝜎2

(𝑁 − 1)𝑛𝑒2
≥ 

1 −
(𝑁 − 𝑛)(𝑏 − 𝑎)2

(𝑁 − 1)𝑛𝑒2
≥ 1 − 𝛼. 

Esto es cierto si 

𝛼 ≥
𝑁(𝑏 − 𝑎)2

(𝑁 − 1)𝑒2𝑛
−
(𝑏 − 𝑎)2

(𝑁 − 1)𝑒2
. 

O bien si 

𝑛 ≥
𝑁(𝑏 − 𝑎)2

[𝛼 +
(𝑏 − 𝑎)2

(𝑁 − 1)𝑒2
] (𝑁 − 1)𝑒2

=
𝑁(𝑏 − 𝑎)2

𝛼𝑒2(𝑁 − 1) + (𝑏 − 𝑎)2
. 

Esta última cota inferior del tamaño muestral efectivo prefijado 𝑛 

sabemos que garantiza con seguridad que la media muestral 𝑦̅𝑠, con 

diseño de muestreo irrestricto aleatorio de tamaño efectivo fijo 𝑛, 

estima la media poblacional 𝑦̅ con un error absoluto de muestreo 

menor que 𝑒 a un nivel de confianza mayor o igual a 1 − 𝛼. Por lo 
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general, a otros tamaños muestrales inferiores es muy posible que 

también se alcance este nivel de confianza, ya que la acotación 

𝜎2 ≤ (𝑏 − 𝑎)2  es muy amplia y la varianza poblacional puede 

tener cotas superiores más pequeñas que (𝑏 − 𝑎)2. 

 

Ejercicio 3.13. Obtener el tamaño muestral 𝑛  que haga que la 

proporción muestral 𝑝 se desvíe de la proporción poblacional 𝑃 

menos de una cantidad 𝑒 > 0, con un nivel de confianza mayor o 

igual a 1 − 𝛼. La selección de la muestra es con diseño de muestreo 

irrestricto aleatorio. 

Solución. Al tomar los valores de la variable de interés ceros y 

unos, la varianza poblacional 𝜎2 = 𝑃𝑄 = 𝑃(1 − 𝑃) ≤ 1 4⁄ . 

Entonces, la desigualdad de Chebychev nos dice que 

𝑝{|𝑝 − 𝑃| < 𝑒} ≥ 1 −
𝑉(𝑝)

𝑒2
≥ 1 − 𝛼, 

o bien, 

𝑉(𝑝) =
(𝑁 − 𝑛)𝑃𝑄

(𝑁 − 1)𝑛
≤

𝑁 − 𝑛

4(𝑁 − 1)𝑛
≤ 𝛼𝑒2 

y esto es cierto cuando 

𝑁

𝑛
− 1 ≤ 4(𝑁 − 1)𝛼𝑒2, 

o bien, cuando 

𝑛 ≥
𝑁

4(𝑁 − 1)𝛼𝑒2 + 1
. 

El valor natural mínimo que satisface la última desigualdad es más 

pequeña que la que proporcionaba la solución del ejercicio anterior, 

y es que hemos podido acotar la varianza poblacional por una cota 
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superior en este ejercicio que es la cuarta parte de la que teníamos 

en general en el ejercicio anterior. 

 

Ejercicio 3.14. Seleccionamos dos muestras independientes de una 

misma población finita de tamaño 𝑁, una con diseño de muestreo 

aleatorio simple con reemplazamiento de tamaño fijo 𝑛1, y otra con 

diseño de muestreo irrestricto aleatorio de tamaño efectivo fijo 𝑛2. 

Obtenemos las dos medias muestrales con ambos diseños, y las 

denotamos 𝑦̅𝒔 e 𝑦̅𝑠, y definimos la clase de estimadores de la media 

poblacional por 𝑡 = 𝑡1𝑦̅𝒔 + 𝑡2𝑦̅𝑠. Obtener el estimador insesgado 

de mínima varianza (óptimo) de esta clase de estimadores, y 

obtener el estimador insesgado de la varianza del estimador 

óptimo. 

Solución. La condición de insesgación para estimar la media 

poblacional 𝑦̅ se resume en que 

𝑦̅ = 𝐸(𝑡) = 𝐸(𝑡1𝑦̅𝒔 + 𝑡2𝑦̅𝑠) = (𝑡1 + 𝑡2)𝑦̅, 

o bien 

1 = 𝑡1 + 𝑡2. 

La varianza del estimador 𝑡 resulta ser: 

𝑉(𝑡) = 𝑡1
2
𝜎2

𝑛1
+ 𝑡2

2
𝑁 − 𝑛2

(𝑁 − 1)𝑛2
𝜎2. 

Para obtener los valores óptimos de 𝑡1  y 𝑡2 , hacemos uso del 

método de los multiplicadores de Lagrange. El lagrangiano es: 

Λ = 𝑉(𝑡) + 𝜆(1 − 𝑡1 − 𝑡2). 

Resolviendo, tenemos el sistema: 
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∂Λ

𝜕𝑡1
= 2𝑡1

𝜎2

𝑛1
− 𝜆 = 0 

∂Λ

𝜕𝑡2
= 2𝑡2

𝑁 − 𝑛2
(𝑁 − 1)𝑛2

𝜎2 − 𝜆 = 0. 

Resolviéndolo, 

𝑡1 =
𝜆𝑛1
2𝜎2

 

𝑡2 =
𝜆(𝑁 − 1)𝑛2
2(𝑁 − 𝑛2)𝜎

2
. 

Exigiendo la condición de insesgación, determinamos el valor de 𝜆 

del modo: 

1 = 𝑡1 + 𝑡2 =
𝜆

2𝜎2
[𝑛1 +

(𝑁 − 1)𝑛2
𝑁 − 𝑛2

], 

es decir, 

𝜆 =
2𝜎2

𝑛1 +
(𝑁 − 1)𝑛2
𝑁 − 𝑛2

. 

Por tanto, los valores óptimos de 𝑡1  y de 𝑡2  son al sustituir la 

constante 𝜆: 

𝑡1 =
𝑛1

𝑛1 +
(𝑁 − 1)𝑛2
𝑁 − 𝑛2

 

y  

𝑡2 =

(𝑁 − 1)𝑛2
𝑁 − 𝑛2

𝑛1 +
(𝑁 − 1)𝑛2
𝑁 − 𝑛2

. 



 
 

136 
 

El estimador insesgado de la varianza del estimador óptimo de la 

clase es: 

𝑉̂(𝑡ó𝑝𝑡) = 𝑡1
2𝑉̂(𝑦̅𝒔) + 𝑡2

2𝑉̂(𝑦̅𝑠) = 

[
𝑛1

𝑛1 +
(𝑁 − 1)𝑛2
𝑁 − 𝑛2

]

2

𝑠1
2

𝑛1
+ [

(𝑁 − 1)𝑛2
𝑁 − 𝑛2

𝑛1 +
(𝑁 − 1)𝑛2
𝑁 − 𝑛2

]

2

𝑁 − 𝑛2
𝑁𝑛2

𝑠2
2, 

en donde 𝑠1
2 es la cuasivarianza muestral con diseño de muestreo 

aleatorio simple con reemplazamiento de tamaño fijo 𝑛1, y 𝑠2
2 es la 

cuasivarianza muestral con diseño de muestreo irrestricto aleatorio 

de tamaño efectivo fijo 𝑛2. 

 

Ejercicio 3.15. Demostrar que el estimador 

𝑣 =
𝑁 − 1

𝑛(𝑛 − 1)
∑ (𝑦𝑖 − 𝑦𝑗)

2

𝑖<𝑗∈𝑠

 

es insesgado para estimar la varianza poblacional con diseño de 

muestreo irrestricto aleatorio de tamaño efectivo fijo 𝑛, siendo 𝑁 

el tamaño de la población finita. 

Solución. Vamos a usar la relación obtenida en el Ejercicio 1.7 de 

este libro, en concreto, de él tenemos que la varianza poblacional 

es: 

𝜎2 =
1

𝑁
∑ ∑ (𝑦𝑖 − 𝑦𝑗)

2
𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

=
1

𝑁
∑(𝑦𝑖 − 𝑦𝑗)

2
𝑁

𝑖<𝑗

. 

Haciendo uso de esta igualdad, veamos que la esperanza 

matemática del estimador 𝑣 es exactamente 𝜎2: 
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𝐸(𝑣) =
𝑁 − 1

𝑛(𝑛 − 1)
𝐸 [ ∑ (𝑦𝑖 − 𝑦𝑗)

2

𝑖<𝑗∈𝑠

] = 

𝑁 − 1

𝑛(𝑛 − 1)
∑[ ∑ (𝑦𝑖 − 𝑦𝑗)

2

𝑖<𝑗∈𝑠

] 𝑝(𝑠 ∈ 𝑆)

𝑠∈𝑆

 

donde 𝑆  es el conjunto de muestras conjunto o no ordenadas 

obtenidas por muestreo irrestricto aleatorio de tamaño efectivo fijo 

𝑛. Entonces, calculando 𝑝(𝑠 ∈ 𝑆) = 1 card{𝑠 ∈ 𝑆}⁄  por la regla de 

Laplace, 

𝐸(𝑣) =
𝑁 − 1

𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦𝑗)

2 card{𝑠 ∈ 𝑆: 𝑖 < 𝑗 ∈ 𝑠}

card{𝑠 ∈ 𝑆}

𝑁

𝑖<𝑗

= 

𝑁 − 1

𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦𝑗)

2
(
𝑁 − 2
𝑛 − 2

)

(
𝑁
𝑛
)

𝑁

𝑖<𝑗

= 

𝑁 − 1

𝑛(𝑛 − 1)
𝑁𝜎2

𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
= 𝜎2. 

En realidad 𝑁𝑣 (𝑁 − 1)⁄ = 𝑠2, es la cuasivarianza muestral, que 

es un estimador insesgado de la cuasivarianza poblacional 𝑆2 , 

como ya sabíamos. 

 

Ejercicio 3.16. Demostrar que la cuasicovarianza muestral es un 

estimador insesgado de la cuasicovarianza poblacional en el 

muestreo irrestricto aleatorio de tamaño efectivo fijo 𝑛. 

Solución. Llamamos covarianza muestral al estadístico 
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𝑚11 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑠)(𝑥𝑖 − 𝑥̅𝑠)

𝑖∈𝑠

. 

La covarianza poblacional es la función paramétrica 

𝜇11 =
1

𝑁
∑(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)

𝑁

𝑖=1

. 

Lo que se nos pide es demostrar que 

𝐸(𝑠𝑦𝑥) = 𝐸 (
𝑛

𝑛 − 1
𝑚11) =

𝑁

𝑁 − 1
𝜇11 = 𝑆𝑦𝑥 . 

Para ello, bastaría demostrar que 

𝐸(𝑚11) =
𝑁(𝑛 − 1)

(𝑁 − 1)𝑛
𝜇11. 

Veámoslo. 

𝐸(𝑚11) = 𝐸 (
1

𝑛
∑𝑦𝑖𝑥𝑖
𝑖∈𝑠

) − 𝐸(𝑦̅𝑠𝑥̅𝑠) = 

𝛼11 + 𝛼10𝛼01 − 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) = 𝜇11 −
𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜇11 = 

𝑁(𝑛 − 1)

(𝑁 − 1)𝑛
𝜇11. 

Queda demostrar que 

𝐶𝑜𝑣 (
1

𝑛
∑𝑦𝑖
𝑖∈𝑠

,
1

𝑛
∑𝑥𝑗
𝑗∈𝑠

) = 𝐶𝑜𝑣 (
1

𝑁
∑𝑦𝑖𝑒𝑖

𝑁

𝑖=1

,
1

𝑁
∑𝑥𝑗𝑒𝑗

𝑁

𝑗=1

) = 
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1

𝑛2
∑𝑦𝑖𝑥𝑖𝑉(𝑒𝑖)

𝑁

𝑖=1

+
1

𝑛2
∑∑𝑦𝑖𝑥𝑗𝐶𝑜𝑣(𝑒𝑖 , 𝑒𝑗)

𝑁

𝑗≠𝑖

𝑁

𝑖=1

. 

Aquí 𝑒𝑖 es una variable aleatoria que toma valor 1 si 𝑖 ∈ 𝑠, y toma 

valor 0 si 𝑖 ∉ 𝑠. Entonces, si 𝜋𝑖 es la probabilidad de inclusión de 

la unidad 𝑖 en la muestra, 

𝑉(𝑒𝑖) = 𝐸(𝑒𝑖
2) − [𝐸(𝑒𝑖)]

2 = 𝜋𝑖 − 𝜋𝑖
2 =

𝑛

𝑁
−
𝑛2

𝑁2
=
(𝑁 − 𝑛)𝑛

𝑁2
. 

Y si 𝑖 ≠ 𝑗, denotando por 𝜋𝑖𝑗 a la probabilidad de inclusión de las 

unidades distintas 𝑖 y 𝑗 en la muestra, tenemos 

𝐶𝑜𝑣(𝑒𝑖 , 𝑒𝑗) = 𝐸(𝑒𝑖𝑒𝑗) − 𝐸(𝑒𝑖)𝐸(𝑒𝑗) = 𝜋𝑖𝑗 − 𝜋𝑖𝜋𝑗 = 

𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
−
𝑛2

𝑁2
= −

(𝑁 − 𝑛)𝑛

𝑁2(𝑁 − 1)
. 

Así, sustituyendo estos resultados en la covarianza de las medias 

muestrales, tenemos que 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) = 

1

𝑛2
𝑁𝛼11

(𝑁 − 𝑛)𝑛

𝑁2
+
1

𝑛2
∑𝑦𝑖∑𝑥𝑗

𝑁

𝑗≠𝑖

𝑁

𝑖=1

𝐶𝑜𝑣(𝑒𝑖 , 𝑒𝑗) = 

𝑁 − 𝑛

𝑁𝑛
𝛼11 +

1

𝑛2
∑𝑦𝑖(𝑁𝑥̅ − 𝑥𝑖)

−(𝑁 − 𝑛)𝑛

𝑁2(𝑁 − 1)

𝑁

𝑖=1

= 

𝑁 − 𝑛

𝑁𝑛
𝛼11 −

𝑁 − 𝑛

(𝑁 − 1)𝑛
𝛼10𝛼01 +

𝑁 − 𝑛

𝑁(𝑁 − 1)𝑛
𝛼11 = 

𝑁 − 𝑛

(𝑁 − 1)𝑛
(𝛼11 − 𝛼10𝛼01) =

𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜇11, 

donde hemos denotado por 
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𝛼𝑘𝑚 =
1

𝑁
∑𝑦𝑖

𝑘𝑥𝑖
𝑚

𝑁

𝑖=1

. 

 

Ejercicio 3.17. Proponer un estimador insesgado de la covarianza 

de las medias muestrales obtenidas por muestreo irrestricto 

aleatorio de tamaño efectivo fijo 𝑛. 

Solución. Basándonos en el ejercicio anterior, sabemos que la 

covarianza de las medias muestrales en muestreo irrestricto 

aleatorio de tamaño efectivo fijo 𝑛 es 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) =
𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜇11. 

Como un estimador insesgado de la covarianza poblacional 𝜇11 es 

𝜇̂11 =
(𝑁 − 1)𝑛

𝑁(𝑛 − 1)
𝑚11, 

deducimos que el estimador buscado es 

𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑠) =
𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜇̂11 =

𝑁 − 𝑛

𝑁(𝑛 − 1)
𝑚11, 

donde hemos denotado la covarianza muestral por 

𝑚11 =
1

𝑛
∑(𝑦𝑖 − 𝑦̅𝑠)(𝑥𝑗 − 𝑥̅𝑠)

𝑖∈𝑠

. 

 

Ejercicio 3.18. De una población finita 𝑈  de tamaño 𝑁  se 

selecciona una muestra irrestricta aleatoria 𝑠 de tamaño 𝑛 de dicha 

población, y posteriormente se selecciona otra muestra irrestricta 

aleatoria 𝑠′ de tamaño 𝑛′, 𝑛 + 𝑛′ ≤ 𝑁, de la población resultante 
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𝑈 − 𝑠 . Obtener la covarianza de las medias muestrales de las 

muestras 𝑠 y 𝑠′. Finalmente proponer un estimador insesgado de 

dicha covarianza, calculable con los datos muestrales. 

Solución.  

𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑠′) = 𝐸[𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑠′|𝑠)] + 𝐶𝑜𝑣[𝐸(𝑦̅𝑠|𝑠), 𝐸(𝑦̅𝑠′|𝑠)] 

Como 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑠′|𝑠) = 𝑦̅𝑠𝐶𝑜𝑣(1, 𝑦̅𝑠′|𝑠) = 𝑦̅𝑠 ∙ 0 = 0, 

deducimos que 

𝐸[𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑠′|𝑠)] = 𝐸(0) = 0. 

Por otro lado, 

𝐸(𝑦̅𝑠|𝑠) = 𝑦̅𝑠 

y  

𝐸(𝑦̅𝑠′|𝑠) = 𝑦̅𝑈−𝑠 =
𝑁𝑦̅ − 𝑛𝑦̅𝑠
𝑁 − 𝑛

, 

por lo que  

𝐶𝑜𝑣[𝐸(𝑦̅𝑠|𝑠), 𝐸(𝑦̅𝑠′|𝑠)] = 𝐶𝑜𝑣 (𝑦̅𝑠,
𝑁𝑦̅ − 𝑛𝑦̅𝑠
𝑁 − 𝑛

) = 

𝐶𝑜𝑣 (𝑦̅𝑠,
𝑁𝑦̅

𝑁 − 𝑛
) −

𝑛

𝑁 − 𝑛
𝑉(𝑦̅𝑠) = 

0 −
𝑛

𝑁 − 𝑛

𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜎2 = −

𝜎2

𝑁 − 1
, 

concluyendo que 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑠′) = −
𝜎2

𝑁 − 1
. 

Un estimador insesgado de esta covarianza, dada la relación 
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−
𝜎2

𝑁 − 1
= −

𝑆2

𝑁
, 

y que la cuasivarianza poblacional es estimada insesgadamente por 

la cuasivarianza muestral en el diseño de muestreo irrestricto 

aleatorio, concluimos que 

𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑦̅𝑠′) = −
𝑆2̂

𝑁
= −

𝑠2

𝑁
, 

donde 𝑠2  es la cuasivarianza muestral de la muestra irrestricta 

aleatoria 𝑠  de tamaño efectivo fijo 𝑛 , de la muestra irrestricta 

aleatoria 𝑠′  de tamaño efectivo fijo 𝑛′ , o bien (preferiblemente 

desde un punto de vista de reducción de la varianza del estimador, 

y aprovechando toda la información muestral) de la muestra 𝑠 ∪ 𝑠′ 

de tamaño efectivo fijo 𝑛 + 𝑛′ , que es también una muestra 

irrestricta aleatoria de la población finita. 

 

Ejercicio 3.19. Demostrar que un estimador insesgado de la media 

poblacional 𝑦̅ , es el estimador 𝑡𝑐  definido sobre la muestra de 

tamaño efectivo fijo 𝑠 ⊂ 𝑈 de la población finita de tamaño 𝑁: 

𝑡𝑐 = 𝑦̅𝑠 + 𝑐, si 1 ∈ 𝑠 y 𝑁 ∉ 𝑠 

𝑡𝑐 = 𝑦̅𝑠 − 𝑐, si 1 ∉ 𝑠 y 𝑁 ∈ 𝑠 

𝑡𝑐 = 𝑦̅𝑠, en otro caso, 

siendo 𝑦̅𝑠  la media muestral con diseño de muestreo irrestricto 

aleatorio de tamaño efectivo fijo 𝑛, y 𝑐 una constante real. 

Solución. Podemos clasificar el espacio muestral de muestras de 

tamaño efectivo fijo 𝑛, 𝑆, en cuatro sucesos disjuntos: 

𝑆 = {1 ∈ 𝑠, 𝑁 ∉ 𝑠} ∪ {1 ∉ 𝑠, 𝑁 ∈ 𝑠 } ∪ {1, 𝑁 ∈ 𝑠} ∪ {1,𝑁 ∉ 𝑠} 
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Entonces, llamando a estos sucesos en este orden 𝑆1, 𝑆2, 𝑆3 y 𝑆4 

respectivamente, tenemos de la esperanza como esperanza de 

esperanzas condicionadas, sustituyendo las probabilidades de los 

sucesos obtenidas por la regla de Laplace, y calculando las 

esperanzas condicionadas por los sucesos enumerados, que 

𝐸(𝑡𝑐) =∑𝑝(𝑆𝑖)𝐸(𝑡𝑐|𝑆𝑖)

4

𝑖=1

= 

(
𝑁 − 2
𝑛 − 1

)

(
𝑁
𝑛
)

(
𝑦1
𝑛
+
𝑛 − 1

𝑛
𝑦̅𝑈−{1,𝑁} + 𝑐) + 

(
𝑁 − 2
𝑛 − 1

)

(
𝑁
𝑛
)

(
𝑦𝑁
𝑛
+
𝑛 − 1

𝑛
𝑦̅𝑈−{1,𝑁} − 𝑐) + 

(
𝑁 − 2
𝑛 − 2

)

(
𝑁
𝑛
)

(
𝑦1 + 𝑦𝑁
𝑛

+
𝑛 − 2

𝑛
𝑦̅𝑈−{1,𝑁}) + 

(
𝑁 − 2
𝑛

)

(
𝑁
𝑛
)

𝑦̅𝑈−{1,𝑁} = 

(𝑁 − 𝑛)𝑛

𝑁(𝑁 − 1)
(
𝑦1
𝑛
+
𝑛 − 1

𝑛
𝑦̅𝑈−{1,𝑁} + 𝑐) + 

(𝑁 − 𝑛)𝑛

𝑁(𝑁 − 1)
(
𝑦𝑁
𝑛
+
𝑛 − 1

𝑛
𝑦̅𝑈−{1,𝑁} − 𝑐) + 

𝑛(𝑛 − 1)

𝑁(𝑁 − 1)
(
𝑦1 + 𝑦𝑁
𝑛

+
𝑛 − 2

𝑛
𝑦̅𝑈−{1,𝑁}) + 

(𝑁 − 𝑛)(𝑁 − 𝑛 − 1)

𝑁(𝑁 − 1)
𝑦̅𝑈−{1,𝑁} = 
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(𝑦1 + 𝑦𝑁) [
𝑁 − 𝑛

𝑁(𝑁 − 1)
+

𝑛 − 1

𝑁(𝑁 − 1)
] + 

𝑦̅𝑈−{1,𝑁} [
2(𝑁 − 𝑛)(𝑛 − 1)

𝑁(𝑁 − 1)
+
(𝑛 − 1)(𝑛 − 2)

𝑁(𝑁 − 1)

+
(𝑁 − 𝑛)(𝑁 − 𝑛 − 1)

𝑁(𝑁 − 1)
] = 

𝑦1 + 𝑦𝑁
𝑁

+
∑ 𝑦𝑖
𝑁−1
𝑖=2

𝑁 − 2
[
𝑁2 − 3𝑁 + 2

𝑁(𝑁 − 1)
] = 

∑ 𝑦𝑖
𝑁
𝑖=1

𝑁
= 𝑦̅. 

Por lo tanto el estimador 𝑡𝑐  es insesgado para estimar la media 

poblacional. 

 

Ejercicio 3.20. Comprobar que el coste esperado de seleccionar 

una muestra aleatoria simple con reemplazamiento de tamaño fijo 

𝑛 ≥ 2 es menor que el coste esperado de una muestra de tamaño 

fijo 𝑛 obtenida por muestreo aleatorio simple sin reemplazamiento. 

Solución. Si suponemos que el coste por unidad observada es 𝑐 >

0 , el coste esperado de una muestra aleatoria simple con 

reemplazamiento es 

𝑐𝐸[𝜈(𝒔)] < 𝑐𝑛, 

ya que el tamaño muestral efectivo, o número de unidades distintas 

en la muestra aleatoria simple con reemplazamiento 𝒔 de tamaño 

fijo 𝑛 ≥ 2 , es 1 ≤ 𝜈(𝒔) ≤ 𝑛 , y con 𝜈(𝒔) = 1, 2,… , 𝜈, … , 𝑛 , el 

tamaño muestral efectivo de la muestra 𝒔, siendo 

𝑝(𝜈) > 0 
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para todo 𝜈 = 1, 2,… , 𝑛. 

Por otro lado, tenemos que en el muestreo aleatorio simple sin 

reemplazamiento de tamaño fijo 𝑛, el tamaño efectivo fijo de cada 

muestra con probabilidad positiva es 𝜈(𝑠) = 𝑛, constante que al 

multiplicarla por el coste por unidad nos da el “coste esperado de 

una muestra aleatoria simple sin reemplazamiento”, es decir 

𝑐𝑛. 

 

Ejercicio 3.21. Si en el muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛, tomamos como estimador de la 

media poblacional a la media muestral de las unidades distintas que 

aparecen en la secuencia muestral, probar que este estimador es 

menos preciso que la media muestral de las 𝑛 observaciones en el 

muestreo aleatorio simple sin reemplazamiento. ¿Qué se puede 

decir comparando la precisión con la media muestral de las 𝑛 

observaciones en el muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛? 

Solución. Para ello basta ver que ambos son insesgados para la 

media poblacional. El caso del muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛 es materia de teoría básica. El 

otro caso puede verse de este modo, 

𝐸(𝑦̅𝜈) = 𝐸𝐸(𝑦̅𝜈|𝜈) 

Donde 𝐸(𝑦̅𝜈|𝜈) es la esperanza de la media muestral en muestreo 

aleatorio simple sin reemplazamiento de tamaño fijo 𝜈 , que 

coincide con la media poblacional. El promedio de medias 

poblacionales constantes es la media poblacional. 

Aplicando el Teorema de Madow, la varianza de la media muestral 

𝑦̅𝜈 es 
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𝑉(𝑦̅𝜈) = 𝐸𝑉(𝑦̅𝜈|𝜈) = 𝐸 [
𝑁 − 𝜈

(𝑁 − 1)𝜈
𝜎2] ≥ 

𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜎2 = 𝑉(𝑦̅𝑛) 

siendo esta última varianza de la media muestral con diseño de 

muestreo aleatorio simple sin reemplazamiento de tamaño fijo y 

efectivo 𝑛. 

Pero también, vamos a ver si es posible probar que 

𝑉(𝑦̅𝜈) = 𝐸 [
𝑁 − 𝜈

(𝑁 − 1)𝜈
𝜎2] ≤

𝜎2

𝑛
= 𝑉(𝑦̅𝑛) 

siendo esta última varianza de la media muestral con diseño de 

muestreo aleatorio simple con reemplazamiento de tamaño fijo 𝑛. 

Para verlo definimos la función 

𝑓(𝜈) =
1

𝑛
−

𝑁 − 𝜈

(𝑁 − 1)𝜈
 

y comprobar que para 1 ≤ 𝜈 ≤ 𝑛, 𝑓(𝜈) ≥ 0. En efecto, 

𝑓′(𝜈) =
(𝑁 − 1)𝜈 − (𝑁 − 𝜈)

(𝑁 − 1)2𝜈2
=

𝑁(𝜈 − 1)

(𝑁 − 1)2𝜈2
≥ 0 

Por lo que la función 𝑓 es creciente y la derivada toma valor 0 

cuando 𝜈 = 1, es decir cuando alcanza el mínimo de 𝑓. Como 

𝑓(1) =
1

𝑛
− 1 ≤ 0 

y  

𝑓(𝑛) =
1

𝑛
−

𝑁 − 𝑛

(𝑁 − 1)𝑛
> 0 
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En conclusión, el estimador es más preciso o no que la media 

aritmética de las 𝑛 observaciones por muestreo aleatorio simple 

con reemplazamiento dependiendo del signo positivo o negativo 

del promedio (de valores positivos y negativos) 

∑𝑓(𝜈)𝑝(𝜈)

𝑛

𝜈=1

. 

 

Ejercicio 3.22. Indicar si puede seleccionarse una muestra 

irrestricta aleatoria de tamaño 5 de una población finita de tamaño 

326, con un generador de números aleatorios independientes y 

cada dígito con distribución uniforme en {0, 1, 2, … , 9}. 

Solución. Sí se puede, bastaría con que numerásemos las unidades 

de la población finita desde el número 1 al 326. Seguidamente 

seleccionaríamos grupos de tres dígitos aleatorios sucesivos, si el 

primer grupo está entre 001 y 326, la unidad seleccionada es la 

identificada con ese grupo; si no estuviese entre esas cantidades, se 

procedería a una nueva selección de tres dígitos aleatorios 

sucesivos hasta que se seleccionara un identificador de una unidad 

de la población finita. En la segunda unidad a seleccionar 

procedemos similarmente, con la particularidad de que si el 

identificador ya hubiese sido seleccionado en la primera unidad de 

la muestra, repetiríamos el proceso hasta que fuese un identificador 

distinto al anterior. Y así sucesivamente hasta seleccionar el quinto 

grupo de tres dígitos comprendidos entre 001  y 326  que no 

coincidan con el identificador de las unidades ya anteriormente 

seleccionadas en la muestra irrestricta aleatoria. 
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Ejercicio 3.23. Proponer un estimador insesgado del producto de 

dos medias poblacionales en muestreo aleatorio simple sin 

reemplazamiento de tamaño efectivo fijo 𝑛. 

Solución. De la relación 

𝑌̅𝑋̅ = 𝐸(𝑦̅𝑥̅) − 𝐶𝑜𝑣(𝑦̅, 𝑥̅) = 𝐸(𝑦̅𝑥̅) −
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦,𝑥 

donde 𝑆𝑦,𝑥  es la cuasicovarianza poblacional, que es estimable 

insesgadamente por la cuasicovarianza muestral, resulta como 

estimador insesgado de 𝑌̅𝑋̅ el siguiente 

𝑦̅𝑥̅ −
𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)

𝑛

𝑖=1

. 

Donde ahora 𝑦𝑖  y 𝑥𝑖  son los valores de las variables 𝑦  y 𝑥 

respectivamente en la 𝑖 -ésima unidad de la muestra aleatoria 

simple sin reemplazamiento de tamaño efectivo fijo 𝑛. 

 

Ejercicio 3.24. Obtener el tamaño muestral 𝑛  del muestreo 

aleatorio simple (diseño muestral mas) en función del tamaño 

muestral efectivo 𝑚  del muestreo aleatorio simple sin 

reemplazamiento (diseño muestral mia) que conduce a una misma 

varianza del estimador media muestral, y recíprocamente, es decir, 

𝑚 en función de 𝑛 en las mismas condiciones. 

Solución. Igualando las varianzas del estimador media muestral 

con ambos diseños muestrales tenemos que 

𝜎2

𝑛
=

𝑁 −𝑚

(𝑁 − 1)𝑚
𝜎2. 

Simplificando el factor común 𝜎2 y despejando, tenemos que 
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𝑛 =
(𝑁 − 1)𝑚

𝑁 −𝑚
=
𝑁 − 1

𝑁
𝑚
− 1

=
1 −

1
𝑁

1
𝑚
−
1
𝑁

. 

Obviamente, si 𝑚 → 𝑁, 𝑛 → ∞. 

Recíprocamente, de las igualdades anteriores, concretamente 

del primer y segundo términos, tenemos que 

𝑛(𝑁 −𝑚) = (𝑁 − 1)𝑚. 

De donde despejando 𝑚 tenemos que 

𝑛𝑁 = 𝑚(𝑁 − 1 + 𝑛). 

O bien, 

𝑚 =
𝑛𝑁

𝑁 − 1 + 𝑛
. 

Obviamente, si 𝑛 → ∞, 𝑚 → 𝑁. 
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Capítulo 4 

Muestreo estratificado 

 

 

Este tipo de muestreo se presenta cuando la población finita se 

clasifica en clases o estratos, estimando las funciones paramétricas 

poblacionales a partir de las estimaciones obtenidas en los estratos. 

 

4.1 Diseño estratificado 

Si la población finita de tamaño 𝑁 se clasifica en 𝐿 estratos o clases 

de modo que si el tamaño del estrato ℎ  (ℎ = 1, 2,… , 𝐿) es 𝑁ℎ , 

tendremos 

∑𝑁ℎ = 𝑁

𝐿

ℎ=1

. 

El tamaño relativo del estrato ℎ-ésimo es 𝑊ℎ = 𝑁ℎ 𝑁⁄ , de modo 

que 

∑𝑊ℎ

𝐿

ℎ=1

= 1. 

Dicha notación viene de “weight” en inglés, que significa “peso”.  

Una muestra estratificada se obtiene al seleccionar 

aleatoriamente 𝑛ℎ unidades en el estrato ℎ, con 1 ≤ 𝑛ℎ ≤ 𝑁ℎ si el 

diseño usado es el mia en el estrato ℎ-ésimo. En general, 1 ≤ 𝑛ℎ 
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con diseño mas en el estrato ℎ-ésimo. Además suponemos que la 

selección dentro de cada estrato es independiente del resto de 

estratos, es decir no hay ninguna dependencia entre las unidades 

seleccionadas en uno y otro estratos cualesquiera. El tamaño de la 

muestra estratificada es 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

. 

Si 𝑦 es la variable de interés o de estudio, notaremos por 𝑦ℎ𝑘 al 

valor de la variable de interés en la unidad 𝑘 del estrato ℎ. Entonces 

la “media del estrato ℎ” es 

𝑦̅ℎ =
1

𝑁ℎ
∑𝑦ℎ𝑘

𝑁ℎ

𝑘=1

, 

la “varianza del estrato ℎ” es 

𝜎ℎ
2 =

1

𝑁ℎ
∑(𝑦ℎ𝑘 − 𝑦̅ℎ)

2

𝑁ℎ

𝑘=1

, 

el “total del estrato ℎ” es 

𝑇ℎ = 𝑁𝑦̅ℎ = ∑𝑦ℎ𝑘

𝑁ℎ

𝑘=1

, 

y la “cuasivarianza del estrato ℎ” es 

𝑆ℎ
2 =

𝑁ℎ𝜎ℎ
2

𝑁ℎ − 1
. 

La media poblacional admite esta nueva expresión en el caso 

de una población estratificada, 
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𝑦̅ =
1

𝑁
∑∑𝑦ℎ𝑘 =

1

𝑁
∑𝑁ℎ𝑦̅ℎ

𝐿

ℎ=1

= ∑𝑊ℎ𝑦̅ℎ .

𝐿

ℎ=1

𝑁ℎ

𝑘=1

𝐿

ℎ=1

 

La varianza poblacional es 

𝜎2 =
1

𝑁
∑∑(𝑦ℎ𝑘 − 𝑦̅)

2 =
𝑁 − 1

𝑁
𝑆2,

𝑁ℎ

𝑘=1

𝐿

ℎ=1

 

siendo 𝑆2  la cuasivarianza poblacional. Finalmente, el total 

poblacional es 

𝑇 = 𝑁𝑦̅ = ∑𝑁ℎ𝑦̅ℎ

𝐿

ℎ=1

= ∑𝑇ℎ

𝐿

ℎ=1

. 

La varianza poblacional admite la siguiente descomposición 

𝜎2 = ∑𝑊ℎ𝜎ℎ
2 +∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)

2

𝐿

ℎ=1

.

𝐿

ℎ=1

 

Se suele decir que la variabilidad total se descompone en la 

variabilidad dentro de estratos más la variabilidad entre estratos. 

En efecto, restando y sumando 𝑦̅ℎ dentro del paréntesis, 

𝜎2 =
1

𝑁
∑∑[(𝑦ℎ𝑘 − 𝑦̅ℎ) + (𝑦̅ℎ − 𝑦̅)]

2

𝑁ℎ

𝑘=1

𝐿

ℎ=1

= 

1

𝑁
∑∑(𝑦ℎ𝑘 − 𝑦̅ℎ)

2

𝑁ℎ

𝑘=1

𝐿

ℎ=1

+
1

𝑁
∑𝑁ℎ(𝑦̅ℎ − 𝑦̅)

2

𝐿

ℎ=1

= 

1

𝑁
∑𝑁ℎ𝜎ℎ

2

𝐿

ℎ=1

+
1

𝑁
∑𝑁ℎ(𝑦̅ℎ − 𝑦̅)

2

𝐿

ℎ=1

, 
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que es lo que queríamos demostrar. El doble producto se ha 

anulado porque 

2∑∑(𝑦ℎ𝑘 − 𝑦̅ℎ)(𝑦̅ℎ − 𝑦̅)

𝑁ℎ

𝑘=1

𝐿

ℎ=1

= 

2∑(𝑦̅ℎ − 𝑦̅)

𝐿

ℎ=1

∑(𝑦ℎ𝑘 − 𝑦̅ℎ)

𝑁ℎ

𝑘=1

= 

2∑(𝑦̅ℎ − 𝑦̅)(𝑁ℎ𝑦̅ℎ − 𝑁ℎ𝑦̅ℎ)

𝐿

ℎ=1

= 0. 

 

4.2 Estimación de la media poblacional 

Denotando por 𝑦̅𝑠(ℎ)  a la media muestral en el estrato ℎ , un 

estimador insesgado de la media poblacional es 

𝑦̅𝑠𝑡 = ∑𝑊ℎ𝑦̅𝑠(ℎ)

𝐿

ℎ=1

, 

donde el subíndice 𝑠𝑡  de 𝑦̅𝑠𝑡  viene de “stratified” que significa 

“estratificado” en inglés. En efecto, si el diseño mas se aplica en 

cada estrato independientemente 

𝐸(𝑦̅𝑠𝑡) = 𝐸 [∑𝑊ℎ𝑦̅𝑠(ℎ)

𝐿

ℎ=1

] = ∑𝑊ℎ𝐸[𝑦̅𝑠(ℎ)] = ∑𝑊ℎ𝑦̅ℎ = 𝑦̅

𝐿

ℎ=1

.

𝐿

ℎ=1

 

La varianza de este estimador es 

𝑉(𝑦̅𝑠𝑡) = ∑𝑉[𝑊ℎ𝑦̅𝑠(ℎ)]

𝐿

ℎ=1

= ∑𝑊ℎ
2𝑉[𝑦̅𝑠(ℎ)]

𝐿

ℎ=1

= ∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ

𝐿

ℎ=1

, 
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siendo 𝑛ℎ el tamaño muestral en el estrato ℎ (ℎ = 1, 2, … , 𝐿) con 

diseño mas. La generalización para diseño mia sería directa. Un 

estimador insesgado de la varianza ya calculada es 

𝑉̂(𝑦̅𝑠𝑡) = ∑𝑊ℎ
2
𝑠ℎ
2

𝑛ℎ

𝐿

ℎ=1

, 

siendo 𝑠ℎ
2 la cuasivarianza muestral en el estrato ℎ, es decir 

𝑠ℎ
2 =

1

𝑛ℎ − 1
∑[𝑦ℎ𝑘𝑖 − 𝑦̅𝑠(ℎ)]

2

𝑛ℎ

𝑖=1

 

y la media muestral en el estrato ℎ es 

𝑦̅𝑠(ℎ) =
1

𝑛ℎ
∑𝑦ℎ𝑘𝑖

𝑛ℎ

𝑖=1

. 

 

4.3 Estimación del total poblacional 

El estimador usual, en muestreo estratificado con diseño mas en 

cada estrato, del total poblacional 𝑇 = 𝑁𝑦̅ es 𝑇̂ = 𝑁𝑦̅𝑠𝑡 pues 

𝐸(𝑇̂) = 𝑁𝐸(𝑦̅𝑠𝑡) = 𝑁𝑦̅ = 𝑇. 

La varianza de este estimador es 

𝑉(𝑇̂) = 𝑁2𝑉(𝑦̅𝑠𝑡) = 𝑁2∑𝑊ℎ
2
𝜎ℎ
2

𝑛ℎ
= ∑𝑁ℎ

2
𝜎ℎ
2

𝑛ℎ

𝐿

ℎ=1

𝐿

ℎ=1

, 

que puede estimarse insesgadamente por 

𝑉̂(𝑇̂) = ∑𝑁ℎ
2 𝑠ℎ

2

𝑛ℎ

𝐿

ℎ=1

, 
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ya que 𝐸(𝑠ℎ
2) = 𝜎ℎ

2  con diseño mas de tamaño muestral 𝑛ℎ . La 

generalización para diseños mia en cada estrato es similar. 

 

4.4 Estimación de la proporción poblacional 

Como hemos visto, la proporción poblacional y la proporción 

muestral es una media aritmética de una variable de interés que 

toma valores cero o uno, y por ello el estimador insesgado de la 

proporción poblacional 𝑃 es, en muestreo estratificado con diseño 

mas independiente en cada estrato, el estimador 

𝑃̂ = ∑𝑊ℎ𝑃̂ℎ

𝐿

ℎ=1

, 

donde 𝑃̂ℎ  es la proporción muestral en el estrato ℎ . Como caso 

particular de estimador estratificado, tenemos 

𝑉(𝑃̂) = ∑𝑊ℎ
2 𝑃ℎ𝑄ℎ
𝑛ℎ

𝐿

ℎ=1

. 

Un estimador insesgado de la varianza 𝑉(𝑃̂) es 

𝑉̂(𝑃̂) = ∑𝑊ℎ
2 𝑃̂ℎ𝑄̂ℎ
𝑛ℎ − 1

𝐿

ℎ=1

, 

pues 𝑠ℎ
2 = 𝑛ℎ𝑃̂ℎ𝑄̂ℎ (𝑛ℎ − 1)⁄  es la cuasivarianza muestral en el 

estrato ℎ. 

 La generalización para diseños mia en cada estrato es similar. 
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4.5 El problema de asignación muestral 

Dado el tamaño muestral 𝑛, se denomina asignación muestral al 

reparto de las 𝑛 selecciones de la muestra en los 𝐿 estratos, es decir 

consiste en fijar los tamaños muestrales 𝑛ℎ  (ℎ = 1, 2,… , 𝐿)  en 

cada estrato, de modo que 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

. 

Algunos tipos de asignación muestral son los siguientes. 

 

Asignación igual. Consiste en asignar el mismo tamaño muestral 

en cada estrato, es decir que 𝑛1 = ⋯ = 𝑛ℎ = ⋯ = 𝑛𝐿. Como 

𝑛 = ∑𝑛ℎ = 𝐿𝑛ℎ

𝐿

ℎ=1

, 

deducimos que la asignación igual es 𝑛ℎ = 𝑛 𝐿⁄  (ℎ = 1, 2, … , 𝐿). 

 

Asignación proporcional. Consiste en asignar a cada estrato ℎ, un 

tamaño muestral 𝑛ℎ  proporcional al tamaño del estrato 𝑁ℎ . 

Entonces, 𝑛ℎ ∝ 𝑁ℎ  o bien 𝑛ℎ = 𝑐𝑁ℎ  donde 𝑐  es la constante de 

proporcionalidad, por lo que 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

= ∑𝑐𝑁ℎ

𝐿

ℎ=1

= 𝑐𝑁, 

de donde 𝑐 = 𝑛 𝑁⁄ , y por tanto 𝑛ℎ = 𝑛𝑊ℎ  (ℎ = 1, 2,… , 𝐿). La 

varianza del estimador estratificado de la media poblacional con 

asignación proporcional es 
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𝑉(prop, 𝑦̅𝑠𝑡) =
1

𝑛
∑𝑊ℎ𝜎ℎ

2

𝐿

ℎ=1

≤
𝜎2

𝑛
= 𝑉(𝑚𝑎𝑠, 𝑦̅𝑠), 

debido a la descomposición de la varianza poblacional en variación 

dentro y entre estratos. Es decir, la asignación proporcional con 

diseño mas dentro de cada estrato proporciona un estimador 

estratificado más preciso que la media muestral con diseño mas. 

 

Asignación mínima. Fijado el tamaño muestral 𝑛, la asignación 

mínima consiste en asignar a cada estrato un tamaño muestral 𝑛ℎ 

de modo que la varianza 𝑉(𝑦̅𝑠𝑡)  sea mínima. Para calcular los 

tamaños muestrales utilizamos el método de los multiplicadores de 

Lagrange con la restricción 

∑𝑛ℎ

𝐿

ℎ=1

= 𝑛. 

El lagrangiano es 𝐿∗, 

𝐿∗ = 𝑉(𝑦̅𝑠𝑡) + 𝜆 (∑𝑛ℎ

𝐿

ℎ=1

− 𝑛) = ∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ
+

𝐿

ℎ=1

𝜆 (∑𝑛ℎ

𝐿

ℎ=1

− 𝑛), 

donde 𝜆 es el multiplicador de Lagrange. Resolviendo, 

𝜕𝐿∗

𝜕𝑛ℎ
= −𝑊ℎ

2
𝜎ℎ
2

𝑛ℎ
2 + 𝜆 = 0  (ℎ = 1, 2,… , 𝐿) 

de donde 

√𝜆 =
𝑊ℎ𝜎ℎ
𝑛ℎ

=
∑ 𝑊ℎ𝜎ℎ
𝐿
ℎ=1

𝑛
, 

y por esto 
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𝑛ℎ = 𝑛
𝑊ℎ𝜎ℎ

∑ 𝑊ℎ𝜎ℎ
𝐿
ℎ=1

  (ℎ = 1, 2,… , 𝐿) 

es la asignación mínima que consiste en asignar un tamaño 

muestral en el estrato ℎ  proporcional al producto 𝑊ℎ𝜎ℎ  o 

equivalentemente al producto 𝑁ℎ𝜎ℎ. 

 La varianza del estimador estratificado de la media 

poblacional con asignación mínima es ahora, sustituyendo los 

tamaños muestrales en la fórmula de la varianza 

𝑉(mín, 𝑦̅𝑠𝑡) =
1

𝑛
(∑𝑊ℎ𝜎ℎ

𝐿

ℎ=1

)

2

≤
1

𝑛
∑𝑊ℎ𝜎ℎ

2

𝐿

ℎ=1

= 𝑉(prop, 𝑦̅𝑠𝑡), 

es decir, con la asignación mínima se mejora la precisión del 

estimador estratificado de la media poblacional respecto de la 

asignación proporcional. 

Esta misma asignación muestral se hubiera obtenido si 

minimizáramos el tamaño muestral total 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

 

sujeto a una varianza prefijada 𝑉 = 𝑉(𝑦̅𝑠𝑡) como restricción. 

 

Asignación óptima con costes variables. Admitiendo que el coste 

de observación de una unidad muestral del estrato ℎ es 𝐶ℎ , y el 

coste total de la muestra es 𝐶 , podemos minimizar la varianza 

𝑉(𝑦̅𝑠𝑡) sujeta a la restricción 

𝐶 = ∑𝐶ℎ𝑛ℎ

𝐿

ℎ=1

. 
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En este coste se supone que el coste total depende del número de 

selecciones de unidades en cada estrato y no del tamaño efectivo 

de las muestras en los estratos. El mismo resultado se da cuando se 

minimiza el coste 𝐶 sujeto a una varianza prefijada 𝑉 = 𝑉(𝑦̅𝑠𝑡). El 

lagrangiano será ahora 

𝐿∗ = ∑𝑊ℎ
2
𝜎ℎ
2

𝑛ℎ

𝐿

ℎ=1

+ 𝜆 (∑𝐶ℎ𝑛ℎ

𝐿

ℎ=1

− 𝐶), 

y derivando parcialmente 𝐿∗ respecto a 𝑛ℎ e igualando a cero, 

𝜕𝐿∗

𝜕𝑛ℎ
= −

𝑊ℎ
2𝜎ℎ

2

𝑛ℎ
2 + 𝜆𝐶ℎ = 0  (ℎ = 1, 2,… , 𝐿) 

de donde 

√𝜆 =

𝑊ℎ𝜎ℎ
√𝐶ℎ
𝑛ℎ

=

∑
𝑊ℎ𝜎ℎ
√𝐶ℎ

𝐿
ℎ=1

𝑛
, 

y por tanto 

𝑛ℎ = 𝑛

𝑊ℎ𝜎ℎ
√𝐶ℎ

∑
𝑊ℎ𝜎ℎ
√𝐶ℎ

𝐿
ℎ=1

  (ℎ = 1, 2,… , 𝐿), 

es decir 𝑛ℎ  es proporcional a 𝑊ℎ𝜎ℎ √𝐶ℎ⁄ . En esta asignación se 

encuentra una solución de compromiso entre el coste y la precisión. 

El tamaño muestral en el estrato ℎ, 𝑛ℎ, puede expresarse en función 

del coste prefijado 𝐶. En efecto, 

𝐶 = ∑𝐶ℎ𝑛ℎ

𝐿

ℎ=1

= 𝑛
∑ 𝑊ℎ𝜎ℎ√𝐶ℎ
𝐿
ℎ=1

∑
𝑊ℎ𝜎ℎ
√𝐶ℎ

𝐿
ℎ=1

, 
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luego 

𝑛 = 𝐶

∑
𝑊ℎ𝜎ℎ
√𝐶ℎ

𝐿
ℎ=1

∑ 𝑊ℎ𝜎ℎ√𝐶ℎ
𝐿
ℎ=1

, 

de donde sustituyendo, tenemos finalmente 

𝑛ℎ = 𝑛

𝑊ℎ𝜎ℎ
√𝐶ℎ

∑
𝑊ℎ𝜎ℎ
√𝐶ℎ

𝐿
ℎ=1

= 𝐶

𝑊ℎ𝜎ℎ
√𝐶ℎ

∑ 𝑊ℎ𝜎ℎ√𝐶ℎ
𝐿
ℎ=1

  (ℎ = 1, 2, … , 𝐿). 

 La varianza del estimador estratificado de la media 

poblacional con asignación óptima con costes variables es 

𝑉(ópt, 𝑦̅𝑠𝑡) =
1

𝑛
(∑𝑊ℎ𝜎ℎ√𝐶ℎ

𝐿

ℎ=1

)(∑
𝑊ℎ𝜎ℎ

√𝐶ℎ

𝐿

ℎ=1

) = 

1

𝐶
(∑𝑊ℎ𝜎ℎ√𝐶ℎ

𝐿

ℎ=1

)

2

. 

 

Asignación fijada. Si los tamaños muestrales 𝑛ℎ (ℎ = 1, 2,… , 𝐿) 

están prefijados previamente, el tamaño muestral 𝑛 está también 

prefijado previamente. Entonces la varianza del estimador de la 

media poblacional en muestreo estratificado con asignación fijada 

es la tradicional recogida en este libro. 

 

Asignación valoral. Dado el tamaño muestral total 𝑛 , la 

asignación valoral consiste en distribuir el tamaño muestral 𝑛ℎ en 

el estrato ℎ de modo que 𝑛ℎ sea proporcional al total del estrato ℎ, 

𝑁ℎ𝑦̅ℎ. Es decir, 



 
 

162 
 

𝑛1
𝑁1𝑦̅1

= ⋯ =
𝑛ℎ
𝑁ℎ𝑦̅ℎ

= ⋯ =
𝑛𝐿
𝑁𝐿𝑦̅𝐿

=
𝑛

∑ 𝑁ℎ𝑦̅ℎ
𝐿
ℎ=1

=
𝑛

𝑁𝑦̅
 , 

de donde 

𝑛ℎ = 𝑛
𝑊ℎ𝑦̅ℎ
𝑦̅

  (ℎ = 1, 2, … , 𝐿). 

 

Asignación 𝑛ℎ ∝ 𝑊ℎ𝜎ℎ
2. Este tipo de asignación produce la misma 

precisión que la asignación proporcional, y por tanto es más precisa 

que la media muestral en el diseño mas. En efecto, si 

𝑛ℎ = 𝑛
𝑊ℎ𝜎ℎ

2

∑ 𝑊ℎ𝜎ℎ
2𝐿

ℎ=1

  (ℎ = 1, 2, . . , 𝐿), 

𝑉(𝑦̅𝑠𝑡) =
1

𝑛
(∑𝑊ℎ

𝐿

ℎ=1

)(∑𝑊ℎ𝜎ℎ
2

𝐿

ℎ=1

) = 𝑉(prop, 𝑦̅𝑠𝑡), 

pero esta asignación no tiene utilidad práctica porque requiere el 

conocimiento adicional de los valores 𝜎ℎ
2 además de los de 𝑊ℎ, y 

con éstos últimos ya se consigue la misma precisión con asignación 

proporcional. 

 

Asignación especial. Consiste en realizar un censo en el estrato 2 

o de unidades grandes, es decir el tamaño muestral efectivo en el 

estrato 2 es 𝑛2 = 𝑁2, y tomar una muestra de tamaño efectivo fijo 

𝑛1 con diseño mas en el primer estrato de los dos en que se divide 

la población por un punto 𝑦 = 𝑦̅ + 𝑘𝜎 separador del primero del 

segundo estrato según los valores que tome la variable de interés 

en cada unidad. La varianza del estimador es 
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𝑉[𝑊1𝑦̅𝑠(1) +𝑊2𝑦̅2] = 𝑊1
2
𝑁1 − 𝑛1
𝑁1 − 1

𝜎1
2

𝑛1
. 

Esta varianza es menor que la del muestreo aleatorio simple sin 

reemplazamiento y la media muestral, cuando y solo cuando 

𝑉(esp,𝑊1𝑦̅𝑠(1) +𝑊2𝑦̅2 ) <
𝑁 − 𝑛

𝑁 − 1

𝜎2

𝑛
, 

o bien 

𝑁2(𝑁 − 𝑁2 − 1)(𝑛 − 𝑁2)𝜎
2 > (𝑁 − 𝑁2)

2(𝑁 − 1)𝑛𝜎1
2, 

pero como 

𝜎2 =
𝑁1
𝑁
𝜎1
2 +

𝑁2
𝑁
𝜎2
2 +

𝑁2
𝑁1
(𝑦̅2 − 𝑦̅)

2, 

tenemos 

(𝑁 − 𝑁2)𝜎1
2 = 𝑁𝜎2 − 𝑁2𝜎2

2 −
𝑁2𝑁(𝑦̅2 − 𝑦̅)

2

𝑁 − 𝑁2
≤ 

𝑁𝜎2 −
𝑁2𝑁(𝑘𝜎)

2

𝑁 − 𝑁2
, 

pues 𝑦̅2 ≥ 𝑦̅ + 𝑘𝜎 = 𝑦 , y 𝜎2
2 ≥ 0 . De las dos desigualdades 

últimas, obligando a que 

𝑁2(𝑁 − 𝑁2 − 1)(𝑛 − 𝑁2)𝜎
2 > 

(𝑁 − 𝑁2)(𝑁 − 1)𝑛 [𝑁𝜎
2 −

𝑁2𝑁(𝑘𝜎)
2

𝑁 − 𝑁2
] 

conseguimos una condición suficiente para que el estimador 

estratificado con asignación especial sea más preciso que la media 

muestral con diseño mia de igual tamaño muestral efectivo 𝑛, con 

lo que operando resulta 
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𝑘2 >
(𝑁 − 1)(𝑁 − 𝑁2)𝑛 − 𝑁(𝑁 − 𝑁2 − 1)(𝑛 − 𝑁2)

𝑁2(𝑁 − 1)𝑛
, 

o equivalentemente al simplificar 

𝑘2 >
𝑁

𝑛
−
𝑁𝑁2 − 𝑛

𝑛(𝑁 − 1)
, 

y como 𝑁2 ≤ 𝑛 llegamos a que 

𝑘2 >
𝑁

𝑛
− 1, 

y al haber supuesto que 𝑘 > 0 queda 

𝑘 > √
𝑁

𝑛
− 1. 

Por lo que una cota inferior para que el punto 𝑦  de 

estratificación para afijación especial y dos estratos (uno primero 

de unidades pequeñas que se muestrea, y otro segundo de unidades 

grandes que se incluyen todas en la muestra a modo de censo en 

este estrato) proporcione estimaciones más precisas que la media 

muestral usando diseño mia en ambos estimadores, es que el punto 

de estratificación sea 

𝑦 > 𝑦̅ + 𝜎 × √
𝑁

𝑛
− 1. 

Si la variable de interés de las unidades están ordenadas en 

orden creciente, Glasser (1962) dio la condición suficiente de que 

el punto de estratificación verifique 

𝑦 > 𝑦̅ + 𝜎 × √
𝑁

𝑛
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para que con diseño mia en el primer estrato y asignación especial, 

se mejore la precisión respecto del diseño mia sobre toda la 

población e igual tamaño muestral efectivo total en ambos casos. 

Ruiz Espejo (1985) dio la condición suficiente mejorada para este 

propósito que es compatible con la cota de Glasser. 

 

4.6 Estimación de la varianza poblacional 

Si el diseño muestral empleado dentro de cada estrato es el mas, 

vamos a obtener un estimador insesgado de la varianza poblacional 

en el muestreo estratificado. Partimos de la descomposición de la 

varianza en variación dentro de estratos y entre estratos, 

𝜎2 = ∑𝑊ℎ𝜎ℎ
2 +∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)

2

𝐿

ℎ=1

.

𝐿

ℎ=1

 

Para estimar 𝜎2 , el primer sumando no presenta ningún 

problema con diseño mas en cada estrato puesto que la 

cuasivarianza muestral 𝑠ℎ
2  es un estimador insesgado de 𝜎ℎ

2 , la 

varianza del mismo estrato. En cuanto al segundo sumando, 

sustituyamos 𝑦̅ℎ e 𝑦̅ por sus estimadores insesgados 𝑦̅𝑠(ℎ) e 𝑦̅𝑠𝑡, y 

calculemos la esperanza matemática: 

𝐸 {∑𝑊ℎ[𝑦̅𝑠(ℎ) − 𝑦̅𝑠𝑡]
2

𝐿

ℎ=1

} = 

𝐸 (∑𝑊ℎ{(𝑦̅ℎ − 𝑦̅) + [𝑦̅𝑠(ℎ) − 𝑦̅ℎ] − (𝑦̅𝑠𝑡 − 𝑦̅)}
2

𝐿

ℎ=1

), 

sumando y restando (𝑦̅ℎ − 𝑦̅) . Desarrollando el cuadrado entre 

llaves y sustituyendo, tenemos que la esperanza anterior es igual a 
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𝐸 [∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)
2

𝐿

ℎ=1

] + 𝐸 {∑𝑊ℎ[𝑦̅𝑠(ℎ) − 𝑦̅ℎ]
2

𝐿

ℎ=1

} + 

𝐸 [∑𝑊ℎ(𝑦̅𝑠𝑡 − 𝑦̅)
2

𝐿

ℎ=1

] − 2𝐸 {∑𝑊ℎ[𝑦̅𝑠(ℎ) − 𝑦̅ℎ](𝑦̅𝑠𝑡 − 𝑦̅)

𝐿

ℎ=1

} + 

2𝐸 {∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)

𝐿

ℎ=1

[𝑦̅𝑠(ℎ) − 𝑦̅ℎ]} − 

2𝐸 [∑𝑊ℎ

𝐿

ℎ=1

(𝑦̅ℎ − 𝑦̅)(𝑦̅𝑠𝑡 − 𝑦̅)] = 

∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)
2

𝐿

ℎ=1

+∑𝑊ℎ

𝜎ℎ
2

𝑛ℎ

𝐿

ℎ=1

+∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ

𝐿

ℎ=1

− 2∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ

𝐿

ℎ=1

, 

porque los dos últimos sumandos se anulan; luego el resultado final 

es 

∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)
2

𝐿

ℎ=1

+∑𝑊ℎ(1 −𝑊ℎ)
𝜎ℎ
2

𝑛ℎ

𝐿

ℎ=1

, 

por lo que el segundo sumando de ésta última igualdad es el sesgo 

de  

∑𝑊ℎ[𝑦̅𝑠(ℎ) − 𝑦̅𝑠𝑡]
2

𝐿

ℎ=1

 

como estimador de 

∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)
2

𝐿

ℎ=1

, 
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y en consecuencia, el estimador insesgado de la varianza 

poblacional 𝜎2 en muestreo estratificado con diseño mas en cada 

estrato independientemente, es 

𝜎2̂ = ∑𝑊ℎ𝑠ℎ
2

𝐿

ℎ=1

+∑𝑊ℎ[𝑦̅𝑠(ℎ) − 𝑦̅𝑠𝑡]
2

𝐿

ℎ=1

−∑𝑊ℎ(1 −𝑊ℎ)
𝑠ℎ
2

𝑛ℎ

𝐿

ℎ=1

. 

Una fórmula más compleja se puede dar para estimar la 

varianza poblacional en muestreo estratificado con diseño mia 

independientemente dentro de cada estrato (Mirás, 1985). Otros 

estimadores insesgados de la varianza en muestreo estratificado se 

deben a Ruiz Espejo y Delgado Pineda (2008c). 

 

4.7 Posestratificación 

A veces se utiliza un diseño no estratificado para seleccionar la 

muestra, pero una vez seleccionada se decide estratificarla y 

estimar la media poblacional 𝑦̅ por una media posestratificada. De 

este modo, el tamaño muestral en el estrato ℎ, 𝑛ℎ, es aleatorio antes 

de seleccionar la muestra, y fijo una vez seleccionada. El estimador 

posestratificado 𝑦̅𝑝𝑠 es entonces 

𝑦̅𝑝𝑠 = ∑𝑊ℎ𝑦̅𝑠(ℎ)

𝐿

ℎ=1

, 

similar al estimador estratificado salvo que la media muestral 𝑦̅𝑠(ℎ) 

tiene ahora un número aleatorio 𝑛ℎ de unidades seleccionadas en 

el estrato ℎ. Ya no son los valores 𝑛ℎ fijados previamente sino que 

son valores aleatorios que se concretan con la muestra obtenida. 

Para calcular la esperanza y la varianza del estimador uso de la 

esperanza y varianza condicionadas al tamaño muestral aleatorio 

𝑛ℎ. En efecto, 
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𝐸(𝑦̅𝑝𝑠) = 𝐸[𝐸(𝑦̅𝑝𝑠|𝑛ℎ)] = 𝐸 {∑𝑊ℎ𝐸[𝑦̅𝑠(ℎ)|𝑛ℎ]

𝐿

ℎ=1

} = 

𝐸 (∑𝑊ℎ𝑦̅ℎ

𝐿

ℎ=1

) = 𝐸(𝑦̅) = 𝑦̅, 

por lo que el estimador 𝑦̅𝑝𝑠 es insesgado para la media poblacional. 

Su varianza se calcula así, 

𝑉(𝑦̅𝑝𝑠) = 𝑉[𝐸(𝑦̅𝑝𝑠|𝑛ℎ)] + 𝐸[𝑉(𝑦̅𝑝𝑠|𝑛ℎ)], 

pero el primer sumando es cero porque 𝐸(𝑦̅𝑝𝑠|𝑛ℎ) = 𝑦̅, y entonces 

𝑉(𝑦̅𝑝𝑠) = 𝐸 (∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ

𝐿

ℎ=1

) = ∑𝑊ℎ
2𝜎ℎ

2𝐸 (
1

𝑛ℎ
)

𝐿

ℎ=1

. 

Para calcular esta esperanza anterior, sea 𝑊̂ℎ = 𝑛ℎ 𝑛⁄  el tamaño 

relativo de la muestra en el estrato ℎ, mientras que 𝑊ℎ = 𝑁ℎ 𝑁⁄  es 

el tamaño relativo del estrato ℎ en la población. Con diseño mas, 

𝑊̂ℎ estima sin sesgo a 𝑊ℎ. Podemos escribir 

𝑛ℎ = 𝑛𝑊̂ℎ = 𝑛(𝑊̂ℎ −𝑊ℎ +𝑊ℎ) = 𝑛𝑊ℎ (1 +
𝑊̂ℎ −𝑊ℎ

𝑊ℎ
), 

luego 

1

𝑛ℎ
=

1

𝑛𝑊ℎ

1

1 +
𝑊̂ℎ −𝑊ℎ
𝑊ℎ

, 

pero si 

|
𝑊̂ℎ −𝑊ℎ

𝑊ℎ
| < 1, 
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algo razonable porque 𝑊̂ℎ  estima sin sesgo a 𝑊ℎ  y además 

converge en probabilidad a dicha función paramétrica, nos permite 

expresar la aproximación del desarrollo en serie de potencias 

siguiente 

1

𝑛ℎ
=

1

𝑛𝑊ℎ
[1 −

𝑊̂ℎ −𝑊ℎ

𝑊ℎ
+
(𝑊̂ℎ −𝑊ℎ)

2

𝑊ℎ
2 −⋯] ≈ 

1

𝑛𝑊ℎ
[1 −

𝑊̂ℎ −𝑊ℎ

𝑊ℎ
+
(𝑊̂ℎ −𝑊ℎ)

2

𝑊ℎ
2 ] 

donde hemos tenido en cuenta los tres primeros términos del 

desarrollo en serie. Tomando esperanzas, 

𝐸 (
1

𝑛ℎ
) ≈

1

𝑛𝑊ℎ
[1 − 0 +

𝑉(𝑊̂ℎ)

𝑊ℎ
2 ] =

1

𝑛𝑊ℎ
[1 +

𝑊ℎ(1 −𝑊ℎ)

𝑛𝑊ℎ
2 ]. 

Sustituyendo esta relación en la varianza del estimador 

posestratificado, tenemos 

𝑉(𝑦̅𝑝𝑠) = ∑𝑊ℎ
2𝜎ℎ

2𝐸 (
1

𝑛ℎ
)

𝐿

ℎ=1

≈
1

𝑛
∑𝑊ℎ𝜎ℎ

2 (1 +
1 −𝑊ℎ

𝑛𝑊ℎ
)

𝐿

ℎ=1

 

en términos de su desarrollo en serie de potencias de hasta 𝑛−2. 

Por último, veamos que este método de estimación se basa en 

que conocemos los tamaños relativos de los estratos 𝑊ℎ. En efecto, 

si utilizáramos el estimador 

𝑦̅𝑝𝑠0 = ∑𝑊ℎ0𝑦̅𝑠(ℎ)

𝐿

ℎ=1

, 

con 𝑊ℎ0 cualquiera, tendremos que 
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𝑦̅𝑝𝑠 = 𝑦̅𝑝𝑠0 +∑(𝑊ℎ −𝑊ℎ0)𝑦̅𝑠(ℎ)

𝐿

ℎ=1

, 

por lo que 

𝐵(𝑦̅𝑝𝑠0 ;  𝑦̅) = −∑(𝑊ℎ −𝑊ℎ0)𝑦̅ℎ

𝐿

ℎ=1

 

es el sesgo del posible estimador posestratificado con 𝑊ℎ0 

cualquiera, que no depende del tamaño muestral 𝑛. Por lo tanto, no 

es aconsejable usar la estratificación a posteriori o 

posestratificación si los tamaños relativos de los estratos 𝑊ℎ 

(ℎ = 1, 2,… , 𝐿) no son conocidos en la fase de estimación. 

 Un estimador insesgado de la varianza del estimador 

posestratificado puede obtenerse a partir del Teorema 1.4, en 

concreto, para muestreo aleatorio simple con reemplamiento de 

tamaño fijo 𝑛, si denotamos por 𝑦̅𝒔 a la media muestral y por 𝑠2 a 

la cuasivarianza muestral 

𝑉̂(𝑦̅𝑝𝑠) = 𝑦̅𝑝𝑠
2 − 𝑦̅𝒔

2 +
𝑠2

𝑛
. 

 

4.8 Ejercicios resueltos 

 

Ejercicio 4.1. En un estudio por muestreo estratificado se decide 

utilizar asignación especial para el tercer estrato (de unidades 

grandes) y utilizar asignación igual en los dos primeros estratos de 

𝑇𝐹(𝑛1) y de 𝑇𝐸𝐹(𝑛2) respectivamente donde los diseños que  se 

emplean son mas con 𝑦̅𝒔(1), y mia con 𝑦̅𝑠(2). Proponer un estimador 
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insesgado de la media poblacional para este diseño y calcular su 

varianza. 

Solución. Un estimador estratificado insesgado de la media 

poblacional 𝑦̅ que se propone es 

𝑦̅𝑠𝑡 = 𝑊1𝑦̅𝒔(1) +𝑊2𝑦̅𝑠(2) +𝑊3𝑦̅3, 

siendo 𝑊ℎ = 𝑁ℎ 𝑁⁄  el tamaño relativo del estrato ℎ (ℎ = 1, 2, 3). 

La varianza es 

𝑉(𝑦̅𝑠𝑡) = 𝑊1
2
𝜎1
2

𝑛1
+𝑊2

2
𝑁2 − 𝑛2
𝑁2 − 1

𝜎2
2

𝑛2
, 

con 𝑛1 = 𝑛2 = (𝑛 − 𝑛3) 2⁄ = (𝑛 − 𝑁3) 2⁄ , siendo 𝑛3 = 𝑁3  el 

tamaño muestral efectivo en el tercer estrato. 

 

Ejercicio 4.2. En las condiciones del ejercicio anterior, proponer 

un estimador insesgado de la varianza del estimador de 𝑦̅. 

Solución. Un estimador insesgado de la varianza del estimador 

estratificado insesgado de la media poblacional es 

𝑉̂(𝑦̅𝑠𝑡) = 𝑊1
2
𝑠1
2

𝑛1
+𝑊2

2
𝑁2 − 𝑛2
𝑁2

𝑠2
2

𝑛2
, 

siendo 𝑠1
2 la cuasivarianza muestral obtenida con diseño mas de 

tamaño fijo 𝑛1 en el primer estrato, y 𝑠2
2 la cuasivarianza muestral 

obtenida con diseño mia de tamaño efectivo fijo 𝑛2 en el segundo 

estrato. 

 

Ejercicio 4.3. En una población estratificada en 2 estratos, se ha 

obtenido que 𝑊1 = 0.4 , y por una muestra piloto se sabe que 

aproximadamente 𝜎1
2 = 100 , 𝜎2

2 = 81  y 𝜎2 = 225 . Suponiendo 
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que el tamaño poblacional 𝑁 es suficientemente grande, calcular el 

tamaño muestral 𝑛 para que una muestra con asignación mínima 

proporcione la misma varianza que un diseño mas sobre toda la 

población de tamaño muestral efectivo 𝑛∗ = 150, para estimar la 

media poblacional. 

Solución. Como 

𝑉(𝑦̅𝑠) =
𝜎2

𝑛∗
=
225

150
= 1.5, 

y  

𝑉(mín, 𝑦̅𝑠𝑡) =
1

𝑛
(∑𝑊ℎ𝜎ℎ

2

ℎ=1

)

2

=
1

𝑛
(0.4 ∙ 10 + 0.6 ∙ 9)2 =

88.36

𝑛
. 

Luego, si 

1.5 = 𝑉(𝑦̅𝑠) = 𝑉(mín, 𝑦̅𝑠𝑡) =
88.36

𝑛
, 

se deduce que 

𝑛 =
88.36

1.5
≈ 58.91, 

es decir, el tamaño muestral requerido es 𝑛 = 59. 

 

Ejercicio 4.4. Determinar la asignación proporcional en cada 

estrato, si el tamaño muestral total es 𝑛 = 1000, y hay 5 estratos 

de tamaños relativos 0.2, 0.3, 0.1, 0.25 y 0.15. ¿Cuál es la mayor 

diferencia absoluta de tamaños muestrales con respecto a la 

asignación igual? 

Solución. La asignación proporcional es 
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𝑛ℎ = 𝑛𝑊ℎ =

{
 
 

 
 
200 si ℎ = 1
300 si ℎ = 2
100 si ℎ = 3
250 si ℎ = 4
150 si ℎ = 5

 

La asignación igual es 𝑛ℎ = 1000 5⁄ = 200 (ℎ = 1, 2,… , 5). En 

los estratos 2 y 3 se dan las mayores diferencias absolutas entre 

ambas asignaciones pues |300 − 200| = |100 − 200| = 100, que 

es mayor que las desviaciones absolutas restantes, que son 0, 50 y 

50. 

 

Ejercicio 4.5. Para estimar la proporción poblacional 𝑃  de 

inclinación de voto a cierto partido político en el conjunto de 

españoles con derecho a voto, se ha dividido geográficamente a los 

votantes en dos estratos: litoral y centro, de modo que el tamaño 

relativo de ambos es 𝑊1 = 𝑊2  de un total de 20  millones de 

votantes. Se decide usar asignación igual 𝑛ℎ = 5000 (ℎ = 1, 2) y 

resultan, con diseño mia en cada estrato, las proporciones 

muestrales 𝑃̂1 = 0.35  y 𝑃̂2 = 0.28 . Estimar 𝑃  por muestreo 

estratificado con asignación igual y estimar insesgadamente la 

varianza de tal estimador. 

Solución. El estimador estratificado sin sesgo de la proporción 

poblacional 𝑃 es 

𝑃̂ = ∑𝑊ℎ𝑃̂ℎ

2

ℎ=1

= (0.5 ∙ 0.35 + 0.5 ∙ 0.28) = 0.315, 

luego la proporción estimada de voto favorable es del 31.5%. 

Un estimador insesgado de su varianza es 
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𝑉̂(𝑃̂) = ∑𝑊ℎ
2
𝑁ℎ − 𝑛ℎ
𝑁ℎ

𝑃̂ℎ𝑄̂ℎ
𝑛ℎ − 1

2

ℎ=1

= 

1

4

9995000

10000000

1

4999
(0.35 ∙ 0.65 + 0.28 ∙ 0.72) ≈ 0.0000214 

que representa un error de muestreo estimado muy pequeño, por lo 

que el estimador 𝑃̂ es muy preciso. 

 

Ejercicio 4.6. En una comarca compuesta por tres pueblos 

numerados del 1  al 3 , se desea conocer la edad media de sus 

habitantes. Para ello se dispone de un presupuesto de 10000 euros, 

y se tiene un costo por observación 𝐶1 = 𝐶2 = 8 y 𝐶3 = 12 euros 

respectivamente por encuesta. Determinar los tamaños muestrales 

𝑛ℎ en cada pueblo, y el tamaño muestral total 𝑛, si de una encuesta 

piloto previa se ha estimado que las cuasivarianzas muestrales son 

𝑠1
2 = 302 , 𝑠2

2 = 322  y 𝑠3
2 = 402 , y que se dispone de la 

información del tamaño total de habitantes en cada pueblo 𝑁1 =

25000 , 𝑁2 = 12000  y 𝑁3 = 2000 . El objetivo es obtener la 

máxima precisión a coste fijo. 

Solución. La asignación 𝑛ℎ  debe ser proporcional a 𝑁ℎ𝜎ℎ √𝐶ℎ⁄  

(ℎ = 1, 2, 3)  por tratarse de asignación óptima con costes 

variables. Por tanto, 

𝑛1 ∝
𝑁1𝜎1

√𝐶1
=
25000 ∙ 30

√8
≈ 265165.04 

𝑛2 ∝
𝑁2𝜎2

√𝐶2
=
12000 ∙ 32

√8
≈ 135764.5 
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𝑛3 ∝
𝑁3𝜎3

√𝐶3
=
2000 ∙ 40

√12
≈ 23094.011 

Por otro lado tenemos que el coste total es 

10000 = 𝐶 = ∑𝐶ℎ𝑛ℎ

3

ℎ=1

= 8𝑛1 + 8𝑛2 + 12𝑛3 = 3484564.5 ∙ 𝑡 

siendo 𝑡 la constante de proporcionalidad, de donde 

𝑡 =
10000

3484564.5
= 0.0028697991, 

y por tanto, 

𝑛1 = 𝑡 ∙ 265165.04 = 760.97 ≈ 761 habitantes 

𝑛2 = 𝑡 ∙ 135764.5 = 389.60 ≈ 390 habitantes 

𝑛3 = 𝑡 ∙ 23094.011 = 66.27 ≈ 66 habitantes 

Es decir, en total entre los tres pueblos de la comarca, se debe 

encuestar a un total de 1217 habitantes, 761 del primer pueblo, 

390 del segundo, y 66 del tercero. Se puede comprobar que el 

coste total resultante será 761∙ 8 + 390 ∙ 8 + 66 ∙ 12 = 10000. 

 

Ejercicio 4.7. Una empresa de publicidad quiere estimar la 

proporción de hogares en un municipio donde se consume cierto 

producto. El municipio es dividido en tres estratos de tamaños 155, 

62  y 93  hogares respectivamente. Una muestra estratificada de 

tamaño muestral total 40  hogares se selecciona con asignación 

proporcional. Estimar la proporción poblacional pedida y dar una 

estimación insesgada de su varianza, si haciendo uso de diseño mia 

independientemente en cada estrato, el número de hogares en las 

muestras que consumen el producto son 16 , 2  y 6 

respectivamente. 
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Solución. El número total de hogares en el municipio es 

𝑁 = ∑ 𝑁ℎ
3
ℎ=1 = (155 + 62 + 93) = 310 hogares. 

La estimación estratificada de la proporción de hogares que 

consumen el producto es 

𝑃̂ = ∑
𝑁ℎ
𝑁
𝑃̂ℎ

3

ℎ=1

=
155

310

16

20
+
62

310

2

8
+
93

310

6

12
= 0.60 

Una estimación insesgada de la varianza de este estimador es 

𝑉̂(𝑃̂) = ∑
𝑁ℎ
2

𝑁2
𝑉̂(𝑃̂ℎ)

3

ℎ=1

, 

donde  

𝑉̂(𝑃̂ℎ) =
𝑁ℎ − 𝑛ℎ
𝑁ℎ

𝑃̂ℎ𝑄̂ℎ
𝑛ℎ − 1

≈ {
0.007 si ℎ = 1
0.024 si ℎ = 2
0.020 si ℎ = 3

 

Es decir, sustituyendo 

𝑉̂(𝑃̂) ≈ 0.0045, 

que es el valor aproximado del estimador insesgado de la varianza 

del estimador de la proporción 𝑃  en muestreo estratificado, es 

decir, una aproximación por redondeo de la estimación insesgada 

de la varianza buscada. 

 

Ejercicio 4.8. Una población finita 𝑈  está clasificada en dos 

dominios o estratos disjuntos que denotamos por su subíndice ℎ =

1, 2. Estimamos la diferencia de medias de los estratos, 𝐷 = 𝑦̅1 −

𝑦̅2 , por medio del estimador insesgado 𝑑  diferencia de medias 

muestrales respectivas obtenidas por diseños de muestreo aleatorio 
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simple con reemplazamiento independientes de tamaños fijos 𝑛1 y 

𝑛2 . Demostrar que el estimador 𝑑  es insesgado para estimar 𝐷 , 

obtener su varianza, y minimizarla sujeta a que 𝑛 = 𝑛1 + 𝑛2 . 

Obtener también la asignación muestral óptima que minimiza la 

varianza de 𝑑 sujeta a que el coste total 𝐶 = 𝑐1𝑛1 + 𝑐2𝑛2, así como 

la varianza de 𝑑 resultante. Proponer un estimador insesgado de las 

varianzas resultantes. 

Solución. El estimador 𝑑 = 𝑦̅𝒔(1) − 𝑦̅𝒔(2)  diferencia de medias 

muestrales independientes, es insesgado para estimar 𝐷  pues 

𝐸(𝑦̅𝒔(ℎ)) = 𝑦̅ℎ y la esperanza matemática de una diferencia es la 

diferencia de las esperanzas, que en nuestro caso es 𝐷 = 𝑦̅1 − 𝑦̅2. 

Y tiene por varianza 

𝑉(𝑑) = 𝑉(𝑦̅𝒔(1)) + 𝑉(𝑦̅𝒔(2)) =
𝜎1
2

𝑛1
+
𝜎2
2

𝑛2
. 

Para minimizar 𝑉(𝑑) sujeto a que 𝑛 = 𝑛1 + 𝑛2, usamos el método 

de los multiplicadores de Lagrange. El lagrangiano es 

Λ = 𝑉(𝑑) + 𝜆(𝑛 − 𝑛1 − 𝑛2), 

donde 𝜆 es el multiplicador de Lagrange, que es solo uno porque 

hay una sola restricción. Resolviendo, para ℎ = 1, 2, tenemos 

𝜕Λ

𝜕𝑛ℎ
= −

𝜎ℎ
2

2𝑛ℎ
2 − 𝜆 = 0. 

Por lo que 

𝑛ℎ =
𝜎ℎ

√−2𝜆
= 𝑛

𝜎ℎ
∑ 𝜎ℎ
2
ℎ=1

, 

despejando 𝜆 al exigir la restricción sobre la suma de los tamaños 

muestrales. Al sustituir estos valores de la asignación muestral 

mínima, obtenemos la varianza mínima del estimador 𝑑 como 
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𝑉mín(𝑑) =
1

𝑛
(𝜎1 + 𝜎2)

2. 

De modo similar, la asignación muestral óptima que 

minimiza la varianza del estimador 𝑑 sujeto la restricción del coste 

presupuestado 𝐶 = 𝑐1𝑛1 + 𝑐2𝑛2 , usando del método de los 

multiplicadores de Lagrange, nos da como resultado para ℎ = 1, 2 

𝑛ℎ = 𝐶
𝜎ℎ √𝑐ℎ⁄

∑ 𝜎ℎ√𝑐ℎ
2
ℎ=1

. 

Que sustituidas estas asignaciones muestrales óptimas en la 

fórmula de la varianza de 𝑑 nos da como resultado 

𝑉ópt(𝑑) =
1

𝐶
(𝜎1√𝑐1 + 𝜎2√𝑐2)

2
. 

Tanto las asignaciones muestrales de mínima varianza y 

óptima con costes variables dependen de parámetros desconocidos, 

por lo que dichas asignaciones solo podrían ser estimadas con una 

muestra piloto. Un estimador insesgado de la varianza de 𝑑 es 

𝑉̂(𝑑) =
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2
, 

siendo 𝑠ℎ
2  la cuasivarianza muestral en el estrato ℎ , y 𝑛ℎ  la 

asignación muestral en el estrato ℎ . En los casos de las 

asignaciones obtenidas no podemos conocer dichos tamaños 

muestrales en la práctica sin conocer las varianzas de los estratos, 

por lo que fijados los tamaños muestrales (pudiendo ser tras 

estimarlos con una muestra piloto), el estimador insesgado de la 

varianza sería válido. 
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Ejercicio 4.9. Una población finita clasificada en dos dominios o 

estratos tiene definida sobre sus unidades la variable indicadora de 

un tercer dominio no necesariamente disjunto de los anteriores. 

Estimar sin sesgo la proporción desconocida de unidades de la 

población que están en este tercer dominio, usando muestreo 

estratificado con asignación proporcional al tamaño de los dos 

primeros estratos y usando independientemente muestreo aleatorio 

simple con reemplazamiento en cada uno de los dos primeros 

estratos. Estimar insesgadamente la varianza de la estimación 

anterior. 

Solución. Denotamos por 𝑁 el tamaño de la población finita, y por 

𝑁ℎ el tamaño del estrato ℎ = 1, 2. Definimos la variable 𝑦𝑘 = 1 si 

la unidad 𝑘 es del tercer dominio, e 𝑦𝑘 = 0 si la unidad 𝑘 no es del 

tercer dominio. La media de la variable 𝑦 en el dominio o estrato ℎ 

es la proporción 𝑃ℎ. Como 

𝑃3 = ∑
𝑁ℎ
𝑁
𝑃ℎ

2

ℎ=1

, 

un estimador insesgado de la proporción 𝑃3  de unidades de la 

población finita en el tercer dominio, haciendo uso de técnicas de 

muestreo estratificado 

𝑃̂3 = ∑
𝑁ℎ
𝑁
𝑝ℎ

2

ℎ=1

, 

donde 𝑝ℎ es la proporción muestral de unidades del estrato ℎ (=

1, 2) que están en el tercer dominio. 

La asignación proporcional consiste en que si 𝑛 es el tamaño 

muestral total, el reparto de este tamaño muestral en los dos 

primeros estratos es proporcional al tamaño de los estratos. En 

concreto, 𝑛ℎ = 𝑛𝑁ℎ 𝑁⁄  para ℎ = 1, 2. 
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La varianza de 𝑃̂3 es 

𝑉(𝑃̂3) = ∑
𝑁ℎ
2

𝑁2
𝑉(𝑝ℎ)

2

ℎ=1

= ∑
𝑁ℎ
2

𝑁2
𝑃ℎ𝑄ℎ
𝑛ℎ

2

ℎ=1

, 

por lo que, sustituyendo la asignación proporcional, la varianza 

admite la expresión 

𝑉prop(𝑃̂3) =
1

𝑛
∑

𝑁ℎ
𝑁
𝑃ℎ𝑄ℎ

2

ℎ=1

. 

Y como la varianza 𝑃ℎ𝑄ℎ  es estimable insesgadamente por el 

estimador cuasivarianza muestral en el estrato ℎ -ésimo en el 

muestreo aleatorio simple con reemplazamiento, es decir por  

𝑛ℎ𝑝ℎ𝑞ℎ (𝑛ℎ − 1)⁄ , resulta que el estimador insesgado de la 

varianza de 𝑃̂3 es 

𝑉̂prop(𝑃̂3) =
1

𝑛
∑

𝑁ℎ
𝑁

𝑛ℎ𝑝ℎ𝑞ℎ
𝑛ℎ − 1

2

ℎ=1

= ∑
𝑁ℎ
2

𝑁

2

ℎ=1

𝑝ℎ𝑞ℎ
𝑛(𝑁ℎ − 𝑁 𝑛⁄ )

= 

∑
𝑁ℎ
2𝑝ℎ𝑞ℎ

𝑛𝑁𝑁ℎ − 𝑁
2

2

ℎ=1

, 

donde 𝑞ℎ = 1 − 𝑝ℎ  es la proporción muestral en el estrato ℎ  de 

unidades seleccionadas que no pertenecen al tercer dominio. 

 

Ejercicio 4.10. Proponer un estimador insesgado de la diferencia 

𝐷𝑖 = 𝑦̅𝑖 − 𝑦̅  entre la media del dominio o estrato 𝑖  y la media 

poblacional. Obtener la varianza de este estimador usando 

muestreo aleatorio simple con reemplazamiento 

independientemente en cada estrato. Obtener la asignación 
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muestral de mínima varianza, y estimar sin sesgo la varianza del 

estimador de 𝐷𝑖. 

Solución. El estimador natural de la diferencia 𝐷𝑖 = 𝑦̅𝑖 − 𝑦̅ es la 

diferencia 

𝑑𝑖 = 𝑦̅𝒔(𝑖) − 𝑦̅𝑠𝑡 = 𝑦̅𝒔(𝑖) −∑
𝑁ℎ
𝑁

𝐿

ℎ=1

𝑦̅𝒔(ℎ) = 

𝑦̅𝒔(𝑖) (1 −
𝑁𝑖
𝑁
) +∑

𝑁ℎ
𝑁

𝐿

ℎ≠𝑖

𝑦̅𝒔(ℎ), 

donde hemos denotado por 𝑦̅𝑠𝑡  al estimador usual de la media 

poblacional en muestreo estratificado, por 𝑦̅𝒔(ℎ)  a la media 

muestral en el estrato ℎ, y por 𝐿 al número de estratos considerado. 

Este estimador 𝑑𝑖  es insesgado de la diferencia 𝐷𝑖  pues la 

esperanza matemática de la diferencia de dos variables aleatorias 

es la diferencia de las esperanzas matemáticas de dichas variables. 

La varianza de este estimador es 

𝑉(𝑑𝑖) =
𝜎𝑖
2

𝑛𝑖
(1 −

𝑁𝑖
𝑁
)
2

+∑(
𝑁ℎ
𝑁
)
2𝐿

ℎ≠𝑖

𝜎ℎ
2

𝑛ℎ
. 

Para obtener la varianza mínima al variar los tamaños 

muestrales 𝑛ℎ sujetos a la condición 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

, 

construimos el lagrangiano 

Λ = 𝑉(𝑑𝑖) + 𝜆 (𝑛 −∑𝑛ℎ

𝐿

ℎ=1

). 
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Resolviendo, derivamos parcialmente el lagrangiano con 

respecto a cada uno de los tamaños muestrales de los estratos, de 

modo que si ℎ ≠ 𝑖, 

𝜕Λ

𝜕𝑛ℎ
= −

𝑁ℎ
2𝜎ℎ

2

2𝑛ℎ
2𝑁2

− 𝜆 = 0 

 y  

𝜕Λ

𝜕𝑛𝑖
= −(1 −

𝑁𝑖
𝑁
)
2 𝜎𝑖

2

2𝑛𝑖
2 − 𝜆 = 0. 

De donde si ℎ ≠ 𝑖, 

𝑛ℎ
𝑁ℎ𝜎ℎ

=
𝑛𝑖

(𝑁 − 𝑁𝑖)𝜎𝑖
= 𝑐, 

donde 𝑐  es una constante que se determina imponiendo la 

restricción 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

= 𝑐 [∑𝑁ℎ𝜎ℎ

𝐿

ℎ≠𝑖

+ (𝑁 − 𝑁𝑖)𝜎𝑖], 

por lo que la asignación muestral de varianza mínima resulta ser 

para ℎ ≠ 𝑖, 

𝑛ℎ = 𝑛
𝑁ℎ𝜎ℎ

∑ 𝑁ℎ𝜎ℎ
𝐿
ℎ≠𝑖 + (𝑁 − 𝑁𝑖)𝜎𝑖

 

y  

𝑛𝑖 = 𝑛
(𝑁 − 𝑁𝑖)𝜎𝑖

∑ 𝑁ℎ𝜎ℎ
𝐿
ℎ≠𝑖 + (𝑁 − 𝑁𝑖)𝜎𝑖

. 

Un estimador insesgado de la varianza del estimador 𝑑𝑖 es 
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𝑉̂(𝑑𝑖) = (1 −
𝑁𝑖
𝑁
)
2 𝑠𝑖

2

𝑛𝑖
+∑

𝑁ℎ
2

𝑁2
𝑠ℎ
2

𝑛ℎ

𝐿

ℎ≠𝑖

, 

donde 𝑠ℎ
2 es la cuasivarianza muestral en el estrato ℎ = 1, 2, … , 𝐿, 

obtenida con muestreo aleatorio simple con reemplazamiento 

independientemente en cada estrato con el tamaño muestral 𝑛ℎ. 

 

Ejercicio 4.11. Obtener la asignación muestral óptima con costes 

variables que minimiza la varianza del estimador diferencia de 

medias muestrales como estimador insesgado de la diferencia de 

medias de dos dominios disjuntos, usando muestreo aleatorio 

simple sin reemplazamiento independientemente en cada dominio. 

Solución. El estimador de la diferencia de medias de dominios 𝐷 =

𝑦̅1 − 𝑦̅2 es el estimador diferencia de las medias muestrales 

𝑑 = 𝑦̅𝑠(1) − 𝑦̅𝑠(2), 

obtenida con diseño de muestreo irrestricto aleatorio de tamaño 𝑛ℎ 

independiente en cada dominio ℎ = 1, 2 . Este estimador es 

insesgado para estimar 𝐷 por ser la esperanza matemática de una 

diferencia, la diferencia de las esperanzas matemáticas respectivas. 

La varianza de 𝑑 es 

𝑉(𝑑) =
𝑁1 − 𝑛1
𝑁1𝑛1

𝑆1
2 +

𝑁2 − 𝑛2
𝑁2𝑛2

𝑆2
2, 

donde 𝑆ℎ
2 = 𝑁ℎ𝜎ℎ

2 (𝑁ℎ − 1)⁄  es la cuasivarianza del dominio ℎ =

1, 2. Para obtener la asignación óptima con costes variables, el 

lagrangiano es 

Λ = 𝑉(𝑑) + 𝜆(𝐶 − 𝑐1𝑛1 − 𝑐2𝑛2), 



 
 

184 
 

donde 𝐶 es el presupuesto del procedimiento de muestreo, y 𝑐ℎ es 

el coste por observación de una unidad en el dominio ℎ = 1, 2. 

Resolviendo, derivamos parcialmente el lagrangiano con respecto 

a cada una de las variables 𝑛ℎ, e igualamos a cero: 

𝜕Λ

𝜕𝑛ℎ
= −

𝑆ℎ
2

2𝑛ℎ
2 − 𝜆𝑐ℎ = 0, 

para ℎ = 1, 2. De donde, 

𝑛ℎ = 𝑐 𝑆ℎ √𝑐ℎ⁄ . 

La constante 𝑐 se calcula de la restricción 

𝐶 = 𝑐1𝑛1 + 𝑐2𝑛2 = 𝑐(𝑆1√𝑐1 + 𝑆2√𝑐2), 

por lo que para ℎ = 1, 2, 

𝑛ℎ = 𝐶
𝑆ℎ √𝑐ℎ⁄

𝑆1√𝑐1 + 𝑆2√𝑐2
 

es la asignación muestral pedida, donde 𝑆ℎ es la cuasidesviación 

típica en el dominio ℎ-ésimo. 

 

Ejercicio 4.12. Obtener la varianza mínima del estimador usual 

estratificado 

𝑦̅𝑠𝑡 = ∑𝑊ℎ𝑦̅𝑠(ℎ)

𝐿

ℎ=1

. 

El tamaño de la población finita es 𝑁 y el tamaño muestral total es 

𝑛 ≤ 𝑁, seleccionando muestras irrestrictas aleatorias de tamaño 𝑛ℎ 

independientemente en cada estrato. 
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Solución. Minimizando la varianza del estimador usual 

estratificado sujeto a la restricción 

𝑛 = ∑𝑛ℎ

𝐿

ℎ=1

, 

haciendo uso del procedimiento de los multiplicadores de 

Lagrange, obtenemos que para ℎ = 1, 2,… , 𝐿, 

𝑛ℎ = 𝑛
𝑊ℎ𝑆ℎ

∑ 𝑊𝑖𝑆𝑖
𝐿
𝑖=1

. 

Estos tamaños muestrales deben ser aproximados por los 

números naturales más próximos o que hagan factible el muestreo. 

Sustituyendo los valores obtenidos de los tamaños muestrales 

efectivos en cada estrato, en la fórmula de la varianza del estimador 

usual en muestreo estratificado, que es 

𝑉(𝑦̅𝑠𝑡) = ∑𝑊ℎ
2 𝑁ℎ − 𝑛ℎ
𝑁ℎ𝑛ℎ

𝑆ℎ
2

𝐿

ℎ=1

, 

obtenemos la varianza mínima pedida, 

𝑉mín(𝑦̅𝑠𝑡) =
1

𝑛
(∑𝑊ℎ𝑆ℎ

𝐿

ℎ=1

)

2

−
1

𝑁
∑𝑊ℎ𝑆ℎ

2

𝐿

ℎ=1

. 

Este valor obtenido es siempre positivo, aunque aparentemente nos 

lo haría dudar la relación siguiente, 

∑𝑊ℎ𝑆ℎ
2

𝐿

ℎ=1

− (∑𝑊ℎ𝑆ℎ

𝐿

ℎ=1

)

2

≥ 0, 

por ser la varianza siempre positiva o cero, duda especialmente 

aparente pero engañosa para valores de 𝑛 próximos a 𝑁. 
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Ejercicio 4.13. Proponer un estimador insesgado del producto de 

dos medias de dos dominios disjuntos, calcular su varianza, y 

obtener un estimador insesgado de la varianza del estimador 

propuesto. 

Solución. Seleccionando dos muestras aleatorias simples 

independientes de tamaños fijos 𝑛1 y 𝑛2 respectivamente, tenemos 

como estimador insesgado del producto de medias de dos 

dominios, 𝑦̅1𝑦̅2, al estimador producto de dos medias muestrales 

independientes, 𝑦̅𝒔(1)𝑦̅𝒔(2). En efecto, 

𝐸(𝑦̅𝒔(1)𝑦̅𝒔(2)) = 𝐸(𝑦̅𝒔(1))𝐸(𝑦̅𝒔(2)) = 𝑦̅1𝑦̅2. 

La varianza del estimador producto de medias muestrales es 

𝑉(𝑦̅𝒔(1)𝑦̅𝒔(2)) = 𝐸(𝑦̅𝒔(1)
2 𝑦̅𝒔(2)

2 ) − [𝐸(𝑦̅𝒔(1)𝑦̅𝒔(2))]
2
= 

𝐸(𝑦̅𝒔(1)
2 )𝐸(𝑦̅𝒔(2)

2 ) − 𝑦̅1
2𝑦̅2

2 = 

[𝑉(𝑦̅𝒔(1)) + 𝑦̅1
2][𝑉(𝑦̅𝒔(2)) + 𝑦̅2

2] − 𝑦̅1
2𝑦̅2

2 = 

𝜎1
2

𝑛1

𝜎2
2

𝑛2
+
𝜎1
2

𝑛1
𝑦̅2
2 +

𝜎2
2

𝑛2
𝑦̅1
2. 

Un estimador insesgado de esta varianza es 

𝑉̂(𝑦̅𝒔(1)𝑦̅𝒔(2)) =
𝑠1
2

𝑛1

𝑠2
2

𝑛2
+
𝑠1
2

𝑛1
[𝑦̅𝒔(2)
2 + 𝑉̂(𝑦̅𝒔(2))] + 

𝑠2
2

𝑛2
[𝑦̅𝒔(1)
2 + 𝑉̂(𝑦̅𝒔(1))] = 

3
𝑠1
2

𝑛1

𝑠2
2

𝑛2
+
𝑠1
2

𝑛1
𝑦̅𝒔(2)
2 +

𝑠2
2

𝑛2
𝑦̅𝒔(1)
2 . 
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Ejercicio 4.14. Comparar la relación entre las varianzas obtenidas 

por muestreo estratificado con asignación proporcional y por 

muestreo aleatorio simple, usando como diseño básico el muestreo 

aleatorio simple con reemplazamiento, y también usando como 

diseño básico el muestreo irrestricto aleatorio. 

Solución. La asignación proporcional consiste en asignar un 

tamaño muestral 𝑛ℎ = 𝑛𝑊ℎ  proporcional al tamaño relativo del 

estrato correspondiente. 

Con diseño básico de muestreo aleatorio simple (con 

reemplazamiento), la varianza del estimador estratificado es 

𝑉(𝑦̅𝑠𝑡) = ∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ

𝐿

ℎ=1

, 

donde sustituyendo la asignación proporcional, resulta 

𝑉prop(𝑦̅𝑠𝑡) =
1

𝑛
∑𝑊ℎ𝜎ℎ

2

𝐿

ℎ=1

. 

Como la varianza del estimador media muestral con diseño 

de muestreo aleatorio simple con reemplazamiento de tamaño fijo 

𝑛 es 

𝑉mas(𝑦̅𝒔) =
𝜎2

𝑛
, 

entonces la relación pedida será 

𝑉prop(𝑦̅𝑠𝑡)

𝑉mas(𝑦̅𝒔)
=
∑ 𝑊ℎ𝜎ℎ

2𝐿
ℎ=1

𝜎2
≤ 1, 

relación constante que no depende del tamaño fijo muestral 𝑛. 



 
 

188 
 

En el caso de usar el diseño de muestreo irrectricto aleatorio 

de tamaño efectivo fijo 𝑛, la fórmula general de la varianza del 

estimador usual en muestreo estratificado es 

𝑉(𝑦̅𝑠𝑡) = ∑𝑊ℎ
2 (

1

𝑛ℎ
−
1

𝑁ℎ
) 𝑆ℎ

2

𝐿

ℎ=1

, 

de donde sustituyendo la asignación proporcional, obtenemos 

𝑉prop(𝑦̅𝑠𝑡) = (
1

𝑛
−
1

𝑁
)∑𝑊ℎ𝑆ℎ

2

𝐿

ℎ=1

. 

Como sabemos que con diseño de muestreo irrestricto aleatorio de 

tamaño efectivo fijo 𝑛  sobre toda la población finita, la media 

muestral tiene por varianza 

𝑉mia(𝑦̅𝑠) = (
1

𝑛
−
1

𝑁
) 𝑆2, 

concluimos que la relación buscada es 

𝑉prop(𝑦̅𝑠𝑡)

𝑉mia(𝑦̅𝑠)
=
∑ 𝑊ℎ𝑆ℎ

2𝐿
ℎ=1

𝑆2
, 

relación que es también constante y no depende del tamaño 

efectivo fijo muestral. 

 

Ejercicio 4.15. Con los datos disponibles de un muestreo 

estratificado aleatorio con diseño básico de muestreo aleatorio 

simple con reemplazamiento, proponer un estimador insesgado de 

la varianza poblacional. 

Solución. Como la varianza poblacional admite la relación 

siguiente 
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𝜎2 = ∑𝑊ℎ𝜎ℎ
2

𝐿

ℎ=1

+∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)
2

𝐿

ℎ=1

= 

∑𝑊ℎ𝜎ℎ
2

𝐿

ℎ=1

+∑𝑊ℎ𝑦̅ℎ
2

𝐿

ℎ=1

− 𝑦̅2, 

un estimador insesgado de la varianza poblacional es 

𝜎2̂ = ∑𝑊ℎ𝑠ℎ
2

𝐿

ℎ=1

+∑𝑊ℎ

𝐿

ℎ=1

(𝑦̅𝒔(ℎ)
2 −

𝑠ℎ
2

𝑛ℎ
) − 𝑦̅𝑠𝑡

2 +∑𝑊ℎ
2
𝑠ℎ
2

𝑛ℎ

𝐿

ℎ=1

, 

donde el último sumando es un estimador insesgado de la varianza 

del estimador usual en muestreo estratificado. 

Otro estimador insesgado de la varianza poblacional, ya que 

𝜎2 = ∑𝑊ℎ

1

𝑁ℎ
∑𝑦ℎ𝑖

2

𝑁ℎ

𝑖=1

𝐿

ℎ=1

− 𝑦̅2, 

es el estimador 

𝜎2̂ = ∑𝑊ℎ

1

𝑛ℎ
∑𝑦ℎ𝑖

2

𝑛ℎ

𝑖=1

𝐿

ℎ=1

− 𝑦̅𝑠𝑡
2 +∑𝑊ℎ

2 𝑠ℎ
2

𝑛ℎ

𝐿

ℎ=1

. 

 

Ejercicio 4.16. Con una muestra piloto se desea estimar el tamaño 

muestral deseable 𝑛 para que la varianza del estimador insesgado 

usual en muestreo estratificado con asignación proporcional tenga 

un valor aproximado 𝑣, usando como diseño básico el muestreo 

irrestricto aleatorio. 

Solución. Bastará igualar 𝑣  a la varianza del estimador 

estratificado, es decir, 
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𝑣 = 𝑉prop(𝑦̅𝑠𝑡) = (
1

𝑛
−
1

𝑁
)∑𝑊ℎ𝑆ℎ

2

𝐿

ℎ=1

, 

de donde, despejando 𝑛 y llamándole tamaño muestral exacto para 

que la varianza del estimador estratificado con asignación 

proporcional sea 𝑣, tenemos 

𝑛 =
∑ 𝑊ℎ𝑆ℎ

2𝐿
ℎ=1

𝑣 +
1
𝑁
∑ 𝑊ℎ𝑆ℎ

2𝐿
ℎ=1

. 

Así, el estimador de 𝑛, que llamamos 𝑛̂ sería 

𝑛̂ =
∑ 𝑊ℎ𝑠ℎ

2𝐿
ℎ=1

𝑣 +
1
𝑁
∑ 𝑊ℎ𝑠ℎ

2𝐿
ℎ=1

. 

En esta aproximación hemos sustituido las cuasivarianzas de 

los estratos 𝑆ℎ
2 por sus estimaciones insesgadas, las cuasivarianzas 

muestrales en los estratos 𝑠ℎ
2 a partir de la muestra piloto. 

 

Ejercicio 4.17. Obtener la varianza del estimador usual en 

muestreo estratificado, con asignación proporcional, para estimar 

una proporción poblacional. Dar un valor para que el tamaño 

muestral total asegure una varianza menor o igual a una cantidad 

constante 𝑣 . Dar un valor exacto para el tamaño muestral si 

sabemos que la proporción del estrato ℎ verifica que 𝑃ℎ(1 − 𝑃ℎ) ≥

1 10⁄ . 

Solución. La varianza del estimador 𝑝𝑠𝑡  usual en muestreo 

estratificado con asignación proporcional es 

𝑉prop(𝑝𝑠𝑡) =
𝑁 − 𝑛

𝑁𝑛

1

𝑁
∑

𝑁ℎ
2𝑃ℎ𝑄ℎ
𝑁ℎ − 1

𝐿

ℎ=1

≤ 𝑣, 
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desigualdad que se verifica cuando 

𝑛 ≥

1
𝑁2

∑
𝑁ℎ
2𝑃ℎ𝑄ℎ
𝑁ℎ − 1

𝐿
ℎ=1

𝑣 +
1
𝑁2

∑
𝑁ℎ
2𝑃ℎ𝑄ℎ
𝑁ℎ − 1

𝐿
ℎ=1

. 

Pero este valor de 𝑛 , el menor valor de los que verifican la 

desigualdad, no puede ser conocido ya que depende de las 

proporciones de los estratos 𝑃ℎ  que son desconocidos antes de 

realizar las observaciones por muestreo. 

Si aceptamos que 𝑃ℎ𝑄ℎ ≥ 1 10⁄ , sustituyendo la cota inferior 

obtenida antes, tenemos que como 𝑃ℎ𝑄ℎ ≤ 1 4⁄ , 

𝑛 ≥

1
4𝑁2

∑
𝑁ℎ
2

𝑁ℎ − 1
𝐿
ℎ=1

𝑣 +
1

10𝑁2
∑

𝑁ℎ
2

𝑁ℎ − 1
𝐿
ℎ=1

≥

1
𝑁2

∑
𝑁ℎ
2𝑃ℎ𝑄ℎ
𝑁ℎ − 1

𝐿
ℎ=1

𝑣 +
1
𝑁2

∑
𝑁ℎ
2𝑃ℎ𝑄ℎ
𝑁ℎ − 1

𝐿
ℎ=1

, 

que sí sería una cota inferior determinada para la elección del 

tamaño muestral efectivo fijo 𝑛  que proporcione un estimador 

usual en muestreo estratificado de la proporción poblacional con 

asignación proporcional cuya varianza esta acotada superiormente 

por la constante 𝑣. En la práctica, si 

𝑛 ≥

1
4𝑁2

∑
𝑁ℎ
2

𝑁ℎ − 1
𝐿
ℎ=1

𝑣 +
1

10𝑁2
∑

𝑁ℎ
2

𝑁ℎ − 1
𝐿
ℎ=1

, 

garantizamos la desigualdad buscada. 

 

Ejercicio 4.18. Dar una cota inferior del punto de separación de 

estratos para que usando muestreo estratificado con dos estratos, el 

segundo de inclusión segura en la muestra, proporcione 
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estimadores más precisos que el muestreo aleatorio simple sin 

reemplazamiento del mismo tamaño muestral sobre toda la 

población finita. ¿Es útil esta cota inferior directa o 

indirectamente? 

Solución. Si la población finita está ordenada en orden creciente 

por su variable de interés 𝑦𝑘 con 𝑘 = 1, 2, … , 𝑁, es decir, 

𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑘 ≤ ⋯ ≤ 𝑦𝑁 

el punto de estratificación 𝑦  que divide la población en dos 

estratos, el primero formado por las unidades 𝑘 con 

𝑦𝑘 ≤ 𝑦, 

y el segundo estrato formado por las unidades 𝑘 con 

𝑦 ≤ 𝑦𝑘 . 

Con asignación especial consistente en seleccionar una muestra 

aleatoria simple sin reemplazamiento de tamaño 𝑛1 en el primer 

estrato, y en seleccionar todo el segundo estrato en la muestra, es 

decir, 𝑛2 = 𝑁2. El tamaño muestral total es 𝑛 = 𝑛1 + 𝑛2. Entonces 

sabemos que si el punto 𝑦 de estratificación o de separación de 

estratos verifica 

𝑦 > 𝛼 + 𝜎 × √
𝑁

𝑛
− 1 

siendo 𝑁  el tamaño poblacional, el estimador estratificado con 

asignación especial de la media poblacional 𝛼, concretamente 

𝑊1𝑦̅𝑠(1) +𝑊2𝑦̅2 

(donde 𝑊ℎ  es el tamaño relativo del estrato ℎ, 𝑦̅𝑠(1)  es la media 

muestral en el primer estrato, e 𝑦̅2 la media del segundo estrato), 
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verifica que es insesgado y más preciso que la media muestral con 

muestreo aleatorio simple sin reemplazamiento de tamaño muestral 

común 𝑛. 

Sin embargo el conocimiento de esta cota inferior supone 

conocer perfectamente tanto la media poblacional 𝛼 , como la 

desviación estándar poblacional 𝜎 . Si conociéramos 𝛼 , no sería 

necesario estimarlo. Pero aún desconociendo el verdadero valor de 

𝛼 , si disponemos de una muestra piloto previa a la estimación 

estratificada con asignación especial, podríamos estimar los 

parámetros 𝛼 y 𝜎. Llamemos 𝛼∗ y 𝜎∗ a estos estimadores pilotos. 

Entonces, podemos estimar la cota inferior por la cota piloto 

inferior 

𝛼∗ + 𝜎∗ × √
𝑁

𝑛
− 1 

de modo que si aproximadamente el punto de estratificación 𝑦 es 

mayor que dicha cota piloto inferior, el estimador estratificado con 

asignación especial proporcionará estimaciones por lo general más 

precisas que las proporcionadas por la media muestral con 

muestreo aleatorio simple sin reemplazamiento del mismo tamaño 

muestral 𝑛. 

 

Ejercicio 4.19. Desarrollar una teoría de análisis de la varianza en 

diseños experimentales con una base inferencial objetiva. 

Solución. En modelos de diseño experimental tradicional se 

supone que un número infinito de posibles observaciones pueden 

ser obtenidas de un experimento. Además suele considerarse que 

estas observaciones pueden ser modeladas estadísticamente e 

incluir una variable de error que suele estar supuestamente 

distribuida Normal con algunas condiciones adicionales. La 
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comprobación práctica de tal distribución de los errores no es 

posible. Por esto, el uso del diseño experimental tradicional 

requiere asumir circunstancias que podrían estar lejos de las 

verdaderas condiciones de trabajo. Algunas consecuencias posibles 

de tales suposiciones son las conclusiones y resultados 

inferenciales sin verdadera base lógica sólida. 

Algunas aplicaciones de la teoría objetiva desarrollada en este 

ejercicio son la agricultura natural, industriales, sociales, 

biomedicina, etc. Con la presente visión tenemos la ventaja de 

trabajar sin el uso de hipótesis no verificables, algo que no superan 

los métodos clásicos de diseño de experimentos. Nuestro modelo 

está basado en hechos, como ocurre con la teoría de muestras de 

poblaciones finitas de unidades identificadas. 

Diseños experimentales de un factor. Partimos del modelo 

realista siguiente; para 𝑡 = 1, 2, … , 𝑇 y para cada tratamiento 𝑡, 𝑖 =

1, 2, … , 𝑁𝑡, disponemos de una población finita de tamaño 𝑁𝑡. El 

modelo de un factor es: 

𝑋𝑡𝑖 = 𝐴 + 𝐵𝑡 + 𝜀𝑡𝑖 

Donde 𝑇 es el número de tratamientos, y para cada tratamiento 𝑡 

tenemos un número máximo posible 𝑁𝑡  de observaciones 

diferentes, una por cada unidad de la población en la que se podría 

experimentar el tratamiento 𝑡. Los tratamientos (niveles o estratos) 

son estocásticamente independientes, y para cada tratamiento 𝑡 

realizamos un número finito o tamaño muestral 𝑛𝑡  de 

observaciones o experimentos a partir de la población finita con 

tamaño o número finito 𝑁𝑡  de posibles resultados de los 

experimentos con el tratamiento común 𝑡 . El valor 𝑋𝑡𝑖  es la 

observación fijada de la variable de interés de la población finita o 

en el estrato de la unidad 𝑖-ésima para el tratamiento 𝑡. El valor 𝐴 

es la media común para toda la población finita completa, 
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considerando todos los tratamientos 𝑡  y todas las unidades 

poblacionales 𝑖 en cada estrato o tratamiento 𝑡. El valor 𝐵𝑡  es el 

valor medio añadido al valor media común 𝐴 en el tratamiento 𝑡. 

Y 𝜀𝑡𝑖 es el error o desviación de la observación 𝑋𝑡𝑖 con respecto a 

la media del tratamiento 𝑡, es decir, respecto a 𝐴 + 𝐵𝑡. Por ello, se 

puede definir el error para la unidad 𝑖 en el tratamiento 𝑡 como la 

variable 𝜀𝑡𝑖 = 𝑋𝑡𝑖 − 𝐴 − 𝐵𝑡. 

 El número total de unidades experimentales, o tamaño 

poblacional finito de posibles experimentos observados o de 

productos en la industria, es 

𝑁 =∑∑1

𝑁𝑡

𝑖=1

𝑇

𝑡=1

=∑𝑁𝑡

𝑇

𝑡=1

 

 La media poblacional finita global de las observaciones de la 

variable de interés es 

𝑋̅ =
1

𝑁
∑∑𝑋𝑡𝑖

𝑁𝑡

𝑖=1

𝑇

𝑡=1

=
1

𝑁
∑𝑁𝑡𝑋̅𝑡

𝑇

𝑡=1

 

 El tamaño muestral de experimentación efectiva para el 

tratamiento o estrato 𝑡 es 𝑛𝑡, y por tanto el tamaño muestral global 

de experimentación para los 𝑇 tratamientos es 

𝑛 =∑∑1

𝑛𝑡

𝑖=1

𝑇

𝑡=1

=∑𝑛𝑡

𝑇

𝑡=1

 

Y el coste total de experimentación es 

𝑐 =∑𝑐𝑡𝑛𝑡

𝑇

𝑡=1

 

siendo 𝑐𝑡 el coste por experimento con el tratamiento 𝑡. 
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 La media muestral estratificada es 

𝑥̅𝑠𝑡 =
1

𝑁
∑

𝑁𝑡
𝑛𝑡
∑𝑥𝑡𝑖

𝑛𝑡

𝑖=1

𝑇

𝑡=1

 

donde 𝑥𝑡𝑖 = 𝑋𝑡𝑗𝑖 , siendo el subíndice 𝑗𝑖  la 𝑖 -ésima unidad 

seleccionada en la muestra del estrato o tratamiento 𝑡. 

 La media del estrato o tratamiento 𝑡 es 

𝑋̅𝑡∙ =
1

𝑁𝑡
∑𝑋𝑡𝑖

𝑁𝑡

𝑖=1

 

La media muestral 𝑡-ésima, obtenida por observación muestral del 

tratamiento 𝑡 en las 𝑛𝑡 unidades de la muestra seleccionada de la 

población de 𝑁𝑡 unidades, es 

𝑥̅𝑡 =
1

𝑛𝑡
∑𝑥𝑡𝑖

𝑛𝑡

𝑖=1

 

 Sería práctico, aunque no necesario, tomar 𝑛𝑡  constante 

independientemente del tratamiento 𝑡 . En estas condiciones, la 

descomposición del modelo estudiado de diseños experimentales 

de un factor será 

𝑋𝑡𝑖 = 𝑋̅ + (𝑋̅𝑡∙ − 𝑋̅) + (𝑋𝑡𝑖 − 𝑋̅𝑡∙) 

Donde 𝐴 = 𝑋̅, 𝐵𝑡 = 𝑋̅𝑡∙ − 𝑋̅ y 𝜀𝑡𝑖 = 𝑋𝑡𝑖 − 𝑋̅𝑡∙, y entonces tenemos 

que 

∑𝑁𝑡𝐵𝑡

𝑇

𝑡=1

= 0 

ya que 
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∑𝑁𝑡𝑋̅𝑡∙

𝑇

𝑡=1

= 𝑁𝑋̅ 

Y para todo 𝑡 = 1, 2, … , 𝑇, 

∑𝜀𝑡𝑖

𝑁𝑡

𝑖=1

= 0 

ya que 

∑𝑋𝑡𝑖

𝑁𝑡

𝑖=1

= 𝑁𝑡𝑋̅𝑡∙ 

 Los estimadores tradicionales en muestreo estratificado de 

poblaciones finitas de 𝐴 y de 𝐵𝑡 son respectivamente 

𝐴̂ = 𝑥̅𝑠𝑡 

y  

𝐵̂𝑡 = 𝑥̅𝑡 − 𝑥̅𝑠𝑡 

La varianza del primero de estos estimadores insesgados es 

𝑉(𝐴̂) = 𝑉(𝑥̅𝑠𝑡) = 𝑉 (
1

𝑁
∑

𝑁𝑡
𝑛𝑡
∑𝑥𝑡𝑖

𝑛𝑡

𝑖=1

𝑇

𝑡=1

) 

=
1

𝑁2
∑𝑁𝑡

2𝑉(𝑥̅𝑡)

𝑇

𝑡=1

 

Donde 𝑉(𝑥̅𝑡) = 𝜎𝑡
2 𝑛𝑡⁄  con diseño de muestreo aleatorio simple 

con reemplazamiento de tamaño fijo 𝑛𝑡 sobre una población finita 

de tamaño 𝑁𝑡. También admite la expresión 
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𝑉(𝑥̅𝑡) =
𝑁𝑡 − 𝑛𝑡
𝑁𝑡 − 1

𝜎𝑡
2

𝑛𝑡
 

con diseño de muestreo aleatorio simple sin reemplazamiento de 

tamaño efectivo fijo 𝑛𝑡 sobre una población finita de tamaño 𝑁𝑡. 

En ambos casos hemos denotado 

𝜎𝑡
2 =

1

𝑁𝑡
∑(𝑋𝑡𝑖 − 𝑋̅𝑡∙)

2

𝑁𝑡

𝑖=1

 

Un estimador insesgado de esta varianza 𝑉(𝐴̂) es el siguiente 

𝑉̂(𝐴̂) =
1

𝑁2
∑𝑁𝑡

2

𝑇

𝑡=1

𝑉̂(𝑥̅𝑡) 

Donde ahora, 𝑉̂(𝑥̅𝑡) = 𝑠𝑡
2 𝑛𝑡⁄  en el muestreo aleatorio simple con 

reemplazamiento, y también 

𝑉̂(𝑥̅𝑡) =
𝑁𝑡 − 𝑛𝑡
𝑁𝑡

𝑠𝑡
2

𝑛𝑡
 

en el muestreo aleatorio simple sin reemplazamiento, siendo 

𝑠𝑡
2 =

1

𝑛𝑡 − 1
∑(𝑥𝑡𝑖 − 𝑥̅𝑡)

2

𝑛𝑡

𝑖=1

 

la cuasivarianza muestral para el tratamiento 𝑡. 

 La estimación insesgada de la función paramétrica 𝐵𝑡 es el 

estimador 𝑥̅𝑡 − 𝑥̅𝑠𝑡, y su varianza se obtiene del modo 

𝑉(𝐵̂𝑡) = 𝐶𝑜𝑣 (𝑥̅𝑡 −
1

𝑁
∑𝑁𝑡𝑥̅𝑡

𝑇

𝑡=1

, 𝑥̅𝑡 −
1

𝑁
∑𝑁𝑡𝑥̅𝑡

𝑇

𝑡=1

) 
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= 𝑉(𝑥̅𝑡) −
2𝑁𝑡
𝑁
𝑉(𝑥̅𝑡) + 𝑉(𝑥̅𝑠𝑡) 

= (1 −
2𝑁𝑡
𝑁
)𝑉(𝑥̅𝑡) +

1

𝑁2
∑𝑁𝑡

2𝑉(𝑥̅𝑡)

𝑇

𝑡=1

 

Un estimador insesgado de esta varianza se obtiene de este modo, 

𝑉̂(𝐵̂𝑡) = (1 −
2𝑁𝑡
𝑁
) 𝑉̂(𝑥̅𝑡) +

1

𝑁2
∑𝑁𝑡

2𝑉̂(𝑥̅𝑡)

𝑇

𝑡=1

 

=
1

𝑁2
[(𝑁 − 𝑁𝑡)

2𝑉̂(𝑥̅𝑡) +∑𝑁ℎ
2𝑉̂(𝑥̅ℎ)

𝑇

ℎ≠𝑡

] 

 A partir de estos estimadores insesgados es posible obtener 

intervalos de confianza aproximados para las funciones 

paramétricas 𝐴 y 𝐵𝑡 haciendo uso de la desigualdad de Chebychev, 

y consecuentemente es posible contrastar hipótesis nulas 

relacionadas con dichas funciones paramétricas. 

 Diseños experimentales de dos factores. De modo similar al 

caso de diseños experimentales de un factor, el modelo de dos 

factores es generado por la ecuación 

𝑋𝑡𝑖𝑗 = 𝐴 + 𝐹𝑡 + 𝐶𝑖 + (𝐹𝐶)𝑡𝑖 + 𝜀𝑡𝑖𝑗 

Donde 𝑡 = 1, 2, … , 𝑇 , siendo 𝑇  el número de tratamientos del 

primer factor (factor “fila”), 𝑖 = 1, 2, … , 𝐼, siendo 𝐼 el número de 

tratamientos del segundo factor (factor “columna”), y siendo 𝑗 =

1, 2, … , 𝑁𝑡𝑖, donde 𝑁𝑡𝑖 es el número de unidades de la población 

finita o celda (𝑡𝑖) de la que se se selecciona la muestra con los 

tratamientos 𝑡 𝑒 𝑖 del primer y del segundo factor respectivamente. 

El valor 𝐴  viene de “average” (en inglés), que significa 

“promedio”, 𝐹  viene de “fila” y 𝐶  de “columna”. La población 
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finita sobre la que se hacen los posibles experimentos tiene un 

tamaño 

𝑁 =∑∑∑1

𝑁𝑡𝑖

𝑗=1

𝐼

𝑖=1

𝑇

𝑡=1

=∑∑𝑁𝑡𝑖

𝐼

𝑖=1

𝑇

𝑡=1

=∑𝑁𝑡∙

𝑇

𝑡=1

=∑𝑁∙𝑖

𝐼

𝑖=1

 

Donde hemos denotado, para 𝑡 = 1, 2, … , 𝑇 

𝑁𝑡∙ =∑𝑁𝑡𝑖

𝐼

𝑖=1

 

Y para 𝑖 = 1, 2, … , 𝐼 

𝑁∙𝑖 =∑𝑁𝑡𝑖

𝑇

𝑡=1

 

Si el tamaño muestral en la celda de los tratamientos 𝑡 e 𝑖 es 

𝑛𝑡𝑖 , entonces el tamaño muestral total para todos los pares de 

tratamientos es 

𝑛 =∑∑𝑛𝑡𝑖

𝐼

𝑖=1

𝑇

𝑡=1

=∑𝑛𝑡∙

𝑇

𝑡=1

=∑𝑛∙𝑖

𝐼

𝑖=1

 

También sería práctico, aunque no necesario, tomar 𝑛𝑡𝑖 constante 

independientemente de la celda en que se experimente. 

Y el coste total de experimentación será 

𝑐 =∑∑𝑐𝑡𝑖𝑛𝑡𝑖

𝐼

𝑖=1

𝑇

𝑡=1

 

Siendo 𝑐𝑡𝑖 el coste por experimentación en la celda (𝑡𝑖), medido en 

unidades monetarias. 
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 En el diseño experimental de dos factores la media 

poblacional global es 

𝑋̅ =
1

𝑁
∑∑∑𝑋𝑡𝑖𝑗

𝑁𝑡𝑖

𝑗=1

𝐼

𝑖=1

𝑇

𝑡=1

=
1

𝑁
∑∑𝑁𝑡𝑖𝑋̅𝑡𝑖∙

𝐼

𝑖=1

𝑇

𝑡=1

 

=
1

𝑁
∑𝑁𝑡∙𝑋̅𝑡∙∙

𝑇

𝑡=1

=
1

𝑁
∑𝑁∙𝑖𝑋̅∙𝑖∙

𝐼

𝑖=1

 

Ahora el modelo experimental de dos factores puede 

descomponerse del siguiente modo más general 

𝑋𝑡𝑖𝑗 = 𝑋̅ + (𝑋̅𝑡∙∙ − 𝑋̅) + (𝑋̅∙𝑖∙ − 𝑋̅) 

+ (𝑋̅𝑡𝑖∙ − 𝑋̅𝑡∙∙ − 𝑋̅∙𝑖∙ + 𝑋̅) + (𝑋𝑡𝑖𝑗 − 𝑋̅𝑡𝑖∙) 

El primer sumando representa la función paramétrica promedio 

general 𝐴 , el segundo representa la función paramétrica del 

tratamiento 𝑡 del primer factor, 𝐹𝑡, el tercer sumando representa la 

función paramétrica del tratamiento 𝑖  del segundo factor, 𝐶𝑖 , el 

cuarto sumando representa la función paramétrica interacción de 

los tratamientos 𝑡 e 𝑖 del primer y segundo factor respectivamente, 

(𝐹𝐶)𝑡𝑖, y el quinto sumando representa el error o desviación 𝜀𝑡𝑖𝑗. 

 Un estimador insesgado de 𝐴 es 

𝐴̂ = 𝑋̂̅ = 𝑥̅𝑠𝑡 =
1

𝑁
∑∑

𝑁𝑡𝑖
𝑛𝑡𝑖

∑𝑥𝑡𝑖𝑗

𝑛𝑡𝑖

𝑗=1

𝐼

𝑖=1

𝑇

𝑡=1

=
1

𝑁
∑∑𝑁𝑡𝑖𝑥̅𝑡𝑖∙

𝐼

𝑖=1

𝑇

𝑡=1

 

Siendo 𝑥𝑡𝑖𝑗 = 𝑋𝑡𝑖𝑘𝑗  la observación muestral 𝑗-ésima en la celda 

(𝑡𝑖). El tamaño muestral total es 

𝑛 =∑∑𝑛𝑡𝑖

𝐼

𝑖=1

𝑇

𝑡=1
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Siendo 𝑛𝑡𝑖  el tamaño muestral en la celda (𝑡𝑖)  donde los 

tratamientos 𝐹𝑡 y 𝐶𝑖 son experimentados simultáneamente. 

 La varianza de 𝐴̂ es 

𝑉(𝐴̂) =
1

𝑁2
∑∑𝑁𝑡𝑖

2𝑉(𝑥̅𝑡𝑖∙)

𝐼

𝑖=1

𝑇

𝑡=1

 

Donde 𝑉(𝑥̅𝑡𝑖∙) = 𝜎𝑡𝑖∙
2 𝑛𝑡𝑖⁄  en el muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛𝑡𝑖 en la celda (𝑡𝑖), o bien 

𝑉(𝑥̅𝑡𝑖∙) =
𝑁𝑡𝑖 − 𝑛𝑡𝑖
𝑁𝑡𝑖 − 1

𝜎𝑡𝑖∙
2

𝑛𝑡𝑖
 

en el muestreo aleatorio simple sin reemplazamiento de tamaño 

efectivo fijo 𝑛𝑡𝑖 en la celda (𝑡𝑖). 

La expresión de la varianza poblacional de la celda (𝑡𝑖) es 

𝜎𝑡𝑖∙
2 =

1

𝑁𝑡𝑖
∑(𝑋𝑡𝑖𝑗 − 𝑋̅𝑡𝑖∙)

2

𝑁𝑡𝑖

𝑗=1

 

 Una estimación insesgada de la varianza de 𝐴̂ es 

𝑉̂(𝐴̂) =
1

𝑁2
∑∑𝑁𝑡𝑖

2𝑉̂(𝑥̅𝑡𝑖∙)

𝐼

𝑖=1

𝑇

𝑡=1

 

Donde 𝑉̂(𝑥̅𝑡𝑖∙) = 𝑠𝑡𝑖∙
2 𝑛𝑡𝑖⁄  en muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛𝑡𝑖 en la celda (𝑡𝑖), o bien 

𝑉̂(𝑥̅𝑡𝑖∙) =
𝑁𝑡𝑖 − 𝑛𝑡𝑖
𝑁𝑡𝑖

𝑠𝑡𝑖∙
2

𝑛𝑡𝑖
 

en el muestreo aleatorio simple sin reemplazamiento de tamaño 

efectivo fijo 𝑛𝑡𝑖 en la celda (𝑡𝑖). La cuasivarianza muestral es 
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𝑠𝑡𝑖∙
2 =

1

𝑛𝑡𝑖 − 1
∑(𝑥𝑡𝑖𝑗 − 𝑥̅𝑡𝑖∙)

2

𝑛𝑡𝑖

𝑗=1

 

 Un estimador insesgado de 𝐹𝑡 es 

𝐹̂𝑡 = 𝑥̅𝑡∙∙ − 𝑥̅𝑠𝑡 

Donde 

𝑥̅𝑡∙∙ =
1

𝑛𝑡∙
∑∑𝑥𝑡𝑖𝑗

𝑛𝑡𝑖

𝑗=1

𝐼

𝑖=1

=
1

𝑛𝑡∙
∑𝑛𝑡𝑖𝑥̅𝑡𝑖∙

𝐼

𝑖=1

 

Y 

𝑛𝑡∙ =∑𝑛𝑡𝑖

𝐼

𝑖=1

 

 Además se puede comprobar que 

∑𝑁𝑡∙𝐹𝑡

𝑇

𝑡=1

=∑𝑁𝑡∙(𝑋̅𝑡∙∙ − 𝑋̅)

𝑇

𝑡=1

= 𝑁(𝑋̅ − 𝑋̅) = 0. 

 La varianza de 𝐹̂𝑡 se obtiene como sigue 

𝑉(𝐹̂𝑡) =
1

𝑁2
[(𝑁 − 𝑁𝑡∙)

2𝑉(𝑥̅𝑡∙∙) +∑𝑁𝑘∙
2𝑉(𝑥̅𝑘∙∙)

𝑇

𝑘≠𝑡

] 

Donde para 𝑡 = 1, 2, … , 𝑇, 

𝑉(𝑥̅𝑡∙∙) =∑(
𝑛𝑡𝑖
𝑛𝑡∙
)
2

𝑉(𝑥̅𝑡𝑖∙)

𝐼

𝑖=1

 

 También un estimador insesgado de la varianza es 
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𝑉̂(𝐹̂𝑡) =
1

𝑁2
[(𝑁 − 𝑁𝑡∙)

2𝑉̂(𝑥̅𝑡∙∙) +∑𝑁𝑘∙
2 𝑉̂(𝑥̅𝑘∙∙)

𝑇

𝑘≠𝑡

] 

Siendo para 𝑡 = 1, 2, … , 𝑇, 

𝑉̂(𝑥̅𝑡∙∙) =∑(
𝑛𝑡𝑖
𝑛𝑡∙
)
2

𝑉̂(𝑥̅𝑡𝑖∙)

𝐼

𝑖=1

 

 Para el segundo factor y el tratamiento 𝑖 , tenemos la 

estimación insesgada de 𝐶𝑖 como 

𝐶̂𝑖 = 𝑥̅∙𝑖∙ − 𝑥̅𝑠𝑡 

Donde 

𝑥̅∙𝑖∙ =
1

𝑛∙𝑖
∑∑𝑥𝑡𝑖𝑗

𝑛𝑡𝑖

𝑗=1

𝑇

𝑡=1

 

Y también 

∑𝑁∙𝑖𝐶𝑖

𝐼

𝑖=1

= 0. 

Similarmente tenemos la varianza 

𝑉(𝐶̂𝑖) =
1

𝑁2
[(𝑁 − 𝑁∙𝑖)

2𝑉(𝑥̅∙𝑖∙) +∑𝑁∙𝑗
2𝑉(𝑥̅∙𝑗∙)

𝐼

𝑗=1

] 

Que es estimable insesgadamente por 

𝑉̂(𝐶̂𝑖) =
1

𝑁2
[(𝑁 − 𝑁∙𝑖)

2𝑉̂(𝑥̅∙𝑖∙) +∑𝑁∙𝑗
2𝑉̂(𝑥̅∙𝑗∙)

𝐼

𝑗=1

] 

Donde 
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𝑉̂(𝑥̅∙𝑖∙) =∑(
𝑛𝑡𝑖
𝑛∙𝑖
)
2

𝑉̂(𝑥̅𝑡𝑖∙)

𝑇

𝑡=1

 

 Una estimación insesgada de la interacción (𝐹𝐶)𝑡𝑖 es 

(𝐹𝐶)̂𝑡𝑖 = 𝑥̅𝑡𝑖∙ − 𝑥̅𝑡∙∙ − 𝑥̅∙𝑖∙ + 𝑥̅𝑠𝑡 

Y su varianza viene proporcionada por la expresión 

𝑉[(𝐹𝐶)̂𝑡𝑖] = 

𝑉(𝑥̅𝑡𝑖∙) − 𝐶𝑜𝑣(𝑥̅𝑡𝑖∙, 𝑥̅𝑡∙∙) − 𝐶𝑜𝑣(𝑥̅𝑡𝑖∙, 𝑥̅∙𝑖∙) + 𝐶𝑜𝑣(𝑥̅𝑡𝑖∙, 𝑥̅𝑠𝑡) + 

𝑉(𝑥̅𝑡∙∙) − 𝐶𝑜𝑣(𝑥̅𝑡∙∙, 𝑥̅𝑡𝑖∙) + 𝐶𝑜𝑣(𝑥̅𝑡∙∙, 𝑥̅∙𝑖∙) − 𝐶𝑜𝑣(𝑥̅𝑡∙∙, 𝑥̅𝑠𝑡) + 

𝑉(𝑥̅∙𝑖∙) − 𝐶𝑜𝑣(𝑥̅∙𝑖∙, 𝑥̅𝑡𝑖∙) + 𝐶𝑜𝑣(𝑥̅∙𝑖∙, 𝑥̅𝑡∙∙) − 𝐶𝑜𝑣(𝑥̅∙𝑖∙, 𝑥̅𝑠𝑡) + 

𝑉(𝑥̅𝑠𝑡) − 𝐶𝑜𝑣(𝑥̅𝑠𝑡 , 𝑥̅𝑡∙∙) − 𝐶𝑜𝑣(𝑥̅𝑠𝑡 , 𝑥̅∙𝑖∙) + 𝐶𝑜𝑣(𝑥̅𝑠𝑡 , 𝑥̅𝑡𝑖∙). 

Ahora se puede calcular todos los sumandos del segundo miembro 

de la expresión anterior. Conocemos los valores de las varianzas 

𝑉(𝑥̅𝑡𝑖∙), 𝑉(𝑥̅𝑡∙∙), 𝑉(𝑥̅∙𝑖∙) y 

𝑉(𝑥̅𝑠𝑡) =
1

𝑁2
∑∑𝑁𝑡𝑖

2𝑉(𝑥̅𝑡𝑖∙)

𝐼

𝑖=1

𝑇

𝑡=1

. 

Y de las covarianzas 

𝐶𝑜𝑣(𝑥̅𝑡𝑖∙, 𝑥̅𝑡∙∙) = 𝐶𝑜𝑣(𝑥̅𝑡∙∙, 𝑥̅𝑡𝑖∙) =
𝑁𝑡𝑖
𝑁𝑡∙

𝑉(𝑥̅𝑡𝑖∙), 

𝐶𝑜𝑣(𝑥̅∙𝑖∙, 𝑥̅𝑡𝑖∙) = 𝐶𝑜𝑣(𝑥̅𝑡𝑖∙, 𝑥̅∙𝑖∙) =
𝑁𝑡𝑖
𝑁∙𝑖

𝑉(𝑥̅𝑡𝑖∙), 

𝐶𝑜𝑣(𝑥̅𝑡∙∙, 𝑥̅∙𝑖∙) = 𝐶𝑜𝑣(𝑥̅∙𝑖∙, 𝑥̅𝑡∙∙) =
𝑁𝑡𝑖
2

𝑁𝑡∙𝑁∙𝑖
𝑉(𝑥̅𝑡𝑖∙), 

𝐶𝑜𝑣(𝑥̅𝑡𝑖∙, 𝑥̅𝑠𝑡) = 𝐶𝑜𝑣(𝑥̅𝑠𝑡 , 𝑥̅𝑡𝑖∙) =
𝑁𝑡𝑖
𝑁
𝑉(𝑥̅𝑡𝑖∙), 
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𝐶𝑜𝑣(𝑥̅𝑡∙∙, 𝑥̅𝑠𝑡) = 𝐶𝑜𝑣(𝑥̅𝑠𝑡 , 𝑥̅𝑡∙∙) =
1

𝑁𝑡∙𝑁
∑𝑁𝑡𝑖

2𝑉(𝑥̅𝑡𝑖∙),

𝐼

𝑖=1

 

y  

𝐶𝑜𝑣(𝑥̅∙𝑖∙, 𝑥̅𝑠𝑡) = 𝐶𝑜𝑣(𝑥̅𝑠𝑡 , 𝑥̅∙𝑖∙) =
1

𝑁∙𝑖𝑁
∑𝑁𝑡𝑖

2𝑉(𝑥̅𝑡𝑖∙)

𝑇

𝑡=1

. 

 Cada una de las expresiones anteriores puede estimarse sin 

sesgo de las mismas expresiones sustituyendo 𝑉(𝑥̅𝑡𝑖∙)  por su 

estimación insesgada ya vista anteriormente 𝑉̂(𝑥̅𝑡𝑖∙) . Como 

consecuencia, es posible estimar sin sesgo la función paramétrica 

interacción (𝐹𝐶)𝑡𝑖 , y estimar sin sesgo la varianza de dicho 

estimador. También es posible por tanto estimar por intervalo y 

contrastar hipótesis sobre su valor concreto. 
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Capítulo 5 

Muestreo posagrupado 

 

 

Este tipo de muestreo se presenta cuando queremos tener la 

precisión del muestreo estratificado o similar, y no disponemos de 

los tamaños de los estratos pero los podemos estimar en una 

primera fase. De este modo se puede estimar la media poblacional 

con un estimador similar al estratificado, pero que incluye 

estimaciones de los tamaños relativos de los estratos, y pudiendo 

también estimar sin sesgo su varianza. Una aplicación de este tipo 

de muestreo es el problema de no respuesta en una encuesta, que 

queda resuelto a nivel formal con muestreo posagrupado. 

 

5.1 Diseño posagrupado 

Este diseño consta de dos fases de muestreo. 

 En la primera fase seleccionamos una muestra de tamaño 𝑚 

con diseño mas y observamos el indicador del estrato en cada 

unidad de la muestra. Clasificamos la muestra seleccionada de 

tamaño 𝑚 en 𝑙 grupos o estratos seleccionados distintos (1 ≤ 𝑙 ≤

𝑚, 𝑙 ≤ 𝐿) . El número 𝑙  es aleatorio. Sean 𝑚ℎ  y 𝑤ℎ = 𝑚ℎ 𝑚⁄  

respectivamente la frecuencia absoluta y la frecuencia relativa 

muestrales del grupo o estrato ℎ. Tenemos que 

𝑚 = ∑𝑚ℎ ,   1 = ∑𝑤ℎ ,

𝑙

ℎ=1

𝑙

ℎ=1
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y 𝑚ℎ = 𝑤ℎ = 0 en los restantes estratos ℎ = 𝑙 + 1, 𝑙 + 2,… , 𝐿. De 

este modo el valor de 𝑙 es conocido tras la primera fase. 

 En la segunda fase, para cada grupo o estrato ℎ seleccionado 

en la primera fase (ℎ = 1, 2, … , 𝑙) con 𝑚ℎ ≥ 1, es decir con alguna 

unidad seleccionada en el estrato en la primera fase, procedemos a 

seleccionar con diseño mas de tamaño fijo 𝑛ℎ  de entre las 𝑁ℎ 

unidades que contiene su grupo o estrato ℎ , tamaño 𝑁ℎ  que es 

conocido antes de la segunda fase de muestreo. Observamos la 

media muestral 𝑦̅𝑠(ℎ)  y obtenemos la cuasivarianza muestral 𝑠ℎ
2 

que requiere un tamaño muestral 𝑛ℎ ≥ 2. 

En estas condiciones, definimos el estimador posagrupado 

siguiente 

𝑦̅𝑝𝑔 = ∑𝑤ℎ𝑦̅𝑠(ℎ),

𝑙

ℎ=1

 

para el cual no son necesarios los tamaños y los marcos de los 

grupos o estratos 𝑙 + 1, 𝑙 + 2,… , 𝐿, pero para los primeros 𝑙 grupos 

o estratos los marcos de trabajo deben ser conocidos. Indicamos 

que la distribución de los valores 

𝑚ℎ es multinomial de parámetros 𝑚 y 𝑊ℎ. 

Veamos que el estimador 𝑦̅𝑝𝑔  es insesgado para estimar la 

media poblacional 𝑦̅. En efecto, 

𝐸(𝑦̅𝑝𝑔) = 𝐸1 {𝐸2 [∑𝑤ℎ𝑦̅𝑠(ℎ)|𝑤ℎ

𝐿

ℎ=1

]} = 

𝐸1 {∑𝑤ℎ𝐸2[𝑦̅𝑠(ℎ)]

𝐿

ℎ=1

} = ∑𝐸1(𝑤ℎ)𝑦̅ℎ

𝐿

ℎ=1

= ∑𝑊ℎ𝑦̅ℎ

𝐿

ℎ=1

= 𝑦̅. 
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5.2 Varianza del estimador posagrupado 

La varianza del estimador 𝑦̅𝑝𝑔 puede calcularse haciendo uso del 

Teorema de Madow, 

𝑉(𝑦̅𝑝𝑔) = 𝐸1𝑉2(𝑦̅𝑝𝑔) + 𝑉1𝐸2(𝑦̅𝑝𝑔), 

donde  

𝑉2(𝑦̅𝑝𝑔) = ∑𝑤ℎ
2𝑉2[𝑦̅𝑠(ℎ)]

𝐿

ℎ=1

= ∑𝑤ℎ
2 𝜎ℎ

2

𝑛ℎ

𝐿

ℎ=1

, 

𝐸1𝑉2(𝑦̅𝑝𝑔) = ∑𝐸1(𝑤ℎ
2)
𝜎ℎ
2

𝑛ℎ

𝐿

ℎ=1

, 

y donde  

𝐸1(𝑤ℎ
2) =

𝐸1(𝑚ℎ
2)

𝑚2
=
𝑉1(𝑚ℎ) + [𝐸1(𝑚ℎ)]

2

𝑚2
= 

𝑊ℎ(1 −𝑊ℎ) + 𝑚𝑊ℎ
2

𝑚
=
𝑊ℎ[1 +𝑊ℎ(𝑚 − 1)]

𝑚
. 

También 

𝐸2(𝑦̅𝑝𝑔) = ∑𝑤ℎ𝐸2

𝐿

ℎ=1

[𝑦̅𝑠(ℎ)] = ∑𝑤ℎ𝑦̅ℎ

𝐿

ℎ=1

, 

y entonces 

𝑉1𝐸2(𝑦̅𝑝𝑔) = ∑∑ 𝑦̅ℎ𝑦̅𝑔𝐶𝑜𝑣1(𝑤ℎ, 𝑤𝑔)

𝐿

𝑔=1

𝐿

ℎ=1

= 
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1

𝑚
∑ 𝑦̅ℎ

2𝑊ℎ(1 −𝑊ℎ)

𝐿

ℎ=1

+
1

𝑚
∑∑ 𝑦̅ℎ𝑦̅𝑔(−𝑊ℎ𝑊𝑔)

𝐿

𝑔≠ℎ

𝐿

ℎ=1

= 

1

𝑚
∑𝑊ℎ𝑦̅ℎ

2

𝐿

ℎ=1

−
1

𝑚
𝑦̅2 =

1

𝑚
∑𝑊ℎ(𝑦̅ℎ − 𝑦̅)

2

𝐿

ℎ=1

. 

Sustituyendo ambos sumandos de la descomposición de la varianza 

total en dos términos, obtenemos la varianza buscada del estimador 

posagrupado. 

 Un estimador insesgado de la varianza 𝑉(𝑦̅𝑝𝑔) es el siguiente 

𝑉̂(𝑦̅𝑝𝑔) = ∑𝑤ℎ
2 𝑠ℎ

2

𝑛ℎ

𝑙

ℎ=1

+ 

1

𝑚
∑

𝑚ℎ𝑤ℎ(1 − 𝑤ℎ)

𝑚ℎ − 1
[𝑦̅𝑠(ℎ)

2 −
𝑠ℎ
2

𝑛ℎ
]

𝑙

ℎ=1

− 

1

𝑚 − 1
∑∑𝑤ℎ𝑤𝑔𝑦̅𝑠(ℎ)𝑦̅𝑠(𝑔)

𝑙

𝑔≠ℎ

𝑙

ℎ=1

, 

del cual su razonamiento es debido a Ruiz Espejo (1993). 

 Otros desarrollos semejantes relacionados con diseño mia 

independientemente dentro de cada grupo o estrato han sido 

obtenidos por Ruiz Espejo y colaboradores (2006). 
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5.3 Estimación insesgada con no respuesta 

El problema de la no respuesta surge en las encuestas por muestreo 

cuando una parte de los encuestados se niegan a facilitar sus 

respuestas. Si partimos de una muestra con diseño mas de tamaño 

fijo 𝑚 y parte de la muestra seleccionada se niega a contestar o no 

colabora con su respuesta, podemos entender que hay dos estratos 

implícitamente: uno primero de respuesta y otro segundo de no 

respuesta. Los tamaños de estos estratos son desconocidos. Si en 

estas condiciones tomáramos como estimador de la media 

poblacional 𝑦̅ a la media muestral de las respuestas conseguidas, 

ésta es la media muestral del estrato de respuestas 𝑦̅𝒔(1) . Este 

estimador es sesgado para estimar 𝑦̅, ya que 

𝐵[𝑦̅𝒔(1);  𝑦̅] = 𝐸[𝑦̅𝒔(1)] − 𝑦̅ = 𝑦̅1 − (𝑊1𝑦̅1 +𝑊2𝑦̅2) = 

𝑊2(𝑦̅1 − 𝑦̅2), 

un sesgo desconocido pues depende de tres funciones paramétricas 

𝑊2, 𝑦̅1, e 𝑦̅2 que son desconocidas. 

La solución a este dilema la proporciona el muestreo 

posagrupado. En concreto, si en la primera fase obtuvimos los 

tamaños muestrales aleatorios 𝑚1 ≥ 1 y 𝑚2 ≥ 1, de manera que 

𝑚 = 𝑚1 +𝑚2, consideramos que la muestra 𝒔(1) es de tamaño 

fijo 𝑛1  que puede ser por ejemplo 𝑛1 = 𝑚1 , mientras que la 

muestra del segundo estrato en la segunda fase es una submuestra 

𝒔(2) de tamaño fijo 𝑛(2) de la muestra seleccionada de tamaño ya 

fijo 𝑛2 = 𝑚2 en la primera fase, y que submuestreamos con diseño 

mas de tamaño efectivo prefijado 𝑛(2)  con 2 ≤ 𝑛(2) . Esta 

submuestra 𝒔(2)  requiere un mayor cuidado y esmero en la 

obtención de respuesta, pues ya obtuvimos la no respuesta de 

dichas unidades en la primera fase. Denotando 𝑤ℎ = 𝑚ℎ 𝑚⁄ , el 

estimador insesgado de la media poblacional con no respuesta es 
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𝑦̅𝑛𝑟 = 𝑤1𝑦̅(1) + 𝑤2𝑦̅(2), 

y un estimador insesgado de la varianza de este estimador es algo 

laborioso de obtener pero técnicamente deducible a partir del 

muestreo posagrupado y teniendo en cuenta la nueva fase de 

submuestreo con diseño mas que se desarrolla en la muestra de no 

respuesta en el segundo estrato, también llamado estrato de no 

respuesta. La fórmula exacta del estimador insesgado de la 

varianza puede consultarse en el artículo de Ruiz Espejo (2011a): 

𝑉̂(𝑦̅𝑛𝑟) =
1

𝑚 − 1
{∑𝑤ℎ𝜎ℎ

2̂

2

ℎ=1

 

+∑𝑤ℎ[𝑦̅(ℎ)
2 − 𝑉̂(𝑦̅(ℎ))] − 𝑦̅𝑛𝑟

2

2

ℎ=1

} 

+
𝜎2
2̂

(𝑚 − 1)𝑛(2)
(𝑚𝑤2

2 − 𝑤2). 

Donde 𝜎1
2̂ = 𝑠1

2  y 𝜎2
2̂ = 𝑛2𝑠(2)

2 /(𝑛2 − 1)  siendo 𝑠2  la 

cuasivarianza muestral de las respuestas en cada estrato ℎ que se 

subindica. Por tanto, 𝑚1 ≥ 2  y 𝑚2 ≥ 2 . Además, el estimador 

𝑉̂(𝑦̅(1)) = 𝑠1
2 𝑛1⁄  y si 𝑛(2)  es el tamaño muestral en el segundo 

estrato o número de respuestas de la submuestra 

𝑉̂(𝑦̅(2)) =
𝜎2
2̂

𝑛2
+
𝑠(2)
2

𝑛(2)
= 𝑠(2)

2 [
1

𝑛2 − 1
+

1

𝑛(2)
]. 

Como se puede apreciar, es casi un caso particular de muestreo 

posagrupado con dos grupos o estratos, en el que ahora se considera 

una tercera fase de aleatorización por submuestreo en la muestra de 

no respuesta en segunda fase del segundo estrato. 
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5.4 Ejercicios resueltos 

 

Ejercicio 5.1. Una población finita es objeto de muestreo con 

diseño mas de tamaño fijo igual a 10 , donde se aprecian dos 

estratos cuyos tamaños relativos estimados por las proporciones 

muestrales son 3 5⁄  y 2 5⁄ . En una segunda fase se estimaron de 

cada estrato la media muestral y la cuasivarianza muestral con 

diseño mas dando lugar a los pares de estimaciones (𝑦̅𝒔(ℎ), 𝑠ℎ
2 𝑛ℎ⁄ ) 

siguientes para ℎ = 1, 2:  (6, 5) , (2, 2) . Estimar la media 

poblacional por muestreo posagrupado y dar un estimador 

insesgado de su varianza. 

Solución. El estimador de la media poblacional es 

𝑦̅𝑝𝑔 = ∑𝑤ℎ𝑦̅𝒔(ℎ)

2

ℎ=1

=
3

5
∙ 6 +

2

5
∙ 2 = 4.4 

Y el estimador insesgado de su varianza, aplicando la fórmula 

general es 

𝑉̂(𝑦̅𝑝𝑔) ≈ 0.0252. 

 

Ejercicio 5.2. Para estimar la media poblacional en presencia de 

no respuesta hemos observado que el 40% de los cien encuestados 

inicialmente no responden con diseño mas. La media muestral de 

respuestas en esta fase inicial fue de 10 y la cuasivarianza muestral 

fue de 60 . Posteriormente se submuestrea con diseño mas de 

tamaño muestral 8 la muestra de no respuesta en la primera fase 

dando lugar a una media muestral de 0  y una cuasivarianza 

muestral de 16. Estimar la media poblacional y decir si es posible 
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proponer un estimador insesgado de la varianza del estimador de la 

media poblacional. 

Solución. El estimador de la media poblacional es 

𝑤1𝑦̅(1) + 𝑤2𝑦̅(2) = 6, 

mientras que el estimador insesgado de su varianza es técnicamente 

posible sustituyendo en la expresión del estimador insesgado de la 

varianza los valores 𝑤1 = 0.6 , 𝑤2 = 0.4 , 𝑚 = 100 , 𝑛1 = 60 , 

𝑚2 = 40, 𝑛2 = 8, 𝑦̅(1) = 10, 𝑠1
2 = 60, 𝑦̅(2) = 0, y 𝑠(2)

2 = 16. 

 

Ejercicio 5.3. Obtener la esperanza matemática y la varianza del 

estimador usual en muestreo posagrupado en el caso de dos 

estratos, grupos o dominios disjuntos, usando en todos los diseños 

básicos muestreo aleatorio simple con reemplazamiento. 

Solución. Consideramos una población finita de tamaño 𝑁 , 

clasificada en dos estratos. El estimador usual en muestreo 

posagrupado es 

𝑦̅𝑝𝑔 = ∑𝑤ℎ𝑦̅𝒔(ℎ)

2

ℎ=1

, 

donde 𝑤ℎ = 𝑚ℎ 𝑚⁄ , donde 𝑚ℎ sigue una distribución binomial de 

parámetros 𝑚 y 𝑊ℎ , siendo 𝑚 el tamaño muestral en la primera 

fase y 𝑊ℎ = 𝑁ℎ 𝑁⁄  el tamaño relativo del estrato ℎ = 1, 2 . 

Entonces sabemos que 𝐸1(𝑚ℎ) = 𝑚𝑊ℎ  y además 𝑉1(𝑚ℎ) =

𝑚𝑊ℎ(1 −𝑊ℎ) = 𝑚𝑊1𝑊2. También 𝑦̅𝒔(ℎ) es la media muestral en 

el estrato ℎ = 1, 2 , obtenida por muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛ℎ, muestreos independientes en 

cada estrato obtenidos en una segunda fase. 
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La esperanza matemática del estimador 𝑦̅𝑝𝑔  es la media 

poblacional, pues 

𝐸(𝑦̅𝑝𝑔) = 𝐸1𝐸2(𝑦̅𝑝𝑔|𝑤ℎ) = 𝐸1 (∑𝑤ℎ𝑦̅ℎ

2

ℎ=1

) = ∑𝑊ℎ𝑦̅ℎ

2

ℎ=1

= 𝑦̅. 

La varianza del estimador usual se obtiene mediante el teorema de 

Madow, 

𝑉(𝑦̅𝑝𝑔) = 𝐸1𝑉2(𝑦̅𝑝𝑔|𝑤ℎ) + 𝑉1𝐸2(𝑦̅𝑝𝑔|𝑤ℎ). 

𝑉2(𝑦̅𝑝𝑔|𝑤ℎ) = ∑𝑤ℎ
2𝑉2(𝑦̅𝒔(ℎ))

2

ℎ=1

= ∑𝑤ℎ
2 𝜎ℎ

2

𝑛ℎ

2

ℎ=1

, 

y  

𝐸1𝑉2(𝑦̅𝑝𝑔|𝑤ℎ) = ∑𝐸1(𝑤ℎ
2)
𝜎ℎ
2

𝑛ℎ

2

ℎ=1

= 

1

𝑚
[∑𝑊ℎ

𝜎ℎ
2

𝑛ℎ

2

ℎ=1

+ (𝑚 − 1)∑𝑊ℎ
2 𝜎ℎ

2

𝑛ℎ

2

ℎ=1

], 

pues  

𝐸1(𝑤ℎ
2) =

𝐸1(𝑚ℎ
2)

𝑚2
=
𝑉1(𝑚ℎ) + (𝑚𝑊ℎ)

2

𝑚2
= 

𝑚𝑊ℎ(1 −𝑊ℎ) − 𝑚
2𝑊ℎ

2

𝑚2
=
𝑊ℎ[1 + (𝑚 − 1)𝑊ℎ]

𝑚
. 

También, 

𝐸2(𝑦̅𝑝𝑔|𝑤ℎ) = ∑𝑤ℎ𝐸2(𝑦̅𝒔(ℎ))

2

ℎ=1

= ∑𝑤ℎ𝑦̅ℎ

2

ℎ=1

, 

y  
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𝑉1𝐸2(𝑦̅𝑝𝑔|𝑤ℎ) = 𝐶𝑜𝑣1 (∑𝑤ℎ𝑦̅ℎ ,

2

ℎ=1

∑𝑤𝑔𝑦̅𝑔

2

𝑔=1

) = 

∑∑𝑦̅ℎ𝑦̅𝑔𝐶𝑜𝑣1(𝑤ℎ, 𝑤𝑔)

2

𝑔=1

=

2

ℎ=1

 

∑𝑦̅ℎ
2𝑉1(𝑤ℎ)

2

ℎ=1

+∑∑ 𝑦̅ℎ𝑦̅𝑔𝐶𝑜𝑣1(𝑤ℎ , 𝑤𝑔)

2

𝑔≠ℎ

=

2

ℎ=1

 

∑𝑦̅ℎ
2𝑚𝑊ℎ(1 −𝑊ℎ)

𝑚2

2

ℎ=1

+ 2𝑦̅1𝑦̅2𝐶𝑜𝑣1(𝑤1, 1 − 𝑤1) = 

1

𝑚
∑ 𝑦̅ℎ

2𝑊ℎ

2

ℎ=1

(1 −𝑊ℎ) − 2𝑦̅1𝑦̅2𝑉1(𝑤1) = 

1

𝑚
𝑊1𝑊2(𝑦̅1 − 𝑦̅2)

2. 

Por lo que de todo ello, 

𝑉(𝑦̅𝑝𝑔) =
1

𝑚
[∑𝑊ℎ

𝜎ℎ
2

𝑛ℎ

2

ℎ=1

+ (𝑚 − 1)∑𝑊ℎ
2

2

ℎ=1

𝜎ℎ
2

𝑛ℎ
] + 

1

𝑚
𝑊1𝑊2(𝑦̅1 − 𝑦̅2)

2, 

o bien, 

𝑉(𝑦̅𝑝𝑔) = 𝐸1 (∑𝑤ℎ
2 𝜎ℎ

2

𝑛ℎ

2

ℎ=1

) +
1

𝑚
𝑊1𝑊2(𝑦̅1 − 𝑦̅2)

2. 
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Ejercicio 5.4. Proponer un estimador insesgado de la varianza del 

estimador usual en muestreo posagrupado con diseño básico de 

muestreo aleatorio simple, para dos estratos. 

Solución. De la última fórmula de la varianza del estimador usual 

en muestreo posagrupado, sustituyendo los parámetros 

desconocidos por sus estimaciones insesgadas correspondientes, 

tenemos como estimador insesgado de la varianza de 𝑦̅𝑝𝑔 a 

𝑉̂(𝑦̅𝑝𝑔) = ∑𝑤ℎ
2 𝑠ℎ

2

𝑛ℎ

2

ℎ=1

+
1

𝑚
∑

𝑚ℎ𝑤ℎ(1 − 𝑤ℎ)

𝑚ℎ − 1
(𝑦̅𝒔(ℎ)

2 −
𝑠ℎ
2

𝑛ℎ
)

2

ℎ=1

− 

2

𝑚 − 1
𝑤1𝑤2𝑦̅𝒔(1)𝑦̅𝒔(2), 

pues la esperanza matemática de este estimador es igual a la 

varianza de 𝑦̅𝑝𝑔. 

 

Ejercicio 5.5. Obtener la varianza del estimador usual en muestreo 

posagrupado cuando consideramos dos estratos, y como diseño 

muestral básico al muestreo irrestricto aleatorio. 

Solución. El estimador usual en muestreo posagrupado es casi el 

mismo en apariencia para diseño básico de muestreo irrestricto 

aleatorio que con muestreo aleatorio simple. Ahora es 

𝑦̅𝑝𝑔 = ∑𝑤ℎ𝑦̅𝑠(ℎ)

2

ℎ=1

, 

donde 𝑤ℎ = 𝑚ℎ 𝑚⁄  es la proporción muestral en la primera fase de 

unidades de la muestra irrestricta aleatoria que pertenecen al estrato 

ℎ = 1, 2, y ahora 𝑚ℎ se distribuye según geométrica de parámetros 

𝑚, 𝑁 y 𝑊ℎ, siendo 𝑚 el tamaño muestral en la primera fase, 𝑁 el 

tamaño poblacional, y 𝑊ℎ = 𝑁ℎ 𝑁⁄  el tamaño relativo del estrato 
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ℎ = 1, 2. Por tanto, 𝐸1(𝑚ℎ) = 𝑚𝑊ℎ , y la varianza es 𝑉1(𝑚ℎ) =

𝑚𝑊ℎ(1 −𝑊ℎ)(𝑁 −𝑚) (𝑁 − 1)⁄ . También 𝑦̅𝑠(ℎ)  es la media 

muestral independiente en el estrato ℎ = 1, 2 , obtenidas con 

muestreo irrestricto aleatorio de tamaño efectivo fijo 𝑛ℎ  en una 

segunda fase. 

La justificación de que 𝑦̅𝑝𝑔  es insesgado para estimar la 

media poblacional es análoga al caso de muestreo aleatorio simple 

con reemplazamiento como diseño básico. 

La varianza de este estimador se obtiene por el teorema de 

Madow, 

𝑉(𝑦̅𝑝𝑔) = 𝐸1𝑉2(𝑦̅𝑝𝑔|𝑤ℎ) + 𝑉1𝐸2(𝑦̅𝑝𝑔|𝑤ℎ). 

Desarrollando, 

𝑉2(𝑦̅𝑝𝑔|𝑤ℎ) = ∑𝑤ℎ
2𝑉2(𝑦̅𝑠(ℎ))

2

ℎ=1

= ∑𝑤ℎ
2𝑁ℎ − 𝑛ℎ
𝑁ℎ − 1

𝜎ℎ
2

𝑛ℎ

2

ℎ=1

, 

y  

𝐸1𝑉2(𝑦̅𝑝𝑔|𝑤ℎ) = ∑𝐸1(𝑤ℎ
2)

2

ℎ=1

𝑁ℎ − 𝑛ℎ
𝑁ℎ − 1

𝜎ℎ
2

𝑛ℎ
= 

∑𝑊ℎ [
𝑁 −𝑚

(𝑁 − 1)𝑚
+𝑊ℎ

𝑁(𝑚 − 1)

(𝑁 − 1)𝑚
]
𝑁ℎ − 𝑛ℎ
𝑁ℎ − 1

𝜎ℎ
2

𝑛ℎ

2

ℎ=1

, 

pues  

𝐸1(𝑤ℎ
2) = 𝑉1(𝑤ℎ) + [𝐸1(𝑤ℎ)]

2 = 

1

𝑚
𝑊ℎ(1 −𝑊ℎ)

𝑁 −𝑚

𝑁 − 1
+𝑊ℎ

2 = 
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𝑊ℎ {
𝑁 − 𝑚

(𝑁 − 1)𝑚
+𝑊ℎ [1 −

𝑁 −𝑚

(𝑁 − 1)𝑚
]} = 

𝑊ℎ [
𝑁 −𝑚

(𝑁 − 1)𝑚
+𝑊ℎ

𝑁(𝑚 − 1)

(𝑁 − 1)𝑚
]. 

Por otro lado, 

𝐸2(𝑦̅𝑝𝑔|𝑤ℎ) = ∑𝑤ℎ𝐸2(𝑦̅𝑠(ℎ))

2

ℎ=1

= ∑𝑤ℎ𝑦̅ℎ

2

ℎ=1

, 

y  

𝑉1𝐸2(𝑦̅𝑝𝑔|𝑤ℎ) = 𝐶𝑜𝑣1 (∑𝑤ℎ𝑦̅ℎ

2

ℎ=1

,∑𝑤𝑔𝑦̅𝑔

2

𝑔=1

) = 

∑𝑦̅ℎ
2𝑉1(𝑤ℎ)

2

ℎ=1

+ 2𝑦̅1𝑦̅2𝐶𝑜𝑣1(𝑤1, 1 − 𝑤1) = 

∑𝑦̅ℎ
2𝑊ℎ(1 −𝑊ℎ)

𝑁 −𝑚

(𝑁 − 1)𝑚

2

ℎ=1

− 2𝑦̅1𝑦̅2𝑊1𝑊2

𝑁 −𝑚

(𝑁 − 1)𝑚
= 

𝑊1𝑊2

𝑁 −𝑚

(𝑁 − 1)𝑚
(𝑦̅1 − 𝑦̅2)

2. 

Por tanto, podemos dar una fórmula general exacta de la varianza 

del estimador usual en muestreo posagrupado sustituyendo los 

valores obtenidos, o bien, la fórmula 

𝑉(𝑦̅𝑝𝑔) = 𝐸1 (∑𝑤ℎ
2𝑁ℎ − 𝑛ℎ
𝑁ℎ − 1

𝜎ℎ
2

𝑛ℎ

2

ℎ=1

) + 

𝑊1𝑊2

𝑁 −𝑚

(𝑁 − 1)𝑚
(𝑦̅1 − 𝑦̅2)

2 
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que nos permitirá proponer de modo más sencillo un estimador 

insesgado de esta varianza. 

 

Ejercicio 5.6. Proponer un estimador insesgado de la varianza del 

estimador usual en muestreo posagrupado con dos estratos y diseño 

básico de muestreo irrestricto aleatorio. 

Solución. Por un razonamiento similar al realizado en el Ejercicio 

5.4. de este Capítulo, estimamos sin sesgo los parámetros 

desconocidos en la fórmula de la varianza del estimador usual. Así 

tenemos, 

𝑉̂(𝑦̅𝑝𝑔) = ∑𝑤ℎ
2𝑁ℎ − 𝑛ℎ

𝑁ℎ

𝑠ℎ
2

𝑛ℎ

2

ℎ=1

+ 

𝑁 −𝑚

(𝑁 − 1)𝑚
∑(𝑦̅𝑠(ℎ)

2 +
𝑁ℎ − 𝑛ℎ
𝑁ℎ

𝑠ℎ
2

𝑛ℎ
)

2

ℎ=1

𝑚𝑤ℎ(1 − 𝑤ℎ)

𝑚 − 1
− 

2
𝑁 −𝑚

(𝑁 − 1)𝑚

𝑚𝑤1𝑤2
𝑚− 1

𝑦̅𝑠(1)𝑦̅𝑠(2) = 

∑𝑤ℎ
2𝑁ℎ − 𝑛ℎ

𝑁ℎ

𝑠ℎ
2

𝑛ℎ

2

ℎ=1

+ 

𝑁 −𝑚

𝑁 − 1
∑(𝑦̅𝑠(ℎ)

2 +
𝑁ℎ − 𝑛ℎ
𝑁ℎ

𝑠ℎ
2

𝑛ℎ
)

2

ℎ=1

𝑤ℎ(1 − 𝑤ℎ)

𝑚 − 1
− 

2
𝑁 −𝑚

𝑁 − 1

𝑤1𝑤2
𝑚 − 1

𝑦̅𝑠(1)𝑦̅𝑠(2). 
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Ejercicio 5.7. Obtener la esperanza matemática y la varianza del 

estimador usual para el caso de no respuesta en una primera fase 

del muestreo, con diseño básico de muestreo aleatorio simple. 

Solución. El estimador usual de la media poblacional con no 

respuesta es 

𝑦̅𝑛𝑟 = 𝑤1𝑦̅𝒔(1) + 𝑤2𝑦̅𝒔(2), 

donde 𝑤ℎ = 𝑚ℎ 𝑚⁄  es la proporción muestral en la primera fase 

del estrato o dominio de respuesta (ℎ = 1) o bien la proporción 

muestral en la primera fase del estrato o dominio de no respuesta 

(ℎ = 2); 𝑦̅𝒔(1) es la media muestral de respuestas recogidas en la 

segunda fase, obtenida por muestreo aleatorio simple con 

reemplazamiento de tamaño 𝑛1 = 𝑚1, en el estrato de respuesta, es 

decir la media muestral de las respuestas obtenidas en la primera 

fase; finalmente 𝑦̅𝒔(2)  es la media muestral obtenida en una 

submuestra aleatoria simple de tamaño prefijado 𝑛(2)  en tercera 

fase de la muestra aleatoria simple de no respuesta de tamaño 𝑛2 =

𝑚2 que dio lugar la segunda fase con su no respuesta, y que a su 

vez es parte, posiblemente con repeticiones de unidades, de la 

muestra aleatoria simple en el estrato o dominio de no respuesta 

obtenida en la primera fase. 

La esperanza matemática de este estimador es 

𝐸(𝑦̅𝑛𝑟) = 𝐸1𝐸2𝐸3(𝑦̅𝑛𝑟) = 𝐸1[𝑤1𝐸2(𝑦̅𝒔(1)) + 𝑤2𝐸2(𝑦̅(2))], 

donde 𝑦̅(2) = 𝐸3(𝑦̅𝒔(2)) es la media muestral de la muestra en la 

segunda fase en el estrato de no respuesta. Entonces, 

𝐸(𝑦̅𝑛𝑟) = 𝐸1(𝑤1𝑦̅1 + 𝑤2𝑦̅2) = 𝐸1(𝑤1)𝑦̅1 + 𝐸1(𝑤2)𝑦̅2 = 

𝑊1𝑦̅1 +𝑊2𝑦̅2 = 𝑦̅, 
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que es la media poblacional, y por tanto 𝑦̅𝑛𝑟  es un estimador 

insesgado. 

La varianza del estimador usual 𝑦̅𝑛𝑟 es, aplicando el teorema 

de Madow, 

𝑉(𝑦̅𝑛𝑟) = 𝐸1𝑉2(𝑦̅𝑛𝑟) + 𝑉1𝐸2(𝑦̅𝑛𝑟). 

Aplicando esta fórmula por partes, 

𝑉2(𝑦̅𝑛𝑟) = 𝑉2(𝑦̅𝑛𝑟|𝑤ℎ) = 

𝑤1
2
𝜎1
2

𝑛1
+ 𝑤2

2[𝐸2𝑉3(𝑦̅𝒔(2)) + 𝑉2𝐸3(𝑦̅𝒔(2))] = 

𝑤1
2
𝜎1
2

𝑛1
+ 𝑤2

2 [𝐸2 (
𝜎(2)
2

𝑛(2)
) + 𝑉2(𝑦̅(2))] = 

𝑤1
2
𝜎1
2

𝑛1
+ 𝑤2

2 [
(𝑛2 − 1)𝜎2

2

𝑛2𝑛(2)
+
𝜎2
2

𝑛2
] = 

𝑤1
2
𝜎1
2

𝑛1
+ 𝑤2

2
𝜎2
2

𝑛2
(
𝑛2 − 1

𝑛(2)
+ 1) = 

𝑤1𝜎1
2

𝑚
+
𝑤2𝜎2

2

𝑚
(
𝑛2 − 1

𝑛(2)
+ 1) = 

𝑤1𝜎1
2

𝑚
+𝑤2𝜎2

2 (
𝑤2
𝑛(2)

−
1

𝑚𝑛(2)
+
1

𝑚
). 

𝐸1𝑉2(𝑦̅𝑛𝑟|𝑤ℎ) = 

1

𝑚
∑𝑊ℎ𝜎ℎ

2

2

ℎ=1

+
𝜎2
2

𝑛(2)
[𝐸1(𝑤2

2) −
𝑊2

𝑚
] = 
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1

𝑚
∑𝑊ℎ𝜎ℎ

2

2

ℎ=1

+
𝜎2
2

𝑛(2)
(
𝑊1𝑊2

𝑚
+𝑊2

2 −
𝑊2

𝑚
) = 

1

𝑚
∑𝑊ℎ𝜎ℎ

2

2

ℎ=1

+
𝜎2
2

𝑛(2)

𝑊2
2(𝑚 − 1)

𝑚
, 

pues  

𝐸1(𝑤2
2) = 𝑉1(𝑤2) +𝑊2

2 =
𝑊1𝑊2

𝑚
+𝑊2

2 = 

𝑊2

𝑚
[1 +𝑊2(𝑚 − 1)]. 

Por otro lado, 

𝐸2(𝑦̅𝑛𝑟|𝑤ℎ) = 𝑤1𝑦̅1 + 𝑤2𝑦̅2, 

de donde 

𝑉1𝐸2(𝑦̅𝑛𝑟|𝑤ℎ) =
𝑊1𝑊2

𝑚
(𝑦̅1 − 𝑦̅2)

2. 

Por lo que resumiendo, 

𝑉(𝑦̅𝑛𝑟) =
𝜎2

𝑚
+
(𝑚 − 1)𝑊2

2𝜎2
2

𝑚𝑛(2)
, 

o incluso también tenemos esta otra fórmula, 

𝑉(𝑦̅𝑛𝑟) = 𝐸1 [𝑤1
𝜎1
2

𝑚
+ 𝜎2

2 (
𝑤2
2

𝑛(2)
−

𝑤2
𝑚𝑛(2)

+
𝑤2
𝑚
)] + 

𝑊1𝑊2

𝑚
(𝑦̅1 − 𝑦̅2)

2, 

que nos permitirá estimarla sin sesgo de modo más sencillo. 
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Ejercicio 5.8. Obtener un estimador insesgado de la varianza del 

estimador usual con no respuesta, usando como diseño básico el 

muestreo aleatorio simple. 

Solución. De la última fórmula de 𝑉(𝑦̅𝑛𝑟), tenemos que estimando 

sin sesgo los parámetros desconocidos en dicha fórmula, tenemos 

el siguiente estimador 

𝑉̂(𝑦̅𝑛𝑟) = 𝑤1
𝑠1
2

𝑚
+ 𝜎2

2̂ (
𝑤2
2

𝑛(2)
−

𝑤2
𝑚𝑛(2)

+
𝑤2
𝑚
)+ 

𝑤1𝑤2
𝑚− 1

[𝑦̅𝒔(1)
2 −

𝑠1
2

𝑛1
+ 𝑦̅𝒔(2)

2 − 𝑉̂(𝑦̅𝒔(2)) − 2𝑦̅𝒔(1)𝑦̅𝒔(2)], 

donde  

𝜎2
2̂ = 𝑠2

2̂ =
𝑛2

𝑛2 − 1
𝜎(2)
2̂ =

𝑛2
𝑛2 − 1

𝑠(2)
2 , 

siendo 𝑠1
2 la cuasivarianza muestral de tamaño fijo 𝑛1 en el primer 

estrato o dominio, y 𝑠(2)
2  la cuasivarianza muestral de tamaño 𝑛(2) 

en el segundo estrato o dominio. Como 

𝑉(𝑦̅(2)) = 𝑉1𝐸2𝐸3(𝑦̅(2)) + 𝐸1𝑉2𝐸3(𝑦̅(2)) + 𝐸1𝐸2𝑉3(𝑦̅(2)) = 

𝑉1(𝑌̅2) + 𝐸1𝑉2(𝑦̅2) + 𝐸1𝐸2 (
𝜎(2)
2

𝑛(2)
) = 𝐸1 (

𝜎2
2

𝑛2
) + 𝐸1𝐸2 (

𝜎(2)
2

𝑛(2)
), 

entonces un estimador insesgado de esta varianza es 

𝑉̂(𝑦̅(2)) =
𝜎2
2̂

𝑛2
+
𝑠(2)
2

𝑛(2)
= 𝑠(2)

2 [
1

𝑛2 − 1
+

1

𝑛(2)
]. 

 

Ejercicio 5.9. Queremos estimar la media poblacional y la varianza 

de tal estimador ante el problema de no respuesta. ¿Qué tamaño 



 

225 
 

submuestral debe tomarse de la muestra de no respuesta para 

estimar sin sesgo la media poblacional? ¿Qué tamaño submuestral 

debe tomarse de la muestra de no respuesta para estimar sin sesgo 

la varianza del estimador de la media poblacional? 

Solución. Para que el estimador insesgado de la media poblacional 

con no respuesta pueda usarse es necesario que haya respuestas (la 

necesidad de observar datos del primer estrato, de respuesta, no es 

indispensable, como en el segundo estrato de no respuesta), pero el 

tamaño de la submuestra dentro de la muestra de no respuesta debe 

ser al menos de uno, es decir, el tamaño de la muestra de no 

respuesta debe ser 𝑛2 ≥ 1  y el tamaño de la submuestra de la 

muestra anterior debe ser 𝑛(2) ≥ 1 . Sin embargo, para la 

estimación insesgada de la varianza de este estimador usual para 

no respuesta, es necesario un tamaño muestral de no respuesta que 

sea 𝑛(2) ≥ 2, pues solo así podría obtenerse la estimación de la 

cuasivarianza muestral en el estrato de no respuesta necesaria para 

la obtención del estimador insesgado de la varianza del estimador 

usual de la media poblacional con no respuesta. 
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Capítulo 6 

Estimadores indirectos 

 

 

En este capítulo vamos a ver tres estimadores (de razón, de 

producto, y de regresión) que además de la información 

proporcionada por observación de la variable de interés 𝑦, utilizan 

otra variable 𝑥 , que llamamos auxiliar, conocida en todas las 

unidades de la población finita. Esta información permite construir 

inicialmente estimadores sesgados pero que podrían proporcionar 

estimaciones con pequeño error cuadrático medio. 

 

6.1 Estimador de la razón poblacional 

Se define la “razón poblacional” a la función paramétrica 

𝑅 =
𝑁𝑦̅

𝑁𝑥̅
=
𝑦̅

𝑥̅
. 

Es el cociente del total poblacional de la variable de interés entre 

el total poblacional de la variable auxiliar. Esta función paramétrica 

𝑅 puede estimarse por la “razón muestral” 

𝑅̂ =
𝑦̅𝑠
𝑥̅𝑠
=
𝑛𝑦̅𝑠
𝑛𝑥̅𝑠

. 

Su sesgo puede obtenerse de este modo, 

𝐶𝑜𝑣(𝑅̂, 𝑥̅𝑠) = 𝐸(𝑅̂𝑥̅𝑠) − 𝐸(𝑅̂)𝐸(𝑥̅𝑠) = 𝐸(𝑦̅𝑠) − 𝐸(𝑅̂)𝑥̅ = 
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𝑦̅ − 𝐸(𝑅̂)𝑥̅, 

de donde 

𝐵(𝑅̂; 𝑅) = 𝐸(𝑅̂) − 𝑅 = −
𝐶𝑜𝑣(𝑅̂, 𝑥̅𝑠)

𝑥̅
. 

Es la expresión exacta del sesgo de la razón muestral como 

estimador de la razón poblacional, ya sea con diseño mas o mia. 

El sesgo aproximado se obtiene de que 

𝑅̂ − 𝑅 =
𝑦̅𝑠
𝑥̅𝑠
− 𝑅 =

𝑦̅𝑠 − 𝑅𝑥̅𝑠
𝑥̅𝑠

=
𝑦̅𝑠 − 𝑅𝑥̅𝑠

𝑥̅

𝑥̅

𝑥̅𝑠
, 

suponiendo que las variables 𝑦 y 𝑥 son positivas, y como además 

𝑥̅

𝑥̅𝑠
=

𝑥̅

𝑥̅ + 𝑥̅𝑠 − 𝑥̅
=

1

1 +
𝑥̅𝑠 − 𝑥̅
𝑥̅

= 

1 −
𝑥̅𝑠 − 𝑥̅

𝑥̅
+
(𝑥̅𝑠 − 𝑥̅)

2

𝑥̅2
−⋯ 

siempre y cuando 

|
𝑥̅𝑠 − 𝑥̅

𝑥̅
| < 1, 

con lo que disponemos finalmente del desarrollo en serie 

𝑅̂ − 𝑅 =
𝑦̅𝑠 − 𝑅𝑥̅𝑠

𝑥̅
[1 −

𝑥̅𝑠 − 𝑥̅

𝑥̅
+
(𝑥̅𝑠 − 𝑥̅)

2

𝑥̅2
−⋯], 

de donde el sesgo de 𝑅̂ expresado asintóticamente es 

𝐵(𝑅̂) = 𝐸(𝑅̂ − 𝑅) = 

−
𝐸[(𝑦̅𝑠 − 𝑅𝑥̅𝑠)(𝑥̅𝑠 − 𝑥̅)]

𝑥̅2
+
𝐸[(𝑦̅𝑠 − 𝑅𝑥̅𝑠)(𝑥̅𝑠 − 𝑥̅)

2]

𝑥̅3
−⋯ 
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pues el primer sumando del desarrollo en serie verifica 

𝐸 (
𝑦̅𝑠 − 𝑅𝑥̅𝑠

𝑥̅
) =

1

𝑥̅
𝐸(𝑦̅𝑠 − 𝑅𝑥̅𝑠) =

1

𝑥̅
(𝑦̅ − 𝑦̅) = 0. 

En concreto, si aproximamos el sesgo de 𝑅̂  por los dos 

primeros términos del desarrollo en serie, tenemos que para diseño 

mas o mia, 

𝐵(𝑅̂) ≈ −
𝐸[(𝑦̅𝑠 − 𝑅𝑥̅𝑠)(𝑥̅𝑠 − 𝑥̅)]

𝑥̅2
= 

−
𝐸[𝑦̅𝑠(𝑥̅𝑠 − 𝑥̅)] − 𝑅𝐸[𝑥̅𝑠(𝑥̅𝑠 − 𝑥̅)]

𝑥̅2
= 

−𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) + 𝑅𝑉(𝑥̅𝑠)

𝑥̅2
. 

La varianza aproximada del estimador 𝑅̂  de 𝑅  se obtiene 

considerando el primer término del desarrollo en serie de 

𝑅̂ − 𝑅 ≈
𝑦̅𝑠 − 𝑅𝑥̅𝑠

𝑥̅
. 

Con esta aproximación, 𝐸(𝑅̂) ≈ 𝑅 y la varianza aproximada es 

𝑉(𝑅̂) ≈
𝑉(𝑦̅𝑠 − 𝑅𝑥̅𝑠)

𝑥̅2
=
𝑉(𝑦̅𝑠) + 𝑅

2𝑉(𝑥̅𝑠) − 2𝑅𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅2
. 

Ahora bien, como 𝑉(𝑦̅𝑠) = 𝜎𝑦
2 𝑛⁄ , 𝑉(𝑥̅𝑠) = 𝜎𝑥

2 𝑛⁄ , y 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) =
𝜎𝑦𝑥

𝑛
 

con diseño mas, concluimos que 

𝑉(𝑅̂) ≈
1

𝑛𝑥̅2
(𝜎𝑦

2 + 𝑅2𝜎𝑥
2 − 2𝑅𝜎𝑦𝑥). 

Análogamente, con diseño mia, 
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𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦𝑥 

siendo la cuasicovarianza poblacional 

𝑆𝑦𝑥 =
1

𝑁 − 1
∑(𝑦𝑘 − 𝑦̅)(𝑥𝑘 − 𝑥̅)

𝑁

𝑘=1

= 𝑆𝑥𝑦 

(Hansen, Hurwitz y Madow, 1953, p. 97), por lo que 

𝑉(𝑅̂) ≈
𝑁 − 𝑛

𝑁𝑛𝑥̅2
(𝑆𝑦

2 + 𝑅2𝑆𝑥
2 − 2𝑅𝑆𝑦𝑥). 

 

6.2 Estimador de razón de la media poblacional 

Recibe este nombre el estimador de la media poblacional 𝑦̅ con 

información auxiliar 𝑥 el estimador 

𝑡𝑅 = 𝑅̂𝑥̅. 

Este estimador de razón es sesgado, pero por las propiedades 

vistas anteriormente, su sesgo es nulo aproximándolo por el primer 

término del desarrollo en serie, y su varianza aproximada haciendo 

uso de la misma aproximación es 

𝑉(𝑡𝑅) ≈
1

𝑛
(𝜎𝑦

2 + 𝑅2𝜎𝑥
2 − 2𝑅𝜎𝑦𝑥) 

con diseño mas, y 

𝑉(𝑡𝑅) ≈
𝑁 − 𝑛

𝑁𝑛
(𝑆𝑦

2 + 𝑅2𝑆𝑥
2 − 2𝑅𝑆𝑦𝑥) 

con diseño mia. 
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6.3 Tamaño muestral del estimador de razón 

Para obtener el tamaño muestral 𝑛 para que el estimador de razón 

𝑡𝑅 = 𝑅̂𝑥̅ de la media poblacional 𝑦̅ difiera de ésta menos que su 

error máximo absoluto admisible de muestreo 𝑒 con un cierto nivel 

de confianza 1 − 𝛼 , recurrimos a la desigualdad de Chebychev, 

pues hemos visto que 𝐸(𝑡𝑅) ≈ 𝑦̅. Tenemos que aproximadamente 

𝑝{|𝑡𝑅 − 𝑦̅| < 𝑒} ≥ 1 −
𝑉(𝑡𝑅)

𝑒2
= 1 − 𝛼. 

De donde 

𝛼𝑒2 = 𝑉(𝑡𝑅), 

y sustituyendo sus expresiones aproximadas, obtenemos los 

tamaños muestrales buscados, ya sea para diseño mas 

𝑛 ≈
𝜎𝑦
2 + 𝑅2𝜎𝑥

2 − 2𝑅𝜎𝑦𝑥

𝛼𝑒2
, 

o para diseño mia 

𝑛 ≈
1

1
𝑁
+

𝛼𝑒2

𝑆𝑦
2 + 𝑅2𝑆𝑥

2 − 2𝑅𝑆𝑦𝑥

. 

 

6.4 Ganancia en precisión del estimador de razón 

Para comparar los métodos inferenciales con diseño mas o mia 

entre la media muestral y el estimador de razón, escribimos sus 

varianzas exactas y aproximadas. Con diseño mas tenemos 

𝑉(𝑦̅𝒔) =
𝜎𝑦
2

𝑛
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y  

𝑉(𝑡𝑅) ≈
1

𝑛
(𝜎𝑦

2 + 𝑅2𝜎𝑥
2 − 2𝑅𝜎𝑦𝑥). 

Luego, si esta aproximación fuera una igualdad, 

𝑉(𝑡𝑅) ≤ 𝑉(𝑦̅𝒔) 

si y solo si 

𝑅2𝜎𝑥
2 − 2𝑅𝜎𝑦𝑥 ≤ 0, 

o bien, como el coeficiente de correlación de las variables 𝑦 y 𝑥 es 

𝜌 = 𝜎𝑦𝑥 (𝜎𝑦𝜎𝑥)⁄  y si 𝑅 > 0 como es habitual cuando las variables 

de interés y auxiliar son positivas, tenemos si y solo si 

𝜌 ≥
𝑅𝜎𝑥
2𝜎𝑦

. 

Se puede comprobar que esta misma relación debe verificarse 

en condiciones similares para que con diseño mia la precisión del 

estimador 𝑡𝑅  sea mayor o igual a la de la media muestral con 

idéntico diseño mia. 

 

6.5 Estimador de razón en el muestreo estratificado 

Los dos tipos principales de estimador de razón cuando se usa 

muestreo estratificado son el estimador separado de razón y el 

estimador combinado de razón. 

 El estimador “separado de razón” en muestreo estratificado 

es aquél que usa del estimador de razón en cada estrato 

independientemente. Su expresión es 
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𝑡𝑆𝑅 = ∑𝑊ℎ𝑅̂ℎ𝑥̅ℎ

𝐿

ℎ=1

, 

donde 𝑅̂ℎ𝑥̅ℎ es el estimador independiente de razón en el estrato ℎ. 

Su varianza es 

𝑉(𝑡𝑆𝑅) = ∑𝑊ℎ
2𝑉(𝑅̂ℎ𝑥̅ℎ)

𝐿

ℎ=1

, 

donde  

𝑉(𝑅̂ℎ𝑥̅ℎ) = 𝑥̅ℎ
2𝑉(𝑅̂ℎ), 

y con diseño mas 

𝑉(𝑅̂ℎ) ≈
1

𝑛ℎ
(𝜎ℎ𝑦

2 + 𝑅ℎ
2𝜎ℎ𝑥

2 − 2𝑅ℎ𝜎ℎ𝑦𝑥) 

y con diseño mia 

𝑉(𝑅̂ℎ) ≈
𝑁ℎ − 𝑛ℎ
𝑁ℎ𝑛ℎ

(𝑆ℎ𝑦
2 + 𝑅ℎ

2𝑆ℎ𝑥
2 − 2𝑅ℎ𝑆ℎ𝑦𝑥), 

donde 𝑅ℎ = 𝑦̅ℎ 𝑥̅ℎ⁄ , 

𝜎ℎ𝑦
2 =

𝑁ℎ − 1

𝑁ℎ
𝑆ℎ𝑦
2 =

1

𝑁ℎ
∑(𝑦ℎ𝑘 − 𝑦̅ℎ)

2

𝑁ℎ

𝑘=1

, 

etc. 

El estimador “combinado de razón” en muestreo estratificado 

es aquél que usa del estimador de la razón al cociente de los 

estimadores estratificados para la variable 𝑦  y el de la 𝑥 . Su 

expresión es 

𝑡𝐶𝑅 =
𝑦̅𝑠𝑡
𝑥̅𝑠𝑡

𝑥̅. 



 
 

234 
 

Debido a que tenemos la aproximación 

𝑦̅𝑠𝑡
𝑥̅𝑠𝑡

− 𝑅 ≈
𝑦̅𝑠𝑡 − 𝑅𝑥̅𝑠𝑡

𝑥̅
, 

el estimador 𝑡𝐶𝑅 es aproximadamente insesgado y su varianza es 

también aproximadamente 

𝑉(𝑡𝐶𝑅) ≈ 𝑉(𝑦̅𝑠𝑡 − 𝑅𝑥̅𝑠𝑡) = 

𝑉(𝑦̅𝑠𝑡) + 𝑅
2𝑉(𝑥̅𝑠𝑡) − 2𝑅𝐶𝑜𝑣(𝑦̅𝑠𝑡 , 𝑥̅𝑠𝑡), 

que con diseño mas independientemente en cada estrato será igual 

a  

∑𝑊ℎ
2 1

𝑛ℎ
(𝜎ℎ𝑦

2 + 𝑅2𝜎ℎ𝑥
2 − 2𝑅𝜎ℎ𝑦𝑥)

𝐿

ℎ=1

, 

mientras que si el diseño fuera mia independientemente en cada 

estrato será igual a  

∑𝑊ℎ
2𝑁ℎ − 𝑛ℎ
𝑁ℎ𝑛ℎ

(𝑆ℎ𝑦
2 + 𝑅2𝑆ℎ𝑥

2 − 2𝑅𝑆ℎ𝑦𝑥)

𝐿

ℎ=1

, 

con 𝑅 = 𝑦̅ 𝑥̅⁄ . 

 

6.6 Estimador de producto de la media poblacional 

Es un estimador semejante al de razón, pero su uso se limita a 

cuando existe una relación de proporcionalidad inversa entre la 

variable de interés y la auxiliar, o bien hay estabilidad en los 

productos 𝑦𝑘𝑥𝑘  (𝑘 = 1, 2, … , 𝑁) . En estos casos se propone el 

“estimador de producto” que se define como 
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𝑡𝑃 = 𝑦̅𝑠
𝑥̅𝑠
𝑥̅
. 

Para conocer sus características, lo expresamos del modo 

𝑡𝑃 =
1

𝑥̅
(𝑦̅𝑠 − 𝑦̅ + 𝑦̅)(𝑥̅𝑠 − 𝑥̅ + 𝑥̅) = 

𝑦̅ (1 +
𝑦̅𝑠 − 𝑦̅

𝑦̅
) (1 +

𝑥𝑠 − 𝑥̅

𝑥̅
) = 

𝑦̅ (1 +
𝑦̅𝑠 − 𝑦̅

𝑦̅
+
𝑥𝑠 − 𝑥̅

𝑥̅
+
𝑦̅𝑠 − 𝑦̅

𝑦̅

𝑥𝑠 − 𝑥̅

𝑥̅
), 

de donde 

𝐸(𝑡𝑃) = 𝑦̅ +
𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
, 

es decir, el sesgo del estimador de producto 𝑡𝑃  para estimar la 

media poblacional 𝑦̅ es 

𝐵(𝑡𝑃; 𝑦̅) =
𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
, 

que admite distintas expresiones según sea el diseño muestral 

usado. De la fórmula extendida de 𝑡𝑃, tenemos 

𝑡𝑃 − 𝑦̅ = 𝑦̅ (
𝑦̅𝑠 − 𝑦̅

𝑦̅
+
𝑥𝑠 − 𝑥̅

𝑥̅
+
𝑦̅𝑠 − 𝑦̅

𝑦̅

𝑥𝑠 − 𝑥̅

𝑥̅
), 

de donde aproximando por los términos cuadráticos tenemos 

(𝑡𝑃 − 𝑦̅)
2 ≈ (𝑦̅𝑠 − 𝑦̅)

2 + 2𝑅(𝑦̅𝑠 − 𝑦̅)(𝑥𝑠 − 𝑥̅) + 𝑅
2(𝑥𝑠 − 𝑥̅)

2, 

de donde 

𝐸𝐶𝑀(𝑡𝑃;  𝑦̅) = 𝐸[(𝑡𝑃 − 𝑦̅)
2] ≈ 

𝑉(𝑦̅𝑠) + 2𝑅𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) + 𝑅
2𝑉(𝑥̅𝑠), 
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que toma distintas expresiones según el diseño muestral usado. 

Haciendo uso de esta aproximación (y considerándola como 

igualdad), el estimador de producto tiene menor o igual varianza 

que la media muestral en los diseños mas y mia siempre y cuando 

el coeficiente de correlación entre las variables 𝑦 y 𝑥 verifica 

𝜌 ≤ −
𝑅𝜎𝑥
2𝜎𝑦

. 

Es inmediato proponer estimadores de producto separado y 

combinado en muestreo estratificado. 

 

6.7 Estimador de regresión de la media poblacional 

Cuando los puntos (𝑦𝑘 , 𝑥𝑘)  con 𝑘 = 1, 2,… ,𝑁 , donde 𝑦  es la 

variable de interés y 𝑥 es la variable auxiliar, están situados sobre 

una línea recta que pasa por el origen 𝑦𝑘 = 𝑎𝑥𝑘, el estimador de 

razón es el más indicado. Si fueran los productos 𝑦𝑘𝑥𝑘 = 𝑎 los que 

fueran estables entorno al valor constante 𝑎 , el estimador de 

producto es el más indicado. Pero si la relación es lineal del tipo 

𝑦𝑘 = 𝑎 + 𝑏𝑥𝑘 

o línea recta que no pasa por el origen (𝑎 ≠ 0) aunque puede pasar 

por el origen también (𝑎 = 0), entonces el “estimador de regresión 

lineal” para la media poblacional 𝑦̅ se obtiene razonando de este 

modo. Por un lado se dará 

𝑦̅ = 𝑎 + 𝑏𝑥̅ 

e  

𝑦̅𝑠 = 𝑎 + 𝑏𝑥̅𝑠, 

por lo que restando la segunda de la primera igualdad, 
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𝑦̅ − 𝑦̅𝑠 = 𝑏(𝑥̅ − 𝑥̅𝑠), 

de donde se propone como estimador de regresión lineal a 

𝑦̅𝑟𝑙 = 𝑦̅𝑠 + 𝑏(𝑥̅ − 𝑥̅𝑠), 

siendo 𝑏  una variable aleatoria. Su sesgo para estimar la media 

poblacional se obtiene de que 

𝐸(𝑦̅𝑟𝑙) = 𝑦̅ + 𝑥̅𝐸(𝑏) − 𝐸(𝑏𝑥̅𝑠) = 𝑦̅ − 𝐶𝑜𝑣(𝑏, 𝑥̅𝑠), 

es decir 

𝐵(𝑦̅𝑟𝑙;  𝑦̅) = 𝐸(𝑦̅𝑟𝑙) − 𝑦̅ = −𝐶𝑜𝑣(𝑏, 𝑥̅𝑠). 

Si 𝑏 fuera constante, el valor de 𝑏 que minimiza la varianza 

del estimador de regresión se obtiene de este modo. 

𝑉(𝑦̅𝑟𝑙) = 𝑉(𝑦̅𝑠) + 𝑏
2𝑉(𝑥̅𝑠) − 2𝑏𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠), 

que con diseño mas admite la expresión 

𝑉(𝑦̅𝑟𝑙) =
1

𝑛
(𝜎𝑦

2 + 𝑏2𝜎𝑥
2 − 2𝑏𝜎𝑦𝑥), 

y con diseño mia se expresa del modo 

𝑉(𝑦̅𝑟𝑙) =
𝑁 − 𝑛

𝑁𝑛
(𝑆𝑦

2 + 𝑏2𝑆𝑥
2 − 2𝑏𝑆𝑦𝑥). 

Llamando 𝑓(𝑏) =  𝑉(𝑦̅𝑟𝑙) , la función alcanza su mínimo 

cuando 𝑓′(𝑏) = 0, o bien 

𝑏 =
𝜎𝑦𝑥

𝜎𝑥
2 =

𝑆𝑦𝑥

𝑆𝑥
2 . 

Además es mínimo pues si 𝑛 < 𝑁 y 𝜎𝑥
2 > 0, 𝑓′′(𝑏) > 0. Para este 

valor mínimo de 𝑏 la varianza toma el valor 

𝑉mín(𝑦̅𝑟𝑙) =
𝜎𝑦
2

𝑛
(1 − 𝜌2) 
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en el caso de diseño mas, y 

𝑉mín(𝑦̅𝑟𝑙) =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦
2(1 − 𝜌2) 

en el caso de diseño mia. En realidad el valor mínimo de 𝑏 así 

obtenido es una función paramétrica que sería desconocida antes 

de realizarse el muestreo, y estimable después del muestreo, por lo 

que para aplicar estos resultados tendremos que estimar 𝑏 por su 

estimador mínimo-cuadrático (según Cochran, 1977) 

𝑏̂ =
∑ (𝑦𝑘 − 𝑦̅𝑠)(𝑥𝑘 − 𝑥̅𝑠)𝑘∈𝑠

∑ (𝑥𝑘 − 𝑥̅𝑠)
2

𝑘∈𝑠
=
𝑠𝑦𝑥

𝑠𝑥
2 . 

 

6.8 Comparación de precisiones 

Una vez obtenidas la varianza exacta para las medias muestrales 

con diseño mas y mia, y las correspondientes aproximadas para los 

estimadores de razón, de producto y de regresión, podemos 

concluir que el estimador de regresión lineal teórico es más preciso 

que la media muestral siempre que 𝜌 ≠ 0, y en el caso 𝜌 = 0 las 

varianzas coinciden (tomando como varianza del estimador de 

razón a su aproximación). El estimador de regresión lineal teórico 

es también más preciso que el estimador de razón siempre, y sus 

varianzas (aproximada en el caso de razón) coinciden cuando 

𝑅 = 𝜌
𝜎𝑦

𝜎𝑥
. 

El estimador de regresión es también más preciso que el 

estimador de producto siempre (si la varianza aproximada de este 

fuera una igualdad), y sus errores cuadráticos medios aproximados 

coincidirían cuando 
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𝑅 = − 𝜌
𝜎𝑦

𝜎𝑥
. 

 

6.9 El estimador de regresión con estratificación 

El estimador de regresión separado en el muestreo estratificado es 

𝑦̅𝑟𝑙𝑠 = ∑𝑊ℎ𝑦̅𝑟𝑙ℎ

𝐿

ℎ=1

, 

donde el estimador 𝑦̅𝑟𝑙ℎ es el estimador de regresión lineal en el 

estrato ℎ-ésimo. Su uso requiere estimar 𝐿 valores 𝑏̂ℎ, uno por cada 

estrato. El estimador de regresión combinado es 

𝑦̅𝑟𝑙𝑐 = 𝑦̅𝑠𝑡 + 𝑏(𝑥̅ − 𝑥̅𝑠𝑡), 

el cual requiere estimar un solo valor de 𝑏. 

 

6.10 Ejercicios resueltos 

 

Ejercicio 6.1. Se desea estimar la producción de trigo total en cierta 

comarca. Para ello se toma como unidad de muestreo la parcela 

dedicada a dicho cultivo, y se conoce como variable auxiliar la 

superficie de terreno de las parcelas individualmente. Si se supone 

que la producción de trigo es proporcional a la superficie sembrada 

en cada parcela o unidad, justificar que el estimador de razón es un 

indicado estimador para estimar la producción total de trigo en la 

comarca. 

Solución. Si existe una relación de proporcionalidad aproximada 

𝑦𝑘 = 𝑐𝑥𝑘  (𝑘 = 1, 2, … , 𝑁), siendo 𝑁 el número total de parcelas 

sembradas en la comarca de trigo, 𝑦𝑘 la producción de trigo en la 
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unidad 𝑘, 𝑥𝑘 la superficie sembrada de trigo en la unidad 𝑘, y 𝑐 la 

constante de proporcionalidad, tenemos que el estimador del total 

de trigo producido de razón es 

𝑁𝑡𝑅 = 𝑁𝑦̅𝑠
𝑥̅

𝑥̅𝑠
, 

pero como 𝑦̅𝑠 = 𝑐𝑥̅𝑠 aproximadamente, 

𝑁𝑡𝑅 = 𝑁𝑐𝑥̅𝑠
𝑥̅

𝑥̅𝑠
= 𝑁𝑐𝑥̅ = 𝑁𝑦̅, 

con lo que queda demostrada su adecuación pues 

𝑐𝑥̅ = 𝑐
∑ 𝑥𝑘
𝑁
𝑘=1

𝑁
=
∑ 𝑐𝑥𝑘
𝑁
𝑘=1

𝑁
=
∑ 𝑦𝑘
𝑁
𝑘=1

𝑁
= 𝑦̅, 

siendo 𝑁𝑦̅ el total de trigo producido en la comarca. 

 

Ejercicio 6.2. Determinar el tamaño muestral 𝑛 necesario para que 

el estimador de razón 𝑡𝑅 = (𝑦̅𝑠𝑥̅) 𝑥̅𝑠⁄ , de la media poblacional 𝑦̅ de 

cierta variable de interés 𝑦 , difiera de tal función paramétrica 

menos que 5 al nivel de confianza del 95%. Además 𝑁 = 1000, y 

de una muestra piloto se estima que 𝑆𝑦
2 = 30, 𝑅 = 2, 𝑆𝑥

2 = 15 y 

𝑆𝑥𝑦 = 3. 

Solución.  

𝑛 ≈
1

1
𝑁
+

𝛼𝑒2

𝑆𝑦
2 + 𝑅2𝑆𝑥

2 − 2𝑅𝑆𝑦𝑥

≈ 59. 

 

Ejercicio 6.3. Para estimar el consumo medio de las familias de un 

país se ha utilizado el estimador de razón con la variable auxiliar 
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“renta familiar”. Indicar la conveniencia o no de tal estimador para 

tal objetivo. 

Respuesta. Razonando como en el ejercicio 6.1, el estimador de 

razón será adecuado cuando exista una proporcionalidad entre 

“consumo familiar” y “renta familiar” en tal país. Es decir, el 

estimador de razón es deseable cuando la dependencia entre el 

consumo y la renta familiares sea aproximadamente una línea recta 

que además pase por el origen. Si la dependencia es lineal pero la 

recta no pasa por el origen, puede utilizarse el estimador de 

regresión razonando de modo análogo, como se hará en el ejercicio 

6.5. 

 

Ejercicio 6.4. La experiencia de unos directivos de unos grandes 

almacenes les hace admitir que las ventas de cierto producto en un 

día es inversamente proporcional a su precio de venta al público. 

En esta situación qué estimador propondría, como asesor de la 

empresa, para la venta media mensual pudiendo conocer las ventas 

en 5 días diferentes seleccionados con diseño mia, y sabiendo los 

precios de venta de los 25  días que abre al público dichos 

almacenes en ese mes. 

Respuesta. Llamamos 𝑦𝑘  a las ventas del producto en el día 𝑘 

(𝑘 = 1, 2,… , 25), y 𝑥𝑘 al precio del producto en ese mismo día. 

Admitimos la relación aproximada 𝑦𝑘𝑥𝑘 = 𝑐, según nos informan 

los directivos. Queremos estimar la venta media mensual del 

producto a lo largo de los 25 días laborables del mes. Tal media 

poblacional es denotada por 𝑦̅, y la media muestral de ventas en los 

5 días de observación es 𝑦̅𝑠. El precio medio mensual del producto 

es 𝑥̅, y la media muestral de precios es 𝑥̅𝑠. En estas condiciones y 

ya que se da una relación aproximada entre 𝑦𝑘  y 𝑥𝑘  de 

proporcionalidad inversa, un estimador deseable de 𝑦̅  es el 

estimador de producto 
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𝑡𝑃 = 𝑦̅𝑠
𝑥̅𝑠
𝑥̅
≈
𝑐

𝑥̅
≈ 𝑦̅. 

 

Ejercicio 6.5. En una urbanización de 𝑁 viviendas se dispone de 

la información auxiliar 𝑥 número de residentes por vivienda. Se 

sabe además que se verifica que la superficie en metros cuadrados 

de las viviendas (variable de interés 𝑦 ) mantiene una relación 

próxima a la lineal, 𝑦𝑘 = 𝑎 + 𝑏𝑥𝑘  (𝑘 = 1, 2,… , 𝑁) . Estudiar la 

conveniencia del estimador de regresión lineal para estimar la 

superficie media de las viviendas de dicha urbanización. 

Solución. Como tenemos la relación lineal entre las variables de 

interés y la auxiliar, también 𝑦̅𝑠 = 𝑎 + 𝑏𝑥̅𝑠 y podemos escribir 

𝑦̅𝑟𝑙 = 𝑦̅𝑠 +
∑ (𝑦𝑘 − 𝑦̅𝑠)(𝑥𝑘 − 𝑥̅𝑠)𝑘∈𝑠

∑ (𝑥𝑘 − 𝑥̅𝑠)
2

𝑘∈𝑠

(𝑥̅ − 𝑥̅𝑠) = 

𝑎 + 𝑏𝑥̅𝑠 +
∑ (𝑎 + 𝑏𝑥𝑘 − 𝑎 − 𝑏𝑥̅𝑠)(𝑥𝑘 − 𝑥̅𝑠)𝑘∈𝑠

∑ (𝑥𝑘 − 𝑥̅𝑠)
2

𝑘∈𝑠

(𝑥̅ − 𝑥̅𝑠) = 

𝑎 + 𝑏𝑥̅𝑠 + 𝑏(𝑥̅ − 𝑥̅𝑠) = 𝑎 + 𝑏𝑥̅ = 𝑦̅. 

Luego el estimador de regresión lineal es un estimador 

adecuado si se da la relación aproximada lineal 𝑦 = 𝑎 + 𝑏𝑥 en las 

unidades de la población finita. 

 

Ejercicio 6.6. Si se sabe que el coeficiente de correlación lineal es 

𝜌𝑦𝑥 = 0.4, determinar la ganancia en precisión del estimador de 

regresión lineal con respecto a la media muestral, ambas con diseño 

mia. 

Solución. Como 
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𝑉(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦
2 

y  

𝑉(𝑦̅𝑟𝑙) =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦
2(1 − 𝜌2) = 0.84𝑉(𝑦̅𝑠), 

la ganancia en “precisión” (inversa de la “varianza”) será 

1

𝑉(𝑦̅𝑟𝑙)
−

1

𝑉(𝑦̅𝑠)
=

1

𝑉(𝑦̅𝑠)
(
1

0.84
− 1) = 0.19

1

𝑉(𝑦̅𝑠)
> 0, 

es decir, hay ganancia en precisión positiva del estimador de 

regresión lineal óptimo teórico respecto del estimador media 

muestral ambos con diseño mia. 

 

Ejercicio 6.7. Estimar la media poblacional 𝑦̅ por el método de 

regresión lineal sabiendo que se dispone de los siguientes datos. 

Medias muestrales, de la variable de interés 5 , de la variable 

auxiliar 3. Media poblacional de la variable auxiliar 4. Estimador 

mínimo-cuadrático del coeficiente de regresión lineal 2. 

Solución. El estimador de regresión lineal es 

𝑦̅𝑟𝑙 = 𝑦̅𝑠 + 𝑏̂(𝑥̅ − 𝑥̅𝑠) = 5 + 2(4 − 3) = 7. 

 

Ejercicio 6.8. Obtener el sesgo del estimador media de razones, 

𝑟̅𝑠 =
1

𝑛
∑

𝑦𝑘
𝑥𝑘

𝑘 ∈ 𝑠

, 

como estimador de la razón 𝑅 = 𝑦̅ 𝑥̅⁄  con muestreo irrestricto 

aleatorio de tamaño efectivo fijo 𝑛, de una población finita 𝑈 de 
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tamaño 𝑁 . Obtener estimadores insesgados de la media 

poblacional 𝑦̅ basados en el estimador 𝑟̅𝑠 y en el sesgo obtenido. 

Solución. El sesgo de Hartley y Ross de 𝑟𝑠 para estimar 𝑅 es 

𝐵𝐻𝑅(𝑟̅𝑠) = 𝐸(𝑟̅𝑠) − 𝑅 =
1

𝑁
∑

𝑦𝑖
𝑥𝑖

𝑖∈𝑈

−
1

𝑁
∑

𝑦𝑖
𝑥̅

𝑖∈𝑈

= 

1

𝑁
∑𝑦𝑖 (

1

𝑥𝑖
−
1

𝑥̅
)

𝑖∈𝑈

= −
1

𝑁𝑥̅
∑

𝑦𝑖
𝑥𝑖
(𝑥𝑖 − 𝑥̅)

𝑖∈𝑈

= −
𝐶𝑜𝑣 (

𝑦𝑖
𝑥𝑖
, 𝑥𝑖)

𝑥̅
. 

El estimador insesgado de Hartley y Ross de la media poblacional 

𝑦̅ es entonces 

𝑡𝐻𝑅 = 𝑥̅𝑟̅𝑠 − 𝑥̅𝐵̂𝐻𝑅(𝑟̅𝑠) = 𝑥̅𝑟̅𝑠 + 𝐶𝑜𝑣̂ (
𝑦𝑖
𝑥𝑖
, 𝑥𝑖) = 

𝑥̅𝑟̅𝑠 +
𝑁 − 1

𝑁(𝑛 − 1)
∑

𝑦𝑖
𝑥𝑖
(𝑥𝑖 − 𝑥̅𝑠)

𝑖∈𝑠

= 𝑥̅𝑟̅𝑠 +
(𝑁 − 1)𝑛

𝑁(𝑛 − 1)
(𝑦̅𝑠 − 𝑥̅𝑠𝑟̅𝑠). 

Otro estimador insesgado de la media poblacional puede obtenerse 

del estimador insesgado de la covarianza 

𝐶𝑜𝑣̂ (
𝑦𝑖
𝑥𝑖
, 𝑥𝑖) =

1

𝑛
∑

𝑦𝑖
𝑥𝑖
(𝑥𝑖 − 𝑥̅)

𝑖∈𝑠

= 𝑦̅𝑠 − 𝑥̅𝑟̅𝑠, 

ya que 𝑥̅ es una magnitud poblacional conocida, que proporciona 

al estimador insesgado de la media poblacional a la media muestral 

𝑦̅𝑠. 

Otra forma de calcular el sesgo de 𝑟̅𝑠 para estimar 𝑅 es 

𝐵(𝑟̅𝑠) = 𝐸(𝑟̅𝑠) − 𝑅 = 𝐸(𝑟̅𝑠) −
𝐸(𝑦̅𝑠)

𝐸(𝑥̅𝑠)
= 
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𝐸(𝑟̅𝑠)𝐸(𝑥̅𝑠) − 𝐸(𝑦̅𝑠)

𝑥̅
= 

𝐸(𝑟̅𝑠)𝐸(𝑥̅𝑠) − 𝐸(𝑟̅𝑠𝑥̅𝑠) + 𝐸(𝑟̅𝑠𝑥̅𝑠) − 𝐸(𝑦̅𝑠)

𝑥̅
= 

−𝐶𝑜𝑣(𝑟̅𝑠, 𝑥̅𝑠) + 𝐸(𝑟̅𝑠𝑥̅𝑠 − 𝑦̅𝑠)

𝑥̅
. 

Podemos considerar como estimador insesgado de 𝐸(𝑟̅𝑠𝑥̅𝑠 − 𝑦̅𝑠) al 

estadístico 

𝑟̅𝑠𝑥̅𝑠 − 𝑦̅𝑠 =
−𝑡𝐻𝑅 + 𝑥̅𝑟̅𝑠
(𝑁 − 1)𝑛

𝑁(𝑛 − 1), 

siendo 𝑡𝐻𝑅  el estimador insesgado de la media poblacional 

propuesto por Hartley y Ross. Como 𝐸(𝑡𝐻𝑅) = 𝐸(𝑦̅𝑠) = 𝑦̅ , 

igualando los estimadores insesgados obtenidos de los sesgos de 

Hartley y Ross con el correspondiente a la otra expresión del sesgo 

de 𝑟̅𝑠 podemos construir un estimador insesgado de la covarianza 

𝐶𝑜𝑣(𝑟̅𝑠, 𝑥̅𝑠) del modo 

−
𝑦̅𝑠
𝑥̅
+ 𝑟̅𝑠 =

1

𝑥̅
[−𝐶𝑜𝑣̂(𝑟̅𝑠, 𝑥̅𝑠) +

−𝑦̅𝑠 + 𝑥̅𝑟̅𝑠
(𝑁 − 1)𝑛

𝑁(𝑛 − 1)], 

de donde 

𝐶𝑜𝑣̂(𝑟̅𝑠, 𝑥̅𝑠) =
𝑁 − 𝑛

(𝑁 − 1)𝑛
(𝑦̅𝑠 − 𝑥̅𝑟̅𝑠). 

Sustituyendo este estimador insesgado en la fórmula del estimador 

insesgado del sesgo de 𝑟̅𝑠, tenemos 

𝐵̂(𝑟̅𝑠) =
1

𝑥̅
[
𝑁 − 𝑛

(𝑁 − 1)𝑛
(𝑥̅𝑟̅𝑠 − 𝑦̅𝑠) + 𝑥̅𝑠𝑟̅𝑠 − 𝑦̅𝑠]. 

Por tanto otro estimador insesgado de la media poblacional es 

𝑡 = 𝑥̅[𝑟̅𝑠 − 𝐵̂(𝑟̅𝑠)] = 
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𝑁(𝑛 − 1)

(𝑁 − 1)𝑛
𝑥̅𝑟̅𝑠 +

𝑁(𝑛 + 1) − 2𝑛

(𝑁 − 1)𝑛
𝑦̅𝑠 − 𝑥̅𝑠𝑟̅𝑠. 

De este estimador y del de Hartley y Ross, podemos obtener otro 

también insesgado de la media poblacional que no depende de la 

media muestral 𝑦̅𝑠  en el muestreo irrestricto aleatorio de tamaño 

efectivo fijo 𝑛, 

𝑡∗ =
𝑛(𝑁 − 1)

𝑁 − 𝑛
𝑥̅𝑠𝑟̅𝑠 −

(𝑛 − 1)𝑁

𝑁 − 𝑛
𝑥̅𝑟̅𝑠. 

 

Ejercicio 6.9. Definimos el estimador producto del tipo 

𝑡𝑃 =
𝑥̅𝑠𝑦̅𝑠
𝑚
, 

donde el denominador es la media armónica equiprobable entre las 

muestras conjunto o no ordenadas de tamaño efectivo fijo 𝑛 de una 

población finita de tamaño 𝑁, y 𝑥 es una variable auxiliar positiva. 

Comprobar que el diseño muestral 𝑝 definido para toda muestra 

conjunto 𝑠 de tamaño efectivo fijo 𝑛, 

𝑝(𝑠) =
𝑚

(
𝑁
𝑛
) 𝑥̅𝑠

> 0, 

proporciona un estimador insesgado de la media poblacional 𝑦̅. 

Finalmente obtener la expresión de su varianza. 

Solución. Veamos primero que 𝑝  es un diseño muestral no 

ordenado definido sobre el conjunto 𝑆 = {𝑠: 𝑠 ⊂ 𝑈, card(𝑠) = 𝑛}, 

siendo 𝑈  el conjunto de 𝑁  unidades de la población finita. En 

efecto, para toda muestra conjunto de tamaño muestral efectivo 𝑛, 
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𝑝(𝑠) =
(
𝑁
𝑛
)

∑
1
𝑥̅𝑠

𝑠∈𝑆

1

(
𝑁
𝑛
) 𝑥̅𝑠

=

1
𝑥̅𝑠

∑
1
𝑥̅𝑠

𝑠∈𝑆

> 0 

por ser 𝑥 una variable positiva. Además, 

∑𝑝(𝑠)

𝑠∈𝑆

=∑

1
𝑥̅𝑠

∑
1
𝑥̅𝑠

𝑠∈𝑆𝑠∈𝑆

=
∑

1
𝑥̅𝑠

𝑠∈𝑆

∑
1
𝑥̅𝑠

𝑠∈𝑆

= 1. 

La esperanza matemática de 𝑡𝑃 es 

𝐸(𝑡𝑃) =∑𝑡𝑃(𝑑)𝑝(𝑠)

𝑠∈𝑆

=∑
𝑥̅𝑠𝑦̅𝑠
𝑚

𝑚

(
𝑁
𝑛
) 𝑥̅𝑠𝑠∈𝑆

=
1

(
𝑁
𝑛
)
∑𝑦̅𝑠
𝑠∈𝑆

= 𝑦̅, 

por ser la media muestral 𝑦̅𝑠  de tamaño efectivo fijo 𝑛  un 

estadístico insesgado de la media poblacional con diseño de 

muestreo irrestricto aleatorio. 

La varianza de 𝑡𝑃 es 

𝑉(𝑡𝑃) = 𝐸(𝑡𝑃
2) − [𝐸(𝑡𝑃)]

2 =∑
𝑥̅𝑠
2𝑦̅𝑠

2

𝑚2

𝑚

(
𝑁
𝑛
) 𝑥̅𝑠𝑠∈𝑆

− 𝑦̅2 = 

1

𝑚 (
𝑁
𝑛
)
∑𝑥̅𝑠𝑦̅𝑠

2

𝑠∈𝑆

− 𝑦̅2, 

que es estimable sin sesgo si y solo si la probabilidad de inclusión 

de todas las unidades 𝑖  y 𝑗  es positiva, lo cual se verifica para 

cualquier diseño muestral 𝑝 con 𝑛 ≥ 2. 
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Ejercicio 6.10. Proponer un diseño muestral no ordenado para el 

que el estimador de razón usual de la media poblacional resulte 

insesgado con una variable auxiliar positiva, y calcular su varianza. 

Solución. El estimador de razón usual es 

𝑡𝑅 =
𝑦̅𝑠
𝑥̅𝑠
𝑥̅. 

Un diseño muestral de tamaño efectivo fijo 𝑛 que hace de este 

estimador insesgado para la media poblacional 𝑦̅ es 

𝑝(𝑠) =
𝑥̅𝑠

𝑥̅ (
𝑁
𝑛
)
> 0. 

Además, 

∑𝑝(𝑠)

𝑠∈𝑆

=
1

𝑥̅ (
𝑁
𝑛
)
∑𝑥̅𝑠
𝑠∈𝑆

= 1, 

por ser la media muestral de tamaño efectivo fijo 𝑛 insesgada para 

la media poblacional en muestreo irrestricto aleatorio. 

Veamos 𝑡𝑅  que es insesgado con este diseño muestral. En 

efecto, 

𝐸(𝑡𝑅) =∑
𝑦̅𝑠𝑥̅

𝑥̅𝑠
𝑠∈𝑆

𝑥̅𝑠

𝑥̅ (
𝑁
𝑛
)
= 𝐸(𝑦̅𝑠) = 𝑦̅. 

La varianza de 𝑡𝑅 con este diseño muestral es 

𝑉(𝑡𝑅) = 𝐸(𝑡𝑅
2) − [𝐸(𝑡𝑅)]

2 = 

∑
𝑦̅𝑠
2𝑥̅2

𝑥̅𝑠
2

𝑠∈𝑆

𝑥̅𝑠

𝑥̅ (
𝑁
𝑛
)
− 𝑦̅2 =

𝑥̅

(
𝑁
𝑛
)
∑

𝑦̅𝑠
2

𝑥̅𝑠
𝑠∈𝑆

− 𝑦̅2. 
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Ejercicio 6.11. Una estrategia muestral (𝑝1, 𝑡1) es insesgada para 

estimar el parámetro poblacional 𝑀1. Además 𝑡2 es otro estadístico 

positivo cuya media de sus inversas ponderadas por 𝑝1  es 𝑚2 . 

Demostrar que el estimador 

𝑡 =
𝑡1𝑡2
𝑚2

 

con el nuevo diseño muestral 

𝑝(𝑠) =
1

𝑚2𝑡2
𝑝1(𝑠) 

constituye una nueva estrategia (𝑝, 𝑡) insesgada para estimar 𝑀1. 

Obtener una expresión de su varianza. 

Solución. El diseño muestral 𝑝 lo es porque si 𝑡2 es positivo para 

toda muestra 𝑠 ∈ 𝑆, la media de sus inversas ponderadas 

𝑚2 =∑
1

𝑡2(𝑑)
𝑝1(𝑠)

𝑠∈𝑆

> 0, 

donde 𝑑 es el dato muestral asociado a la muestra 𝑠. Por tanto, el 

diseño muestral 𝑝 verifica las condiciones 

𝑝(𝑠) =
1

𝑚2𝑡2(𝑑)
𝑝1(𝑠) ≥ 0 

y  

∑𝑝(𝑠)

𝑠∈𝑆

=
1

𝑚2
∑

1

𝑡2(𝑑)
𝑝1(𝑠)

𝑠∈𝑆

= 1. 

Luego, la esperanza matemática de la estrategia (𝑝, 𝑡) es 

𝐸(𝑝, 𝑡) =∑
𝑡1(𝑑)𝑡2(𝑑)

𝑚2

𝑚2

𝑡2(𝑑)
𝑝1(𝑠)

𝑠∈𝑆

= 𝑀1. 
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Por lo que (𝑝, 𝑡) es una nueva estrategia insesgada de 𝑀1. 

Su varianza es  

𝑉(𝑝, 𝑡) =∑
𝑡1
2(𝑑)𝑡2

2(𝑑)

𝑚2
2

𝑠∈𝑆

𝑚2

𝑡2(𝑑)
𝑝1(𝑠) − 𝑀1

2 = 

∑
𝑡1
2(𝑑)𝑡2(𝑑)

𝑚2
𝑝1(𝑠)

𝑠∈𝑆

−𝑀1
2. 

 

Ejercicio 6.12. Si (𝑝, 𝑡𝑖) es una estrategia insesgada para estimar 

𝑀𝑖, con 𝑖 = 1, 2, proponer otra estrategia insesgada de 𝑀1 del tipo 

de razón basada en las primeras, suponiendo que 𝑡2  es un 

estadístico positivo. 

Solución. La estrategia que proponemos es (𝑝′, 𝑡′), donde 

𝑡′(𝑑) =
𝑡1(𝑑)

𝑡2(𝑑)
𝑀2, 

y el nuevo diseño muestral es 

𝑝′(𝑠) =
𝑡2(𝑑)

𝑀2
𝑝(𝑠), 

que es positivo para toda muestra 𝑠, y verifica que 

∑𝑝′(𝑠)

𝑠∈𝑆

=
𝑀2

𝑀2
= 1. 

Luego, 

𝐸(𝑝′, 𝑡′) = ∑
𝑡1(𝑑)

𝑡2(𝑑)
𝑀2

𝑠∈𝑆

𝑡2(𝑑)

𝑀2
𝑝(𝑠) = 𝑀1. 
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La varianza de esta estrategia es 

𝑉(𝑝′, 𝑡′) = 𝑀2∑
𝑡1
2(𝑑)

𝑡2(𝑑)
𝑝(𝑠)

𝑠∈𝑆

−𝑀1
2. 

 

Ejercicio 6.13. Proponemos como estimador de regresión 

modificado con diseño de muestreo irrestricto aleatorio a 

𝑡 = 𝑦̅𝑠 +

1
𝑛
∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)𝑖∈𝑠

𝜇02
(𝑥̅ − 𝑥̅𝑠), 

con 𝜇02 la varianza poblacional de la variable auxiliar 𝑥. Nótese 

que el término 

1
𝑛
∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)𝑖∈𝑠

𝜇02
 

es un estimador insesgado del coeficiente 𝜇11 𝜇02⁄  que minimiza la 

varianza del estimador de regresión lineal usual si el coeficiente 𝑏 

fuera una constante. Obtener la esperanza matemática del 

estimador propuesto 𝑡 y estimar insesgadamente el sesgo de 𝑡. 

Solución. 

𝐸(𝑡) = 𝛼10 +
𝐸 {[

1
𝑛
∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)𝑖∈𝑠 ] (𝑥̅ − 𝑥̅𝑠)}

𝜇02
= 

𝛼10 −
𝐶𝑜𝑣(𝑝̅𝑠, 𝑥̅𝑠)

𝜇02
. 

Aquí hemos denotado por 𝑝̅𝑠 a la media muestral de los valores de 

la variable 𝑝𝑖 = 𝑦𝑖(𝑥𝑖 − 𝑥̅). Por lo que un estimador insesgado del 

parámetro 𝐶𝑜𝑣(𝑝̅𝑠, 𝑥̅𝑠) es 
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𝑁 − 𝑛

(𝑁 − 1)𝑛2
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

2

𝑖 ∈ 𝑠

, 

o bien, 

𝑁 − 𝑛

𝑁𝑛
𝑠𝑝𝑥 , 

siendo 𝑠𝑝𝑥  la cuasicovarianza muestral de las variables 𝑝  y 𝑥 . 

También podíamos haber procedido así:  

𝐸 {[
1

𝑛
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑖∈𝑠

] (𝑥̅ − 𝑥̅𝑠)} = 

𝐸 [
1

𝑛
(𝑛𝑎11 − 𝑛𝑎10𝛼01)(𝛼01 − 𝑎01)] = 

𝛼01𝐸(𝑎11 − 𝑎10𝛼01) − 𝐸(𝑎11𝑎01 − 𝑎10𝑎01𝛼01) = 

𝛼01𝜇11 − 𝐸(𝑎11𝑎01 − 𝑎10𝑎01𝛼01). 

Por lo que, sustituyendo en el numerador de la fracción que explica 

la esperanza matemática de 𝑡, tenemos la esperanza buscada. 

Un estimador insesgado del sesgo de 𝑡 es 

𝐵̂(𝑡) =
𝛼01𝜇̂11 − (𝑎11𝑎01 − 𝑎10𝑎01𝛼01)

𝜇02
, 

o bien, directamente otra expresión de un estimador insesgado del 

sesgo de 𝑡 es 

𝐵̂(𝑡) =

1
𝑛
[∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)𝑖∈𝑠 ](𝑥̅ − 𝑥̅𝑠)

𝜇02
= 

(𝑎11 − 𝑎10𝛼01)(𝛼01 − 𝑎01)

𝜇02
. 
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O bien, 

𝐵̂(𝑡) = −

𝑁 − 𝑛
𝑁𝑛

𝑠𝑝𝑥

𝜇02
. 

O también, la más recomendable, al disponer de un mayor grado 

de libertad en la estimación que la anterior, 

𝐵̂(𝑡) = −

𝑁 − 𝑛
(𝑁 − 1)𝑛2

∑ 𝑦𝑖(𝑥𝑖 − 𝑥̅)
2

𝑖∈𝑠

𝜇02
. 

Como consecuencia, el estimador 𝑡 − 𝐵̂(𝑡) es insesgado para 

estimar la media poblacional 𝑦̅. 

 

Ejercicio 6.14. El estimador diferencia, con muestreo irrestricto 

aleatorio de tamaño efectivo fijo 𝑛, se define como 

𝑡𝐷 = 𝑦̅𝑠 + 𝑥̅ − 𝑥̅𝑠. 

Justificar que este estimador es insesgado para estimar la media 

poblacional 𝑦̅. Obtener su varianza, y estimarla sin sesgo. 

Solución. Es insesgado 𝑡𝐷 pues 

𝐸(𝑡𝐷) = 𝐸(𝑦̅𝑠) + 𝑥̅ − 𝐸(𝑥̅𝑠) = 𝑦̅ − 𝑥̅ + 𝑥̅ = 𝑦̅. 

Su varianza es 

𝑉(𝑡𝐷) = 𝑉(𝑦̅𝑠) + 𝑉(𝑥̅𝑠) − 2𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) = 

𝑁 − 𝑛

𝑁𝑛
𝑆𝑦
2 +

𝑁 − 𝑛

𝑁𝑛
𝑆𝑥
2 − 2

𝑁 − 𝑛

𝑁𝑛
𝑆𝑦𝑥 = 

𝑁 − 𝑛

𝑁𝑛
(𝑆𝑦

2 + 𝑆𝑥
2 − 2𝑆𝑦𝑥). 

Un estimador insesgado de la varianza 𝑉(𝑡𝐷) es 



 
 

254 
 

𝑉̂(𝑡𝐷) =
𝑁 − 𝑛

𝑁𝑛
(𝑠𝑦
2 + 𝑠𝑥

2 − 2𝑠𝑦𝑥), 

donde aparecen cuasivarianzas muestrales y la cuasicovarianza 

muestral de las variables 𝑦 y 𝑥. 

 

Ejercicio 6.15. Disponemos de dos estimadores de la media 

poblacional 𝑦̅ , el estimador diferencia 𝑡𝐷 = 𝑦̅𝒔 + 𝑥̅ − 𝑥̅𝒔 , y el 

estimador suma que definimos 𝑡𝑆 = 𝑦̅𝒔 + 𝑥̅𝒔 − 𝑥̅. En ellos, 𝑥 es una 

variable auxiliar. Obtener sus varianzas y compararlas. ¿Podemos 

saber con los datos de la muestra cuál estimador es mejor en 

precisión en un caso práctico? 

Solución. Ambos estimadores 𝑡𝐷 y 𝑡𝑆 son insesgados para estimar 

la media poblacional 𝑦̅. El estimador diferencia es más preciso que 

el estimador suma si y solo si 

𝑉(𝑡𝐷) < 𝑉(𝑡𝑆). 

El concepto de “precisión de un estimador insesgado” es la 

inversa de su varianza. La condición anterior es equivalente en 

muestreo aleatorio simple de tamaño fijo 𝑛 a que 

𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔) =
𝜇11
𝑛
> 0, 

que equivale a que 

𝜇11 > 0. 

En ellas hemos denotado por 𝜇11 a la covarianza poblacional de las 

variables 𝑦 y 𝑥 , parámetro desconocido que puede ser estimado 

insesgadamente, en muestreo aleatorio simple de tamaño fijo 𝑛, por 

el estimador 
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𝜇̂11 =
1

𝑛
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑖∈𝒔

. 

Si este estimador fuese positivo, como estima insesgadamente a la 

covarianza poblacional (y por ser una media muestral, su varianza 

en muestreo aleatorio simple es una constante por 𝑛−1), indicará 

que aproximadamente dicha covarianza poblacional es positiva 

también, y por tanto el estimador diferencia es mejor, desde el 

punto de vista de su precisión aproximada, que el estimador suma. 

Otro estimador insesgado de la covarianza poblacional en muestreo 

aleatorio simple es 

𝑛

𝑛 − 1
𝑚11𝒔 =

1

𝑛 − 1
∑𝑦𝑖(𝑥𝑖 − 𝑥̅𝒔)

𝑖 ∈ 𝒔

, 

que es la cuasicovarianza muestral en muestreo aleatorio simple de 

tamaño 𝑛, que tiene un grado de libertad menos que el anterior 

estimador insesgado. 

En el razonamiento anterior podemos cambiar el sentido de 

todas las desigualdades para concluir cuando conviene elegir el 

estimador suma como mejor que el estimador diferencia. 

Finalmente, si hacemos de todas ellas igualdades, nos indicarán 

cuando ambos estimadores son equivalentes, y si 𝜇̂11 ≈ 0 de la 

muestra inferimos que ambos estimadores serían aproximadamente 

equivalentes o tendrían similar precisión. 

Por último, si en lugar de muestreo aleatorio simple 

hubiéramos usado el muestreo irrestricto aleatorio de tamaño 

efectivo fijo 𝑛 , la muestra, 𝑠 , sería ahora un conjunto. Los 

razonamientos serían semejantes, teniendo en cuenta que ahora 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦𝑥 =

𝑁 − 𝑛

(𝑁 − 1)𝑛
𝜇11, 
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por lo que las comparaciones y desigualdades para elegir entre los 

estimadores diferencia y suma (sustituyendo la muestra ordenada 

𝒔 por la muestra conjunto 𝑠) siguen siendo válidas en el muestreo 

irrestricto aleatorio de tamaño efectivo fijo 𝑛 . El estimador 

insesgado de la covarianza poblacional con el máximo grado de 

libertad es ahora 

𝜇̂11 =
1

𝑛
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑖 ∈ 𝑠

, 

que es una media muestral. Otro estimador insesgado en muestreo 

irrestricto aleatorio, de la covarianza poblacional 𝜇11, con un grado 

de libertad menos que el anterior, y recomendado cuando se 

desconoce 𝑥̅, es 

𝑁 − 1

𝑁

𝑛

𝑛 − 1
𝑚11𝑠 =

𝑁 − 1

𝑁(𝑛 − 1)
∑𝑦𝑖(𝑥𝑖 − 𝑥̅𝑠)

𝑖 ∈ 𝑠

. 

 

Ejercicio 6.16. Los estimadores tradicionales en muestreo 

aleatorio simple con reemplazamiento de tamaño fijo 𝑛  con 

información auxiliar, es decir el estimador de razón, el de regresión 

lineal y el de producto, ¿proporcionan estimaciones insesgadas de 

la media poblacional? Describir consecuencias de la respuesta 

anterior cuando los estimadores se aplican a cantidades 

económicas. 

Solución. Como se estudia en la parte teórica de estimadores 

indirectos, los estimadores de razón, de regresión lineal y de 

producto son aproximadamente insesgados. Es decir, son 

insesgados para estimar la media poblacional bajo hipótesis que por 

lo general no se dan en la práctica, como una relación de 

proporcionalidad directa, una relación lineal, o una relación inversa 
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entre la variable a observar de interés y la variable auxiliar. De 

hecho, si estas relaciones se dieran, un solo dato daría estimaciones 

exactas en el caso de los estimadores de razón y de producto, 

mientras que con dos datos diferentes tendríamos estimaciones 

exactas en el caso del estimador de regresión. 

La consecuencia es que estos tres estimadores son sesgados 

en condiciones generales, lo que se traduce en que estas 

“estimaciones” con datos económicos no son “justas en promedio” 

o son sesgados para el parámetro media poblacional a estimar. 

 

Ejercicio 6.17. Corregir los estadísticos “producto de medias” y 

“media de productos” para conseguir con ellos estimadores 

insesgados de la media poblacional en muestreo irrestricto 

aleatorio de tamaño fijo n. 

Solución. El estimador “producto de medias” está proporcionado 

por la fórmula 

𝑡𝑝 =
𝑦̅𝑠𝑥̅𝑠
𝑥̅
. 

Para muestreo irrestricto aleatorio o muestreo aleatorio 

simple sin reemplazamiento de tamaño muestral fijo 𝑛. El sesgo 

del estimador “producto de medias” 𝑡𝑝 es 

𝐵(𝑡𝑝) =
𝑁 − 𝑛

(𝑁 − 1)𝑛𝐴01
𝑀11, 

donde 𝐴01  es la media poblacional 𝑥̅ , y 𝑀11  es la covarianza 

poblacional de las variables 𝑦 de interés y 𝑥 auxiliar. Un estimador 

insesgado de este sesgo es 

𝐵1̂(𝑡𝑝) =
𝑁 − 𝑛

(𝑁 − 1)𝑛𝐴01
(𝑀11)̂ =

𝑁 − 𝑛

𝑁(𝑛 − 1)𝐴01
𝑚11, 
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donde 𝑚11 es la covarianza muestral de las variables 𝑦 y 𝑥. Otro 

estimador insesgado del sesgo de 𝑡𝑝 es 

𝐵2̂(𝑡𝑝) =
𝑁 − 𝑛

(𝑁 − 1)𝑛𝐴01
(𝑎11 − 𝑎10𝐴01), 

donde 𝑎11 es la media muestral de los productos 𝑦𝑖𝑥𝑖, o momento 

muestral con respecto al origen de órdenes 1 y 1. Entonces, dos 

estimadores “producto de medias” corregidos insesgados para la 

media poblacional 𝑦̅ en muestreo irrestricto aleatorio de tamaño 

muestral fijo 𝑛 son 

𝑡𝑢𝑝 = 𝑡𝑝 − 𝐵1̂(𝑡𝑝) =
𝑎10𝑎01
𝐴01

−
𝑁 − 𝑛

𝑁(𝑛 − 1)𝐴01
𝑚11 

y  

𝑡𝑢𝑝
∗ = 𝑡𝑝 − 𝐵2̂(𝑡𝑝) =

𝑎10𝑎01
𝐴01

−
𝑁 − 𝑛

(𝑁 − 1)𝑛𝐴01
(𝑎11 − 𝑎10𝐴01). 

Otro estimador tipo producto, basado en el estadístico “media 

de productos”, es 

𝑡𝑚𝑝 =

1
𝑛
∑ 𝑦𝑖𝑥𝑖𝑖∈𝑠

𝑥̅
=
𝑎11
𝐴01

, 

el cual tiene el sesgo, para diseño de muestreo irrestricto aleatorio 

de tamaño muestral fijo 𝑛, 

𝐵(𝑡𝑚𝑝) = 𝐸(𝑡𝑚𝑝) − 𝑦̅ =
𝐴11
𝐴01

− 𝐴10 =
𝑀11
𝐴01

. 

Este sesgo es estimable insesgadamente por 

𝐵1̂(𝑡𝑚𝑝) =
(𝑀11)̂

𝐴01
=

(𝑁 − 1)𝑛

𝑁(𝑛 − 1)𝐴01
𝑚11 
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y por  

𝐵2̂(𝑡𝑚𝑝) =
𝑎11 − 𝑎10𝐴01

𝐴01
=
𝑎11
𝐴01

− 𝑎10. 

Así, se pueden elaborar dos estimadores corregidos insesgados 

basados en el estadístico “media de productos”, concretamente 

𝑡𝑢𝑚𝑝 = 𝑡𝑚𝑝 − 𝐵1̂(𝑡𝑚𝑝) =
𝑎11
𝐴01

−
(𝑁 − 1)𝑛

𝑁(𝑛 − 1)𝐴01
𝑚11, 

el cual es un estimador media de productos corregido insesgado, y  

𝑡𝑢𝑚𝑝
∗ = 𝑡𝑚𝑝 − 𝐵2̂(𝑡𝑚𝑝) = 𝑎10. 

Este último estimador corresponde directamente a la media 

muestral en el muestreo irrestricto aleatorio de tamaño muestral fijo 

𝑛, que no depende del estadístico media de productos. 

 

Ejercicio 6.18. Proponer un estimador insesgado de la media 

poblacional que aproveche el estadístico producto de medias 

muestrales, en muestreo irrestricto aleatorio. 

Solución. El estimador producto 𝑡𝑃  fue propuesto por Murthy 

(1964) con diseño de muestreo aleatorio simple sin 

reemplazamiento de tamaño muestral efectivo 𝑛 . El estimador 

producto, de la media poblacional 𝑦̅ = (1/𝑁)∑ 𝑦𝑖
𝑁
𝑖=1 , siendo 𝑁 el 

tamaño poblacional, puede expresarse del modo 

𝑡𝑃 =
𝑦̅𝑠𝑥̅𝑠
𝑥̅
. 

Aquí 𝑦̅𝑠 = (1/𝑛)∑ 𝑦𝑖𝑖∈𝑠  es la media muestral de la variable de 

interés 𝑦, 𝑥̅𝑠 = (1/𝑛)∑ 𝑥𝑖𝑖∈𝑠  es la media muestral de la variable 

auxiliar 𝑥 positiva en todas las unidades de la población finita, el 

subíndice 𝑠  es la muestra no ordenada o conjunto de tamaño 
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muestral efectivo o cardinal 𝑛, y 𝑥̅ = (1/𝑁)∑ 𝑥𝑖
𝑁
𝑖=1  es la media 

poblacional de la variable auxiliar. 

El objeto de este ejercicio es indicar que aunque el uso de 

información auxiliar en la estimación de funciones paramétricas es 

realizada en los artículos de investigación sobre el tema con mucha 

frecuencia con aproximaciones del sesgo y del error cuadrático 

medio, sin embargo en algunos casos, como los que presentamos, 

estos sesgos pueden corregirse. Además damos orientaciones útiles 

para el uso eficiente de estos procedimientos mediante métodos de 

estimación insesgada del valor óptimo del que depende el 

estimador insesgado de mínima varianza de una clase de dichos 

estimadores de la media poblacional. 

Proponemos varias clases de estimadores producto 

corregidos insesgados. Unas clases de ellas son basadas en un 

estimador producto generalizado corregido insesgado en base al 

estimador producto generalizado, que era sesgado para la media 

poblacional y cuyo sesgo fue identificado con exactitud, debido a 

Ruiz Espejo (1991). Otras clases de estimadores producto 

corregidos insesgados han sido introducidas en este libro, que nos 

permitirán seleccionar un estimador óptimo teórico que depende de 

una función paramétrica desconocida antes del muestreo, pero esta 

función paramétrica puede ser estimable insesgadamente a partir 

de la misma muestra e información disponibles; lo que nos permite 

obtener estimadores aproximadamente óptimos. El estimador 

insesgado teóricamente óptimo tiene una varianza menor o igual a 

la “varianza del estimador producto corregido insesgado” debido 

al autor (2016c). 

El estimador producto generalizado fue propuesto por Ruiz 

Espejo (1991) y su expresión es la siguiente 
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𝑡𝑃𝐺 =
𝑦̅𝑠[𝑥̅𝑠 + 𝑘(𝑥̅ − 𝑥̅𝑠)]

𝑥̅
. 

Aquí 𝑘 es una constante. Este estimador general 𝑡𝑃𝐺  es en general 

sesgado, y generaliza a la media muestral insesgada 𝑦̅𝑠 (para 𝑘 =

1) y al estimador producto sesgado 𝑡𝑃 (para 𝑘 = 0). 

Para obtener el estimador insesgado a partir del estimador 𝑡𝑃𝐺  

obtenemos la esperanza matemática de éste. 

𝐸(𝑡𝑃𝐺) =
𝐸(𝑦̅𝑠𝑥̅𝑠)

𝑥̅
− 𝑘

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
 

=
𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) + 𝑦̅𝑥̅

𝑥̅
− 𝑘

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
= 𝑦̅ + (1 − 𝑘)

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
. 

De aquí, el sesgo de este estimador producto generalizado 𝑡𝑃𝐺  es 

𝐵(𝑡𝑃𝐺) = 𝐸(𝑡𝑃𝐺) − 𝑦̅ = (1 − 𝑘)
𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
. 

Este sesgo puede ser estimado insesgadamente por 

𝐵̂(𝑡𝑃𝐺) = (1 − 𝑘)
𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
= (1 − 𝑘)

𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑆̂𝑦,𝑥 . 

Aquí hemos denotado por 𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑠) a un estimador insesgado de 

la covarianza 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦,𝑥 . 

Siendo 𝑆𝑦,𝑥 la cuasicovarianza poblacional de las variables 𝑦 y 𝑥, 

es decir 

𝑆𝑦,𝑥 =
1

𝑁 − 1
∑(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)

𝑁

𝑖=1

. 
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Esta cuasicovarianza poblacional 𝑆𝑦,𝑥  puede ser estimada 

insesgadamente a partir de cualquiera de uno de estos dos 

estadísticos, con 𝑛 − 1 grados de libertad 

𝑠𝑦,𝑥 =
1

𝑛 − 1
∑(𝑦𝑖 − 𝑦̅𝑠)(𝑥𝑖 − 𝑥̅𝑠)

𝑖∈𝑠

. 

O bien, con 𝑛 grados de libertad 

𝑠′𝑦,𝑥 =
𝑁

(𝑁 − 1)𝑛
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑖∈𝑠

. 

Por tanto, un estimador insesgado de la cuasicovarianza 

poblacional 𝑆𝑦,𝑥  puede ser 𝑆̂𝑦,𝑥 = 𝑠𝑦,𝑥  o bien 𝑆̂𝑦,𝑥 = 𝑠′𝑦,𝑥 . Como 

consecuencia, una clase (al variar la constante 𝑘) de estimadores 

producto generalizado insesgados será 

𝑡𝑃𝐺𝑢 = 𝑡𝑃𝐺 − 𝐵̂(𝑡𝑃𝐺) = 𝑡𝑃𝐺 + (1 − 𝑘)
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠𝑦,𝑥 . 

Y otra clase relacionada de estimadores producto generalizado 

insesgado es 

𝑡′𝑃𝐺𝑢 = 𝑡𝑃𝐺 + (1 − 𝑘)
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥 . 

De este modo queda corregido el sesgo del estimador 

producto generalizado. Sin embargo el valor exacto de 𝑘 que daría 

lugar a un estimador insesgado óptimo de cada clase de 

estimadores no es fácil de obtener ni de estimar. Por esto vamos a 

proponer otra clase de estimadores insesgados basada en el 

estimador producto generalizándolo de modo más sencillo y 

tratable estadísticamente. 

Proponemos la siguiente clase de estimadores producto 

generalizado 
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𝑡𝑃𝐺′ =
𝑦̅𝑠𝑥̅𝑠 + 𝑘(𝑥̅ − 𝑥̅𝑠)

𝑥̅
. 

Donde aquí, 𝑘 es una constante. Este estimador tiene por esperanza 

matemática 

𝐸(𝑡𝑃𝐺′) =
𝐸(𝑦̅𝑠𝑥̅𝑠)

𝑥̅
=
𝑦̅𝑥̅ + 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠)

𝑥̅
= 𝑦̅ +

𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑆𝑦,𝑥 . 

Por lo que un estimador insesgado, para todo valor constante 

posible de 𝑘, basado en el estimador 𝑡𝑃𝐺′ es 

𝑡𝑃𝐺′𝑢 = 𝑡𝑃𝐺′ −
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥 . 

La varianza del estimador producto generalizado insesgado 

𝑡𝑃𝐺′𝑢 se obtiene a partir de 

𝑉(𝑡𝑃𝐺′) =
1

𝑥̅2
[𝑉(𝑦̅𝑠𝑥̅𝑠) + 𝑘

2𝑉(𝑥̅𝑠) − 2𝑘𝐶𝑜𝑣(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠)]. 

𝑉 (
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥) = 

(
𝑁 − 𝑛

𝑁𝑛𝑥̅
)
2

(
𝑁

𝑁 − 1
)
2 𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝐴2; 𝑦(𝑥−𝑥̅) − 𝐴1; 𝑦(𝑥−𝑥̅)

2 ]. 

Y 

𝐶𝑜𝑣 (𝑡𝑃𝐺′ ,
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥) = 

𝑁 − 𝑛

𝑁𝑛𝑥̅2
[𝐶𝑜𝑣(𝑦̅𝑠𝑥̅𝑠, 𝑠′𝑦,𝑥) − 𝑘𝐶𝑜𝑣(𝑥̅𝑠, 𝑠′𝑦,𝑥)]. 

Hemos denotado por 𝐴 con subíndice al momento poblacional de 

orden que se subindica, para la variable que se describe a 

continuación en el subíndice tras el orden del momento no central 

y del punto y coma “;”. Por esto, si queremos optimizar el valor de 

𝑘  que minimice la varianza 𝑉(𝑡𝑃𝐺′𝑢) , debemos derivar esta 
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varianza con respecto a 𝑘, e igualar a cero. De aquí se obtiene que 

multiplicando ambos miembros por 𝑥̅2, resulta la ecuación 

2𝑘𝑉(𝑥̅𝑠) = 2𝐶𝑜𝑣(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠) − 2
𝑁 − 𝑛

𝑁𝑛
𝐶𝑜𝑣(𝑥̅𝑠, 𝑠

′
𝑦,𝑥). 

Por lo que el valor óptimo de 𝑘  que hace mínima la varianza 

𝑉(𝑡𝑃𝐺′𝑢) será 

𝑘ó𝑝𝑡 =
𝐶𝑜𝑣(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠) −

𝑁 − 𝑛
𝑁𝑛

𝐶𝑜𝑣(𝑥̅𝑠, 𝑠′𝑦,𝑥)

𝑉(𝑥̅𝑠)
. 

Este valor es una función paramétrica que no es conocida antes de 

realizar el muestreo, por lo que su valor es teórico con miras a 

determinar el estimador producto generalizado corregido insesgado 

óptimo. Sin embargo, dicho valor óptimo puede ser estimado 

insesgadamente antes de elegir el estimador insesgado 𝑡𝑃𝐺′𝑢 

concreto con el que estimar la media poblacional 𝑦̅. Sustituyendo 

en la fórmula de 𝑘ó𝑝𝑡  las covarianzas del numerador por sus 

estimadores insesgados respectivos, se obtiene un estimador 

insesgado de 𝑘ó𝑝𝑡, concretamente 

𝑘̂ó𝑝𝑡 =
𝐶𝑜𝑣̂(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠) −

𝑁 − 𝑛
𝑁𝑛

𝐶𝑜𝑣̂(𝑥̅𝑠, 𝑠′𝑦,𝑥)

𝑉(𝑥̅𝑠)
. 

El denominador es una constante conocida, que no depende de los 

valores de la variable de interés 𝑦, sino que solo depende de la 

variable auxiliar 𝑥 definida y conocida para todas las unidades de 

la población finita de tamaño 𝑁 y del tamaño muestral 𝑛, ambos 

tamaños conocidos. Los estimadores insesgados concretos de 

dichas covarianzas pueden obtenerse del modo siguiente 

𝐶𝑜𝑣̂(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠) = 𝑦̅𝑠𝑥̅𝑠
2 − 𝐸̂(𝑦̅𝑠𝑥̅𝑠)𝑥̅ = 𝑦̅𝑠𝑥̅𝑠

2 − 𝑦̅𝑠𝑥̅𝑠𝑥̅ = 

𝑦̅𝑠𝑥̅𝑠(𝑥̅𝑠 − 𝑥̅). 
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Y 

𝐶𝑜𝑣̂(𝑥̅𝑠, 𝑠
′
𝑦,𝑥) =

𝑁 − 𝑛

𝑁𝑛
𝑆̂𝑥,𝑦(𝑥−𝑥̅) =

𝑁 − 𝑛

𝑁𝑛
𝑠′𝑥,𝑦(𝑥−𝑥̅) = 

𝑁 − 𝑛

(𝑁 − 1)𝑛2
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

2

𝑖∈𝑠

. 

Finalmente, hacemos notar que el valor óptimo de 𝑘 = 𝑘ó𝑝𝑡 

es un mínimo global, porque la derivada segunda de la varianza 

𝑉(𝑡𝑃𝐺′𝑢)  con respecto a 𝑘2 , da un valor positivo 

independientemente de 𝑘  (salvo en el caso particular en que la 

variable auxiliar 𝑥  fuera una constante positiva en todas las 

unidades de la población finita, un caso trivial en el que 𝑡𝑃𝐺′𝑢 =

𝑡𝑃𝐺′ = 𝑡𝑃 = 𝑦̅𝑠). Concretamente 

𝑑2𝑉(𝑡𝑃𝐺′𝑢)

𝑑𝑘2
=
2𝑉(𝑥̅𝑠)

𝑥̅2
> 0. 

Como consecuencia, la varianza 𝑉(𝑡𝑃𝐺′𝑢) alcanza el mínimo 

global para una variedad infinita de valores reales de 𝑘 entre los 

que se encuentra 𝑘 = 0, en cuyo caso tendríamos el “estimador 

producto corregido insesgado” debido al autor. Luego con el valor 

óptimo de 𝑘 = 𝑘ó𝑝𝑡 se obtendría un estimador 𝑡𝑃𝐺′𝑢 que mejora la 

precisión del último estimador indicado. En la práctica, 

sustituyendo 𝑘ó𝑝𝑡  por su estimador insesgado 𝑘̂ó𝑝𝑡  los resultados 

obtenidos con el estimador 𝑡𝑃𝐺′𝑢 son aproximadamente óptimos ya 

que su varianza estará próxima a la varianza mínima global. 

Se puede estimar insesgadamente la varianza del estimador 

𝑡𝑃𝐺′𝑢. Para ello sabemos que 

𝑉(𝑡𝑃𝐺′𝑢) = 𝑉(𝑡𝑃𝐺′) + 𝑉 (−
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥) 

−2𝐶𝑜𝑣 (𝑡𝑃𝐺′ ,
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥). 
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Por lo que sustituyendo en el segundo miembro las dos varianzas y 

la covarianza por sus respectivos estimadores insesgados, 

obtenemos el estimador insesgado de la varianza 𝑉(𝑡𝑃𝐺′𝑢), y que 

denotamos por la notación habitual 𝑉̂(𝑡𝑃𝐺′𝑢). Los tres sumandos 

del segundo miembro de la última fórmula son estimables 

insesgadamente. Veámoslo detenidamente. 

Primer sumando: 

𝑉(𝑡𝑃𝐺′) =
1

𝑥̅2
[𝑉(𝑦̅𝑠𝑥̅𝑠) + 𝑘

2𝑉(𝑥̅𝑠) − 2𝑘𝐶𝑜𝑣(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠)]. 

De aquí, el estimador insesgado del primer miembro es 

𝑉̂(𝑡𝑃𝐺′) =
1

𝑥̅2
[𝑉̂(𝑦̅𝑠𝑥̅𝑠) + 𝑘

2𝑉(𝑥̅𝑠) − 2𝑘𝐶𝑜𝑣̂(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠)]. 

Donde 

𝑉̂(𝑦̅𝑠𝑥̅𝑠) = 𝑦̅𝑠
2𝑥̅𝑠

2 − {[𝐸(𝑦̅𝑠𝑥̅𝑠)]
2}̂ . 

Siendo 

{[𝐸(𝑦̅𝑠𝑥̅𝑠)]
2}̂ = [(𝑦̅𝑥̅ +

𝑁 − 𝑛

𝑁𝑛
𝑆𝑦,𝑥)

2

]
̂

= 

[𝑦̅2𝑥̅2 + (
𝑁 − 𝑛

𝑁𝑛
)
2

𝑆𝑦,𝑥
2 + 2

𝑁 − 𝑛

𝑁𝑛
𝑦̅𝑥̅𝑆𝑦,𝑥]

̂
= 

[𝑦̅𝑠
2 − 𝑉̂(𝑦̅𝑠)]𝑥̅

2 + (
𝑁 − 𝑛

𝑁𝑛
)
2

(
𝑁

𝑁 − 1
)
2

[(𝐴1,1 − 𝐴1,0𝐴0,1)
2
]

̂
+ 

2𝑥̅
𝑁 − 𝑛

𝑁𝑛
(𝑦̅𝑆𝑦,𝑥)
̂ . 

Ahora, 
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𝑉̂(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑠𝑦
2 =

𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦̅𝑠)

2

𝑖∈𝑠

. 

[(𝐴1,1 − 𝐴1,0𝐴0,1)
2
]

̂
= [(𝐴1,1)

2
]

̂
+ (𝑦̅2)̂𝑥̅2 − 2(𝐴1,1𝐴1,0)

̂ 𝑥̅. 

Donde 

[(𝐴1,1)
2
]

̂
= 𝑎1; 𝑦2𝑥2 −

𝑁 − 𝑛

𝑁𝑛
𝑠𝑦𝑥
2 = 

1

𝑛
∑𝑦𝑖

2𝑥𝑖
2

𝑖∈𝑠

−
𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑(𝑦𝑖𝑥𝑖 − 𝑎1;𝑦𝑥)

2

𝑖∈𝑠

. 

Siendo 

𝑎1;𝑦𝑥 = 𝑎1,1 =
1

𝑛
∑𝑦𝑖𝑥𝑖
𝑖∈𝑠

. 

También 

(𝑦̅2)̂ = 𝑦̅𝑠
2 − 𝑉̂(𝑦̅𝑠) = 𝑦̅𝑠

2 −
𝑁 − 𝑛

𝑁𝑛
𝑠𝑦
2. 

Y 

(𝐴1,1𝐴1,0)
̂ = [𝐸(𝑦𝑥)𝐸(𝑦)]̂ = 𝐸̂(𝑦2𝑥) − 𝐶𝑜𝑣̂(𝑦𝑥, 𝑦) = 

𝑎2,1 −
𝑁 − 1

𝑁
𝑆̂𝑦𝑥,𝑦 = 

1

𝑛
∑𝑦𝑖

2𝑥𝑖
𝑖∈𝑠

−
𝑁 − 1

𝑁(𝑛 − 1)
∑(𝑦𝑖𝑥𝑖 − 𝑎1,1)(𝑦𝑖 − 𝑎1,0)

𝑖∈𝑠

. 

Finalmente, 

(𝑦̅𝑆𝑦,𝑥)
̂ = 𝑦̅𝑠𝑠′𝑦,𝑥 − 𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑠

′
𝑦,𝑥). 

Donde 
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𝑠′𝑦,𝑥 =
𝑁

(𝑁 − 1)𝑛
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑖∈𝑠

. 

Por lo que 

𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑠′𝑦,𝑥) =
𝑁 − 𝑛

𝑁𝑛
𝑆̂𝑦(𝑥−𝑥̅),𝑦 =

𝑁 − 𝑛

𝑁𝑛
𝑠𝑦(𝑥−𝑥̅),𝑦 = 

𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅𝑠)

𝑖∈𝑠

. 

Por otro lado, 

𝑉(𝑥̅𝑠) =
𝑁 − 𝑛

(𝑁 − 1)𝑛
(𝐴0,2 − 𝐴0,1

2 ). 

Para terminar, ya hemos visto que 

𝐶𝑜𝑣̂(𝑦̅𝑠𝑥̅𝑠, 𝑥̅𝑠) = 𝑦̅𝑠𝑥̅𝑠(𝑥̅𝑠 − 𝑥̅). 

Segundo sumando: 

𝑉̂ (
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥) = 

(
𝑁 − 𝑛

𝑁𝑛𝑥̅
)
2

(
𝑁

𝑁 − 1
)
2 𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝐴2; 𝑦(𝑥−𝑥̅) − 𝐴1; 𝑦(𝑥−𝑥̅)

2 ]̂ = 

(
𝑁 − 𝑛

𝑁𝑛𝑥̅
)
2

(
𝑁

𝑁 − 1
)
2𝑁 − 𝑛

𝑁𝑛
𝑠𝑦(𝑥−𝑥̅)
2 . 

Donde 

𝑠𝑦(𝑥−𝑥̅)
2 =

1

𝑛 − 1
∑[𝑦𝑖(𝑥𝑖 − 𝑥̅) − 𝑎1;𝑦(𝑥−𝑥̅)]

2

𝑖∈𝑠

. 

Con 
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𝑎1;𝑦(𝑥−𝑥̅) =
1

𝑛
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑖∈𝑠

. 

Tercer sumando: 

−2𝐶𝑜𝑣 (𝑡𝑃𝐺′ ,
𝑁 − 𝑛

𝑁𝑛𝑥̅
𝑠′𝑦,𝑥) = 

−2
𝑁 − 𝑛

𝑁𝑛𝑥̅2
[𝐶𝑜𝑣(𝑦̅𝑠𝑥̅𝑠, 𝑠

′
𝑦,𝑥) − 𝑘𝐶𝑜𝑣(𝑥̅𝑠, 𝑠

′
𝑦,𝑥)]. 

Que es estimable insesgadamente por 

−2
𝑁 − 𝑛

𝑁𝑛𝑥̅2
[𝐶𝑜𝑣̂(𝑦̅𝑠𝑥̅𝑠, 𝑠

′
𝑦,𝑥) − 𝑘𝐶𝑜𝑣̂(𝑥̅𝑠, 𝑠

′
𝑦,𝑥)]. 

Donde 

𝐶𝑜𝑣̂(𝑦̅𝑠𝑥̅𝑠, 𝑠′𝑦,𝑥) = 𝑦̅𝑠𝑥̅𝑠𝑠′𝑦,𝑥 − [𝐸(𝑦̅𝑠𝑥̅𝑠)𝐸(𝑠
′
𝑦,𝑥)]

̂ . 

Como 

𝐸(𝑦̅𝑠𝑥̅𝑠) = 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑠) + 𝐸(𝑦̅𝑠)𝑥̅ =
𝑁 − 𝑛

𝑁𝑛
𝑆𝑦,𝑥 + 𝐸(𝑦̅𝑠)𝑥̅. 

Y 

𝐸(𝑠′𝑦,𝑥) = 𝑆𝑦,𝑥 =
1

𝑁 − 1
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

𝑁

𝑖=1

. 

Entonces 

[𝐸(𝑦̅𝑠𝑥̅𝑠)𝐸(𝑠′𝑦,𝑥)]
̂ =

𝑁 − 𝑛

𝑁𝑛
(𝑆𝑦,𝑥

2 )̂ + 𝑥̅[𝐸(𝑦̅𝑠)𝐸(𝑠′𝑦,𝑥)]
̂ . 

Donde 

(𝑆𝑦,𝑥
2 )̂ = (𝑠′𝑦,𝑥)

2
− 𝑉̂(𝑠′𝑦,𝑥) = (𝑠′𝑦,𝑥)

2
−

𝑁 − 𝑛

(𝑁 − 1)𝑛
[𝑆𝑦(𝑥−𝑥̅)
2 ]̂ = 
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(𝑠′𝑦,𝑥)
2
−

𝑁 − 𝑛

(𝑁 − 1)𝑛
𝑠𝑦(𝑥−𝑥̅)
2 . 

Siendo 

𝑠𝑦(𝑥−𝑥̅)
2 =

1

𝑛 − 1
∑[𝑦𝑖(𝑥𝑖 − 𝑥̅) − 𝑎1;𝑦(𝑥−𝑥̅)]

2

𝑖∈𝑠

. 

Y 

[𝐸(𝑦̅𝑠)𝐸(𝑠′𝑦,𝑥)]
̂ = (𝑦̅𝑆𝑦,𝑥)

̂ = 𝑦̅𝑠𝑠′𝑦,𝑥 − 𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑠′𝑦,𝑥) = 

𝑦̅𝑠𝑠′𝑦,𝑥 −
𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅𝑠)

𝑖∈𝑠

. 

Que ha sido calculado con anterioridad. También, 

𝐶𝑜𝑣̂(𝑥̅𝑠, 𝑠
′
𝑦,𝑥) =

𝑁 − 𝑛

𝑁𝑛
𝑆̂𝑥,𝑦(𝑥−𝑥̅) =

𝑁 − 𝑛

𝑁𝑛
𝑠′𝑥,𝑦(𝑥−𝑥̅) = 

𝑁 − 𝑛

(𝑁 − 1)𝑛2
∑𝑦𝑖(𝑥𝑖 − 𝑥̅)

2

𝑖∈𝑠

. 

Por todo ello concluimos que el estimador producto 

generalizado corregido insesgado propuesto admite un estimador 

insesgado de su varianza con la información auxiliar disponible y 

con el diseño de muestreo irrestricto aleatorio de tamaño efectivo 

fijo 𝑛 . Además, este estimador insesgado de 𝑉(𝑡𝑃𝐺′𝑢)  puede 

calcularse en cada caso concreto mediante las estimaciones 

proporcionadas en esta sección, que aunque puedan ser laboriosas, 

resultan realizables cuidadosamente en la práctica. 

 

Ejercicio 6.19. Proponer un estimador insesgado de la media 

poblacional con información de dos variables auxiliares, en 

muestreo irrestricto aleatorio. 
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Solución. Un estimador insesgado general 𝑡𝑢 que aprovecha toda 

la información auxiliar disponible, concretamente el estimador 

𝑡𝑢 = 𝑦̅𝑠 +∑𝑘𝑖(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

. 

Donde los dos valores 𝑘𝑖 son constantes conocidas para todo 𝑖 =

1, 2; 𝑥̅𝑖 es la media poblacional de la variable auxiliar 𝑖-ésima; y 

𝑥̅𝑖,𝑠  es la media muestral de la variable auxiliar 𝑖-ésima para la 

misma muestra aleatoria simple sin reemplazamiento 𝑠, de tamaño 

𝑛, seleccionada. Así, tenemos 

𝑥̅𝑖 =
1

𝑁
∑𝑥𝑖,𝑘

𝑁

𝑘=1

. 

Y 

𝑥̅𝑖,𝑠 =
1

𝑛
∑𝑥𝑖,𝑘
𝑘∈𝑠

. 

Siendo 𝑥𝑖,𝑘 el valor de la variable auxiliar 𝑖-ésima en la unidad 𝑘 

de la población finita, es decir, con uno de los valores posibles de 

𝑘 = 1, 2,… , 𝑁. Sabemos que la esperanza matemática de la media 

muestral coincide con la media poblacional de la misma variable. 

Por tanto, 𝐸(𝑦̅𝑠) = 𝑦̅, y también para todo 𝑖 = 1, 2, tenemos que 

𝐸(𝑥̅𝑖,𝑠) = 𝑥̅𝑖 , haciendo uso de las propiedades del diseño de 

muestreo aleatorio simple sin reemplazamiento de tamaño efectivo 

fijo 𝑛. 

Ya que 𝑥̅𝑖,𝑠 es una media muestral, es un estimador insesgado 

de la media poblacional 𝑥̅𝑖 , por lo que tomado la esperanza 

matemática de 𝑡𝑢 tenemos 
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𝐸(𝑡𝑢) = 𝐸 [𝑦̅𝑠 +∑𝑘𝑖(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

] = 

𝐸(𝑦̅𝑠) +∑𝑘𝑖[𝑥̅𝑖 − 𝐸(𝑥̅𝑖,𝑠)]

2

𝑖=1

= 𝑦̅. 

Debido a las propiedades de la esperanza matemática, ya que para 

todos los valores posibles de 𝑖 = 1, 2 , tanto 𝑘𝑖  como 𝑥̅𝑖  son 

constantes. En resumen, el estimador general 𝑡𝑢 es insesgado para 

estimar la media poblacional de interés, con muestreo irrestricto 

aleatorio. 

Haciendo uso de las propiedades de la varianza de una 

variable aleatoria, tenemos que 

𝑉(𝑡𝑢) = 𝑉 [𝑦̅𝑠 +∑𝑘𝑖(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

] 

= 𝑉(𝑦̅𝑠) +∑𝑘𝑖
2𝑉(𝑥̅𝑖,𝑠)

2

𝑖=1

− 2∑𝑘𝑖𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠)

2

𝑖=1

 

+∑∑𝑘𝑖𝑘𝑗𝐶𝑜𝑣(𝑥̅𝑖,𝑠, 𝑥̅𝑗,𝑠)

2

𝑗≠𝑖

2

𝑖=1

. 

Aquí, en el último miembro, todo son constantes conocidas antes 

de proceder al muestreo y a la fase de estimación, salvo las 

funciones paramétricas 𝑉(𝑦̅𝑠)  y 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠) , con 𝑖 = 1, 2 . Por 

esto, la varianza del estimador general 𝑡𝑢 puede ser estimada sin 

sesgo del modo 

𝑉̂(𝑡𝑢) = 𝑉̂(𝑦̅𝑠) +∑𝑘𝑖
2𝑉(𝑥̅𝑖,𝑠)

2

𝑖=1

− 2∑𝑘𝑖𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑖,𝑠)

2

𝑖=1
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+∑∑𝑘𝑖𝑘𝑗𝐶𝑜𝑣(𝑥̅𝑖,𝑠, 𝑥̅𝑗,𝑠)

2

𝑗≠𝑖

2

𝑖=1

. 

Donde 𝑉̂(𝑦̅𝑠)  y 𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑖,𝑠)  son los estimadores insesgados 

respectivos uno a uno de las funciones paramétricas 𝑉(𝑦̅𝑠)  y 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠) , de modo similar a como explico en el artículo 

reciente de Ruiz Espejo et al. (2013). A continuación vamos a 

obtener dichos estimadores insesgados en el muestreo irrestricto 

aleatorio de tamaño muestral efectivo 𝑛. 

𝑉̂(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
(𝑆𝑦

2)̂ =
𝑁 − 𝑛

𝑁𝑛
𝑠𝑦
2 =

𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑(𝑦𝑘 − 𝑦̅𝑠)

2

𝑘∈𝑠

. 

Y 

𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑖,𝑠) =
𝑁 − 𝑛

𝑁𝑛
(𝑆𝑦,𝑥𝑖)
̂ =

𝑁 − 𝑛

𝑁𝑛
𝑠′𝑦,𝑥𝑖 = 

𝑁 − 𝑛

(𝑁 − 1)𝑛2
∑𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖)

𝑘∈𝑠

. 

Hasta aquí hemos supuesto que los valores constantes 𝑘𝑖 

estaban fijados de antemano y eran conocidos para concretar el 

estimador insesgado 𝑡𝑢 . Sin embargo, es posible estudiar qué 

valores concretos de 𝑘𝑖  minimizan la varianza del estimador 

general insesgado bivariante 𝑡𝑢. Para ello, derivamos parcialmente 

la expresión de la varianza 𝑉(𝑡𝑢) con respecto a 𝑘𝑖, e igualándolas 

a cero obtenemos un sistema de 2  ecuaciones lineales con 2 

incógnitas (que son las constantes óptimas 𝑘𝑖 = 𝑘𝑖,ó𝑝𝑡). En efecto, 

el sistema de ecuaciones lineales es el siguiente 

{

𝜕𝑉(𝑡𝑢)

𝜕𝑘𝑖
= 0

𝑖 = 1, 2
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Que resulta ser entonces 

{
𝑘𝑖𝑉(𝑥̅𝑖,𝑠) +∑𝑘𝑗𝐶𝑜𝑣(𝑥̅𝑖,𝑠, 𝑥̅𝑗,𝑠)

2

𝑗≠𝑖

= 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠)

𝑖 = 1, 2

 

También se puede comprobar que 

𝜕2𝑉(𝑡𝑢)

𝜕𝑘𝑖
2 = 2𝑉(𝑥̅𝑖,𝑠). 

Que es una constante positiva, salvo que la variable auxiliar 𝑖-

ésima sea constante en todas las unidades de la población finita, en 

cuyo caso el término correspondiente a dicha variable auxiliar se 

anula en la fórmula del estimador 𝑡𝑢, por lo que su expresión se 

reduciría a una estimación basada en una variable auxiliar al 

eliminar aquélla en la que la variable auxiliar no aportara una 

información con alguna variabilidad. 

Para 𝑖 ≠ 𝑗, tenemos que 

𝜕2𝑉(𝑡𝑢)

𝜕𝑘𝑖𝜕𝑘𝑗
= 2𝐶𝑜𝑣(𝑥̅𝑖,𝑠, 𝑥̅𝑗,𝑠). 

Finalmente, las derivadas parciales de orden tres se anulan en 

todos los casos, por lo cual concluimos que se obtiene un mínimo 

global de la función real bidimensional para ciertos valores 𝑘𝑖 =

𝑘𝑖,ó𝑝𝑡  que son óptimos y calculables teóricamente en cada caso 

concreto. Salvo casos triviales, los valores críticos son los óptimos 

que minimizan la varianza del estimador 𝑡𝑢, ya que los menores 

principales de la matriz de covarianzas son positivos. Excluimos el 

caso trivial en que exista un coeficiente de correlación 1 ó −1 entre 

las medias muestrales de las dos variables auxiliares. Veamos a 

continuación la solución óptima teórica en el caso de disponer de 
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dos variables auxiliares con un coeficiente de correlación absoluto 

menor que 1. 

En el caso en que el número de variables auxiliares es 2, 

tenemos que la solución concreta del sistema de ecuaciones lineales 

viene dada por estas fórmulas. 

𝑘1,ó𝑝𝑡 =
𝑉(𝑥̅2,𝑠)𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅1,𝑠) − 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅2,𝑠)𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)

𝑉(𝑥̅1,𝑠)𝑉(𝑥̅2,𝑠) − [𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)]
2 . 

𝑘2,ó𝑝𝑡 =
𝑉(𝑥̅1,𝑠)𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅2,𝑠) − 𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅1,𝑠)𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)

𝑉(𝑥̅1,𝑠)𝑉(𝑥̅2,𝑠) − [𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)]
2 . 

Que son constantes óptimas desconocidas, pues son funciones 

paramétricas que dependen de todos los valores de la variable de 

interés en las unidades de la población finita. Con estas constantes, 

si las conociéramos antes de realizar el muestreo y de observar en 

la muestra seleccionada la variable de interés, el estimador 

insesgado de regresión bivariante sería 

𝑡𝑢 = 𝑦̅𝑠 +∑𝑘𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

. 

Y alcanzaría su varianza el valor mínimo global con (𝑘1,ó𝑝𝑡 , 𝑘2,ó𝑝𝑡) 

entre todos los posibles valores del plano real para (𝑘1, 𝑘2). Pero la 

realidad es que no conocemos estas constantes óptimas teóricas en 

un estudio concreto, por lo que cabe estimarlas sin sesgo 

sustituyendo, en el numerador de la expresión de cada una de 

dichas constantes óptimas, las funciones paramétricas 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠) por sus estimadores insesgados (al variar 𝑖 = 1, 2) 

que obtenemos a continuación. 

𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑖,𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑠′𝑦,𝑥𝑖 =

𝑁 − 𝑛

(𝑁 − 1)𝑛2
∑𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖)

𝑘∈𝑠

. 
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De ese modo, ya que los demás términos de 𝑘𝑖,ó𝑝𝑡 son constantes 

conocidas de antemano, obtenemos los valores óptimos estimados 

sin sesgo siguientes 

𝑘̂1,ó𝑝𝑡 =
𝑉(𝑥̅2,𝑠)𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅1,𝑠) − 𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅2,𝑠)𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)

𝑉(𝑥̅1,𝑠)𝑉(𝑥̅2,𝑠) − [𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)]
2 . 

𝑘̂2,ó𝑝𝑡 =
𝑉(𝑥̅1,𝑠)𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅2,𝑠) − 𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅1,𝑠)𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)

𝑉(𝑥̅1,𝑠)𝑉(𝑥̅2,𝑠) − [𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠)]
2 . 

Por todo ello, parece indicado partir del estimador 

𝑡′ = 𝑦̅𝑠 +∑𝑘̂𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

. 

Este estimador es similar al que hemos estudiado como bivariante 

insesgado 𝑡𝑢 al sustituir los valores 𝑘𝑖 por los valores que estiman 

sus valores óptimos, es decir, por 𝑘̂𝑖,ó𝑝𝑡. Pero como estos últimos 

estimadores no son constantes sino variables aleatorias, tienen un 

efecto en 𝑡′ que lo hacen sesgado en general para estimar la media 

poblacional 𝑦̅. 

El estimador bivariante óptimo teórico es 

𝑡𝑢 = 𝑦̅𝑠 +∑𝑘𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

. 

Tiene una varianza 

𝑉ó𝑝𝑡(𝑡𝑢) = 𝑉(𝑦̅𝑠) +∑𝑘𝑖,ó𝑝𝑡
2 𝑉(𝑥̅𝑖,𝑠)

2

𝑖=1
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−2∑𝑘𝑖,ó𝑝𝑡𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠)

2

𝑖=1

+ 2 𝑘1,ó𝑝𝑡𝑘2,ó𝑝𝑡𝐶𝑜𝑣(𝑥̅1,𝑠, 𝑥̅2,𝑠). 

Por lo que esta varianza óptima teórica 𝑉ó𝑝𝑡(𝑡𝑢)  puede ser 

estimada sin sesgo a partir de las estimaciones insesgadas 

siguientes. 

𝑉̂(𝑦̅𝑠) =
𝑁 − 𝑛

𝑁𝑛
𝑠𝑦
2 =

𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑(𝑦𝑘 − 𝑦̅𝑠)

2

𝑘∈𝑠

. 

También 

{[𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅𝑖,𝑠)]
2
}

̂
= (

𝑁 − 𝑛

𝑁𝑛
)
2

(𝑆𝑦,𝑥𝑖
2 )̂  

= (
𝑁 − 𝑛

𝑁𝑛
)
2

[(𝑠′𝑦,𝑥𝑖)
2
− 𝑉̂(𝑠′𝑦,𝑥𝑖)]. 

Donde 

𝑠′𝑦,𝑥𝑖 =
𝑁

(𝑁 − 1)𝑛
∑𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖)

𝑘∈𝑠

. 

Y 

𝑉̂(𝑠′𝑦,𝑥𝑖) =
𝑁2

(𝑁 − 1)2
𝑉̂ [
1

𝑛
∑𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖)

𝑘∈𝑠

] 

=
𝑁2

(𝑁 − 1)2
𝑁 − 𝑛

𝑁𝑛
[𝑆𝑦(𝑥𝑖−𝑥̅𝑖)
2 ]̂ =

𝑁(𝑁 − 𝑛)

(𝑁 − 1)2𝑛
𝑠𝑦(𝑥𝑖−𝑥̅𝑖)
2  

=
𝑁(𝑁 − 𝑛)

(𝑁 − 1)2𝑛(𝑛 − 1)
∑[𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖) − 𝑎1;𝑦(𝑥𝑖−𝑥̅𝑖)]

2

𝑘∈𝑠

. 

Siendo 



 
 

278 
 

𝑎1;𝑦(𝑥𝑖−𝑥̅𝑖) =
1

𝑛
∑𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖)

𝑘∈𝑠

. 

Y también 

[𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅1,𝑠)𝐶𝑜𝑣(𝑦̅𝑠, 𝑥̅2,𝑠)]
̂ = (

𝑁 − 𝑛

𝑁𝑛
)
2

(𝑆𝑦,𝑥1𝑆𝑦,𝑥2)
̂  

= (
𝑁 − 𝑛

𝑁𝑛
)
2

[𝑠′𝑦,𝑥1𝑠′𝑦,𝑥2 − 𝐶𝑜𝑣̂(𝑠′𝑦,𝑥1 , 𝑠′𝑦,𝑥2)]. 

Donde 

𝐶𝑜𝑣̂(𝑠′𝑦,𝑥1 , 𝑠′𝑦,𝑥2) =
𝑁2

(𝑁 − 1)2
𝐶𝑜𝑣̂[𝑎1;𝑦(𝑥1−𝑥̅1), 𝑎1;𝑦(𝑥2−𝑥̅2)] 

=
𝑁2

(𝑁 − 1)2
𝑁 − 𝑛

𝑁𝑛
[𝑆𝑦(𝑥1−𝑥̅1),𝑦(𝑥2−𝑥̅2)]

̂  

=
𝑁(𝑁 − 𝑛)

(𝑁 − 1)2𝑛
𝑠𝑦(𝑥1−𝑥̅1),𝑦(𝑥2−𝑥̅2) 

=
𝑁(𝑁 − 𝑛)

(𝑁 − 1)2𝑛(𝑛 − 1)
 

×∑[𝑦𝑘(𝑥1,𝑘 − 𝑥̅1) − 𝑎1;𝑦(𝑥1−𝑥̅1)][𝑦𝑘(𝑥2,𝑘 − 𝑥̅2) − 𝑎1;𝑦(𝑥2−𝑥̅2)]

𝑘∈𝑠

. 

El resto de la demostración es un ejercicio algebraico 

relativamente asequible. 

El estimador que hemos estudiado anteriormente no es 

posible llevarlo a la práctica pues, aunque tiene muy buenas 

propiedades teóricas, depende de funciones paramétricas que son 

desconocidas y que deben ser estimadas sin sesgo. Así si 

sustituimos los valores óptimos 𝑘𝑖,ó𝑝𝑡  por sus estimadores 
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insesgados 𝑘̂𝑖,ó𝑝𝑡 , el estimador resultante 𝑡′  es sesgado, 

concretamente 

𝑡′ = 𝑦̅𝑠 +∑𝑘̂𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

. 

Sin embargo, se puede corregir para que sea insesgado, del 

modo siguiente 

𝑡′𝑢 = 𝑦̅𝑠 +∑𝑘̂𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)

2

𝑖=1

−∑𝐶𝑜𝑣̂(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠)

2

𝑖=1

. 

Aquí 𝐶𝑜𝑣̂(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠) es un estimador insesgado de la covarianza 

𝐶𝑜𝑣(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠), que más adelante pasaremos a concretar cómo 

obtenerlo para que sea útil en la práctica. Para demostrar que 𝑡′𝑢 es 

insesgado nos basamos en que 𝐶𝑜𝑣̂(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠) es un estimador 

insesgado de la esperanza matemática de 𝑘̂𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠) . En 

concreto se puede ver que 

{𝐸[𝑘̂𝑖,ó𝑝𝑡(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)]}
̂ = 

[𝐸(𝑘̂𝑖,ó𝑝𝑡)𝐸(𝑥̅𝑖 − 𝑥̅𝑖,𝑠)]
̂ +𝐶𝑜𝑣̂(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠) = 

[𝐸(𝑘̂𝑖,ó𝑝𝑡) × 0]
̂ +𝐶𝑜𝑣̂(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠) = 𝐶𝑜𝑣̂(𝑘̂𝑖,ó𝑝𝑡 , 𝑥̅𝑖,𝑠). 

Para calcular este último estimador, es un ejercicio asequible 

pero cuidadoso en el caso bivariante a partir de los estimadores 

insesgados necesarios siguientes. 

𝐶𝑜𝑣̂[𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅𝑖,𝑠), 𝑥̅𝑖,𝑠] = 𝐶𝑜𝑣̂ (
𝑁 − 𝑛

𝑁𝑛
𝑆̂𝑦,𝑥𝑖 , 𝑥̅𝑖,𝑠) = 

𝐶𝑜𝑣̂ [
𝑁 − 𝑛

(𝑁 − 1)𝑛
𝑎1;𝑦(𝑥𝑖−𝑥̅𝑖), 𝑥̅𝑖,𝑠] =

𝑁 − 𝑛

(𝑁 − 1)𝑛

𝑁 − 𝑛

𝑁𝑛
[𝑆𝑦(𝑥𝑖−𝑥̅𝑖)2
2 ]
̂
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=
(𝑁 − 𝑛)2

𝑁(𝑁 − 1)𝑛2
𝑠𝑦(𝑥𝑖−𝑥̅𝑖)2
2  

=
(𝑁 − 𝑛)2

(𝑁 − 1)2𝑛2(𝑛 − 1)
∑[𝑦𝑘(𝑥𝑖,𝑘 − 𝑥̅𝑖)

2
− 𝑎1;𝑦(𝑥𝑖−𝑥̅𝑖)2]

2

𝑘∈𝑠

. 

Y de modo similar, en el caso bivariante, 

𝐶𝑜𝑣̂[𝐶𝑜𝑣̂(𝑦̅𝑠, 𝑥̅2,𝑠), 𝑥̅1,𝑠] =
(𝑁 − 𝑛)2

𝑁(𝑁 − 1)𝑛2
𝑆̂𝑦(𝑥2−𝑥̅2),𝑥1 

=
(𝑁 − 𝑛)2

𝑁(𝑁 − 1)𝑛2
𝑠′𝑦(𝑥2−𝑥̅2),𝑥1 

=
(𝑁 − 𝑛)2

𝑁(𝑁 − 1)𝑛3
∑𝑦𝑘(𝑥2,𝑘 − 𝑥̅2)

𝑘∈𝑠

(𝑥1,𝑘 − 𝑥̅1). 

Etc. 

 

Ejercicio 6.20. Ajustar un modelo de regresión lineal multivariante 

por el método de mínimo error cuadrático medio en una población 

finita, y estimarlo de modo insesgado a partir de muestras aleatorias 

simples sin reemplazamiento. 

Solución. El modelo a ajustar es 

𝑦 = 𝑘0 + 𝑘1𝑥1 + 𝑘2𝑥2 +⋯+ 𝑘𝑚𝑥𝑚 + 𝑒. 

Teniendo en cuenta que, en este caso general, hay 𝑚  variables 

explicativas o auxiliares, que son las que hemos denotado por 

𝑥1, 𝑥2, … , 𝑥𝑚 . Los valores 𝑘0 , 𝑘1 , 𝑘2 , …, 𝑘𝑚  son las constantes 

que determinan el modelo de regresión lineal multivariante óptimo. 

La variable 𝑦  es la variable explicada o de interés. El error 
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cuadrático total poblacional, proporcional al error cuadrático 

medio poblacional, en este caso es 

𝜙 =∑𝑒𝑖
2

𝑁

𝑖=1

=∑(𝑦𝑖 − 𝑘0 −∑𝑘𝑟𝑥𝑟𝑖

𝑚

𝑟=1

)

2𝑁

𝑖=1

. 

Para minimizar este error cuadrático total (o 

equivalentemente el error cuadrático medio, 𝜙 𝑁⁄ ), derivamos 

parcialmente la función 𝜙 con respecto a cada una de las variables 

𝑘𝑟  con 𝑟 = 0, 1, … ,𝑚 , e igualamos a cero cada una de esas 

derivadas parciales. El sistema resultante es equivalente al 

siguiente 

{
 
 
 

 
 
 𝐴1;𝑦 = 𝑘0 +∑𝑘𝑗𝐴1; 𝑥𝑗

𝑚

𝑗=1

𝐴1,1;𝑦,𝑥𝑟 = 𝑘0𝐴1; 𝑥𝑟 + 𝑘𝑟𝐴2; 𝑥𝑟 +∑𝑘𝑗𝐴1,1; 𝑥𝑗,𝑥𝑟

𝑚

𝑗=1
𝑗≠𝑟

𝑟 = 1, 2, … ,𝑚.

 

Este sistema de ecuaciones lineales tiene 𝑚+ 1 ecuaciones con 

𝑚 + 1 incógnitas. También puede expresarse del modo siguiente 

más simplificado 

{
  
 

  
 𝐴1;𝑦 = 𝑘0 +∑𝑘𝑗𝐴1; 𝑥𝑗

𝑚

𝑗=1

𝐴1,1;𝑦,𝑥𝑟 = 𝑘0𝐴1; 𝑥𝑟 +∑𝑘𝑗𝐴1,1; 𝑥𝑗,𝑥𝑟

𝑚

𝑗=1

𝑟 = 1, 2, … ,𝑚.

 

Matricialmente se expresa de este modo 

𝒂 = 𝒌𝑨. 
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Donde 

𝒂 = 𝒂1×(𝑚+1) = (𝐴1;𝑦 𝐴1,1;𝑦,𝑥1    ⋯ 𝐴1,1;𝑦,𝑥𝑚), 

𝒌 = 𝒌1×(𝑚+1) = (𝑘0 𝑘1   ⋯ 𝑘𝑚). 

Y finalmente, 

𝑨 = 𝑨(𝑚+1)×(𝑚+1) =

(

 

1 𝐴1; 𝑥1
𝐴1; 𝑥1 𝐴1,1; 𝑥1,𝑥1

⋯ 𝐴1; 𝑥𝑚
⋯ 𝐴1,1; 𝑥1,𝑥𝑚

⋮ ⋮
𝐴1; 𝑥𝑚 𝐴1,1; 𝑥𝑚,𝑥1

⋱ ⋮
⋯ 𝐴1,1; 𝑥𝑚,𝑥𝑚)

 . 

Esta matriz 𝑨 depende exclusivamente de la información auxiliar 

de las variables explicativas del modelo de regresión lineal 

multivariante. La solución del sistema se obtiene del modo 

𝒌 = 𝒂𝑨−1. 

Y las soluciones estimadas insesgadamente, 𝒌̂ , requieren 

estimar insesgadamente cada una de las componentes del vector 𝒂, 

en muestreo irrestricto aleatorio por las medias muestrales 

correspondientes, es decir, mediante el vector estimado 

insesgadamente componente a componente 𝒂̂  obtenemos las 

estimaciones insesgadas de los valores óptimos del ajuste lineal 

multivariante. En concreto, lo formalizamos del modo 

𝒌̂ = 𝒂̂𝑨−1. 

Es preciso aclarar que cada modelo estimado depende 

directamente de la muestra seleccionada, y que habrá tantos 

modelos estimados como muestras distintas (para los mismos 

estimadores de 𝒂̂), pero en promedio las estimaciones en 𝒌̂ son 

insesgadas para las componentes respectivas del vector óptimo 𝒌, 

que es único salvo casos triviales como el de que algunas de las 
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variables auxiliares coincidan entre sí o alguna fuera constante, etc. 

de modo que la matriz 𝑨 no tuviera inversa. 

Un ejemplo de aplicación de este tipo de regresión lineal 

multivariante objetiva es el que nos provee de un estimador 

insesgado de la media poblacional 𝑦̅ = (1 𝑁⁄ )∑ 𝑦𝑖
𝑁
𝑖=1  

aprovechando la característica del modelo consistente en que 

minimiza el error cuadrático total poblacional. En concreto, el 

estimador de la media poblacional 𝑦̅ es 

𝑦̂̅ = 𝒌̂𝒙̅𝑡 = 𝒂̂𝑨−1𝒙̅𝑡. 

Donde 𝒙̅𝑡  es la matriz del vector columna de dimensiones 

(𝑚 + 1) × 1 , que es la matriz traspuesta de la matriz 𝒙̅ =

(1 𝑥̅1   𝑥̅2 ⋯ 𝑥̅𝑚)1×(𝑚+1). Con 𝑥̅𝑟 = (1 𝑁⁄ )∑ 𝑥𝑟,𝑖
𝑁
𝑖=1 , que es 

la media poblacional de la variable auxiliar 𝑟 -ésima (𝑟 =

1, 2, … ,𝑚) . Dicho estimador 𝑦̂̅  es insesgado y óptimo, para 

distribución libre, para ajustar el modelo óptimo (de mínimo error 

cuadrático total poblacional), pero en general podría ser 

supuestamente sesgado para estimar la media poblacional 𝑦̅. 

 Que el componente 𝐴1,1;𝑦,𝑥𝑟  puede estimarse insesgada y 

óptimamente por 𝑎1,1;𝑦,𝑥𝑟 = (1 𝑛⁄ )∑ 𝑦𝑖𝑥𝑟,𝑖
𝑛
𝑖=1  puede demostrarse 

de este modo. 

𝐸(𝑦𝑖𝑥𝑟,𝑖) =  𝑦̅ ∙ 𝑥̅𝑟 + 𝐶𝑜𝑣(𝑦𝑖 , 𝑥𝑟,𝑖) 

= 𝑦̅ ∙ 𝑥̅𝑟 +
1

𝑁
∑𝑦𝑖(𝑥𝑟,𝑖 − 𝑥̅𝑟)

𝑖∈𝑈

. 

El estimador insesgado e invariante por permutaciones es 

(𝐴1,1;𝑦,𝑥𝑟)
̂ = 𝐸(𝑦𝑖𝑥𝑟,𝑖)

̂ = 𝑦̅𝒔 ∙ 𝑥̅𝑟 + 𝑎1,1;𝑦,𝑥𝑟 − 𝑦̅𝒔 ∙ 𝑥̅𝑟 

= 𝑎1,1;𝑦,𝑥𝑟 = (1 𝑛⁄ )∑ 𝑦𝑖𝑥𝑟,𝑖
𝑛

𝑖=1
= (1 𝑛⁄ )∑𝑦𝑖𝑥𝑟,𝑖

𝑖∈𝒔

. 
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En realidad, lo que ocurre es que hemos tratado de minimizar 

∑𝑒𝑖
2

𝑁

𝑖=1

, 

en lugar de minimizar 

∑𝑒𝑖
2

𝑁

𝑖=1

 

sujeto a que 𝑒̅ = 0 , donde 𝑒̅ = (1 𝑁⁄ )∑ 𝑒𝑖
𝑁
𝑖=1  es el error medio 

poblacional. Si hacemos esto último, el lagrangiano es 

𝐿 =∑𝑒𝑖
2

𝑁

𝑖=1

+ 𝜆∑𝑒𝑖

𝑁

𝑖=1

 

y depende también de todos los coeficientes del ajuste lineal, es 

decir de 𝑘0, 𝑘1, … , 𝑘𝑚. Su resolución nos da las ecuaciones 

𝜕𝐿

𝜕𝑘0
= 2𝑁(−𝐴1; 𝑦 + 𝑘0 +∑𝑘𝑟𝐴1; 𝑥𝑟

𝑚

𝑟=1

) − 𝜆𝑁 = 0 

𝜕𝐿

𝜕𝑘𝑗
= 

2𝑁 (−𝐴1,1;𝑦,𝑥𝑗 + 𝑘0𝐴1; 𝑥𝑗 +∑𝑘𝑟𝐴1,1; 𝑥𝑟,𝑥𝑗

𝑚

𝑟=1

) − 𝜆𝑁𝐴1; 𝑥𝑗 = 0 

𝑗 = 1, 2, … ,𝑚 

Despejando el multiplicador de Lagrange 𝜆  resulta ser de la 

primera ecuación 𝜆 = 0, pues la restricción 
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𝐴1;𝑦 = 𝑘0 +∑𝑘𝑟𝐴1; 𝑥𝑟

𝑚

𝑟=1

 

obliga a este resultado. Resolviendo el sistema de ecuaciones 

resultante de esta simplificación, que no es más que el sistema 

inicial considerado sin restricción, determinamos los coeficientes 

𝑘0, 𝑘1, … , 𝑘𝑚 óptimos sujetos a la restricción, que son los mismos 

ya obtenidos anteriormente. Así se garantiza el ajuste óptimo de 

error medio poblacional cero, y óptimo en el sentido de mínimo 

error cuadrático total poblacional. Por tanto se trata de un ajuste de 

mínima varianza 𝑉(𝑒) = 𝐴2;𝑒 = 𝐴1,1;𝑒,𝑒 puesto que 𝐴1;𝑒 = 𝑒̅ = 0. 

Como consecuencia, se puede asegurar que el estimador 𝑦̂̅ 

propuesto es insesgado para estimar la media poblacional 𝑦̅. Pero 

además, al ser invariante ante permutaciones de los identificadores 

de la muestra aleatoria simple con reemplazamiento, el estimador 

𝑦̂̅ es insesgado y uniformemente de mínima varianza para estimar 

la media poblacional 𝑦̅  para distribución libre (Zacks, 1971, p. 

150), en las condiciones dadas de unas mismas variables auxiliares 

disponibles. Una consecuencia inmediata es que hemos encontrado 

un estimador insesgado y de mínima varianza uniformemente 

mejor que el estimador de regresión lineal clásico cuando se 

dispone de una variable auxiliar. Lo mismo se puede decir cuando 

se dispone de un número finito de variables auxiliares. 

Veamos ahora la estimación y el contraste de hipótesis del 

“error cuadrático medio del ajuste lineal multivariante óptimo 

objetivo en poblaciones finitas”. Tal error cuadrático medio se 

puede expresar del modo 

𝐸𝐶𝑀 = 𝑉(𝑒) =
1

𝑁
∑𝑒𝑖

2

𝑁

𝑖=1

− 𝑒̅2 = 𝐸(𝑒2) = 𝑒2̅̅ ̅, 

pues el error medio poblacional del ajuste óptimo vimos que es 
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𝑒̅ =
1

𝑁
∑𝑒𝑖

𝑁

𝑖=1

= 𝐸(𝑒) = 0. 

Aquí 

𝑒𝑖 = 𝑦𝑖 − 𝑘0 −∑𝑘𝑟𝑥𝑟,𝑖

𝑚

𝑟=1

. 

Siendo 𝑘𝑟 = 𝑘𝑟,ó𝑝𝑡 los valores óptimos del ajuste. 

También obtenemos el “error cuadrático medio del ajuste” 

con los valores estimados sin sesgo 𝑘𝑟 = 𝑘̂𝑟,ó𝑝𝑡  (con 𝑟 =

0, 1, 2, … ,𝑚 ), siendo 𝑚  el número de variables auxiliares o 

explicativas, y 𝑥𝑟,𝑖 el valor de la variable auxiliar 𝑥𝑟 en la unidad 𝑖 

(con 𝑖 = 1, 2, … ,𝑁) de la población finita de tamaño 𝑁. El error 

cuadrático medio del ajuste, con los valores ajustados estimados 

insesgadamente 𝑘̂𝑟,ó𝑝𝑡, da lugar a otros valores del error 𝑒̂ pero su 

esperanza 𝐸[𝐸(𝑒̂|𝑠)] = 𝑒 , y por tanto promediando en toda la 

población finita concluimos que 𝐸(𝑒̂) = 𝐸(𝑒) = 0. Ahora es 

𝑒̂𝑖 = 𝑦𝑖 − 𝑘̂0,ó𝑝𝑡 −∑𝑘̂𝑟,ó𝑝𝑡𝑥𝑟,𝑖

𝑚

𝑟=1

. 

El 𝐸𝐶𝑀 del ajuste óptimo teórico es 𝐸𝐶𝑀 = 𝑉(𝑒). Tenemos 

entonces que 

𝑉(𝑒) =
1

𝑁
∑𝑒𝑖

2

𝑁

𝑖=1

=
1

𝑁
∑{𝐸[𝐸(𝑒̂𝑖|𝑠)]}

2

𝑁

𝑖=1

= 𝐸{[𝐸(𝑒̂𝑖)]
2} = 

1

𝑁
∑[𝐸(𝑒̂𝑖)]

2

𝑁

𝑖=1

=
1

𝑁
∑𝐸(𝑒̂𝑖

2)

𝑁

𝑖=1

−
1

𝑁
∑𝑉(𝑒̂𝑖)

𝑁

𝑖=1

. 
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De las expresiones anteriores es posible estimar sin sesgo el 

error cuadrático medio del ajuste óptimo teórico y el error 

cuadrático medio del ajuste concreto realizado con una muestra 

aleatoria simple sin reemplazamiento 𝑠 de tamaño 𝑛. 

Para ello seleccionamos tres muestras independientes por 

muestreo aleatorio simple sin reemplazamiento, de tamaño común 

𝑛: 𝑠, 𝑠′ y 𝑠′′. Con las dos primeras muestras realizamos dos ajustes 

lineales multivariantes objetivos, y con la tercera muestra 

observamos los “errores” en cada ajuste anteriormente realizados 

con 𝑠 y 𝑠′ mediante las respectivas estimaciones insesgadas 𝑘̂𝑟,ó𝑝𝑡 

y 𝑘̂′𝑟,ó𝑝𝑡 , “errores” que denotamos por 𝑒̂𝑖  y 𝑒̂′𝑖  respectivamente, 

para toda unidad 𝑖 ∈ 𝑠′′. En esta tercera muestra 𝑠′′ estimamos sin 

sesgo el “promedio del error al cuadrado” 𝐸(𝑒̂𝑖
2)  por 

(𝑒̂𝑖
2 + 𝑒̂′𝑖

2) 2⁄ , y estimamos sin sesgo la “varianza del error” 𝑉(𝑒̂𝑖) 

por (𝑒̂𝑖 − 𝑒̂′𝑖)
2 . Así podemos estimar el error cuadrático medio 

óptimo teórico del ajuste lineal multivariante objetivo, mediante el 

estimador insesgado 

𝑉̂(𝑒) =
1

2𝑛
∑(𝑒̂𝑖

2 + 𝑒̂′𝑖
2)

𝑖∈𝑠′′

+
1

𝑛
∑(𝑒̂𝑖 − 𝑒̂′𝑖)

2

𝑖∈𝑠′′

. 

El “error cuadrático medio del ajuste concreto obtenido por 

una muestra aleatoria simple sin reemplazamiento 𝑠 de tamaño 𝑛” 

es el que denotamos 

𝐸𝐶𝑀(𝑠) =
1

𝑁
∑𝑒̂𝑖

2

𝑁

𝑖=1

= 𝐸(𝑒̂2). 

Así, 𝐸𝐶𝑀(𝑠) se estima sin sesgo por 

𝐸𝐶𝑀̂(𝑠) =
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

. 
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A partir del estimador insesgado propuesto 𝐸𝐶𝑀̂(𝑠) , es 

posible calcular su varianza del modo siguiente 

𝑉[𝐸𝐶𝑀̂(𝑠)] =
𝑁 − 𝑛

(𝑁 − 1)𝑛

1

𝑁
∑[𝑒̂𝑖

2 − 𝐸𝐶𝑀̂(𝑠)]
2

𝑁

𝑖=1

= 

𝑁 − 𝑛

(𝑁 − 1)𝑛

1

𝑁
∑(𝑒̂𝑖

2 −
1

𝑁
∑𝑒̂𝑖

2

𝑁

𝑖=1

)

2𝑁

𝑖=1

= 

𝑁 − 𝑛

(𝑁 − 1)𝑛
[
1

𝑁
∑𝑒̂𝑖

4

𝑁

𝑖=1

− (
1

𝑁
∑𝑒̂𝑖

2

𝑁

𝑖=1

)

2

] =
𝑁 − 𝑛

(𝑁 − 1)𝑛
𝑉(𝑒̂2). 

Ya que la muestra 𝑠′′ con que se estima 𝐸𝐶𝑀̂(𝑠) es seleccionada 

por muestreo aleatorio simple sin reemplazamiento de tamaño 

muestral efectivo prefijado 𝑛. Son propiedades conocidas de este 

diseño muestral. 

De la expresión obtenida anteriormente, tenemos su 

estimador insesgado por las propiedades del muestreo aleatorio 

simple sin reemplazamiento de tamaño 𝑛 ≥ 2, concretamente  

𝑉̂[𝐸𝐶𝑀̂(𝑠)] =
𝑁 − 𝑛

𝑁𝑛(𝑛 − 1)
∑ (𝑒̂𝑖

2 −
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

)

2

𝑖∈𝑠′′

. 

Pues la cuasivarianza muestral de la variable 𝑒̂2 es un estimador 

insesgado de la cuasivarianza poblacional de la misma variable en 

el muestreo aleatorio simple sin reemplazamiento de tamaño 𝑛. 

Hemos necesitado de la muestra independiente 𝑠′′  para 

estimar insesgadamente dicha varianza 𝑉[𝐸𝐶𝑀̂(𝑠)]  porque el 

ajuste depende de 𝑠 y, por ello, si hubiéramos basado el estimador 

de la varianza en la cuasivarianza muestral de la muestra 𝑠  se 
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hubieran podido producir sesgos apreciables ya que los valores del 

error 𝑒̂ en el estimador dependerían de las unidades de la muestra 

𝑠  con las que hemos estimado las constantes óptimas 𝑘𝑟,ó𝑝𝑡  del 

ajuste con la muestra 𝑠. 

Ya que el error cuadrático medio del ajuste con una muestra 

aleatoria simple sin reemplazamiento genérica 𝑠  de tamaño 𝑛 , 

𝐸𝐶𝑀(𝑠), coincide con la varianza del error extendido a todos los 

posibles ajustes con muestras aleatorias simples sin 

reemplazamiento 𝑠 independientes de tamaño muestral 𝑛, 𝑉(𝑒̂), de 

la desigualdad de Chebychev tenemos que 

𝑝{|𝐸𝐶𝑀̂(𝑠) − 𝐸𝐶𝑀(𝑠)| < 𝜀} ≥ 

1 −
𝑉[𝐸𝐶𝑀̂(𝑠)]

𝜀2
≅ 1 −

𝑉̂[𝐸𝐶𝑀̂(𝑠)]

𝜀2
. 

Por tanto, es posible obtener intervalos al nivel de confianza (con 

probabilidad) mayor o igual aproximadamente a 1 − 𝛼  para la 

función paramétrica 𝐸𝐶𝑀(𝑠), pues sería 

𝜀 = √
𝑉̂[𝐸𝐶𝑀̂(𝑠)]

𝛼
= √

𝑁 − 𝑛

𝛼𝑁𝑛(𝑛 − 1)
∑ (𝑒̂𝑖

2 −
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

)

2

𝑖∈𝑠′′

. 

En concreto, el intervalo de confianza es precisamente el intervalo 

abierto siguiente 

𝐼 = (𝑎, 𝑏) = (𝐸𝐶𝑀̂(𝑠) − 𝜀, 𝐸𝐶𝑀̂(𝑠) + 𝜀 ). 

Donde 

𝑎 =
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

−√
𝑁 − 𝑛

𝛼𝑁𝑛(𝑛 − 1)
∑ (𝑒̂𝑖

2 −
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

)

2

𝑖∈𝑠′′

. 
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Y 

𝑏 =
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

+ √
𝑁 − 𝑛

𝛼𝑁𝑛(𝑛 − 1)
∑ (𝑒̂𝑖

2 −
1

𝑛
∑ 𝑒̂𝑖

2

𝑖∈𝑠′′

)

2

𝑖∈𝑠′′

. 

Como consecuencia, es posible contrastar en base a dichos 

intervalos de confianza aproximados obtenidos, cualquier hipótesis 

nula simple del valor concreto que pudiera tomar el 𝐸𝐶𝑀(𝑠) del 

ajuste lineal multivariante objetivo en poblaciones finitas con la 

muestra aleatoria simple sin reemplazamiento 𝑠 de tamaño 𝑛, en 

base a una muestra aleatoria simple sin reemplazamiento 𝑠′′, de 

tamaño 𝑛, independiente de la anterior (𝑠). 

La región de aceptación del contraste es el intervalo de 

confianza 𝐼 al mismo nivel de confianza 1 − 𝛼, pues si el valor 

dado para el 𝐸𝐶𝑀(𝑠)  en la hipótesis nula simple pertenece al 

intervalo de confianza 𝐼, se debe aceptar dicha hipótesis al nivel de 

confianza mayor o igual aproximadamente a 1 − 𝛼. 

Con todo lo expuesto, hemos visto que es posible “estimar 

insesgadamente” el error cuadrático medio óptimo teórico del 

ajuste de regresión lineal multivariante objetivo basándonos en dos 

muestras aleatorias simples sin reemplazamiento independientes de 

tamaño fijo común 𝑛, así como “estimar insesgadamente” el error 

cuadrático medio del ajuste estimado insesgadamente al ajuste 

óptimo con una muestra aleatoria simple sin reemplazamiento 𝑠 de 

tamaño 𝑛, obtener su varianza (del estimador del 𝐸𝐶𝑀) y estimar 

insesgadamente esta varianza. 

Todo ello permite estimar puntualmente y por intervalo, así 

como contrastar hipótesis nulas simples sobre el valor numérico del 

error cuadrático medio del ajuste estimado con una muestra 

aleatoria simple sin reemplazamiento de tamaño 𝑛, en base a otra 
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muestra con el mismo diseño pero independiente de la anterior y 

del mismo tamaño, al nivel de confianza mayor o igual 

aproximadamente a 1 − 𝛼.  

Generalizaciones de estos resultados serían: 

(1) Considerar que la muestra independiente 𝑠′′ tenga un tamaño 

muestral fijo 𝑐 ≥ 2, pero no necesariamente igual al tamaño de la 

muestra del ajuste 𝑛. Para ello bastaría sustituir en las fórmulas de 

este ejercicio el valor de 𝑛 por el valor de 𝑐, con 2 ≤ 𝑐 ≤ 𝑁. 

(2) Considerar en la estimación insesgada del error cuadrático 

medio para el ajuste óptimo téorico dos o más muestras aleatorias 

simples sin reemplazamiento con las que ajustar el modelo lineal 

multivariante insesgado. Esto tiene consecuencias en el estimador 

pues ahora depende de los errores en cada unidad por cada ajuste, 

que son dos como hemos considerado, pero en general pueden ser 

más de dos hasta tantos como posibles muestras aleatorias simples 

sin reemplazamiento de tamaño 𝑛, es decir, como las 

(
𝑁
𝑛
) 

muestras con dicho diseño muestral. Como además estas muestras 

se obtienen independientes, en realidad es un número infinito de 

posibles de ellas basadas en las (
𝑁
𝑛
) distintas posibles y en todas 

sus posibles repeticiones a partir de ellas. 

 

Ejercicio 6.21. Proponer un estimador óptimo en muestreo doble 

que usa diseño muestral aleatorio simple con reemplazamiento en 

cada fase, observando una variable auxiliar en la primera fase y la 

variable de interés en la segunda fase. 

Solución. Entendemos por muestreo doble aquel procedimiento de 

muestreo que se desarrolla en las siguientes dos fases. 
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En una primera fase se selecciona una muestra aleatoria 

simple con reemplazamiento 𝒔 de tamaño fijo 𝑛, a partir de una 

población finita 𝑈 de tamaño 𝑁, y se observa la variable auxiliar 𝑥 

en las unidades seleccionadas. Sea el vector reordenado 

(𝑥1, 𝑥2, … , 𝑥𝑛) obtenido a partir de la muestra ordenada de datos 

((𝑘, 𝑥𝑘): 𝑘 ∈ 𝒔) de la variable auxiliar 𝑥. En dicho vector pueden 

aparecer observaciones repetidas ya que el muestreo es con 

reemplazamiento. 

En una segunda fase se selecciona una muestra aleatoria 

simple con reemplazamiento de tamaño fijo 𝑛′, a partir del vector 

reordenado (𝑥1, 𝑥2, … , 𝑥𝑛) que contiene las 𝑛 observaciones de la 

variable auxiliar, y por tanto tiene un tamaño efectivo fijo que es 

un número natural “mayor o igual que 1” y “menor o igual que 𝑛” 

de unidades de la población finita. En esta submuestra de tamaño 

fijo 𝑛′  obtenida en la segunda fase observamos la variable de 

interés 𝑦 que recogemos en el vector reordenado que denotamos 

(𝑦1, 𝑦2, … , 𝑦𝑛′)  que puede contener observaciones de unidades 

repetidas también. 

Queremos estimar la media poblacional de la variable de 

interés, 

𝑦̅ =
1

𝑁
∑𝑦𝑖
𝑖∈𝑈

 

Para ello proponemos en el muestreo doble anteriormente 

descrito el estimador 

𝑦̅𝑑 = 𝒂̂𝑨
−1𝒙̅𝑡 

Este estimador ha sido propuesto anteriormente, y ahora el 

vector 𝒙̅ = 𝒙̅1×(𝑚+1) no está tomado a partir de la población finita 

porque la variable auxiliar solo se conoce dentro de la muestra de 



 

293 
 

tamaño fijo 𝑛 , sino que está tomado del vector reordenado 

(𝑥1, 𝑥2, … , 𝑥𝑛)  como población de referencia obtenida en la 

primera fase. El número 𝑚+ 1  es el número de parámetros a 

ajustar en el modelo lineal 

𝑦𝑖 = 𝑘0 +∑𝑘𝑟𝑓𝑟(𝑥𝑖)

𝑚

𝑟=1

+ 𝑒𝑖 

Aquí 𝑘0, 𝑘1, … , 𝑘𝑚 son las constantes o parámetros a ajustar, 𝑓𝑟(𝑥) 

es la función real de variable real 𝑟-ésima usada en el ajuste, y 𝑒𝑖 

es el error del ajuste en la unidad poblacional 𝑖 ∈ 𝑈. 

En concreto, 

𝒂 = 𝒂1×(𝑚+1) = (𝐴1;𝑦 𝐴1,1;𝑦,𝑓1(𝑥)    ⋯ 𝐴1,1;𝑦,𝑓𝑚(𝑥)) 

Siendo 

𝐴1,𝑦 =
1

𝑛
∑𝑦𝑗

𝑛

𝑗=1

 

Y para 𝑟 = 1, 2,… ,𝑚, 

𝐴1,1;𝑦,𝑓𝑟(𝑥) =
1

𝑛
∑𝑦𝑗𝑓𝑟(𝑥𝑗)

𝑛

𝑗=1

 

Que son estimables insesgadamente y de mínima varianza para 

distribución libre respectivamente por 

𝑎1,𝑦 =
1

𝑛′
∑𝑦𝑖

𝑛′

𝑖=1

 

Y para 𝑟 = 1, 2, … ,𝑚, 

𝑎1,1;𝑦,𝑓𝑟(𝑥) =
1

𝑛′
∑𝑦𝑖𝑓𝑟(𝑥𝑖)

𝑛′

𝑖=1
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La matriz cuadrada 𝑨 = 𝑨(𝑚+1)×(𝑚+1) resulta ser 

𝑨 =

(

 

1 𝐴1; 𝑓1(𝑥)
𝐴1; 𝑓1(𝑥) 𝐴1,1; 𝑓1(𝑥),𝑓1(𝑥)

⋯ 𝐴1; 𝑓𝑚(𝑥)
⋯ 𝐴1,1; 𝑓1(𝑥),𝑓𝑚(𝑥)

⋮ ⋮
𝐴1; 𝑓𝑚(𝑥) 𝐴1,1; 𝑓𝑚(𝑥),𝑓1(𝑥)

⋱ ⋮
⋯ 𝐴1,1; 𝑓𝑚(𝑥),𝑓𝑚(𝑥))

  

Esta matriz 𝑨  depende exclusivamente de la información 

auxiliar de las variables explicativas del modelo de regresión lineal 

multivariante. Por ejemplo, 

𝐴1,1: 𝑓𝑟(𝑥),𝑓𝑠(𝑥) =
1

𝑛
∑𝑓𝑟(𝑥𝑗)𝑓𝑠(𝑥𝑗)

𝑛

𝑗=1

 

Para todo 𝑟, 𝑠 = 1, 2, … ,𝑚. 

Finalmente, el vector 𝒙̅ = 𝒙̅1×(𝑚+1) resulta ser el siguiente 

𝒙̅ = (1 𝐴1; 𝑓1(𝑥) 𝐴1; 𝑓2(𝑥)     ⋯ 𝐴1; 𝑓𝑚(𝑥)) 

Donde para 𝑟 = 1, 2,… ,𝑚, 

𝐴1; 𝑓𝑟(𝑥) =
1

𝑛
∑𝑓𝑟(𝑥𝑗)

𝑛

𝑗=1

 

Probamos en el Ejercicio anterior que el ajuste proporciona 

un estimador insesgado para 𝑦̅𝑛, que es la media muestral de la 

variable de interés en la primera fase. Además “la varianza de tal 

estimador” en la segunda fase, 𝑉2(𝑦̅𝑑), minimiza para distribución 

libre la varianza vectorial de cualquier estimador del vector 

(𝑚 + 1)-dimensional 𝒂, que permite estimar el ajuste de modo 

insesgado y de mínima varianza para distribución libre del modelo 

general lineal propuesto. 
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Es sencillo comprobar entonces que el estimador 𝑦̅𝑑  es 

insesgado para la media poblacional 𝑦̅ de la variable de interés: 

𝐸(𝑦̅𝑑) = 𝐸1[𝐸2(𝑦̅𝑑)] = 𝐸1(𝑦̅𝑛) = 𝑦̅ 

Además, teniendo en cuenta el teorema de Madow, su 

varianza verifica que 

𝑉(𝑦̅𝑑) = 𝐸1[𝑉2(𝑦̅𝑑)] + 𝑉1[𝐸2(𝑦̅𝑑)] = 

𝐸1[𝑉2(𝑦̅𝑑)] + 𝑉1(𝑦̅𝑛) = 𝐸1[𝑉2(𝑦̅𝑑)] +
𝜎𝑦
2

𝑛
 

Aquí la media muestral en la primera fase 𝑦̅𝑛 es estimador 

insesgado para 𝑦̅ , y de mínima varianza para distribución libre 

(Zacks, 1971, p. 150), 𝜎𝑦
2  es la varianza poblacional para la 

variable de interés, 𝐸1[𝑉2(𝑦̅𝑑)] minimiza el valor esperado de las 

posibles varianzas con dicho ajuste lineal para distribución libre, y 

por tanto 𝑉(𝑦̅𝑑) alcanza el mínimo de cualquier estimador con el 

ajuste lineal dado para distribución libre. Es decir, el estimador 𝑦̅𝑑 

es óptimo en este sentido para distribución libre en el muestreo 

doble usando muestreo aleatorio simple con reemplazamiento en 

ambas fases y con submuestreo en la segunda fase. También la 

media muestral es insesgada y de varianza mínima para estimar la 

media poblacional en el muestreo aleatorio simple con 

reemplazamiento de tamaño muestral fijo, entre los estimadores 

lineales, cuando la población tiene varianza finita, como es el caso 

de cualquier variable de interés uniforme discreta asociada a una 

población finita. Este es un ejercicio sencillo usando la técnica de 

los multiplicadores de Lagrange para minimizar la varianza del 

estimador lineal sujeto a que sea insesgado. 

Una consecuencia directa de este Ejercicio es que el 

estimador propuesto para la media poblacional a partir del modelo 

general lineal propuesto aquí, o a partir de 𝑚 variables auxiliares 

conocidas de antemano como hicimos en  el Ejercicio anterior, es 
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estimador insesgado de mínima varianza para distribución libre con 

el estimador insesgado de mínima varianza ajustado al modelo 

lineal. Es decir, es óptimo en dicho sentido descrito. 

Una crítica que se hacía al muestreo aleatorio simple con 

reemplazamiento de tamaño muestral fijo 𝑛 era que el muestreo 

aleatorio simple sin reemplazamiento de tamaño efectivo fijo 𝑛 

proporciona al estimador media muestral insesgación y más 

precisión que el anterior. Esta crítica carece de interés práctico al 

observar que con muestreo aleatorio simple con reemplazamiento 

se obtienen muestras con menor coste esperado que con muestreo 

aleatorio simple sin reemplazamiento del mismo tamaño muestral 

𝑛 , ya que las unidades pueden aparecer repetidas en el diseño 

muestral con reemplazamiento y como consecuencia el tamaño 

efectivo no es fijo sino menor igual a 𝑛 , y por tanto el coste 

esperado es menor o igual al coste del tamaño efectivo fijo 𝑛. 

El modelo general lineal que hemos propuesto con una 

variable auxiliar no tiene que tener solo dos parámetros de ajuste a 

minimizar, como sería el caso de ajustar una recta de 𝑦 sobre 𝑥, ni 

siquiera tiene que ser un polinomio necesariamente. Un ejemplo 

teórico supuesto distinto a estos podría ser el siguiente 

𝑦𝑖 = 𝑘0 + 𝑘1𝑒
𝑥𝑖 + 𝑘2

1

𝑥𝑖 + 2
+ 𝑒𝑖 

Donde en este modelo lineal con 𝑚 = 2 tenemos las funciones 

𝑓1(𝑥) = 𝑒𝑥 

Y 

𝑓2(𝑥) =
1

𝑥 + 2
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También es posible ajustar un modelo lineal multivariante si 

en la primera fase se hubieran observado 𝑚 variables auxiliares en 

la muestra aleatoria simple con reemplazamiento de tamaño fijo 𝑛. 

Incluso pueden ajustarse otras posibilidades funcionales a partir de 

las variables auxiliares observadas en la primera fase del muestreo 

doble. El razonamiento es similar al propuesto en este Ejercicio o 

bien en líneas semejantes a las expuestas en el Ejercicio anterior. 

Obviamente el modelo concreto que se proponga en cada caso 

tiene que tener una gran fiabilidad basada en la experiencia, es 

decir, que ha de ser propuesto por expertos en el tipo de datos 

manejados y con experiencia en el área de trabajo al que se aplica 

el modelo. En este sentido, existe la posibilidad de que dos o más 

expertos distintos propongan distintos modelos lineales concretos, 

y es entonces cuando se tiene que llegar a un consenso o acuerdo 

del modelo más conveniente para el fin que nos proponemos. Una 

propuesta de solución de consenso es que cada experto, de los 𝑚 

disponibles, aporte su función de ajuste según su conocimiento, y 

que el modelo con los datos se encargue de seleccionar el mejor 

ajuste lineal de dichas funciones. 

El hecho de habernos referido al “muestreo de poblaciones 

finitas” se debe a que es en poblaciones finitas donde tiene sentido 

hablar de muestreo aleatorio simple con reemplazamiento con 

unidades reales identificadas y accesibles. Hablar de muestreo 

aleatorio simple con reemplazamiento de una población infinita 

limita a muestras artificiales obtenidas con un ordenador y sin salir 

del mismo, es decir las unidades no pueden estar identificadas todas 

con el medio o los medios de acceso físico para observar los datos 

auxiliares o de interés en todas sus unidades. 

La conclusión final es que queda resuelto un problema de 

optimización en la estimación de la media poblacional en muestreo 

doble con muestreo aleatorio simple con reemplazamiento en las 
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dos fases y submuestreo en la segunda fase, haciendo uso de tres 

procedimientos de optimización, dos de ellos en estimación para 

distribución libre (opcionalmente de estimación insesgada de 

mínima varianza para la media poblacional con población de 

varianza finita, entre todos los estimadores lineales) y el otro en el 

ajuste del modelo general lineal en poblaciones finitas. 

Una posible crítica a esta resolución del problema de 

optimización es que si el tamaño poblacional 𝑁 es conocido, el 

conjunto de poblaciones finitas con distribución uniforme discreta 

con 𝑁  valores posibles de la variable de interés es mucho más 

concreta que el conjunto de todas las posibles poblaciones teóricas 

como presupone el método de optimización para distribución libre, 

por lo que un estimador óptimo para distribución libre puede no 

serlo para el conjunto reducido de poblaciones finitas de 

distribución uniforme discreta con 𝑁  valores de la variable de 

interés. De hecho, como justifica Ruiz Espejo (1987c), no existe tal 

estimador “insesgado y uniformemente de mínima varianza”, ni 

siquiera “uniformemente de mínimo error cuadrático medio”, en el 

modelo de población finita fijada, que es un modelo diferente pero 

más próximo al modelo de muestreo doble con submuestreo, con 

observación de una variable auxiliar en la primera fase de 

muestreo. 

 

Ejercicio 6.22. Proponer un estimador insesgado óptimo en 

muestreo aleatorio simple con reemplazamiento de tamaño fijo 𝑛, 

haciendo uso de una una variable auxiliar 𝑥 de media poblacional 

𝑋̅ = (1 𝑁⁄ )∑ 𝑥𝑖
𝑁
𝑖=1 . 

Solución. Entendemos por estimador de regresión lineal clásico 

para la media poblacional 𝑌̅ = (1 𝑁⁄ )∑ 𝑦𝑖
𝑁
𝑖=1  uno que tiene la 

forma del tipo 
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𝑡 = 𝑦̅𝒔 + 𝑏𝒔(𝑋̅ − 𝑥̅𝒔). 

A continuación vamos a minimizar su error cuadrático medio, 

obteniendo el valor óptimo teórico de 𝑏 = 𝑏mín , así como el 

estimador óptimo teórico e insesgado 𝑡mín y su varianza mínima 

teórica 𝑉(𝑡mín) . Finalmente obtenemos un estimador insesgado 

óptimo 𝑡′mín práctico que aproxima al teórico de varianza mínima. 

Para obtener el valor teórico mínimo de 𝑏 = 𝑏mín , 

minimizamos el error cuadrático medio del siguiente modo. Sea 

𝜙 =∑[𝑌̅ − 𝑦̅𝒔 − 𝑏(𝑋̅ − 𝑥̅𝒔)]
2

𝒔∈𝑺

 

=∑(𝑌̅ − 𝑦̅𝒔)
2

𝒔∈𝑺

+∑𝑏2(𝑋̅ − 𝑥̅𝒔)
2

𝒔∈𝑺

− 2∑𝑏(𝑌̅ − 𝑦̅𝒔)(𝑋̅ − 𝑥̅𝒔)

𝒔∈𝑺

. 

Minimizamos la función 𝜙 derivando con respecto a la variable 𝑏 

e igualamos a cero para obtener el punto crítico de mínimo global. 

𝑑𝜙

𝑑𝑏
=∑2𝑏(𝑋̅ − 𝑥̅𝒔)

2

𝒔∈𝑺

− 2∑(𝑌̅ − 𝑦̅𝒔)(𝑋̅ − 𝑥̅𝒔)

𝒔∈𝑺

= 0. 

De donde 

𝑏 =
∑ (𝑌̅ − 𝑦̅𝒔)(𝑋̅ − 𝑥̅𝒔)𝒔∈𝑺

∑ (𝑋̅ − 𝑥̅𝒔)
2

𝒔∈𝑺

 

=
∑ 𝑌̅(𝑋̅ − 𝑥̅𝒔)𝒔∈𝑺

∑ (𝑋̅ − 𝑥̅𝒔)
2

𝒔∈𝑺

−
∑ 𝑦̅𝒔(𝑋̅ − 𝑥̅𝒔)𝒔∈𝑺

∑ (𝑋̅ − 𝑥̅𝒔)
2

𝒔∈𝑺

 

=
𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔)

𝑉(𝑥̅𝒔)
. 

Al suponer que 𝑏 es una constante, el estimador 𝑡𝒔 sería insesgado 

para estimar 𝑌̅. Pero si esta variable 𝑏 fuera aleatoria, digamos 𝑏𝒔, 
el valor mínimo de 𝑏 = 𝑏mín  que haría la mínima varianza del 

estimador 𝑡𝒔 sería 

𝑏mín =
𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔)

𝑉(𝑥̅𝒔)
. 
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El estimador óptimo teórico y su varianza se obtienen sustituyendo 

el valor óptimo de 𝑏 = 𝑏mín en el estimador, por lo que tenemos 

que el estimador teórico insesgado de mínima varianza es 

𝑡mín = 𝑦̅𝒔 +
𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔)

𝑉(𝑥̅𝒔)
(𝑋̅ − 𝑥̅𝒔). 

Pero no puede usarse porque el numerador es a su vez una función 

paramétrica que no es conocida en el muestreo. Su varianza mínima 

se obtiene de este modo 

𝑉(𝑡mín) = 𝑉(𝑦̅𝒔) +
[𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔)]

2

[𝑉(𝑥̅𝒔)]
2

𝑉(𝑥̅𝒔) 

−2
𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔)

𝑉(𝑥̅𝒔)
𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔) 

= 𝑉(𝑦̅𝒔) −
[𝐶𝑜𝑣(𝑦̅𝒔, 𝑥̅𝒔)]

2

𝑉(𝑥̅𝒔)
. 

Un estimador práctico insesgado y de mínima varianza sería el 

siguiente 

𝑡′mín = 𝑦̅𝒔 +
𝐶𝑜𝑣̂(𝑦̅𝒔, 𝑥̅𝒔)

𝑉(𝑥̅𝒔)
(𝑋̅ − 𝑥̅𝒔) +

𝐶𝑜𝑣̂[𝐶𝑜𝑣̂(𝑦̅𝒔, 𝑥̅𝒔), 𝑥̅𝒔]

𝑉(𝑥̅𝒔)
 

= 𝑦̅𝒔 +

1
𝑛2
∑ 𝑦𝑖(𝑥𝑖 − 𝑋̅)𝑖∈𝒔

𝑉(𝑥̅𝒔)
(𝑋̅ − 𝑥̅𝒔) +

1
𝑛3
∑ 𝑦𝑖(𝑥𝑖 − 𝑋̅)

2
𝑖∈𝒔

𝑉(𝑥̅𝒔)
. 

Este estimador es válido para muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 𝑛, que es el estimador “insesgado 

óptimo” o “insesgado de mínima varianza” para la media 

poblacional 𝑌̅  usando la información auxiliar 𝑥  ya que resulta 

invariante ante permutaciones en el orden de la muestra ordenada 

𝒔. 

Para muestreo aleatorio simple sin reemplazamiento de 

tamaño efectivo fijo 𝑛 tendremos el estimador de regresión lineal 

corregido insesgado propuesto por Ruiz Espejo (2013b), ya que el 
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razonamiento hasta la penúltima igualdad es totalmente similar 

para muestras no ordenadas equiprobables como es el caso de 

muestreo aleatorio simple sin reemplazamiento de tamaño efectivo 

fijo 𝑛.  

Los tres últimos estimadores insesgados de covarianzas 

pueden obtenerse razonadamente de la muestra aleatoria simple 

con reemplazamiento de tamaño fijo 𝑛 , y también el estimador 

insesgado óptimo proporcionado por 𝑏𝒔 = 𝐶𝑜𝑣̂(𝑦̅𝒔, 𝑥̅𝒔) 𝑉(𝑥̅𝒔)⁄  de 

la función paramétrica 𝑏mín. 
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Capítulo 7 

Diseño de probabilidades desigua-

les 

 

 

En este capítulo estudiamos los métodos más importantes de 

muestreo con probabilidades desiguales: el muestreo con 

probabilidades proporcionales al tamaño con reemplazamiento 

debido a Hansen y Hurwitz (1943), el esquema de muestreo con 

probabilidades proporcionales al tamaño sin reemplazamiento 

debido a Sánchez-Crespo (1980), y el muestreo con probabilidades 

de inclusión proporcionales al tamaño que utiliza el estimador de 

Horvitz y Thompson (1952). En todos ellos se proporciona un 

estimador insesgado de la media poblacional, y un estimador 

insesgado de su varianza. 

 

7.1 Diseño de Hansen y Hurwitz 

Es un diseño ordenado 𝑇𝐹(𝑛) que asigna una probabilidad 𝑝𝑘 de 

seleccionar la unidad 𝑘  en cada una de las 𝑛  selecciones 

independientes, donde el resultado de la 𝑖-ésima selección es el 𝑖-

ésimo componente de la muestra ordenada o vector de unidades 𝒔. 

Los valores 𝑝𝑘 son números positivos conocidos tales que  

∑𝑝𝑘 = 1

𝑁

𝑘=1

. 
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No es un diseño de tamaño efectivo fijo, pues pueden 

aparecer repetida una o varias unidades en la muestra ordenada. En 

un esquema de urna con bolas numeradas, sería el caso de 𝑀 bolas 

de las cuales 𝑀𝑘 de ellas tienen la anotación 𝑘, y por tanto 

𝑀𝑘 = 𝑀𝑝𝑘  (𝑘 = 1, 2,… , 𝑁). 

Se realizan con el diseño de Hansen y Hurwitz selecciones con 

reemplazamiento, es decir, una vez observada la bola extraída se 

reincorpora a la urna antes de la siguiente selección. Observar que 

en el caso particular en que 𝑝𝑘 = 1 𝑁⁄  (𝑘 = 1, 2,… , 𝑁) el diseño 

es el ya estudiado mas. A veces la situación inicial es de disponer 

una variable auxiliar 𝑥𝑘 > 0  (𝑘 = 1, 2,… , 𝑁)  y se asignan 

probabilidades de selección 

𝑝𝑘 =
𝑥𝑘

∑ 𝑥𝑖𝑖∈𝑈
=
𝑥𝑘
𝑁𝑥̅

  (𝑘 = 1, 2,… ,𝑁). 

Si 𝑥𝑘 es un número entero positivo para todo 𝑘 ∈ 𝑈, 𝑛𝑘 = 𝑥𝑘 

puede ser la composición de la urna para seleccionar la muestra 

ordenada con este diseño de Hansen y Hurwitz. Las probabilidades 

de inclusión son ahora 

𝜋𝑘 = 1 − (1 − 𝑝𝑘)
𝑛, 

y si 𝑘 ≠ 𝑚 ∈ 𝑈, 

𝜋𝑘𝑚 = 1 − (1 − 𝑝𝑘)
𝑛 − (1 − 𝑝𝑚)

𝑛 + (1 − 𝑝𝑘 − 𝑝𝑚)
𝑛, 

que generalizan el diseño mas. 
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7.2 Estimador insesgado de Hansen y Hurwitz 

El estimador más importante asociado a este diseño es el estimador 

de Hansen y Hurwitz (1943) también llamado estimador Hansen-

Hurwitz, que se define así 

𝑡𝐻𝐻 = ∑
𝑦𝑘
𝑁𝑛𝑝𝑘

𝑘 ∈ 𝒔

= ∑
𝑦𝑘𝑒𝑘
𝑁𝑛𝑝𝑘

𝑘 ∈ 𝑈

, 

donde en una muestra ordenada 𝒔 la unidad 𝑘 aparece un número 

de veces 𝑒𝑘  (= 0, 1, 2, … , 𝑛)  al ser 𝑝𝑘 > 0  la probabilidad de 

selección constante de la unidad 𝑘  en las 𝑛 extracciones de una 

bola aleatoria. Es decir, 𝑒𝑘 es el número de veces que la unidad 𝑘 

aparece en la secuencia de la muestra ordenada 𝒔 con diseño de 

Hansen y Hurwitz. Al ser independientes las selecciones de la urna, 

el modelo creado es una distribución 𝑁 -dimensional 

(𝑒1, 𝑒2, … , 𝑒𝑘 , … , 𝑒𝑁) que se distribuye multinomial de parámetros 

𝑛 y 𝑝𝑘. Es decir, 

𝐸(𝑒𝑘) = 𝑛𝑝𝑘 , 

𝑉(𝑒𝑘) = 𝑛𝑝𝑘(1 − 𝑝𝑘), 

𝐸(𝑒𝑘
2) = 𝑉(𝑒𝑘) + [𝐸(𝑒𝑘)]

2 = 𝑛𝑝𝑘 − 𝑛𝑝𝑘
2 + 𝑛2𝑝𝑘

2, 

y si 𝑘 ≠ 𝑚 ∈ 𝑈, 

𝐶𝑜𝑣(𝑒𝑘 , 𝑒𝑚) = −𝑛𝑝𝑘𝑝𝑚 , 

𝐸(𝑒𝑘𝑒𝑚) = 𝐶𝑜𝑣(𝑒𝑘 , 𝑒𝑚) + 𝐸(𝑒𝑘)𝐸(𝑒𝑚) = (𝑛2 − 𝑛)𝑝𝑘𝑝𝑚. 

El estimador 𝑡𝐻𝐻 es insesgado para la media poblacional, 

pues 

𝐸(𝑡𝐻𝐻) = 𝐸 (∑
𝑦𝑘𝑒𝑘
𝑁𝑛𝑝𝑘

𝑘 ∈ 𝑈

) = ∑
𝑦𝑘
𝑁𝑛𝑝𝑘

𝐸(𝑒𝑘) =

𝑘 ∈ 𝑈

𝑦̅. 
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7.3 Varianza del estimador Hansen-Hurwitz 

Directamente 

𝑉(𝑡𝐻𝐻) = 𝐸(𝑡𝐻𝐻
2 ) − 𝑦̅2. 

Pero 

𝐸(𝑡𝐻𝐻
2 ) = 𝐸 (∑

𝑦𝑘
2𝑒𝑘

2

𝑁2𝑛2𝑝𝑘
2

𝑘 ∈ 𝑈

+ ∑
𝑦𝑘𝑦𝑚𝑒𝑘𝑒𝑚
𝑁2𝑛2𝑝𝑘𝑝𝑚

𝑘≠𝑚∈𝑈

) = 

1

𝑁2𝑛2
[∑

𝑦𝑘
2

𝑝𝑘
2 𝐸(𝑒𝑘

2)

𝑘 ∈ 𝑈

+ ∑
𝑦𝑘𝑦𝑚
𝑝𝑘𝑝𝑚

𝐸(𝑒𝑘𝑒𝑚)

𝑘≠𝑚∈𝑈

] = 

1

𝑁2𝑛2
[∑

𝑦𝑘
2

𝑝𝑘
2
(𝑛𝑝𝑘 − 𝑛𝑝𝑘

2 + 𝑛2𝑝𝑘
2)

𝑘 ∈ 𝑈

+ 

∑
𝑦𝑘𝑦𝑚
𝑝𝑘𝑝𝑚

(𝑛2𝑝𝑘𝑝𝑚 − 𝑛𝑝𝑘𝑝𝑚)

𝑘≠𝑚∈𝑈

] = 

1

𝑁2
[
1

𝑛
∑

𝑦𝑘
2

𝑝𝑘
2 𝑝𝑘

𝑘 ∈ 𝑈

−
1

𝑛
∑ 𝑦𝑘

2

𝑘 ∈ 𝑈

+ 

∑ 𝑦𝑘
2

𝑘 ∈ 𝑈

+ ∑ 𝑦𝑘𝑦𝑚
𝑘≠𝑚∈𝑈

−
1

𝑛
∑ 𝑦𝑘𝑦𝑚

𝑘≠𝑚∈𝑈

] = 

1

𝑁2
(
1

𝑛
∑

𝑦𝑘
2

𝑝𝑘
2 𝑝𝑘

𝑘 ∈ 𝑈

+ 𝑁2𝑦̅2 −
𝑁2𝑦̅2

𝑛
), 

de donde 

𝑉(𝑡𝐻𝐻) = 𝐸(𝑡𝐻𝐻
2 ) − 𝑦̅2 =

1

𝑁2
(
1

𝑛
∑

𝑦𝑘
2

𝑝𝑘
2 𝑝𝑘

𝑘 ∈ 𝑈

−
𝑁2𝑦̅2

𝑛
) = 
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1

𝑁2𝑛
(∑

𝑦𝑘
2

𝑝𝑘
2 𝑝𝑘

𝑘 ∈ 𝑈

− 𝑁2𝑦̅2) =
1

𝑁2𝑛
∑ (

𝑦𝑘
𝑝𝑘
− 𝑁𝑦̅)

2

𝑝𝑘
𝑘 ∈ 𝑈

. 

 

7.4 Estimador insesgado de la varianza 

El estimador insesgado de la varianza es 

𝑉̂(𝑡𝐻𝐻) =
∑ (

𝑦𝑘
𝑝𝑘
− 𝑁𝑡𝐻𝐻)

2

𝑘∈𝒔

𝑁2𝑛(𝑛 − 1)
=

∑
𝑦𝑘
2

𝑝𝑘
2𝑘∈𝒔 − 𝑛𝑁2𝑡𝐻𝐻

2

𝑁2𝑛(𝑛 − 1)
, 

desarrollando el cuadrado y teniendo en cuenta que por la 

definición del estimador 𝑡𝐻𝐻, 

∑
𝑦𝑘
𝑝𝑘

𝑘 ∈ 𝒔

= 𝑛𝑁𝑡𝐻𝐻 . 

También admite la expresión siguiente ya que la varianza es 

invariante por cambio de origen, 

𝑉̂(𝑡𝐻𝐻) =
∑ (

𝑦𝑘
𝑝𝑘
− 𝑁𝑦̅)

2
− 𝑛(𝑁𝑡𝐻𝐻 − 𝑁𝑦̅)

2
𝑘∈𝒔

𝑁2𝑛(𝑛 − 1)
, 

o bien, desarrollando los cuadrados del numerador y simplificando 

teniendo en cuenta la definición del estimador 𝑡𝐻𝐻, obtenemos el 

numerador de la segunda expresión del estimador insesgado de la 

varianza de 𝑡𝐻𝐻 . De este modo queda una nueva expresión de 

𝑉̂(𝑡𝐻𝐻), donde el primer sumando del numerador puede expresarse 

así 

∑(
𝑦𝑘
𝑝𝑘
− 𝑁𝑦̅)

2

𝑘∈𝒔

= ∑(
𝑦𝑘
𝑝𝑘
− 𝑁𝑦̅)

2

𝑘∈𝑈

𝑒𝑘 . 

Efectivamente, el estimador es insesgado porque 
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𝐸[𝑉̂(𝑡𝐻𝐻)] =
1

𝑁2𝑛(𝑛 − 1)
[∑ (

𝑦𝑘
𝑝𝑘
− 𝑁𝑦̅)

2

𝑘∈𝑈

𝑛𝑝𝑘 − 𝑛𝑁
2𝑉(𝑡𝐻𝐻)], 

o bien, 

𝐸[𝑉̂(𝑡𝐻𝐻)] =
1

𝑁2(𝑛 − 1)
[𝑁2𝑛𝑉(𝑡𝐻𝐻) − 𝑁

2𝑉(𝑡𝐻𝐻)] = 𝑉(𝑡𝐻𝐻). 

 

7.5 Estimador insesgado de Sánchez-Crespo 

El estimador de Sánchez-Crespo es análogo al de Hansen-Hurwitz 

y también ahora la unidad 𝑘  (𝑘 = 1, 2,… ,𝑁)  tiene asociadas 

𝑀𝑘 = 𝑀𝑝𝑘 bolas con su identificador dentro de la urna. El diseño 

de Sánchez-Crespo varía en que la selección de bolas para 

establecer la secuencia 𝒔 de unidades en la muestra ordenada, se 

hace sin reemplazamiento. Con este esquema de muestreo, se 

define como 𝑒𝑘 el número de veces que la unidad 𝑘 es extraída de 

la urna, siendo el vector 𝑁-dimensional (𝑒1, 𝑒2, … , 𝑒𝑘 , … , 𝑒𝑁) una 

variable aleatoria hipergeométrica generalizada cuya función de 

cuantía es 

𝑝(𝑒1, … , 𝑒𝑁) =
(
𝑀1
𝑒1
)… (

𝑀𝑁

𝑒𝑁
)

(
𝑀
𝑛
)

, 

y cuyos principales momentos son 

𝐸(𝑒𝑘) = 𝑛𝑝𝑘 , 

𝑉(𝑒𝑘) =
𝑀 − 𝑛

𝑀 − 1
𝑛𝑝𝑘(1 − 𝑝𝑘), 

y para 𝑘 ≠ 𝑚 ∈ 𝑈, 
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𝐶𝑜𝑣(𝑒𝑘 , 𝑒𝑚) = −
𝑀 − 𝑛

𝑀 − 1
𝑛𝑝𝑘𝑝𝑚. 

De estos momentos podemos comprobar que el estimador de 

Sánchez-Crespo 

𝑡𝑆𝐶 = ∑
𝑦𝑘
𝑁𝑛𝑝𝑘

𝑘 ∈ 𝒔

= ∑
𝑦𝑘𝑒𝑘
𝑁𝑛𝑝𝑘

𝑘 ∈ 𝑈

 

es diferente al de Hansen-Hurwitz 𝑡𝐻𝐻 , que aunque se escriban 

igual, el significado de la muestra 𝒔 ha cambiado y la distribución 

de las multiplicidades 𝑒𝑘 ha cambiado consecuentemente. A pesar 

de haber cambiado la distribución, la esperanza de 𝑒𝑘 sigue siendo 

igual, y por tanto la demostración de la insesgación del estimador 

𝑡𝑆𝐶  no queda afectada en nada sustancial, y ambos estimadores son 

insesgados para estimar la media poblacional 𝑦̅  con sus 

correspondientes diseños muestrales. 

 La varianza del estimador Sánchez-Crespo puede obtenerse 

ahora así 

𝑉(𝑡𝑆𝐶) = 𝑉 (∑
𝑦𝑘𝑒𝑘
𝑁𝑛𝑝𝑘

𝑘 ∈ 𝑈

) = 

1

𝑁2𝑛2
[∑

𝑦𝑘
2

𝑝𝑘
2 𝑉(𝑒𝑘)

𝑘 ∈ 𝑈

+ ∑
𝑦𝑘𝑦𝑚
𝑝𝑘𝑝𝑚

𝐶𝑜𝑣(𝑒𝑘 , 𝑒𝑚)

𝑘≠𝑚∈𝑈

] = 

𝑀 − 𝑛

𝑀 − 1

1

𝑁2𝑛2
[∑

𝑦𝑘
2

𝑝𝑘
𝑛(1 − 𝑝𝑘)

𝑘 ∈ 𝑈

− ∑ 𝑦𝑘𝑦𝑚𝑛

𝑘≠𝑚∈𝑈

] = 

𝑀 − 𝑛

𝑀 − 1

1

𝑁2𝑛
(∑

𝑦𝑘
2

𝑝𝑘
2 𝑝𝑘

𝑘 ∈ 𝑈

− 𝑁2𝑦̅2) =
𝑀 − 𝑛

𝑀 − 1
𝑉(𝑡𝐻𝐻) ≤ 𝑉(𝑡𝐻𝐻). 
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Un estimador insesgado de la varianza de 𝑡𝑆𝐶  con el mismo 

diseño muestral de Sánchez-Crespo es 

𝑉̂(𝑡𝑆𝐶) =
𝑀 − 𝑛

𝑀

1

𝑁2𝑛(𝑛 − 1)
∑ (

𝑦𝑘
𝑝𝑘
− 𝑁𝑡𝑆𝐶)

2

𝑘 ∈ 𝒔

. 

En efecto, de modo similar a lo que hicimos con el estimador 

insesgado de la varianza de 𝑡𝐻𝐻, ahora tenemos que 

𝑉̂(𝑡𝑆𝐶) =
𝑀 − 𝑛

𝑀

∑ (
𝑦𝑘
𝑝𝑘
− 𝑁𝑦̅)

2
𝑒𝑘 − 𝑛(𝑁𝑡𝑆𝐶 − 𝑁𝑦̅)

2
𝑘∈𝑈

𝑁2𝑛(𝑛 − 1)
, 

de donde 

𝐸[𝑉̂(𝑡𝑆𝐶)] =
𝑀 − 𝑛

𝑀

1

𝑁2(𝑛 − 1)
[𝑁2𝑛𝑉(𝑡𝐻𝐻) − 𝑁

2𝑉(𝑡𝑆𝐶)] = 

𝑀 − 𝑛

𝑀(𝑛 − 1)
[
(𝑀 − 1)𝑛

𝑀 − 𝑛
− 1]𝑉(𝑡𝑆𝐶) = 𝑉(𝑡𝑆𝐶). 

 

7.6 Muestreo con probabilidades de inclusión 

Este diseño puede ser introducido para muestras ordenadas o 

muestras no ordenadas. Básicamente consiste en proporcionar un 

estimador insesgado de la media poblacional, que llamamos 

estimador de Horvitz y Thompson (1952), y otros estimadores 

insesgados de la varianza del estimador anterior. El estimador 

Horvitz-Thompson se define indistintamente para diseño no 

ordenado 

𝑡𝐻𝑇 =∑
𝑦𝑘
𝑁𝜋𝑘

𝑘∈𝑠

= ∑
𝑦𝑘𝑒𝑘
𝑁𝜋𝑘

𝑘∈𝑈

, 

y para diseño ordenado también 
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𝑡𝐻𝑇 = ∑
𝑦𝑘
𝑁𝜋𝑘

𝑘∈𝑟(𝒔)

= ∑
𝑦𝑘𝑒𝑘
𝑁𝜋𝑘

𝑘∈𝑈

, 

donde en ambos casos 𝑒𝑘 es una variable aleatoria indicador que 

toma valor 1 si la unidad 𝑘 pertenece a la muestra, y toma valor 0 

si dicha unidad no pertenece a la muestra. Por tanto 𝑒𝑘 no recoge 

el efecto de la multiplicidad de una unidad en la muestra ordenada, 

sino solo su pertenencia o no a la muestra. Es sencillo ver que 

𝐸(𝑒𝑘) = 1 ∙ 𝑝(𝑘 ∈ 𝑠) + 0 ∙ 𝑝(𝑘 ∉ 𝑠) = 𝜋𝑘 , 

y como 𝑒𝑘
2 = 𝑒𝑘, 

𝑉(𝑒𝑘) = 𝐸(𝑒𝑘
2) − [𝐸(𝑒𝑘)]

2 = 𝜋𝑘 − 𝜋𝑘
2 = 𝜋𝑘(1 − 𝜋𝑘), 

y si 𝑘 ≠ 𝑚 ∈ 𝑈, 

𝐸(𝑒𝑘𝑒𝑚) = 1 ∙ 𝑝(𝑘 y 𝑚 ∈ 𝑠) + 0 ∙ 𝑝(𝑘 o 𝑚 ∉ 𝑠) = 𝜋𝑘𝑚 , 

y  

𝐶𝑜𝑣(𝑒𝑘 , 𝑒𝑚) = 𝐸(𝑒𝑘𝑒𝑚) − 𝐸(𝑒𝑘)𝐸(𝑒𝑚) = 𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚. 

Por tanto, el estimador 𝑡𝐻𝑇 es insesgado para estimar la media 

poblacional pues 

𝐸(𝑡𝐻𝑇) = 𝐸 (∑
𝑦𝑘𝑒𝑘
𝑁𝜋𝑘

𝑘∈𝑈

) = ∑
𝑦𝑘𝐸(𝑒𝑘)

𝑁𝜋𝑘
𝑘∈𝑈

= 𝑦̅. 

La varianza del estimador 𝑡𝐻𝑇 se obtiene así 

𝑉(𝑡𝐻𝑇) =
1

𝑁2
𝑉 (∑

𝑦𝑘𝑒𝑘
𝜋𝑘

𝑘∈𝑈

) = 

1

𝑁2
[∑ 𝑉 (

𝑦𝑘𝑒𝑘
𝜋𝑘

)

𝑘∈𝑈

+ ∑ 𝐶𝑜𝑣 (
𝑦𝑘𝑒𝑘
𝜋𝑘

,
𝑦𝑚𝑒𝑚
𝜋𝑚

 )

𝑘≠𝑚∈𝑈

] = 
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1

𝑁2
[∑

𝑦𝑘
2

𝜋𝑘
2 𝑉(𝑒𝑘)

𝑘∈𝑈

+ ∑
𝑦𝑘𝑦𝑚
𝜋𝑘𝜋𝑚

𝐶𝑜𝑣(𝑒𝑘 , 𝑒𝑚)

𝑘≠𝑚∈𝑈

] = 

1

𝑁2
[∑

𝑦𝑘
2

𝜋𝑘
2

𝑘∈𝑈

𝜋𝑘(1 − 𝜋𝑘) + ∑
𝑦𝑘𝑦𝑚
𝜋𝑘𝜋𝑚

(𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚)

𝑘≠𝑚∈𝑈

]. 

Si 𝜋𝑘𝑚 > 0  para todos los pares 𝑘 ≠ 𝑚 ∈ 𝑈 , entonces un 

estimador insesgado de la varianza del estimador Horvitz-

Thompson es 

𝑉̂(𝑡𝐻𝑇) =
1

𝑁2
[∑

𝑦𝑘
2

𝜋𝑘
2

𝑘∈𝑠

(1 − 𝜋𝑘) + ∑
𝑦𝑘𝑦𝑚(𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚)

𝜋𝑘𝜋𝑚𝜋𝑘𝑚
𝑘≠𝑚∈𝑠

], 

que admite la expresión siguiente en función de la variable 

aleatoria indicador 

𝑉̂(𝑡𝐻𝑇) =
1

𝑁2
[∑

𝑦𝑘
2

𝜋𝑘
2

𝑘∈𝑈

(1 − 𝜋𝑘) 𝑒𝑘 + 

∑
𝑦𝑘𝑦𝑚(𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚)

𝜋𝑘𝜋𝑚𝜋𝑘𝑚
𝑘≠𝑚∈𝑈

𝑒𝑘𝑒𝑚]. 

Obviamente, las propiedades de las esperanzas matemáticas de los 

indicadores y sus productos son conocidas, por lo que 

sustituyéndolas podemos concluir que 

𝐸[𝑉̂(𝑡𝐻𝑇)] = 𝑉(𝑡𝐻𝑇). 

Otro estimador insesgado de la varianza del estimador 

Horvitz-Thompson es el proporcionado por Yates y Grundy (1953) 

que podemos expresar así (variando 𝑘 y 𝑚) 

𝑉̂𝑌𝐺(𝑡𝐻𝑇) =
1

𝑁2
∑

𝜋𝑘𝜋𝑚 − 𝜋𝑘𝑚
𝜋𝑘𝑚

(
𝑦𝑘
𝜋𝑘
−
𝑦𝑚
𝜋𝑚
)
2

𝑘<𝑚∈𝑠

= 



 

313 
 

1

𝑁2
∑

𝜋𝑘𝜋𝑚 − 𝜋𝑘𝑚
𝜋𝑘𝑚

(
𝑦𝑘
𝜋𝑘
−
𝑦𝑚
𝜋𝑚
)
2

𝑒𝑘𝑒𝑚
𝑘<𝑚∈𝑈

. 

 

7.7 Ejercicios resueltos 

 

Ejercicio 7.1. Se selecciona una muestra ordenada de tamaño fijo 

𝑛 = 4 con diseño de probabilidades proporcionales al tamaño con 

reemplazamiento. La muestra seleccionada es (4, 3, 5, 7)  y los 

valores de la variable de interés observada en dichas unidades han 

resultado ser ordenadamente (33, 21, 15, 9) . Estimar la media 

poblacional con el estimador Hansen-Hurwitz y para el estimador 

Sánchez-Crespo (si la selección hubiera sido sin reemplazamiento), 

así como sus varianzas con la misma muestra ordenada de tamaño 

fijo. Como datos del problema, el tamaño poblacional es 20, y las 

probabilidades de primera selección son 𝑝4 = 𝑝3 = 1 20⁄  y 𝑝5 =

𝑝7 = 1 40⁄ . El número de bolas en la urna antes de la primera 

selección es de 80. 

Solución. El estimador insesgado de la media poblacional con el 

estimador Hansen-Hurwitz y Sánchez-Crespo coinciden para la 

misma muestra aunque el diseño muestral habría cambiado de uno 

a otro estimador. Con los datos del problema, 

𝑡𝐻𝐻 = 𝑡𝑆𝐶 = 26.5 

En cuanto a los estimadores insesgados de la varianza, 

cambian de valor numérico además del diseño muestral, quedando 

𝑉̂(𝑡𝐻𝐻) = 105.8; 𝑉̂(𝑡𝑆𝐶) = 100.5 
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Ejercicio 7.2. Se obtiene una muestra con diseño de probabilidades 

de inclusión. Esta muestra seleccionada resulta ser reducida la 

muestra no ordenada {2, 1} y los valores observados son 𝑦2 = 4 e 

𝑦1 = 8. Si las probabilidades de inclusión son  

𝜋1 =
1

3
, 𝜋2 =

2

3
, 𝜋1,2 =

2

9
, 

estimar insesgadamente la media poblacional y estimar sin sesgo la 

varianza de tal estimador, si el tamaño poblacional es 𝑁 = 4. 

Solución. El estimador insesgado de la media poblacional es el 

estimador Horvitz-Thompson, que para los datos recibidos la 

estima en 

𝑡𝐻𝑇 = 7.5 

Y un estimador insesgado de su varianza es por el primer método 

𝑉̂(𝑡𝐻𝑇) =23.5, 

mientras que por el estimador de Yates y Grundy sería 

𝑉̂𝑌𝐺(𝑡𝐻𝑇) = 0. 

 

Ejercicio 7.3. De una población finita de tamaño 𝑁, se selecciona 

una muestra ordenada de modo que la primera selección se realiza 

con probabilidades proporcionales al tamaño indicado por la 

variable auxiliar positiva 𝑥 , y las 𝑛 − 1  restantes unidades se 

obtienen con probabilidades iguales sin reemplazamiento. 

Demostrar que la probabilidad de selección de una muestra 𝑠 de 

tamaño efectivo fijo 𝑛 es proporcional a la media muestral 𝑥̅𝑠. 

Solución. La probabilidad de seleccionar la unidad 𝑖 = 1, 2, … , 𝑁 

en la primera selección de la muestra ordenada, es 
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𝑝1(𝑖1) =
𝑥𝑖1
𝑁𝑥̅
. 

La probabilidad de seleccionar la unidad 𝑖2 ≠ 𝑖1  en la segunda 

selección de la muestra ordenada es 

𝑝2(𝑖2|𝑖1) =
1

𝑁 − 1
. 

La probabilidad de seleccionar la unidad 𝑖3 ≠ 𝑖1, 𝑖2 en la tercera 

selección de la muestra ordenada es 

𝑝3(𝑖3|𝑖1, 𝑖2) =
1

𝑁 − 2
. 

Así llegaremos a que la probabilidad de que la unidad 𝑖𝑛 ≠

𝑖1, 𝑖2, … , 𝑖𝑛−1  sea seleccionada en la 𝑛 -ésima selección de la 

muestra ordenada es 

𝑝𝑛(𝑖𝑛|𝑖1, 𝑖2, … , 𝑖𝑛−1) =
1

𝑁 − (𝑛 − 1)
. 

Por todo ello, la probabilidad de seleccionar la muestra ordenada 

𝒔 = (𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛) es 

𝑝(𝒔) = 𝑝1(𝑖1)𝑝2(𝑖2|𝑖1)𝑝3(𝑖3|𝑖1, 𝑖2)⋯𝑝𝑛(𝑖𝑛|𝑖1, 𝑖2, … , 𝑖𝑛−1) = 

𝑥𝑖1
𝑁𝑥̅

1

𝑁 − 1

1

𝑁 − 2
⋯

1

𝑁 − (𝑛 − 1)
=
𝑥𝑖1
𝑥̅

(𝑁 − 𝑛)!

𝑁!
. 

Considerando ahora muestras conjunto o no ordenadas, la 

probabilidad de seleccionar la muestra 𝑠 = {𝑖1, 𝑖2, 𝑖3, … , 𝑖𝑛} es 

𝑝(𝑠) =∑
𝑥𝑖𝑗

𝑥̅

(𝑁 − 𝑛)!

𝑁!

𝑛

𝑗=1

(𝑛 − 1)! = 

𝑥̅𝑠
𝑥̅

(𝑁 − 𝑛)! 𝑛!

𝑁!
=

𝑥̅𝑠

𝑥̅ (
𝑁
𝑛
)
. 
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Este diseño muestral ordenado, debido a Midzuno (1951), y 

su diseño muestral no ordenado deducido proporcionan 

estimadores de razón insesgados para estimar la media poblacional 

𝑦̅. 

 

Ejercicio 7.4. Demostrar que el estimador 

𝑡 =
1

𝑁2
∑

𝑦𝑖
𝜋𝑖

𝑖 ∈ 𝑠

+
1

𝑁2
∑ ∑

𝑦𝑗

𝜋𝑖𝑗
𝑗≠𝑖 ∈ 𝑠𝑖 ∈ 𝑠

 

es insesgado para estimar la media poblacional 𝑦̅, cuando 𝑠 es una 

muestra conjunto o no ordenada, y las probabilidades de inclusión 

de primer y de segundo órdenes son positivas. 

Solución. Denotamos por 𝑒𝑖 a la variable aleatoria que toma valor 

1 si 𝑖 ∈ 𝑠, y toma valor 0 si 𝑖 ∉ 𝑠. Entonces podemos escribir el 

estimador 𝑡 de la forma 

𝑡 =
1

𝑁2
∑

𝑦𝑖
𝜋𝑖
𝑒𝑖

𝑖 ∈ 𝑈

+
1

𝑁2
∑ ∑

𝑦𝑗

𝜋𝑖𝑗
𝑒𝑖𝑒𝑗

𝑗≠𝑖 ∈ 𝑈𝑖 ∈ 𝑈

, 

de donde 

𝐸(𝑡) = 𝐸 (
1

𝑁2
∑

𝑦𝑖
𝜋𝑖
𝑒𝑖

𝑖 ∈ 𝑈

+
1

𝑁2
∑ ∑

𝑦𝑗

𝜋𝑖𝑗
𝑒𝑖𝑒𝑗

𝑗≠𝑖 ∈ 𝑈𝑖 ∈ 𝑈

) = 

1

𝑁2
∑

𝑦𝑖
𝜋𝑖
𝐸(𝑒𝑖)

𝑖 ∈ 𝑈

+
1

𝑁2
∑ ∑

𝑦𝑗

𝜋𝑖𝑗
𝑗≠𝑖 ∈ 𝑈𝑖 ∈ 𝑈

𝐸(𝑒𝑖𝑒𝑗) = 

1

𝑁2
∑𝑦𝑖
𝑖∈𝑈

+
1

𝑁2
∑ ∑ 𝑦𝑗

𝑗≠𝑖∈𝑈𝑖∈𝑈

=
1

𝑁2
∑∑𝑦𝑗

𝑗∈𝑈𝑖∈𝑈

= 
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1

𝑁2
𝑁2𝑦̅ = 𝑦̅. 

 

Ejercicio 7.5. Justificar que el estimador 

𝜎2̂ =
1

2𝑁2
∑ ∑

(𝑦𝑖 − 𝑦𝑗)
2

𝜋𝑖𝑗
𝑗≠𝑖 ∈ 𝑠𝑖 ∈ 𝑠

 

es insesgado para la varianza poblacional, donde el diseño muestral 

verifica que las probabilidades de inclusión de segundo orden son 

positivas. 

Solución. Como vimos en el Ejercicio 1.7, 

𝜎2 =
1

2𝑁2
∑ ∑ (𝑦𝑖 − 𝑦𝑗)

2

𝑗≠𝑖∈𝑈𝑖∈𝑈

, 

por lo que un estimador insesgado de 𝜎2 es 

𝜎2̂ =
1

2𝑁2
∑ ∑

(𝑦𝑖 − 𝑦𝑗)
2

𝜋𝑖𝑗
𝑗≠𝑖 ∈ 𝑈𝑖 ∈ 𝑈

𝑒𝑖𝑒𝑗 = 

1

2𝑁2
∑ ∑

(𝑦𝑖 − 𝑦𝑗)
2

𝜋𝑖𝑗
𝑗≠𝑖 ∈ 𝑠𝑖 ∈ 𝑠

, 

siendo 𝑒𝑖  la variable aleatoria indicador de la unidad 𝑖  en la 

muestra, es decir 𝑒𝑖 toma valor 1 si 𝑖 ∈ 𝑠, y toma valor 0 si 𝑖 ∉ 𝑠. 

También hemos denotado por 𝜋𝑖𝑗 = 𝐸(𝑒𝑖𝑒𝑗) a la probabilidad de 

inclusión de las unidades 𝑖  y 𝑗 en la muestra. Este estimador se 

debe a Yates y Grundy (1953). 
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Ejercicio 7.6. Haciendo uso del estimador de Hansen y Hurwitz, 

proponer un estimador insesgado del tamaño de la población finita 

𝑁 . Obtener la varianza del estimador, y deducir la desigualdad 

entre la media armónica y la media poblacional cuando la variable 

considerada es positiva. 

Solución. Tomando como probabilidad de selección de la unidad 𝑖 

al tamaño relativo positivo, al ser 𝑥 una variable positiva, 

𝑝𝑖 =
𝑥𝑖
𝑁𝑥̅
, 

tenemos que 

∑𝑝𝑖

𝑁

𝑖=1

= 1. 

El estimador insesgado del tamaño poblacional, es el 

estimador usual de Hansen y Hurwitz del total de la variable 

unidad, es decir 

𝑁̂ =
1

𝑛
∑

1

𝑝𝑘𝑗

𝑛

𝑗=1

, 

donde 𝑘𝑗  es la unidad seleccionada en la 𝑗-ésima selección de la 

muestra ordenada o secuencia. La varianza de este estimador es 

𝑉(𝑁̂) =
1

𝑛
∑𝑝𝑖 (

1

𝑝𝑖
− 𝑁)

2𝑁

𝑖=1

=
1

𝑛
(∑

1

𝑝𝑖

𝑁

𝑖=1

− 𝑁2). 

Como la varianza de 𝑁̂ es siempre positiva o cero, deducimos 

que 
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∑
1

𝑝𝑖

𝑁

𝑖=1

≥ 𝑁2, 

de donde, 

𝑥̅∑
1

𝑥𝑖

𝑁

𝑖=1

≥ 𝑁, 

o bien, 

1

1
𝑁
∑

1
𝑥𝑖

𝑁
𝑖=1

≤ 𝑥̅, 

es decir, la media armónica de valores positivos es menor o igual a 

la media aritmética de esos mismos valores. 

 

Ejercicio 7.7. En el procedimiento de muestreo aleatorio con 

probabilidades distintas de selección sin reemplazamiento debido 

a Sánchez-Crespo, obtener la composición de la urna con bolas 

repetidas o no repetidas de la misma unidad de la población que 

guardando la proporción de bolas inicial, sea más eficiente para que 

el estimador de Sánchez-Crespo sea el más preciso entre sus 

posibles para estimar la media poblacional. 

Solución. Si la composición de la urna es de 𝑀𝑘  bolas con el 

mismo identificador de la unidad 𝑘 (𝑘 = 1, 2,… , 𝑁), en total hay 

∑𝑀𝑘

𝑁

𝑘=1

= 𝑀 

bolas en la urna entre las  unidades de la población finita de tamaño 

𝑁 . Obtendremos el máximo común divisor 𝑚  del conjunto 

{𝑀𝑘: 𝑘 = 1, 2, … , 𝑁}. La composición de la urna que resulta más 
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precisa es la que asigna a la unidad 𝑘 de la población finita un 

número 𝑀𝑘 𝑚⁄  de bolas con su identificador 𝑘. En total habrá 

∑
𝑀𝑘

𝑚

𝑁

𝑘=1

=
𝑀

𝑚
 

bolas en la urna más precisa. De este modo el número total de bolas 

en la urna será el mínimo posible que puede proveer un 

procedimiento y un estimador de Sánchez-Crespo para estimar con 

su esquema la media poblacional y que respete la proporcionalidad 

de los valores enteros 𝑀𝑘 . Como la varianza del estimador de 

Sánchez-Crespo es 

𝑉(𝑡𝑆𝐶) =
𝑀 − 𝑛

𝑀 − 1
𝑉(𝑡𝐻𝐻) 

proporcional a la varianza del estimador de Hansen-Hurvitz, por lo 

que la varianza se minimiza cuando la fracción 

𝑀 − 𝑛

𝑀 − 1
= 𝑓(𝑀) 

es la menor posible con 𝑀 ≥ 𝑛 ≥ 2 . En efecto, derivando la 

función 𝑓 respecto a 𝑀, tenemos 

𝑓′(𝑀) =
𝑀 − 1 − (𝑀 − 𝑛)

(𝑀 − 1)2
=

𝑛 − 1

(𝑀 − 1)2
> 0. 

Por lo tanto, la función 𝑓 es creciente y por esto se hace mínima 

para el menor valor posible de 𝑀 , es decir cuando el máximo 

común divisor de los 𝑀𝑘 sea 1. En el caso de que el máximo común 

divisor fuera un entero 𝑚 > 1, la composición de la urna sería 

𝑀𝑘 𝑚⁄  bolas como la multiplicidad de la unidad 𝑘 en la urna en 

extracciones sin reemplazamiento de mínima varianza para el 

estimador de Sánchez-Crespo, que respeta la proporción 𝑀𝑘 𝑀⁄  
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para la unidad 𝑘 entre las posibles multiplicidades en la urna para 

las unidades de la población finita. 

 

Ejercicio 7.8. Una muestra ordenada seleccionada de una 

población finita es 𝒔 = (1, 2, 1), con los valores observados 𝑦1 =

1 , e 𝑦2 = 2 . Si el diseño es muestreo aleatorio simple con 

reemplazamiento de tamaño fijo 3, de una población finita de 

tamaño 4. Se pide: Estimar la media poblacional con el estimador 

Horvitz-Thompson. Estimar sin sesgo la varianza del estimador 

anteriormente usado. 

Solución. El estimador Horvitz-Thompson es 

𝑡𝐻𝑇 = ∑
𝑦𝑘
𝑁𝜋𝑘

𝑘∈𝑟(𝒔)

=
3 ∙ 64

229
=
192

229
 

donde 

𝜋𝑘 = 1 − (1 −
1

𝑁
)
𝑛

= 1 − (
3

4
)
3

=
229

256
. 

Un estimador insesgado de la varianza del estimador anterior 

es 

𝑉̂(𝑡𝐻𝑇) = 

1

𝑁2
[∑

𝑦𝑘
2

𝜋𝑘
2
(1 − 𝜋𝑘)

𝑘∈𝑠

+ ∑
𝑦𝑘𝑦𝑚(𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚)

𝜋𝑘𝜋𝑚𝜋𝑘𝑚
𝑘≠𝑚∈𝑠

] = 

135 ∙ 256 ∙ 9 + 128(72 ∙ 256 − 2292)

16 ∙ 9 ∙ 2292
 

donde  

𝜋𝑘𝑚 = 1 − 2(1 −
1

𝑁
)
𝑛

+ (1 −
2

𝑁
)
𝑛

=
9

32
. 
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Ejercicio 7.9. Proponer un estimador insesgado de la media 

poblacional basado en el estadístico media-de-razones con 

esquema muestral de probabilidades desiguales. Calcular su 

varianza y estimar insesgadamente esta varianza. 

Solución. El estimador insesgado media-de-razones es 

𝑡𝑀𝑅 =
𝑥̅

𝑛
∑

𝑦𝑖
𝑥𝑖

𝑖∈𝒔

 

tanto para el esquema muestral de Hansen y Hurwitz, como para el 

esquema muestral de Sánchez-Crespo. Bastaría con que en el 

primer esquema muestral tomáramos 𝑝𝑖 = 𝑥𝑖 𝑁𝑥̅⁄  (𝑖 = 1, 2, … , 𝑁) 

como probabilidad de seleccionar la unidad 𝑖 en cada extracción, y 

en el segundo esquema muestral 𝑀𝑖 es el mínimo número natural 

proporcional a 𝑥𝑖 > 0, para todo 𝑖 = 1, 2, … , 𝑁; por esta razón, 1 

es el máximo factor común de {𝑀𝑖: 𝑖 = 1, 2, … , 𝑁}  con la 

proporcionalidad 𝑀𝑖 ∝ 𝑥𝑖 (𝑖 = 1, 2, … , 𝑁). 

De la teoría vista, deducimos que la varianza del estimador 

𝑡𝑀𝑅 es 

𝑉𝐻𝐻(𝑡𝑀𝑅) =
1

𝑛
(𝐴2−1𝐴01 − 𝐴10

2 ), 

donde 

𝐴𝑘𝑗 =
1

𝑁
∑𝑦𝑖

𝑘𝑥𝑖
𝑗

𝑖∈𝑈

 

es el momento poblacional no central de órdenes 𝑘 y 𝑗. De modo 

similar, tenemos 

𝑉𝑆𝐶(𝑡𝑀𝑅) =
𝑀 − 𝑛

𝑀 − 1
𝑉𝐻𝐻(𝑡𝑀𝑅) 
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donde 𝑀 = ∑ 𝑀𝑖
𝑁
𝑖=1 . 

El estimador insesgado de esta varianza para el primer 

esquema muestral es 

𝑉̂𝐻𝐻(𝑡𝑀𝑅) =
1

𝑛 − 1
(
𝑥̅2

𝑛
∑

𝑦𝑖
2

𝑥𝑖
2 𝑒𝑖

𝑖∈𝑈

− 𝑡𝑀𝑅
2 ) = 

∑ (𝑥̅
𝑦𝑖
𝑥𝑖
− 𝑡𝑀𝑅)

2
𝑒𝑖𝑖∈𝑈

𝑛(𝑛 − 1)
, 

donde 𝑒𝑖  sigue la distribución multinomial de parámetros 𝑛 y 𝑝𝑖 

(𝑖 = 1, 2, … ,𝑁). Para el segundo esquema muestral es 

𝑉̂𝑆𝐶(𝑡𝑀𝑅) =
𝑀 − 𝑛

𝑀

1

𝑛 − 1
(
𝑥̅2

𝑛
∑

𝑦𝑖
2

𝑥𝑖
2 𝑒𝑖

𝑖∈𝑈

− 𝑡𝑀𝑅
2 ) = 

𝑀 − 𝑛

𝑀

1

𝑛(𝑛 − 1)
∑(𝑥̅

𝑦𝑖
𝑥𝑖
− 𝑡𝑀𝑅)

2

𝑒𝑖
𝑖∈𝑈

 

donde ahora 𝑒𝑖  sigue el esquema muestral de una distribución 

hipergeométrica de parámetros 𝑁, 𝑛, y 𝑀𝑖 (𝑖 = 1, 2, … ,𝑁). 

 

Ejercicio 7.10. Proponer una selección de una muestra de unidades 

de una población finita que en cada selección se obtiene una unidad 

𝑖 con probabilidad proporcional (e independiente) a cierta cantidad 

positiva 𝑥𝑖. Explicar la selección de la muestra en el caso de que la 

muestra sea sin reemplazamiento de unidades. 

Solución. Consiste en dividir o clasificar el intervalo [0, 1]  en 

tantos subintervalos como es el tamaño poblacional 𝑁 . Así, 

llamando a 
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𝑝𝑖 =
𝑥𝑖

∑ 𝑥𝑗
𝑁
𝑗=1

 

El primer subintervalo sería 

[0, 𝑝1) 

El segundo subintervalo sería 

[𝑝1, 𝑝1 + 𝑝2) 

El tercer subintervalo sería 

[𝑝1 + 𝑝2, 𝑝1 + 𝑝2 + 𝑝3) 

Y así sucesivamente hasta el último o 𝑁-ésimo, que sería 

[∑ 𝑝𝑖 , 1
𝑁−1

𝑖=1
] 

Seguidamente se seleccionan un grupo de dígitos, que siguiendo al 

número 0. , estuviese en uno de los subintervalos descritos. La 

primera unidad seleccionada sería la que su identificador indica la 

posición del subintervalo seleccionado. Las siguientes selecciones 

de unidades de la muestra se obtienen de modo similar a como 

hemos obtenido la primera, con los sucesivos dígitos generados 

aleatoriamente. 

En el caso sin reemplazamiento de unidades se procede 

similarmente, pero desechando unidades ya extraidas antes. 
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Capítulo 8 

Muestreo por conglomerados 

 

 

Un conglomerado es una clase o parte de una clasificación de la 

población finita en que se divide dicha población. La diferencia 

entre un conglomerado y un estrato es que el primero se selecciona 

aleatoriamente, mientras que el segundo se selecciona con 

seguridad, es decir se incluye con seguridad en la muestra aunque 

no sea en la totalidad de sus unidades. Cuando hablamos de grupos 

en el muestreo posagrupado, los grupos seleccionados en la 

primera fase, se muestrean en la segunda fase con seguridad, por lo 

que reciben el nombre de estratos también. 

 Si tenemos 𝐿  conglomerados, cada uno de ellos contiene 

varias unidades elementales de la población finita. Llamando 𝑖 al 

conglomerado 𝑖 -ésimo (𝑖 = 1, 2, … , 𝐿)  que contiene 𝑁𝑖  unidades 

(secundarias) de la población finita, el número total de unidades de 

la población finita, número total de unidades secundarias o 

elementos de la población, o tamaño de la población finita es 

𝑁 =∑𝑁𝑖

𝐿

𝑖=1

. 

En el muestreo unietápico por conglomerados (o muestreo 

por conglomerados sin submuestreo), se seleccionan 𝑛 

conglomerados de entre los 𝐿 que constituyen el colectivo, y dentro 

de cada uno de estos 𝑛  conglomerados se observan todas las 

unidades secundarias que contienen. De este modo, los 
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conglomerados son las unidades de muestreo y las unidades 

secundarias son las unidades de observación ya que es de las 

unidades secundarias de donde se obtiene u observa la información 

de la variable de interés. 

Denotamos por 𝑦𝑖𝑗  a la variable de interés observada en la 

unidad 𝑗 -ésima del conglomerado 𝑖 -ésimo (𝑗 = 1, 2, … ,𝑁𝑖; 𝑖 =

1, 2, … , 𝐿). La media del conglomerado 𝑖 (𝑖 = 1, 2, … , 𝐿) es 

𝑦̅𝑖 =
1

𝑁𝑖
∑𝑦𝑖𝑗

𝑁𝑖

𝑗=1

, 

y el total del conglomerado 𝑖 es 𝑁𝑖𝑦̅𝑖. La media poblacional es 

𝑦̅ =
1

𝑁
∑∑𝑦𝑖𝑗

𝑁𝑖

𝑗=1

𝐿

𝑖=1

=
1

𝑁
∑𝑁𝑖𝑦̅𝑖

𝐿

𝑖=1

. 

La cuasivarianza del conglomerado 𝑖 es 

𝑆𝑖
2 =

1

𝑁𝑖 − 1
∑(𝑦𝑖𝑗 − 𝑦̅𝑖)

2

𝑁𝑖

𝑗=1

=
𝑁𝑖

𝑁𝑖 − 1
𝜎𝑖
2, 

y la cuasivarianza poblacional es 

𝑆2 =
1

𝑁 − 1
∑∑(𝑦𝑖𝑗 − 𝑦̅)

2

𝑁𝑖

𝑗=1

𝐿

𝑖=1

=
𝑁

𝑁 − 1
𝜎2. 

En estas condiciones, el análisis de la varianza o variación 

total se puede descomponer en la variación dentro de 

conglomerados y la variación entre conglomerados, de modo igual 

al muestreo estratificado, 
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𝜎2 =∑
𝑁𝑖
𝑁
𝜎𝑖
2

𝐿

𝑖=1

+∑
𝑁𝑖
𝑁
(𝑦̅𝑖 − 𝑦̅)

2

𝐿

𝑖=1

. 

El “coeficiente de correlación intraconglomerados” es 

𝛿 =

∑
∑ (𝑦𝑖𝑘 − 𝑦̅)(𝑦𝑖𝑚 − 𝑦̅)
𝑁𝑖
𝑘≠𝑚

𝐿𝑁𝑖(𝑁𝑖 − 1)
𝐿
𝑖=1

𝜎2
, 

que es un indicador del grado de homogeneidad de los 

conglomerados, donde en el denominador aparece la varianza 

poblacional. 

 

8.1 Muestreo por conglomerados de igual tamaño 

En el caso en que los conglomerados sean del mismo tamaño, 

𝑁𝑖 = 𝑁  (𝑖 = 1, 2, … , 𝐿), 

la media muestral en muestreo por conglomerados unietápico es 

𝑦̅𝑐 =
1

𝑛
∑

1

𝑁

𝑛

𝑖=1

∑𝑦𝑖𝑗

𝑁̅

𝑗=1

=
1

𝑛
∑𝑦̅𝑖

𝑛

𝑖=1

, 

donde 𝑛 es el tamaño muestral, 1 ≤ 𝑛 ≤ 𝐿, o número de unidades 

primarias o conglomerados seleccionados en la muestra. Este 

estimador es insesgado para estimar la media poblacional 𝑦̅, pues 

en este caso la media de las medias de los conglomerados coincide 

con la media poblacional. En efecto, ya que 𝑁 = 𝐿𝑁, 

1

𝐿
∑𝑦̅𝑖

𝐿

𝑖=1

=
1

𝐿
∑

1

𝑁
∑𝑦𝑖𝑗

𝑁̅

𝑗=1

𝐿

𝑖=1

=
1

𝑁
∑∑𝑦𝑖𝑗

𝑁̅

𝑗=1

𝐿

𝑖=1

= 𝑦̅. 
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La varianza de 𝑦̅𝑐 se obtiene directamente tanto para diseño 

mas como para diseño mia. Para diseño mas, 

𝑉(𝑦̅𝑐) =
𝜎𝑦̅𝑖
2

𝑛
. 

Para diseño mia, 

𝑉(𝑦̅𝑐) =
𝐿 − 𝑛

𝐿

𝑆𝑦̅𝑖
2

𝑛
. 

Pero desarrollando 𝜎𝑦̅𝑖
2  tenemos 

𝜎𝑦̅𝑖
2 =

1

𝐿
∑(𝑦̅𝑖 − 𝑦̅)

2

𝐿

𝑖=1

=
1

𝐿𝑁2
∑[∑(𝑦𝑖𝑗 − 𝑦̅)

𝑁̅

𝑗=1

]

2
𝐿

𝑖=1

= 

1

𝐿𝑁2
∑[∑(𝑦𝑖𝑗 − 𝑦̅)

2
𝑁̅

𝑗=1

+ ∑(𝑦𝑖𝑘 − 𝑦̅)(𝑦𝑖𝑚 − 𝑦̅)

𝑁̅

𝑘≠𝑚

]

𝐿

𝑖=1

= 

1

𝑁
𝜎2 +

𝑁 − 1

𝑁
𝜎2𝛿 =

𝜎2

𝑁
[1 + (𝑁 − 1)𝛿], 

lo que nos permite expresar de otros modos la varianza del 

estimador media muestral de las medias de los conglomerados 

unietápicos. En concreto, haciendo uso de la aproximación 

(𝐿 − 1)𝑁 ≈ 𝑁 − 1, 

es común ver la fórmula aproximada con diseño mia, 

𝑉(𝑦̅𝑐) ≈
𝑁 − 𝑛𝑁

𝑁 − 1

𝜎2

𝑛𝑁
[1 + (𝑁 − 1)𝛿], 

que permite comparar fácilmente su varianza con la de la media 

muestral de igual tamaño muestral si no hubiera conglomerados. 

En general se aprecia que la ganancia en precisión es mayor cuando 
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𝛿 ≈ −1 (𝑁 − 1)⁄ . Si 𝛿 ≈ 0, el estimador por conglomerados de 

igual tamaño unietápico tiene similar precisión que el estimador 

media muestral de igual tamaño muestral. Si 𝛿 > 0, el muestreo 

por conglomerados de igual tamaño unietápico tiene menor 

precisión que el estimador media muestral de igual tamaño 

muestral. Si 𝛿 < 0, tiene mayor precisión. Por lo tanto, lo ideal es 

agrupar unidades secundarias que sean diferentes o heterogéneas 

entre sí según la variable de interés dentro de cada conglomerado. 

 La estimación del total poblacional, de la proporción 

poblacional, y del porcentaje poblacional, siguen en líneas 

semejantes. La determinación del tamaño muestral para obtener un 

error absoluto máximo 𝑒  para un nivel de confianza 1 − 𝛼  se 

resuelve de modo similar usando la desigualdad de Chebychev, 

pero ahora aparecen dos funciones paramétricas desconocidas: 𝜎2 

y 𝛿. 

En concreto, con diseño mas, 

𝑛 =
𝜎2[1 + (𝑁 − 1)𝛿]

𝛼𝑒2𝑁̅
, 

mientras que con diseño mia, 

𝑛 ≈
𝐿

𝛼𝑒2(𝐿 − 1)𝑁
𝜎2[1 + (𝑁 − 1)𝛿]

+ 1

. 

 

8.2 Muestreo sistemático 

En el caso en que el tamaño poblacional 𝑁  sea divisible por el 

tamaño muestral 𝑛 , sea 𝐿 = 𝑁 𝑛⁄ . En el muestreo sistemático, 

existirán 𝐿 muestras conjunto o no ordenadas distintas de tamaño 

efectivo 𝑛 que se seleccionan del siguiente modo: 
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a) Se selecciona una unidad entre las 𝐿 primeras de la población 

finita, y cada una de las primeras 𝐿 unidades con probabilidad 

1 𝐿⁄ . 

b) Las restantes 𝑛 − 1  unidades de la muestra son las que 

ocupan los lugares relativos idénticos en los 𝑛 − 1 restantes 

grupos de 𝐿 unidades de la población finita. 

Habrá entonces 𝐿 muestras posibles, 

𝑠𝑖 = {𝑖, 𝐿 + 𝑖, 2𝐿 + 𝑖, … ,𝑁 − 𝐿 + 𝑖}, 𝑖 = 1, 2, … , 𝐿; 

con una probabilidad de selección igual a 1 𝐿⁄ = 𝑛 𝑁⁄ . 

Algunas ventajas de este método de muestreo: 

a) La muestra se extiende a toda la población. 

b) Puede recoger el efecto de estratificación debido al orden en 

que se numeran las unidades de la población finita. 

c) Es de aplicación y comprobación sencillas. 

Algunos inconvenientes del muestreo sistemático: 

a) En caso de periodicidad de la variable de interés, podría 

aumentar la varianza del estimador media muestral. 

b) El problema teórico que se presenta en la estimación de las 

varianzas, pues no existen estimadores insesgados de la 

varianza de la media muestral con muestreo sistemático de 

arranque simple, salvo con el apoyo de otra muestra. 

Si se selecciona la muestra 𝑠𝑖  con probabilidad 1 𝐿⁄ , tendremos 

como estimador la media muestral 

𝑦̅𝑠𝑖 =
1

𝑛
∑𝑦𝑖+𝐿(𝑗−1)

𝑛

𝑗=1

  (𝑖 = 1, 2, … , 𝐿), 

que es insesgado para estimar la media poblacional 𝑦̅, pues 
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𝐸(𝑦̅𝑠𝑖) =
1

𝐿
∑𝑦̅𝑠𝑖

𝐿

𝑖=1

=
1

𝐿
∑

1

𝑛
∑𝑦𝑖+𝐿(𝑗−1)

𝑛

𝑗=1

𝐿

𝑖=1

=
1

𝑁
𝑁𝑦̅ = 𝑦̅. 

Como 𝐿 es el número de muestras posibles, su varianza será 

𝑉(𝑦̅𝑠𝑖) =
1

𝐿
∑(𝑦̅𝑠𝑖 − 𝑦̅)

2
𝐿

𝑖=1

= 𝜎𝑏𝑠
2 , 

que es la variabilidad entre (del inglés “between”) conglomerados 

o muestras, o bien, 

𝑁𝑉(𝑦̅𝑠𝑖) =∑∑(𝑦̅𝑠𝑖 − 𝑦̅)
2

𝑛

𝑗=1

𝐿

𝑖=1

= 𝑁𝜎2 −∑∑[𝑦𝑖+𝐿(𝑗−1) − 𝑦̅𝑠𝑖]
2

𝑛

𝑗=1

𝐿

𝑖=1

, 

haciendo uso del análisis de la varianza. Por tanto, 

𝑉(𝑦̅𝑠𝑖) = 𝜎
2 −

1

𝑁
∑∑[𝑦𝑖+𝐿(𝑗−1) − 𝑦̅𝑠𝑖]

2
𝑛

𝑗=1

𝐿

𝑖=1

= 𝜎2 − 𝜎𝑤𝑠
2 , 

donde  

𝜎𝑤𝑠
2 =

1

𝑁
∑∑[𝑦𝑖+𝐿(𝑗−1) − 𝑦̅𝑠𝑖]

2
𝑛

𝑗=1

𝐿

𝑖=1

=
1

𝐿
∑𝜎𝑖

2

𝐿

𝑖=1

 

es la variación dentro (del inglés “within”) de conglomerados o 

muestras. De la fórmula de la varianza, podemos comparar la 

precisión del muestreo sistemático con la de otros métodos de 

muestreo de igual tamaño muestral. 

 También podemos considerar que el muestreo sistemático es 

un muestreo por conglomerados de igual tamaño unietápico o sin 

submuestreo. En él se selecciona un solo conglomerado, y 

aplicando entonces los resultados del muestreo por conglomerados 

unietápico, tenemos que 𝐿  es el número de conglomerados, el 
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tamaño muestral coincide con el tamaño de un conglomerado 𝑛 =

𝑁, y el tamaño muestral de los conglomerados seleccionados es 1. 

 

8.3 Muestreo por conglomerados de tamaño desigual 

Cuando los conglomerados son de tamaño desigual, es decir los 𝑁𝑖 

son distintos o no todos iguales, entonces podemos denotar 

𝑦𝑖 =∑𝑦𝑖𝑗

𝑁𝑖

𝑗=1

= 𝑁𝑖𝑦̅𝑖 

al total del conglomerado 𝑖-ésimo (𝑖 = 1, 2, … , 𝐿) de tamaño 𝑁𝑖 y 

de media 𝑦̅𝑖 . Dada una muestra de 𝑛  unidades primarias o 

conglomerados de los 𝐿  que componen la población, una 

estimación insesgada del total poblacional, 𝑁𝑦̅, de la variable de 

interés 𝑦 es 

𝑡 =
𝐿

𝑛
∑𝑦𝑖

𝑛

𝑖=1

= 𝐿𝑦̅𝑡 , 

siendo  

𝑁𝑦̅ =∑𝑦𝑖

𝐿

𝑖=1

= 𝐿𝑦̅𝑇 . 

Su varianza para diseño mas es 

𝑉(𝑡) = 𝐿2𝑉(𝑦̅𝑡) = 𝐿2
𝜎𝑦𝑖
2

𝑛
=
𝐿

𝑛
∑(𝑦𝑖 − 𝑦̅𝑇)

2

𝐿

𝑖=1

, 

que es estimable sin sesgo por 
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𝑉̂(𝑡) = 𝐿2
𝑠𝑦𝑖
2

𝑛
=

𝐿2

𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦̅𝑡)

2

𝑛

𝑖=1

. 

 Su varianza para diseño mia es 

𝑉(𝑡) = 𝐿2
𝐿 − 𝑛

𝐿 − 1

𝜎𝑦𝑖
2

𝑛
= 𝐿2

𝐿 − 𝑛

𝐿

𝑆𝑦𝑖
2

𝑛
= 𝐿(𝐿 − 𝑛)

𝑆𝑦𝑖
2

𝑛
, 

que es estimable sin sesgo por 

𝑉̂(𝑡) =
𝐿(𝐿 − 𝑛)

𝑛
𝑠𝑦𝑖
2 =

𝐿(𝐿 − 𝑛)

𝑛(𝑛 − 1)
∑(𝑦𝑖 − 𝑦̅𝑡)

2

𝑛

𝑖=1

. 

 

Otros métodos de estimación en el caso de muestreo por 

conglomerados unietápico de tamaño desigual, usando diseños de 

probabilidades desiguales, son semejantes a los ya vistos para 

unidades de la población finita en una sola etapa. 

Así, por ejemplo, si 𝑝𝑖 = 𝑁𝑖 𝑁⁄  es la probabilidad de 

seleccionar el conglomerado 𝑖, el estimador Hansen-Hurwitz del 

total poblacional es 

𝑡 = ∑
𝑦𝑖
𝑛𝑝𝑖

𝑖 ∈ 𝒔

, 

siendo 𝒔  la muestra ordenada obtenida por diseño de 

probabilidades proporcionales al tamaño del conglomerado con 

reposición. Como vimos, este estimador es insesgado para el total 

poblacional 𝑁𝑦̅, su varianza es 

𝑉(𝑡) =
1

𝑛
∑𝑝𝑖 (

𝑦𝑖
𝑝𝑖
− 𝐿𝑦̅𝑇)

2

𝑖∈𝑈

, 

y un estimador insesgado de la varianza del estimador 𝑡 es 
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𝑉̂(𝑡) =
1

𝑛(𝑛 − 1)
∑(

𝑦𝑖
𝑝𝑖
− 𝑡)

2

𝑖∈𝒔

. 

 

También podemos usar el estimador Sánchez-Crespo en 

similares condiciones. Entonces, el esquema muestral es sin 

reposición, el estimador es el análogo 

𝑡 = ∑
𝑦𝑖
𝑛𝑝𝑖

𝑖 ∈ 𝒔

, 

su varianza es 

𝑉(𝑡) =
𝑀 − 𝑛

𝑀 − 1

1

𝑛
∑𝑝𝑖 (

𝑦𝑖
𝑝𝑖
− 𝐿𝑦̅𝑇)

2

𝑖∈𝑈

, 

y un estimador insesgado de esta varianza es 

𝑉̂(𝑡) =
𝑀 − 𝑛

𝑀

1

𝑛(𝑛 − 1)
∑ (

𝑦𝑘
𝑝𝑘
− 𝑡)

2

.

𝑘 ∈ 𝒔

 

 

Otro estimador posible sin reposición es el proporcionado por 

el estimador Horvitz-Thompson del total poblacional 𝑁𝑦̅ siguiente 

𝑡 = ∑
𝑦𝑖
𝜋𝑖

𝑖∈𝑟(𝒔)

, 

que es insesgado para estimar el total poblacional, su varianza es 

𝑉(𝑡) =∑
𝑦𝑖
2

𝜋𝑖
(1 − 𝜋𝑖)

𝑖∈𝑈

+ ∑
𝑦𝑘𝑦𝑚
𝜋𝑘𝜋𝑚

(𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚)

𝑘≠𝑚∈𝑈

, 

y un estimador insesgado de esta varianza es 
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𝑉̂(𝑡) = ∑
𝑦𝑖
2

𝜋𝑖
2
(1 − 𝜋𝑖)

𝑖∈𝑟(𝒔)

+ ∑
𝑦𝑘𝑦𝑚
𝜋𝑘𝜋𝑚

𝜋𝑘𝑚 − 𝜋𝑘𝜋𝑚
𝜋𝑘𝑚

𝑘≠𝑚∈𝑟(𝒔)

. 

 

8.4 Submuestreo con conglomerados de igual tamaño 

Se produce la situación de “submuestreo” cuando en una primera 

etapa se seleccionan 𝑛 unidades primarias o conglomerados con 

diseño mas, y después en una segunda etapa se selecciona un 

número determinado de subunidades o unidades secundarias o 

finales con diseño mas de cada uno de los conglomerados 

seleccionados en la primera etapa. Vamos a ver en esta sección el 

caso en el que las unidades de primera etapa son de igual tamaño, 

y en segundo lugar, veremos en la sección siguiente, el caso que se 

presenta cuando las unidades de primera etapa son de tamaño 

desigual. 

 Denotando por 𝑦𝑖𝑗 al valor de la variable de interés de la 𝑗-

ésima subunidad en la 𝑖-ésima unidad primaria, la media muestral 

por subunidad en la 𝑖-ésima unidad primaria es 

𝑦̅𝒔(𝑖) =
1

𝑚
∑𝑦𝑖𝑗

𝑚

𝑗=1

, 

donde 𝑚  es el tamaño muestral de la submuestra en el 

conglomerado 𝑖. La media global de muestra por subunidades es 

𝑦̅̅ =
1

𝑛
∑𝑦̅𝒔(𝑖)

𝑛

𝑖=1

, 

donde 𝑛 es el tamaño muestral en la primera etapa o número de 

conglomerados que se seleccionan en la muestra. La varianza entre 

medias de unidades primarias es 
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𝜎1
2 =

1

𝐿
∑(𝑦̅𝑖 − 𝑦̅)

2

𝐿

𝑖=1

. 

La media de varianzas de unidades secundarias dentro de unidades 

primarias es 

𝜎2
2 =

1

𝐿𝑁
∑∑(𝑦𝑖𝑗 − 𝑦̅𝑖)

2
𝑁̅

𝑗=1

𝐿

𝑖=1

=
1

𝐿
∑𝜎2𝑖

2

𝐿

𝑖=1

. 

Entonces, si 𝑛 es el número de unidades primarias seleccionadas, y 

𝑚  es el número de unidades secundarias o subunidades por 

conglomerado seleccionado en la segunda etapa, y las muestras 

extraídas por diseño mas, el estimador 𝑦̅̅ es insesgado para estimar 

la media poblacional 𝑦̅, y su varianza es 

𝑉(𝑦̅̅) =
𝜎1
2

𝑛
+
𝜎2
2

𝑚𝑛
. 

En efecto, 

𝐸(𝑦̅̅) = 𝐸1[𝐸2(𝑦̅̅)] = 𝐸1 (
1

𝑛
∑𝑦̅𝑖

𝑛

𝑖=1

) =
1

𝐿
∑𝑦̅𝑖

𝐿

𝑖=1

= 𝑦̅. 

Y la varianza es 

𝑉(𝑦̅̅) = 𝑉1[𝐸2(𝑦̅̅)] + 𝐸1[𝑉2(𝑦̅̅)]. 

𝐸2(𝑦̅̅) =
1

𝑛
∑𝑦̅𝑖

𝑛

𝑖=1

, 

𝑉1[𝐸2(𝑦̅̅)] =
𝜎1
2

𝑛
. 
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𝑉2(𝑦̅̅) =
1

𝑛2
∑𝑉2[𝑦̅𝒔(𝑖)]

𝑛

𝑖=1

=
1

𝑛2
∑

𝜎2𝑖
2

𝑚

𝑛

𝑖=1

=
1

𝑛𝑚

1

𝑛
∑𝜎2𝑖

2

𝑛

𝑖=1

, 

𝐸1[𝑉2(𝑦̅̅)] =
1

𝑛𝑚
𝐸1 (

1

𝑛
∑𝜎2𝑖

2

𝑛

𝑖=1

) =
1

𝑛𝑚
𝜎2
2. 

Luego, 

𝑉(𝑦̅̅) =
𝜎1
2

𝑛
+
𝜎2
2

𝑛𝑚
. 

 

Un estimador insesgado de esta varianza es 

𝑉̂(𝑦̅̅) =
𝑠1
2

𝑛
+
𝑁 − 1

𝑛𝑚𝑁
𝑠2
2, 

donde  

𝑠1
2 =

1

𝑛 − 1
∑[𝑦̅𝒔(𝑖) − 𝑦̅̅]

2
𝑛

𝑖=1

 

y  

𝑠2
2 =

1

𝑛(𝑚 − 1)
∑∑[𝑦𝑖𝑗 − 𝑦̅𝒔(𝑖)]

2
𝑚

𝑗=1

𝑛

𝑖=1

=
1

𝑛
∑𝑠2𝑖

2

𝑛

𝑖=1

. 

En efecto, 

(𝑛 − 1)𝑠1
2 =∑[𝑦̅𝒔(𝑖) − 𝑦̅̅]

2
𝑛

𝑖=1

=∑𝑦̅𝒔(𝑖)
2

𝑛

𝑖=1

− 𝑛𝑦̅̅2, 

por tanto 
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(𝑛 − 1)𝐸2(𝑠1
2) =∑𝑦̅𝑖

2

𝑛

𝑖=1

+∑
1

𝑁𝑚
𝜎2𝑖
2 −

𝑛

𝑖=1

 

𝑛 (
1

𝑛
∑𝑦̅𝑖

𝑛

𝑖=1

)

2

−
1

𝑛
∑

1

𝑁𝑚
𝜎2𝑖
2

𝑛

𝑖=1

, 

pues  

𝐸2[𝑦̅𝒔(𝑖)
2 ] = {𝐸2[𝑦̅𝒔(𝑖)]}

2
+ 𝑉2[𝑦̅𝒔(𝑖)] 

y  

𝐸2(𝑦̅̅
2) = [𝐸2(𝑦̅̅)]

2 + 𝑉2(𝑦̅̅). 

Luego, 

(𝑛 − 1)𝐸2(𝑠1
2) =∑(𝑦̅𝑖 −

1

𝑛
∑𝑦̅𝑖

𝑛

𝑖=1

)

2𝑛

𝑖=1

+
𝑛 − 1

𝑁𝑚𝑛
∑𝜎2𝑖

2

𝑛

𝑖=1

 

y promediando sobre la primera etapa de diseño mia, 

𝐸[(𝑛 − 1)𝑠1
2] = 𝐸1[(𝑛 − 1)𝐸2(𝑠1

2)] = (𝑛 − 1)𝜎1
2 +

𝑛 − 1

𝑁𝑚
𝜎2
2. 

Por tanto, 𝑠1
2 es un estimador de 𝜎1

2 con un sesgo 𝜎2
2 (𝑁𝑚)⁄ . Como 

𝑠2
2  es un estimador insesgado de 𝜎2

2 , podemos proponer como 

estimador insesgado de la varianza de 𝑦̅̅ a 

𝑉̂(𝑦̅̅) =
𝑠1
2

𝑛
+ 𝑐𝑠2

2, 

donde 𝑐  es una constante que se obtiene al asegurar que tal 

estimador sea insesgado. En efecto, de que 

𝐸[𝑉̂(𝑦̅̅)] = 𝑉(𝑦̅̅), 
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obtenemos que 

𝑐 =
𝑁 − 1

𝑛𝑚𝑁
, 

de donde concluimos que el estimador insesgado buscado es 

𝑉̂(𝑦̅̅) =
𝑠1
2

𝑛
+
𝑁 − 1

𝑛𝑚𝑁
𝑠2
2. 

 

La distribución de la muestra en las dos etapas se puede 

obtener al admitir la función de coste del tipo 

𝐶 = 𝑐1𝑛 + 𝑐2𝑛𝑚, 

es decir, el coste total es la suma de los costes proporcionales al 

número 𝑛 de unidades primarias seleccionadas por el coste 𝑐1 de 

seleccionar una unidad primaria, y al número 𝑛𝑚  de unidades 

secundarias seleccionadas por el coste 𝑐2  de observación por 

unidad secundaria. Como tenemos la varianza 

𝑉(𝑦̅̅) =
𝜎1
2

𝑛
+
𝜎2
2

𝑛𝑚
, 

para minimizar esta varianza para el coste total fijo 𝐶, tenemos el 

lagrangiano 

𝐿∗ = 𝑉(𝑦̅̅) + 𝜆(𝐶 − 𝑐1𝑛 − 𝑐2𝑛𝑚) 

que se resuelve así, 

𝜕𝐿∗

𝜕𝑛
= −

1

𝑛2
𝜎1
2 −

1

𝑛2
𝜎2
2

𝑚
− 𝜆(𝑐1 + 𝑐2𝑚) = 0 

𝜕𝐿∗

𝜕𝑚
= −

1

𝑛𝑚2
𝜎2
2 − 𝜆𝑐2𝑛 = 0. 

Luego, 
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𝜆 = −
1

𝑛2(𝑐1 + 𝑐2𝑚)
𝜎1
2 −

1

𝑛2𝑚(𝑐1 + 𝑐2𝑚)
𝜎2
2 = 

−
1

𝑐2𝑛
2𝑚2

𝜎2
2, 

o bien, multiplicando por 𝑛2𝑚2𝑐2(𝑐1 + 𝑐2𝑚), tenemos 

𝑚2𝑐2𝜎1
2 +𝑚𝑐2𝜎2

2 = (𝑐1 + 𝑐2𝑚)𝜎2
2, 

que reordenando y simplificando resulta la ecuación de segundo 

grado en 𝑚 

𝑚2𝑐2𝜎1
2 − 𝑐1𝜎2

2 = 0, 

que resolviendo queda el valor óptimo teórico 

𝑚 = √
𝑐1𝜎2

2

𝑐2𝜎1
2, 

pues la raíz negativa no la consideramos ya que 𝑚 > 0. Hemos 

dicho que es un óptimo teórico porque depende de funciones 

paramétricas que son desconocidas sin un censo. Finalmente 

𝑛 =
𝐶

𝑐1 + 𝑐2𝑚
. 

 

 También es posible estudiar el caso de submuestreo con 

unidades de primera etapa iguales en tamaño, cuando el diseño 

básico usado es el diseño mia en la primera y segunda etapas. En 

este caso el estimador media de las medias muestrales 𝑦̅̅ es también 

insesgado y un estimador sin sesgo de su varianza es 

𝑉̂(𝑦̅̅) =
𝐿 − 𝑛

𝐿𝑛
𝑠1
2 +

𝑛

𝐿

𝑁 −𝑚

𝑁𝑚𝑛
𝑠2
2. 
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El tamaño muestral óptimo teórico de 𝑚, sujeto a un coste 

prefijado 𝐶 = 𝑐1𝑛 + 𝑐2𝑛𝑚, es ahora 

𝑚 = √
𝑐1𝑆2

2

𝑐2 (𝑆1
2 −

𝑆2
2

𝑁
)

, 

donde 

𝑆1
2 =

1

𝐿 − 1
∑(𝑦̅𝑖 − 𝑦̅)

2

𝐿

𝑖=1

 

y  

𝑆2
2 =

1

𝐿(𝑁 − 1)
∑∑(𝑦𝑖𝑗 − 𝑦̅𝑖)

2
𝑁̅

𝑗=1

𝐿

𝑖=1

=
1

𝐿
∑𝑆2𝑖

2

𝐿

𝑖=1

. 

 

8.5 Submuestreo y conglomerados de tamaño desigual 

Veamos un tratamiento a esta situación. La unidad primaria 𝑖 se 

selecciona con probabilidades proporcionales a 𝑝𝑖 > 0, con  

∑𝑝𝑖

𝐿

𝑖=1

= 1. 

Además podemos suponer que las 𝑛  selecciones se hacen con 

reemplazamiento. La submuestra es de tamaño 𝑚𝑖 subunidades de 

la unidad primaria 𝑖, con diseño mas. Si la unidad primaria 𝑖 se 

selecciona más de una vez, se restituye la totalidad de la 

submuestra seleccionada independientemente de tamaño 𝑚𝑖 

unidades secundarias con diseño mas con reemplazamiento. Un 

estimador insesgado del total poblacional 𝑁𝑦̅ es 
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𝑡 =
1

𝑛
∑

𝑁𝑖𝑦̅𝒔(𝑖)

𝑝𝑖

𝑛

𝑖=1

=
1

𝑛
∑

𝑁𝑖𝑦̅𝒔(𝑖)

𝑝𝑖

𝐿

𝑖=1

𝑒𝑖 . 

En efecto, 

𝐸(𝑡) = 𝐸1 {
1

𝑛
∑

𝑁𝑖𝐸2[𝑦̅𝒔(𝑖)]

𝑝𝑖
𝑒𝑖

𝐿

𝑖=1

} =
1

𝑛
∑

𝑁𝑖𝑦̅𝑖
𝑝𝑖

𝐸1(𝑒𝑖)

𝐿

𝑖=1

= 𝑁𝑦̅, 

siendo 𝑒𝑖  el número de veces que la unidad primaria 𝑖  es 

seleccionada en la muestra, con 𝐸1(𝑒𝑖) = 𝑛𝑝𝑖  (𝑖 = 1, 2, … , 𝐿). La 

varianza de 𝑡 se obtiene haciendo uso del Teorema de Madow, 

𝑉(𝑡) = 𝐸1𝑉2(𝑡) + 𝑉1𝐸2(𝑡). 

𝑉2(𝑡) =
1

𝑛2
∑

𝑁𝑖
2

𝑝𝑖
2 𝑒𝑖

2𝑉2[𝑦̅𝒔(𝑖)] =
1

𝑛2
∑𝑒𝑖

2

𝐿

𝑖=1

𝐿

𝑖=1

𝑁𝑖
2

𝑝𝑖
2

𝜎𝑖
2

𝑚𝑖
, 

siendo 𝜎𝑖
2  la varianza dentro del conglomerado 𝑖 -ésimo, donde 

ahora 𝑖 = 1, 2, … , 𝐿. 

𝐸1𝑉2(𝑡) =
1

𝑛2
∑𝐸1(𝑒𝑖

2)

𝐿

𝑖=1

𝑁𝑖
2

𝑝𝑖
2

𝜎𝑖
2

𝑚𝑖
= 

∑
1− 𝑝𝑖 + 𝑛𝑝𝑖

𝑛𝑝𝑖
𝑁𝑖
2 𝜎𝑖

2

𝑚𝑖

𝐿

𝑖=1

. 

También, 

𝐸2(𝑡) =
1

𝑛
∑

𝑁𝑖𝐸2[𝑦̅𝒔(𝑖)]

𝑝𝑖
𝑒𝑖

𝐿

𝑖=1

=
1

𝑛
∑

𝑁𝑖𝑦̅𝑖
𝑝𝑖

𝑒𝑖

𝐿

𝑖=1

, 

y  
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𝑉1𝐸2(𝑡) =
1

𝑛2
∑

𝑁𝑖
2𝑦̅𝑖

2

𝑝𝑖
2 𝑉1(𝑒𝑖)

𝐿

𝑖=1

=∑
𝑁𝑖
2𝑦̅𝑖

2

𝑛𝑝𝑖
(1 − 𝑝𝑖)

𝐿

𝑖=1

. 

Luego, 

𝑉(𝑡) =∑
1 − 𝑝𝑖 + 𝑛𝑝𝑖

𝑛𝑝𝑖
𝑁𝑖
2 𝜎𝑖

2

𝑚𝑖

𝐿

𝑖=1

+∑
𝑁𝑖
2𝑦̅𝑖

2

𝑛𝑝𝑖
(1 − 𝑝𝑖)

𝐿

𝑖=1

. 

Y un estimador insesgado de esta varianza es 

𝑉̂(𝑡) =∑
1 − 𝑝𝑖 + 𝑛𝑝𝑖

𝑛2𝑝𝑖
2 𝑁𝑖

2 𝑠𝑖
2

𝑚𝑖
𝑒𝑖

𝐿

𝑖=1

+ 

∑
𝑁𝑖
2

𝑛2𝑝𝑖
2
(1 − 𝑝𝑖) [𝑦̅𝒔(𝑖)

2 −
𝑠𝑖
2

𝑚𝑖
] 𝑒𝑖

𝐿

𝑖=1

, 

o bien, simplificando, 

𝑉̂(𝑡) =∑[
𝑁𝑖
2𝑠𝑖
2

𝑛𝑝𝑖𝑚𝑖
+
𝑁𝑖
2(1 − 𝑝𝑖)𝑦̅𝒔(𝑖)

2

𝑛2𝑝𝑖
2 ] 𝑒𝑖

𝐿

𝑖=1

, 

donde 𝑠𝑖
2 es la cuasivarianza muestral dentro del conglomerado 𝑖. 

 

8.6 Ejercicios resueltos 

 

Ejercicio 8.1. Un establecimiento comercial dispone de 1500 

facturas que recogen los ingresos durante un mes de trabajo; se 

desea estimar la media por factura mediante muestreo sistemático, 

tomando un arranque aleatorio entre las primeras 15 facturas. Por 

la experiencia pasada se sabe que el coeficiente de correlación 

intraconglomerados es aproximadamente 0.05. Se desea saber si la 
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varianza del estimador usual en muestreo sistemático es más del 

doble que la varianza de la estrategia “diseño mas, media muestral” 

con idéntico tamaño muestral. 

Solución. El tamaño de la muestra sistemática es 

𝑛 =
𝑁

𝐿
=
1500

15
= 100, 

que coincide con el tamaño del conglomerado 𝑁. La varianza de la 

media muestral con muestreo sistemático es 

𝑉(𝑦̅𝑐) =
𝜎2

𝑛
[1 + (𝑛 − 1)𝛿] = 𝑉(𝑦̅𝑠)[1 + (𝑛 − 1)𝛿] = 5.95𝑉(𝑦̅𝑠) 

que es mayor que el doble de 𝑉(𝑦̅𝑠). 

 

Ejercicio 8.2. Con el fin de estimar la calidad de cierta marca de 

cerillas, se examina la producción que está empaquetada en cajas 

de 50  fósforos. El número de cajas producido es de 300. Para 

estimar la proporción de cerillas defectuosas, se prueban 5 cajas de 

modo destructivo y la proporción estimada de unidades defectuosas 

por caja en las 5 muestreadas es de 0.04. ¿Cuál será la varianza de 

este estimador si la proporción muestral estima bien la proporción 

poblacional, y el coeficiente de correlación intraconglomerados es 

0? 

Solución.  

𝑉(𝑃̂) ≈
𝑁 − 𝑛𝑁

𝑁 − 1

𝑃𝑄

𝑛𝑁
[1 + (𝑁 − 1)𝛿] ≈ 0.00015 
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Ejercicio 8.3. En el problema anterior, ¿cuál será el tamaño 

muestral de cajas o unidades primarias para que el error máximo 

de muestreo sea igual a 0.001 para un nivel de confianza del 90%? 

Solución. 

𝑛 ≈
𝑁𝑃𝑄

(𝑁 − 1)𝑁 [
𝛼𝑒2

1 + (𝑁 − 1)𝛿
+

𝑃𝑄
𝑁 − 1

]
≈ 612, 

que como es superior a las 300 disponibles, sería necesario un 

muestreo exhaustivo de la totalidad de la producción, pero al ser un 

proceso destructivo se hace desaconsejable el estudio. 

 

Ejercicio 8.4. Averiguar el tamaño muestral 𝑛  necesario para 

asegurar que el estimador 𝑦̅𝑐 , de la media poblacional 𝑦̅ , con 

conglomerados del mismo tamaño 30 , fijado un error absoluto 

máximo de muestreo de 0.05 para un nivel de confianza del 95%. 

El tamaño poblacional es de 30000  unidades. Además la 

experiencia en estudios anteriores nos da una estimación de la 

varianza poblacional de 0.15 y una estimación del coeficiente de 

correlación intraconglomerados de 0.1. 

Solución. 

𝑛 ≈
𝑁𝜎2

(𝑁 − 1)𝑁 [
𝛼𝑒2

1 + (𝑁 − 1)𝛿
+

𝜎2

𝑁 − 1
]
≈ 136. 

 

Ejercicio 8.5. En una empresa industrial se empaquetan los 

productos en lotes de 10  unidades, produciéndose diariamente 

2000 lotes. Con el fin de estimar la calidad del producto se procede 

a la estimación de la media poblacional de cierta característica de 
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interés, en muestreo bietápico, seleccionando 20 lotes con diseño 

mas, y dentro de cada lote extraído se examinan 3 subunidades con 

diseño mas. Estimar sin sesgo la varianza del estimador usual 

𝑦̅̅ =
1

𝑛
∑

1

𝑚
∑𝑦𝑖𝑗

𝑚

𝑗=1

𝑛

𝑖=1

=
1

𝑛
∑𝑦̅𝒔(𝑖)

𝑛

𝑖=1

, 

sabiendo que de la muestra obtenemos que 

𝑠1
2 =

1

𝑛 − 1
∑[𝑦̅𝒔(𝑖) − 𝑦̅̅]

2
𝑛

𝑖=1

= 0.3 

y  

𝑠2
2 =

1

𝑛(𝑚 − 1)
∑∑[𝑦𝑖𝑗 − 𝑦̅𝒔(𝑖)]

2
𝑚

𝑗=1

𝑛

𝑖=1

= 3. 

Solución. 

𝑉̂(𝑦̅̅) =
𝑠1
2

𝑛
+
𝑁 − 1

𝑛𝑚𝑁
𝑠2
2 =

0.3

20
+

9

600
3 = 0.015 + 0.045 = 0.06 

 

Ejercicio 8.6. En una primera fase se selecciona con diseño mas de 

tamaño muestral 5 una muestra ordenada. En una segunda fase, de 

la muestra anterior se selecciona una submuestra con diseño mas 

de tamaño muestral 2. Obtener la varianza de la media muestral de 

los datos observados en la segunda fase, en función de la varianza 

poblacional. 

Solución. En la primera fase seleccionamos una muestra de tamaño 

𝑛 = 5 , y denotamos por 𝑦̅′ , 𝑆̅2  y 𝜎2  a la media muestral, 

cuasivarianza muestral y varianza muestral respectivamente en la 

primera fase sin submuestreo. En la segunda fase se submuestrea 
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la muestra de la primera fase con el nuevo tamaño muestral 2, cuya 

media muestral 𝑦̅, es de la que se nos pide su varianza. Usando el 

Teorema de Madow en dos fases, 

𝑉2(𝑦̅) =
𝜎2

𝑚
=
𝑛 − 1

𝑚𝑛
𝑆̅2, 

de donde 

𝐸1𝑉2(𝑦̅) =
𝑛 − 1

𝑚𝑛
𝐸1(𝑆̅

2) =
𝑛 − 1

𝑚𝑛
𝜎2 =

2

5
𝜎2. 

También, 

𝐸2(𝑦̅) = 𝑦̅′, 

de donde 

𝑉1𝐸2(𝑦̅) = 𝑉1(𝑦̅′) =
𝜎2

𝑛
=
𝜎2

5
. 

Luego, 

𝑉(𝑦̅) = 𝐸1𝑉2(𝑦̅) + 𝑉1𝐸2(𝑦̅) =
3

5
𝜎2, 

siendo 𝜎2 la varianza poblacional. 

 

Ejercicio 8.7. ¿Cuándo se puede llamar una partición en 

conglomerados con el nombre de estratificación? 

Solución. Cuando se seleccionan todos los conglomerados para ser 

observados total o parcialmente por muestreo. 

 

Ejercicio 8.8. Proponer un estimador insesgado de la varianza 

poblacional en muestreo por conglomerados sin submuestreo, es 
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decir cuando todas las unidades secundarias pertenecientes a los 

conglomerados seleccionados son observadas. 

Solución. Si el procedimiento de selección de unidades primarias 

en la muestra de conglomerados 𝑠1  tiene probabilidades de 

inclusión 𝜋ℎ y 𝜋ℎ𝑔 positivas para cualesquiera unidades primarias 

ℎ ≠ 𝑔, el estimador insesgado de la varianza poblacional 𝜎2 es 

𝜎2̂ = ∑ 𝑊ℎ

𝜎ℎ
2

𝜋ℎ
ℎ∈𝑠1

+ ∑ ∑ 𝑊ℎ𝑊𝑔
(𝜇ℎ − 𝜇𝑔)

2

𝜋𝑔ℎ
𝑔≠ℎ∈𝑠1ℎ∈𝑠1

, 

siendo 𝑊ℎ el tamaño relativo del conglomerado ℎ, 𝜇ℎ la media del 

conglomerado ℎ, y 𝜎ℎ
2 la varianza del conglomerado ℎ. 

Si 𝐿 es el número de conglomerados, y 𝑒ℎ es el indicador del 

conglomerado ℎ en la muestra, tenemos que 

𝐸(𝜎2̂) = 

∑𝑊ℎ

𝜎ℎ
2

𝜋ℎ
𝐸(𝑒ℎ)

𝐿

ℎ=1

+∑ ∑ 𝑊ℎ𝑊𝑔
(𝜇ℎ − 𝜇𝑔)

2

𝜋𝑔ℎ
𝐸(𝑒ℎ𝑒𝑔) =

𝐿

𝑔=ℎ+1

𝐿−1

ℎ=1

 

∑𝑊ℎ𝜎ℎ
2

𝐿

ℎ=1

+∑ ∑ 𝑊ℎ𝑊𝑔(𝜇ℎ − 𝜇𝑔)
2

𝐿

𝑔=ℎ+1

𝐿−1

ℎ=1

= 𝜎2, 

por lo que el estimador propuesto es insesgado para estimar la 

varianza poblacional. Hemos usado la notación usual en muestreo 

estratificado que es válida porque los conglomerados son una 

clasificación de la población finita, como lo son los estratos. 

 

Ejercicio 8.9. Seleccionamos una muestra sistemática 𝑠 de tamaño 

𝑚 , de una población finita 𝑈  de tamaño 𝑁 , y posteriormente 
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seleccionamos una muestra irrestricta aleatoria 𝑟 de tamaño 𝑛 <

𝑁 −𝑚 de entre las unidades de 𝑈 − 𝑠. En tal caso, el estimador 

para la media poblacional usado es para una constante 𝛽, 

𝑡 = 𝛽𝑦̅𝑠 + (1 − 𝛽)𝑦̅𝑟 . 

Comprobar que es insesgado, y obtener un estimador insesgado de 

su varianza cuando es posible. 

Solución. Para ver que es insesgado 𝑡, procedemos de esta manera: 

𝐸(𝑡) = 𝐸𝐸[𝛽𝑦̅𝑠 + (1 − 𝛽)𝑦̅𝑟|𝑠] = 

𝛽𝐸(𝑦̅𝑠) + (1 − 𝛽)𝐸[𝐸(𝑦̅𝑟|𝑠)] = 

𝛽𝑦̅ + (1 − 𝛽)𝐸(𝑦̅𝑈−𝑠) = 

𝛽𝑦̅ + (1 − 𝛽)𝐸 (
𝑁𝑦̅ − 𝑚𝑦̅𝑠
𝑁 −𝑚

) = 

𝛽𝑦̅ + (1 − 𝛽)𝑦̅ = 𝑦̅. 

La varianza de 𝑦̅𝑟 la obtenemos por la fórmula de Madow, 

𝑉(𝑦̅𝑟) = 𝐸[𝑉(𝑦̅𝑟|𝑠)] + 𝑉[𝐸(𝑦̅𝑟|𝑠)], 

donde  

𝑉[𝐸(𝑦̅𝑟|𝑠)] = 𝑉(𝑦̅𝑈−𝑠) =
𝑚2

(𝑁 −𝑚)2
𝑉(𝑦̅𝑠). 

Ahora tenemos que 

𝑉(𝑡) = 𝛽2𝑉(𝑦̅𝑠) + (1 − 𝛽)
2𝑉(𝑦̅𝑟) + 2𝛽(1 − 𝛽)𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑟). 

Como, 

𝐶𝑜𝑣(𝑦̅𝑠, 𝑦̅𝑟) = 𝐸{𝐸[(𝑦̅𝑠 − 𝑦̅)(𝑦̅𝑟 − 𝑦̅)|𝑠]} = 

𝐸[(𝑦̅𝑠 − 𝑦̅)𝐸(𝑦̅𝑟 − 𝑦̅|𝑠)] = 

𝐸[(𝑦̅𝑠 − 𝑦̅)(𝑦̅𝑈−𝑠 − 𝑦̅)] = 
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𝐸 {(𝑦̅𝑠 − 𝑦̅) [−
𝑚

𝑁 −𝑚
(𝑦̅𝑠 − 𝑦̅)]} = 

−
𝑚

𝑁 −𝑚
𝑉(𝑦̅𝑠). 

Por tanto, 

𝑉(𝑡) = 𝛽2𝑉(𝑦̅𝑠) + 

(1 − 𝛽)2 {𝐸 [𝑉(𝑦̅𝑟|𝑠) +
𝑚2

(𝑁 −𝑚)2
𝑉(𝑦̅𝑠)]} − 

2𝛽(1 − 𝛽)𝑚

𝑁 −𝑚
𝑉(𝑦̅𝑠) = 

[𝛽 − (1 − 𝛽)
𝑚

𝑁 −𝑚
]
2

𝑉(𝑦̅𝑠) + (1 − 𝛽)
2𝐸[𝑉(𝑦̅𝑟|𝑠)]. 

Así, como la media muestral en el muestreo sistemático no tiene un 

estimador insesgado de su varianza 𝑉(𝑦̅𝑠) , para 𝛽 = 𝑚 𝑁⁄ , 

podemos escribir 

𝑉(𝑡) = (1 −
𝑚

𝑁
)
2

𝐸[𝑉(𝑦̅𝑟|𝑠)], 

que solo en este caso admite el estimador insesgado 

𝑉̂(𝑡) = (1 −
𝑚

𝑁
)
2

𝑉̂(𝑦̅𝑟|𝑠 fijada) = 

(1 −
𝑚

𝑁
)
2𝑁 −𝑚 − 𝑛

(𝑁 − 𝑚)𝑛
𝑠𝑟
2 =

(𝑁 −𝑚)(𝑁 −𝑚 − 𝑛)

𝑛𝑁2
𝑠𝑟
2, 

donde 𝑠𝑟
2  es la cuasivarianza muestral de la variable 𝑦  en la 

muestra irrestricta aleatoria 𝑟  dentro de 𝑈 − 𝑠 . Este estimador 

recibe el nombre de Rana y Singh por ser ellos sus descubridores. 
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Ejercicio 8.10. En el muestreo sistemático de doble arranque, 

consideramos como estimador de la media poblacional 𝑦̅  a la 

media aritmética de las medias muestrales de tamaño 𝑛 = 𝑁 𝐿⁄  de 

las dos muestras sistemáticas 𝑠1  y 𝑠2  obtenidas por muestreo 

irrestricto aleatorio de tamaño 2 de entre las 𝐿 unidades primarias. 

Obtener un estimador insesgado de la varianza poblacional.  

Solución. Obtenemos una muestra irrestricta aleatoria 𝑠 de tamaño 

2  de entre las 𝐿  unidades primarias. Llamando 𝑦̅𝑠1  e 𝑦̅𝑠2  a las 

medias muestrales de las dos muestras sistemáticas de tamaño 𝑛 

cada una, el estimador insesgado de la media poblacional propuesto 

es 

𝑦̅𝑠 =
𝑦̅𝑠1 + 𝑦̅𝑠2

2
=
𝜇𝑖1 + 𝜇𝑖2

2
, 

donde 𝜇𝑖𝑗  es la media del conglomerado 𝑗 -ésimo obtenido por 

muestreo aleatorio simple sin reemplazamiento de tamaño 2  de 

entre los 𝐿 conglomerados o unidades primarias correspondientes 

a las muestras sistemáticas seleccionadas. Obviamente, 

𝐸(𝑦̅𝑠) =
1

𝐿
∑ 𝑦̅ℎ

𝐿

ℎ=1

= 𝑦̅. 

Un estimador insesgado de la varianza poblacional 𝜎2 , 

aprovechando el resultado del Ejercicio 8.8, es 

𝜎2̂ =
1

𝐿
∑

𝜎ℎ
2

𝜋ℎ
ℎ ∈ 𝑠

+
1

𝐿2
∑ ∑

(𝑦̅ℎ − 𝑦̅𝑔)
2

𝜋ℎ𝑔
𝑔>ℎ∈𝑠ℎ ∈ 𝑠

, 

en donde, por ser obtenidas las unidades primarias por muestreo 

irrestricto aleatorio de 2 unidades de entre las 𝐿 posibles, 
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𝜋ℎ =
(
𝐿 − 1
1

)

(
𝐿
2
)

=
2

𝐿
, 

y si ℎ ≠ 𝑔 = 1, 2, … , 𝐿, tenemos  

𝜋ℎ𝑔 =
(
𝐿 − 2
0

)

(
𝐿
2
)

=
2

𝐿(𝐿 − 1)
. 

 

Ejercicio 8.11. En las condiciones del ejercicio anterior, obtener 

un estimador insesgado de la varianza del estimador propuesto de 

la media poblacional, que dependa de las varianzas 𝜎ℎ
2  de las 

muestras sistemáticas ℎ ∈ 𝑠. 

 

Solución. Obtenemos en primer lugar la varianza del estimador 

propuesto, 

𝑉(𝑦̅𝑠) =
1

4
𝑉(𝑦̅𝑠1 + 𝑦̅𝑠2) = 

1

4
[𝑉(𝑦̅𝑠1) + 𝑉(𝑦̅𝑠2) + 2𝐶𝑜𝑣(𝑦̅𝑠1 , 𝑦̅𝑠2)], 

donde  

𝑉(𝑦̅𝑠1) = 𝜎2 −
1

𝑁
∑∑(𝑦𝑖 − 𝑦̅𝑠ℎ)

2

𝑖∈𝑠ℎ

𝐿

ℎ=1

= 

𝜎2 −
1

𝑁
(𝑁𝛼2 − 𝑛∑ 𝑦̅𝑠ℎ

2

𝐿

ℎ=1

) = 𝜎2 − 𝛼2 +
1

𝐿
∑ 𝑦̅ℎ

2

𝐿

ℎ=1

= 
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1

𝐿
∑ 𝑦̅ℎ

2

𝐿

ℎ=1

− (
1

𝐿
∑ 𝑦̅ℎ

𝐿

ℎ=1

)

2

=
1

𝐿
∑(𝑦̅ℎ − 𝑦̅)

2

𝐿

ℎ=1

= 

𝜎2 −
1

𝐿
∑𝜎ℎ

2

𝐿

ℎ=1

. 

𝑉(𝑦̅𝑠2) = 𝐸𝑉(𝑦̅𝑠2|𝑠1) + 𝑉𝐸(𝑦̅𝑠2|𝑠1). 

𝑉(𝑦̅𝑠2|𝑠1) =
𝜎𝑈−𝑠1
2

𝑛
=
∑ (𝑦𝑖 − 𝑦̅𝑈−𝑠1)

2
𝑖∈𝑈−𝑠1

(𝑁 − 𝑛)𝑛
= 

∑ 𝑦𝑖
2

𝑖∈𝑈−𝑠1 −
1

𝑁 − 𝑛
(∑ 𝑦𝑖𝑖∈𝑈−𝑠1 )

2

(𝑁 − 𝑛)𝑛
, 

de donde 

𝐸𝑉(𝑦̅𝑠2|𝑠1) =

𝐸 [𝑁𝛼2 − 𝑛𝑎2𝑠1 −
(𝑁𝑦̅ − 𝑛𝑦̅𝑠1)

2

𝑁 − 𝑛
]

(𝑁 − 𝑛)𝑛
= 

(𝑁 − 𝑛)𝛼2 −
1

𝑁 − 𝑛
[𝑁2𝑦̅2 − 2𝑁𝑛𝑦̅2 + 𝑛2𝐸(𝑦̅𝑠1

2 )]

(𝑁 − 𝑛)𝑛
= 

𝛼2
𝑛
−
𝑁2𝑦̅2 − 2𝑁𝑛𝑦̅2 + 𝑛2 (𝜎2 −

1
𝐿
∑ 𝜎ℎ

2𝐿
ℎ=1 + 𝑦̅2)

(𝑁 − 𝑛)2𝑛
= 

𝛼2
𝑛
−
(𝑁 − 𝑛)2𝑦̅2 + 𝑛2 (𝜎2 −

1
𝐿
∑ 𝜎ℎ

2𝐿
ℎ=1 )

(𝑁 − 𝑛)2𝑛
= 

𝜎2

𝑛
−

𝑛

(𝑁 − 𝑛)2
(𝜎2 −

1

𝐿
∑𝜎ℎ

2

𝐿

ℎ=1

). 

También, 
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𝐸(𝑦̅𝑠2|𝑠1) = 𝑦̅𝑈−𝑠1 =
𝑁𝑦̅ − 𝑛𝑦̅𝑠1
𝑁 − 𝑛

. 

𝑉𝐸(𝑦̅𝑠2|𝑠1) =
𝑛2

(𝑁 − 𝑛)2
𝑉(𝑦̅𝑠1) = 

𝑛2

(𝑁 − 𝑛)2
(𝜎2 −

1

𝐿
∑𝜎ℎ

2

𝐿

ℎ=1

). 

Finalmente, 

𝐶𝑜𝑣(𝑦̅𝑠1 , 𝑦̅𝑠2) = 𝐸𝐶𝑜𝑣(𝑦̅𝑠1 , 𝑦̅𝑠2|𝑠1) + 𝐶𝑜𝑣[𝐸(𝑦̅𝑠1|𝑠1), 𝐸(𝑦̅𝑠2|𝑠1)] 

= 0 + 𝐶𝑜𝑣 (𝑦̅𝑠1 ,
𝑁𝑦̅ − 𝑛𝑦̅𝑠1
𝑁 − 𝑛

) = 

−
𝑛

𝑁 − 𝑛
𝑉(𝑦̅𝑠1) = 

−
𝑛

𝑁 − 𝑛
(𝜎2 −

1

𝐿
∑𝜎ℎ

2

𝐿

ℎ=1

). 

Por lo que hemos completado la varianza del estimador media 

aritmética de las medias muestrales de las dos secuencias 

sistemáticas correspondientes a los dos arranques aleatorios sin 

reemplazamiento. En concreto, simplificando, 

𝑉(𝑦̅𝑠) =
1

4
[
𝑁2(𝑛 + 1) + 𝑁(−4𝑛2 − 2𝑛) + 4𝑛3

(𝑁 − 𝑛)2𝑛
𝜎2 + 

−𝑁2 + 4𝑁𝑛 − 4𝑛2 + 𝑛

(𝑁 − 𝑛)2
(
1

𝐿
∑𝜎ℎ

2

𝐿

ℎ=1

)]. 

Para elaborar un estimador insesgado de la varianza de 𝑦̅𝑠 

bastará sustituir, en la fórmula de su varianza obtenida, los 

parámetros por sus estimaciones insesgadas. Del ejercicio anterior 
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tenemos que la varianza poblacional 𝜎2 es estimable sin sesgo y 

obtuvimos la expresión exacta de este estimador 𝜎2̂. También, un 

estimador insesgado del parámetro 

1

𝐿
∑𝜎ℎ

2

𝐿

ℎ=1

 

es la media aritmética de las varianzas de cada muestra sistemática 

𝑠1 y 𝑠2, es decir 

𝜎𝑠1
2 + 𝜎𝑠2

2

2
. 

Finalmente, sustituyendo estas dos estimaciones insesgadas en 

lugar de los parámetros correspondientes, tenemos el estimador 

insesgado de la varianza 𝑉(𝑦̅𝑠), y que denotamos 𝑉̂(𝑦̅𝑠). 

Observar que en el muestreo sistemático de arranque simple, 

la varianza poblacional no admite estimador insesgado porque 

existen al menos un par de unidades distintas de la población 𝑖 y 𝑗 

con probabilidad de inclusión 𝜋𝑖𝑗 = 0, y como consecuencia no es 

posible construir un estimador insesgado de la varianza de la media 

muestral con dicho diseño muestral sistemático de arranque simple. 

 

Ejercicio 8.12. En el muestreo por conglomerados de igual tamaño 

sin submuestreo, con selección de conglomerados por diseño de 

muestreo aleatorio simple con reemplazamiento, proponer un 

estimador insesgado de la varianza del estimador usual de la media 

poblacional. 

Solución. El estimador usual de la media poblacional en muestreo 

por conglomerados de igual tamaño sin submuestreo es 
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𝑦̅𝑐 =
1

𝑛
∑𝑦̅𝑖

𝑛

𝑖=1

 

donde 𝑛 es el tamaño muestral de conglomerados de igual tamaño 

seleccionados, e 𝑦̅𝑖  es la media del conglomerado 𝑖 -ésimo 

seleccionado en la muestra. La varianza del estimador 𝑦̅𝑐 es 

𝑉(𝑦̅𝑐) =
𝜎𝑦̅𝑖
2

𝑛
=
1

𝑛𝐿
∑(𝑦̅𝑖 − 𝑦̅)

2

𝐿

𝑖=1

 

siendo 𝐿  el número de conglomerados en la población. Así, el 

estimador insesgado de la varianza 𝑉(𝑦̅𝑐) es 

𝑉̂(𝑦̅𝑐) =
1

𝑛(𝑛 − 1)
∑(𝑦̅𝑖 − 𝑦̅𝑐)

2

𝑛

𝑖=1

 

debido a que la cuasivarianza muestral en el muestreo aleatorio 

simple con reemplazamiento es un estimador insesgado de la 

varianza poblacional. 
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Capítulo 9 

Ética y filosofía del muestreo 

 

 

En este capítulo presentamos elementos básicos de los métodos de 

inferencia, sus inicios, su utilidad y se aportan argumentos que 

orientan a la búsqueda de un método de inferencia estadística 

objetivo y a su fundamentación. 

 

9.1 Introducción 

Consideramos de interés aquellas variables observables 

objetivamente definidas y en las que no haya ambigüedades a la 

hora de ser interpretadas por el consultado y por quien anota el dato 

de las posibles unidades medidas, observadas o encuestadas al 

efectuar sus respuestas. Para el observador, estadístico o 

encuestador lo importante, además de amar, honrar y respetar al 

observado o encuestado por su dignidad como ser humano y 

persona, son las observaciones reales en las unidades de la 

población y de la variable de interés que han sido definidas con 

claridad para cada estudio concreto. De ellas, mediante el 

tratamiento estadístico descriptivo o inferencial, se podrán extraer 

conclusiones que justifiquen otras decisiones o acuerdos asociados 

y consecuentes que promuevan un mayor bienestar social, 

personal, y de trascendencia humana. 

El método racional en el que basamos las hipótesis y las tesis 

o conclusiones es de tipo lógico basado en verdades reveladas 
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comunes y coincidentes en la cultura judeocristiana y aplicado a las 

metodologías estadísticas. Cualquier variable de tipo de salud, 

social, económica, etc. puede ser estudiada definiendo 

adecuadamente las unidades de la población que interesa estudiar 

y definiendo la variable de interés con nitidez y el instante o 

periodo temporal de referencia. 

La hipótesis de trabajo es sencilla. Básicamente puede 

resumirse en que el hecho demostrado matemáticamente de que ‘A 

implica B’, no necesariamente implica lógicamente que ‘(No A) 

implica B’. En general, nos referimos a ‘A’ como el conjunto de 

premisas de las que matemáticamente deducimos que implican ‘B’ 

que es un conjunto de conclusiones o tesis. Sin embargo, aunque la 

primera implicación matemática se demuestra muy 

concienzudamente en la ciencia estadística, alguna o algunas de las 

premisas que constituyen ‘A’ no se comprueban de modo alguno 

al aplicarse a estudios prácticos concretos. Luego, para estos 

estudios prácticos, algunas de las condiciones o premisas podrían 

no estar en ‘A’, o lo que es lo mismo podrían estar en ‘(No A)’. 

Entonces, haber demostrado que ‘A implica B’, si en el caso 

práctico las premisas ‘A’ no han sido comprobadas o aseguradas, 

la condición de hecho podría ser en realidad ‘(No A)’, con lo que 

la demostración matemática sería inútil a efectos de justificar ‘B’ o 

‘(No B)’, especialmente si no se ha demostrado que ‘(No A) 

implica B’ o bien ‘(No A) implica (No B)’. 

En muchos libros se supone o acepta implícitamente que una 

vez demostrado el resultado matemático ‘A implica B’, todos los 

ejemplos de aplicación siguientes se ajustan a las hipótesis o 

premisas ‘A’. Suponer que ‘A’ es cierto en el ejemplo no es 

suficiente en la práctica de la inferencia, sino que es necesario 
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saberlo y poder comprobarlo, no solo suponerlo, lo cual es más 

difícil de lo que parece a primera vista. 

En las ciencias naturales, de la salud, sociales, económicas, 

etc. la realidad es que no suele ser posible afirmar si se da ‘A’ o 

‘(No A)’, por lo que no podemos concluir que se dará ‘B’ al poder 

ocurrir ‘(No A)’, a pesar de demostrar que ‘A implica B’. Una de 

las formas de concluir ‘B’ como cierta siempre sería demostrar que 

tanto partiendo de ‘A’ como de ‘(No A)’ llegamos a la misma 

conclusión ‘B’, pero esto no suele justificarse en la mayor parte de 

inferencias estadísticas más tradicionales o clásicas. 

Las deducciones matemáticas tienen gran fuerza y justifican 

el modo de abordar los problemas de inferencia estadística en la 

práctica. Pero de nada sirve demostrar matemáticamente si a la hora 

de aplicarlo no sabemos si las premisas del razonamiento son o no 

son verificadas en los ejemplos prácticos de los que se desea 

información veraz estadística. Para asegurar su objetividad, el 

método estadístico debe estar demostrado matemáticamente, y 

además ser objetivo y seguro en su utilización práctica al verificar 

la realidad material de trabajo las hipótesis del método estadístico. 

Los métodos estadísticos que no permiten conocer si sus 

hipótesis son realistas en la práctica podrían interesar a ciertas 

ciencias matemáticas abstractas, o como ilustración orientativa de 

sus utilidades potenciales, pero siendo honradamente realistas, si 

existen otros métodos estadísticos que se ajusten a las condiciones 

naturales y reales de presentación de los datos a observar, no cabe 

duda que estos métodos son prioritarios ante aquellos que solo 

tienen rigor matemático pero no rigor objetivo en su aplicación en 

realidades constatables. 

Así pues no nos interesan métodos potencialmente 

utilizables, sino aquellos que con seguridad son correctamente 

aplicados. 
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Algunas de las hipótesis potencialmente útiles pero sin valor 

social práctico es suponer que la población estadística es infinita o 

que su distribución de probabilidad es una determinada, sin 

posibilidad de comprobación posible en la práctica o con clara 

contradicción con los hechos conocidos como que la población es 

finita de hecho y de que la distribución objetiva de partida es 

uniforme discreta. 

Como métodos estadísticos más objetivos están los “métodos 

de estadística descriptiva” (que cuando las poblaciones son grandes 

resulta costosa, lenta y con facilidad de introducir errores en los 

datos por la gran cantidad de ellos a manejar) y el “muestreo de 

poblaciones finitas fijadas” que permite controlar mejor algunas 

dificultades prácticas o costes inasumibles presentados en las 

estadísticas descriptivas y en los censos. 

En la Unión Europea cada estado miembro tiene sus propias 

leyes y propias medidas desarrolladas independientes y acordadas 

a nivel político. En los últimos años se van dando pasos en el 

sentido de compartir las informaciones estadísticas de carácter 

social a nivel oficial, público y privado. En Estados Unidos se han 

desarrollado menos las políticas de protección social y carecen de 

la experiencia de las europeas que existen desde finales del siglo 

XIX. 

Los procedimientos de recogida y tratamiento de la 

información estadística haciendo uso de tecnologías de la 

información y de telecomunicaciones hacen posible hoy el 

conocimiento de la realidad, coyuntura, y en ciertos casos incluso 

de supuesta previsión del bienestar social. Pero todo esto contrasta 

con la situación de desconocimiento, carencia de registros de 

nacidos, o del dudoso comportamiento de los funcionarios en 

algunos lugares del planeta. Es necesario un registro de los 
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ciudadanos identificados y localizables para realizar con unas 

mínimas garantías los estudios estadísticos inferenciales sin caer en 

tener que suponer que la realidad es como alguien supone sin base 

segura y cierta. 

La ética aplicada crece progresivamente como consecuencia 

de los avances tecnológicos y científicos, y de la toma de 

decisiones y consensos políticos, sociales y económicos. La 

moralidad de estos avances está en la mesa de análisis y de 

discusión. En cualquier caso se trata de alcanzar un “bien común” 

entendido como “conjunto de aquellas condiciones de la vida social 

que permiten a los grupos y a cada uno de sus miembros conseguir 

más plena y fácilmente su propia perfección” (Gaudium et Spes, 

26, 1). Todo ello comporta el respeto a la persona, el bienestar 

social y el desarrollo del grupo, así como la paz. Para ello la 

educación de la familia y la responsabilidad en el trabajo 

constituyen el medio por el que el hombre participa en el bien de 

los demás y de la sociedad (Centesimus Annus, 43). 

Las ciencias sociales buscan a menudo el apoyo de los datos 

tomados de la realidad. Sus fuentes principales son las estadísticas 

y las encuestas, que al ser interpretadas y utilizar un criterio 

subjetivo propio, muchas veces de un mismo dato se llega a 

concluir una cosa o la contraria. 

Las estadísticas en Estados Unidos según el Census Bureau 

(Schmidtz y Goodin, 2000) como en España (Ruiz Espejo, 1998b) 

apuntan a mejoras en la evolución de las rentas familiares en los 

años de final del siglo XX. En España se obtuvieron los datos por 

métodos de inferencia objetiva de poblaciones finitas. 

Como científicos debemos aportar los mejores medios para 

describir la realidad, en aras de proponer políticas tanto públicas 

como privadas que ayuden al desarrollo del bienestar social en base 

a la responsabilidad personal. Uno de los procedimientos para 
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describir la realidad, aunque no sea el único, es el de los métodos 

estadísticos. 

Cuando queremos conocer la situación de hecho de una 

población humana en un determinado instante de tiempo, existen 

muchas posibles teorías estadísticas que podrían ser aplicadas al 

caso desde un punto de vista teórico. Sin embargo, un somero 

análisis de la realidad a investigar hace que muchas de las teorías 

que se explican como posibles candidatas a explicar la realidad no 

asumen realidades evidentes que aparecen y que deberían de 

tenerse en cuenta para poder aplicarse a un caso concreto. Algunas 

teorías asumen hechos contradictorios con las realidades que 

pretenden investigar. 

Muchas teorías estadísticas parten del hecho de que la 

población sobre la que se trata de inferir puede ser representada por 

una función de densidad que es conocida salvo algún o algunos 

parámetros a estimar. La función de densidad tiene propiedades 

matemáticas que permiten desarrollar características inferenciales 

propias válidas para el modelo teórico postulado o supuesto, pero 

no necesariamente válidos para otros casos o hipótesis. Es el caso 

de la inferencia llamada paramétrica clásica. 

Los modelos de inferencia paramétrica clásica, inferencia 

bayesiana, inferencia no paramétrica, inferencia de distribución 

libre, modelos de población finita fijada, modelos 

superpoblacionales, etc. y posibles combinaciones de ellos son 

algunas de las hipótesis de trabajo estudiadas en contextos 

matemáticos, pero sin comprobar la teoría formal en la realidad a 

la que se aplique, es decir que las hipótesis sean consistentes con 

los hechos. 

Un ejemplo muy presentado es el adoptado al tratar de inferir 

sobre una población estadística que de hecho es finita, tratándola 
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como si fuera infinita en el análisis inferencial. Lo evidente, en este 

caso, es decir que para concluir algo sobre la población real es un 

mal comienzo basarse en una falsedad aunque sea aproximativa. 

Esto es más grave si la falsedad se refiere a personas o grupos 

sociales. 

Otro ejemplo de muchos modelos inferenciales es suponer 

que la distribución poblacional es conocida de antemano, hipótesis 

que podría ser válida sobre el papel o para ser simulada por el 

ordenador para obtener muestras de tal modelo teórico. Pero lo que 

importa es saber si tal modelo de distribución de la supuesta 

población se corresponde y existe en la realidad que se trata de 

analizar e inferir. De hecho, no he podido recabar ningún 

testimonio seguro del mundo natural (no simulado artificialmente) 

que pueda afirmar que sin lugar a dudas tal modelo ha sido 

comprobado en la realidad con plena seguridad. Para que esto 

último tenga sentido ha de aceptarse el hecho de la existencia de la 

probabilidad en la física, y en particular al caso al que trata de 

aplicarse la teoría estadística. La respuesta a esta cuestión es muy 

polémica y a mi modo de ver no resuelta con claridad y objetividad 

hasta ahora (Sprott, 2000). 

A nivel científico, por un lado teórico me permite afirmar que 

las teorías estadísticas inferenciales son todas matemáticamente 

aceptables por los razonamientos lógicos que los sustentan, pero 

por el lado práctico dudo de la utilidad de muchas teorías al ser 

aplicadas en la práctica porque se aplican sin la seguridad de haber 

comprobado con certeza la adecuación de sus hipótesis a la realidad 

que tratan de inferir o estudiar con la mayor veracidad posible. 

Cuando el objeto final del estudio es el propio hombre como 

su salud al estudiar la eficacia de tratamientos médicos, 

farmacéuticos, salud pública, etc. es importante decir la verdad y 

no basarse en falsos conceptos. Actualmente la población mundial 
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se aproxima a los 7000 millones de personas, pero nunca 

podríamos decir que hay infinitas personas, ni nunca las habrá en 

el mundo que conocemos. Este hecho evidente, tenido en cuenta en 

el análisis estadístico formal, hace que muchas de las teorías 

desarrolladas por los teóricos (en concreto, los métodos 

inferenciales para poblaciones infinitas) dejen de tener interés para 

los propósitos que nos planteamos, y nos hacen dirigirnos a 

modelos de poblaciones finitas aunque el número de sus unidades 

sean muy numerosas. 

Los modelos de distribución de poblaciones infinitas han 

servido de estudio teórico facilitando el estudio de otros modelos 

de mayor aplicabilidad, pero sus conclusiones no dejan de ser un 

cúmulo de trabajos sobre el papel en libros o revistas alejados del 

interés de aclarar el estado en que se encuentra una población 

humana o social. Que la lógica utilizada en resolver cuestiones 

teóricas sea de alto nivel, sirve de poco si no da luz sobre el 

problema concreto a resolver. La ciencia tiene sentido cuando lo 

descubierto sirve para algo. Así los razonamientos matemáticos 

que se basan en el análisis infinitesimal estudiado por físicos y 

matemáticos clásicos no aportan siempre mayor claridad para 

inferir sobre poblaciones de la realidad natural. Un ejemplo de este 

tipo de libros es el de Cramér (1953). 

Sorprende que este tipo de teorías sean explicadas en otros 

estudios universitarios, como medicina, ciencias empresariales, 

etc. con contenidos más específicos y objetivos reales concretos 

diferentes a los que pueden guiar un científico abstracto a quien le 

vale que tenga alguna lógica aunque sin utilidad práctica clara. 

No se trata de aplicar una teoría sin más a unos datos 

cualesquiera. Sino de decidir con qué teoría podemos aclarar la 

situación real que se estudia para que sea de la mayor aplicabilidad, 
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desde un punto de vista honesto y clarificador de las realidades de 

las que deseamos recabar información para inferir estadísticamente 

su situación en determinado tiempo y lugar. 

Existe una vía infalible para la ciencia consistente en la 

posibilidad de demostrar la falsedad de teorías mediante la 

contraevidencia, que permite al investigador honesto 

científicamente abandonar la teoría falsa. Las matemáticas pueden 

demostrar teorías inalterables con certeza. Los filósofos de la 

ciencia al comprender las dificultades reales para sostener 

científicamente verdades inalterables, introdujeron el concepto de 

teoría probable, que puede ser contrastada al conocer nuevos datos 

de la observación empírica. Sus teorías se basaron entonces en el 

concepto de la probabilidad aún sin saber probar su validez 

científica en la práctica como veremos más adelante. 

Los métodos inferenciales tienen la ventaja de que para 

conocer un parámetro poblacional con determinada precisión no es 

necesario conocer la variable que aporta cada individuo o unidad 

poblacional. Basta observar la variable en una muestra de esas 

unidades seleccionadas aleatoriamente de la población finita, en 

muchos casos de una proporción de tamaño inferior al uno por mil. 

Para hacer esta selección de unidades de la muestra se requiere 

tener un censo actualizado en el momento de referencia de la 

encuesta o de las observaciones. Además se precisa que toda 

persona seleccionada en la muestra pueda ser identificada, 

localizada y observada. Otra condición es que la información 

recabada de cada unidad sea verdadera pues de otro modo debería 

ser posible inspeccionar los datos ofrecidos por cada encuestado o 

informante aunque sea solo a una submuestra aleatoria de los 

encuestados, y comprobar en ellos los datos sin error alguno (Ruiz 

Espejo, 1988a). 
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Los métodos de muestreo de poblaciones finitas fijadas 

aunque sean de gran tamaño permiten ahorrar tiempo material y 

presupuesto económico o trabajo humano para conocer con cierta 

precisión el parámetro requerido, que usualmente es la media 

poblacional de la variable de interés, aunque pueden estudiarse 

varias variables de interés con la misma muestra de unidades. Una 

pequeña parte de la población, llamada muestra, puede informar 

con precisión sobre la totalidad de la población. 

En realidad los intentos por realizar censos son ciertos en los 

imperios egipcio y chino miles de años antes de Jesucristo, así 

como los imperios griego y romano. También hay referencias de 

censos del pueblo judío en tiempos de Moisés, David y Salomón. 

Los conocimientos seguros anhelados por los científicos del 

siglo XV y del XVI pasaron a ser en muchos casos conocimientos 

probables o inciertos con el uso de métodos estadísticos o bien de 

un cierto nivel de confianza con el uso de la inferencia. Pero en 

nuestros días ya tenemos elementos para diferenciar métodos 

inferenciales que incorporan herramientas no objetivas que podrían 

hacer invalidar o tomar con cautela las conclusiones del estudio 

concreto científico que se basó en ellos. 

El concepto de probabilidad surgió en el siglo XVII con las 

teorías del análisis combinatorio y sus aplicaciones a los juegos de 

azar, que con el tiempo trajo el desarrollo de teorías estadísticas 

inferenciales. 

Los Padres Fundadores Americanos en 1790 fijaron la 

realización de los censos de población en cada Estado cada diez 

años. Las poblaciones censadas sirvieron para fijar la contribución 

financiera de cada estado a la Unión, así como para asignar el 

número de delegados que cada estado podía enviar a la Cámara de 
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Representantes en Washington, en inglés llamada “Hause of 

Representatives” (Anderson, 1988). 

El origen metodológico de la sociología puede ser señalado 

en las estadísticas sociales de Adolfo Quétélet en 1835, precursor 

de las descripciones y mediciones de fenómenos sociales con 

pretensiones de rigor científico y con técnicas de inferencia 

estadística. 

En las décadas de 1870 a 1900 se crearon los “Labour 

Departments” (Ministerios de Trabajo) tras las recesiones 

económicas en los principales países industrializados, haciendo de 

la protección de los trabajadores su principal propósito, incluyendo 

la prioridad del apoyo estadístico. Así las encuestas de 

presupuestos familiares se desarrollaron entre los años 1850 y 

1940, que concentraban sus intereses casi exclusivamente en 

familias de trabajadores. 

Historiadores de la estadística han situado el comienzo del 

uso oficial de los estudios y encuestas por muestreo a fines del siglo 

XIX, en concreto el Gobierno noruego consideró en 1894 llevar a 

la práctica algunas políticas sociales nuevas como normativas de 

pensiones y seguros de enfermedad. Al requerir información más 

completa que la que se recogía en los censos, la Oficina de 

Estadística Noruega empezó a realizar encuestas por muestreo 

representativo, no de tipo probabilístico, a gran escala para 

informar a las políticas gubernamentales (Seng, 1951). A. N. Kiaer, 

director de la Oficina Estadística Noruega, desarrolló en la práctica 

estas encuestas en 1895. 

Hacia 1920 Sir Ronald Fisher empezó a esbozar la teoría 

estadística de la contrastación de hipótesis, y unos diez años 

después Jerzy Neyman y Karl Pearson la dotaron de los 

instrumentos técnicos formales necesarios para su utilización 

generalizada que actualmente han sido cuestionadas. Tales teorías 
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reposan sobre el concepto de probabilidad cuya existencia real en 

el mundo no se ha podido demostrar. Sin embargo es un 

instrumento conceptual que permite avanzar en el llamado 

“conocimiento probable” basado en datos y experiencias, pero no 

es un “conocimiento seguro” ni absoluto, y por tanto no puede 

considerarse conocimiento realmente. 

En la literatura sociológica, la contrastación de hipótesis 

aparece a mediados del siglo XX, un ejemplo es el libro de Goode 

y Hatt (1952). Según estos autores “las hipótesis han de ser 

empíricamente demostradas como probables o no probables”, y en 

ello consiste la prueba, en contrastarlas con los hechos para 

concluir su aceptación o rechazo. La lógica de la prueba la 

atribuyen a los métodos de John Stuart Mill. Pero esta 

demostración o prueba no son seguras pues conllevan dos tipos de 

errores posibles: aceptar una hipótesis falsa, y rechazar una 

hipótesis cierta. Para ellos, la ciencia no consigue absolutos, sino 

que reduce la cantidad de incertidumbre. Esta manera de ver las 

cosas revela la desconfianza a la verdad cuando ésta existe. 

En los años de 1970 la Organización para la Cooperación y 

Desarrollo Económico (OCDE) realizó algunos progresos de 

concreción en la elaboración de indicadores sociales en los países 

miembros de la organización, que tuvo su influencia en España. El 

Instituto Nacional de Estadística español ha publicado indicadores 

sociales en los años 1991, 1997, 1999, 2001, etc. Los sistemas 

integrados de estadísticas sociales como concepto europeo de la 

década de 1990, han sido presentados por estadísticos holandeses 

y escandinavos desde sus respectivos países (Van Tuinen, Altena e 

Imbens, 1994). 
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A nivel de Naciones Unidas se han publicado títulos en 1974, 

1986, 1991 y 1996 sobre estadísticas sociales y otras disponibles 

pueden consultarse en www.un.org.  

Los actuales países desarrollados tienen censos de población, 

vivienda, agricultura, industria, etc. como algo cotidiano para su 

buen funcionamiento. El Instituto Nacional de Estadística (INE) 

español va adaptando sus normas de trabajo y metodología 

estadística a las directrices de la Unión Europea, a través de su 

Oficina Estadística de las Comunidades Europeas (Eurostat). La 

Oficina del Censo de los Estados Unidos (U. S. Census Bureau) 

aborda a nivel de contribuciones personales por expertos 

estadísticos y de reuniones de profesionales los problemas surgidos 

por la creciente globalización y sus implicaciones estadísticas. 

Además de un recuento de la población que recoge la 

dirección e identificación de los ciudadanos, el censo tiene un 

interés añadido como marco básico para poder extraer de la 

población muestras de personas de modo aleatorio y probabilístico. 

En España los censos de población se realizan con una periodicidad 

de diez años. Además existen bases de datos públicas e 

informatizadas en muchas áreas de interés social referidos a 

periodos más breves o incluso continuos. 

Los métodos de muestreo han sido utilizados científicamente 

y socialmente a lo largo del siglo XX, desarrollándose los 

fundamentos que relacionan las muestras con la población. Así, el 

Instituto Internacional de Estadística reconoció estos métodos 

como instrumentos válidos de investigación y desde entonces son 

de amplio desarrollo y uso en el mundo estadístico científico y 

oficial. Un libro que recoge las principales aportaciones científicas 

del muestreo de poblaciones finitas es el de Ruiz Espejo (2013c). 

Tiene sentido desarrollar métodos estadísticos y tecnologías 

informáticas objetivos que faciliten el seguimiento de variables de 

http://www.un.org/
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interés social, de salud, etc. que informen para poder desarrollar 

políticas efectivas para paliar necesidades humanas con un 

fundamento sólido y no a ciegas. Los métodos estadísticos de 

investigación social científicamente correctos y de garantía, útiles 

y eficaces, coherentes en sus hipótesis con los objetivos reales de 

estudio, han sido objeto de estudio desde finales del siglo XIX. Tras 

varias décadas de investigación reflejada en revistas científicas de 

estadística, a fines de los años cuarenta del siglo XX aparecieron 

los primeros libros recopilatorios de métodos y teorías de muestreo 

de poblaciones finitas, tanto en Reino Unido como Estados Unidos, 

y posteriormente en otros países como Francia, España, India, 

Holanda, Italia, etc. 

La globalización de los mercados y el desarrollo de la 

sociedad de la información son dos factores que afectan de modo 

creciente a los registros de empresas estadísticas (Nielsen y 

Plovsing, 1997). De hecho se plantea la necesidad de crear un 

registro satélite internacional para propósitos transnacionales. La 

integración eficiente de los estudios aportados por diferentes 

empresas o fuentes estadísticas independientes para contribuir a 

resultados conjuntos de mayor interés y calidad de los usuarios, ha 

sido tratado estadísticamente por Ruiz Espejo, Singh y Singh 

(2001). 

Existen investigaciones que suponen que cada investigador 

puede aportar al análisis inferencial su propia idea subjetiva o “a 

priori” acerca de lo que hasta ahora nadie ha visto u observado 

completamente sobre cómo se comporta en realidad. Estas ideas 

subjetivas se plasman en la formulación de un modelo teórico de 

las posibles poblaciones estadísticas, de distribuciones 

poblacionales, o de alguno de sus parámetros. Casos particulares 

de esta situación se da en la práctica al emplear métodos de 

inferencia paramétrica clásica o de inferencia bayesiana. En ellas 
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las conclusiones siempre están influidas por la idea subjetiva o por 

las elecciones personales del investigador al aportar su modelo y 

opinión de cómo se comporta la realidad exterior a él y no conocida 

perfectamente por él. 

Pensamos que aceptar subjetividades para describir o inferir 

sobre hechos objetivos, no es una vía aceptable pues lo subjetivo 

influye en el resultado, cuando el hecho objetivo no se altera 

sensiblemente por lo que piense de él un investigador. De aceptar 

distintas aportaciones subjetivas, obtendríamos con los mismos 

datos observados distintas tesis a veces incompatibles. La 

objetividad de los hechos no se altera por la idea personal que la 

redefina subjetivamente. No es posible aceptar que una sola 

realidad sea muchas cosas posibles incompatibles entre ellas 

dependiendo de la opinión del observador de la misma realidad 

única. 

La utilización de cualquier método estadístico basado en 

hipótesis subjetivas solo podría considerarse como provisional, no 

como método objetivo explicativo de una única realidad. 

Para terminar este capítulo anotamos argumentos de fe que 

sostienen el enfoque que hemos hecho. Las referencias pueden 

consultarse del texto de la Biblia de Jerusalén (1999). 

Éxodo 20,16; Deuteronomio 5,20: “No darás testimonio falso 

contra tu prójimo.” (Revelaciones de Dios en el monte Sinaí y en 

el monte Horeb). 

Levítico 19,11: “No hurtaréis; no mentiréis; no os engañaréis unos 

a otros.” (Prescripciones morales de Dios a Moisés, para la 

comunidad de los israelitas). 

Levítico 19,35-36: “No cometáis injusticia ni en los juicios, ni en 

las medidas de longitud, de peso o de capacidad: tened balanza 

exacta, peso exacto, medida exacta y fanega exacta. Yo soy Yahvé 
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vuestro Dios, que os saqué del país de Egipto.” (Revelación de Dios 

mientras los israelitas atravesaban el desierto). 

Judit 9,11: “No está en el número tu fuerza, ni tu poder en los 

valientes, sino que eres el Dios de los humildes…” (Plegaria de 

Judit a Yahvé). 

Sabiduría 11,20: “Pero tú regulaste todo con medida, número y 

peso.” (Oración dirigida al Señor). 

Mateo 5,17: “No penséis que he venido a abolir la Ley y los 

Profetas. No he venido a abolir, sino a dar cumplimiento.” 

(Palabras de Jesús a sus discípulos, que confirman la Revelación 

de Dios en los montes Sinaí y Horeb, y en la travesía del desierto). 

Mateo 15,19-20: “Porque del corazón salen… falsos testimonios… 

Eso es lo que contamina al hombre; …” (Doctrina de Jesús sobre 

lo puro y lo impuro). 

Mateo 19,18; Marcos 10,19; Lucas 18,20: “… no levantarás falso 

testimonio, …” (Palabras de Jesús al joven rico).  

Juan 17,19: “Y por ellos me santifico a mí mismo, para que ellos 

también sean santificados en la verdad.” (Palabras de oración de 

Jesús dirigida a Dios Padre de petición por sus discípulos fieles).  

No son las únicas revelaciones, pero las considero claves para 

hacer una inferencia estadística objetiva. 

Es obvio que decir de una población humana que es como no 

es en realidad, es levantar un falso testimonio contra los individuos 

de la población finita. 

También considerar que una persona puede responder a la 

misma pregunta con dos cantidades diferentes es mentir por parte 

del que responde o del que toma la observación y anota dos 
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respuestas numéricas del mismo dato, pues falta a la exactitud de 

la medida. 

Por otro lado, decir que se selecciona una muestra que has 

encontrado de hecho como si fuera tomada con unas condiciones 

de aleatorización concretas sin posible comprobación de quien lo 

dice, es afirmar como cierto algo que es incierto, o lo que es lo 

mismo mentir o engañar o exponerse a ambas cosas sobre el 

procedimiento de selección. 

 

9.2 Bases bibliográficas 

En esta sección estudiamos métodos estadísticos y de muestreo de 

poblaciones finitas, así como las políticas editoriales en las 

publicaciones de docencia y de investigación estadística. Vemos 

los métodos objetivos de observación y de estimación estadística 

como es el muestreo de poblaciones finitas y recogemos las 

referencias bibliográficas de carácter internacional más destacadas. 

Para poder abordar estudios estadísticos con garantías 

científicas y realistas, es necesario disponer de un marco constante 

o periódicamente actualizado y renovado de las personas, familias, 

empresas, industrias, etc. objeto de estudio sobre las que se 

pretende tener información rápida y a bajo coste, basándonos en la 

identificación, accesibilidad y recogida de la información cierta de 

aquellas unidades que hayan sido seleccionadas en la muestra en el 

caso de ser un estudio inferencial apropiado y ético. 

En un estudio inferencial caben dos tipos de errores: 

observacionales y científicos. Los errores observacionales son 

aquellos que resultan de al menos una observación de un dato 

erróneo que se incluye como cierto o verdadero en el estudio 

estadístico. Este tipo de errores pueden ser reconducidos 

científicamente, por ejemplo inspeccionando una submuestra de la 
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muestra que contenía posibles datos erróneos y conociendo su 

verdadera magnitud (Ruiz Espejo, 1988a). 

Otro tipo de error en la estadística aplicada consiste en 

aceptar planteamientos o hipótesis de estudio que no concuerdan 

con las realidades a las que se aplican, ya sea por suponer 

condiciones o premisas lógicas que no existen en la realidad, no se 

dan, o bien por la imposibilidad de saber o comprobar en la práctica 

que la suposición hecha es cierta o no entre la infinidad de este tipo 

de suposiciones que es posible hacer. Pues basarse en un error casi 

seguro no es buen fundamento científico para basar una 

investigación objetiva. A partir de una mentira casi segura, poca 

verdad puede deducirse salvo que hagamos mucho más efectivas 

las observaciones verdaderas que el modelo supuesto. 

Los errores probables de un estudio inferencial es algo 

posible y real en los métodos estadísticos objetivos, pero también 

estos errores son controlables en gran medida y estimables sin 

sesgo basados en un concepto de probabilidad como instrumento 

de selección de la muestra y aprovechando eficientemente esta 

información muestral. 

Otra cosa sería asumir errores evitables o basar el estudio en 

hipótesis inciertas o asumidas sin certeza posible en su objetividad 

por ser asumidas sin comprobación posible en la práctica y por 

tanto de dudosa adecuación. 

La inmensa mayoría de métodos estadísticos que ocupan los 

contenidos de las revistas de investigación en el ámbito anglosajón 

pueden tener aspectos novedosos matemáticos pero no reúnen los 

requisitos evidentes presentados en la práctica al abordar estudios 

sociales, administrativos o de las estadísticas oficiales para reflejar 

los hechos reales que acaecen en las sociedades y que pretenden 

conocer inferencialmente con la mayor calidad y objetividad. Este 
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es uno de los criterios necesarios a tener en cuenta para la mejora 

de la calidad de las estadísticas sociales (Desrosières, 2000). 

Actualmente la materia de muestreo de poblaciones finitas ha 

superado etapas de consolidación de técnicas especializadas desde 

los años 30 y 40 del siglo XX. Los avances teóricos y prácticos que 

permiten fundamentar sus bases científicas y desarrollar su 

matemática formal puede verse en distintos libros como los de 

Cassel, Särndal y Wretman (1977), Cochran (1977), Fuller (2009), 

Hedayat y Sinha (1991), Mirás Amor (1985), Ruiz Espejo (2013c), 

Tucker (1998), etc. Los planteamientos básicos son comunes para 

todos estos libros, partiendo de una población finita numerada con 

la condición de que sean identificables y localizables (accesibles y 

medibles u observables sin errores) físicamente si su indicador 

numérico fuese seleccionado en una muestra obtenida al azar por 

un procedimiento probabilístico, de entre todas las unidades que 

constituyen la población finita. 

Es cierto que muchas poblaciones finitas evolucionan con el 

tiempo (hay nuevos nacidos y defunciones), pero en el 

planteamiento básico no consideramos estos cambios ya que si 

interesara estudiar la población finita en otro instante de tiempo el 

muestreo de poblaciones finitas como método objetivo sigue 

siendo válido en el nuevo instante o periodo temporal. 

Por otro lado no aceptamos que de una misma unidad puedan 

aportarse más que un solo dato u observación numérica verdadera 

del mismo fenómeno, lo que no ocurre en algunas teorías que 

admiten que haya más de una posible respuesta pudiendo darse la 

invención de todos estos datos salvo uno a lo sumo, pues de este 

modo admitiríamos engaño, mentira, fraude o estafa si fueran datos 

económicos por ejemplo. Así preservamos el espíritu de la verdad 

en nuestro estudio sobre la variable de interés, que observamos de 

modo exacto. 
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Si una estimación insesgada tiene poca variabilidad es que es 

bastante exacta o casi sin error. La objetividad viene de considerar 

una población finita fijada que puede ser censada o numerada, y 

sus unidades son identificadas sin error antes de proceder a la 

selección de la muestra. La objetividad viene también de que no 

necesitamos suponer algo incierto como hipótesis de trabajo, como 

ocurre en otros tipos de inferencia. La objetividad surge también 

de que en el muestreo de poblaciones finitas fijadas, la 

aleatorización es un instrumento objetivo (y no supuesto) para 

seleccionar la muestra con determinadas condiciones; y no 

admitimos que la aleatorización sean unas propiedades 

matemáticas que se supone que la naturaleza de los datos obtenidos 

cumplen sin comprobación alguna, como ocurre en la mayor parte 

de las teorías clásicas. Ver, como ejemplos de inferencia clásica, 

Zacks (1971), Rohatgi (1984), Murgui Izquierdo y Escuder Vallés 

(1994), Casas Sánchez (1996), Stuart, Ord y Arnold (1999), 

Garthwaite, Jolliffe y Jones (2002), Lejeune (2010), Young y 

Smith (2010) y Olive (2014). No es correcto dar por cierto lo que 

es incierto, y menos cuando hablamos de personas o grupos 

sociales pues podría constituir un falso testimonio sobre personas 

o sociedades. 

La mayor parte de las investigaciones de estadística 

matemática se desarrollan hasta la fecha a niveles de abstracción 

muy elevados, tanto que pierden el sentido de la realidad aun 

conservando la lógica en algún sentido. Tal vez se deba a que las 

decisiones sobre la publicación o no de cada aportación está en 

manos de profesores universitarios que priman los contenidos 

conceptuales teóricos de cierto nivel matemático como 

herramienta, y aceptable para su presentación en revistas o libros 

cuyas editoriales buscan una rentabilidad que se concentra 

especialmente en contenidos académicos más que en contenidos de 
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verdadero aprovechamiento práctico y ético. Los contenidos útiles 

en la práctica directa también son publicados pero en una 

proporción realmente limitada entre los efectivamente publicados 

a nivel mundial. Además el interés científico sobre el papel de las 

publicaciones científicas se reduce a indicadores del número de 

citas anuales de los artículos de revistas, con sus muy limitadas 

contabilidades por sus deficiencias en la práctica al no ser 

instrumentos fieles a lo que realmente es, y teniendo en cuenta el 

número medio de páginas por artículo publicado, en concreto para 

calcular el factor de impacto de las revistas científicas. Se valoran 

especialmente aquellos que incluyen tratamientos informáticos 

elaborados que precisan de programas de cálculo, gráficos de alta 

calidad, y todas aquellas aportaciones que hagan visibles de alguna 

manera las contribuciones teóricas o prácticas, lo que requiere unas 

inversiones en software estadístico o asimilables con unos intereses 

comerciales claros y un mercado de subvenciones oficiales poco 

claro y diáfano. 

Autores que optan por aportaciones especialmente útiles y de 

aplicación inmediata útil, llegan a ser tratados por los comités de 

algunas publicaciones con mucha severidad, pues a la exigencia 

personal del autor por aportar instrumentos prácticos, se suma la 

exigencia editorial de mantener un alto nivel de abstracción y de 

aportación matemática del mismo nivel que a cualquier otro trabajo 

aspirante aunque no tenga éste utilidad social o práctica alguna. A 

veces las revistas exhiben su intención de publicar contenidos 

aplicados, pero en realidad sus temas son casi exclusivamente 

teóricos con alguna referencia a conceptos realmente aplicados, o 

tratan temas de actualidad científica pero sin aportar ninguna 

solución real a lo que es materia de interés para el bien humano o 

común además de los propios interesados inmediatos como son los 

autores, la universidad, la sociedad o la empresa o institución que 

financia la publicación. 
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Existe a mi juicio un exceso de respeto por contenidos 

clásicos aunque sean poco realistas y poco objetivos. Un ejemplo 

es el exceso de literatura entorno a la distribución normal. En mi 

opinión se dio excesiva relevancia al “teorema central del límite” 

que consiste en que la media muestral o media aritmética de un 

número de observaciones de un mismo fenómeno converge 

(cuando dicho número de observaciones aumenta hacia infinito y 

según distintos criterios de aleatorización) a la distribución normal. 

De este modo, se hizo recaer excesiva importancia a dicha 

distribución de probabilidad, pues en la teoría de diseño de 

experimentos anglosajón la hipótesis de normalidad es de partida y 

de llegada, y se aplica a otros estudios sociales y a un sin fin de 

aplicaciones de la estadística a pesar de que tal hipótesis de partida 

como las condiciones probabilísticas de la aleatorización con que 

se supone se extraen las observaciones sean por lo general 

incomprobables en la realidad a la que se pretende aplicar. Sin 

embargo también es posible estudiar diseño de experimentos desde 

una perspectiva objetiva basada en muestreo de poblaciones finitas 

fijadas (Ruiz Espejo, 2018f), que aporta objetividad en esta 

materia. 

La habilidad semántica y dialéctica de muchos estadísticos 

profesionales ha hecho que sus afirmaciones sean en un tono 

ambiguo, sugiriendo que los datos observados se ajustan bien 

frecuentemente a una distribución normal, lo cual no significa que 

sea tal distribución sino que estadísticamente no hay razones 

significativas para rechazar la hipótesis de normalidad de los datos. 

Pero no se le escapa a cualquier estadístico inteligente que no 

rechazar una prueba dista mucho de asegurar que sea cierta. Por 

tanto hay razones también para dudar de la suposición de una 

hipótesis que no ha sido rechazada ante un test de “bondad del 

ajuste” de los datos a la distribución normal. 
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Las empresas e instituciones que se encargan de realizar 

sondeos o estudios por muestreo se ven más preocupadas por dar 

una apariencia científica si hay ficha técnica de sus estudios 

estadísticos que a proporcionarlos de hecho al diseñar, proyectar y 

realizar los métodos que pretenden hacer valer en tales 

investigaciones prácticas. 

Las estadísticas oficiales realizadas se mueven a niveles de 

gran conformismo con las estructuras administrativas tradicionales 

de los registros de datos, una inercia que rara vez incorpora 

aportaciones técnicas y de verdadera investigación aplicada de los 

últimos tiempos. Las aportaciones de soluciones a problemas de 

índole técnico o científico planteados en la práctica de encuestas o 

muestreos, no siempre tienen eco en la práctica oficial o privada. 

Lo que no quiere decir que no sea deseable. 

La teoría de muestreo de encuestas ha sido muy influida por 

los avances en tecnologías computacionales y de análisis de datos, 

no siempre de modo objetivo, que han sido desarrollados desde el 

siglo XX (Bellhouse, 2000). 

Podríamos citar un gran número de libros editados sobre 

muestreo de poblaciones finitas y de recopilaciones de la materia 

en las últimas décadas. Muchos de ellos están recogidos en la tesis 

del autor (2003a). Por su trascendencia destacamos los de Hansen, 

Hurwitz y Madow (1953) que aportó bases matemáticas a su 

estudio, y el de Wolter (1985, 2007) que recopiló material para el 

análisis del error de muestreo en base a la estimación de la varianza 

de los estimadores de las funciones paramétricas. Ejemplos de 

aplicación de este libro son las metodologías originales de los 

trabajos de Ruiz Espejo (2013c) y de Ruiz Espejo, Delgado Pineda 

y Singh (2006). 

Son muchos los autores (que omitimos) que también 

presentan enfoques complementarios en algunos casos sobre los 
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métodos de muestreo de poblaciones finitas de la mayoría de 

continentes. 

La estadística explicada en las universidades españolas y en 

general de todo el mundo siguen una dirección influida por los 

avances de la matemática de los últimos siglos, en concreto del 

análisis infinitesimal, cálculo diferencial, análisis matemático, 

análisis funcional, etc. De este modo se expandieron estos 

conocimientos limitados por su subjetividad en la práctica a otras 

áreas de la ciencia como la medicina, la economía, la empresa, etc. 

Las aportaciones de cada ciencia solo servían para perfilar el tipo 

de ejemplos y ejercicios a los que se aplicaba la metodología 

estadística estándar que se consideraba común para todas las ramas 

del conocimiento científico sin hacer en muchos casos un análisis 

de la objetividad de sus procedimientos en cada caso práctico de 

estudio. 

Es de reconocer las aportaciones de muchos matemáticos que 

sin disponer de procedimientos objetivos como hoy disponemos, 

han dado soluciones a muchos problemas surgidos en el campo 

práctico basándose en hipótesis o planteamientos próximos a las 

condiciones que de hecho aparecen en el contexto de la ciencia 

concreta a la que lo aplicaban. 

Pero los métodos proporcionados por los censos, la 

estadística descriptiva (Mengal, 1999) y la inferencia objetiva de 

muestreo en poblaciones finitas fijadas (Ruiz Espejo, 2013c), han 

resultado ser los más consistentes, realistas, y por tanto más 

objetivos. 

Sorprende que tanto los censos como la estadística 

descriptiva hayan sido excluidos de los estudios universitarios en 

facultades de ciencias matemáticas pues son conocimientos 

básicos, prácticos y fundamentales para desarrollar la inferencia 
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objetiva. Este tipo de estudios se relegan a personal técnico 

administrativo como rutinas de trabajo, mientras que las 

abstracciones matemáticas de cierto nivel más estériles en cuanto a 

su objetividad se circunscriben a estudios superiores de grado o 

doctorado y reciben por lo general los mejores reconocimientos y 

apreciaciones académicas en dichas facultades. 

Una diferencia de la inferencia realizada en poblaciones 

finitas fijadas por muestreo, de otros tipos de inferencia, es que las 

unidades seleccionadas lo son con un “procedimiento controlado 

de aleatorización”, y no “de origen supuesto” como hace la 

inferencia paramétrica clásica, bayesiana, no paramétrica, de 

distribución libre, etc. por lo general. 

La selección controlada de la muestra en la inferencia 

objetiva puede realizarse por medio de tablas de números aleatorios 

(como se intentó inicialmente a principios del siglo XX), o bien con 

ordenadores que generen esos dígitos ejecutando programas 

informáticos. 

De este modo se hace posible la “descripción y explicación 

de la realidad social objetivamente, sin deformarla con nuestros 

deseos o intuiciones personales”, y así hacer posible en las ciencias 

humanas disociar la “pura observación” de la “valoración 

subjetiva” de los fenómenos sociales contemplados. 

Los métodos estadísticos objetivos se basan en hechos y en 

datos de dichos hechos, por lo que describen la realidad o infieren 

sobre ella en base a observaciones y métodos objetivos. Los 

métodos inferenciales predictivos se basan en hipótesis sobre cómo 

se comporta el fenómeno estudiado ya sea a través de un modelo 

presupuesto y por tanto subjetivo o no seguro. Por tanto los 

métodos estadísticos predictivos tampoco superan las objeciones 

más elementales en busca de objetividad en el procedimiento, 

aunque puedan parecer más imaginativos y descomprometidos con 
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la búsqueda de la verdad. El conocimiento objetivo se fundamenta 

en las cosas que están ahí y son, al alcance total o parcial del 

investigador. No es algo en lo que baso supuestamente el 

razonamiento, sin esfuerzo en conocer y por conocer apoyándome 

en realidades. 

Para impulsar nuestro conocimiento hay que estar abiertos a 

las aportaciones de otras tecnologías que pueden redirigir las 

investigaciones formales o técnicas, así como dar oportunidades a 

la imaginación constructiva. 

En los tipos de inferencia diferentes del muestreo de 

poblaciones finitas fijadas con aleatorización controlada, el modelo 

distribucional asumido para la variable estadística o aleatoria de la 

población puede ser diferente de la supuesta o incluso no existir tal 

distribución que se presupone en la realidad. Dos argumentos 

suelen ser esgrimidos en este caso. 

El primero consiste en decir que aunque la distribución 

poblacional sea desconocida, podría aceptarse mediante un 

contraste de hipótesis. Nuestra objeción es que aceptar un modelo 

no significa que sea el único aceptable para el mismo test y los 

mismos datos. Incluso puede no ser ninguno de los propuestos. 

Otro argumento utilizable es que las observaciones si no 

existen en el caso concreto al que aplicar los métodos estadísticos, 

estas pueden generarse o simularse mediante un programa 

informático adecuado de selección de datos. Nuestra respuesta es 

entonces que los datos no son ya de una población natural y real, 

sino producidos artificialmente por un ordenador según unas 

instrucciones programadas, lo que reduciría el problema a un 

estudio didáctico o de simulación teórica sin implicación práctica 

social. 
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Estas consideraciones no hacen menoscabo del interés 

matemático y formal de los razonamientos que sostienen las 

muchas técnicas estadísticas a las que se dedican la edición de 

cientos de revistas periódicas en el mundo, así como libros y otros 

materiales especializados. Su interés parece dirigirse a fomentar, 

exhibir y aumentar la destreza científica de los investigadores en 

matemáticas o en la aplicación de las técnicas estadísticas, lo cual 

dista mucho de que su uso sea correcto en cualquier aplicación por 

el mero hecho de que sean consistentes matemáticamente. 

La coherencia de todas las hipótesis con las realidades a las 

que se desea aplicar, es otro requisito imprescindible para el buen 

uso de las aportaciones matemáticas en el contexto aplicado a 

fenómenos no simulados sino reales y naturales. La deficiencia por 

la que no sean coherentes es quizás que el profesor que lo explica 

no siempre “está en” o “se pone en situación de” casos reales o con 

quienes tratan de aplicar sus aportaciones. Aceptar muchas técnicas 

estadísticas comporta un trasfondo de explicar fenómenos que no 

tienen por qué seguir sus leyes y sus reglas de discernimiento. 

Una estrategia de muestreo en poblaciones finitas fijadas 

consiste en el par compuesto por el diseño probabilístico de 

selección de unidades y el estimador del parámetro poblacional del 

que se trata de inferir. En Ruiz Espejo (1997c, 2011a, 2015b) se 

presentan soluciones a problemas de este tipo de estrategias 

muestrales en la práctica. 

El seguimiento de las realidades sociales es algo muy 

importante en la planificación de soluciones a las necesidades de la 

población extendida cada vez a áreas de mayor amplitud. Saber 

cuáles son los problemas es algo que se puede conseguir con 

métodos estadísticos, pero resolverlos es la parte principal que no 

puede ser atendida sin conocimientos objetivos del estado social. 
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Muchos estadísticos pueden avalar técnicas como capaces de 

aportar un método científico para el conocimiento de realidades. 

Lo que no es muy común es defender aquellas que, tras una 

reflexión constructiva por su objetividad y con la experiencia 

sincera del científico conocedor de la ciencia inferencial estadística 

y atento a la moral, se mantienen válidas ante las posibles 

objeciones legítimas que pudieran hacerse. Esto último es lo que 

pretendemos aportar en este capítulo como fruto de nuestra 

reflexión. 

El resultado es la proliferación de libros con grandes 

abstracciones y un empeño de los autores en convencer de que tales 

teorías son perfectamente aplicables a los datos que usualmente se 

manejan en la materia de fondo a la que se dirige. Sin embargo es 

fundamental la comprobación de las hipótesis de trabajo de los 

resultados matemáticos aplicables a las condiciones concretas de 

aplicación. 

Aunque no toda metodología estadística aporta la misma 

claridad en el conocimiento social al ser aplicadas, pensamos que 

algunas de ellas son totalmente objetivas para este fin. Veremos 

cuáles son estas metodologías o métodos razonando los porqués de 

su utilidad real, es decir que sirven a su fin con objetividad. La 

lógica que empleamos no es solo de tipo matemático sino de 

comprobación de si las hipótesis empleadas en los teoremas y en 

los razonamientos matemáticos siguen siendo condiciones reales 

estudio en la práctica en la que se aplican. 

Para un matemático, cualquier teorema bien demostrado es 

ciencia, pero para aplicarse a un caso práctico no todo teorema y 

sus premisas son adecuados y respetan la realidad del mundo 

natural al que se aplica. No carece de rigor matemático cada 

teorema demostrado, pero al inferir en un caso concreto puede 
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faltarse a la máxima coherencia y seriedad deseable si las hipótesis 

no pueden comprobarse que son verificadas en la práctica concreta. 

El uso de métodos de investigación estudiados en el 

laboratorio matemático sin un fin útil práctico definido y que 

después se aplica sin fundamentar previamente en el método y en 

las hipótesis básicas las realidades a las que pretendemos dar luz, 

no contribuye sino a la confusión y a la creación de resultados sin 

base segura. 

Con unos métodos de investigación adecuados a los aspectos 

de interés social y económico, es posible proyectar en base a 

informaciones fidedignas obtenidas cualquier tipo de política 

social y diseñar las disposiciones, convenios o pactos legales que 

den un carácter de derecho positivo a los compromisos, los 

acuerdos y las actuaciones consecuentes. 

Los métodos estadísticos proporcionan instrumentos técnicos 

para detectar la evolución y el cambio de los hechos entre dos 

instantes o periodos de tiempo determinados y lugar concretos. Su 

uso ha sido importante en el U. S. Census Bureau y en otras 

instituciones oficiales de estadística. 

Desde el punto de vista del desarrollo estadístico asistimos al 

esfuerzo de adaptación de los sistemas de información y de las 

metodologías estadísticas de las economías y estados en transición 

de los países del este de Europa tras su adhesión a la Unión Europea 

en las últimas décadas. 

La sociedad global del bienestar no existe como realidad en 

la actualidad pero puede ser realizable en el futuro, y esta 

posibilidad de realidad es más deseable socialmente que la realidad 

global presente. Sin duda el papel de la estadística objetiva es clave 

en esa sociedad del bienestar y en la ya existente. 
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La estadística y en especial el muestreo de poblaciones finitas 

tendrán siempre un interés como ciencia aplicada, por resumir la 

información de los habitantes del planeta, además de hacerlo de 

modo económico al reducir los encuestados a una pequeña fracción 

de la población total. Además no producirá efecto cansancio de los 

respondientes y de los encuestadores como se daría si todas las 

personas fueran encuestadas repetidamente. 

Sin embargo en España no se dispone de ficheros 

actualizados de todos los habitantes del país que permitan 

identificar y seleccionar muestras de ellos con fines sociales. En 

este terreno los especialistas en informática y sus soluciones 

técnicas tienen en su mano resolverlo alcanzando una 

administración informatizada. Aunque es posible ya una selección 

de muestras en algunas bases de datos a partir de ficheros parciales 

continuos o secciones censales periódicamente actualizadas. 

Es necesaria la interconexión entre teoría y aplicación 

práctica, conciliando las condiciones de aplicación práctica de un 

método y sus conceptos o hipótesis con la realidad que queremos 

conocer objeto de estudio. Así, los métodos objetivos para estudiar 

el comportamiento social no tienen que ser decisivos en las 

conclusiones del estudio, si aquellos se han fundamentado en datos 

ciertos. 

Tras el próximo capítulo concluimos que algunas de las 

metodologías de inferencia estadística son mejores que otras para 

estimar parámetros poblacionales de variables cuantitativas fijas y 

observables de interés social. Esto no quiere decir que con tales 

métodos quede todo explicado a la luz de ciertas definiciones 

previas, o que no haya más que un método bueno para conocer la 

sociedad. Lo que sí quiere decir es que para ciertos parámetros 

poblacionales de interés social que pueden describirse mediante 
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variables cuantitativas y fijadas en cada unidad de la población, 

existen métodos claramente capaces de superar todas o más 

objeciones que otros muchos métodos estadísticos que ocupan un 

lugar importante en las investigaciones y publicaciones científicas 

actuales, pero no superan las mismas objeciones. 

 La lógica interna de una demostración matemática es más 

fácil de analizar que la verdad de las proposiciones prácticas. 

 

9.3 Desarrollos estadísticos 

En esta sección explicamos los argumentos fundamentales en que 

nos basamos para hacer una selección de métodos de estadística 

inferencial tal y como se desarrollan en los cursos universitarios de 

la materia. 

Queremos hacer ver con claridad las razones que nos 

impulsan a dudar de ciertas metodologías en la práctica, 

argumentando lógicamente y respetando la verdad pues éste es el 

fin de un estudio estadístico inferencial, arrojar luz y claridad al 

fenómeno estudiado. También proponemos otras metodologías que 

superan tales condicionantes, por lo que nuestra intención es 

plenamente constructiva, veraz y racional. 

Uno de los puntos de partida para valorar estas metodologías 

es la existencia real o no de la probabilidad en la naturaleza. No me 

refiero al azar. Sino al hecho o ilusión sin base real de encontrar 

indicios de que la probabilidad como concepto matemático 

acuñado en 1933 por Kolmogorov sea revalidado en el mundo en 

que vivimos. 

El hecho de que algún libro de física como el de Pécseli 

(2000) usen del concepto para explicar realidades no prueba su 

existencia real. En las ciencias sociales ocurre algo parecido. 
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Cuando realizamos un experimento y aun poniendo el 

máximo cuidado en controlar todas las circunstancias importantes, 

el resultado de tales casos varía de una observación a otra en una 

forma irregular que elude todo tipo de predicción sobre el 

resultado, y en este caso Cramér (1953) considera que la sucesión 

de experimentos son aleatorios. Cualquier registro sistemático de 

los resultados de sucesiones de experimentos constituye un 

conjunto de datos estadísticos relativos al fenómeno considerado. 

El objetivo de la estadística, para este autor, es investigar la 

posibilidad de extraer de los datos estadísticos inferencias válidas, 

elaborando los métodos mediante los cuales pueden obtenerse tales 

inferencias. Pero si las condiciones no fueran similares en cada 

experimento sino que fueran exactamente las mismas, ¿habría 

aleatoriedad o resultados diferentes en dos o más experimentos así 

realizados? 

Cramér añade que debe modificarse toda teoría que no se 

ajuste a los hechos, como principio general de toda investigación 

científica que se denomine como tal. Este principio racional puede 

ser aplicado por la mayoría de escuelas de estadística, pues damos 

a continuación argumentos de hecho para que reconsideren sus 

estudios. 

La mayoría de las investigaciones matemáticas de tipo 

estadístico en la actualidad utilizan hipótesis de partida en los 

razonamientos que no pueden ser comprobadas o corroboradas 

directamente “antes de” ni “durante” su aplicación al fenómeno que 

se estudia. 

En concreto, se utiliza el concepto de distribución poblacional 

y se le asigna una distribución determinada salvo uno o varios 

parámetros desconocidos de la misma que corresponden a una clase 

de ellas del mismo tipo y distribución, pero de las que se trata de 
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estimar dichos parámetros para decir algo de las características a 

investigar (Ríos García, 1977). 

La situación anterior es la más elemental presentada en la 

inferencia paramétrica clásica. La situación no varía mucho para 

otros tipos de inferencia como la bayesiana o la no paramétrica, 

donde las hipótesis formuladas pueden hacerse aún más 

incomprobables y abstractas, despegándose más de lo tangible, 

comprobable y controlable para poder partir de unas condiciones 

lo más realistas y objetivas posibles, como sería deseable y se 

requiere en la práctica. 

Utilizar la inferencia estadística presupone la aceptación, 

como en la mayor parte de los métodos estadísticos, de que la 

población experimental (si existiera de hecho) de la que tomamos 

muestras, se distribuye según alguna teoría o modelo de 

distribución. Esto exigiría la comprobación práctica de unos 

axiomas matemáticos incomprobables a su vez que expliquen y 

hagan válida la inferencia estadística en tales ciencias 

experimentales. 

Aceptar en la realidad el concepto de “población 

experimental” implica aceptar el concepto de la probabilidad, sobre 

la cual no hay evidencia física ni consenso entre los científicos de 

su existencia real. A pesar de ello, la simulación con ordenadores 

de este concepto y estos modelos ha permitido resolver cuestiones 

científicas de carácter matemático, como por ejemplo los métodos 

de Monte Carlo para el cálculo aproximado del número 𝜋 (Ríos 

García, 1977). 

Como consecuencia, no podemos afirmar nada 

experimentalmente a partir de la estadística inferencial sin 

comprobar las hipótesis o axiomas que fundamentan los métodos 

estadísticos usados, que deben adecuarse a la realidad que 

experimentamos. Pero como esta adecuación última es 
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incomprobable en la mayor parte de los casos aplicados con las 

técnicas estadísticas inferenciales dichas, podemos concluir que la 

mayor parte de las investigaciones estadísticas de tipo matemático 

aportan además de elaborados razonamientos lógicos, poca o 

dudosa luz sobre las realidades a las que se aplican. 

La hipótesis poblacional de normalidad, como axioma que ha 

ocupado y ocupa el centro de los modelos de distribución de los 

datos experimentales, está basada según sus defensores en alegar 

argumentos de tipo experimental. Este modelo de distribución 

poblacional no se suele justificar, pues es imposible de demostrar, 

pero suele ser admitido como argumento explicativo de realidades 

de tipo agrícola o biológico en diseño de experimentos desde su 

inicio con tal axioma de normalidad. El uso de la “distribución 

normal” en estudios aplicados es algo muy común. Esta 

distribución fue descubierta por De Moivre en 1733, como 

distribución límite de la distribución binomial, aunque su 

descubrimiento pasó inadvertido. Posteriormente Gauss en 1809 y 

Laplace en 1812 la redescubrieron. Sus obras en las que publicaron 

sus resultados fueron muy influyentes de modo que de modo casi 

axiomático sus seguidores consideraron que prácticamente 

cualquier distribución estadística en la práctica se acercaría a la 

distribución normal con solo disponer de un número grande de 

observaciones suficientemente precisas. 

Así se pensaba que la desviación de cualquier variable 

aleatoria respecto a su media se consideraba como un “error” sujeto 

a la “ley de errores” que a su vez se expresaba tácitamente como 

asumible directamente por la distribución normal. 

El “teorema central del límite” que asegura que la media 

aritmética de un gran número de variables aleatorias 

independientes e igualmente distribuidas, tiene una distribución 
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normal en el límite, y ampliaciones particulares posteriores de este 

teorema que aseguran este comportamiento para funciones más 

generales que la media aritmética, así como en distintas 

condiciones de variables dependientes, hicieron que muchos 

científicos creyeran en la “ley de errores” como algo casi natural; 

los experimentadores lo creyeron porque piensan que se trata de un 

teorema matemático, y los matemáticos lo creyeron por pensar que 

era un hecho experimental. 

Sin embargo estas creencias no deben ser absolutas, ya que es 

difícil o casi imposible encontrar en la práctica exactamente las 

condiciones que garantizan matemáticamente esa conclusión, y 

además la experiencia de muchos científicos posteriores en 

distintos campos de conocimiento nos hace ver que la “ley de 

errores” no es ni mucho menos un absoluto, como puede verse en 

la distribución de rentas en Economía que son de tipo “asimétricas 

a la derecha” y no “normales y simétricas”. Lo que significaría la 

falsación de la teoría que, según el filósofo Popper, por ello debería 

abandonarse como generalizable a cualquier fenómeno, y 

debiéndose demostrar en cada caso su idoneidad al fenómeno 

estudiado. 

Las cuatro fases del proceso estadístico según Ríos García 

(1977), son: descripción, análisis, contraste de hipótesis y 

aplicación a la previsión. La primera fase tiene por finalidad 

presentar los datos observados de diversas maneras describiendo 

en todo momento la realidad constatable y objetiva mediante 

operaciones simples de tipo matemático. La fase de análisis (de 

construcción de un modelo teórico que permite enunciar una ley), 

y de contraste de hipótesis (con nuevas experiencias que pueden 

hacer confirmarla o rechazarla), corresponden a la estadística 

subjetiva e inductiva, en la que pueden obtenerse avances no 

necesariamente “seguros” en el conocimiento de los hechos, sino 
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solo “posibles” o “probables” y especialmente débiles cuando se 

incorporan teorías y modelos subjetivos para su obtención. 

La fase de aplicación a la previsión, o utilización de la ley 

enunciada para anticipar los resultados de nuevas experiencias, 

podría tener utilidad en algún caso, pero existen riesgos en su mal 

uso práctico debido a la formulación de leyes incomprobables, o 

por su inexistencia en la realidad o su evolución a lo largo del 

tiempo. En tales casos la previsión es parcial o totalmente a ciegas, 

con sus consecuentes derivaciones que podrían falsear las 

predicciones. 

De estas críticas está libre el muestreo de poblaciones finitas 

fijadas que permite evaluar inferencialmente situaciones sociales 

de hecho. Lo cual no elimina las limitaciones prácticas del mismo. 

Así, por ejemplo, no siempre es posible reunir efectivamente los 

requisitos imprescindibles para ser aplicado. No siempre es posible 

disponer de un listado completo de las unidades que componen la 

población. Esta situación, que podría presentarse, puede ser 

subsanada con leyes censales que exijan a los ciudadanos, 

empresas, pacientes, etc. su inscripción en los “registros oficiales” 

de los que se puedan obtener los listados siempre para beneficio de 

los propios registrados y de la comunidad. 

La estadística matemática inferencial se basa en el concepto 

de probabilidad, que puede no existir en la realidad como ha 

afirmado el estadístico matemático italiano Bruno de Finetti (1974, 

1975) en sus libros de teoría de la probabilidad. 

De ser así, surgen dos opciones en la estadística práctica: 

conformarnos con lo que sabemos por métodos descriptivos y 

censales, o bien aprovechar los resultados matemáticos de 

estadística inferencial simulando (por ejemplo, con ordenadores) 

su existencia y reproduciendo “número aleatorios” seleccionados 
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de acuerdo a ese concepto teórico de probabilidad que, aunque no 

exista en realidad tal probabilidad, los “números aleatorios” 

permitan reproducir sus propiedades y aprovechar los resultados 

demostrados por estadísticos matemáticos para resolver cuestiones 

de tipo práctico. De no ser así, la posible existencia de la 

probabilidad aunque no haya sido probada tampoco asegura 

conocer su valor axiomático exacto para cada suceso que nos 

interese en la práctica, debido a la imposibilidad real de conocerla 

en su valor numérico exacto y, esto, si fuera objetivo e 

independiente del tiempo. Si su valor exacto es desconocido, pocas 

leyes podríamos aplicar en la práctica con la mínimas garantías de 

seguridad en que las distribuciones probabilísticas utilizadas 

inferencialmente sean las verdaderas o adecuadas en cada caso 

concreto en que pretendamos usarlas con fines de utilidad práctica, 

como es en la investigación social y biomédica. 

A pesar de no saber en realidad si existe o no en la práctica el 

concepto de probabilidad, los científicos han dado lugar a muchas 

maneras de interpretarla o de definirla. La axiomática de 

Kolmogorov parte ya de su existencia, y regula las condiciones 

mínimas que debe cumplir tal concepto, unas propiedades lógicas 

derivadas de las propiedades límite de otro concepto que sí es 

medible, la frecuencia relativa de un suceso. 

El concepto de probabilidad de un suceso es el de frecuencia 

relativa del mismo suceso y su límite al realizar una sucesión de 

experimentos en idénticas condiciones. Al ser cada experimento 

independiente de los anteriores y posteriores, para cada número 

finito de experiencias existe una frecuencia relativa de ocurrencia 

del suceso, pero en realidad nunca se conocerá el límite de la 

sucesión de experimentos al no poder realizar el cómputo final de 

la frecuencia relativa de los infinitos experimentos necesarios para 

obtener el límite de tal sucesión de frecuencias producidas en las 

sucesivas experimentaciones acumuladas. 
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De este modo, aunque la probabilidad de un suceso existiese, 

tal probabilidad no podrá ser conocida experimentalmente, sino 

solo por aproximaciones que nos puedan proporcionar las 

frecuencias relativas de dicho suceso en un número finito de 

experiencias observables. De aquí que la probabilidad, aun 

existiendo supuestamente, no será posible conocerla con exactitud 

de la experimentación. 

Otro concepto de probabilidad es el de “probabilidad 

intuitiva, lógica o necesaria” debida a George Boole y propuesta 

por él como una generalización de la lógica, trata de medir la 

relación entre dos proposiciones concretas, una de las cuales no es 

consecuencia lógica de la otra. 

El concepto de probabilidad utilizado por la relación 

“apuesta/premio” como cociente entre dos cantidades económicas, 

de las que el denominador es una cantidad objetiva, y el numerador 

es subjetivo para cada jugador o apostante, es otra definición 

subjetiva de probabilidad muy conocida entre jugadores y 

economistas. 

La confianza de un individuo en la realización de un suceso 

es utilizado en la teoría clásica de la probabilidad, como ocurre en 

la teoría bayesiana, debida al pastor protestante Thomas Bayes. 

Para la teoría probabilística e inferencial bayesiana, la asignación 

de probabilidades o de distribuciones “a priori” es algo que aporta 

el propio investigador estadístico quien realiza unas valoraciones 

generalmente subjetivas, que en muchos casos o en la mayoría son 

inasumibles por otros investigadores aun compartiendo la misma 

metodología bayesiana, y por todos aquellos que creen en la 

objetividad de las probabilidades y de sus distribuciones, si ambas 

existieran. 
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Las teorías subjetivas de la probabilidad tienen sentido para 

el sujeto o individuo que aporta su idea u opinión “a priori” sobre 

la probabilidad de los sucesos, y que puede modificar tal idea u 

opinión al incorporar nuevos resultados experimentales sobre el 

mismo suceso. 

Para todos estos, o su gran mayoría, no tiene sentido plantear 

un concepto objetivo de la probabilidad de un suceso compartido 

por todos, sino que es más bien un instrumento personal más que 

aspira a ser utilizado como herramienta en el proceso de análisis 

teórico y formal con la posibilidad de incorporar nueva 

experimentación. Pero esta experimentación no se obtiene siempre 

por métodos objetivos tampoco, sino que pueden contener un sesgo 

intencional e incluso no probabilístico en la obtención de los datos 

ya que las unidades no estarían identificadas en algunos casos y no 

serían accesibles con igual o supuesta probabilidad de cada 

observación en la práctica. 

De lo anterior podemos concluir que la estadística moderna 

que (con las excepciones de la estadística descriptiva y de la 

inferencia en poblaciones finitas fijadas, con probabilidades 

simuladas por ordenador para la selección de unidades) está basada 

en el concepto de probabilidad intrínseca en la naturaleza de los 

datos, puede considerarse una construcción lógica pero con pies de 

barro al apoyarse en concepciones de la probabilidad de los que no 

hay garantías de su existencia. Por tanto, las consecuencias de las 

teorías inferenciales que se fundamentan en ellas no pueden ser de 

una garantía como si tales conceptos hubieran sido demostrados y 

comprobados en la práctica. 

En el siglo XIX, la calidad en la estadística se entendía como 

la consecuencia de la seguridad y la evidencia de naturaleza 

exhaustiva en la actividad de la recolección de los datos censales 
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de los cuerpos oficiales, concepción inspirada por la propia “teoría 

legal” que subyace en dicha filosofía de actuación. 

En los años 20 del siglo XX el estado del bienestar introdujo 

métodos de dirección estadísticos en el sentido actuarial de la 

palabra (Desrosières, 1997), lo que dio legitimidad social a los 

datos elaborados estadísticamente vinculando cambios en el Estado 

y en la concepción de la estadística como ciencia. 

En la década de 1930, el estadístico americano W. E. Deming 

fue quien introdujo el cálculo probabilístico en la estadística 

oficial, concretamente en las primeras investigaciones por 

encuestas de empleo y desempleo (Anderson, 1988). Hasta 

entonces las muestras se seleccionaban con criterios de 

representatividad o proporcionalidad (incluyendo el azar no 

probabilístico), pretendiendo en todo caso que la muestra fuera una 

miniatura de la población sobre la que se quería inferir, pero sin 

utilizar de hecho el propio concepto de probabilidad que ya 

utilizaban y manejaban matemáticos, filósofos, lógicos, etc. 

En la década de los años 1940, Deming usó las mismas 

técnicas para el desarrollo del “control de la calidad” en la 

producción industrial, manejando el muestreo aleatorio y la 

verificación de defectos en los artículos producidos en serie en 

Estados Unidos, y posteriormente en Japón y Europa con su 

“quality movement” y “quality circles” en los años 1980, y la “total 

quality” y la “zero-defect” tan en boga las últimas décadas en las 

industrias automovilística y electrónica. 

Una dificultad de los métodos inferenciales basados en la 

probabilidad es la de crear las condiciones experimentales para 

reproducir las mismas características en diferentes observaciones 

de un mismo fenómeno aleatorio. En un ejemplo físico, pensamos 

que reproducir las mismas características para evitar que el 
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movimiento de las estrellas y planetas no influyera en las leyes 

gravitacionales es prácticamente imposible o no está al alcance 

humano pues aunque pueda parecer imperceptible a nuestros ojos, 

son cambios reales y de dimensiones muy grandes. Este cambio en 

las causas (admitiendo la ley de la gravitación universal como un 

ejemplo), hace que sea suficiente en principio para producir efectos 

diversos en la experimentación sucesiva en la que el transcurso del 

tiempo tiene su importancia en el cambio de las condiciones 

externas. 

Suponer que las distribuciones discretas, continuas y otras 

más generales, incluyendo mixturas de ellas, son el modelo 

poblacional objetivo de la investigación social no puede ser un 

hecho seguro, pues hemos visto que las poblaciones humanas son 

finitas, y si cada unidad tiene la misma probabilidad teórica (en el 

sentido de Kolmogorov) de ser seleccionada en cada selección, 

hace ver que la distribución en este caso es uniforme discreta y la 

muestra que origina los datos es una muestra aleatoria simple (ver 

el concepto de distribución uniforme discreta en el libro de Casas 

Sánchez y Santos Peñas, 1995). Básicamente consiste en una 

distribución discreta que concentra probabilidad igual positiva en 

un número finito de puntos de la recta real. 

Así pues, la inferencia basada en modelos paramétricos o no 

paramétricos se hace imposible de llevar en condiciones objetivas 

aún en el caso más sencillo de muestras aleatorias simples. Con 

mayor razón, si las observaciones son dependientes o con mayor 

sofistificación, serán modelos más irreconocibles en la práctica 

desde la deseable objetividad. 

En cualquier tipo de inferencia estadística tradicional se 

pretende conocer algo sobre la población completa de partida en 

base a una muestra de la misma población. En la estimación 

puntual, la muestra de observaciones se utiliza para aproximar uno 
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o varios parámetros desconocidos de la población aunque ésta 

pueda ser sospechada o conocida a excepción de uno o algunos de 

los parámetros que actúan como constantes desconocidas en la 

inferencia paramétrica o como distribuciones supuestas a su vez en 

la inferencia bayesiana. 

En la estimación por intervalo, la muestra sirve para 

proporcionar un intervalo que contiene al supuesto valor del 

parámetro de interés con determinado nivel de confianza. También 

pueden estimarse por intervalo dos o más parámetros, dando lugar 

a dos o más intervalos de confianza. 

En el contraste de hipótesis, se trata de decidir si se acepta o 

se rechaza una hipótesis relativa a uno o varios parámetros 

poblacionales con cierto nivel de confianza, basándose en una 

muestra aleatoria de datos procedentes de la observación de la 

misma población sobre la que se trata de inferir sus características. 

En general, la estimación por intervalo y el contraste de 

hipótesis pueden realizarse a nivel teórico conociendo la 

distribución exacta o aproximada de algún estadístico o función de 

la muestra y que dependa del parámetro a inferir. Para conocer tal 

distribución del estadístico, es necesario conocer la distribución 

poblacional de partida. Aun cuando existiera esa distribución 

poblacional (cosa no garantizada por las razones de que podría no 

existir la probabilidad, ni es posible saber con certeza por lo general 

el tipo de la misma), la distribución del estadístico no es conocida 

ni suele ser segura ni comprobable en la práctica. Entre otras 

razones porque no hay modo posible conocido de garantizar que 

las observaciones hayan respetado rigurosamente las propiedades 

probabilísticas de la selección aleatoria de dichas observaciones. 

En la inferencia paramétrica clásica se supone que la 

población se distribuye según cierto modelo de distribución o ley, 
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que determina su clase de distribuciones (por ejemplo: normal, 

uniforme, gamma, beta, etc.) antes de obtener las observaciones, 

salvo uno o varios parámetros a los que habría que estimar en base 

a los datos observados o experimentales procedentes de la misma 

población o de la clase de distribuciones poblacionales (clase que 

se suele considerar fijada en todo el proceso inferencial). 

Una vez fijados los parámetros, determinan una única 

distribución de probabilidad de la clase de distribuciones. En la 

inferencia paramétrica clásica el problema se reduce a estimar el o 

los parámetros desconocidos y supuestamente fijos con la ayuda 

del modelo supuesto y de las observaciones que se toman. Así la 

distribución del estimador de cada parámetro depende del modelo 

supuesto, por tanto de su o sus parámetros, y de las observaciones, 

así como de la elección del estimador concreto o estimadores 

tomados. 

Algunos criterios de selección de estimadores son el principio 

de máxima verosimilitud, el principio de suficiencia, el principio 

de completitud, etc. También existen otros diversos métodos 

estadísticos para la obtención de estimadores, como el método de 

los momentos, el método de los cuadrados mínimos, etc. 

Una vez seleccionado el estimador por alguno de los criterios 

o métodos anteriores, puede estudiarse si verifican propiedades 

deseables como la insesgación, la varianza mínima uniformemente, 

la eficiencia asintótica, etc. que son de gran utilidad para apreciar 

el estimador según las propiedades que verifica. Libros como los 

de Cramér (1953), Ríos García (1977), Stuart y Ord (1994), Stuart, 

Ord y Arnold (1999), y Olive (2014) contienen elementos de todos 

estos extremos apuntados. 

Otro tipo de inferencia es la no paramétrica, en la que la 

población objetivo no pertenece a un modelo dado exceptuando 

uno o varios parámetros que toman un único valor fijo y 
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desconocido cada uno de ellos, como suponíamos en la inferencia 

paramétrica clásica. Sino que ahora la población pertenece a una 

clase de variables aleatorias de un tipo más general, como podría 

ser el de las variables aleatorias con función de distribución 

continua, o con función de densidad continua, o con una función 

de densidad conocida salvo su media y su varianza (es decir, 

conocida salvo cambios de origen y escala) u otras muchas 

posibilidades en las que incluyan clases muy generales de 

distribuciones entre las que se supone se encuentra la población 

objetivo que es en concreto sobre la que queremos inferir. 

Las restricciones realizadas para definir la clase de 

distribuciones posibles de la población objetivo pueden provenir de 

condiciones de buenas cualidades de facilidad en el manejo 

matemático por estar ya estudiadas sus propiedades inferenciales o 

de condiciones de origen o de propiedades de tipo matemático 

(como pueden ser la continuidad, derivabilidad sucesiva de las 

funciones, etc.). En este tipo de inferencia no paramétrica, al 

aumentar el número de posibles poblaciones es lógico que la 

población objetivo pueda estar mejor aproximada entre las posibles 

que en el caso paramétrico, aunque no siempre sería así. 

Para la inferencia no paramétrica tampoco tenemos garantías 

de que las observaciones disponibles se hayan seleccionado según 

las condiciones de aleatorización supuestas sobre el papel, al igual 

que ocurría en la inferencia paramétrica clásica. La posible no 

existencia de la probabilidad como causa de los posibles datos, 

sigue pesando sobre este tipo de inferencia. También la imposible 

comprobación de que la selección probabilística supuesta se 

produce en la práctica, ya que no hay unidades identificadas y 

accesibles en general. 
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Un caso particular de inferencia no paramétrica es la 

inferencia de distribución libre. En este caso se supone que la 

población puede ser cualquiera (libre), desconocida y fija, sin 

limitaciones particulares como ocurre en la inferencia no 

paramétrica habitual. 

Del mismo modo que la inferencia no paramétrica no puede 

mejorar desde un punto de vista práctico las inferencias por 

suponer hipótesis sin comprobación posible, como ocurre en la 

paramétrica clásica, la inferencia de distribución libre mejora 

siempre a la inferencia no paramétrica ya que los datos pueden ser 

mejor aproximados por cualquier posible población, mientras que 

en las otras inferencias el rango de poblaciones es menor entre las 

que dilucidar la mejor población concreta aproximada a los datos 

obtenidos. Otra deficiencia de la inferencia de distribución libre es 

que da la misma importancia a una distribución posible como es 

una distribución uniforme discreta, como a otra imposible que 

contradiga las condiciones prácticas. 

La inferencia bayesiana parte de una distribución poblacional 

que como en los casos anteriores de inferencia paramétrica o no 

paramétrica se supone conocida de entrada salvo alguna o algunas 

constantes, cuya distribución es subjetiva aunque no podrán 

comprobarse estos extremos salvo que haya un control real de la 

distribución o distribuciones “a priori”. 

Además se tiene la existencia supuesta de uno o más 

parámetros poblacionales desconocidos de antemano y que a su vez 

se supone que serían variables aleatorias con una determinada 

distribución de probabilidad subjetiva, cuya justificación no 

siempre es suficiente a juicio de muchos autores, como por ejemplo 

Ríos García (1977). 

En realidad la lógica que soporta tal afirmación no difiere 

mucho del esgrimido en la adopción de una distribución de 



 
 

402 
 

probabilidad en la inferencia paramétrica, pues será en la mayoría 

de los casos una suposición incomprobable e injustificable en sus 

extremos, si bien puede tener algo de aproximación subjetiva que 

puede basarse en experiencias anteriores, pero insuficientes para 

poder afirmar con seguridad cuál es la distribución (O’Hagan, 

1994). 

Sin embargo la probabilidad condicional puede ayudar a 

conocer mejor procedimientos de la inferencia estadística objetiva 

(Ruiz Espejo y Singh, 2003). 

En la inferencia en poblaciones finitas la variable de interés 

está fijada en cada una de las unidades de la población considerada 

y puede afirmarse que la distribución poblacional es uniforme 

discreta si el procedimiento de selección asigna la misma 

probabilidad a cada unidad de la población finita. 

Así el argumento fundamental no es una suposición 

incomprobable sobre la naturaleza aleatoria en sí de la variable 

observada, sino más bien en los hechos de saber que la población 

es finita, que la variable se concreta en un valor fijo observable en 

cada unidad de la población finita y en que la aleatoriedad surge 

solo de la selección aleatoria y controlada (artificialmente) de la 

muestra de la población finita. 

Tal aleatorización no es proporcionada implícitamente por los 

propios datos naturales a los que se accede, como ocurre en los 

otros métodos estadísticos inferenciales tratados como los 

paramétricos, no paramétricos, de distribución libre, o bayesianos. 

La aleatorización en la inferencia en poblaciones finitas 

fijadas procede de la aplicación de métodos de muestreo con 

selección aleatoria y probabilística de unidades que puede 

simularse por ordenador que genere números aleatorios que 
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permitan obtener las unidades de la muestra (aleatoria antes de la 

selección, y fijada después) con la que, al ser observadas tales 

unidades de la muestra seleccionada, poder basar nuestra inferencia 

objetiva. 

Así cualquier unidad de la población finita puede ser 

seleccionada en la muestra y observada, medida, encuestada e 

inspeccionada en su caso, para aportar su información cierta al 

estudio concreto para el que se requiere información. Esto no 

ocurre por lo general en otros tipos de inferencia, donde se accede 

a los datos disponibles, aunque no suponga un esfuerzo especial y 

requieran atenerse a unas propiedades determinadas de diseño 

probabilístico, por buscarlos de hecho donde los haya. En estos 

tipos de inferencia, sería una muestra de pacientes los que 

consultan en cierta semana a un médico. Pero en el muestreo de 

poblaciones finitas se requiere conocer la lista de pacientes, y de 

ella seleccionar la muestra por métodos probabilísticos y no de un 

mero azar que luego interpretemos que es una muestra aleatoria 

simple o con otro diseño de muestreo determinado sin hacer nada 

para asegurarlo en la práctica. 

En la inferencia de los modelos superpoblacionales y en 

estudios analíticos, se supone que el dato fijo observado es una 

muestra aleatoria de tamaño uno de un modelo probabilístico que 

se supone actúa para generar los datos en cada unidad e inherente 

a la naturaleza de la misma. Este modelo puede ser común para 

todas las unidades o diferente dependiendo de la unidad o de la 

observación. Por ello este modelo no es seguro ni comprobable 

como hemos visto en otros tipos de inferencia, y puede ser un paso 

en el vacío que separa la teoría de la realidad concreta a la que se 

pretende inferir o aproximar inferencialmente. 

Esto es cierto además porque de suponer un modelo así, cada 

unidad puede dar un dato distinto en cada ocasión en que se le 
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observe, pero contradice la realidad cuando en ella nos interesamos 

por hechos únicos y fijos (datos fijos o fijados), además de que son 

observables y medidos sin error. La posible suposición de que tales 

datos fijos son provenientes de un mismo modelo aleatorio es en sí 

misma equívoca y no se atiene a la exactitud de los hechos. 

En los estudios sociológicos es muy común usar las fórmulas 

matemáticas para estimar y calcular errores pero estas fórmulas 

suponen que la selección de la muestra es de tipo probabilístico, 

algo que no suele ocurrir en el tipo de estudios o sondeos por cuotas 

(Martínez, 1999). 

La estimación y el contraste de hipótesis propios de la 

inferencia con suposiciones que deforman la realidad, no hacen 

sino obstaculizar el conocimiento de métodos objetivos al 

ocuparles un tiempo precioso que se ha negado a éstos que no dan 

pasos en el vacío. El empeño en que los métodos inferenciales 

tienen que suponer que la población puede representarse por 

funciones de densidad en muchas aplicaciones no obedece más que 

a la conveniencia matemática para argumentar lógicamente el 

modelo a nivel teórico, más que en un verdadero conocimiento del 

caso concreto propiamente dicho del que se trata en la práctica. 

El muestreo de poblaciones finitas con datos fijos y 

observados sin error es uno de los métodos estadísticos que gozan 

de la mayor objetividad y es uno de los procedimientos 

inferenciales de mayor uso en la estadística oficial en los países 

más desarrollados y democráticos. También es la base técnica para 

muchos indicadores oficiales del bienestar y en su recogida de 

datos. 

Otras técnicas de inferencia se desarrollan en contextos de 

educación universitaria y de investigación teórica pues son 

aportaciones de menor importancia real por su trascendencia 
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aunque a veces de mayor impacto en investigación según criterios 

universitarios del ámbito inglés, lo que da índice de la disociación 

entre el mundo académico y la práctica de nivel objetivo. 

En España, el “Instituto Nacional de Estadística”, el “Centro 

de Investigaciones Sociológicas”, y el “Instituto de Estudios 

Fiscales” son tres ejemplos importantes donde se diseñan y desde 

donde se efectúan estudios de carácter censal, estadístico, 

sociopolítico y socioeconómico. En Estados Unidos, los censos de 

población, de tipo electoral, y algunos otros más relacionados los 

realiza el “U. S. Census Bureau”, y también tienen importancia los 

censos y recuentos de tipo laboral (“Labour Force”). 

En la mayor parte de los países existen fuentes estadísticas 

oficiales desagregadas en un conjunto de organismos oficiales a los 

que les afecta aunque, en el caso de Europa, con unas directrices 

nacionales y multinacionales dirigidas desde Eurostat, la “Oficina 

Estadística de las Comunidades Europeas”, o desde la OCDE, la 

“Organización para la Cooperación y el Desarrollo Económico”, 

para facilitar la comparabilidad interna y externa de los datos 

obtenidos entre diversos países o regiones, áreas geográficas o 

políticas. 

Además existe un conjunto de empresas privadas que 

conjunta o individualmente colaboran en la realización de estudios 

estadísticos de predicción electoral, sondeos de opinión, 

investigación de mercados, etc. así como empresas que aportan 

tecnologías para la realización de estos estudios. 

Como rama científica la inferencia estadística objetiva tiene 

los mismos fundamentos en todos los países donde se investigan 

estos métodos de alta calidad estadística. La recogida de datos se 

realiza en los estudios por observación física o registral, o por 

entrevista postal, presencial, por internet o telefónica. En algunos 

casos se procede a posteriori a efectuar inspecciones o 
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supervisiones de los datos recabados en la primera fase, para 

corregir posibles sesgos por posibles errores de medida o por 

efectos de la no respuesta (Ruiz Espejo, 1988a). 

Los sondeos o muestreos por cuotas tan usados en centros 

oficiales de investigación de la opinión pública así como de 

empresas de estudios socioeconómicos y de sondeos de opinión, no 

tienen por lo general base probabilística y por tanto no son 

inferencia estadística objetiva aunque en muchos casos vistos se les 

de esa apariencia al presentar información de errores de muestreo 

o intervalos de confianza cuando éstos solo son posibles con 

selecciones controladas probabilísticas de las unidades de la 

población en base al marco actualizado de todas las unidades de la 

población. Si no hay probabilidad en la selección de la muestra, no 

puede hablarse de insesgación o de varianza de los estimadores o 

de nivel de confianza o de intervalos de confianza. 

Otro tipo de estafa es realizar un muestreo sistemático o de 

otro tipo más complejo que incluye el azar en la selección de 

unidades, y presentar las conclusiones del estudio como si fuera 

hecho por muestreo aleatorio simple y utilizando sus fórmulas, 

cuando no fueron obtenidos los datos por este procedimiento de 

aleatorización. 

La desconexión real entre las premisas exigidas en la teoría y 

las condiciones prácticas en que se realiza el estudio, le hace 

carecer de rigor y garantías para ser presentado como científico y 

como estudio objetivo. Esto es extensivo a otros tipos de materias 

estadísticas, como el modelo general lineal, los métodos de 

regresión, el análisis multivariante, la teoría estadística de la 

decisión, el diseño de experimentos, la biometría, etc. que por lo 

general necesitan mayor concordancia entre las hipótesis de trabajo 
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y la práctica, que las hipótesis aplicadas sean hechos objetivos y no 

meras suposiciones, etc. 

Un ejemplo práctico en el que se puede ver por qué es tan 

importante comprobar las hipótesis formuladas matemáticamente, 

es el de Ruiz Espejo y Singh (2001), en el que se justifica cómo 

ante unos mismos datos observados, las diversas hipótesis que 

pueden formularse teóricamente de cómo surgen los datos 

generados, hacen seleccionar distintos estimadores insesgados a 

veces únicos, e incluso óptimos. En la práctica estas hipótesis de 

partida del modelo no suelen ser comprobadas ni comprobables, 

sino que queda en manos de la decisión tomada por el investigador 

encargado del estudio. 

En otras palabras, ante un caso de duda, es el investigador o 

el estadístico quien desde su subjetividad o experiencia decide al 

final el estimador insesgado u óptimo siempre que tuviera razón al 

seleccionar el modelo subjetivo que propone como generador de 

los datos, de lo cual nunca sabremos la verdad con exactitud en la 

mayor parte de las inferencias estudiadas. 

En este sentido, puede influir la “opinión” del experto en los 

resultados del estudio además de la propia “realidad” que genera 

los datos, se valora la opinión subjetiva de una persona como la 

verdadera realidad. Así en muchos tipos de inferencia se antepone 

la idea subjetiva de una persona a la verdad, lo cual sería una 

desorientación o perversión ante la información objetiva que se 

busca y es posible obtener. 

Indicamos que en todos los tipos de inferencia explicados, 

salvo la inferencia objetiva en poblaciones finitas, no requieren de 

un listado identificador de todas las unidades de la población. El 

hecho de que en un estudio muestral se realice sin controlar 

efectivamente la selección probabilística de la muestra, hace 

debilitar en muchos aspectos la fuerza de la verdad y de la 
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comprobabilidad de las posibles respuestas que dan los 

encuestados y, por tanto, de las conclusiones del estudio. 

 

9.4 Bioestadística 

En esta sección, que inicialmente fue un trabajo académico, que 

ampliaba mis investigaciones, titulado Investigación Ética y 

Bioestadística, vamos a hacer un repaso a los diversos aspectos que 

consideramos mejorables o advertibles respecto a la ética del uso 

de la Bioestadística como medio para investigar o aproximar 

científicamente la eficacia de medios saludables en personas sanas 

así como de tratamientos o terapias curativas para los pacientes de 

diversas enfermedades. 

Uno de los fines de la bioestadística es determinar si un 

tratamiento médico es más eficaz que otros ya disponibles. 

La bioética se centra en el hombre-persona, mientras que la 

bioestadística se centra en la objetividad de lo que podemos 

conocer o inferir de unos datos experimentales. Por tanto tiene 

prioridad un trato digno con las personas antes que avanzar en el 

conocimiento científico (la caridad o el amor a las personas sobre 

la verdad o el conocimiento de las personas). Pero tampoco 

daríamos un trato digno a las personas si no tuviéramos un buen 

conocimiento científico para curar o paliar sus enfermedades o 

dolencias cuando aparecen. 

El estudio de la estadística aplicada a la Biomedicina ha sido 

objeto de diversos libros en las últimas décadas. La estadística que 

emplean estos libros suelen ser de tipo inferencial basada en 

supuestas hipótesis de normalidad de los datos obtenidos, lo que 

permite aprovechar los métodos estadísticos llamados clásicos con 

dichas hipótesis. Algunas referencias de estos libros se encuentran 
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en las Referencias, y especialmente también en la bibliografía de la 

tesis doctoral en Sociología del autor (2003a). 

Con métodos de muestreo y estimación en poblaciones finitas 

tenemos actualmente instrumentos para inferir objetivamente sobre 

parámetros de poblaciones finitas, como son todas las poblaciones 

humanas. Recurrir a lo que no es con la intención de afirmar cosas 

sobre lo que es, no es un camino correcto. Un ejemplo de ese tipo 

de abuso sería suponer que la población humana es infinita con la 

intención de concluir cosas sobre una población que sabemos que 

es finita. No sería ético. También hacemos ver que la ciencia debe 

basarse en hechos para concluir su tesis, pues construir una ciencia 

basada en suposiciones no comprobadas o no comprobables es una 

tarea sin fundamento práctico cuando lo que se desea con ella es 

concluir algo fiable de realidades, no de hipótesis supuestas. Para 

evitarlo la ciencia estadística ha desarrollado instrumentos cada vez 

más adecuados y objetivos para estimar parámetros poblacionales 

y contrastar hipótesis estadísticas como puede verse en el libro del 

autor (2013c) y en los primeros capítulos de este libro. 

Básicamente decimos que no es posible hacer inferencias 

objetivas si no se reúnen estos requisitos: (a) Selección 

probabilística de las unidades u observaciones en la muestra; y para 

ello, es necesario que las unidades sean finitas, identificadas, y 

accesibles para obtener su dato verdadero. (b) El diseño muestral 

anterior debe completarse con el método de estimación insesgada 

del parámetro de referencia, y el método de estimación insesgada 

de la varianza del estimador anterior del parámetro de referencia, 

siempre que sea posible completar esto último. 

Naturalmente lo deseable es mantener en salud a las personas 

desde su concepción hasta que esto sea posible. Para ello trasmitir 

la experiencia reflexiva de los padres adultos con bondad a los hijos 

menores desde pequeños es insustituible y una garantía de una 
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buena educación, así como la trasmisión de la fe, la sabiduría, unas 

virtudes y unos valores que otras instancias superiores no deberían 

imponerles sino facilitarles el libre ejercicio de su conciencia y su 

voluntad. Por tanto, no consideramos que el recurso al tratamiento 

farmacológico como primera instancia sea lo más adecuado sino 

que creemos que dar unas condiciones de educación por los padres 

asesorados por sacerdotes u otros profesionales para los hijos puede 

ser un medio pacífico y más efectivo para prevenir enfermedades e 

infecciones. 

En este camino la bioestadística puede estudiar también 

modos de vida saludables y la conveniencia de ciertos hábitos 

buenos como puede ser hacer ejercicio físico. Una publicación que 

estudia estos aspectos y otros más profundos con base estadística 

es Journal of Marriage and Family, entre otras revistas 

sociológicas. La prevención siguiendo pautas de vida saludables es 

algo que debe conocerse y practicarse, también desde una 

perspectiva religiosa y/o sociológica, que podría ser corroborada 

por la estadística. 

A veces se presenta la enfermedad y entonces es necesario 

recurrir al médico quien dispondrá de conocimientos y el apoyo de 

la estadística para confirmar los efectos beneficiosos de 

medicamentos como una solución no primaria pero sí al alcance 

ante una persistencia de la enfermedad. 

La bioestadística, como ciencia experimental, no puede 

prescindir de la experimentación y la recogida de datos, pues éstas 

constituyen la frontera que diferencia a las ciencias empíricas de 

las que no lo son (Sgreccia, 2012). Un ejemplo es el caso de la 

penicilina que como antibiótico hace más de un siglo permitía curar 

diversas enfermedades como la pulmonía, pero que, con los años, 

la resistencia de los agentes causantes de algunas de esas 
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enfermedades, hacen de la penicilina ineficaz en ciertos casos 

infecciosos actuales. Por esto, la experimentación debe seguir 

buscando las nuevas causas de las enfermedades actuales y darles 

tratamientos contrastados para su curación según estudios 

recientes. 

Llegado a este punto, vemos importante indicar que la 

estadística describe datos reales, o bien, con ellos trata de inferir 

objetivamente sobre los parámetros poblacionales. Es por tanto 

muy aventurado querer extrapolar el valor de los datos para 

predecir el futuro o para inferir sobre una población que se ha 

supuesto como posible generadora de los datos, pues en estos casos 

la estadística dejaría de ser un medio objetivo para convertirse en 

un medio subjetivo de análisis expuesto a más errores. En ese caso 

los métodos subjetivos añaden a las conclusiones errores debidos a 

las hipótesis añadidas con las que se razona para concluir unas 

estimaciones o un contraste sobre otra hipótesis estadística. Este es 

el caso de las inferencias clásica, bayesiana, y otras más, en cuyos 

fundamentos son necesarios suposiciones sobre la población y a 

veces sobre los parámetros. 

Si queremos conocer el efecto benéfico del medicamento éste 

ha de ser probado en una muestra de la “población finita” 

compuesta por todos los enfermos que la padecen de esa población 

en un instante o en un periodo determinado. Daremos repaso a 

algunas de las normas que regulan estos estudios de 

experimentación con pacientes con la intención de aportar una 

visión científica objetiva que respetando los principios generales 

de autonomía de los pacientes, de modo que ayuden a curar a todos 

ellos por el uso de métodos estadísticos investigados en los últimos 

años, y estos nos informen correcta y adecuadamente de las 

realidades investigadas en los pacientes. 
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Además de posibles pacientes colaboradores con estas 

investigaciones, es bueno concienciar a otros (aunque sean dos o 

unos pocos) para que su negativa a colaborar inicial se transforme 

en colaboración efectiva, basada en la beneficencia y posibles 

recompensas personales, que permita concluir resultados objetivos 

estadísticamente de “todos los pacientes”, que son a los que van 

dirigidos los esfuerzos curativos. De otro modo, limitándonos a los 

pacientes que voluntariamente quieran colaborar, los estimadores 

serían sesgados y no tendríamos medidas estimadas sin sesgo del 

error de muestreo que conllevarían, lo que limitaría el éxito 

conclusivo del estudio experimental. Así buscamos conseguir el 

bien de todas las personas y distinguir lo que es ciencia objetiva de 

lo que pueda ser pseudocientífico, o no complete todo el recorrido 

para garantizar su objetividad. 

En concreto, no podría garantizarse que una muestra sea 

aleatoria simple solo por disponer un número de datos de la 

población. La población debe estar identificada por sus unidades 

(personas) y éstas deben ser accesibles para los observadores del 

estudio, en concreto a las personas seleccionadas en la muestra 

aleatoria según rigurosos métodos probabilísticos de obtención de 

la muestra. La muestra seleccionada es de identificadores, y por la 

accesibilidad de las unidades de la muestra observamos a los 

pacientes anónimos con dichos identificadores seleccionados. 

Las inferencias clásica y bayesiana, entre otras basadas en 

supuestas poblaciones infinitas, no hacen uso de un procedimiento 

cuidadoso de selección de la muestra probabilística representativa 

en las poblaciones de personas, por lo que no podrán concluirse 

resultados objetivos con estos tipos de inferencia. Pueden suponer 

que la muestra ha sido seleccionada según un tipo de muestreo 

concreto, pero no garantizarlo en la práctica al no estar 

identificadas sus unidades. Suponer que una población es infinita 
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cuando en realidad es finita es otro error de entrada y de 

planteamiento que conllevaría posibles errores en las conclusiones 

consecuencia de racionalizar una o varias falsedades sin prestar 

atención al aspecto ético en la ciencia en todas sus fases. 

Al tomar decisiones no solo elijo qué cosas quiero hacer, sino 

también qué clase de persona quiero ser. Ser mejor persona es 

superior éticamente a tener más o hacer más. Ser honesto en la 

ciencia es superior éticamente a publicar más o con más factor de 

impacto. Lo ideal sería que ambas cosas estuvieran relacionadas 

causa-efecto pero esto no es más que un deseo. 

La moral no puede ignorar o menospreciar las conclusiones 

científicas, y el científico debe tener en cuenta y practicar en su 

investigación las exigencias éticas, no siendo aceptables aquellos 

métodos e investigaciones que no tengan en cuenta la dignidad de 

las personas y la verdad. Moral y ciencia se complementan como 

la fe y la razón, y se condicionan mutuamente en el camino hacia 

el bien y la verdad (Trevijano Etcheverria, 2011). 

En la lucha contra la enfermedad desde que la medicina es 

ciencia, el camino necesario para progresar y conseguir nuevas 

metas no es otro que la investigación y la experimentación, llevadas 

a cabo científicamente y no solo de forma observacional o 

empírica, de nuevos modos de intervención farmacológica o 

tecnológica como diagnóstico y terapia (Ciccone, 2006). La 

investigación biomédica en sujetos humanos constituye la fase 

final de un camino de investigación científica que comenzando en 

los laboratorios, sigue en los animales, para terminar en el hombre. 

Este es un momento importante y lleno de problemas éticos de la 

investigación y la experimentación consistentes en sucesivos 

intentos para comprobar si (y en qué medida) la nueva intervención 

médica que se está contrastando produce los efectos buscados en la 

investigación. 
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Por investigación se entiende cualquier actividad que se 

proponga adquirir verdad o nuevos conocimientos. Es científica 

cuando se lleva a cabo según la metodología de las ciencias 

modernas. Se llama biomédica a la investigación desarrollada en el 

ámbito de la salud y de la enfermedad, en el campo de las ciencias 

biológicas y tiene como fin el conocimiento de nuevas modalidades 

terapéuticas. 

La experimentación clínica de los fármacos o terapias nuevos 

viene obligada también éticamente. Las hipótesis fundamentadas 

sobre los efectos beneficiosos que un nuevo fármaco o terapia 

prometen tener sobre un organismo humano tienen su base a veces 

en la experimentación en laboratorio y con animales. Pero esas 

hipótesis deben ser contrastadas, utilizando el fármaco o la terapia 

en seres humanos. Algunos riesgos son inevitables, ya que hay 

características biológicas individuales que tienen diversas 

reacciones en unos organismos a otros con el mismo tratamiento. 

De acuerdo con Ciccone (2006) y Sgreccia (2012) los 

estudios clínicos generalmente se clasifican en cuatro fases. La 

segunda y la tercera fases se prueban en pacientes con la 

enfermedad antes de que el fármaco se pudiera comercializar. En 

todas las fases debe formularse el objetivo u objetivos, cuál es la 

pregunta que debe responderse, conocer los trabajos previos antes 

de comenzar para ver si es aconsejable el estudio y si su diseño es 

el adecuado, anular o reducir los sesgos, determinar el tamaño de 

la muestra de pacientes y cómo se han de seleccionar. Debe fijarse 

el parámetro por el que va a medirse la consecución del objetivo, 

así como otros parámetros a estimar pero que no definen la 

finalidad del ensayo clínico. 

Como indican la Normas de Buena Práctica Clínica (2.3), los 

derechos, la seguridad y el bienestar de los sujetos del estudio son 



 

415 
 

consideraciones más importantes que deben prevalecer sobre 

intereses de la ciencia y de la sociedad (concretados en los 

principios de no maleficencia y de beneficencia en la actuación 

médica). De aquí una de las limitaciones más importantes del 

bioestadístico, quien por un lado debe proporcionar información o 

conocimiento inferencial objetivos y fiables, pero con el límite del 

consentimiento informado de los sujetos de investigación, quienes 

pueden salir de la experimentación en cualquier momento. 

El respeto de la persona y la investigación científica son 

objeto de los puntos 2292 al 2296 del Catecismo de la Iglesia 

Católica (CIC). 

Entre las normativas en materia de experimentación hemos 

seleccionado varias de ellas que orientarán nuestro trabajo en los 

temas que afectan conjuntamente a la ética y a la bioestadística, que 

desarrollaremos en los siguientes contenidos. 

 En los últimos años hemos hecho avances en las ciencias 

estadísticas, y vemos oportuno destacar los aspectos más relevantes 

y actuales de la estadística y en su utilización con el fin de mejorar 

la vida o aliviar los males, especialmente del ser humano. La 

Bioestadística es la ciencia estadística aplicada a la vida. Así los 

avances en la objetividad de la estadística tienen consecuencias en 

el conocimiento de los instrumentos bioestadísticos que dan luz 

sobre cuestiones como la prevención de la enfermedad, la 

enfermedad misma, los medicamentos que pueden curarla o 

tratarla, etc. sin perder de vista que la persona a la que se destinan 

estos estudios y conocimientos mejorados en definitiva es la 

persona humana que debemos considerar como un fin en sí mismo 

y, por su dignidad, darle el trato humano y respetuoso que le 

corresponde en todo momento. 

El objetivo general de esta sección es presentar 

resumidamente los aspectos éticos relevantes en relación con la 
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salud y la experimentación en seres humanos, y el objetivo 

específico consiste en destacar las aportaciones recientes en el área 

de la Bioestadística para el bien primordial de la salud humana y el 

conocimiento científico que puede obtenerse en los estudios 

saludables descriptivos o inferenciales de hechos y datos y/o por 

observación experimental de pacientes y personas sanas. 

El fin de la Bioestadística es aportar instrumentos científicos 

objetivos en la medida de lo posible como medios para resumir o 

inferir el conocimiento y la información relevante de experimentos 

observacionales, especialmente en seres humanos, y para concluir 

consecuencias en ellos. 

Nuestro objetivo es describir los avances recientes en este 

área de la Bioestadística y tratar de compaginar un conocimiento 

más objetivo y veraz con el objetivo prioritario de respetar a las 

personas humanas y tratar de proporcionarles los medios mejores 

como consejos saludables para una vida sana, así como de la 

búsqueda, con ciencia objetiva, del mejor tratamiento posible de 

las enfermedades y dolencias cuando estas aparecen. 

En este caso la Bioestadística es un medio, que debe ser 

bueno, es decir, ético, objetivo y eficiente basado en datos y en lo 

posible nunca en hipótesis supuestas y no comprobables sino sólo 

asumiendo condiciones de trabajo que sean hechos en la práctica 

real y concreta, para el tratamiento de la información estadística 

que proporciona un estudio o un ensayo ya sea de terapias 

saludables o curativas en seres humanos. 

Como material de Bioestadística vamos a considerar la 

inferencia en poblaciones finitas, ya que cualquier población 

humana es finita en un instante dado, por ejemplo la población de 

pacientes afectados por determinada enfermedad. De este modo 

reconocemos la verdad de la realidad de pacientes en el modelo 
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estadístico con el que estudiarla. Por otro lado nos interesa estudiar 

hechos reales. Esto nos hace descartar como modelos todos 

aquellos que necesitan “suponer cómo es la realidad” en lugar de 

“reconocer su realidad” sobre el terreno. De este modo, podemos 

prescindir de modelos de inferencia clásica y bayesiana, y de la 

práctica totalidad de los modelos superpoblacionales, pues 

requieren sustituir realidades reconocibles por hipótesis teóricas no 

comprobadas ni comprobables. 

Por todo ello, nos centramos en el modelo de muestreo y 

estimación en poblaciones finitas (pues son estas las que nos 

interesan en la práctica real y comprobada), con datos reales y 

objetivos (que pueden medirse sin error en cada unidad de la 

población finita y con ningún daño posible a las personas 

observadas), seleccionados por muestras de acuerdo a diseños o 

esquemas de muestreo que junto a un estimador asociado permiten 

obtener conclusiones inferenciales objetivas (Ruiz Espejo, 2013c). 

Otros métodos estadísticos, como los explicados en los libros 

de Berger y Wong (2009), Good y Hardin (2006), Indrayan (2013), 

Kupper, Neelon y O’Brien (2011), Lejeune (2010), Olive (2014), 

Piantadosi (2005), van Belle y Kerr (2012), y de Winkel y Zhang 

(2007), son de inferencia clásica u otros métodos que suponen 

hipótesis subjetivas en sus modelos de análisis de los datos. Libros 

que han sido revisados por el autor, algunas de cuyas referencias 

están recogidas al final del libro. Mejoras en la objetividad de los 

métodos estadísticos de experimentación e inferencia son los 

trabajos de Ruiz Espejo y Delgado Pineda (2008) y de Ruiz Espejo 

(2013c). 
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Declaración de Helsinki 

La Declaración de Helsinki (DH) de la Asociación Médica Mundial 

(AMM) es la enumeración de los Principios éticos para las 

investigaciones médicas en seres humanos. Son 35 Principios de 

entre los que comentamos los que consideramos de mayor interés 

conjunto ético y bioestadístico. 

En el Principio 12 se dice que la investigación médica en 

seres humanos debe conformarse con los principios científicos 

generalmente aceptados y debe apoyarse en un profundo 

conocimiento de la bibliografía científica, en otras fuentes de 

información pertinentes, así como en experimentos de laboratorio 

correctamente realizados y en animales, cuando sea oportuno. 

En el Principio 16 se dice que la investigación médica en 

seres humanos debe ser llevada a cabo sólo por personas con la 

formación y calificaciones científicas apropiadas, que la 

investigación en pacientes o voluntarios sanos necesita la 

supervisión de un médico u otro profesional de la salud competente 

y calificado apropiadamente, y que la responsabilidad de la 

protección de las personas que toman parte en la investigación debe 

recaer siempre en un médico u otro profesional de la salud. 

En el Principio 22 se indica que la participación de personas 

competentes en la investigación médica debe ser voluntaria, y que 

ninguna persona competente debe ser incluida en el estudio a 

menos que ella acepte libremente. 

En el Principio 23 se dice que deben tomarse toda clase de 

precauciones para resguardar la intimidad de la persona que 

participa en una investigación y la confidencialidad de su 

información personal. 
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En el Principio 24 se dice que en la investigación médica en 

seres humanos competentes, cada individuo potencial debe recibir 

información adecuada acerca de los objetivos, métodos, fuentes de 

financiación, etc. de la investigación. La persona potencial debe ser 

informada del derecho de participar o no en la investigación y de 

retirar su consentimiento en cualquier momento, sin exponerse a 

represalias. Después que la información ha sido comprendida por 

el individuo, el médico u otra persona calificada apropiadamente 

debe pedir entonces, preferiblemente por escrito, el consentimiento 

informado y voluntario de la persona. Y si el consentimiento no se 

puede otorgar por escrito, el proceso para lograrlo debe ser 

documentado y atestiguado formalmente. 

Por todo lo anterior, la Declaración de Helsinki (DH) se 

ocupa de los aspectos más importantes en relación con el 

consentimiento informado de los individuos que participen en una 

investigación, o del de su representante legal cuando corresponde 

recurrir a él. La posibilidad de que un individuo pueda retirarse de 

la investigación en cualquier momento, hace que los métodos 

inferenciales que puedan usarse para determinar la eficacia de los 

tratamientos experimentales puedan carecer de base objetiva sobre 

la que hacer las conclusiones al poder producirse la eventual no 

respuesta durante la investigación. Sin embargo, aparentemente en 

la inferencia clásica o bayesiana, en las que cuando se suponen 

poblaciones infinitas no se cuida la representatividad probabilística 

de la muestra a través del diseño muestral, puede parecer que sí 

pueden extraerse conclusiones pues todo se reduciría a obtener una 

muestra de un tamaño determinado sin comprobar su 

representatividad en la práctica. Este proceso requiere de otras 

hipótesis que hacen subjetiva y más alejada de la realidad las 

posibles conclusiones para la población investigada a partir de una 

muestra de ella, que ya no sería selección probabilística en la 

práctica, aunque sí lo pueda ser en su supuesto análisis estadístico 
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teórico. Lo que no garantiza objetividad en las conclusiones al 

perder todo rastro de control objetivo en la selección de la muestra 

en el estudio. 

 

Deontología médica 

En este apartado vamos a comentar el Código de Deontología 

Médica (Guía de Ética Médica), del Consejo General de Colegios 

Oficiales de Médicos (2011), en los aspectos en los que la 

Bioestadística ha podido avanzar en sus conocimientos éticos. 

El primer deber en la conciencia moral de cualquiera es 

formar una buena conciencia, es decir, estudiar, buscar la verdad, 

consultar con las personas prudentes para salir de dudas, 

perseverar, etc. Para actuar bien, en el sentido de deber moral, ha 

de ser en todos sus aspectos, sustancia y circunstancia. Si falla uno 

de ellos se pervierte su bondad. Las reglas del buen hacer en las 

acciones conforme a los imperativos de la razón, constituyen los 

deberes profesionales. Toda profesión honrada tiene la índole de 

servicio a Dios y a los demás. Ningún mandato moral preceptúa lo 

que hay que hacer para obtener tal o cual fin o bien, sino algo de 

debido cumplimiento. La ética cuenta, como referentes normativos, 

con la naturaleza (metafísica) y la razón. 

El Código de Deontología Médica (CDM) a lo largo de un 

preámbulo, 21 capítulos, una disposición adicional y disposiciones 

finales, describe las normas cuyo incumplimiento supone incurrir 

en falta disciplinaria. 

En el capítulo tercero del CDM se exponen las Relaciones del 

Médico con los Pacientes. En su Artículo 19.2 se dice que la 

historia clínica de un paciente para su análisis científico, 

estadístico, y con fines docentes y de investigación se respetará 
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rigurosamente la confidencialidad de los pacientes. Esto tiene la 

consecuencia de que cada paciente debería estar identificado por 

un número o clave que permita acceder a los datos estadísticos del 

paciente, pero respetando la confidencialidad de los mismos, es 

decir, guardando el anonimato del nombre y su persona que lo 

identificarían, para los efectos de la explotación estadística de sus 

datos. Esto puede hacerse mediante un carnet con el nombre y la 

clave o número del paciente que puede leer el médico en consulta, 

pero el médico investigador o el profesional estadístico solo 

accederían a la clave o número identificador y a los datos 

estadísticos del paciente ya de modo anónimo. Además esta 

identificación numérica es necesaria e imprescindible para poder 

seleccionar muestras representativas de acuerdo con un diseño 

muestral probabilístico para efectuar inferencias objetivas. Esto es 

una de las hipótesis de trabajo del libro del autor (2013b), que 

presenta los métodos inferenciales objetivos para poblaciones 

finitas. 

En el capítulo cuarto del CDM se detalla la Calidad de la 

Atención Médica. En el Artículo 26.2 se dice explícitamente que 

no son éticas las prácticas carentes de base científica y que 

prometen a los enfermos la curación, los procedimientos ilusorios 

o insuficientemente probados que se proponen como eficaces, etc. 

A este respecto hay que indicar que base científica puede tener un 

método estadístico subjetivo, pero este será siempre éticamente 

inferior a un método estadístico objetivo con base científica y real. 

El Artículo 30.1 indica que el secreto profesional debe ser la 

regla; no obstante se enumeran algunas excepciones. En el Artículo 

30.1.g se indica que el médico deberá mantener el secreto aunque 

el paciente lo autorice. No obstante todo esto, entiendo que se 

guarda secreto profesional aun cuando se obtenga de las historias 

clínicas información anónima con fines estadísticos objetivos, cuya 
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finalidad sea mejorar los tratamientos a los enfermos o tendentes a 

su curación efectiva. 

En el 59.4 se dice que el médico investigador tiene el deber 

de publicar los resultados de su investigación por los cauces 

normales de divulgación científica, tanto si son favorables como si 

no lo son. Advierte además que no es ética la manipulación o la 

ocultación de datos (para obtener beneficios personales o de grupo, 

o por motivos ideológicos). De este artículo, deducimos que la 

manipulación de los datos con métodos estadísticos subjetivos, 

como son la inferencia estadística clásica y la bayesiana entre otras, 

son menos éticas porque el modelo o los modelos supuestos 

aportan subjetividad al manipular los datos. 

Una consecuencia de la voluntariedad para ser incluido entre 

los pacientes observables por experimentación (con la cual se 

proteje a los no voluntarios en su libre voluntad), deducida de los 

métodos objetivos de inferencia en poblaciones finitas, es que las 

conclusiones de un estudio estadístico basado en una muestra 

aleatoria de voluntarios sólo podrían inferirse a funciones 

paramétricas de la población de pacientes voluntarios. Así, si se 

respeta a todos los pacientes en su deseo de colaborar o no 

colaborar con la investigación, lo cual es ético y dignificante, 

también en honor a la verdad se puede deducir que las conclusiones 

del estudio estadístico no tendrían alcance sobre todos los pacientes 

a los que después se desease tratar con los resultados de la 

investigación. La razón es que puede haber diferencia entre el 

parámetro de la población de pacientes y el parámetro de la 

población de los pacientes voluntarios. Lo que podría concluirse 

para unos no tiene por qué concluirse para los otros. Esto se 

demuestra matemáticamente y puede resolverse también 

matemáticamente usando métodos objetivos de estimación 
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insesgada basada en hechos en el caso de que aparezca no respuesta 

(como ocurre en los no voluntarios). 

Algunas referencias que presentan soluciones a este 

problema, que han sido estadísticamente investigadas 

recientemente, son las de Ruiz Espejo (2011a, 2015b) y de 

Thompson (2012). Con estos estudios adicionales se concluye que 

con la participación adicional de dos nuevos voluntarios elegidos 

con un diseño de muestreo aleatorio simple de entre los no 

voluntarios de la muestra de pacientes en un primer intento, pueden 

concluirse inferencias objetivas sobre toda la población de 

pacientes. Esto requiere convencer al menos a dos (o más) personas 

seleccionadas en una submuestra de entre las que no estaban 

dispuestas a participar en la investigación médica, por ejemplo 

proporcionándoles un seguro médico vitalicio, una pensión o una 

retribución económica por su participación acordes con las 

consecuencias causadas por su participación en la investigación. 

En cualquier caso, si se obtuviera la colaboración de un número 

mayor a dos entre los no voluntarios en un primer ofrecimiento 

seleccionados por el diseño muestral, los resultados de la 

investigación serían insesgados, más precisos y objetivos. 

De este modo se conseguirían unas conclusiones válidas para 

todos los pacientes de la población, no solo válidas para los 

pacientes potencialmente voluntarios en una primera instancia de 

entre la población de pacientes (y así protegeríamos de hecho a 

todos los pacientes de la población, pues la investigación inferiría 

objetivamente sobre una función paramétrica basada en la 

información proporcionable por todos ellos). Si no se consiguiera 

la cooperación posterior de los dos o más primeros pacientes 

seleccionados en una submuestra de entre los que en la muestra 

inicial se manifestaran no dispuestos a ser objeto de investigación 

médica (pues de otro modo si no fueran los primeros, la 

eliminación de algunos seleccionados tiene el efecto de que el 
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diseño muestral así proporcionado haría sesgado el estimador, ver 

Ruiz Espejo, 1986b), no podrían extraerse consecuencias objetivas 

basadas en hechos más que de entre los pacientes potencialmente 

voluntarios, y por esto no podrían inferirse conclusiones objetivas 

para toda la población de pacientes. Todo lo que se afirmase sobre 

esta población de pacientes sería subjetivo, y por tanto menos 

válido científicamente que el método estadístico objetivo que 

hemos explicado y referenciado. 

Lo que ha de hacerse estadísticamente, por tanto, es 

aprovechar la investigación estadística reciente sobre no respuesta 

de los autores citados, con los recursos y la persuasión para obtener 

la cooperación de pacientes de la muestra inicialmente de no 

voluntarios, y proceder a una recogida de datos (que puede ser en 

consulta médica, en encuesta, o bien telemática) y calcular unos 

estimadores de acuerdo con dichas investigaciones recientes que 

proporcionan métodos objetivos de inferencia estadística. Pues de 

otro modo, se seguirían procedimientos subjetivos de recogida de 

datos, análisis e inferencia que la ciencia verdadera no puede 

garantizar aunque hubiera en ellos algunos rasgos racionales 

incompletos o subjetivos. 

En el capítulo veinte, Publicidad Médica, se insiste en su 

Artículo 65.3 que la publicidad médica deber ser objetiva, prudente 

y veraz, de modo que no levante falsas esperanzas o propague 

conceptos infundados. 

 

Buena práctica clínica 

En este apartado voy a dar repaso a los aspectos relacionados con 

la Bioestadística entre las Normas de Buena Práctica Clínica 

(NBPC de Enero de 1997 y corregida en Julio de 2002). 
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En la Norma 6.4 se detalla el Diseño del Ensayo, y en la 6.5 

la Selección y Retirada de Sujetos. En 6.7 la Valoración de la 

Eficacia, en donde deben especificarse los parámetros de eficacia 

(llamados “funciones paramétricas de eficacia” en la inferencia 

objetiva en poblaciones finitas) y otros aspectos relacionados. En 

6.9 se trata de la Estadística. En 6.9.1 se refiere a la descripción de 

los métodos estadísticos que se usarán, incluyendo el calendario de 

todos los análisis intermedios, en 6.9.2 se refiere al tamaño 

muestral, pero en 6.9.3 se habla del nivel de significación que será 

utilizado, lo que hace implícito una referencia a la inferencia 

clásica que ha sido tan puesta en cuestión en los últimos años (ver 

por ejemplo Nuzzo, 2014) pues presupone sin demostración la 

normalidad de los datos, como si fueran de poblaciones infinitas, 

aspecto que es mejorado claramente por un enfoque que asegure un 

nivel de confianza mínimo estimado sin sesgo como se explica por 

ejemplo en Ruiz Espejo (2013c). 

En 8.2.11 se refiere a documentar valores/rangos normales de 

procedimientos médicos/de laboratorio/técnicos/pruebas. En este 

punto se supone que el medio es la estadística clásica incidiendo en 

la distribución normal como medio de análisis supuesto, que no 

probado ni objetivo. En 8.2.18 habla de documentar el método de 

aleatorización de la población del ensayo. A este respecto ya hemos 

explicado que para que la muestra sea probabilísticamente 

representativa de la población de la que se extrae las unidades (de 

la muestra de la población) estas deben estar numeradas e 

identificadas para poder seleccionar una muestra aleatoria 

probabilística de acuerdo a las especificaciones necesarias del 

diseño muestral para concluir objetivamente resultados 

inferenciales. 

En 8.3.6 se reincide en documentar los valores y rangos 

normales que se revisan durante el ensayo. Las mismas críticas son 

aplicables. En 8.3.14 se habla de documentar la confirmación de 
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los datos registrados. En 8.3.15 se trata de documentar las 

correcciones de los cuadernos de recogida de datos. En 8.3.21 habla 

de documentar que el investigador/institución guarda una lista 

confidencial de los nombres de todos los sujetos asignados con los 

números de inclusión al ensayo. Permite así al 

investigador/institución revelar la identidad de los sujetos e/o 

identificarlos anónimamente en el estudio. La Norma 8.3.22 exige 

documentar la inclusión cronológica de los sujetos por el número 

asignado en el ensayo. En 8.4.3 se exige listar completamente los 

códigos de identificación de los sujetos incluidos en el ensayo para 

el caso en que se requiera un seguimiento, guardando la lista de 

forma confidencial durante el periodo de tiempo acordado. En 8.4.4 

se refiere a documentar el Certificado de Auditoría (CA). En 8.4.7 

se exige documentar el informe final del investigador al Comité 

Ético de Investigación Clínica (CEIC) y a la autoridad reguladora. 

 

Investigación biomédica en seres humanos 

Como indica el documento Pautas Éticas Internacionales para la 

Investigación Biomédica en Seres Humanos del Consejo de 

Organizaciones Internacionales de las Ciencias Médicas (CIOMS) 

en colaboración con la Organización Mundial de la Salud (OMS), 

el primer instrumento internacional sobre ética de la investigación 

médica –el Código de Nüremberg (CN)– fue promulgado en 1947 

como consecuencia del juicio a los médicos que habían dirigido 

experimentos atroces en prisioneros y detenidos sin su 

consentimiento durante la segunda guerra mundial. Este Código 

protegía la integridad del sujeto de investigación y establecía 

condiciones para la conducta ética de la investigación en seres 

humanos, destacando su consentimiento voluntario para la 

investigación. La investigación en seres humanos debiera ser 
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realizada o supervisada sólo por investigadores debidamente 

cualificados y experimentados. 

En la Pauta 1 se da la justificación ética de la investigación 

biomédica en seres humanos, que radica en la expectativa de 

descubrir nuevas formas de beneficiar la salud de las personas. Los 

investigadores y los patrocinadores deben asegurar que los estudios 

propuestos en seres humanos estén de acuerdo con “principios 

científicos generalmente aceptados” y se basen en conocimiento 

adecuado de la literatura científica pertinente. Pienso que el uso de 

una inferencia estadística objetiva como la que explico en este libro 

es la más ética entre las otras posibles inferencias subjetivas, que 

están más difundidas y aceptadas en la práctica pero sin base o 

fundamento ético que las avale. 

La Pauta 2 dice que todas las propuestas para realizar 

investigaciones en seres humanos deben ser sometidas a uno o más 

comités de evaluación científica y de evaluación ética para 

examinar su mérito científico y aceptabilidad ética. En la 

evaluación se han de considerar las fuentes fiables de conocimiento 

en relación, no reduciéndolas a consideraciones teóricas, 

estadísticas o biológicas exclusivamente que podrían tener un 

efecto limitante y reductor para la curación de la enfermedad, sino 

que cualquier otra fuente de conocimiento científico o de 

experiencia sobre la materia a investigar debería tenerse en cuenta 

para un mejor análisis y perfilar los mejores tratamientos a 

comparar. Algunos ejemplos de este tipo de consideraciones son 

los recientes artículos Editorial (2014) en la revista científica 

Nature, y de Reardon (2014). 

En la Pauta 3 se regula que los comités, tanto del país del 

patrocinador como en el país anfitrión, tienen la responsabilidad de 

realizar una evaluación científica y una ética, estando también 

facultados para rechazar propuestas de investigación que no 
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cumplan con sus estándares científicos o éticos. Lo razonable es 

que si los métodos estadísticos inferenciales son subjetivos, éstos 

pueden ser éticamente relegados o rechazados respecto a los 

métodos estadísticos inferenciales objetivos. 

Para las investigaciones con placebo los métodos de muestreo 

de respuesta aleatorizada son los indicados en Chaudhuri (2011), 

Ruiz Espejo y Singh (2003), y Warner (1965). Estos tienen menor 

eficiencia que los métodos de muestreo tradicionales de respuesta 

directa, pero salvaguardan el anonimato de a qué pregunta se 

responde, es decir, la respuesta recogida como dato no sabe el 

encuestador o el investigador a qué tratamiento responde de una 

forma directa, con lo que se preserva la intimidad del encuestado o 

del voluntario observado. Aunque en el análisis posterior sí pueda 

extraer conclusiones inferenciales a partir de la respuesta 

aleatorizada obtenida de los sujetos de investigación. 

La Pauta 12 trata de la distribución equitativa de cargas y 

beneficios en la selección de grupos de sujetos en la investigación, 

es decir que los grupos o comunidades invitados a participar en una 

investigación debieran ser seleccionados de tal forma que las 

cargas y beneficios del estudio se distribuyeran equitativamente, y 

que debe justificarse la exclusión de grupos o comunidades que 

pudieran beneficiarse al participar en el estudio. Desde un punto de 

vista bioestadístico, la exclusión de un grupo o comunidad hace 

que la población estadística sobre la que inferir se reduzca y que, 

como consecuencia, los parámetros sobre los que inferir han 

cambiado. Esto tiene como consecuencia, como ya hemos 

indicado, que los estimadores insesgados para la población 

investigada de hecho, sean sesgados para la población objetiva de 

todos los sujetos pacientes. Es decir, en la práctica se da el efecto 

de no respuesta y ésta deber ser estadísticamente tratada para 

concluir resultados objetivos en poblaciones finitas. A este 
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respecto insistimos en que dejar no representado en la población a 

investigar parte de los sujetos o pacientes, hace que los estimadores 

insesgados para las funciones paramétricas de la población 

observable, o tenida en cuenta para la selección de la muestra, sean 

sesgados para las mismas funciones paramétricas de la verdadera 

población finita objetivo de todos los pacientes sobre la que se 

pretende inferir. La solución a este problema ya ha sido comentada 

en los casos anteriores en los que nos hemos referido. 

La Pauta 19 trata del derecho a tratamiento y compensación 

de sujetos perjudicados, en el primer caso se indica que tengan 

derecho a tratamiento médico gratuito de calidad por tal perjuicio, 

y a un apoyo económico o de otro tipo que pueda compensarlos 

equitativamente por cualquier menoscabo, discapacidad o 

minusvalía resultante, así como en caso de muerte. 

 

9.5 Conclusiones 

La investigación del conocimiento de las realidades sociales 

concretas es una necesidad imprescindible para la actuación 

coordinada en busca del efectivo bienestar social de los ciudadanos 

de una sociedad. 

Por ello, los investigadores estadísticos pueden aportar 

soluciones eficaces en este proceso para la búsqueda de la verdad 

con métodos objetivos que conecten las realidades sociales con los 

medios lógicos adecuados para este fin. 

La ciencia y la técnica, y en especial la inferencia estadística 

objetiva, son recursos valiosos cuando son puestos al servicio del 

hombre, promoviendo su desarrollo integral en beneficio de todos 

los ciudadanos que responsablemente aportan lo que está a su 

alcance con honradez. 
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La ciencia por sí sola no indica el sentido de la existencia y 

del progreso humano, especialmente cuando ésta no está ordenada 

al hombre y a sus valores morales como sentido de su finalidad, al 

mismo tiempo que somos conscientes de las limitaciones de toda 

aportación científica. 

Difícilmente la ciencia y las tecnologías serán capaces de 

llegar a resolver los problemas de siempre o más acuciantes de la 

humanidad como son sus limitaciones básicas en la vida, aunque 

puedan hacerlos más tolerables, compatibles o con una mayor 

calidad de vida durante más tiempo y para muchos hombres, 

deseablemente su totalidad. 

Los métodos estadísticos objetivos de investigación del 

bienestar social tienen que jugar un papel muy importante en esta 

labor. Nuestra aportación más importante en este sentido se 

concreta en discernir técnicas y metodologías científicas 

estadísticas más acertadas a estos fines. 

La estadística descriptiva objetiva y los censos son los 

mejores métodos posibles para la realización de estudios sociales 

basados en hechos reales, desde el punto de vista de recabar 

información completa sobre las realidades a conocer de una 

determinada población finita para ser realistas, ya sea humana o de 

cualquier otro carácter de interés social. 

Pero la información exhaustiva puede ser de un coste tan 

elevado que los estudios por muestreo de dichas poblaciones finitas 

proporcionen informaciones veraces y eficaces para los fines 

propuestos a un coste razonable, para el aumento de la calidad de 

los datos recogidos y de su tratamiento estadístico, y de la 

limitación del esfuerzo y trabajo necesario para disponer de 

información fiable suficiente, así como de la reducción del tiempo 

necesario para elaborar estas informaciones estadísticas con 
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respecto al que llevarían los censos de observación exhaustiva en 

toda la población finita. 

Si a esto unimos la posibilidad de dar medidas del error en las 

estimaciones como consecuencia del uso de la aleatoriedad 

probabilística para la selección de la muestra, podemos concluir 

que los métodos de muestreo de selección probabilística de 

poblaciones finitas fijadas, aun no siendo infalibles, pueden ser de 

gran ayuda por sus buenas aproximaciones de sus estimadores a los 

parámetros poblacionales con el nivel de confianza mínimo 

aproximado deseado. 

La estadística descriptiva, los censos informatizados y los 

muestreos con fines sociales y de conocimiento descriptivo de las 

sociedades tienen un valor relevante a escala local, regional y 

nacional en muchos países y a escalas mayores. También es un 

deseable objetivo a alcanzar en el futuro la consecución de 

informaciones estadísticas del estado del bienestar a nivel 

planetario. 

Los métodos de muestreo de poblaciones finitas fijas son los 

métodos de inferencia más objetivos porque requieren el menor 

número de hipótesis sin posible comprobación y, las hipótesis que 

hace son realistas, de hecho o comprobables (Ruiz Espejo, 2013c). 

Además conserva una gran flexibilidad por sus presupuestos 

económicos reducidos y su rapidez en la puesta en práctica de la 

recogida de datos, a diferencia de los censos. 

Otros métodos de inferencia requieren aportaciones 

subjetivas en los modelos y no identifican las unidades de la 

población lo que hace imposible garantizar un control de la 

selección probabilística de acuerdo al diseño de muestreo o 

incorporan elementos subjetivos en el análisis que puede hacer que 

pierda validez en sus conclusiones si queremos que éstas sean 

objetivas. 
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La inferencia estadística objetiva que hemos descrito se 

orienta desde un principio a recabar información sobre hechos 

determinados de las unidades de una población finita con la mayor 

coherencia. Otros métodos de inferencia pueden contener mayor 

complejidad lógica pero no están adaptados al fin que buscamos, 

que es información objetivamente obtenida y veraz. 

En estos métodos objetivos cabe la posibilidad de 

salvaguardar la confidencialidad o privacidad de las respuestas de 

los encuestados con métodos de respuesta aleatorizada, debida a 

Warner (1965) y analizados por Ruiz Espejo y Singh (2003). 

También admiten el uso de información auxiliar objetiva de las 

unidades de la población finita (Ruiz Espejo, 1998c). 

La inferencia estadística objetiva requiere menor número de 

hipótesis, y éstas son más asumibles con las condiciones de hecho 

desde el punto de vista de su aplicabilidad. Por ello, los resultados 

que se deducen son más objetivos. 

La existencia del concepto de probabilidad en el mundo real 

es algo discutido. Pero aunque no exista, su concepto puede 

simularse informáticamente para poder seleccionar de modo 

controlado según las características del diseño muestral como si tal 

probabilidad existiera, deduciéndose las propiedades matemáticas 

de la inferencia estadística objetiva. 

Algo diferente ocurre cuando se supone que la naturaleza de 

los datos presentados y recogidos para su análisis estadístico son 

de tipo probabilístico, lo que supone afirmar que la naturaleza se 

comporta como las leyes de probabilidad de las hipótesis de tales 

métodos de inferencia estadística. Esto supone que la naturaleza se 

comportaría como han pensado los matemáticos al avanzar en sus 

estudios teóricos, algo muy aventurado de reconocer y que escapa 

a las posibilidades limitadas de los hombres hoy por hoy y de sus 
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conocimientos seguros. No existe garantía de la existencia del 

modelo probabilístico generador de los datos en la misma 

naturaleza, ni tampoco de su conocimiento explícito de tal modelo. 

De aquí que algunos autores hayan estudiado métodos 

estadísticos robustos tratando de suplir esas carencias de los 

métodos de inferencia basado en modelos subjetivos, cuando estos 

modelos no tienen por qué ser verdaderos. Pero siguen adoleciendo 

de que las propiedades de la aleatorización que generan los datos 

son supuestas y no objetivas o controladas (Ruiz Espejo, 1990). 

Debemos reconocer que en la puesta en práctica de la 

inferencia estadística objetiva pueden presentarse situaciones no 

previstas en la teoría. Así, si un censo no contiene alguna o algunas 

unidades de la población, el marco censal como listado de las 

unidades de la población no es un perfecto punto de partida para 

seleccionar la muestra. Pero su influencia, si no se presenta un 

número apreciable de casos de omisión o multiplicidad, por lo 

general es mínima a efectos prácticos siguiendo los protocolos de 

registro tradicionales. 

Conclusiones finales: 

1. La globalización exige una nueva sociedad fundada sobre la 

ciudadanía global que desemboque en una sociedad a escala 

mundial, y una de cuyas bases sea la mejora continua del 

bienestar social. 

2. Esta necesaria sociedad del bienestar debe marcar políticas y 

directrices basadas en hechos ciertos y reales, lo que exige la 

adopción de métodos estadísticos y de inferencia objetivos y 

fiables que reflejen e instituyan la realidad social en la que 

actuar con medidas concretas. 

3. Aunque ciertamente definimos y comprendemos el 

significado del concepto de probabilidad, no hay pruebas de 

que exista en el mundo natural. En concreto, es prácticamente 
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imposible reproducir con exactitud las mismas condiciones 

de experimentación para observar datos de un mismo 

fenómeno. Esto es especialmente cierto en fenómenos de tipo 

social y del bienestar alcanzado por una población humana 

finita o de grupos humanos (en un instante dado) que están en 

constante evolución y desarrollo. 

4. Si la probabilidad no existiera, solo los datos censales y la 

estadística descriptiva permitirían conocer los hechos 

observados de una realidad social. 

5. Aunque la probabilidad no existiera, es posible reproducir 

con ordenador las mismas características del concepto 

matemático de la probabilidad, en cuanto a la generación de 

muestras aleatorias en condiciones predeterminadas 

probabilísticas para la selección de unidades de la población 

finita. Haciendo uso de las propiedades de un estimador, 

podemos inferir sobre parámetros o funciones paramétricas 

poblacionales de modo objetivo. 

6. Todos los demás métodos estadísticos de inferencia 

desarrollados en la actualidad, suponen no solo la existencia 

de la probabilidad en la realidad de los hechos naturales (algo 

no demostrado), sino que los datos observados responden a 

algún modelo subjetivo de probabilidad que el investigador 

supone que es el que explica dichos hechos, pero sin 

capacidad de aportar una demostración que compruebe esto. 

7. Los métodos estadísticos de inferencia restantes basados en 

el concepto de probabilidad como inherente a los hechos 

naturales no dejan de ser meras aportaciones teóricas e 

imaginarias en cuanto a su aplicación a datos naturales. Entre 

estas incluimos a la inferencia paramétrica clásica, la 

bayesiana, la no paramétrica, la de distribución libre, la 

basada en modelos de superpoblación, etc. de los que no 
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negamos su aportación lógica pero sí dudamos seriamente de 

su aportación objetiva en la práctica. 

8. En muchos casos las hipótesis poblacionales contradicen los 

hechos conocidos; por ejemplo, suponer que el tamaño de la 

población es infinito cuando sabemos que es finito, o bien que 

las respuestas a una pregunta pueden ser varias cuando solo 

una es la respuesta verdadera. De hecho, de una mentira como 

base de un argumento poca verdad se puede deducir. 

9. El conocimiento estadístico de las realidades sociales 

requiere el uso de métodos objetivos y de medios adecuados 

a sus fines respetando la moralidad y la ética en todo el 

proceso. 

Por todo ello, sugiero la necesidad y conveniencia de incluir 

en la docencia e investigación universitaria métodos de inferencia 

en poblaciones finitas fijadas, y el esfuerzo por aplicar estos 

métodos en los organismos internacionales como la ONU, la 

OCDE, y en la Unión Europea y España. 

Consideramos también necesario no abandonar el estudio de 

la estadística descriptiva y de la inferencia estadística objetiva en 

los estudios universitarios en todos los niveles de educación. 

La alternativa sería equiparar y dar la misma dignidad a la 

“ciencia verdadera” que a la “pseudociencia falsa” o posiblemente 

falsa, ésta última basada en sofismas, premisas inciertas o falsas, 

argumentos inválidos aunque estén revestidos de apariencias 

engañosas como son las falacias, etc. 

Este libro ofrece razonamientos válidos que refutan tesis y 

muchos razonamientos inválidos en la ciencia práctica, y deja al 

descubierto las falacias presentes en algunos argumentos, así como 

las muchas premisas inciertas o falsas en que se basan la mayor 

parte de las teorías inferenciales estadísticas. Entre ellas están los 

“sofismas a priori” porque el defecto está al comienzo, es decir, 
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antes de empezar a razonar; y también los “sofismas de prejuicio” 

que parten de la aseveración de algo que se da por cierto sin que 

esté comprobado ni demostrado. Son los casos de la inferencia 

bayesiana y de la inferencia clásica, paramétrica, no paramétrica, 

semiparamétrica, superpoblacional, etc. 

Dado que las premisas son el fundamento de la conclusión, el 

sofisma de falsa premisa ha recibido asimismo el nombre de “error 

fundamental”. Algunos autores lo han denominado modernamente 

como “sofisma de simple inspección”, porque para impugnarlos no 

es necesario revisar los argumentos, los razonamientos o las 

inferencias, sino que bastaría observar las premisas y detectar la 

falsedad de una de ellas; pero dicha denominación es inadecuada 

porque muchas veces la falsedad de la premisa no puede 

descubrirse mediante la mera inspección. 

A veces se pretende demostrar una conclusión en base a la 

opinión de una o varias personas cualificadas sobre el asunto que 

se discute. Se denomina “autoridad” a una persona o conjunto de 

personas cualificadas para el conocimiento acerca de algo. Un tipo 

de sofisma consiste en tomar una “proposición como verdadera en 

sí misma”, prescindiendo de toda prueba, por el solo hecho de que 

fue afirmada por una “autoridad”. El “argumento de autoridad” es 

legítimo para apoyar conclusiones probables, pero es una falacia 

cuando se pretende que sea suficiente para obtener una conclusión 

rigurosamente demostrada. Así, si sabemos que una proposición 

fue sostenida por Aristóteles, San Agustín, Santo Tomás de 

Aquino, Leibnitz, o cualquiera de los grandes pensadores, podemos 

considerarla como probablemente verdadera, pero para tener la 

certeza de su verdad necesitamos una demostración suficiente. La 

cualificación de una autoridad en unas competencias concretas, no 

garantizan que se sea competente en cualquier otro tema en el que 

pueda hacer afirmaciones al margen de su especialidad de 
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conocimiento. Suele suceder que la autoridad científica ganada por 

una persona en determinada disciplina, se traslade ilegítimamente 

a otros ámbitos del conocimiento en los que no ha acreditado 

conocimientos reconocidos. 

Creo que de nada sirve decir que la población es de un modo 

determinado supuesto, si en la práctica no tenemos un listado de las 

unidades de la población o no pudiéramos acceder a observar el 

dato en la unidad seleccionada en la muestra probabilística. Porque 

suponer que la naturaleza es aleatoria y que trabaja 

incondicionalmente para nosotros proporcionándonos la muestra 

directamente sin hacer nosotros nada por ello sino solo suponer 

unas hipótesis de cómo es seleccionada, resulta ingenuo confiar 

que nuestras hipótesis son respetadas por la naturaleza sin que 

nosotros ni nadie pueda comprobar que es así en la práctica de un 

estudio inferencial con datos del mundo real. Este punto debe hacer 

reflexionar a los teóricos de la inferencia estadística y 

consecuentemente descarten “modelos de supuestas propiedades”, 

que nadie puede comprobar que éstas se cumplen en la práctica y 

en muchos casos son impracticables por las exigencias de las 

hipótesis supuestas, pero que son necesarias que se cumplan teórica 

y prácticamente para poder afirmar algo con dichos modelos 

supuestos y dichos datos seleccionados de la realidad física u 

observacional de donde se obtienen de acuerdo o no a dichas reglas 

lógicas. 

Todos estos razonamientos tienen su sentido dentro de un 

marco legal que dispone la colaboración de las personas o 

ciudadanos, de los hogares, de las empresas y sociedades, etc. con 

el estado de una nación y con los estudios por muestreo basados en 

sus censos o bases de datos. En este sentido se elaboran leyes que 

obligan a los ciudadanos o a otros grupos sociales a colaborar en la 

elaboración de los censos o en encuestas oficiales. A estas 

encuestas van dirigidas las reflexiones de este libro. 
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Existen otro tipo de encuestas en las que los participantes 

colaboran voluntariamente tras ser informados del interés de la 

misma, por lo que su selección en la muestra no es aleatoria sino 

por adhesión particular a los fines e interés del estudio. A estos 

estudios los llamamos “muestreos de participación voluntaria”. 

Tienen su interés por ejemplo en estudios sociológicos, 

psicológicos, etc. En ellos el encuestado es el que elige participar 

o no en el estudio y por tanto la inferencia estadística tiene poco 

que aportar en este caso, pero sí la estadística descriptiva. 

En otros casos el estudio por muestreo es por selección 

opinática. En estos la muestra es seleccionada por el investigador 

que realiza el estudio, según criterios que tienen unos argumentos 

de representatividad o de tipo técnico que lo hacen viable. 

Estos tipos de estudio por muestreo no siempre son aleatorios 

de modo probabilístico, por lo que en estos casos tanto en los 

estudios de participación voluntaria de los encuestados, en los de 

selección opinática del investigador, como en aquellos en que se 

produzcan ambos hechos de “voluntariedad de encuestados” y de 

“selección por opinión del investigador” no entran dentro de los 

estudios de inferencia estadística objetiva al que nos hemos 

referido en este libro salvo que la selección de la muestra pueda 

realizarse por métodos de muestreo probabilístico sobre un marco 

o censo de todas las unidades identificadas, aunque se respete su 

anonimato, de la población finita sobre la que se desea realizar la 

inferencia estadística. 

Como primer resultado, hemos de advertir que el uso de la 

inferencia clásica y de la inferencia bayesiana, y otras basadas en 

modelos superpoblacionales entre otros métodos estadísticos, no 

son una vía segura ni objetiva para realizar inferencias basadas en 
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hechos y fundamentos ciertos, pues a la variabilidad propia de la 

inferencia hay que añadir otras dos fuentes de error en sus análisis: 

1. Tener que suponer como cierto lo que no es o puede no ser la 

población (por ejemplo, asumir como hipótesis la normalidad 

de los datos observados en la experimentación, que es un 

reduccionismo). Una hipótesis supuesta no puede 

considerarse como un hecho si aquélla no se demuestra y no 

se prueba su veracidad. 

2. Descontrol en la selección de la muestra aleatoria, ya que al 

no identificar numeradamente a las unidades de la población, 

la accesibilidad a las mismas queda trastocada y/o 

parcialmente obstaculizada, favoreciendo la mayor 

representatividad de unas unidades sobre otras o de unas 

observaciones sobre otras pero sin tenerlo en consideración 

en el análisis estadístico clásico, bayesiano, no paramétrico, 

o superpoblacional de esos datos. Las hipótesis del diseño 

muestral deben demostrarse en la práctica, no solo suponerlas 

y tratarlas como hechos que no son. No se puede confundir 

una “hipótesis supuesta” con un “hecho verdadero”. 

Por otro lado, sí es objetivo partir de la base cierta de que la 

población humana en estudio en un instante dado es finita, y su 

tamaño poblacional 𝑁 (el número de personas a las que se dirige el 

estudio) puede ser conocido de antemano (Ruiz Espejo, 2013c). 

También es un elemento de análisis objetivo que las personas o 

sujetos que forman parte de la población finita estén identificados 

y tengamos el medio de acceder a ellos, ya sea por medio de la 

consulta médica o cuando su colaboración sea requerida tras 

manifestar su consentimiento informado a participar en el estudio 

experimental. Ambos aspectos son considerados en el estudio de la 

inferencia en poblaciones finitas con datos fijos observados, pues 

en casos de discrepancias en las observaciones estas son 
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consecuencia de fallos en la medición del dato o en respuestas 

defectuosas, maliciosas, o engañosas en el sujeto. 

Al realizar inferencias objetivas en las que se presenta una 

muestra de sujetos representativa de una población de interés (por 

ejemplo, todos los pacientes de una enfermedad en el mundo en 

cierta fecha concreta), si queremos observar a todos los 

seleccionados en una muestra, por el consentimiento informado la 

muestra inicialmente se reducirá a voluntarios de entre los 

seleccionados. Pero para que el estudio tenga validez objetiva es 

necesario obtener una muestra de entre los no voluntarios en el 

primer intento de búsqueda de consentimiento informado. Así, 

obteniendo la colaboración de una submuestra de entre los no 

voluntarios en un primer intento, pero que sean voluntarios en un 

segundo intento, podemos concluir el estudio con estimaciones 

insesgadas de la función paramétrica de eficacia “media 

poblacional” de la variable de interés, y además tenemos la 

estimación insesgada de la varianza de la anterior estimación 

insesgada, lo que nos permitirá obtener intervalos de confianza 

estimados de la media poblacional, y como consecuencia contrastar 

hipótesis sobre dicha media poblacional. Los trabajos iniciales en 

los que se presentan estas posibles mejoras son los de Ruiz Espejo 

(2011a, 2013d, 2015b) y de Thompson (2012). 

De este modo se obtendrían conclusiones válidas para toda la 

población de pacientes o sujetos, no limitándonos exclusivamente 

al estrato o subpoblación de voluntarios en el primer intento (lo que 

conllevaría sesgos de estimación, y la imposibilidad práctica de 

obtener conclusiones objetivas sobre toda la población de los 

posibles pacientes), que es como hasta ahora se había regulado su 

participación en los estudios experimentales. Del modo que hemos 

sugerido, se evitaría la hipótesis subyacente en la inferencia clásica, 

bayesiana o superpoblacional (y otras muchas consideradas 
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teóricamente, como la inferencia no paramétrica, semiparamétrica, 

etc.) de que la media obtenida en el estrato de voluntarios es la 

misma que en el estrato de no voluntarios, hipótesis que reduce las 

conclusiones del estudio a los voluntarios. Y, en cualquier caso, 

debería de demostrarse que tal hipótesis de igualdad de medias en 

ambos estratos fuera cierta para que los estudios sean algo más 

objetivos con dichos tipos de inferencia, cosa que no se hace con la 

normativa actual, y así las conclusiones de la investigación no se 

podrían afirmar de toda la población compuesta por los voluntarios 

y los no voluntarios. Así pues, serían estudios teóricos bajo 

supuestas hipótesis no comprobadas. 

La confidencialidad de los sujetos que participan en la 

investigación puede conseguirse identificando al sujeto que 

participa con un número o clave que conste en su historia clínica, 

y ésta esté desprovista de cualquier otra identificación que revelara 

la persona concreta de la que se trata. Esta es una hipótesis de 

trabajo para la inferencia en poblaciones finitas, como se presenta 

en Ruiz Espejo (2013c). Solo el médico tiene acceso a aportar los 

datos de su paciente, a quien conoce personalmente en consulta o 

en seguimiento, pero su historia médica sería confidencial y 

anónima salvo en el identificador del paciente que sería una clave 

de acceso a su historia clínica y a sus datos observados e 

información auxiliar. 

Como conclusión, el conocimiento científico necesario para 

descubrir nuevos medicamentos o terapias requeriría, desde un 

punto de vista bioestadístico, la colaboración de sujetos voluntarios 

para el estudio experimental y la colaboración de otros sujetos no 

voluntarios inicialmente de entre los que fueron seleccionados 

aleatoria y probabilísticamente entre todos los posibles sujetos de 

la muestra inicial, y que no se mostraron dispuestos a colaborar 

para el fin de conocer los efectos de un nuevo tratamiento 

terapéutico o médico para cierta enfermedad concreta o para la 
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prevención de la misma. Pero que después acceden a colaborar 

como voluntarios en condiciones más ventajosas en una 

submuestra de la muestra de pacientes no voluntarios en el primer 

intento de obtener su consentimiento informado. 

Se presenta por tanto un dilema: desde un punto de vista 

respetuoso de la dignidad de los sujetos humanos, es necesario el 

consentimiento informado de éstos; pero en el caso de que hubiera 

no consentimiento por parte de los sujetos, no podrían garantizarse 

estadísticamente las propiedades del nuevo tratamiento para la 

totalidad de los pacientes salvo que un número de éstos (de tamaño 

muestral mayor o igual a dos) seleccionados aleatoria y 

probabilísticamente colaboren en el estudio en un segundo intento 

de obtener su consentimiento informado para participar en el 

estudio experimental. 

Una alternativa es suponer que los sujetos voluntarios y los 

no voluntarios son equivalentes o que sus parámetros que miden la 

eficacia del tratamiento no varían de uno a otro estrato o dominio, 

algo que en teoría general sería falso. Pero para garantizar 

estadísticamente la efectividad del tratamiento esta suposición 

debe ser demostrada y no solo supuesta. Demostrarlo sería más 

complicado (en realidad requeriría realizar un censo de todos los 

sujetos y todos deberían ser voluntarios, lo que sería una 

contradicción con que hay algunos que no dan su consentimiento) 

que trabajar con la hipótesis liberadora de que ambos estratos 

podrían tener diferentes medias y varianzas, y entonces para 

concluir resultados para toda la población finita de sujetos bastaría 

seleccionar una muestra aleatoria y probabilística de cada uno de 

los estratos (el de los voluntarios y el de los no voluntarios) 

independientemente en cada uno de ellos. De este modo aunque las 

funciones paramétricas (medias poblacionales de cada dominio) 

indicadoras de la eficacia del tratamiento fueran iguales o no lo 
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fueran en todos los casos, los métodos estadísticos que hemos 

sugerido para la no respuesta permiten extraer conclusiones para 

toda la población de sujetos, no solo para los voluntarios como 

ocurriría en el caso general en que no considerásemos la no 

respuesta o no consentimiento iniciales como conformadores del 

estudio experimental. 

En efecto, llamando a la media muestral de voluntarios 𝑦̅1,𝜈, 

donde 𝜈  es el número de voluntarios a partir de la muestra 

irrestricta aleatoria de tamaño 𝑛  obtenida de toda la población 

finita de tamaño 𝑁, su esperanza matemática sería 

𝐸(𝑦̅1,𝜈) = 𝐸[𝐸(𝑦̅1,𝜈|𝜈)] = ∑𝐸(𝑦̅1,𝜈|𝜈)𝑝(𝜈)

𝑛

𝜈=0

. 

 Si el tamaño muestral 𝑛 (1 ≤ 𝑛 ≤ 𝑁) es menor o igual al 

tamaño del estrato de no respuesta o de no voluntarios, que 

llamamos 𝑁2, es decir 𝑛 ≤ 𝑁2, como la probabilidad 𝑝(𝜈 = 0) >

0 pues se puede dar el caso en que la muestra irrestricta aleatoria 

esté toda en el segundo estrato, entonces la esperanza matemática 

𝐸(𝑦̅1,𝜈|𝜈 = 0) no existe al no estar definida dicha media muestral 

pues la muestra es de cero unidades, y por tanto la esperanza 

matemática 𝐸(𝑦̅1,𝜈) no existe. 

 Pero si el tamaño muestral 𝑛 > 𝑁2, entonces el número de 

voluntarios en la muestra recorre los valores siguientes 𝜈 = 𝑛 −

𝑁2, 𝑛 − 𝑁2 + 1,… ,mín{𝑛, 𝑁1}, siendo 𝑁1 el tamaño del estrato de 

voluntarios de la población finita, es decir 𝑁1 = 𝑁 − 𝑁2. Y, en este 

caso, 𝑝(𝜈 = 0) = 0 pues siempre habrá voluntarios en la muestra 

irrestricta aleatoria, y como consecuencia para todos los valores de 

𝜈  de dicho recorrido la esperanza matemática 𝐸(𝑦̅1,𝜈|𝜈) = 𝑦̅1 , 

siendo 𝑦̅1 la media del estrato de voluntarios en la población, que 

puede ser distinta de la media poblacional 𝑦̅. Así, en este caso, 
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deducimos que la esperanza matemática incondicional es también 

𝐸(𝑦̅1,𝜈) = 𝑦̅1. Pero, en general, 𝑦̅1 ≠ 𝑦̅. 

Aunque estas metodologías propuestas para tratar la no 

respuesta surgieron a nivel teórico, de “Teoría de Muestras” para 

ser aplicadas a datos recogidos en “Encuestas por Muestreo”, 

hemos visto y así hemos explicado su utilidad como ciencia 

objetiva para tratar éticamente los datos estadísticos recogidos de 

acuerdo a un diseño o un esquema muestral en estudios 

experimentales, ya sean éstos observacionales (recogidos visual, 

auditiva, táctilmente…) o terapéuticos (como consejos de un padre, 

de un hermano o de un amigo, tratamientos psicológicos, etc. e 

incluso tratamientos médicos tradicionales o de terapias nuevas en 

fase de estudio). 

En conclusión, es necesaria la colaboración de sujetos que 

inicialmente no consienten la experimentación en sí mismos, y que 

sean voluntarios a su vez en un segundo intento entre los elegidos 

aleatoriamente y probabilísticamente, para inferir conclusiones 

objetivas válidas para toda la población de sujetos de la eficacia del 

tratamiento. Esta conclusión no colisiona con el principio de 

autonomía y del respeto a la dignidad de los sujetos que no pueden 

ser obligados a consentir ser objeto de experimentación si no es 

informada, libre y voluntariamente, ya que esta dignidad de la 

persona es un principio superior al de querer obtener conocimiento 

científico y por tanto una verdad a cualquier coste, como el de no 

respetar la libertad de las seres humanos que no estuviesen 

dispuestos a asumir los riesgos de la experimentación informada en 

sí mismos. Los fines de la ciencia y el conocimiento no pueden 

imponerse a la voluntad de las personas, aunque esta voluntad 

conlleve que los tratamientos no puedan ser estudiados 

objetivamente según la ciencia estadística, y como consecuencia no 
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puedan ser estudiados con validez para toda la población de sujetos 

o pacientes. 

Como, por otro lado, se regula que no están permitidos 

incentivos a la participación voluntaria en los estudios 

experimentales aparte de los ya considerados en justicia social, 

cabe preguntarse si considerar que el efecto de poder estudiar de 

modo objetivo el efecto de un tratamiento en toda la población de 

sujetos, no es suficiente razón para no incentivar con justicia social 

a la participación en el estudio de algunos de los no voluntarios 

iniciales. Pues entendemos que la objetividad científica que se 

obtuviera sería válida para toda la población de pacientes o de 

sujetos desde las fases dos y tres, por lo que pensamos que debe ser 

valorado también en justicia social la colaboración posterior de no 

voluntarios iniciales en estas fases con otras condiciones de 

participación revisadas al alza. Pues si fueron no voluntarios con 

las compensaciones que se propusieron y que aceptaron los 

voluntarios iniciales pero otros rechazaron, con esas mismas 

compensaciones raramente accederían a participar en el estudio en 

otra fase si no se mejoran claramente las compensaciones en un 

segundo intento de consentimiento informado. 

Una solución de compromiso a este dilema que sugerimos es 

proporcionar unas compensaciones responsables de acuerdo con 

los posibles daños como consecuencia de la participación en el 

estudio experimental (y no solo como contrato retribuido prefijado 

único “pase lo que pase”), que puede ir desde sufragar los gastos 

derivados de los desplazamientos y días laborales perdidos en el 

caso de no derivarse ningún efecto perjudicial en la salud del sujeto 

que participa, pasando por retribuciones gradualmente 

proporcionadas a los daños derivados o seguros médicos 

razonables por su contribución al estudio, hasta indemnizaciones 

y/o seguros médicos vitalicios y de otros tipos en casos de extremas 

consecuencias. Estas condiciones deben ser perfectamente 
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explicadas oralmente e informadas por escrito antes de obtener el 

consentimiento informado de los sujetos. También pueden ser 

mejoradas alguna o algunas de las cláusulas firmadas para los no 

voluntarios iniciales, para que puedan facilitar su participación en 

el estudio en un segundo intento si fueran seleccionados en la 

muestra de no voluntarios en el primer intento. 

Todo ello sin descuidar minimizar los riesgos de la 

experimentación en seres humanos como es preceptivo en 

cualquier estudio de este tipo, hasta hacer de tales riesgos 

prácticamente nulos o despreciables a altos niveles de confianza. 

Ciertamente, en la fase cuarta se puede obtener información 

de toda la población de pacientes sobre el medicamento en cuestión 

que trata de conocerse, pero sería un elemento de riesgo 

comercializar el medicamento sin experimentar entre los pacientes 

no voluntarios iniciales en las anteriores fases del estudio por las 

razones expuestas. 

 Por todo ello, no se trata de llegar a un consenso o acuerdo de 

subjetividades de o entre estadísticos, sino de apreciar sobre todo 

lo objetivo y lo cierto, por encima de lo que es opinable, subjetivo 

y posiblemente falso. La ética exige una ciencia objetiva y 

demostrada en sus premisas, planteamientos y argumentos, que 

garantice sin errores lo que afirma. 

 La ética también da prioridad a la dignidad de las personas, 

pacientes, voluntarios, etc. sobre cualquier avance de la ciencia en 

el conocimiento de esas personas. La caridad es una prioridad sobre 

la ciencia. La verdad es así por sí misma, y no es necesariamente 

producto de consenso ni de una mayoría. La dignidad humana 

exige sobreponer la caridad al avance de la ciencia, y anteponer la 

verdad objetiva a cualquier decisión colectiva o individual. 
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Cuando decimos que “no hay verdad sin caridad, ni caridad 

sin verdad” nos referimos a la verdad de la revelación católica. 

Llevar esta afirmación a una verdad del conocimiento de la ciencia 

en general y de las personas, no sería correcta sin caridad ante todo 

con las personas, pues no es lícito revelar las imperfecciones 

identificando al imperfecto, sin faltar a la caridad. Esta posible 

identificación queda entre el paciente y el médico. 

De acuerdo con la identificabilidad de las unidades de la 

población finita, sería posible una inferencia estadística objetiva. 

De acuerdo con el respeto a la voluntariedad de ser accesible una 

unidad personal seleccionada en la muestra de individuos o 

personas, tendríamos la solución inferencial que hemos estudiado 

del muestreo con no respuesta. Pero si las unidades seleccionadas 

en la submuestra del “estrato de no respuesta en el primer intento” 

no acceden todas a ser investigadas, entonces no sería posible, 

hasta lo que hemos visto, una inferencia estadística objetiva basada 

en la “estimación insesgada de la media poblacional”, y de un 

estimador insesgado de la varianza de tal estimación insesgada. La 

solución sería de nuevo submuestrear la submuestra del estrato de 

no respuesta en los dos primeros intentos, lo que parece de bastante 

complejidad. Pero pensar que en un tercer intento de obtener todas 

las respuestas (prefijadas en número), cuando ya ha habido no 

respuesta en dos intentos anteriores y se han presentado no 

voluntarios en dichas dos oportunidades previas, no resulta 

inteligente pensar que en una tercera oportunidad todos los 

muestreados sean finalmente voluntarios. Por este motivo, reiterar 

submuestras de no voluntarios recurrentes carece de sentido 

práctico, además de las molestias que ocasionarían a los propios 

encuestables o experimentables, y a los propios encuestadores o 

experimentadores. 

Otra alternativa posible es el uso de la estadística descriptiva 

objetiva de los voluntarios investigados, teniendo cuidado en que 
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los datos sean verdaderos como mejor medio que obtener muchos 

datos que puedan ser errados, evitando variables no definidas 

claramente o difusas y que puedan dar lugar a respuestas ambigüas 

o no únicas ante un mismo hecho observado. 

 El aspecto que no se puede olvidar es el debido respeto y el 

debido amor a los encuestados u observados. Su libre voluntad, 

para participar o no en el estudio, ha de ser tenida en cuenta. No 

basta con una supuesta buena intención del experimentador o del 

encuestador. Un buen fin, como sería el conocimiento más perfecto 

y verdadero de una enfermedad o de un nuevo tratamiento médico 

o el estudio sociológico de una actitud ante determinada cuestión 

de una población humana, no puede llevarse a cabo con medios 

malos que no respeten o no amen a las personas de las que se 

obtendría la información para tal fin. El fin bueno debe obtenerse 

con medios buenos, pues de otro modo se pervierte la pretendida 

bondad de la investigación por muestreo. Una cita bíblica que 

puede ayudar a entenderlo es Romanos 3,8. 

 De este modo, muchas investigaciones por muestreo pueden 

ser objetivas, pero en algunos casos requiere la libre colaboración 

de voluntarios, y esta libertad humana que no es predecible ni 

modelizable objetivamente puede impedir la objetividad estadística 

inferencial de las conclusiones de un estudio. 

 Por tanto, es posible una inferencia estadística objetiva 

cuando las unidades de la población finita están identificadas, 

aunque fueran personas anónimas, y todas las unidades a observar 

fueran accesibles en el caso de ser seleccionadas en la muestra. 

 En otros casos, como en el que se presenta no respuesta, hay 

métodos objetivos que podrían funcionar con mejores medios y 

recursos asistenciales, pero no queda garantizada esta objetividad 

inferencial debido a la libertad de las personas a ser observadas, al 
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poder faltar parte de la información que la muestra seleccionada 

probabilísticamente exigiría acceder teóricamente. 

 Hay métodos estadísticos que son objetivos tanto en el 

sustrato matemático como en la puesta en práctica de la 

metodología sobre el terreno. Nos referimos también a que 

substituir realidades objetivas por hipótesis ideales es cambiar 

ciencia objetiva por ideología. Pues una idea sin comprobación 

posible como causa del análisis estadístico da lugar a ideología y 

no precisamente a una ciencia objetiva. 

Inferencia clásica. Presupone un modelo poblacional que en 

muchos ejemplos no puede comprobarse en la práctica, por lo que 

puede ser o es ideología y no ciencia objetiva. En este caso la 

idealización consiste en sustituir la verdadera población que existe 

en el mundo real por la idea que el investigador pueda hacerse 

subjetivamente usando funciones matemáticas que supuestamente 

aproximan la realidad pero sin la posibilidad de comprobar 

fehacientemente su ajuste correcto a la realidad. 

Inferencia bayesiana. Introduce prejuicios como la llamada 

distribución a priori, para concluir estimaciones sesgadas, donde 

no las tendría la inferencia clásica. Ahora la ideología se introduce 

al sustituir un valor real de una población, que en principio puede 

ser desconocido, por una distribución subjetiva que representa la 

idea que tiene el investigador bayesiano del parámetro desconocido 

que pretende estimar. Es decir, el investigador sustituye una 

realidad concreta desconocida para él por una distribución ideal 

subjetiva y supuesta por él en el análisis inferencial. 

Estadística descriptiva. No está a salvo de posibles 

manipulaciones tampoco este tipo de estadística. Un ejemplo es, en 

el caso de un histograma, sustituir la media de la variable 

estadística en un intervalo por el punto medio del intervalo; de este 

modo, al promediar los puntos medios por las frecuencias relativas 
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de los intervalos, el valor medio de la variable estadística queda 

afectada por la idea de que el punto medio del intervalo representa 

a la media de la distribución en dicho intervalo. Lo correcto sería 

ponderar las medias parciales de la variable en cada intervalo por 

sus respectivas frecuencias relativas y al sumar todos estos 

productos obtendríamos sin error la media de la variable estadística 

completa. El idealismo, en este caso, consiste en sustituir la media 

parcial de la variable en el intervalo por el punto medio del 

intervalo, haciendo perder información y sesgando el valor del 

parámetro media de la variable estadística si quisiéramos 

reconstruir el valor medio ponderando las medias de cada intervalo 

por sus frecuencias relativas y sumándolas todas ellas. 

Otro ejemplo de idealismo es el que tiene lugar al usar la 

distribución normal en base al teorema central del límite. Si bien es 

cierto que la media aritmética de las observaciones obtenidas por 

muestreo aleatorio simple de una misma población con varianza 

finita, tiende a ser normal asintóticamente en distribución, no es 

menos cierto que la mayoría de aplicaciones de este teorema no 

comprueban en la práctica la hipótesis de partida que da validez al 

resultado, que la muestra sea en realidad una muestra aleatoria 

simple con reemplazamiento. Esto es observable en revistas de 

medicina basadas en datos de muestras al azar, pero no en muestras 

aleatorias simples, es decir, que en cada dato se recoge la variable 

de interés en un sujeto que es seleccionado independientemente con 

probabilidades iguales y con la misma distribución que la 

población de partida. Si no hay esta previa selección aleatoria 

simple, no puede hablarse después con garantía de que los datos 

elaborados sigan distribuciones aproximadamente normales, ji-

cuadrado, t de Student, F de Snedecor, etc. en base al teorema 

central del límite ya que no se respeta en la práctica una hipótesis 

fundamental del teorema. En realidad lo que se hace es predecir 
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que una muestra seleccionada al azar va a proporcionarnos una 

muestra como si fuera aleatoria simple, lo cual puede ser intuitivo 

pero no se prueba racionalmente. Si una intuición tuviese un valor 

aproximativo, entonces estaríamos aproximándonos intuitivamente 

a la aproximación asintótica dada por el teorema central del límite. 

Y en este proceso de doble aproximación hemos perdido el hilo 

conductor racional en aras de una practicidad que no puede 

asegurar científicamente lo que afirma al final. 

Muchas de estas idealizaciones se basan en ideas surgidas en 

el siglo XIX, en el que idealismo y el positivismo tuvieron gran 

aceptación (Izquierdo Urbina, 2015, p. 71), pero que dieron lugar 

a muchas ideologías científicas todavía en nuestros días, llenando 

pizarras y revistas científicas hasta la actualidad. 

En un problema de inferencia el objetivo no es decir la verdad 

de un parámetro desconocido, sino de estimar tal parámetro con un 

error que tratamos de minimizar atendiendo a las condiciones 

específicas del problema. Se puede hablar de la verdad de usar un 

estimador que es óptimo o que es admisible dentro de un conjunto 

de dichos estimadores, pero no cabe esperar saber la verdad del 

parámetro con una mera estimación del mismo basada en una 

muestra de datos solamente. Sí sabremos que hemos estimado bien 

en las condiciones concretas optimizando el estimador, por ejemplo 

exigiendo que sea “insesgado”, es decir, que el promedio de sus 

probables estimaciones coincida con el parámetro (o función 

paramétrica) que deseamos conocer mediante el método 

inferencial. En realidad la insesgación es un requisito totalmente 

justificado y deseable, que las posibles estimaciones tengan por 

promedio exactamente el valor verdadero que pretendemos 

estimar. La minimización del error consiste en conseguir la mínima 

dispersión de las posibles estimaciones proporcionadas por una 

estrategia muestral compuesta por un diseño de muestreo y un 

estimador concreto que pertenece a una clase de ellos. El diseño 
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muestral asigna la probabilidad de cada posible muestra y el 

estimador es una función que depende de los datos observados en 

las unidades de la muestra, y depende también de los 

identificadores de las unidades seleccionadas en la muestra. 

Estas son algunas de las cuestiones éticas además de las 

recientemente estudiadas por el autor y, más concretamente, en las 

planteadas en la bioestadística médica y en los estudios de salud 

pública. Queda de manifiesto que la estadística empleada en la 

mayoría de estudios médicos y de salud pública hasta fechas 

recientes adolecen de subjetivismo y se fundamentan en parte en el 

idealismo, por lo que distan de ser metodologías objetivas como 

sería deseable al tratar con seres humanos para no hacer falsos 

testimonios sobre el conjunto de pacientes o sobre los sujetos de 

los que se toman las observaciones o datos con fines estadísticos 

ya sean descriptivos o inferenciales. 

Dos citas bíblicas que prohíben esta manera de proceder son 

Éxodo 20, 16 y Deuteronomio 5, 20 (Editorial DDB, 1999), en 

ambos casos recogiendo la palabra de Yahvé, Dios Padre de los 

cristianos. También Jesús confirmó el mandamiento de no dirás 

falsos testimonios, por ejemplo en Mateo 15, 19 (Editorial DDB, 

1999). 

Repasamos a continuación algunos procedimientos que 

considero han aportado objetividad a la estadística, no solo como 

razonamientos válidos, sino sobre todo como aprovechables en la 

práctica sin excesivos costes. 

Lo que se pretende con un análisis estadístico objetivo es que 

lo que se afirma acerca de una metodología o de una estrategia de 

muestreo sea cierto, y no un cúmulo de aproximaciones en diversas 

fases o etapas a un método que desfigurarían las cualidades reales 
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de lo que realmente se hace con respecto a lo deseable teórica y 

objetivamente.  

Las razones de la objetividad en estadística han sido 

expuestas con detalle en este libro. En él indico que no basta con 

tener una teoría razonable sino que todo el proceso de teoría y 

puesta en práctica debe ser correcto y sin saltos en el vacío. Debo 

decir que la inferencia clásica y la inferencia bayesiana tienen 

lagunas en el razonamiento o en la práctica como para que 

pudiéramos considerarlas objetivas en muchos casos que se ponen 

como ejemplos de su potencial científico. Un ejemplo de estas 

lagunas es que la muestra no se suele seleccionar de acuerdo a un 

diseño muestral previamente definido. Un libro que explica con 

algún detalle esta forma de seleccionar la muestra es el de Mirás 

Amor (1985). 

También algunos métodos de tratamiento de los datos 

observados de una variable estadística en la estadística descriptiva 

adolecen de simplificaciones que no guardan o conservan todo el 

potencial informativo de los datos originales, en especial para los 

fines propuestos con el estudio estadístico. 

Algunos de los primeros resultados probados sobre la 

existencia de estimadores insesgados uniformemente de mínima 

varianza, y de estimadores uniformemente de mínimo error 

cuadrático medio, han sido tratados –en el contexto de poblaciones 

finitas en el modelo objetivo de población finita fijada– por Ruiz 

Espejo (1987c). 

Un ejemplo es el tratamiento objetivo de la no respuesta 

cuando en la muestra aparecen sujetos o unidades de las que no 

podemos obtener respuesta a pesar de haber sido seleccionadas en 

la muestra de acuerdo con un diseño muestral. Se han escrito libros 

y muchos artículos sobre el tratamiento de la no respuesta, pero 

desde los años 40 del siglo XX no se había resuelto el problema de 
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estimar sin sesgo la varianza del estimador insesgado para no 

respuesta propuesto por Hansen y Hurwitz (1946), y popularizado 

en el libro de Cochran (1977), de un modo objetivo y convincente. 

Este problema ha sido resuelto satisfactoriamente por Ruiz Espejo 

(2011, 2013d, 2013g, 2015b) y por Thompson (2012) bajo diversos 

esquemas o estrategias de muestreo. 

Otro problema que ha sido resuelto satisfactoriamente desde 

la perspectiva de la estadística objetiva es el problema de inferencia 

en muestreo posagrupado (Ruiz Espejo et al., 2006). También han 

sido caracterizados los diseños muestrales admisibles para el 

estimador Horvitz-Thompson por Ruiz Espejo (1987b). La 

optimalidad del muestreo aleatorio simple con reemplazamiento en 

la clase de todos los diseños ordenados posagrupados 

proporcionales al tamaño, y de tamaño fijo, para el estimador 

media muestral, ha sido probada por Ruiz Espejo (2008). 

Un problema teórico resuelto que tiene implicaciones en la 

inferencia clásica y también en la inferencia estadística objetiva es 

el de estimación insesgada óptima de los momentos poblacionales 

más importantes. La primera solución a este problema en los 

momentos centrales poblacionales de orden cuatro se debe a Ruiz 

Espejo et al. (2013, 2016) y a Ruiz Espejo (2015h). 

Otro problema sobre la protección de la intimidad en 

respuesta aleatorizada con distribución a priori objetiva, dada por 

el diseño muestral, ha sido estudiado por Ruiz Espejo y Singh 

(2003).  

Sobre estimación lineal óptima a partir de medias muestrales 

independientes o incorrelacionadas se han resuelto algunos 

problemas en Ruiz Espejo et al. (1995), y generalizados en Ruiz 

Espejo et al. (2001). 
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También hemos probado la admisibilidad de un estimador de 

regresión lineal corregido insesgado sobre el estimador de 

regresión lineal clásico, y justificamos la existencia de estimadores 

concretos de regresión multivariante insesgados (Ruiz Espejo, 

2016a, 2016c). Y en Ruiz Espejo (2015h) proporciono estimadores 

insesgados, así como estimadores insesgados de sus varianzas en 

algunos casos, a partir del estadístico media-de-razones, lo que son 

unas soluciones objetivas interesantes en el caso de disponer de una 

variable estadística altamente correlacionada con la variable de 

interés en estudio. 

Otro estimador insesgado de la “varianza del estimador 

insesgado” en muestreo sistemático de doble arranque, también de 

modo objetivo, ha sido proporcionado por Ruiz Espejo (2014b). Y 

en Ruiz Espejo (1997f) se prueba la unicidad de la estrategia de 

Zinger con varianza estimable insesgadamente. 

Otros estimadores insesgados con criterios objetivos han sido 

propuestos recientemente por Ruiz Espejo (2018b, 2018f, 2018j) 

ya sea para la media poblacional así como para la varianza. 

Lo que he pretendido hacer ver en este resumen es que no 

basta un racionalismo cualquiera en el estudio y en la investigación 

estadística, sino que también es necesaria una visión rica y 

completa de los matices que hacen que una investigación o una 

enseñanza sean realizables en la práctica. Sin perder de vista que 

los resultados han de exponerse de un modo correcto en el fondo, 

en la forma, en lo lógico y en lo práctico. Si además se hace todo 

esto amablemente, creo que se ha llegado a un estado de madurez 

en la ciencia estadística. 

Cualquier intuición o racionalismo reductivo de los 

problemas estadísticos que no superen todos estos elementos 

básicos de racionalidad, practicidad y de buen espíritu dejarían 

incompletas las aportaciones a la ciencia, aunque rellenen muchas 
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páginas con gran exposición de fórmulas o tablas complicadas, 

porque los argumentos no se sostendrían ante un examen 

mínimamente minucioso de su verdadera utilidad para el fin que se 

proponen. 

Como primera cosecuencia, se puede llegar a afirmar que una 

gran parte de investigaciones estadísticas, publicadas incluso en 

revistas con factor de impacto estadístico ampliamente reconocido, 

no alcanzan algunos de los estándares que hemos sugerido en este 

artículo de exposición para tratar los datos estadísticamente en su 

descripción o para fines inferenciales. 

Como segunda consecuencia, si se pretende alcanzar una 

educación y una investigación que pueda llamarse ciencia a todas 

luces, es necesario aunar esfuerzos para proporcionar materiales 

didácticos en estadística menos idealistas, así como promocionar a 

editores de publicaciones de ciencia que tengan un currículum 

investigador acorde con los argumentos que he expuesto. Pero 

mientras que los motivos editoriales se orienten más con una visión 

de negocio que de integridad en la ciencia dudo que llegue a verse 

una estadística de calidad que podamos llamar ciencia y no meras 

ideas sueltas, sin conexión real y racional entre lo que 

pretendidamente afirman y lo que realmente se ha hecho al hacer 

tal afirmación; es decir, un fraude científico en algunos o en 

muchos casos. 

Otra fuente de información son las encuestas. Hay muchas 

teorías matemáticas y estadísticas que darían soporte científico a 

las investigaciones por encuestas realizadas en la sociedad, pero 

para un científico es claro que para que cualquiera de estas teorías 

puedan dar algún fruto de veracidad los datos recogidos han de ser 

verdaderos y ciertos, al menos en la fase confirmatoria final. Dicho 

de otro modo, sería inútil tomar datos falsos si se pretende que la 
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encuesta arroje algo de luz sobre una cuestión política o 

sociológica. 

De aquí que la persona a la que va dirigida una encuesta sea 

una persona que responda la verdad o, al menos, que el dato sea 

tomado de cada persona o unidad (empresa, confesión religiosa, 

industria, universidad, parroquia, etc.) observada por un 

encuestador sea fiel a la verdad que observa y posteriormente anota 

o registra como respuesta. 

Un ejemplo sería el de un médico que lleva cuenta de las 

enfermedades que se presentan en su consulta. No sería necesario 

que el paciente diga la enfermedad sino que el mismo médico 

consultado puede conocer la enfermedad y, en un caso extremo, 

informar de que desconoce la enfermedad o el mal que le han 

consultado. 

En la presente sección veremos las posibles actuaciones ante 

el desarrollo de una encuesta desde un punto de vista profesional, 

ético y moral. 

Los estudios que conducirían a un soporte científico correcto 

del análisis inferencial, es decir, de lo que puede afirmarse 

inductivamente de la población con los datos obtenidos de una 

muestra aleatoria probabilística seleccionada de la población, 

requieren unas propiedades científicas que han de ser respetadas en 

el procedimiento de selección de la muestra y de estimación. 

Por ejemplo, si queremos usar al final unas fórmulas que dan 

la medida del error de muestreo aleatorio simple con 

reemplazamiento de una estimación puntual de un “parámetro 

poblacional” (como sería el caso de “la media poblacional de la 

variable consultada” en la encuesta), hemos de cuidar que la 

selección de personas o unidades reproduzca con evidencia la 

equiprobabilidad e independencia probabilística en las distintas 
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sucesivas selecciones de personas o unidades de la población para 

formar parte de la muestra aleatoria simple con reemplazamiento. 

De otro modo, las fórmulas serían inútiles ya que el 

fundamento con el que se obtiene teóricamente la fórmula no se ha 

cumplido en el caso concreto al que se pretende aplicar dicha 

fórmula. Se debe respetar la independencia estadística en las 

sucesivas selecciones de unidades de la muestra, que es una 

hipótesis necesaria para la que fórmula final de la varianza de la 

estimación tenga sentido, por ejemplo. 

Desde un punto de vista moral no sería correcto afirmar con 

el uso de tal fórmula que una estimación puntual tiene determinado 

error de muestreo si en realidad no se han cumplido las condiciones 

para las cuales la fórmula tiene sentido. Esto es lo que ocurre en la 

mayor parte de las investigaciones médicas, psicológicas, 

sociológicas, económicas, etc. que he conocido: que se presentan 

como científicas unas conclusiones que moral, científica y 

éticamente no serían de correcto recibo al no comprobar todas las 

hipótesis implícitas que supone la teoría que aporta tales 

estimaciones. 

Del mismo modo, fórmulas que se han obtenido 

recientemente para sobrellevar el efecto de la no respuesta en una 

muestra inicial, pudiendo estimar sin sesgo el parámetro 

poblacional y la varianza del estimador para ello, presuponen que 

la encuesta al final obtiene todas las respuestas buscadas en un 

submuestreo de no respondientes. Esto es posible suponerlo a nivel 

teórico, pero la práctica es más ilustrativa de que no será siempre 

lo que ocurra pues hay que respetar la voluntad de los encuestados. 

Además no todo lo teóricamente pensado ni todo lo técnicamente 

posible son necesariamente moralmente aceptables. Y, en caso de 

dilema, el respeto a las leyes morales es una conducta superior a la 
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imposición de unas reglas científicas que no respetan a los 

encuestados. 

Esto sería aplicable a los estudios teóricos que dan solución 

al problema de la estimación insesgada con no respuesta. Mi 

intención con estas investigaciones teóricas era proveer de un 

estimador insesgado de la varianza para el estimador insesgado de 

la media poblacional propuesto por autores americanos. Con ello 

demostraba que si tenían los datos para estimar insesgadamente la 

media poblacional, podemos disponer con la misma información 

de estimadores insesgados de la varianza de tal estimador. Pero con 

ello nunca pretendí reconocer que estas soluciones teóricas fueran 

necesariamente morales o éticas, ya que su uso condiciona la 

voluntad libre de los encuestados, al menos en una segunda fase de 

submuestreo. Sería contradictorio e inmoral que la ciencia teórica 

sirva para no respetar a las personas y su voluntad, su conciencia 

bien formada en definitiva, y su deseo y su propósito sincero de 

obrar bien y evitar el mal. 

Es, por tanto, lamentable el abuso del uso de fórmulas que 

tienen su sentido en una correcta investigación teórica, pero cuando 

son aplicadas a casos prácticos que no pueden atenerse a las 

condiciones supuestas en la teoría o no se han preservado esas 

condiciones o incluso no se sabe si es así en la práctica real de la 

encuesta o estudio observacional, es mejor no afirmar lo que no se 

puede garantizar que sea cierto o al menos que cumpla unas 

propiedades estadísticas que la práctica realizada no puede 

confirmar al no cumplir las condiciones requeridas para que sea así. 

La razón por la que las muestras aleatorias seleccionadas 

pueden ser no simples (es decir, seleccionadas con probabilidades 

iguales con reemplazamiento en extracciones independientes 

sucesivas) es porque en primer lugar la mayoría de encuestas no se 

seleccionan con un procedimiento correcto, por ejemplo, sin marco 
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poblacional, o no sorteando con equiprobabilidad entre las 

unidades para seleccionar los sucesivos encuestados, o no siendo 

independientes las sucesivas selecciones. 

En general existen otros muchos procedimientos de selección 

de las unidades de la muestra con sus respectivos estimadores con 

los que realizar las inferencias estadísticas, pero en cada caso de 

estos se ha de cuidar que en la práctica se respete el diseño muestral 

concreto que se usa para realizar la inferencia así como el estimador 

concreto. Y todo esto no es inmediato ni cabe esperar que los datos 

recibidos de cualquier modo sean una muestra aleatoria 

probabilística tal y como el diseño muestral indica o presupone. 

Lo que ocurre en general en la práctica es que las unidades 

que colaboran voluntariamente en aportar sus datos a la encuesta, 

lo hacen tras ser informados de la finalidad de la encuesta a realizar 

y aceptando su consentimiento informado a colaborar 

efectivamente en la toma de datos. 

Algo parecido ocurre o debería ocurrir en los ámbitos médico 

y psicológico en los que puede experimentarse un tratamiento y 

obtener así una respuesta como consecuencia del tratamiento. En 

estos casos está regulado el consentimiento informado de los 

pacientes a propuesta de los médicos especialistas. 

Además de las cuestiones éticas que deben superar todos los 

estudios experimentales con seres humanos, se añaden los 

planteados por el diseño muestral y la estimación concretas que 

permitirían hacer tal inferencia inductiva. 

En todos estos casos, la muestra no es probabilística sino 

intencional y/o voluntaria en la que intervienen uno o muchos 

actores, por lo que en realidad depende más de voluntades humanas 
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que de un estricto azar controlado para poder hacer inferencias 

científicas según la teoría estadística inferencial. 

Por todo ello, cuando la selección de la muestra no es por azar 

controlado probabilísticamente de acuerdo a un diseño muestral 

ordenado (o no ordenado) concreto, sino que intervienen otros 

factores individuales o personales voluntarios, dicha muestra puede 

tener un valor empírico pero no inferencial estadístico. La muestra 

sería una selección de la población, pero no permite hacer 

inferencias con rigor científico, aunque aparentemente se 

dispongan de todos los datos requeridos en algunas fórmulas para 

que pudiera realizar una posible inferencia. En cualquier caso esta 

inferencia no sería válida o no es garantizable en lo que pudiera 

afirmar sobre la población de la que se ha seleccionado la muestra 

intencional o de voluntarios. 

La práctica moral exige la conformidad del encuestado en 

participar en el estudio de la encuesta, pues es razonable respetar 

la libertad de cada persona en dar unos datos personales sobre 

“quién es, lo que piensa, quiere, hace o tiene” sin forzar su voluntad 

en ningún momento. En este sentido, es razonable que el 

encuestado no responda, o deje de responder la pregunta o las 

preguntas que considere oportuno, o desista de seguir respondiendo 

en cualquier momento del cuestionario. Solo así se verán 

respetados sus derechos personales en todo momento y será libre 

de cooperar oportunamente con el estudio de la encuesta si así lo 

desea. 

Cooperar en responder una encuesta es un acto de libertad. 

No puede imponerse la obligatoriedad de colaborar con un estudio 

ajeno sin contar con el beneplácito del posible encuestado. De otro 

modo los patrocinadores de la encuesta emplearían métodos 

coercitivos que no respetarían la voluntad de los encuestados y 
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forzarían a estos a colaborar aun estando disconformes, algo no 

aceptable en una sociedad libre. 

Como vemos, tanto la verdad en las respuestas como la 

libertad en responder forman parte esencial de todo estudio por 

encuestas, sin las cuales no sería posible realizarlas y ni siquiera se 

podrían obtener unos resultados aprovechables sin esa verdad 

buscada, ni sería ético obtener las respuestas forzando voluntades 

en contra de su parecer para cooperar con los objetivos de la 

encuesta. 

“No dirás falsos testimonios ni mentirás” enseña la moral 

católica, pero como hemos advertido, si no fueran verdaderas las 

respuestas la ciencia teórica relativa a la inferencia en poblaciones 

finitas no valdría para nada, así de simple y exigente. Pero aunque 

la moral católica no informe al investigador, sin ella carece de 

sentido toda investigación que no pretenda ser veraz. Por otras 

razones de no menos relevancia, otros tipos de inferencia 

estadística son más cuestionables. 

Un ejemplo de ello es que cuando se supone teóricamente que 

la población es infinita (caracterizada por una función de densidad 

continua) sin serlo, como suele hacer la inferencia clásica, 

bayesiana, no paramétrica, etc. implícitamente lo que se está 

diciendo es que podemos prescindir de cualquier parte finita de la 

población en estudio porque la posible población infinita 

(caracterizada por una función de densidad continua) no se vería 

afectada por ello. Así, si la población es finita en realidad y 

prescindimos o eliminamos intencionalmente todas las unidades de 

la población finita, la inferencia con población teórica infinita no 

se vería afectada pero en realidad habríamos vaciado de sentido la 

inferencia estadística pretendida. 
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En realidad el mensaje que trasmite una inferencia en 

población infinita con función de densidad continua es que se 

puede eliminar cualquier parte finita de la población objetivo para 

el propósito inferencial, pero esta visión es errónea, como puede 

verse fácilmente que eliminando una parte de la población la media 

poblacional se ve afectada en poblaciones finitas, que son las que 

tienen algún interés práctico como para garantizar que las 

estipulaciones del diseño muestral pueden ser llevadas a la práctica 

de modo controlado. Esto sin entrar a valorar qué significado puede 

tener que el investigador pueda o pretenda eliminar parte de la 

población para hacer sus inferencias. Nada limpio como cabe 

suponer, y de hecho esto se hace en muchos estudios inferenciales 

de seres humanos. 

Pero la consecuencia de este proceder es que se introducen 

sesgos en la estimación del parámetro media poblacional, mediante 

la media muestral de las “unidades no excluidas de la población”, 

que serían como el estrato de respuesta. Habría otro estrato de no 

respuesta compuesto por las unidades de la población que han sido 

excluidas y que, por tanto, no podrán responder. Y todo esto 

supuesto que todas las unidades no excluidas respondiesen. Los 

razonamientos para entender estas cosas pueden seguirse casi 

directamente de la teoría de la estimación puntual cuando se 

presenta la no respuesta. 

Por las razones expuestas, cabe preguntarse si es posible 

compaginar la ciencia estadística teórica y la práctica real moral. 

La respuesta a simple vista parece que solo tiene una respuesta: o 

se respeta la voluntad de los encuestados para participar o no en la 

encuesta (en cuyo caso la ciencia estadística teórica sería inútil, 

aunque los patrocinadores de la encuesta hicieran gala de sus 

virtudes éticas o morales), o bien se obliga a los encuestados a 

responder y sin falta de respuesta ni de verdad en las mismas (lo 

que presupone un comportamiento legal y moral en todos los 
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encuestados, algo que parece ser imposible a juzgar por los 

expertos funcionarios encargados de este tipo de estudios en la 

práctica). 

Obviamente la solución al dilema ciencia-moral, ya que 

parece que no pueden compatibilizarse simultáneamente, pasa por 

la realización de unos censos de colaboración legal obligatoria, y 

por unas encuestas postcensales de obligada participación por 

causas justificadas o, en su defecto, de muestras empíricas no 

probabilísticas que mostraran la situación de una o varias variables 

estadísticas sin pretensiones inferenciales ya que la inferencia solo 

se podría llevar a efecto con muestras probabilísticas de acuerdo a 

un diseño muestral como parte de una estrategia de muestreo unida 

a un estimador de la función paramétrica a estimar. 

La mayor parte de estudios por muestreo que se realizan en la 

sociedad son de carácter no probabilístico ya que no disponen del 

marco poblacional necesario para seleccionar la muestra de 

acuerdo con un diseño muestral, y también cuando el marco 

poblacional se dispone es muy frecuente no hacer uso del mismo. 

Por ello la ciencia aplicable queda vacía de contenido en la práctica 

aunque se pretenda presentar unas conclusiones inferenciales pero 

sin cuidar todos los requisitos para que fuera una inferencia 

inductiva científica. Sería un fraude en la ciencia como resulta ser 

en muchos casos. 

Y es que la moral no se limita a decir la verdad y a respetar la 

voluntad de los encuestados, se trata de un comportamiento de 

acuerdo a la ley divina y natural, y de la que forman parte aquellos 

dos requisitos como necesarios pero no suficientes para una 

actuación enteramente moral. 

Como conclusión, recomiendo que en el caso de poder llevar 

a cabo una encuesta según prescribe la teoría estadística inferencial 
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(lo cual requiere el uso de poblaciones finitas y de un marco de la 

población) y las condiciones éticas y morales aplicables, lo 

razonable es poner en la práctica todas las condiciones para que tal 

teoría se respete en la práctica en todas sus hipótesis y en las 

conclusiones rigurosas que se deducen. 

En otro caso, si la teoría estadística no puede llevarse 

cuidadosamente en la práctica, lo aconsejable es describir 

objetivamente la muestra empírica obtenida pero sin pretensión 

inferencial alguna que resultase engañosa. De este modo se 

preserva lo que consiste la ley moral natural: “haz el bien y evita el 

mal”. Y también preservaría la moral cristiana en este aspecto: “no 

dirás falsos testimonios ni mentirás”. 

Para un mayor detalle de estos razonamientos pueden 

consultarse los libros indicados en las referencias. 

 Para concluir y para que sirva de reflexión a los lectores, os 

recomiendo los siguientes textos bíblicos, del Catecismo de la 

Iglesia Católica y del Código de Derecho Canónico: 

Colosenses 2,8: “Mirad que nadie os esclavice mediante la 

vana falacia de una filosofía, fundada en tradiciones humanas, 

según los elementos del mundo y no según Cristo.” 

1ª Timoteo 6,20-21: “Timoteo, guarda el depósito. Evita las 

palabrerías profanas, y también las objeciones de la falsa ciencia; 

algunos que la profesaban se han apartado de la fe. La gracia con 

vosotros.” 

Hebreos 13,9: “No os dejéis seducir por doctrinas diversas y 

extrañas.” 

2ª Pedro 3,18: “Creced, pues, en la gracia y en el 

conocimiento de nuestro Señor y Salvador, Jesucristo. A él la gloria 

ahora y hasta el día de la eternidad. Amén.” 
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 Catecismo de la Iglesia Católica 2295: Las investigaciones o 

experimentos en el ser humano no pueden legitimar actos que en sí 

mismos son contrarios a la dignidad de las personas y a la ley 

moral. El eventual consentimiento de los sujetos no justifica tales 

actos. La experimentación en el ser humano no es moralmente 

legítima si hace correr riesgos desproporcionados o evitables a la 

vida o a la integridad física o psíquica del sujeto. La 

experimentación en seres humanos no es conforme a la dignidad de 

la persona si, por añadidura, se hace sin el consentimiento 

consciente del sujeto o de quienes tienen derecho sobre él. 

 Código de Derecho Canónico: los delitos contra la vida, la 

libertad y la dignidad de las personas tienen la misma categoría de 

los delitos de aborto o de homicidio, o de abuso de menores, en el 

Código de Derecho Canónico en el año 2021. 
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Anexo I 

Distintos tipos de inferencia 

 

 

1. Inferencia objetiva en poblaciones finitas fijadas 

Se basa en disponer de una población finita conocida y de tamaño 

fijo, cuyas unidades o elementos son identificables y accesibles 

para poder recabar información de la variable de estudio en cada 

unidad seleccionada en la muestra. Por tanto la población debe 

estar listada por las unidades y su medio de localización o acceso a 

las mismas. Una muestra es un conjunto de unidades o una 

secuencia finita de ellas (aunque haya repeticiones), seleccionadas 

según un procedimiento probabilístico de obtención o diseño 

muestral. Si una unidad está en la muestra, debe ser observada su 

variable de interés y el dato recabado es aprovechado en la fase de 

estimación. Informaciones auxiliares pueden usarse en el diseño 

muestral o en el estimador o en ambos. 

2. Inferencia paramétrica clásica 

En la inferencia paramétrica clásica, la población está caracterizada 

por una función de densidad, de cuantía o de distribución, de la que 

se conoce su fórmula que depende de una o varias constantes 

desconocidas que aparecen en la fórmula, y se denominan 

parámetros. La inferencia consiste en aproximar dichos parámetros 

basándose en la propia fórmula subjetiva y en los datos recogidos 

en una muestra con determinadas especificaciones con las que se 

supone ha sido obtenida. 

3. Inferencia bayesiana 
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En este caso la población sigue un modelo subjetivo similar al 

anteriormente descrito, pero los parámetros no se suponen fijos 

sino que a su vez se supone que son variables aleatorias con una 

distribución “a priori” supuestamente conocida por el investigador. 

En base a una muestra aleatoria de la población, la distribución “a 

priori” de los parámetros poblacionales se ve modificada o 

rectificada por otra distribución “a posteriori” de los parámetros 

una vez observada la supuesta muestra con aleatoriedad 

probabilística. El criterio de estimación puntual de los parámetros 

puede ser por varios procedimientos destacando el método de la 

máxima verosimilitud a posteriori. 

4. Inferencia no paramétrica 

Es similar a la inferencia paramétrica, si bien la descripción de la 

población no depende de constantes desconocidas sino de 

propiedades o cualidades que describen una variedad de 

poblaciones que las verifican. La inferencia no paramétrica trata de 

desvelar cuál de ellas es más acorde con los datos obtenidos en una 

supuesta muestra aleatoria de la población. 

5. Inferencia de distribución libre 

Puede considerarse un caso muy particular del anterior en el que la 

variedad de distribuciones poblacionales que supuestamente una de 

ellas es la cierta, se amplía a todas las posibles distribuciones. 

6. Inferencia con modelos superpoblacionales 

Los modelos superpoblacionales parten de una población finita de 

tamaño fijo de modo similar al modelo de inferencia objetiva, pero 

ahora cada unidad de la población puede ofrecer diversas 

respuestas a la misma pregunta u observación de la variable de 

interés, y que es ahora una variable aleatoria en cada unidad que 

puede ser modelizado por otros tipos de inferencia como la 

paramétrica clásica o la bayesiana. 
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 Existen otros tipos de inferencia estadística derivadas de las 

anteriores, pero básicamente tienen los mismos o similares puntos 

débiles que los ya indicados y por lo que no son plenamente éticos 

como ciencia aplicada a seres humanos u otras unidades de la 

población que afecten a seres humanos o grupos de ellos. 
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Anexo II 

Muestreo aleatorio simple 

 

 

El muestreo aleatorio simple es el caso más sencillo del muestreo, 

aquél en que la observación es la que se toma de la unidad 

seleccionada en la correspondiente selección independiente con 

probabilidades iguales para cada unidad de la población finita, y 

para cierto tamaño de la muestra. 

Básicamente la teoría que fundamenta la estimación 

insesgada de momentos poblacionales no centrales y centrales, así 

como sus varianzas puede verse en el artículo de Ruiz Espejo et al. 

(2013) y revisado posteriormente por Ruiz Espejo (2015h). Dodge 

y Rousson (1999) y Ruiz Espejo (1998b) fueron los que en sus 

trabajos iniciales aportaron las ideas para resolver los problemas de 

estimación insesgada con muestreo aleatorio simple con 

reemplazamiento. 

Todos los estimadores insesgados referidos en este anexo son 

además de mínima varianza para distribución libre por ser 

invariantes ante permutaciones en el orden de las observaciones de 

la secuencia ordenada de la muestra aleatoria simple (Zacks, 1971, 

p. 150). 

 Una fuente de números aleatorios con reemplazamiento para 

seleccionar una muestra aleatoria simple con reemplazamiento de 

identificadores de unidades de una población finita puede 

obtenerse en la dirección web random.org. 
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