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Proélogo

Al publicar la primera edicion de este libro titulado Ciencia del
Muestreo, en inglés Sampling Science, reviso y amplio el libro con
el mismo titulo, del mismo autor y del publicador Bubok, y
proporciono los razonamientos matematicos sobre los que se basan
los métodos inferenciales de uso comun en el muestreo y la
estimacion en poblaciones finitas.

Estos procedimientos son los mas objetivos que conozco
entre los meétodos estadisticos inferenciales, ya que no hay que
suponer que la poblacion es de algin modo “sin comprobacion
posible” como ocurre en la mayor parte de teorias de inferencia
estadistica y de prediccion. Ademas, la aleatorizacion y sus
propiedades son caracteristicas que “el investigador controla y no
tiene que suponer” a su vez que se comporta de algun modo
determinado como ocurria en la inferencia paramétrica clasica, la
bayesiana, la no paramétrica, etc. basadas en poblaciones con
funcion de densidad (o en gran parte de modelos de distribucion
probabilistica) y en datos observados. En nuestro libro entendemos
que los datos son medidas objetivas y exactas de la realidad fisica
que nos rodea y que podemos observar, cuantificando las
observaciones.

El conocimiento objetivo de caracteristicas poblacionales que
deben ser conocidas con cierta precision, para corregir cualquier
deficiencia o atender nuevas necesidades sociales requiere el uso
de métodos libres de hipotesis subjetivas 0 no comprobadas en la
practica. La teoria inferencial en poblaciones finitas que



desarrollamos aporta solidos conceptos y resultados matematicos
que permiten conocer estas caracteristicas con métodos objetivos,
sencillos, precisos, rapidos y econdmicos en comparacion con la
realizacion de censos que observen toda la poblacion para conocer
con perfeccion todos los datos de interés, como ocurre con la
estadistica descriptiva que tiene los métodos mas objetivos, pero
no son de tipo inferencial sino deterministico. Cuando hablamos de
una poblacion finita y de una funcién paramétrica definida,
hablamos de realidades que existen en el mundo real, no son
operaciones derivadas de suposiciones tedricas como ocurre en la
teoria inferencial clasica estadistica.

El dnico camino que garantiza que el disefio muestral no es
un mero instrumento de estudio tedrico y que se lleva a la practica
es mediante la identificabilidad de las unidades de la poblacion
finita, siendo estas unidades accesibles u observables para obtener
el dato de ser seleccionada la unidad en la muestra efectiva. Sin
estos requisitos el estudio inferencial es exclusivamente teorico sin
capacidad para seleccionar muestras de unidades del contexto real
al que se trata de aplicar estos conceptos basados en realidades que
existen y comprobamos en la practica de una encuesta o de un
estudio por muestreo que busca la informacién donde esta, en el
mundo real, no en el &mbito de las meras ideas que no buscan
conocer y obtener informacion para cambiar el mundo con el mejor
sentido del bien comUn o para hacer auténtica una investigacion
social, sanitaria 0 politica entre otras posibles aplicaciones como
también son las de ingenieria, banca, etc.

El manual puede considerarse un libro de referencia en
asignaturas de Teoria de Muestras en estudios de Estadistica en el
Grado en Ciencias Matematicas o similares masteres y asignaturas
de doctorado, o en el Grado en Ciencias Estadisticas, en Ciencias
Economicas y Empresariales, en Economia, y en Administracion y

10



Direccion de Empresas, asi como en Sociologia, Ciencias de la
Salud, e Ingenieria. También para estudio e investigacion.

Requiere conocimientos basicos de Teoria de la Probabilidad,
Esperanza Matematica y Varianza de una variable aleatoria
discreta, que son también expuestos. Sin duda aportara mayor
objetividad a los métodos estadisticos estudiados en Escuelas
Técnicas Superiores de Ingenieria, y en Ciencias de la Salud, lo que
conllevara una perspectiva mas objetiva en sus tradicionales
formaciones estadisticas. A modo de ejemplo, y para los lectores
que ya manejen con facilidad los conceptos explicados en este
libro, les recomiendo la lectura del articulo de Ruiz Espejo (2018f)
sobre disefio de experimentos desde una perspectiva objetiva de
muestreo de poblaciones finitas.

En este libro también reviso y actualizo otros dos de los que
soy autor, editados por Lulu Press, y presento los argumentos y
fundamentos que sustentan la mayor o menor objetividad cientifica
y ética entre una seleccion de métodos de inferencia estadistica
estudiados tradicionalmente en las universidades de todo el mundo
y especialmente en titulaciones en Estadistica y en Ciencias
Matematicas, para ser aplicados en el mundo real y practico con el
mayor rigor tedrico y aplicado.

Con este fin se presentan resumidos y comentados los
fundamentos cientificos de la tesis doctoral del autor y que
defendio en la Facultad de Ciencias Politicas y Sociologia de la
Universidad Pontificia de Salamanca, con el titulo Observaciones
a los Métodos Estadisticos de Investigacion del Bienestar Social
en el Marco Global (Madrid, 2003a).

El programa de doctorado al que se adscribié la tesis en
aquellos afnos era Globalizacion, Desarrollo y Bienestar Social.
Estaba en boga el estudio de la Globalizacion como una concepcion
del mundo y de las relaciones humanas que se fundamentaban en
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el uso social de las nuevas tecnologias, como alternativa a una
concepcion socialista o capitalista de entender la economia y la
sociedad, que ya se consideran limitadas o abocadas al fracaso
porqgue no ponen al hombre como fin sino como medio del que
servirse los grupos dominantes para alcanzar otros fines
generalmente centrados en el bienestar de estos grupos y
ralentizando el desarrollo y el bienestar social de los menos
cercanos al poder politico a los que se considera solo medios para
aquellos fines. Sin embargo, hoy podemos decir que la
Globalizacion ha servido hasta ahora también a los grupos politicos
y gubernamentales dirigentes que tratan de imponerse con mayor
poder e influencia sobre el ciudadano mas alla de las fronteras
naturales que circunscribian su influencia y gobierno hasta ahora,
y llegando a crear serios problemas al desarrollo de regiones y
pueblos.

Una alternativa propuesta para superar estas deficiencias del
capitalismo, del socialismo y del globalismo es el cristianismo, y
su aplicacion de la Doctrina Social de la Iglesia Catélica a la
empresa y a la vida, que busca el bien comun.

El cristianismo vinculado a su comunidad o entorno de
actividades de las empresas esta inspirado en las ensefianzas y el
Magisterio de la Iglesia, y pone como fin de dichas actividades al
hombre y sus cercanos, que las realiza en continuo camino hacia el
conocimiento de Dios, su cercania, y la trascendencia de nuestra
actuacion y vida con sentido comun y atendiendo las necesidades
espirituales y materiales de los que nos rodean, siendo, dando y
sirviendo.

En este libro trato de dar los argumentos logicos que daria un
cientifico y la verdad revelada que aportaria un cristiano para
discernir qué tipo de inferencia es objetiva y creible, y cuales no lo
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son tanto, atendiendo razones y verdades de fe que espero que
todos compartan porque no hay sino una buena intencién de guiar
a la verdad de los fundamentos de sabiduria cristiana y de ciencia,
que pueden ser basicamente comunes a la tradicion judia pues hay
muchas referencias de revelacion divina que tanto cristianos como
judios creemos porque compartimos ensefianzas milenarias de
revelacion de Dios. Las referencias biblicas a las que me referiré
son extraidas de la Biblia de Jerusalén (92 edicion, Bilbao, 1999).

La tesis doctoral que da base a esta obra se leyd en una
universidad catdlica, de la Conferencia Episcopal Espafiola, su
director, profesor José Ramon Pin Arboledas, y el presidente del
tribunal, profesor Francisco José Cano Sevilla, son profesionales
universitarios y también politicos de distinta orientacion a los que
debo honra personal y agradecimiento por haber contribuido a su
lectura y reconocimiento.

El capitulo dedicado a la ética y filosofia del muestreo es
relativamente breve porque no trato de ser ocioso en divagaciones
sino que trato de dar claridad de ideas a los profesionales de la
Estadistica, tanto universitarios como de la administracién, para su
trabajo diario, asi como orientar posibles futuras aplicaciones de la
Estadistica en el campo de la salud, ciencia, politica, e ingenieria.

También se han incluido las conclusiones del autor en el
master en Bioética, en el trabajo titulado Investigacion Etica y
Bioestadistica (2014), realizado en la Universidad Catdlica San
Antonio de Murcia y dirigido por el profesor Jorge Lépez Puga.

Toda inferencia en poblaciones finitas ha de basarse en el
marco de la poblacion desde el que las unidades de la poblacion
son accesibles al investigador por muestreo. Sin embargo, este
marco no siempre esta disponible pues implica la colaboracion de
toda la poblacion en dar datos sensibles de su persona, vivienda,
teléfono, etc. y no siempre es posible tener estos censos, 1o que
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limita el uso de esta ciencia del muestreo. En relacion a esto
conviene recordar el Libro Primero de las Cronicas 21,17: “Y dijo
David a Dios: ‘Yo fui quien mandé hacer el censo del pueblo. Yo
fui quien pequé, yo cometi el mal; pero estas ovejas ¢qué han
hecho?...””. En los casos en que estos datos censales, que
identifican a las unidades de la poblacion finita, son conocidos y
las unidades de la poblacion son accesibles y observables, este libro
tiene su pleno interés practico y objetivo para alcanzar sus fines
cientificos eticamente. También cuando las unidades no son
personas sino objetos especialmente.

Quiero agradecer a los publicadores la oportunidad de editar
este libro dirigido a todos los lectores en lengua espariola. También
es justo agradecer a Javier Olivera Ravasi sus 21 articulos titulados
“Aprendiendo a pensar: logica de los sofismas”, que han sido
publicados en la publicacion digital InfoCatolica.com entre Enero
y Febrero de 2015 y que han dado un marco cristiano y filosofico
clasico a mis reflexiones, quedando insertado nuestro estudio en la
tradicion catdlica y abierta a toda cultura virtuosa y respetuosa con
el conocimiento, la sabiduria y la inteligencia cristianos por la
tradicion fiel al magisterio de la Iglesia.

Debo agradecer a todos los que, presentes 0 ausentes, han
contribuido a que esta publicacién sea ofrecida a los lectores
interesados en los principios éticos y morales de la ciencia
estadistica y de sus métodos de inferencia.

Revisamos también los principios, normas y pautas éticas de
investigacion en seres humanos en sus aspectos bioestadisticos y
aportamos metodos y referencias sobre posibles mejoras en este
area. Algunos aspectos como voluntarios, consentimiento
informado, tratamiento de la no respuesta, y estimacidn insesgada,
son tratados con cierto detalle. Concluimos que incentivando las
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condiciones del consentimiento, podriamos aprovechar la
informacidn de voluntarios en un segundo intento para inferir con
objetividad sobre la funcion paramétrica de interés. Esto permite
extraer conclusiones sobre toda la poblacién de pacientes y no
reducirla a la de los primeros voluntarios, pues limitarnos a la
poblacion de voluntarios puede determinar un sesgo en las
estimaciones sobre la funcion paramétrica de interés, ya que la
poblacidn finita de pacientes es mas amplia que aquélla.

Este libro es, por tanto, un compendio resumido de los
estudios y las investigaciones del autor.

Agradezco las sugerencias del profesor Guillermo Enrique
Ramos, de la Universidad de Moron, Buenos Aires, Argentina.

Mariano Ruiz Espejo

Madrid, Enero de 2026
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Presentacion

Es natural y perfectamente logico que las medidas sean exactas
cuando nos afectan en la compra o el consumo de las personas, asi
como en la retribucion por su trabajo. En la practica muchas veces
se presenta la situacion de que queremos conocer una magnitud a
la que contribuye cada una de las unidades de una poblacidn finita
pero no tenemos recursos, tiempo o medios para recabar la
informacion exacta de todas las unidades para proceder al calculo
de dicha magnitud.

La inferencia en poblaciones finitas consiste en un
procedimiento de muestreo o de seleccion de unidades de la
poblacion para ser observadas o medidas con exactitud, y en un
método de estimacion que aproveche la informacion recabada de la
muestra a efectos de inferir sobre magnitudes poblacionales que
Ilamamos funciones paramétricas, pues dependen de todos los
valores observables fijos en cada una de las unidades de la
poblacidn finita. La muestra se selecciona de modo probabilistico,
mientras que el estimador es una funcion de los datos muestrales
en larectareal a la que pertenece la magnitud que queremos inferir.

Una propiedad de importancia de un método inferencial es su
insesgacion, que nos indica que en promedio el estimador tiene por
esperanza matematica la magnitud que queremos inferir. La
medida de dispersion mas usada para conocer la variabilidad del
estimador insesgado, es su varianza. En general, cuando el
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estimador es sesgado, la medida de dispersion usada es su error
cuadratico medio.

Antes de poner en practica un metodo inferencial, es
conveniente estudiar otros métodos alternativos para ser usados en
el estudio concreto. Para ello conviene comparar los errores
cuadraticos medios de los distintos métodos y ver en cual de ellos
se minimiza la variabilidad, y por tanto serd mas preciso que los
restantes. En un articulo de Ruiz Espejo (1987c), se prueba la no
existencia de estimador insesgado uniformemente de minima
varianza (salvo algun caso muy concreto), asi como la no existencia
de estimador uniformemente de minimo error cuadratico medio.
Sin embargo los métodos mas precisos vienen acompafiados de
mayores costes esperados de uso, lo que les hace no ser los Unicos
a considerar. A igual coste esperado, si tiene sentido buscar la
mayor precision o eficiencia. O bien, tiene sentido que a igual
precision, busquemos el método inferencial de menor coste
esperado.

Por ultimo, es conveniente estimar sin sesgo para el método
inferencial concreto que hemos usado, la varianza o el error
cuadratico medio del estimador, con la misma informacion
muestral. Esto nos permitirda dar una estimacion insesgada de la
magnitud poblacional de interés, y una estimacion insesgada del
error de muestreo que tiene la estimacion anterior.

El libro que esta leyendo presenta los argumentos revelados
y cientificos que orientan en la eleccion de un método de inferencia
estadistica para alcanzar objetividad en las conclusiones de sus
estudios. Es un dialogo entre la fe y la razon, entre la l6gica humana
y la revelacion divina tal y como se concibe en la cultura
judeocristiana espafola, europea y del mundo que respeta el
derecho a la libertad religiosa y a la razén.
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Es necesario contar con instrumentos de analisis, ya sea de
estadisticas oficiales o de estudios privados, para obtener unas
minimas garantias de conocimiento objetivo y para alcanzar un
mayor bienestar, que puede alcanzarse por la interiorizacion de la
responsabilidad personal y por el sentido comudn. El trabajo se
presenta entre dos ciencias humanas: la estadistica como ciencia
instrumental y la filosofia social como ciencia normativa, ambas
iluminadas por la revelacion cristiana. La relacion entre ambas
ciencias es evidente. Sin un contenido social la ciencia carece de
contenido moral, pero sin instrumentos de analisis precisos los
contenidos morales son inalcanzables en la préactica; la revelacion
cristiana orienta en la eleccion moral de estas decisiones. Por ello
este trabajo oscila alternativamente entre la reflexion cristiana, la
filosdfico-social y la necesaria logica estadistica.

La tesis en sociologia del autor surgio en un contexto de
intentar mejorar el nivel de bienestar social en una economia
global, un problema de nuestro tiempo que adn no se ha resuelto y
donde ofrecemos una vision y perspectiva cristiana a la resolucion
del mismo.

El trabajo se puede enmarcar en lo que se denomina literatura
social realizable, en el sentido de que intenta marcar un objetivo
deseable y posible para el futuro. Para ello se dan métodos
estadisticos para alcanzarlo, afiadiendo a la revelacion y a la ciencia
humanistica deseable algunos elementos logicos de factibilidad
concretos.

Los principales puntos del debate se sitian en torno al
discernimiento entre algunas metodologias estadisticas que se
explican en las universidades, pero que en su mayoria son muy
fragiles a la hora de asegurar coherencia y objetividad al describir
hechos reales de caracter natural o inferir a partir de ellos, y en
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particular hechos de las personas o sus bienes de interés social que
en un instante determinado se presentan en las unidades de una
poblacidn.

Las realidades de caracter social pueden ser y lo son en
muchos casos cuantificables. Ademas las realidades sociales
pueden ser observadas individualmente. La realidad social
entendida como poblacion estadistica compuesta por un nimero
finito de unidades (individuos, empresas, pacientes, etc.), de las
que cada una es portadora de caracteristicas cualitativas o
cuantitativas, interesan desde puntos de vista sociales. Visto asi
tiene sentido discernir qué métodos inferenciales estadisticos son
los que aportan objetividad y claridad en los casos practicos. De
otro modo el investigador social quedaria reducido a una posicion
débil, casi semantica o narrativa, a distancia de su objeto real de
estudio si no tuviera en cuenta estas aportaciones estadisticas que
reportan instrumentos para el conocimiento y la observacion de
fenomenos de carécter social.

Nos planteamos qué tipo de metodologias estadisticas
basadas en el muestreo son correctas para revelar las realidades
cuantitativas acaecidas en un instante o periodo de tiempo
determinado, mediante la observacion y medida exacta recogida en
datos de una parte 0 muestra de unidades de la poblacion que
estudiamos.

La mayor parte de la Estadistica universitaria actual no se
adapta bien a las condiciones reales cuando interesa conocer
hechos relativos a una poblacion finita. Tratar la realidad finita
como si no lo fuera refleja actitudes de inercia en los conocimientos
estadisticos a costa de no aportar veracidad ni claridad al
conocimiento real de los objetos de estudio cientifico.

Asi evitamos que se usurpe la realidad misma por una
concepciodn subjetiva de como es y lo que piensa el investigador
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estadistico de la realidad objetiva que quiere conocer mediante
métodos inferenciales. Es por ello que no aceptamos condiciones
distorsionadoras o inasumibles para conocer realidades del mundo
natural objetivo. Suponer hipdtesis incomprobables o que
contradicen elementos basicos de la logica racional aplicada a su
materia de estudio, hacen que sus disefios estadisticos sean
inferiores a aquellos disefios estadisticos que no vulneran la regla
basica de aceptar la realidad tal cual es para disponer de métodos
estadisticos o mas fiables y coherentes con las realidades que se
les presenta. Por tanto si queremos “conocer hechos” es preciso no
asimilar elementos extrafos, innecesarios o distorsionadores para
este fin.

Como conclusidn llegaremos a que los métodos de muestreo
de poblaciones finitas con datos fijos proporcionan los métodos
méas objetivos y fiables entre los métodos inferenciales mas
conocidos y tratados en los cursos universitarios. Son por tanto los
métodos realmente veraces, utiles, practicos y l6gicamente solidos.
El buen uso de la estadistica mejorara la salud, el bienestar, la
calidad de vida, la estabilidad social y econdmica, el desarrollo y
la evolucidn economica de las personas, haciendo un uso cuidadoso
de la inferencia estadistica objetiva entre otras actuaciones
necesarias, lo que aportara informacion precisa o confiable sobre
aspectos sociales en los que actuar con decisiones politicas
correctas.

Sin embargo, los métodos de inferencia estadistica tradicional
necesitan de datos individuales verdaderos para ofrecer
conclusiones poblacionales que pueden ser por lo general no
verdaderas, sino solo aproximaciones aleatorias (ya que no pueden
ser medidas todas las unidades de la poblacion por la limitacion de
los recursos disponibles), y a veces aproximaciones meramente
supuestas a un ‘“valor poblacional verdadero”. Es como ocurre en
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primer lugar en poblaciones finitas fijadas, y en segundo lugar con
otros tipos de inferencia en que podria ser un “valor tedrico o no
real” y cuya “supuesta exactitud” estimamos.

Al final del libro, pondremos la atencion en explicar aspectos
éticos de las normas, principios, pautas y consejos ya establecidos
en el area de la investigacion con seres humanos y destacando los
avances bioestadisticos que suponen pasos claros en el tratamiento
de los datos para dar luz a las cuestiones de la mejora en la salud y
de las mejores terapias posibles en la enfermedad.

En principio no existen limites éticos para el conocimiento de
la verdad o en el esfuerzo humano para ello. Pero si existen limites
eticos precisos en cuanto al modo de obrar del hombre que busca
dicha verdad, pues no todo lo que es “técnicamente posible” puede
considerarse “moralmente admisible”. La ciencia y la técnica
tienen el limite de que cada persona humana merece respeto por si
misma, y en esto consiste la dignidad y el derecho del ser humano
desde el inicio de su vida (cf. Instruccion Donum Vitae, I, 1987).

No detallaremos las formulas especificas que suponen los
avances bioestadisticos, pero si damos las referencias recientes
donde poder encontrarlas y, en ciertos casos de éstas, con las
demostraciones matematicas que justifican sus propiedades
objetivas.

De este modo no nos limitamos a una Estadistica docente
universitaria y tradicional cuyos aspectos mejorables he tratado en
otras publicaciones, algunas de las cuales se citan en la
Bibliografia, sino a resultados de investigacion recientes que no se
han impartido hasta la fecha de publicacion de este libro en las
universidades en que se estudian materias similares y en las que
podrian estudiarse nuestras sugerencias.

Mariano Ruiz Espejo
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Conceptos previos

Dos conceptos que son necesarios de antemano para entender el
presente libro son los de “Esperanza Matematica” y “Varianza™” de
una variable estadistica, 0 en general de una variable aleatoria que
podemos considerar discreta y con un numero finito de posibles
valores a tomar.

En concreto, suponemos que la variable estadistica o aleatoria
X toma los z posibles valores xq,x,,..,%;..,Xx, cON
probabilidades respectivas p4, p,, ..., p;, ..., P, Verficando ademas
quep; = O paratodoi =1,2,...,z,Vy que

Z
Z p; =1
i=1

La esperanza matematica de la variable aleatoria X se define
como

z

E(X) = Z XiPi-

i=1
La varianza de la variable aleatoria X se define como
VX) =EX?) - [EX]* =E{[X —EX)]*} =

V4

D = ECOPp:

i=1
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Algunas propiedades del concepto de esperanza matematica
son las siguientes, cuyas comprobaciones son relativamente
sencillas. Sea Y la variable aleatoria que toma los valores
Y1, V2, -, Vir -+, Y, CON probabilidades respectivas de que ocurran
P1, P2, -, Pir -, P,- UNa constante es una variable aleatoria que
toma el valor Unico, la constante, con probabilidad uno, es decir es
la misma constante en todos los casos i en que se pueda dar el
suceso de probabilidad p;.

Si ¢ es una constante real,
E(c) =c.
Si a y b son constantes reales,
E(aX +b) = aE(X) + b.
Si X e Y son variables aleatorias,
EX+Y)=EX)+E(Q).

La variable aleatoria X + Y es la suma de las variables aleatorias X
e Y,y toma los valores x; + y; con probabilidad p;.

Propiedades del concepto de varianza de una variable
aleatoria son las siguientes, cuya comprobacion es un ejercicio
sencillo para el lector.

Si ¢ es una constante real,
V(c) = 0.
Si a y b son constantes reales,
V(aX + b) = a?V(X).
Si X e Y son variables aleatorias,
VIX+Y)=VX) + V() + 2Cov(X,Y).
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Donde la covarianza de las variables aleatorias X e Y es
Cov(X,Y) =EXY)—-EMX)E(Y) =
E{[X —EX]IY —EM)]},

siendo
E(XY) = i XiYiDi
i=1
y
E{IX —EXIY —EM]} = Z [xi — EOIly: — EM]p:.
i=1

También, XY es la variable aleatoria producto de las variables
aleatorias X e Y, que toma el valor x;y; con probabilidad p;.

La varianza de una variable aleatoria X se puede definir, una
vez definido el concepto de covarianza, por tanto, como

V(X) = Cov(X,X) = E(X?) —[E(X)]? =
E{[X — E()]*}.

Una propiedad de la covarianza de variables aleatorias es, por
ejemplo, que si a, b, c y d son constantes reales, y X, Y, VyW
son variables aleatorias discretas tomando un ndmero finito de
posibles valores (con probabilidad positiva), entonces

Cov(aX + bY,cV +dW) = acCov(X,V) +
adCov(X,W) + bcCov(Y,V) + bdCov(Y,W).

Si tenemos n variables aleatorias discretas X;, X5, ..., X;, que
toman los valores X; = Xi; con probabilidad
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p (Xi - xif)'

éstas variables aleatorias seran independientes si y solo si la
probabilidad conjunta es igual al producto de las probabilidades
marginales

n
p (Xl = X1 oy X = xnj) = HP (Xi = xij)-
i=1

Es sencillo comprobar ahora que si Xy, X,, ..., X,, son variables
aleatorias independientes vy fi, fo, ..., f son n funciones reales de
variable real cualesquiera, entonces

E ﬁfi(Xi) = ﬁE[fi(Xi)]-
i=1 i=1

Aqui, si X es una variable aleatoria y f es una funcion real de
variable real, entonces f(X) es por definicion la variable aleatoria
que toma los valores x; con probabilidad

P[f(X) = Xj] = Zxk;f(xk)=f(xj)p(X = X))

Para demostrar la propiedad basta ver que si m es el nimero
de valores posibles que pueden tomar cualquiera de las n variables
aleatorias discretas con probabilidad positiva (m podria ser infinito
numerable, pero para nuestro objetivo en este libro basta que con

que sea finito), entonces
n
el [roo|=
i=1

2 [t

n]—l l

Xl - xlj, ""XTl - xn]) -
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1:1[ izzlfi(xij)p(xl =le) -
ﬁE[fi(Xi)]-
=1
Ya que
S (o (= m) 0 (1 =) -

1j,.mj=1

> sla)o(r=m)[ ]| 2 nlo )| -

(=1 k#i [kj=1

E[fi(X)] x 1"t = E[f;(X))].

Una consecuencia de este resultado es que si dos variables
aleatorias X e Y son independientes, su covarianza es nula, ya que

Cov(X,Y) = E(XY) — E(X)E(Y) = 0.

También se dice entonces que las variables aleatorias X e Y estan
incorrelacionadas, puesto que el coeficiente de correlacion lineal
de las variables aleatorias X e Y se define como

Cov(X,Y)
JVOV(Y)

pX,Y) =
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Y en el caso de variables aleatorias independientes X e Y, entonces
p(X,Y)=0, es decir, X e Y son variables aleatorias
incorrelacionadas. La propiedad reciproca no siempre es cierta,
sino que existen variables aleatorias incorrelacionadas que son
dependientes.

28



Capitulo 1

Introduccion

El muestreo de poblaciones finitas es un método estadistico que
consiste en seleccionar un subconjunto o parte de la poblacion de
un nimero finito de unidades, “subconjunto o parte” que llamamos
“muestra”, y con la informacion adquirida en dicha muestra
mediante observacion o encuesta de sus unidades, realizar
estimaciones o inferencias sobre la poblacion finita entera o
magnitudes de ella (como la media poblacional, el total
poblacional, la proporcion poblacional, el porcentaje poblacional,
0 la varianza poblacional) y asi inferir sobre aspectos importantes
de la poblacion finita de los que estamos interesados en conocer.

Al tratar de seleccionar la muestra de la poblacion finita,
surge de modo natural la pregunta de como seleccionar la muestra
en la practica. La respuesta viene dada por métodos probabilisticos,
si queremos tener estimaciones insesgadas, o justas en promedio de
las magnitudes o funciones paramétricas poblacionales.

Estudiaremos el modelo de muestreo en el que a cada unidad
de la poblacién finita se le asocia un unico numero real “y”
desconocido y fijo antes de ser observado, que es el valor de la
variable en estudio, también llamada “variable de interés”. Como
ejemplo, la variable de interés puede ser el “numero de hijos” en
una poblacion finita compuesta por todas las “familias de una
region administrativa”.
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Las unidades de la poblacion estan identificadas por un
nimero que las numera a cada una. Esta identificacion permite
seleccionar la muestra de modo probabilistico, de modo que el
estimador basado en la muestra identificada tendra una distribucion
probabilistica que depende del procedimiento de seleccion de
unidades en la muestra y de los datos observados que se incorporan
al estimador. Por ello, la distribucion del estimador es algo que el
investigador crea y controla al elegir el método de seleccion de la
muestra y del metodo de estimacion, y también depende de los
datos fijos de la variable de interés en las unidades de la poblacion
finita que el investigador debe respetar al observarlos o al
encuestar.

Una poblacidn finita (o universo) es una coleccién o conjunto
de unidades numeradas del 1 al N, es decir, el conjunto

U=1{1,2, ..k .. N}

donde el ndmero entero N se llama “tamafio de la poblacion”, y
verifica

0< N < o0,

La identificabilidad de las unidades permite acceder a
cualquier unidad de la poblacion finita, si dicha unidad es
seleccionada en la muestra probabilistica o aleatoria concreta. En
un caso concreto esta identificabilidad puede ser el listado de
nombres y direcciones o teléfonos de las personas que componen
la poblacion, o bien la localizacion con coordenadas GPS de la
posicion de los arboles si la poblacién son arboles de una
plantacion. Las unidades de una poblacion finita son identificables
si pueden ser numeradas univocamente de 1 a N, y el nimero de
cada unidad es conocido permitiendo la accesibilidad a la unidad
por tal nimero para la observacion de su variable de interés.
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Cada unidad numerada k tiene un namero y, asociado
cuando la caracteristica en estudio es y, resultado de la medida
exacta y sin error de la variable y en la unidad k. De este modo la
“observacion numerada” sera el par (k, yy).

El vector y = (y1,¥2, ..., ¥n) €s el “vector paramétrico” de
la poblacion finita, en el que las unidades k de 1 a N estan
localizadas por su posicion en el parametro o vector y.

El “espacio paramétrico” es el espacio N-dimensional donde
puede variar el vector paramétrico, puede ser en el caso general R¥
si cualquier valor y, es un nimero real, RY si cualquier valor y,
es un nimero real positivo, {0, 1}V si y, puede tomar el valor 0 “si
la unidad k no posee cierta cualidad” o el valor 1 “si la unidad k
posee cierta cualidad”, siendo k = 1,2,...,0 N.

Una funcion real definida sobre el espacio paramétrico se
llama “funcion paramétrica”. La inferencia en poblaciones finitas
se centra en el disefio de muestreo y en la estimacion de una funcion
parametrica especificada, y a veces tedricamente sobre el propio
parametro y. Dos funciones parameétricas de importante relieve son
la “media poblacional” que definimos

N
=)
y_N yk’

k=1

y la “varianza poblacional” que definimos

1 N
2__5 _ S\2
k=1

en donde y aparece definida anteriormente como media
poblacional. Por lo general la inferencia en poblaciones finitas se
centra en inferir sobre la media poblacional, mientras que la
inferencia sobre la varianza poblacional tiene un interés
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suplementario al permitir a veces estimar insesgadamente esta
funcion parametrica y como consecuencia, también en muchos
casos, permite estimar sin sesgo la varianza del estimador
insesgado de la media poblacional. Indicamos que tanto la media
poblacional como la varianza poblacional son dos valores reales y
concretos, verdaderos, que existen objetivamente y por tanto tiene
sentido estimar esas cantidades son ciertas, exactas o fijas, aunque
desconocidas para los patrocinadores de la encuesta. Esto no ocurre
en otros tipos de inferencia, donde solo es posible suponer la
existencia de ciertos parametros si la poblacion fuera como se
supone en dichas teorias, pero sin prueba de que esas teorias sean
ciertas en las realidades a las que se desean aplicar.

Un caso particular importante de media poblacional se
presenta cuando la variable de interés toma exclusivamente valores
0 0 1, y entonces recibe el nombre de “proporcion poblacional”. Si
Ilamamos P a la proporcion poblacional, entonces la varianza
poblacional admite la expresion siguiente

g2=P—-P2=P(1-P).
Llamamos “muestra ordenada” a la secuencia

s = (ky, ka, o kncs))

tal que k; es la i-ésima unidad de la poblacion finita segun el orden
de aparicion en la muestra ordenada s. Recibe el nombre de
muestra ordenada porque conserva el orden en que van apareciendo
las unidades de la poblacion en la muestra, pudiendo aparecer
unidades repetidas en distintos lugares de la muestra ordenada por
un procedimiento de muestreo determinado.

El “tamafio muestral”, que denotamos n(s), es el nimero de
unidades con sus repeticiones aparecidas en la muestra ordenada s.
Este numero llamado tamafio muestral de una muestra ordenada
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puede ser mayor que el tamafio poblacional N cuando aparecen
unidades repetidas en la muestra.

Notaremos
S = {s:s es muestra ordenada}

al conjunto de muestras ordenadas con un procedimiento de
muestreo.

Asi, por ejemplo, si la poblacion finita es U = {1, 2, 3},
muestras ordenadas pueden ser s; = (1,2), s, =(3,1), s53 =
(2,2),6s,=1(1,3,2,1).

El “tamano muestral efectivo” de una secuencia s es el
numero de componentes distintos que tiene, y se denota v(s). Asi,
por ejemplo, v(s;) =v(s,) =2, v(s3) =1, y v(s,) = 3. Pero
sus tamarios muestrales son n(s,;) = n(s,) = n(s3) = 2, mientras
que n(s,) = 4.

Dada una secuencia o muestra ordenada s, podemos construir
el conjunto de sus unidades distintas

s = {k: k es componente de s},

y entonces, v(s) = card(s), donde hemos denotado por card(s) al
numero de unidades o elementos del conjunto s. Este nimero es
siempre un nimero menor o igual que N ya que el conjunto s esta
contenido en la poblacion finita U cuyo cardinal es N, finito.

Llamamos “muestra no ordenada” a todo conjunto s no vacio
subconjunto de U, es decir que verifica ¢ #s c U. Se llama
muestra no ordenada porgue no influye el orden de seleccion de las
componentes o unidades en el conjunto s, asi como tampoco
influye la multiplicidad de unidades en la muestra. El conjunto de
muestras no ordenadas y no vacias lo denotamos por

S={s:p#scU}=pW)-{¢},
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pues coincide con el conjunto de partes de U, excluyendo al
conjunto vacio. Si el conjunto A tiene card(4) = N, entonces se
demuestra matematicamente que el cardinal del conjunto de partes
de A es

card[(4)] = 2%,
que incluye una unidad al contabilizar el conjunto vacio ¢.

Por tanto al excluir como elemento al conjunto vacio dentro de S,
resulta que card(S) = 2V — 1, puesto que el conjunto de muestras
no ordenadas S = o (U) — {¢}, y la poblacion finita U tiene
cardinal N, su “tamafio poblacional” o el niimero de sus elementos.

Asi, por ejemplo, si U = {1, 2}, el conjunto de muestras no
ordenadas sera

§ = {{13,{2},{1,2}}

y card(S) = 22 — 1 = 3 es el nimero de muestras no ordenadas
no vacias.

El “tamafno muestral efectivo” v(s) de una muestra no
ordenada s es ahora su nimero de elementos, es decir

v(s) = card(s).

Hemos denotado a las muestras por los simbolos s 0 s,
respetando la inicial de “sample”, que significa “muestra” en
inglés.

Llamamos “funcion de reduccion” a la aplicacion r:§ — S
tal que

r(s) = {k € U: k es componente de s} = s,
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es decir, la funcién de reduccion r elimina el orden y la
multiplicidad de las unidades de la muestra ordenada s,
transformandola en una muestra no ordenada s.

Por ejemplo, si tenemos un conjunto de muestras ordenadas
de tamario fijo 3, de una poblacion finita de tamafio 3, y una
muestra ordenada es s =(1,1,2) , entonces la funcién de
reduccion sobre esta muestra es r(s) = {1,2} = s € S. También
podemos obtener en este caso la relacion de reduccion inversa de
s, que sera

r 1(s)={(1,1,2),(1,2,1),(2,1,1),
(1,2,2),(2,1,2),(2,2,1)} c S.

Un “disefno muestral” es una funcion de probabilidad sobre S
0 S. Un “disefio muestral ordenado” es una aplicacién o funcion
p:S — [0,1] tal que p(s) = 0 para toda muestra ordenada s € S,

y ademas
Z p(s) =1

Un “diseno muestral no ordenado” es una funcion p: S — [0, 1] tal
que p(s) = 0 para toda muestra no ordenada s € S, y ademas

Z p(s) = 1.
SES

El disefio muestral puede introducirse a partir de un disefio
ordenado p(s), y desde éste podemos corresponder con un disefio
no ordenado asociado del modo

pe) = ) ),

ser~1(s)
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siendo 77 1(s) = {s € S:r(s) = s} c S el conjunto de muestras
ordenadas, s, tales que reducidas por la funcion de reduccion r dan
lugar a s, es decir que r(s) = s. También se puede postular como
punto de partida un disefio no ordenado. Por ejemplo, si s = {1, 2},
r~1(s) contiene las siguientes muestras  ordenadas:
(1,2),(2,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2), etc. No
existe, por tanto, una biyeccion entre el conjunto de muestras
ordenadas y el conjunto de muestras no ordenadas, en general. La
funcion de reduccion r no es biyectiva salvo casos triviales, como
por ejemplo, con un conjunto de muestras de tamafo fijo menor o
igual a 1.

Dado un disefio muestral, se define “probabilidad de
inclusion” my, de la unidad k € U en la muestra aleatoria s 0 s, a

re= Y s

SES}

My = Z p(s),

SESk

0 bien

donde S, = {s:k € s}y S, = {s: k € s}, es decir m;, es lasuma de
las probabilidades de las muestras, ordenadas o no, que tengan
como componente la unidad k € U.

La “probabilidad de inclusion de segundo orden” my,,, de las
unidades k y m en la muestra es

MTgm = Z p(s)

0 bien
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MTgm = z p(s),

donde ahora Sy,,, = {s:k,m € s} y Sy, = {s: k,m € s}. En este
caso, se suman las probabilidades de las muestras que tengan como
componentes o elementos a las unidades k e Uy m € U.

De modo similar se obtienen las probabilidades de inclusion
de Ordenes superiores my, -

Un disefio ordenado p se llama “disefio de tamafio fijo” igual
an, si el nimero de componentes de s, n(s), es constante e igual
a n para toda muestra s € S tal que p(s) > 0, y lo denotamos
TF(n). Un disefio ordenado (o no ordenado) se llama “disefno de
tamarfio efectivo fijo” igual a v, si el tamafio muestral efectivo v(s)
(o v(s)) es constante e igual a v para toda muestras € S (s € S)
tal que p(s) > 0 (p(s) > 0), y lo denotaremos disefio TEF (v).

En general, el “tamafio muestral efectivo esperado” de un
disefio muestral, es

7= ) V(s
SES
0 bien
V= Z v(s)p(s).
SES
El “tamafio muestral esperado de un disefio ordenado” es
= n()p(s).
SES

Ejemplo 1.1. Sea U =1{1,2,3,4,5} y tenemos el disefio no
ordenado siguiente:
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p((1,2)) = 3,p((3,4,5) = 3,p(3,4) =

En este caso los tamafios muestrales efectivos de las muestras son:
v({1,2}) = 2,v({3,4,5}) = 3,v({3,4}) = 2.

El tamafno muestral efectivo esperado es:

LN L
VEegTogTez Ty

Algunas de sus probabilidades de inclusion son:

1
m =1, =p{1,2}) = 3

Wl =

1
T3 =Ty = p({3, 4, 5}) + p({314}) = § + §

1
1
M2 = T35 = Ty5 = 3

T3 =TMq4 =Tq5 =T33 =Tlp4 =T25 = 0.

2

77:3’4_ = §

Ejemplo 1.2. Si tenemos la poblacién U = {1, 2,3,4,5,6,7} y el
disefio muestral ordenado definido por las probabilidades

1
p(1,1,2) =p(3,2,5) =p(4,6,7) =p(6,2,5) =p(7,1,7) = T

Ahora los tamafos muestrales efectivos son:

v(1,1,2) =v(7,1,7) = 2,
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v(3,2,5) =v(4,6,7) =v(6,2,5) = 3.
El tamafo muestral efectivo esperado es

sooiigly gl gt 1 13
VEegT g T og Tog T e =0

Algunas probabilidades de inclusion son:

2
m, =p(1,1,2)+p(7,1,7) = o

3 1 1 2 2 2
UY) =§:7T3 =§;7T4 =§»7T5 = §,7T6 =§,7T7 =§,
1
T2 = g»ﬂ1,3 =0, T4 = 0, M5 = 0, 16 = 0, 7 = g»
1 2 1
T3 = §»7T2,4 =0, Ty 5 = g»ﬂz,e = gﬂTzi =0,
1
T34 = 0, T35 = g»ﬂse = Tl3,7 0,
1
Tlys = 0, Ty =Ty 7 = g»
1
Ms6 = g»ﬂ5,7 = 0,167 = -

Una vez que la unidad k ha sido seleccionada en una muestra,
se procede a su observacion y medida para obtener el valor de la
variable en estudio o variable de interés de modo exacto, yy, por lo
que disponemos del par (k, y,). El “censo” consiste en conocer ¢l
conjunto de todos los pares de este tipo, es decir, conocer el
conjunto

{(k,yx): k € U}.
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Sin embargo, disponer de esta coleccion de datos puede ser de un
trabajo muy complejo y costoso, por lo que la inferencia basada en
unos cuantos de ellos seleccionados aleatoriamente, permite
conocer aproximadamente mediante una estimacion las funciones
paramétricas mas importantes.

Definimos “dato ordenado” d asociado a la muestra ordenada
s a la secuencia

d = ((k,y;):k €s).
El conjunto de datos ordenados lo denotamos por
D ={d:s € S}.

El “dato no ordenado” d es el conjunto de pares asociados a la
muestra no ordenada s, es decir

d ={(k,yx): k € s}.
El conjunto de datos no ordenados lo denotamos por
D ={d:s € S}.

El concepto de disefio muestral puede entonces extenderse a
los datos muestrales, ya que para toda muestra p(d) = p(s) y
p(d) = p(s), ya que la relacion entre dato y muestra es biunivoca
y requiere haber observado la variable de interés en las unidades de
la muestra, e incorporar dichas observaciones al dato.

Un estimador t es una aplicacion del conjunto de datos D o
D, y que toma valores reales, es decir t: D - R, o bient: D — R.
El estimador t es una variable aleatoria discreta que toma un
numero finito de valores reales v con la probabilidad

ple=vi= > p@
deD: t(d)=v
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si nos referimos a datos ordenados, o bien, si nos referimos a datos
no ordenados,

ple=vi= > p@
deD: t(d)=v
y Cuya esperanza matematica es
E@® =) tdp(d)
deD
0 bien
E® = ) tdp).
deD

También podemos sustituird e Dporse S, ydeD pors €S
en los indices de sumacion, debido a la correspondencia biunivoca
o biyeccidn que hay entre muestras y datos. La “varianza del
estimador” puede definirse como

V(t) = E{[t — E®)]*},

y el “error cuadratico medio” del estimador t para estimar la
funcion paramétrica f (y) es

ECM[t; f()] = E{[t — f(n]*}

Si el estimador t es insesgado para estimar la funcion
parametrica f (y), es decir, si E(t) = f(y), entonces

ECM(t) =V (¢t).

Pero en general, cuando el estimador sea sesgado (es decir, si su
esperanza matematica no coincide con la funcién paramétrica), no
seran iguales el error cuadratico medio y la varianza del estimador,
sino que ECM[t;f(y)]=V(®) +{B[t;f(¥)]}* , siendo
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Blt; f(y)] = E(t) — f(y) el sesgo de t para estimar f(y), como
demostraremos un poco mas adelante.

1.1 Algunos resultados basicos

Veamos a continuacion algunos resultados matematicos que
justifican el uso de la varianza de una variable aleatoria. También
veremos propiedades de los datos y de los estimadores.

Desigualdad de Schwarz

Sit; yt, son dos variables aleatorias o estimadores cualesquiera
tal que E(t?) y E(t3) existen, entonces:

E(t1t,)| < VE(DE(E3).

Demostracion
Sea x una variable real, entonces
0 < E[(t; — xt,)?] = E(t?) — 2xE(t,t,) + x?E(t3).

Como tenemos una ecuacion de segundo grado que es siempre
positiva o cero para todo valor de x, tiene a lo sumo una raiz la
ecuacion, y por tanto su discriminante tiene que ser negativo o cero.
Es decir,

4[E(t1t,)]* — 4E(tD)E(tF) < 0.

Por lo que podemos concluir que

|E(t t2)] < \/E(tf)E(tzz)
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Teorema 1.1. Sea t una variable aleatoria cualquiera tal que E (¢2)
existe, entonces:

Ellt—E@®I =yV(©).

Demostracion
Haciendo uso de la desigualdad de Schwarz
{E[It —E®OI}* = |E[It = E@®)] - 1]]* <
E{llt—EM®I*}-EQ*) =V ().

También se puede demostrar teniendo en cuenta la
convexidad de la funcién f(x) = x2. Asi, directamente

{E[lt —E@®II}* < E{[t —E®]*}=V(0).

Corolario 1.1. Sea t una variable aleatoria cualquiera tal que
E(t?) existe, entonces:

Ellt — fOI] < JECM[t; fF(¥)].

Demostracion

Sustituyendo en la anterior demostracion E(t) por f(y).

Por tanto, la desviacion tipica o raiz cuadrada de la varianza
del estimador t acota superiormente la desviacion absoluta media
del estimador. Esta desviacion absoluta media del estimador es su
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medida de dispersion mas natural y deseable, pues mide el
promedio de las desviaciones absolutas del estimador respecto a su
esperanza matematica. Pero tiene el inconveniente de que sus
propiedades matematicas la hacen desaconsejable. Sin embargo,
esto no ocurre con la varianza del estimador que tiene buenas
propiedades para su utilizacion, y que una vez calculada o bien
estimada, su raiz cuadrada o su desviacion estandar o tipica acota
superiormente a la desviacion absoluta media del estimador. De
aqui la importancia de la funcion paramétrica ‘“‘varianza del
estimador”.

Denotando por “sesgo del estimador” t para estimar la
funcion paramétrica f(y), a B[t; f(y)] = E(t) — f(y), podemos
dar otro resultado de interés. Hemos llamado B al sesgo por su
inicial de “bias” en inglés.

Teorema 1.2. El error cuadratico medio de un estimador t para
estimar una funcion paramétrica f(y), es igual a la varianza del
estimador mas su sesgo al cuadrado, es decir:

ECM[t; f)] = V() + {B[t; fN]}*.

Demostracion
ECM[t; f(n)] = E{[t — f(]*} =
E{[t—E@® +E® - fO]*} =
E{[t—EM®]+Blt; fON1}) =
E{[t —EM®I*} + {Blt; f O]} + 2E[t — E@®]BIt; f )] =
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V() +{BIt; f (I}

Por tanto, una propiedad importante para que el estimador sea
eficiente es que su desviacion cuadratica media sea pequefia, s
decir que su error cuadratico medio sea pequefio. Esto puede
conseguirse disminuyendo la varianza del estimador, y también
disminuyendo el valor absoluto del sesgo del estimador. El sesgo
del estimador puede ser cero, mientras que la varianza del
estimador tendra valor positivo en general salvo cuando se realiza
un censo de la poblacion o en casos muy particulares que carecen
de relevancia para la teoria inferencial en poblaciones finitas.

Teorema de la Esperanza Condicionada Promedio

Si (u, v) es una variable aleatoria que se concreta en un nimero
finito de puntos tal que p(u;v;)=p;; (=12, .., N;j=
1,2,..., M), entonces

E(u) = E[E(u|v)] = E1E;(u).

Demostraciéon

M M N
ELE(ulv)] = z pE(ulv;) = z P.j Z Wiy =
Jj=1 j=1

i=1

M
U; Z Pij = Z u;p;. = E(u),

j=1 =1

Z Uipij =

j=11

M N
j =1 i

N N
=1 [
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donde hemos denotado la probabilidad condicionada

i D,

El razonamiento es valido para poblaciones infinitas cuando
existen las esperanzas matematicas.

Teorema de Madow

Sea t una variable aleatoria que toma un namero finito de valores
reales. Entonces

V() = V,E,(t) + E{V, (£).

Demostracion
Sea E(t) = T. Entonces
V() = E[(t — T)*] = E1Ex[(c — T)?].
Pero
E;[(t —T)?] = E;(t*) — 2TE,(t) + T* =
[E,(£)]? + V,(t) — 2TE,(t) + T2,

Ahora se promedia sobre las concreciones de la primera etapa, y
como T = E;E,(t),

V(t) = E{[E;(0)]? — T* + E1 [V, (D)] = V1[E; (D] + E1 [V, (D)].

La férmula de Madow es generalizable a tres 0 mas etapas,
del modo
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V(t) = ViE;E5(t) + E{V,E3(t) + E1E;V3(t)
donde
E(t) = E{E;E5(t),

etc.

Una generalizacion del Teorema de Madow es el resultado
siguiente, que puede demostrarse de modo similar al ya visto
anteriormente. Si t; y t, son dos variables aleatorias o dos
estimadores, su covarianza incondicional es

Cov(ty, ty) = Covy|Ey(ty), E2(t2)] + Eq[Cov, (4, t2)],

donde E, es la esperanza condicional, y Cov, es la covarianza
condicional.

El “coeficiente de correlacion” entre dos variables aleatorias
X eY,ysedenota p, se define como

Cov(X,Y)
JV OV (Y)

p=pXY)=

Desigualdad de Markov

Si t es una variable aleatoria positiva 0 cero, existe su esperanza
matematica, y e > 0 una constante real, entonces:

E(t) = ep(t = e).
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Demostracion
E(t)=E(t|t<e)p(t<e)+E(t|t=e)p(t=e)=

E(t|t=e)p(t=e)=ep(t=e).

Desigualdad de Chebychev

Si t es una variable aleatoria cuya varianza existe, y e > 0 es una
constante real, entonces:

V(t)

p{lt —E(®)| <e} > 1-—5

Demostracion

Haciendo uso de la desigualdad de Markov,

E{lt—E@®]*} _ V()

e? e?

p{lt —E(t)]* = e?} <

Entonces, la probabilidad del suceso complementario es la
buscada, que es mayor o igual a 1 menos la cota superior del

suceso. Si fuese e > /V (¢t), la cota inferiores 1 — V(t)/e? > 0.

Generalizacion de la desigualdad de Chebychev

Si t es una variable aleatoria cuya varianza existe, f(y) una
funcion paramétrica cualquiera, y e > 0 es una constante real,
entonces:
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ECMI¢; f (y)]
e?

pllt—f)|<e}=1-

Demostracion

La demostracion es analoga a la de la desigualdad de Chebychev y
sustituyendo ahora E (t) por la funcion paramétrica general f(y).
También podemos razonar directamente asi:

ECM[t; f)] = E{[t - f]*} =
pilt — fFW1* <e®E{[t — fFI°Ilt — F(]* < e’} +
pilt = fOI* =2 e*3E{[t — FDI[t — F]* 2 e} =
pilt = fO]? = e23E{[t — FI°I[t — fF(N]* = €%} =
plit—f)l =e] e

Luego,

ECMIt; f(y)]
e?

pllt—f| =e] <

O bien,

ECMIt; f(y)]
82

pllit —fl<el=1-

Ademas del poder explicativo de la desigualdad de
Chebychev en la estimacion de una funcion paramétrica con un
estimador insesgado de la misma, en términos de probabilidad de
una desviacion absoluta maxima, la varianza del estimador es util
para acotar en terminos esperados a la desviacion absoluta debido
al teorema 1.1 consecuencia de la desigualdad de Schwarz. Lo
mismo podriamos decir del error cuadratico medio del estimador,
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que es util para acotar en téerminos esperados a la desviacion
absoluta del estimador t respecto de la funcion paramétrica f(y),
como consecuencia del corolario 1.1.

Una consecuencia de la desigualdad de Chebychev es que si
tenemos estimadores independientes t,,t,,...,t, con la misma
esperanza matematica T, podemos decir que el estimador

t1+t2+"‘+tu
B u

sigue siendo insesgado para estimar T, y ademas

V(ty) +V(t,) + -+ V(tu)

p(lt =TI <e)>1- =

Teorema 1.3. Si ty4,t,,...,t, son u estimadores o estadisticos
incorrelacionados con idéntica media T y existen sus varianzas,
entonces un estimador insesgado de la varianza del estimador

_t1+t2++tu
B u

es el siguiente

_ 1 < 1
o) = u(u—1) ;(ti —0° = u(u — 1)(

F'M:
Juy

t? — ut2>.

Demostracion

E[V()] = {2 [V(t,)+T*] —ulV(t) + Tz]}

i=1
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u(u—l) ZV(t) ()| =

T VO —w Ol =V ).

El estadistico o estimador t es el compendio para estimar sin

sesgo T,y V(t) es el estimador de grupos aleatorios de la varianza
de t.

Teorema 1.4. Sean dos estrategias insesgadas de la misma funcion

paramétrica f (y1, Vo, ...,¥n) = f(¥), que denotamos por (py,t;)
y (p,, t,), siendo p; y p, dos disefios muestrales, y t; y t, dos
estimadores asociados a sus disefos respectivos. Si la estrategia
muestral (p;,t;) dispone de un estimador insesgado de su

varianza, denotémosle por V (p4, t;), entonces:

La estrategia insesgada (p,,t,) dispone de un estimador
insesgado de su varianza cuya expresion €s

V(pyty) =t5 —tf + V(py, ty).

Demostracion

Para ello, partimos de que por ser estrategias insesgadas

E(plrtl) = E(pz;tz) = f(y)

Ademas,

V(p1,t1) = E(py, t5) — [f ]~

V(pa t2) = E(p2, t5) — [f (]
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Por tanto,

V(ps t2) = E(py, t3) — E(py, t2) + V(py, ty).

De donde sustituyendo las funciones paramétricas del segundo
miembro de esta Ultima ecuacidn por sus respectivos estimadores
insesgados, obtenemos el estimador insesgado V(p,,t,) de la
varianza V (p,, t,). En concreto,

V(pyty) =t5 —tf + V(py, ty).

El estimador t; depende del dato seleccionado con el disefio
muestral p,, el estimador t, depende del dato seleccionado con el
disefio muestral p,, y el estimador V(py,t;) depende del dato
seleccionado con el disefio muestral p; y del estimador ¢, .

Una observacion a tener en cuenta es que si los disefios
muestrales p; y p, no son coincidentes, entonces se tienen que
seleccionar dos muestras, independientes o no, cada una de ellas de
acuerdo con su disefio muestral. Si fueran coincidentes, solo seria
necesario seleccionar una muestra de acuerdo con el disefio
muestral comun.

Para finalizar este capitulo, veamos el teorema de Rao-
Blackwell que garantiza que a efectos inferenciales de la eficiencia
de la estimacién basta considerar el dato no ordenado, pues es
suficiente para conservar la informacion necesaria para la
estimacion eficiente. Sin embargo, los disefios muestrales
ordenados también se usan en la practica porque tienen la ventaja
de que cuando una unidad de la muestra esta repetida, se puede
ahorrar el coste en trabajo y econdémico de obtener el mismo dato
para dicha unidad en las veces que se presenta con multiplicidad
mayor o igual a 2 en la muestra ordenada.
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Dado un estimador t(d) definido para datos ordenados,
podemos definir el estimador asociado t*(d) definido sobre el
conjunto de datos no ordenados siguiente

ZsEr‘l (s) t (d)p (d)
p(s) '

Es decir, para el dato d el estimador t* toma el valor promedio de
los valores de t(d) siempre que r(d) = d. Observar también que

t*(d) = E(t | d) =

p(S) = Zser‘l(s)p(s) = Zser‘l(s)p(d)-

Teorema de Rao-Blackwell

Dado un estimador sobre datos ordenados t, el estimador asociado
t* sobre datos no ordenados verifica:

1. E(t") = E(t).
2. V(t*) < V().
3. ECM(t*) < ECM(t).

Demostracion
1. Como
E(t*) = E[E(t|d)] = E(t).
2. Como

V(t*) = E[(t")*] = [E@)]?,

V() = E(t*) — [E(D)],

basta con probar que
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E[(t")?] = E{[E(t | D]*} < E[E(t?| )] = E(t?).
3. Cierto porque
ECMt*) =V(t*) +[B(t)]? <V(t) + [B(t)]? = ECM(t),
alserV(t*) <V(t)yB(t*) = B(t),yaque E(t*) = E(t).

1.2 Ejercicios resueltos

Ejercicio 1.1. Un mismo disefio muestral y estimador insesgado se
han empleado en dos ocasiones sucesivas independientes para
estimar cierta funcion paramétrica poblacional. Obtener una
estimacion mejorada de la misma funcion paramétrica poblacional,
y un estimador insesgado de su varianza.

Solucion. Sean t; y t, las dos estimaciones obtenidas con el
mismo diseflo muestral y estimador insesgado de T. Otro estimador
insesgado de la misma funcion paramétrica T es entonces
t; + t,
t = :
2
puesto que E(t) = [E(t;) + E(t,)]/2=2T/2 =T.

Su varianza es menor que cada una de las varianzas de t; y
de t,, pues como

V() =V(t) =V,

la varianza de t verifica

t t V(t V(t |74
1‘52)= (t1) + V(L) <V

V(t)=V( ; =~
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Es decir, se ha reducido a la mitad, por lo que el estimador
propuesto t es mas preciso que t; y que t,.

Un estimador insesgado de la varianza de t es el estimador
insesgado de la varianza para grupos aleatorios que puede
escribirse asi

R 1 <
V() = m;(ti —t)?

donde en nuestro caso, es n = 2. Es decir,
(7 1 2 2 2
V() = E[t1 + t5 — 2t(t; +t,) + 2t°] =

E(t?) — t2,
Asi pues,

|4
2

E[7(t)] = EE(¢?) —E(t2) =V + T2 — (g +17) =2 =V (.

Ejercicio 1.2. El estimador insesgado de la varianza de un
estimador t, V(t), ¢sirve para acotar una medida promedio de la
desviacidn absoluta del estimador respecto a su media?

Solucion. Una consecuencia de la desigualdad de Schwarz es que
si existe la varianza de t, como ocurre en la inferencia en
poblaciones finitas con observaciones fijas, entonces

E[lt—E®I] = yV ().
Por tanto,

{E[lt —EM®I]}* < V().
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Asi podemos decir que el cuadrado de la desviacion absoluta
del estimador a su media, esta acotado superiormente por la
varianza del estimador. Sin embargo, aunque el estimador
insesgado de la varianza del estimador estima sin sesgo la varianza
del estimador, puede oscilar aleatoriamente y algun valor pequefio
de V(¢) podria no ser cota superior del cuadrado de

Ellt = E@II,

que es esta Ultima férmula la desviacion absoluta media del
estimador. En conclusion, el estimador insesgado de la varianza no
sirve como cota superior en general. Sin embargo, como este
estimador de la varianza V (t) suele converger a la varianza V (t)
cuando el tamafio muestral es suficientemente grande, tal estimador
puede ser una buena aproximacion a la cota superior VV(t) y valer
como cota superior estimada del cuadrado del promedio de la
desviacion absoluta de ¢.

Ejercicio 1.3. Aplicar la desigualdad de Chebychev para estimar
por intervalo la media poblacional, conociendo el estimador
insesgado t de la media poblacional, y un estimador insesgado de
la varianza del estimador, V (t), que converge a V(t) para muestras
de gran tamairio.

Solucion. La desigualdad de Chebychev nos garantiza que

14 14
plle—E@l <e}21- 2~ 102

De esta manera, el intervalo de confianza para la media poblacional
es

(t—et+e),
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y tiene una probabilidad aproximadamente mayor o igual (tanto
mas aproximada cuanto la convergencia de V' (t) sea mas rapida)
que el valor estimado

V()
eZ

Ejercicio 1.4. La media aritmética de diez estimaciones con el
mismo disefio muestral y estimador insesgado independiente, es 3.
Si la suma de las estimaciones insesgadas de las varianzas de cada
uno de los diez estimadores es 1, obtener una cota aproximada del
nivel de confianza del intervalo (1, 5) para estimar la esperanza de
cada uno de los diez estimadores.

Solucién. Sea la media aritmética

10
=
104t
=1

de las diez estimaciones. El intervalo de confianza para la
esperanza de t se obtiene con la desigualdad de Chebychev

Ve T
e’ 102e2
1

1 —
100e?

p{lt —E(t)|<e}=1-

Como el intervalo de confianza es (1,5) y t = 3, resulta que la
amplitud del intervalo es e = 2, por lo que la cota inferior del nivel
de confianza aproximado es

1 399

1-— = :
100e? 400
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Luego, es muy probable o practicamente casi seguro que la
media poblacional esté en el intervalo (1,5). En concreto con
probabilidad superior aproximadamente a 399/400.

Ejercicio 1.5. Con los datos del Ejercicio anterior, si nos piden
contrastar la hipdtesis de que la media poblacional es 4, ¢se
aceptara la hipotesis al nivel de confianza 399/400? Y si la
hipotesis fuera que la media poblacional es 6, ;se aceptara la
hipotesis al mismo nivel de confianza?

Solucién. Como el intervalo de confianza (1, 5) tiene un nivel de
confianza superior o igual aproximadamente a 399/400, como

4€(1,5 =R

se acepta la hipotesis de que la media poblacional sea 4 a ese nivel
de confianza al menos, pues 4 pertenece a la “regidn de aceptacion”
R. También, como

6¢(1,5)

la hipdtesis de que la media poblacional es 6 se rechaza con ese
nivel de confianza al menos, aproximadamente. Esto se debe a que
6 no pertenece a la regién de aceptacion R, es decir, 6 pertenece a
la “regidn critica” o de rechazo R = R — R, complementaria a la
region de aceptacion.

Ejercicio 1.6. Sea t un estimador insesgado de la funcion
paramétrica a en una poblacion finita con observaciones fijadas.
¢Qué nivel de confianza minimo aproximado nos asegura que la
funcién paramétrica se encuentra en el intervalo de confianza
(t—e t+e)?
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Solucion. El nivel de confianza minimo nos viene dado por la
desigualdad de Chebychev

V(t)

p{lt—al<e}=>1- 2

Asi el nivel de confianza minimo para que
a€(t—e,t+e)
viene dado por

40,
-

1

de donde podemos aproximar esta cota inferior del nivel de
confianza por

40
- (t — ag)?
siendo V() un estimador insesgado de la varianza del estimador t,
y a, el valor concreto de la funcion paramétrica que deseamos
contrastar o valor de a en la hipdtesis nula a contrastar. Asi
tenemos un valor aproximado del minimo nivel de confianza que

aceptaria la hipotesis de que la funcidén paramétrica poblacional «
tomara el valor «.

Ejercicio 1.7. Demostrar la siguiente relacion:

N N N
ZNZ(yk —-y)* = z z Wk — Ym)?,
k=1

k=1 m+#k

donde
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N
__12
y_N yk'

k=1

Solucion. Desarrollando por el segundo término de la igualdad
pedida,

N N N N
Z Z Wk —Ym)? = Z Wk — ym)? =
k=1m=k k=1m=1
N N N N N N
zzy£+22y%—222ykym=
k=1m=1 k=1m=1 k=1m=1
N 1 N
2N2y£ — 2N%y* = 2N? (NZ Vi —;vz> =
k=1 k=1
N N
2 1 =\ 2 2
N2> (=302 = 2N ) G =)
k=1 k=1
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Capitulo 2

Muestreo aleatorio simple

En este capitulo vamos a estudiar el procedimiento de “muestreo
aleatorio simple”, al que se le suele afadir la expresion “con
reemplazamiento”. Le llamamos asi porque es el nombre que se da
al tipo de muestreo usado en la inferencia estadistica tradicional, es
decir tomando observaciones independientes e idénticamente
distribuidas entre las unidades de la poblacion finita. Para las
sucesivas selecciones de las unidades se reincorporan las unidades
anteriormente seleccionadas, de aqui la denominaciéon “con
reemplazamiento”. Se le suele denotar por las siglas mas. También
se la denota por las siglas mpir de “muestreo de probabilidades
iguales con reemplazamiento”.

2.1 Disefio mas

El disefio de “muestreo aleatorio simple” o “muestreo aleatorio
simple con reemplazamiento” es un disefio muestral ordenado p
definido sobre las muestras ordenadas concretadas en las
secuencias de tamafo fijo n. Es un disefio TF (n) por tanto.

Este disefio muestral puede definirse como el disefio
ordenado p sobre el conjunto de muestras ordenadas S, de modo
que cada secuencia s € S de tamafio muestral n(s) = n tiene una
probabilidad de ser seleccionada p(s) = 1/N™, y para las restantes
secuencias p(s) = 0.
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Una caracterizacion de este disefio seria reproducible
seleccionando una bola de una urna que contiene N bolas,
numeradas del 1 al N. Una vez seleccionada una bola, se anota su
nimero como la primera componente de la secuencia y
seguidamente se reincorpora la bola extraida a la urna, de modo
que en la segunda seleccion se obtenga con igual probabilidad
también cualquier unidad de la 1 a la N, independientemente del
resultado de la primera extraccion. Luego se reincorpora la segunda
bola seleccionada a la urna de nuevo. Repitiendo este proceso n
veces, se selecciona una secuencia de tamafo muestral n, con 0 <
n.

Con este diseio muestral ordenado, las distribuciones
marginales de la secuencia son iguales e independientes entre si.
Existen en este disefio N™ muestras ordenadas de tamaro fijo n. El
disefio muestral verifica que

NIOE N"%= 1.

Las probabilidades de inclusion en este disefio muestral mas
son

n

1
nk=p(k€s)=1—p(k6£s)=1—(1—ﬁ)

para toda unidad k de la poblacion finita. Observar que si k; es la
unidad i-ésima de la secuencia muestral

n n
ke)—ﬂ(k £ k) = u—(1—1)11
p(k &s) = | [Pl =l 1~ 7 N
i=1 1=1
Las probabilidades de inclusion de segundo orden son

Tem =plkymes)=1—plkom¢&s) =
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1-—pkés)—pmés)+plkym¢és) =
(a0 R )

1—2(1—%)n+(1—%) )

para todo par de unidades k y m distintas de la poblacion finita.

2.2 Estimacion de la media poblacional en mas

El estimador usual de la media poblacional y con este disefo
muestral es la media muestral y, cuya representacion es

n

B _1 _1

Vs _leyki —nZJ’k»
i=1

kE s

siendo k; la i-ésima unidad de la secuencia muestral ordenada, es
decir cuando la muestra ordenada es s = (kq, ko, ..., k;,).

Esta media muestral es insesgada para estimar la media
poblacional. En efecto, la esperanza matematica de y, coincide con

y.
1% 1% 1
EGG) =E —2 | =—ZE =—ny =7,
(¥s) (n_lykl> n s (vk,) —ny =y
i= i=

por distribuirse idénticamente la variable y,. a la variable y
equiprobable en todas las unidades de la poblacion finita, es decir

1 1 1
E(yx,) = E() =iy +tyegt oty =9

Por tanto el sesgo de la media muestral con disefio mas para estimar
la media poblacional es
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B(¥s; y) = E(¥s) =y = 0.

La varianza de la media muestral y, puede obtenerse asi

VG =V (%Z yki) Ly (Z yki> _

n

2
1 1 , O

n? i=1 Vo) = 2 T

debido a que las variables y, son independientes e idénticamente
distribuidas a la poblacion con unidades equiprobables.

2.3 Estimacion de la varianza en mas

Un estimador insesgado de la varianza poblacional o2 para el
disefio mas es la cuasivarianza muestral definida como

2 1 C —\2
s? = Z(yki—ys) -
i=1

n—1

En efecto,

(= Ds? =D e =) =) (=7 +7-%) =
i=1 =1

D =9 +nG -5 +2G -7 ) (i, — ) =

i=1 =1

D =) =G -9
i=1
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Por lo que tomando esperanzas matematicas en el primer y el
ultimo miembros, tenemos que

(n = DEG?) = ) E|(v, = 5)°] ~ nElGs — 7)) =
i=1

0.2
no? —nV(y,) = no? — n—= (n—1)o2.

De donde deducimos simplificando que E(s?) = a2, es decir que
la cuasivarianza muestral es insesgada en el muestreo aleatorio
simple para estimar la varianza poblacional. También podemos
escribir que el sesgo B(s?; 02) = 0. Ademas s? es estimador
Optimo de o2 para distribucion libre (Zacks, 1971, p. 150).

Como consecuencia, ya que la media muestral y; es
insesgada para estimar la media poblacional y y su varianza es
o?/n, un estimador insesgado de esta varianza de la media
muestral es s%/n. También es usual denotarlo del modo

Ciertamente,
. s? 1,0 1 ~
E[VGo)] =E|—)=—~E(s*) =~0% = V(5).

O bien,

B[?(ys); V(:)_’s)] = 0.

2.4 Estimacion del total poblacional en mas

La funcion paramétrica “total poblacional” es definida como
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N
k=1

Un estimador insesgado de T, que emplea la informacion del
tamario poblacional N, es T = Ny. En efecto,

E(T)=EWNy;) =NE(¥;) =Ny =T.

La varianza del estimador Ny es

2
V(T) = V(Nys) = N2V(j,) = N? %

Un estimador insesgado de esta varianza es V(T) = N%s?/n. En
efecto,

s2 N2 N? _
n)

ElV(T)]|=E <N2— = 7E(sz) = 702 = V(7).

2.5 Estimacion de la proporcion poblacional en mas

La “proporcion poblacional” P es la funcion paramétrica “media
poblacional” y cuando la variable de interés y toma valor 1 6 0 en
cada unidad de la poblacién segin posea o0 no una cualidad
respectivamente la unidad. Por ejemplo, tener sexo varon al nacer
una persona si la poblacion finita es de seres humanos. La
proporcion poblacional sera

pero ahora
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B {1 si la unidad k posee la cualidad
Yk =10 sila unidad k no posee la cualidad

Se trata por tanto de un caso particular de media poblacional que
toma valores comprendidos entre 0 y 1.

El estimador insesgado de la proporcion poblacional P es la
proporcion muestral P = g, cuya varianza puede expresarse ahora
~ 0% PQ
V(P)=—=—
(P)=—=—

siendo Q = 1 — P la proporcién poblacional de unidades que no

poseen la cualidad; ya que al tomar y, valores 1 6 0, y& = y,
deducimos que

N
1
az=—zy,§—y2=P—P2=P(1—P)=PQ.
n
k=1

Del mismo modo, la varianza muestral es PQ = (n — 1)s?/n,
siendo Q =1 — P la proporcién muestral de unidades que no

poseen la cualidad. Por tanto, un estimador insesgado de la
varianza de la proporcion muestral es
PQ

7(p) = —

La estimacion del “porcentaje poblacional” es un caso similar
al de la “proporcion poblacional”, ya que el porcentaje es la
proporcion multiplicada por 100. El estimador insesgado del
porcentaje 100P, es 100P, cuyo estimador insesgado de su
varianza es

_ . 10*PQ
7(100P) = ¢

n—1"
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Su uso es muy practico, por ejemplo, en la estimacion del
porcentaje de voto a un partido politico.

2.6 Tamano de la muestra con mas

La pregunta que nos hacemos es ¢cual es el tamafio muestral n
necesario para alcanzar un “error maximo de muestreo” e con una
probabilidad 1 — a? A “1 — a” se le llama “nivel de confianza” de
la estimacion. En el muestreo aleatorio simple, la media muestral
v, verifica

1—«a

L V(¥s)
p{lys -yl <e}=1-—-=

e

De esta manera obligamos a que 1 — a sea una cota inferior del
nivel de confianza verdadero de la estimacion. Luego,

= 2
0= V(¥s) 0
e? ne?
que implica que
0.2
n=—
ae?

es el tamafio muestral que asegura tener un error absoluto maximo
de muestreo e con un nivel de confianza mayor o igual a 1 — a.
Asi, una vez fijados e y 1 — a, el tamafio muestral buscado es una
funcidn paramétrica proporcional a la varianza muestral, por lo que
es estimable insesgadamente por

So

n=—
ae?’
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donde s¢ es la cuasivarianza muestral en una muestra piloto de
tamarfio n, previa al estudio con disefio mas. En el caso de estimar
una proporcion poblacional P, se verificaria
Mo Py Qo
(ng — Dae?

n=

siendo P, y Q, las proporciones muestrales respectivas de la
muestra piloto de tamafio n,.

En el caso de la estimacién de un porcentaje 100P, el tamafio
muestral estimado insesgado a partir de la muestra piloto de tamario
n, verificaria

n0104130@0
(ng — Dae?

n=

Al tratarse el disefio mas de un procedimiento de muestreo
cuyas observaciones son idénticamente distribuidas a la poblacién
finita e independientes entre si, podemos utilizar el Teorema
Central del Limite y aproximar la distribucion del estimador media
muestral y, por la distribucion normal de la misma mediay y la
misma varianza o2 /n. Esto es especialmente practico cuando el
tamafio muestral es grande y nos permitiria obtener tamafos
muestrales aproximados al hacer uso de la distribucion normal ya
tabulada. La idea se formaliza haciendo la aproximacion a la
distribucion normal de parametros 0 y 1, estandarizando o
tipificando la variable aleatoria media muestral. Como tenemos la
distribucion aproximada

\/ﬁ(ys T 3_’)
o

= N(0,1),

podemos buscar en las tablas de la distribucion normal el valor 4,
tal que
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plINO, D] <g]l =1—-a.

Una vez obtenido el valor tabular 1,, tenemos que

\/ﬁ(ys _ )_’)
o

< Ay

Es decir, con probabilidad aproximada 1 — «

R
Vs =Vl <—==¢,
Vn
donde e es el error absoluto maximo de muestreo que
consideramos. De donde, despejando n tenemos el valor

aproximado

2 .2
_ Ago

e?

n
que puede ser estimado insesgadamente en una muestra piloto
previa por

2.2

e?’

=

siendo s3 la cuasivarianza muestral piloto, que es un estimador
insesgado de la varianza poblacional o2.

2.7 Ejercicios resueltos

Ejercicio 2.1. Disponemos de una poblacion finita de tamafio N =
5y queremos estimar la media poblacional con disefio mas de
tamafo fijo n = 3. Proponer un estimador insesgado de la media
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poblacional, estimar ésta y estimar sin sesgo la varianza del
estimador propuesto, en estos casos:

a) Silamuestraess =(1,2,2),y, =4ey, =8.
b) Si la muestraes s = (1, 3,2), y ademas y; = 6.

Solucidn. EIl estimador propuesto en ambos casos es la media
muestral y;, que es insesgado para estimar la media poblacional.

a) La media muestral se concreta en este caso asi

B vi+y,+y, 4+8+8 20
Y(1,22) = 3 = 3 =?-

Una estimacion sin sesgo de la varianza de la media muestral viene
proporcionada por el estimador

donden =3,y

.1 Z( _)2_1(64+16+16)_16
> Tn-1L Ye = Ys) =59 "9 "9 )T 37
S

por lo que la estimacion insesgada de la varianza de la media
muestral es 16/9.

b) ¥(1,32) = 6y la estimacion insesgada de su varianza es 4/3.

Ejercicio 2.2. En el problema anterior, ;qué muestra es mas precisa
para estimar la media poblacional?

Solucion. Ambas muestras ordenadas son concreciones del mismo
disefio mas, por lo que no puede afirmarse que una muestra sea mas
precisa que otra, ya que la precision de un estimador se define como
la inversa de la varianza del estimador, y esta varianza incluye en
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su calculo a todas las concreciones de las muestras. La precision no
se define para una estimacién a no ser que conozcamos también la
media poblacional y calculemos su desviacion absoluta; en este
caso la estimacion mas precisa seria la que tenga menor desviacion
absoluta. Como desconocemos la totalidad del pardmetro, no
podemos calcular la media poblacional y por tanto tampoco la
desviacion de las dos estimaciones obtenidas a aquélla. En
conclusion, no podemos comparar las muestras segun su precision.

Aparentemente la muestra mas precisa es la que proporciona
una estimacion de la varianza del estimador mas pequefia,
concretamente 4/3 < 16/9, pero esto no indica necesariamente
que las estimaciones de las medias muestrales asociadas guarden
un orden de precision, pues se desconocen los valores y, e y: del
parametro y dependiendo de ellos pueden darse un caso u otro o
incluso la igualdad en desviacion absoluta.

Ejercicio 2.3. Tenemos una poblacion de tamafio N = 1000 y
queremos estimar la media poblacional con un error maximo de
muestreo e = 2y con un nivel de confianza minimo de 0.95. ;Qué
tamafio muestral es necesario con disefilo mas para que se
verifiquen estas condiciones? Aceptamos que de una muestra
piloto, hemos estimado sin sesgo la varianza poblacional por s§ =
7.

Solucidén. Aplicando la formula obtenida del estimador insesgado
del tamafio muestral para cualquier caso,
S5

n= o2 = 0.05 - 22 = 35 selecciones.

Admitiendo la hipdtesis de normalidad en la distribucion del
estimador media muestral, el valor de « = 0.05 determina un valor
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en las tablas de la distribucion N (0, 1) de 4, o5 = 1.96, por lo que
entonces el tamafio muestral estimado seria
A2s2  1.96-7
a0 ~ 6 7

ﬁ j— j—
e? 22

Por lo que bastaria tomar un tamafio muestral de 7 selecciones de
unidades. Observar que entonces el Teorema Central del Limite no
seria aplicable a la media muestral, pues su tamafio muestral 7 es
muy pequefio y el resultado de convergencia es asintotico, cuando
n es grande. No obstante el uso de la aproximaciéon por la
distribucion normal seria razonable si la poblacion finita tuviera
una funcion de cuantia uniforme discreta concentrada de modo
cercano a la forma acampanada de aquélla.

En cualquier caso la interpretacion es que en el primer caso
obtuvimos un tamafio muestral valido para cualquier distribucion
uniforme discreta de la poblacion finita y asegurando el nivel de
confianza, mientras que en el segundo caso se hace una hipotesis
aproximativa concreta a la distribucion normal que podria fallar, y
un nivel de confianza concreto exacto bajo dicha hipétesis falible.

Ejercicio 2.4. Se desea estimar la renta total mensual de un
colectivo de 200 trabajadores de una planta industrial. A este
efecto, se selecciona una muestra aleatoria simple con
reemplazamiento de tamafo 20, resultando una media muestral de
1680 euros y una cuasivarianza muestral de 40000 euros al
cuadrado. Proponer un estimador insesgado de la renta total,
estimarla y estimar sin sesgo su varianza.

Solucién. En este ejercicio, el tamafio poblacional es N = 200,
numero total de trabajadores de la planta; el tamafio muestral es
n = 20 selecciones de trabajadores encuestados en la muestra s; la
renta media muestral es y, = 1680 euros; la cuasivarianza
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muestral es s = 40000 euros al cuadrado. La renta total es un
total poblacional que puede estimarse por

Ny, = 200-1680 = 336000 euros.

Un estimador insesgado de la varianza del estimador Ny,
V(Nys), es el estimador siguiente que se concreta en la estimacion
que le sigue

N2 20072

V(Ny.) = —s? =
(Nys) —S 20

40000 = 8- 107 euros al cuadrado.

Ejercicio 2.5. Se quiere conocer una estimacion insesgada de la
varianza del estimador ‘“proporcion muestral” y ‘“porcentaje
muestral” que ha resultado ser del 4% de productos defectuosos de
entre 100 selecciones aleatorias por disefio mas de entre los 3546
productos terminados en una fabrica.

Solucion. En este ejercicio, el tamafio poblacional es N = 3546
productos terminados, el tamafio muestral es n = 100 selecciones
de entre los productos acabados, la proporcion muestral es P =
0.04 y el porcentaje muestral es 100P = 4%. Los estimadores
insesgados de las varianzas y su concrecion para la muestra
obtenida son

PQ  0.04-0.96

V(P) = — 59 — ~ 0.000388

7(100P) = 10*V(P) ~ 10*-0.000388 = 3.88
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Ejercicio 2.6. Una poblacion finita (“universo”) U de tamafio N
tiene un subconjunto de unidades (que llamamos “dominio™) D C
U de tamafio M < N. Tomamos una muestra aleatoria simple de
tamafo n de la poblacion finita. Demostrar que la submuestra de
tamafo m, 0 < m < n, de la muestra aleatoria simple de unidades
que estan en el dominio D constituye una muestra aleatoria simple
de la poblacion finita D de M unidades.

Solucion. Tenemos que demostrar que la submuestra ordenada s,
de tamafo m en D de la muestra aleatoria simple s,, de tamafio fijo
n en U, tiene una probabilidad de seleccion
1

P(Sm|Sn,m) = e
Para ello usamos la definicion de la probabilidad condicionada. Si
la muestra aleatoria simple s,, ha sido la muestra seleccionada, y
s, €S consistente con la muestra anterior s,,, es decir, hay tantas
unidades de D en s,, como unidades tiene s,,,

1 1 1

P(Smlsnm) = 37 = T

siendo la probabilidad p(sq|sn, m) = 0 en el resto de los casos, es
decir, cuando g no sea el numero de unidades m de la muestra
aleatoria simple ordenada s,, en el dominio D. En general el
numero m es aleatorio. La distribucion de probabilidad del valor
concretom = 0,1, ..., n, se distribuye binomial de parametros n y
M /N. Es decir,

panis = () () ()

Por lo que la probabilidad de s,, condicionada a que el tamafo
submuestral es m es un disefilo muestral ordenado caracterizado
por ser una muestra aleatoria simple con reemplazamiento de

n-m
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tamafio m obtenida del dominio D, de tamafio M . Asi, la
distribucion exacta de s,, (con m variable) condicionada a una
muestra aleatoria simple seleccionada s,, es:

p(smlsn) = p(mlsn)p(smlsn: m).

Ejercicio 2.7. Obtener el estimador insesgado de la media
poblacional y de minima varianza entre los estimadores de la clase

n

t= Z tiykil

i=1

donde k; es la i-ésima unidad seleccionada en la secuencia en la
muestra aleatoria simple de tamafio n de una poblacién finita.

Solucion. La condicion que el estimador t debe cumplir para que
sea insesgado es que

Et) =1y,

es decir que

ti=1-

n
i=1
Como la varianza de t es

n

V(t) = o? z t?,

i=1

siendo o2 la varianza de la poblacion finita, el problema se reduce
a minimizar la funcion V (t) bajo la restriccion de que E(t) = y. O
equivalentemente, a minimizar

76



o~
N-N

sujeto a que

tl':l.

n
i=1

Usando la técnica de los multiplicadores de Lagrange, tenemos el

lagrangiano
n n
A=Zti2 +A<Zti—1>,
i=1 1

i=

donde A es el multiplicador de Lagrange. Resolviendo,

on 26, +1=0

at, -7 7
Por lo que t; = c (constante). Como la restriccion es que nc = 1,
deducimos que ¢ = 1/n. Luego el estimador insesgado de minima
varianza de la media poblacional es la media muestral

n
=2

_n. yki'
=1

Ejercicio 2.8. Proponer un estimador insesgado de la media
poblacional de una poblacion finita U de tamafio N que contiene
un dominio D de tamafo conocido M, en el caso (a) de que la
muestra aleatoria simple s,, de tamafio n > 2 contiene unidades
del dominio y fuera del dominio, es decir, contiene m (1 <m <
n — 1) unidades de la secuencia de la muestra en D; y en el caso
(b) de que no sepamos si la muestra aleatoria simple de la poblacion
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finita contiene o no unidades del dominio y de fuera del dominio,
0 bien no sepamos el tamafio del dominio.

Solucion. En el caso (a), llamando s,,, a la submuestra aleatoria
simple del dominio cuya media muestral y; = y,, tiene por

esperanza matematica y, = y,,, la media del dominio, y llamando
s,—m @ la submuestra aleatoria simple fuera del dominio cuya
media muestral y; = j,_,, tiene por esperanza matematica
Yu—p = Yn-m, la media fuera del dominio, tenemos que como

M N—-M _

}_’=N3_’M+ N YN-M>

un estimador insesgado de la media poblacional es directamente

M_  N-M_
NYm + Tyn—m
que recibe el nombre de estimador posestratificado, pues hay dos

estratos en los que se divide o clasifica la poblacion finita: dentro
del dominio y fuera del dominio.

En el caso (b) la media muestral es un estimador insesgado
de la media poblacional en cualquier caso bajo muestreo aleatorio
simple de tamafio n, que en nuestro caso admite la expresion

m _ +n—m_
nym n yn—m-

Ejercicio 2.9. Demostrar que con disefio de muestreo aleatorio
simple con reemplazamiento de tamafo n, la covarianza de dos
medias muestrales correspondientes a dos variables definidas sobre
la poblacidon es igual a la covarianza poblacional de ambas
variables dividido por el tamafio muestral n.
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Solucion. Sean y y x las variables definidas en las unidades de la
poblacion. Denotamos por s a la muestra aleatoria simple de
tamafio n, y denotamos por i € s a las selecciones ordenadas por
i=1,2,..,n, es decir el orden de aparicion en la secuencia
muestral. Entonces,

Cov(Ys, Xs5) = E(YsXs) — yX =

1 __
E ﬁ(Zykl> Exkj —YXx =

ics jEs
[ n o n
") lz E(yi,xr,) + Z Z E ()’kixkj) —yxX =
i=1 i=1 j=i
1

=z [nai; + n(n — Dageap] — ajpaer =

l(a — Q10 )—&
- (11~ @10@o1 .

donde hemos denotado los momentos

Apq =7 / Vi Xi

N
1
Hpq = NZ(yi — ¥)P(x; — x)9.
i=1

Ejercicio 2.10. Obtener un estimador insesgado de la covarianza
poblacional a partir de una muestra aleatoria simple con
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reemplazamiento de tamafo n de dos variables y y x definidas
sobre las unidades de la poblacion.

Solucién. Consideramos la covarianza muestral m,,; de ambas
variables y y x. Calculamos su esperanza matematica:

%i(yki — 7) (e — ,zs)] _

E(my) = E

=1

n n
1 o 1 o
EE (Z Vi Xk; — nysxs> = E (Z ykixki> — nE(ysxs)] =
i=1 i=1
1 o _
~{na;, —n[Cov (T, %) + P2} =
1 ( )= n—1
n nay1 — 11 —N&19%p1) = n U1,

puesto que uy; = a1 — a1 POr tanto, un estimador insesgado
de u4, €S:

n

n 1

= mqa = ———0 =V )l X, — X ).

H11 n— 11 n—lz(yk‘ )’s)( ki s)
=1

Este estimador recibe también el nombre de cuasicovarianza

muestral.

Ejercicio 2.11. Proponer un estimador insesgado y de la media
poblacional ¥, asi como un estimador insesgado V(y) de su
varianza V(y), cuando se dispone de la media muestral de
observaciones e con errores de medida (que se aprovechan en el
estimador y) obtenida por muestreo aleatorio simple de tamarfio n,
y esta muestra se submuestrea con disefio de muestreo aleatorio
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simple con reemplazamiento de tamafio n’ en donde se observa el
verdadero valor de la variable de interés y.

Solucién. El estimador insesgado y de la media poblacional ¥, que
aprovecha la informacién con errores de medida en una primera
muestra aleatoria simple s de tamafio n, es:

y = és + dg,

Donde e es la media muestral de la muestra de las observaciones
con errores de medida (ey,, ey, ..,ex,), Y ds €S la media

muestral de la submuestra aleatoria simple s’ de tamafio n’ con la

. P _ . . /
variable desviacion dy, =yy, —e,, con i=12,..,n
Obviamente el estimador es insesgado, pues

EG)=E()+E(dg)=¢+y—e=7.
La varianza de y, V(¥), se obtiene asi:
V(y) =V(es) + V(ds) + Cov(és, dg,).

Ahora bien,

V(es) = ai/n,
y un estimador insesgado de esta varianza es

V(e =sé/n.
Aplicando el teorema de Madow,

V(ds) = E1Vy(ds,) + V1 Ez(ds),

donde

O-(J%(S) _ (Tl — 1)5621(8)

!

VZ (asl) = nl nn
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_ (n — 1)o?
E1V2 (dSI) = Td;

que puede ser estimable insesgadamente por

EV,(dy,) = Sdrisl)
También
E5(ds,) = d;
de donde

2
— o
VI E, (dsr) = f,

por lo que un estimador insesgado de esta Gltima expresion es

) 2 2 2
= 07 _ Sd(s) _ 9d(s) _ Sd(sn
VlEZ(dS')=7= n n-1 n-1

Finalmente, como

es =—[(n —n')es_s +n'egl,

:|»—x

. n - n 1 U
Cov(es, ds,) = Cov <z €/, ds,> = ;—E[Hn(s)] =

1

Un estimador insesgado de esta covarianza es:

): A11 . nﬁu(s) . nn’mn(sr)

C/O\U(e_s, CYS n—1 - (n _ 1)2 o (Tl — 1)2(n’ — 1)

De todo lo cual concluimos que el estimador insesgado de la
varianza de y es:
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PPN Se (n—-1+ n’)Sé(S/) nn’mll(st)
(n—1)n' (n—1)2(n'-1)

1 _
Se2 - n— 12(81' - es)zl

iEs

1 — N2
Sé(s,) = mi(dl - ds/) )

iES/

1 i _
Miyq(sn = ?Z(ei - es/)(di - ds/):

LES/

donde bajo los sumatorios la expresién i € s, 0i € s', indican que
el indice i recorre la secuencia completa de la muestra ordenada
respectiva.

Ejercicio 2.12. Tenemos dos dominios D; y D, de una misma
poblacion finita de N unidades, de tamafios NP, y NP,
respectivamente. EI dominio D = D; n D, tiene un tamafio NP.
Obtenemos una muestra aleatoria simple con reemplazamiento de
tamafo n, y observamos las proporciones muestrales p,, p, ¥y p de
los dominios D, , D, y D . Obtener la covarianza de las
proporciones muestrales p, y p,, y estimarla sin sesgo a partir de
los datos que disponemos. Obtener un estimador de la covarianza
de los indicadores de ambos dominios basado en los datos
recogidos en la muestra aleatoria simple.

Solucion. Definimos el indicador del dominio D a la aplicacion
I:U - {0,1} que a cada unidad k € U le asigna el valor I(k) = 1
sikeD,obienl(k) =0sik¢&D. Denotando por I; e I, a los
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indicadores de los dominios D; y D, respectivamente, tenemos que
si la muestra aleatoria simple es la secuencia s = (kq, k5, ..., ky,),
la covarianza pedida es:

Cov(p1,p02) = E[(p1 — P1)p2] = E(p1p2) — P1P,.

Para esto es suficiente ver que:

ill (ki)] li L(k)|¢ =

n_12 i E[10k:)] + i i E[1 (k)T (k)] ¢ =
i=1

i=1 j£i

1
E(pip2) = ;E

* nP+zzE[l1(ki)]E[12(kj)] =

nz - - .
=1 j+i

P+ (n—1)PP,
- :

1
= [nP + n(n — 1)P,P,] =

Luego, de las ultimas dos cadenas de igualdades, tenemos que:

P—PP, _ Covlli(k),,(K)] _

Cov(pl, pZ) = n n n

Un estimador insesgado de esta covarianza es:

p—P1P2=P—P1P2
n—1

Cov(py,p2) =

)

donde

. _ p 1____
P,P, = p1p, — Cov(py,p2) = P1D2 — " +EP1P2:

por lo que despejando,
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== _ NP1P2 — P
P1P2 - ﬁ

De todo ello, tenemos el estimador insesgado de la covarianza
poblacional:

n

(p — P1P2)

.U11=n_1

que nos indicara aproximadamente la correlacion positiva, nula o
negativa de los indicadores I, e I, de los dominios D; y D, en la
poblacion finita completa.

Ejercicio 2.13. Queremos estimar insesgadamente y con un error
absoluto menor que e la media poblacional y mediante la media
muestral obtenida con disefio de muestreo aleatorio simple con
reemplazamiento. Observamos que la cuasivarianza muestral esta
acotada superiormente por la constante K para valores de n
moderados y grandes. ¢Qué tamafio muestral n necesitamos para
garantizar un nivel de confianza mayor o igual al 95%? Determinar
la regidn de aceptacion de un contraste de la hipotesis H: y = 7, al
nivel de confianza mayor o igual al 95%.

Solucion. Aplicando la desigualdad de Chebychev, tenemos:

_ _ V(ys) s? K
pllys =yl <e}zl-—=1-—g21-—352>095

por lo que el error absoluto maximo e se alcanza con un nivel de
confianza mayor o igual a 0,95 cuando, de la tltima desigualdad
de la cadena de ellas,

K

>_
" =005-e2

para que se den las condiciones pedidas; concretamente el valor
natural de n inmediatamente superior a la constante K /(0,05 - e?)
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garantiza un error absoluto en la estimacion de la media
poblacional con un nivel de confianza superior o igual
aproximadamente al 95%.

La region de aceptacion R pedida es entonces en la que se
acepta la hipotesis H si y solo si

7€ (y;—e,y;,+e) =R,

Ejercicio 2.14. Desarrollar una funcion derivable dos veces en un
entorno de un punto, y aplicarlo a la variable media muestral en el
entorno de la media poblacional. Aproximar entonces la esperanza
matematica de la funcion de la media muestral por los dos primeros
sumandos no nulos. Aproximar la varianza de la funcion de la
media muestral por el primer término de su expresion. Aplicar esta
relacion aproximada para evidenciar que la desviacion cuadratica
de la media muestral a la media poblacional dista de la varianza de
la media muestral menos que una cantidad positiva, con una
probabilidad aproximadamente 1 cuando el tamafio muestral
tiende a infinito en el muestreo aleatorio simple.

Solucion. Sea la funcion f(x) derivable dos veces en un entorno
de lamedia poblacional y = E (¥). El desarrollo en serie de Taylor
de la funcion en la variable y; en un entorno de y es:

S )2
FGD = F3) + G = F &)+ 222 5 4

o[(ys —¥)?]
donde o(x) es un infinitésimo de x, es decir, una funcion de x tal
que:
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o(x) .

cuando x — 0.

En el desarrollo de Taylor, despreciamos el ultimo sumando
infinitesimal, y tomando esperanzas matematicas en ambos
miembros tenemos:

V(s)
2

ElfGl=f() + @)

De ambas aproximaciones, tenemos que:
fG) —Elf @] = Gs —f' @) +
1
5105 - Y2+ VI @),

de donde despreciando los términos siguientes del desarrollo
aproximado, tenemos

{f3s) — E[f G} = 5s — M*[f )]

Por tanto, tomando esperanzas matematicas en ambos miembros,
tenemos la aproximacion

VIf @] = V)L (D%
En concreto, para la funcion f(x) = (x — ¥)? tenemos
VIFs =31 = V() - 02 = 0.
De la desigualdad de Chebychev, tenemos entonces que

VIGs — )]
e?

IR

pllFs —=9)? = V(@) <e} =1- 1

cuando y; — ¥, que es cierto cuando n — oo,
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Este resultado es tedrico porque no dispondremos en la
practica de la media poblacional y para estimar con los valores
(¥s —¥)? a la varianza V(j,) . Sin embargo, un estimador
insesgado de esta varianza es la cuasivarianza muestral dividida por
n como se demuestra en este libro. En Ruiz Espejo et al. (2013) se
proporciona ademas un estimador insesgado de la varianza del
estimador insesgado de la varianza de la media muestral en
muestreo aleatorio simple, como vimos en la seccion 2.3 y
completamos en ejercicios posteriores.

Ejercicio 2.15. Estimar sin sesgo la varianza de una poblacion
finita a partir de la cuasivarianza muestral de una submuestra
aleatoria simple con reemplazamiento de tamafo fijo n, de la
muestra ordenada de tamafno fijo m obtenida por muestreo
aleatorio simple con reemplazamiento de una poblacién finita de
tamafio N.

Solucidén. Llamamos s# y s2 a las cuasivarianzas muestrales en la
primera fase y en la segunda fase respectivamente, es decir el
subindice indica la fase de muestreo a la que se refiere la
cuasivarianza muestral. De la primera fase tenemos que

E1(512) =02

De la segunda fase tenemos que

m
Ez( 522) = si.
m—

Por lo tanto,

E, [EZ( i — 2)] = o2,
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Es decir, el estimador insesgado de la varianza poblacional en
muestreo doble o en dos fases de muestreo aleatorio simple con
reemplazamiento, es

m
2
Sa,

m-—1

donde m es el tamafio fijo de la muestra en la primera fase, y s es
la cuasivarianza muestral en la segunda fase de aleatorizacion.

Ejercicio 2.16. Estimar sin sesgo el momento central poblacional
de orden dos con wuna muestra aleatoria simple con
reemplazamiento de tamafio n.

Solucién. Como

tenemos que

Despejando o2 tenemos que

— n

f, = 0% = (@, — @?) = 52,
2 2 — Qi

n—1

Que es la cuasivarianza muestral. Al ser invariante para
permutaciones en la muestra ordenada, es también estimador
insesgado 6ptimo para distribucion libre (Zacks, 1971, p. 150).

89



Ejercicio 2.17. Estimar sin sesgo el momento central poblacional
de orden tres con wuna muestra aleatoria simple con
reemplazamiento de tamafio n.

Solucion. El estimador insesgado optimo del momento central
poblacional de orden tres, para distribucion libre, es

n? nms

N 5 ~3Y _
n2—3n+2(a3_3a2a1+2a1)_n2—3n+2'

ﬁ3=

donde &; = (1/n) Z?zlyl/ es el momento muestral no central de
orden j, siendo J’i] la potencia j -ésima del “i-ésimo valor
observado en la muestra” que hemos denotado y;. En concreto,

a, = y; es la media muestral. También m5 es el momento central
muestral de orden tres,

1 n
msz = EZ()’L’ - 375)3-
1=

Basicamente el resultado se basa en que

D

fis = @3 — 3@,a; + 3Cov(aQ,, &,) + 2a3
—2a,V(@,) — 2Cov(@%,&,) + 2Cov|a,, V(ay)).
Veamos la prueba de este modo,
E(as) = as
E(@,a,) = a,a; + Cov(a,,a;)
E(&7) = E(@1a,) = E(@7)E(@,) + Cov(af, &)
= [a? + V(@)]a; + Cov(az, a,)

= a3 + a,V(&,) + Cov(@z, a,)
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E[&lv(&l)] = a1V(&1) + COU[&l, [7(&1)]
Por todo ello, concluimos que
E(fi3) = a3 — 3aya; + 20§ = u3.

Ahora, basandonos en el resultado anterior, si —co < 3 <
o, y a&; es el momento no central de orden j en la muestra,

entonces el estimador

2
n
3 = @5 — 3@,8, + 283
M3 n2—3n+2(3 201 1)

es insesgado y de minima varianza para distribucion libre (en el
sentido explicado por Zacks, 1971, p. 150). La demostracion es la
siguiente.

e

n n
De donde
— az — &0,
Cov(a@,, a) =
(@) =——
Ademas,
_ _ n—1
Cov(@z,a,) = Cov (&2 - 52,&1>
n
= Cov(@,,a,) — Cov(s®,ay)
_ az — Q0 B (n—1)j;
n—1 nz
And
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Cov|a,,V(a,)] = Cov|a s _fs
1’ 1 1’n nZ'

Sustituyendo estos resultados en el resultado basico inicial
tenemos que

Ejercicio 2.18. Estimar sin sesgo el momento central poblacional
de orden cuatro con una muestra aleatoria simple con
reemplazamiento de tamafio n.

Solucion. El estimador insesgado optimo del momento central
poblacional de orden cuatro, para distribucion libre, es

) _(1 3>_1lnm4+3(n—1 1) 4]
Ha = n n—1 n c >

donde m, es el momento central muestral de orden cuatro

1 n
my = aZ()’i N
i=

s* es el cuadrado de la cuasivarianza muestral, y ¢ es la constante

n?—-2n+3
nn—1)

Cc =

Para demostrarlo, tenemos que si i # j
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4
(vi—y;) =i —4yly; +6yty} —4viyi + i
Tomando esperanzas en ambos miembros de esta igualdad resulta
4 2
E [(yl — y]) ] = 26(4 — 8“3“1 + 6“2.
Por otro lado sabemos que
Uy = ay — daza; + 6a,a? — 3af

y que

ot =as —2a,a? + af.

De estas dos ultimas férmulas, tenemos que si i # j
1 4
E li(yi - ;) ] = Ug + 30*.
Definimos ahora el estadistico

Zn(n - 1)22(%

i=1 j=1

_n +3(n—1 2)2
_n—1m4 n N

no .. NP A2
= 1(a4 — 4ad5;a, + 3a3).

Como ademas,
E(s*) =V(s?) + [E(s?)]* =

n—3
B 777 styot=tt ot
n nn-1) n

Implica que
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1
ot =- [E(S4) - &]
C n
Donde
B n®—-2n+3
€= nn—1)

De los anteriores resultados, tenemos que

E( n 43—t 4)—E(t)— + 30
n—lm4 n )T — 4 ?

- % HOE %] _— (1 - %) + %E(s‘*).

O bien, el estimador insesgado de minima varianza para
distribucion libre de u, resulta ser

W=(1-2) [gmers (- )
Ha = cn n—lm4 n c >

Ejercicio 2.19. Proponer el valor exacto de la varianza de la
cuasivarianza muestral, en muestreo aleatorio simple con
reemplazamiento, y un estimador insesgado de la varianza
propuesta.

Solucion. El valor de la varianza pedida es

ny (m— 3)0'4

V(Sz) = n m

Demostrar esta férmula teniendo en cuenta que sabemos que es
cierta esta otra

V(s?) = E(s*) — a%,
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pues si X es una variable aleatoria entonces V(X) = E(X?) —
[E(X)]?y como caso particular si X = s es lo que hemos escrito
antes, equivale a demostrar que

Uy, n?—2n+3

E(S4)=;+ n(n—l) at.

Veamos pues esta formula. Del Ejercicio 1.7 aplicado a una
muestra de tamafo fijo n, tenemos que la varianza muestral es

n-1, 1\ :
5 =g ), 2,00 )

i=1 j#i

Despejando la cuasivarianza muestral tenemos que

st = 2n(n — 1)22(” y]

i=1 j*#i

Luego,

st = 4n2(n —1)2 ZZ(

i=1 j*#i

nz(n 1)2 ZZ(” y]) *
j#i

i=1

n

7 7 i =) |01 = 9m)? + (= ym) | +

i=1 j#i m#i,j

77 7 7 i =) Ok = ym)?

i=1 j#i k®i,j m#i,jk

Luego la esperanza matematica de s* sera
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E(S4)=4n2(n1 1)? ZZE[(” )|+

y 7 7 2E [()’i - Yj)z(yl' - )’m)z] +

=1 j#i m#i,j

7 7 7 E [(yi ~9) O —ym)z] -

=1 j#i k#i,j m#i,j,k

Ahora, como el nimero de sumandos del ultimo doble
sumatorio es n(n — 1) y pueden aparecer los cuadrados en el orden
(i,7), (i,j) o bienenel orden (i, j), (j, i), se duplica el nimero de
esperanzas matematicas

E|(yi—v)"| = EG — 4viy; + 6y2yf — 4y +y})
= 2a, — 8aza;, + 6a2 = 2(u, + 30%),
pues i # j.

En el sumatorio triple, razonando de modo similar tenemos

E [(yi — ;) i — ym)z] = lig + 304,

y el nimero de sumandos en total es n(n — 1)(n — 2) pues hemos
supuesto que los indices verifican j #i =k # m # j. Ademas
debemos multiplicar el nimero de sumandos por 2, uno para que
k=i0jym=+1i,j,k,yotroparaguem=i0jyk #i,j,m

El sumatorio cuadruple tiene n(n—1)(n—2)(n — 3)
sumandos y cada uno de ellos tiene por esperanza matematica

£ [0 =) 0 =] = {8 [0 - )]}
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= (20%)? = 40*,

donde la primera igualdad se debe a que los factores del primer
miembro dentro de la esperanza matematica son independientes al
ser los cuatro indices distintos dos a dos.

Por lo que sustituyendo en la esperanza de s* queda

E(s*) = [2n(n — 1)2(uy + 30%) +

4n?(n — 1)2?
inn—1(n—2)(ug +306H) +n(n—1)(n — 2)(n — 3)40?]

n>—2n+3
ey at.
n nn—1)

Que es lo que queriamos demostrar para concluir el resultado de la
varianza de la cuasivarianza muestral en muestreo aleatorio simple
con reemplazamiento. Lo visto hasta aqui ha sido usado en el
Ejercicio 2.17.

Un estimador insesgado de esta varianza V (s2) es

0(s?) n—1 . n—3 4
S = — S .
2 —2n+3M iz _2n+3

El estimador insesgado de u,, que aparece en el primer sumando
del segundo término, ha sido obtenido previamente en el Ejercicio

2.17. Para demostrar el resultado expuesto de ¥ (s?), veamos que

- _|Ha (71\—3)04 _ﬁ4 n—3 —~
R ] R e T

_ﬁ4 n—3

n nn-1) [54 B ‘7(52)]'

De donde despejando V(s?) tenemos finalmente el resultado
avanzado previamente.
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Un ejemplo de aplicacion de los resultados anteriores es el
calculo de la varianza del estadistico

y + ks?,

siendo y la media muestral, k una constante real, y s? la
cuasivarianza muestral en el muestreo aleatorio simple con
reemplazamiento de tamafio fijo n. Dicho estadistico y + ks? es
un estimador insesgado de la funcion parametrica

aq + kO'Z,
siendo a, la media poblacional, y o2 la varianza poblacional.

De los resultados anteriores tenemos que la varianza del estadistico
propuesto es

V(i + ks?) =
V(@) + k?V(s?) + 2kCov(y,s?) =

0% 2|t _(—3)*
n n nn-1)

+ 2k

n
En el Gltimo sumando, en el que sustituye la covarianza, hemos
usado de un resultado demostrado anteriormente. El valor obtenido
de la varianza del estadistico prueba que el estadistico, por ser
insesgado, converge en probabilidad a la funcion paramétrica a; +
ko2, ya que la varianza obtenida es un infinitésimo de orden n~!
y haciendo uso de la desigualdad de Chebychev. Ademas dicho
estadistico es insesgado y oOptimo (uniformemente de minima
varianza) para estimar dicha funcion paramétrica en el modelo de
distribucion poblacional libre, ya que el estadistico es invariante
ante permutaciones en el orden de las observaciones muestrales
(Zacks, 1971, p. 150). Ademas la varianza del estadistico es
estimable insesgadamente por el estimador “suma de los
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estimadores insesgados optimos de cada uno de los tres sumandos
para distribucion poblacional libre” y, COmM0 consecuencia, este es
ademas estimador optimo o uniformemente de minima varianza de
la funcion paramétrica V(¥ + ks?) para distribucion poblacional
libre.

Ejercicio 2.20. Comprobar si se puede seleccionar una muestra
aleatoria simple con reemplazamiento de tamafio fijo n de una
poblacidn finita de tamafio 34.629 con un generador de nimeros
aleatorios independientes, con distribucion uniforme en el conjunto
{0,1,2,...,9} de numeros naturales entre 0 y 9. La seleccion se
hace tomando grupos de cinco digitos sucesivos e identificando las
unidades poblacionales de 1 a 34.629. Si el primer grupo de cinco
digitos seleccionado esté entre los numeros 00.001 y 34.629, se
selecciona como primera unidad de la muestra aquella cuyo
identificador sea la del indicador de ese grupo; si el grupo
seleccionado no estuviese entre tales numeros, se procede a una
nueva seleccion de cinco digitos aleatorios sucesivos, y asi se repite
el proceso hasta seleccionar la primera unidad poblacional de la
muestra. Sucesivamente se obtendrian las siguientes unidades de la
muestra repitiendo el proceso hasta seleccionar la segunda, tercera
y hasta la n-ésima.

Solucion. Es sencillo comprobarlo y ciertamente si, se puede
seleccionar asi. En realidad se trata de seleccionar digitos naturales
0 del conjunto N = {1, 2, 3, ... }, condicionados a que éstos tienen
que estar comprendidos entre 1 y 34.629. La probabilidad de
seleccionar un digito asi en cada seleccion independiente sera

1/34.629 si keNNJ1,34.629]

pikl{1,2,..,34.629}} = { 0 si kg NnNJ134.629]
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Por lo que es un procedimiento de seleccion de probabilidades
iguales en el conjunto de ndmeros naturales {1, 2, ...,34.629} y
cada seleccion es independiente de las anteriores. Luego es un
disefio de muestreo aleatorio simple con reemplazamiento a partir
de una poblacioén finita de tamafio N = 34.629.

Ejercicio 2.21. Obtener la covarianza de los estadisticos
cuasivarianza muestral y media muestral en el muestreo aleatorio
simple con reemplazamiento de tamafo fijo n = 2. Y obtener un
estimador insesgado de esta covarianza.

Solucion. Partimos de la propiedad de la varianza de una variable
estadistica aplicada a una muestra de tamafio fijo n > 2, y tenemos
que la cuasivarianza muestral es

=D 20 )

i=1 j*#i

Y la media muestral es

n

B 1

)@:z;EZE:)%-
k=1

Donde hemos representado por y; al i-ésimo valor que toma la
variable de interés y en la muestra aleatoria simple con
reemplazamiento de tamafio n. Luego,

Cov(s?,y,) =
1 n n n
2 2 —
anﬁl—'l)cov :E:}:(Yi4‘Yj"ZYSG)JZEIYk —
i=1 j#i k=1

100



1
X
2n?(n—1)

n n
Z z[Cov(yiz,yk) + Cov(y}, yx) — 2Cov(yiy;, vi ) |-
i k=1

n
i=1 j=#i

Ahora, denotando por a,,, al momento no central poblacional

de ordenm =1, 2, 3,
1 N
Om =N2ylm
=1

Sii=k0j =k,
Cov(y2,yi) = Cov(y2 i) = as — aza
Sii#kyj#k,
Cov(yl-z,yk) = Cov(yjz,yk) = 0.
Similarmente,sii #j =k 0j #i =k,
Cov(yy, yk) = @y — a3,
Ysii,j#k,
Cov(y;y;, yx) = 0.

Por tanto,

1
X
2n*(n—1)

Cov(s?,y,) =
[2n(n — D(az — aya;) —4n(n — 1)(aza, — “13 1=

253
—(a: — 3a,a, + 2a3) = ==,
n(s 20 1) "
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El valor 4 que aparece en la primera igualdad de la anterior serie
de igualdades se debe a que se ha de duplicar el namero de
sumandos porque el subindice k puede ser igual al subindice i ¢
bien al subindice j.

Con ello hemos presentado una demostracion muy sencilla,
de poco mas de una pagina, a este problema clasico de obtener el
valor exacto de la covarianza de la cuasivarianza muestral y de la
media muestral, en el muestreo aleatorio simple con
reemplazamiento de tamafio fijo n = 2. Como consecuencia, la
cuasivarianza muestral y la media muestral estaran
incorrelacionadas cuando el momento central poblacional de orden
3 sea nulo. Otra conclusion es que ambos estadisticos en general
no son independientes por la misma razon. Pero ya que esta
covarianza es un infinitésimo de orden de n~?, se puede concluir
que asintoticamente ambos estadisticos estaran aproximadamente
incorrelacionados pues su covarianza tiende a 0 cuando n tiende a
infinito. El teorema de Fisher garantiza que ambos estadisticos son
independientes cuando la poblacion de partida es normal, pero este
resultado demostrado en este Ejercicio 2.20 nos asegura que en una
poblacidn finita esto no es cierto en general, es decir, no es posible
afirmar lo que el teorema de Fisher afirma para una poblacién
normal cuando la poblacion de partida es finita. Y solo se daria la
incorrelacion de ambos estadisticos cuando la poblacién finita de
partida tuviera un coeficiente de asimetria de Fisher u5 /03 igual a
cero, donde a2 = pu, es la varianza poblacional.

De este resultado se puede concluir que esta covarianza
obtenida es estimable insesgadamente por

nms B n
n2—3n+2 n2-—3n+2

Cov(s?,y,) = (@5 — 3@,a, + 2a3).

Siendo
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1n

~ § m

am_g. Vi
=1

el momento no central muestral de orden m =1,2,3; y m5 el
momento central muestral de orden 3,

n
1
ms = ;Z()’i - 31)3-
1=

Es una consecuencia casi directa del Ejercicio 2.16.

Un ejemplo de aplicacion del resultado expuesto
anteriormente es la obtencion de un estimador insesgado Optimo
para distribucion libre del parametro a; u,. En efecto,

a1y = E(}_/SSZ) - COU(}_IS,SZ).
Luego un estimador insesgado de a, u, es el estimador

37552 - C/O\U(J_’S»SZ) =

n

_}_7552 - n2 3012 (&3 - 3&2&1 + 2&13) =
5 o2 n A 5 & ~3
Ws” — e (a3 —3a,a, +2a;) =
A A A2 n A A A ~3
ay [n— 1(‘1’2 - a1)] T2 _3n+ 2(“3 —3a,a, +2a;7) =
n 5 5 & ~3
R —— [—as + (n+ 1)a,a; —nayl.

Este estimador es ademas insesgado y Optimo para distribucion
libre por ser invariante ante permutaciones de las unidades en la
muestra ordenada (Zacks, 1971).
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Ejercicio 2.22. Proponer un estimador insesgado optimo del
producto de dos medias poblacionales de dos variables de interés.

Solucién. Basicamente partimos del producto de dos medias
muestrales, yx, de la funcién biparamétrica YX. Entonces, un
estimador insesgado de esta funcion biparamétrica se obtiene de la
relacion

__ o o . Oyy
YX =E({yx)— Cov(y,x) = E(yX) — -

Aqui n es el tamafio muestral. Un estimador insesgado de la
covarianza poblacional g, , en el muestreo aleatorio simple con
reemplazamiento es la cuasicovarianza muestral, por lo que el
estimador insesgado de Y X resulta ser

S U o P
yx —m;(% — ¥ (x; — %).

Aqui y; y x; son los valores de la variables de interés y y x para la
i-ésima observacion de la muestra aleatoria simple en la misma
unidad poblacional. Finalmente la optimalidad para distribucion
libre en las variables y y x se obtiene de modo similar al explicado
con anterioridad, ya que el estimador insesgado es invariante ante
permutaciones en el orden de la muestra ordenada obtenida por
muestreo aleatorio simple con reemplazamiento.
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Capitulo 3

Muestreo Irrestricto aleatorio

En este capitulo estudiamos el disefio mia, que es un disefio no
ordenado llamado “muestreo irrestricto aleatorio” y también es
conocido por “muestreo aleatorio simple sin reemplazamiento” con
probabilidades iguales. También se le denota por las siglas mpi de
“muestreo de probabilidades iguales sin reemplazamiento”.

3.1 Diselo mia

Este disefio muestral no ordenado TF(n) y TEF(n) es la
distribucidn de probabilidad definida sobre las posibles muestras o
subconjuntos no vacios de tamafio n, 0 < n < N, de la poblacion
finita U de tamafio N > 1. Denotamos por s a una de estas
muestras conjunto de tamafo n, y el nUmero posible de muestras
distintas para el disefio mia es

N!
(11\1[) “(N—n)in’

que coincide con el numero de combinaciones de N elementos
tomados de n en n.

El diseio mia recibe también el nombre de “muestreo
aleatorio simple sin reemplazamiento con probabilidades iguales™
porque si tuviéramos una urna que contuviera N bolas
biunivocamente numeradas de la 1 a la N, la seleccion de una

105



muestra s entre las (Ir\l’ ) posibles muestras de tamario efectivo fijo

n se podra realizar seleccionando una primera bola de la urna y
anotamos su numero identificador como componente de la muestra
no ordenada o conjunto no vacio s ; seguidamente no
reincorporaremos a la urna la bola ya seleccionada, con lo cual la
urna preparada para la seleccion de la segunda bola tendra N — 1
bolas desde la 1 a la N excluyendo la bola ya seleccionada en la
primera seleccion que queda fuera de la urna, y por tanto su nimero
identificativo no se podra seleccionar en adelante. La segunda
extraccion de la urna selecciona una segunda bola que tampoco se
reintegra a la urna y por tanto tampoco se repetira en las siguientes
extracciones de la urna. Asi actuariamos hasta seleccionar n
unidades (0 < n < N) ordenadamente.

De este modo obtenemos una secuencia (kq,k,, ..., k,;) 0
vector s n-dimensional que tendra como probabilidad de seleccion,
haciendo uso del Teorema de Producto con sucesos dependientes,

p(S) = p(kl) ) p(k2|k1) '"p(knlklrkZI ree) kn—l) =
1 1 1 1

N N—1 N—-n+1 _ NI
(N —n)!

Ahora bien, como las muestras conjunto s 0 no ordenadas de
tamafio n estan compuestas por tantas muestras vector s como
permutaciones de n elementos o unidades distintas, obtenemos que
la probabilidad de seleccionar la muestra no ordenada s es

1 1
p(s) =n!p(s) = n! T =~
(N —n)! (n)
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Es decir, la probabilidad total de obtener una muestra
conjunto s de tamafio n con disefio mia es exactamente 1/ (17\1, )

Por tanto la suma de estas probabilidades al recorrer todas las
posibles muestras no ordenadas s de tamafio n es igual a 1 por
tratarse de una distribucion de probabilidad. En efecto, si

S={s:¢p #scUn(s)=n}
. N :
es el conjunto de (n) muestras no ordenadas s consideradas de

tamafio muestral efectivo n con probabilidad positiva 1/(17\{)

entonces

5= (i1

n

La probabilidad de inclusion de la unidad k, 1 < k < N, en
la muestra conjunto s con el disefio mia utilizando la regla de
Laplace para sucesos equiprobables como es el caso, es el cociente
entre casos favorables y casos posibles

(N — 1) (N - 1!
m, =p(k €s) = nﬁl =(n—1)1!V(!N—n)!=%.
(n) n!' (N —n)!

La probabilidad de inclusion de segundo orden para dos
unidades distintas k y m de entre 1y N, haciendo uso de la regla
de Laplace, es

N -2 (N —2)!
(n—2)= (n—2)I(N —n)! _

(Ir\{) n! (NN!— n)!

Tkm = p(krm € S) =
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nn—1)
N(N — 1)

De modo similar se obtienen las probabilidades de inclusion
de Ordenes superiores.

3.2 Estimacion de la media poblacional en mia

El estimador insesgado usual de la media poblacional y con el
disefio mia, es la media muestral

_ 12
0 Vi

siendo s la muestra no ordenada o muestra conjunto de tamafo n
seleccionada, e y; la variable de interés en la unidad k € s. En
efecto, veamos que la media muestral y, con el disefio mia es
insesgado.

1 1
E(s) = zysp(s) = ZE(YIQ + Vi, 0 F Vi) T
SES SES (11)

donde s = {k, k,, ..., k,,}, por lo que sumando tantas veces y;
como muestras s contengan la unidad k, es decir tantas como

card{s: k € s} = (N B 1)

n—1/
tenemos
no1)
n — 1
E(ys) = z yrcard{s:k € s} Z Vier
keU keU
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zy"nN Nzy"_

keu keu

Otra demostracion de la insesgacion de la media muestral y.
con disefio mia para estimar la media poblacional y es la siguiente.
Llamando k; a la unidad o su identificador de la poblacion finita U
que es seleccionada en la muestra s con el orden i-ésimo de su
secuencia al ser seleccionadai =1, 2, ...,n

1% 1
E(}_]S) = E(EZ)’R,') = EZE(ykl) = 3_/)
i=1 i=1

puesto que

E(yy,) = z Vi, p(s) =

SES
C g 1
Z yrcard{s: k esla i — ésima componente de s} —NT =
kEU W=
Z (N —1)! 1 Z
Yk (N n)] | Yk = y;
keUu (N _ n)' keu

ya que si launidad k = k; es la i-ésima unidad fijada de la muestra
ordenada y las restantes unidades distintas no estan fijadas,

card{s: k eslai — ésima componente de s} =
card{s:s = (ky, ky, ... ki =k, ..., k,)} =
(N-1D)(N-2)(N—-i+1D-1-(N=-0D-(N—n+1) =
(N —1)!
(N —n)!
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Pues (N — 1) es el numero de unidades diferentes de k = k; que
pueden ocupar el primer lugar de la secuencia s, (N — 2) es el
numero de unidades diferentes de k; y de k; que pueden ocupar el
segundo lugar de la secuencia s, etc. siendo 1 el factor i-ésimo por
ser k = k; la Unica unidad que puede ocupar el lugar i-ésimo de la
secuencia s.

Hemos demostrado entonces que la media muestral no tiene
sesgo para estimar la media poblacional con disefio mia.

La varianza de la media muestral con disefio mia es

N —nS?
N n’

V(ys) =

donde denotamos S? =Nog?/(N—1) y se le denomina
“cuasivarianza poblacional”.

La demostracion es la siguiente:

2
1
VG, = B[ — )2 = E (5 D V- y) -

k€Es
) 2
E E}Z()’k—f’)] =
1
;E Z(}’k—}_’)2+ Z (}’k—}_’)(}’m—}_’)]=
k€Es k#mes
) )
n—{E D G- +E| Y (yk—7><ym—y>n=
k€Es Lk+mMEs
1 , nn-1) 2-_N—1—(n—1) -
2| TTN=1 |7 T av—1) B
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N—-—ng? N-—nS?

N—1n N n

Veamos ahora que

E Z()’k —)_’)2] =

k€Es
y que
-1
= ) Om —y)] - mnm e
k+mes
En efecto,
-2 =) Z(yk 7) ]p<s> =
k€Es SES
D = yeard(s: k € s}p(s) =
kEU
L (N—1\ 1 n
kze(:](}’k —¥)? (n B 1)m = NUZN =no?,
n
También,
— V) — 3_’)] =
k#+mes
Z[ > Gk= D0 —y)]p@ -
SES Lk#meEs

> Gk = D) Om — Peard(s:k,m € s}p(s) =

k+meU
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(N\ ~
()
Queda comprobar que

> Gk =0 =) = —No™

k+meu

N—Z) 1 zn(n—l)__n(n—l)az.

—Ng? — R
a(n—Z NN =1 N—1

En efecto, como

Z()’k —y) =0,

keu

2
Z()’k - )_’)] =
keu

D 0=+ ) G DOm =) =

keUu k+meU

No+ > = )0m =),

k+meUu

0=

lo que concluye la demostracion.

3.3 Estimacion de la varianza en mia

Veamos que la “cuasivarianza muestral” s? es un estimador
insesgado de la “cuasivarianza poblacional” S? con disefio mia, y
de este modo podremos obtener directamente estimadores
insesgados de la “varianza poblacional” y de la “varianza de la
media muestral” para este disefio de muestreo irrestricto aleatorio.

La cuasivarianza muestral es
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1
= —— > Gu -

kKEs
Su esperanza matematica es
E(sz)=;E — )% =
n—1 s
ke€s
Z Wk — )% p(s),
SLkEs

por lo que restando y sumando la media poblacional y dentro del
primer paréntesis, tenemos

[k =)+ T —5)]° =
(yk _37)2 + (3_’ _3—15)2 + Z(yk _3_’)(37 _3_/5)-
Ahora,

p(s) =

[Z(Vk —-¥)?
SES

kEs

Z(yk — y)%card{s: k € s}p(s) = no?.

keu

[Z(y—ys)z
SES

k€Es

p(s) = nV (¥s).

[z 201 = DT =50 p(e) =
SES

kE€s

ZZ(y ¥s)

SES

) D o |p(s) =

kE€s
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~2n ) (35 = 7)*p(s) = =21V ().

SES

Luego, sustituyendo estas expresiones calculadas,

E(s?) = ——[no® +nV () — 20V (5,)] =
_ a? N-—n No?
o1l VG =n—1<n_N—1>=N—1=SZ'

Por tanto, un estimador insesgado de la varianza poblacional con
disefio mia es (N — 1)s?/N, y un estimador insesgado de la
varianza del estimador media muestral es

. N —ns?
V()’s) =

N n

3.4 Estimacion del total poblacional en mia

El total poblacional T = Ny es estimado insesgadamente por el
estimador T = Ny, con disefio mia, y su varianza es

_ N —nS? S?2
V(T) =N2v(y.) = N2°——— = N(N - —,
(7) (7s) N 7 ( n)n

por lo que un estimador insesgado de la varianza de T en mia es

R s?
V(T)=N(N —n) —

3.5 Estimacion de la proporcion poblacional en mia

Como la proporcién poblacional P es una media poblacional y
cuando la variable de interés y, toma valores 1 6 0 segun la unidad
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k posea 0 no posea una cualidad, el estimador insesgado de P con
disefio mia es la proporcion muestral

51
_n Vi
k€Es
Cuya varianza es
. N —nPQ
V(P) = —_—,
( ) N—1n

puesto que o2 = PQ, siendo Q = 1 — P la proporcion poblacional
de unidades que no poseen la cualidad. Un estimador insesgado de
V(P) con este disefio es

N —n 13@
N n-—1

7(P) =

3.6 Tamano de la muestra con mia

El problema que vamos a tratar de resolver es el de la
determinacion del tamafio muestral n necesario para alcanzar un
error maximo de muestreo e, con una probabilidad mayor o igual a
1-—a.

Aplicando la desigualdad de Chebychev

V(ys)
—=1-«a

pllys =yl <e}=1-

ya que no es conocida la distribucion del estimador y., y esta
desigualdad asegura el resultado independientemente de su
distribuciéon, con solo saber que su varianza V(y;) existe.
Entonces,

V@)  (N-n)o? No? o’

e2  e2(N—1n e2(N—1n e2(N—-1)
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de donde despejando n tenemos

No?
e2(N —1) 52
o2 L, S
a +m ae +W

donde N es conocido, o« y e vienen determinados en el
planteamiento del problema por el nivel de confianza y el error
absoluto maximo de muestreo solicitados, y S? es la cuasivarianza
poblacional que puede ser estimada insesgadamente por la
cuasivarianza muestral piloto s3. Si el tamafio poblacional N es
suficientemente grande, es decir N — oo, entonces el tamafo
muestral buscado serd no, = S?/(ae?), que puede ser estimado sin
sesgo por i, = sé/(ae?). Una vez obtenido éste, podemos
expresar el tamafo muestral en general como

Ne

N
L+

n= < N

Obligando a que n,, —n < 1, obtenemos el primer valor de n a
partir del cual no se deben seguir obteniendo unidades muestrales
pues n alcanza el valor limite n,. En efecto,

(- )y
2 o (1e—)=—= <,
1 4+ oo N + 1 N + 1
verificandose la desigualdad si y solo si

nZ < N + ny,
que implica

N2 — N = Neo(New — 1) < N.
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Es decir, si ne, = S?/(ae?) es el primer nimero natural que
verifica que ne, (n, — 1) < N, entonces tomaremos como tamafo
muestral n = n,, y en otro caso tomamos la formula

SZ

n = %

2 1=
ae+N

estimando S2 por la cuasivarianza muestral s3 en una muestra
piloto con disefio mia. En la practica, se sustituye en estos
razonamientos el valor teorico n,, por su estimacion insesgada
il = s&/(ae?), y en su caso estimamos n por

S0

l = 5.
2 1 50
ae“ + N
En el caso de la estimacion del total poblacional T = Ny, el
tamario n de la muestra para un error absoluto maximo e y un nivel
de confianza mayor o igual a 1 — a, se obtiene de la desigualdad

de Chebychev:

. V(N7;)
p{INy; — Ny| < e} = 1—8_25= 1—a
De donde

S? N2S2 5
_ V(N:)_]s) _N(N_n)g_ n — NS
“= 82 - 82 - ez )

luego despejando n

N252

n= .
ae’ + NS2

En el caso particular de la proporcion muestral 2 como
estimador insesgado de la proporcion poblacional P, el tamafio n
muestral para un error absoluto maximo de muestreo e y un nivel
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de confianza mayor o igual a 1 — a, se obtiene de aplicar la
desigualdad de Chebychev:

. V(P
p{|lP—P|<e}=1- £2)=1—a,
por lo que
. N—-nPQ NPQ  _PQ
_VP) N—in N-Dn N-1
T2 T e? B e? ’

de donde despejando n tenemos

NPQ

N-1

PQ -
2 4 TN
ae +N—1

n =

Cuando el tamario poblacional N es suficientemente grande, N —
oo, el tamafio muestral limite es n,, = PQ/(ae?). Si ahora
dividimos en la férmula del tamafio muestral tanto numerador
como denominador por ae?, tenemos

N
_Tloom_ Nn
B Mo  N—1+ng
1+N_1

n

Si ahora obligamos a que n,, — n < 1, tenemos que

_ (1 N )_ Ne — 1 <1
Moo =T = Tleo N—-1+n.) "™N-1+n.

0 bien,
Neo(Mee — 1) < N — 1+ ny
o también, concluimos que si

noo(noo_z) <N—1'
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tomamos como tamafio muestral n = n, = PQ/(ae?), mientras
que si

Neo(New —2) = N — 1,
tomamos como tamano muestral el valor obtenido:

B NPQ
(N —1Dae? + PQ

n

En la practica la varianza PQ ha de ser estimada sin sesgo por

— N_1 no A A
PQ = N ny—1 2<%

siendo n, el tamafio de la muestra piloto, y P, y Q, son las
proporciones muestrales respectivas en la muestra piloto.
Sustituyendo PQ por su estimador insesgado PQ, se obtienen los
valores estimados 7, Yy 7.

3.7 Tamafo muestral con hipoétesis de normalidad

Existen criticas para formular la hipétesis de normalidad en
poblaciones finitas con disefio mia. La idea de estas criticas vienen
de que el Teorema Central del Limite no es aplicable porque éste
exige que el tamafo muestral tienda a infinito, pero en el disefo
mia el tamafno muestral n es el efectivo y tiene que ser menor o
igual al tamafo poblacional N que es finito. Otros argumentos
debidos a la distribucion del estimador fueron dados por Plane y
Gordon (1982). Basicamente se demuestra que la distribucion del
estimador cuando n se aproxima a N, es la misma que cuando el
tamafio muestral es pequefio o préximo a 1, salvo un cambio o
transformacion lineal. Si la distribucion del estimador no es normal
cuando n es pequefio, tampoco lo serd cuando n tome los valores
mayores con disefio mia.
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No obstante, al estimar una proporcion poblacional P con
disefio mia, en la practica es usual aproximar la distribucién de la
proporcion muestral P por una distribucion normal de media Py
desviacion tipica /V(P). En este caso, con disefio mia, el tamafio

muestral n para el nivel de confianza 1 — a; = 0.955, con A, =
2, o bien para 1 —a, = 0.997, con A,, = 3, se obtiene de la
relacion

<Ayt =1-a.

Aqui,

. N —nPQ N—n
V(P) = < ,
N—1n =~ 4(N—-1)n

pues PQ < 1/4. El intervalo de confianza de la proporcion
poblacional P es

P¥ 2. |V(P).

Pero este intervalo esta contenido siempre en el intervalo

PT A N —n _p A N 1
*14(N—-1Dn 2 [IN—Dn N-1

por lo que fijada la semiamplitud del intervalo de confianza e, el
intervalo de confianza

+l

o)
-+l
o

se obtiene cuando
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| N 1
T2 IWn—Dn N-T

de donde despejando n tenemos

N 1 22N

N-14e? | 1 T 4e2(N—1) + A2
Z TN—1

n =

3.8 Comparacion de precisiones entre mas y mia

La precision de un estimador es el inverso de su varianza. Asi, para
comparar las precisiones de dos estimadores insesgados, bastara
comparar sus varianzas. Veamos a continuacion que de los
resultados obtenidos,

B o
V(mas,yg) = —

N —ng?

N—1n’

V(mia,y,) =

Luego,
V(mia,y,) < V(mas,y;).

Esto hace pensar que si el muestreo irrestricto aleatorio es
maés preciso que el muestreo aleatorio simple, deberiamos usar el
primero siempre en detrimento del segundo desde un punto de vista
de la mejor precision del estimador para un tamafio muestral n
comun. Sin embargo, al poder tener unidades repetidas en la
muestra ordenada obtenida por mas, puede ser mas econémica en
términos esperados la obtencion de datos, pues conservando la
variable de interés asociada a cada unidad, si ésta se repite
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ahorraremos el costo de una nueva observacion o encuesta (0
sucesivas) de la misma unidad. Observar que el tamafio efectivo
esperado del disefio mia es n, mientras que el tamafo efectivo
esperado del disefio mas es v < n, lo que se traduce en que tiene
este disefio mas menor costo esperado que con el disefio mia.

3.9 Ejercicios resueltos

Ejercicio 3.1. Dada una poblacion finita de tamafio N = 2000, se
toma una muestra de tamafio n = 20 con disefio mia, de modo que
la media muestral es y, = 537 y la cuasivarianza muestral es s? =
100. Se pide una estimacion del total poblacional, asi como de la
varianza del estimador del total poblacional propuesto, utilizando
estimadores insesgados.

Solucion. El estimador del total poblacional es
Ny. =2000-537 = 1.074.000.

Y el estimador insesgado de su varianza es

o 52 100 -
V(N3s) = N(N —n)— = 20001980 - — - = 198 10°.

Ejercicio 3.2. Acotar la varianza de una proporcion muestral con
disefio mia en cualquier caso, independientemente de los posibles
valores que pueda tomar la proporcion poblacional.

Solucion. La varianza de la proporcién muestral P, V(P), es

_ N-nPQ N-—n

v(P) N—1n S4(N—1)n'

122



pues definiendo la funcién f(P) = P(1 —P) = PQ , ésta se
minimiza en el punto P = 1/2, es decir, es un punto critico de la
funcion £, pues f'(P) = 1 — 2P = 0 da lugar al punto critico P =
1/2. Al ser f""(P) = —2 < 0, el punto critico es un maximo de f.
Poresto PQ =P(1—P)=f(P) < f(1/2) =1/4.

Ejercicio 3.3. Calcular el tamafio muestral necesario para obtener
un error maximo de muestreo e = 10° al nivel de confianza 0.90
para estimar el total de una poblacién finita de tamafio N =
30.000. De una muestra piloto, se estima S2 sin sesgo por 50.

Solucion. Como 1 — a = 0.90, a = 0.10, y entonces

. NS 9-108 - 50
" e+ NSz 010-101°0+3-10%-50

45.

Ejercicio 3.4. Una muestra aleatoria simple sin reemplazamiento
ha sido seleccionada de la poblacion compuesta por las familias
residentes en cierta provincia, con objeto de estimar el nimero
medio de hijos varones por familia. Se han observado n = 10
familias del total de las mismas que eran 39.000. Los datos fueron
sintetizados en los estadisticos
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Estimar insesgadamente la media provincial de hijos varones por
familia, y estimar insesgadamente la varianza del primer estimador.

Solucién. Como estimador de la media provincial de hijos varones
por familia, tomamos la media muestral

10
; —12 1919
ys_nlykl_lo - =)
1=

y como estimador insesgado de su varianza tenemos a

I\ ns® 39.000 — 103.877

73 = — =~ ~ 0.3876,
) =——% 39.000 10
pues N = 39.000,n = 10y
10 2
—\2 10 .,2 ( i=1 3’ki) 192
2 L =) 2=V~ 90— _7177g
n—1 9 9

es decir

s ~ 3.877.

Ejercicio 3.5. Una industria tiene interés en conocer el tiempo
semanal que los empleados gastan en ciertas actividades no
productivas. Las fichas de control del tiempo de una muestra con
disenio mia de n =70 empleados muestran que el tiempo
promedio dedicado a esas actividades es de 16.45 horas, con una
cuasivarianza muestral de s> = 3.01. La empresa da trabajo a un
total de N = 1.250 empleados. Estimar el nimero total de horas-
hombre que se pierden por semana en tareas no productivas y dar
una estimacion de la varianza de tal estimacion inicial.
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Solucidn. La poblacion consiste en N = 1.250 empleados, de los
que se selecciona una muestra con disefio mia de tamafio n = 70
empleados. La cantidad promedio de tiempo que uno de los 70
empleados pierde es de y, = 16.45 horas semanales. Luego la
estimacion del total semanal de horas perdidas por los 1.250
empleados es

T = Ny, = 1250 - 16.45 = 20562.5 horas.

Un estimador insesgado de la varianza de este estimador T es

R s? 3.01
V(T)=NW - n)— = 12501180 —- = 63425

horas al cuadrado.

Ejercicio 3.6. Para estimar la renta familiar disponible al afio de
una poblacion, en promedio, se sabe que existen un total de
200000 familias y que tras una encuesta piloto, se ha estimado que
la cuasivarianza de la renta familiar es S? ~ 2000. Determinar el
tamafio muestral necesario para estimar la renta familiar media
poblacional y mediante la media muestral y, obtenida por disefio
mia para alcanzar un error maximo de muestreo e = 200 euros con
una probabilidad 1 — a = 0.95.

Solucién. El tamano muestral con disefio mia directamente es

52 2000
§2

2000
A 4 _

~ 1.

n =

Luego con el tamafio muestral n = 1 se obtiene una estimacion de
la media muestral con error absoluto maximo e = 200 euros y un
nivel de confianza mayor o igual al 95%, siempre que la
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estimacion de la cuasivarianza poblacional S2 = 2000 sea
correcta.

Ejercicio 3.7. Una empresa productora de aves para el consumo
alimenticio esta interesada en estimar la ganancia total de peso de
un total de 2000 aves a lo largo de un mes mediante la
alimentacion de las aves con una racion. Frente a la alternativa de
tener que pesar las 2000 aves un mes después, se disefia un método
de estimacion del peso total por el que se pesaran n aves de modo
que el error maximo de muestreo sea 3 kg. al nivel de confianza
del 90%. Usando datos de anteriores estudios similares, se ha
estimado la cuasivarianza muestral s? = 40 gramos al cuadrado.
Determinar el tamafio muestral.

Solucion. El tamafio muestral necesario para estimar el total
poblacional es

__ 5 i 163.27
" T ae? 57701030002, 40 ~ U7
NZ TN T 20002 ' 2000

por lo que pesando una muestra de 164 aves podemos estimar
dicho peso total con dichos requerimientos. El valor que hemos
dado como respuesta es el nimero entero siguiente al valor
aproximado que da la férmula del tamafio muestral.

Ejercicio 3.8. Una muestra aleatoria simple sin reemplazamiento
de tamaino n = 100 se ha seleccionado para estimar:

a) La fraccion de los 300 estudiantes de un Instituto que
asistiran a la Universidad.
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b) La fraccion de estudiantes que han trabajado a tiempo parcial
durante su estancia en el Instituto.

Sean 25y 30 los totales muestrales de estudiantes que asistiran a
la Universidad, y de estudiantes que han trabajado a tiempo parcial
durante su estancia en el Instituto. Usando estos datos, estimar la
proporcion de estudiantes del Instituto que asistiran a la
Universidad, y la de estudiantes que ha trabajado a tiempo parcial
durante su estancia en el Instituto. Estimar sin sesgo la varianza de
estos estimadores de las proporciones de estudiantes del Instituto.

Solucion. Las proporciones muestrales se obtienen directamente de
los datos recogidos,

b, = 25 = 0.25

17100
y

p, =29 _ o3

27100

son los estimadores pedidos, y los estimadores insesgados de sus
varianzas son

N-nPQ; 300-1000.25-0.75

V(B,) = = 0.00126
(P) N n-—1 300 99
y
N N-nb,0, 300-1000.3-0.7
V(P,) = = = 0.00141
(P2) N n—-1 300 99

Ejercicio 3.9. Una empresa tiene a su cargo un total de 2000
obreros y el jefe de personal quiere estimar la proporcion de
obreros que llevan trabajando en la empresa mas de 10 afios. A tal
efecto decide realizar un sondeo entre los obreros, ya que realizar
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un censo seria inapropiado debido a la rapidez con la que debe
disponer de los datos. Si selecciona una muestra con disefio mia
para estimar tal proporcion, determinar el tamafio muestral n,
aceptando que la proporcion muestral del 50% estima
suficientemente bien la proporcion poblacional, cuando el error
méaximo admisible de muestreo es 0.1 al nivel de confianza del
95%.

Solucion. Si la proporcion muestral del 50% estima bien la
proporcion poblacional, es que aproximadamente P = Q = 0.5.
Entonces,

NPQ 2000-0.5-0.5
n = N‘}JQ - 220 ~ 400.2
2 i . 2 - =
ae? + =5 005-0.12 + —o5

Por lo tanto, bastara tomar 401 obreros en la muestra para verificar
todos los requisitos, uno mas de la parte entera del valor obtenido
por la férmula general. Se toma el tamafio muestral siguiente al
numero entero que da la formula pues de este modo se garantiza
que las condiciones del enunciado del ejercicio propuesto se
verifican.

Ejercicio 3.10. De una poblacion finita se obtienen m estimadores
medias muestrales y; (i = 1, 2, ..., m) independientes, cada uno de
ellos con disefio de muestreo aleatorio simple sin reemplazamiento
de tamafio efectivo fijon; (i = 1,2, ..., m). Deducir el estimador
insesgado lineal en las medias muestrales y; de minima varianza.

Solucion. Buscamos el estimador insesgado de minima varianza de
la clase de estimadores lineales insesgados del tipo
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m
t = Z ti :)_/i.
i=1
Como este estimador lineal es insesgado, tenemos que

m

J=E® =) tEG)=7 )
] =1

i=1 i

por lo que esta condicidn de insesgacion se traduce en que

i=1
La varianza del estimador t es
m m N
_ —n
V(t) = z 2V (5,) = Z g
=1 =1

Para obtener los valores concretos de t; que hacen insesgado al
estimador lineal y que es de varianza minima, hacemos uso del
método de los multiplicadores de Lagrange. El lagrangiano sera:

A=V(t)+ AE(t) — ¥].

O equivalentemente:

A=V(t)+/1<zti—1>.

i=1

Derivando parcialmente A con respecto a t;, e igualando a cero,
tenemos:

OA_ N—ni

— = 2t; 24+ 1=0,
ati l NTli ¢

de donde
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; 1 an' n;
= — =c :
' 2(N —n;)o? N —n;

La constante ¢ se determina por la restriccion de insesgacion, es

decir,
m m
D i=c) e
= = C .
A (N —n;
=1 =1
de donde
1
c= T
1=1N — n;

Por tanto, el estimador insesgado de minima varianza del tipo lineal
t = )%, t;y; tiene por componente t; a:
n;
N — n;

m Ty
J=1N —n;

El estimador buscado es entonces

an
m

ﬂMs

1=Nn

Ejercicio 3.11. Indicar un estimador insesgado de la varianza,
V(t), del estimador insesgado lineal de minima varianza, t, para
estimar la media poblacional y, que hemos obtenido en el ejercicio
anterior.
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Solucion. Partimos de que un estimador insesgado de la
cuasivarianza poblacional

es la cuasivarianza muestral

1 _
s = 12(% — ¥s)%,
LES

donde y; es el valor observado de la variable y en la unidad i de la
muestra conjunto s de n unidades de entre las de la poblacién finita
de tamafio N.

Denotando por s a la cuasivarianza muestral obtenida con la
i-ésima muestra aleatoria simple sin reemplazamiento de tamarfio
muestral efectivo n;, todas ellas en i = 1,2, ..., m selecciones
independientes entre si, llegamos al “estimador insesgado de la
varianza” del estimador t lineal insesgado de la media poblacional
y de minima varianza en su clase:

V‘(t)_itzl’/‘v(—_)_i N —n; N —ny g2 =
CLVYT LN G N =Dt T
i=1 =1 j=1N—TLj
n.
1 ﬁlN_lniSlz
N=1(cpn _N 2
]=1N—le

Ejercicio 3.12. En algunos casos, de la variable de interés y a
observar, sabemos que esta acotada inferior y superiormente, es
decir y; € [a, b] para todo valor o unidad k € U, de la poblacion
finita, con a y b constantes reales, a < b. Demostrar en estas
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condiciones que la media muestral obtenida por muestreo aleatorio
simple sin reemplazamiento de tamarno efectivo fijo n, puede llegar
a estimar la media poblacional y con un error menor que cualquier
cantidad positiva e > 0 para cualquier nivel de confianza prefijado
l—a,con0<ac=<l.

Solucion. Para verlo, empezamos por justificar que si y, € [a, b],
entonces la varianza poblacional verifica que:

N N
1 —\2 1 2 _ N2
—N;(yk—y) sN;aa—a) = (b -

Por lo tanto
4CA) (N —n)o?
Ve — Y >1-— =1-—
N — b —a)?
W-mb-e?
(N — 1)ne?

Esto es cierto si

- N(b — a)? (b — a)?
“=IN"1De?n (N-1De?

O bien si

N(b — a)? N(b — a)?
(b —a)2 ](N— 1e? an(N— D+ B —-a)?

a+

Esta Gltima cota inferior del tamafio muestral efectivo prefijado n
sabemos que garantiza con seguridad que la media muestral y., con
disefio de muestreo irrestricto aleatorio de tamafo efectivo fijo n,
estima la media poblacional y con un error absoluto de muestreo
menor que e a un nivel de confianza mayor o igual a 1 — a. Por lo
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general, a otros tamafos muestrales inferiores es muy posible que
también se alcance este nivel de confianza, ya que la acotacion
% < (b —a)? es muy amplia y la varianza poblacional puede
tener cotas superiores mas pequefias que (b — a)?.

Ejercicio 3.13. Obtener el tamafio muestral n que haga que la
proporcion muestral p se desvie de la proporcion poblacional P
menos de una cantidad e > 0, con un nivel de confianza mayor o
iguala 1 — a. Laseleccion de la muestra es con disefio de muestreo
irrestricto aleatorio.

Solucion. Al tomar los valores de la variable de interés ceros y
unos, la varianza poblacional 62 =PQ =P(1—-P)<1/4 .
Entonces, la desigualdad de Chebychev nos dice que

V(p)
eZ

p{lp —P|<e}=>1- >1—a

)

o bien,

N —n)P N —
_ W -m)PQ _ no_ o,

V) ="y —Dn ST —Dn =

y esto es cierto cuando
N
——1<4(N - 1ae?,
n

0 bien, cuando

N
n= :
4(N — Dae? +1

El valor natural minimo que satisface la ultima desigualdad es mas
pequeia que la que proporcionaba la solucién del ejercicio anterior,
y es que hemos podido acotar la varianza poblacional por una cota
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superior en este ejercicio que es la cuarta parte de la que teniamos
en general en el ejercicio anterior.

Ejercicio 3.14. Seleccionamos dos muestras independientes de una
misma poblacion finita de tamafio N, una con disefio de muestreo
aleatorio simple con reemplazamiento de tamafio fijo n,, y otra con
disefio de muestreo irrestricto aleatorio de tamafo efectivo fijo n,.
Obtenemos las dos medias muestrales con ambos disefios, y las
denotamos yg e y;, y definimos la clase de estimadores de la media
poblacional por t = t;y, + t,y,. Obtener el estimador insesgado
de minima varianza (0ptimo) de esta clase de estimadores, y
obtener el estimador insesgado de la varianza del estimador
optimo.

Solucion. La condicion de insesgacion para estimar la media
poblacional y se resume en que

y = E(t) = E(t1)s + t25) = (¢ + t2)Y,
0 bien
1=1t; +t,.
La varianza del estimador t resulta ser:

, 07 N —n,
V(t) — tl + tz m

Para obtener los valores 6ptimos de t; y t,, hacemos uso del
método de los multiplicadores de Lagrange. El lagrangiano es:

A=V + A1 —t, — t,).

Resolviendo, tenemos el sistema:
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—=2t;—— A=
dt, Ty
dA N —n,
—_— t 2_2=0
atz 2 (N - 1)n2 g
Resolviéndolo,
Any
t, = —
17 202
AN — 1)n,

t, = .
27 2(N —ny)o?

Exigiendo la condicion de insesgacion, determinamos el valor de A
del modo:

1=t1+t2=7‘_2n1+rnzr
es decir,
A= 20°
a (N =Dn,
n,; + N —n,

Por tanto, los valores optimos de t; y de t, son al sustituir la
constante A:

t, = e
1 ny + _(A],V__lrzznz
y
(N — Dn,
f2 = N(1; :lzl)n '
ERA
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El estimador insesgado de la varianza del estimador optimo de la
clase es:

V(té'pt) - t1217()7$) + t%V(}_/S) =

? (N-Dn, 1°
ny 5_12 n N-n, N —n, g2
ny + N=—Dny| ny | (N=Dny| Nny 27
N —n, 1 N —n,

en donde s# es la cuasivarianza muestral con disefio de muestreo
aleatorio simple con reemplazamiento de tamafio fijo ny, y s2 es la
cuasivarianza muestral con disefio de muestreo irrestricto aleatorio
de tamano efectivo fijo n,.

Ejercicio 3.15. Demostrar que el estimador
v = Z vi-v)
1)
i<jes

es insesgado para estimar la varianza poblacional con disefio de
muestreo irrestricto aleatorio de tamafio efectivo fijo n, siendo N
el tamafio de la poblacion finita.

Solucion. Vamos a usar la relacion obtenida en el Ejercicio 1.7 de
este libro, en concreto, de él tenemos que la varianza poblacional

es.
1< 1w
2
=NZ1 ) =52,0i-%)

i<j
Haciendo uso de esta igualdad, veamos que la esperanza
matematica del estimador v es exactamente o2:

Ilb42
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Ew) = o E| ), 0i-)| =

i<jEs

n(n——lz Z(yl y) |p(s €9)

SES |i<jEs

donde S es el conjunto de muestras conjunto o no ordenadas
obtenidas por muestreo irrestricto aleatorio de tamario efectivo fijo
n. Entonces, calculando p(s € §) = 1/card{s € S} por laregla de
Laplace,

E(v) = ;(yl y;) Card{:afdfs: i:g; €5} _
N —2
m— Z(yl v;) —(" = 2)
= (n)

N-—-1 , n(n—1)
—— No?———= =
nn—-1) N(N —-1)
En realidad Nv/(N — 1) = s?, es la cuasivarianza muestral, que

es un estimador insesgado de la cuasivarianza poblacional S?,
como ya sabiamos.

Ejercicio 3.16. Demostrar que la cuasicovarianza muestral es un
estimador insesgado de la cuasicovarianza poblacional en el
muestreo irrestricto aleatorio de tamafio efectivo fijo n.

Solucién. Llamamos covarianza muestral al estadistico
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1
M == > 0 = 7 (e — ),

iES

La covarianza poblacional es la funcidn paramétrica
N
1 _ _
Hi1 = NZ(yi — ¥)(x; — %).
i=1
Lo que se nos pide es demostrar que

n N
E(Syx) =E (TL — 1m11) - mﬂll = Syx-

Para ello, bastaria demostrar que

N(n-1)

E(my,) = N —Dnfr

Veamoslo.

1
E(my,) =E (EZ )’ixi) — E(ysxs) =

IES

o N —n
ai1 + 101 — Cov(¥s, Xs5) = a1 — m#n =

Nn-1)
(N . 1)n#11'
Queda demostrar que
N N
1 1 1 1
Cov Ezyl,azxj = Cov NZyiei,Nijej =
LES JES =1 j=1
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—Z yixiV(e) +— Z Z yix;Cov(e;, €;).

i=1 j#i

Aqui e; es una variable aleatoria que toma valor 1 sii € s, y toma
valor 0 si i € s. Entonces, si r; es la probabilidad de inclusion de
la unidad i en la muestra,

n n*> (N—-n)n
V(e)) =E(e})—[E(e)]? =m—mf = NTNET T NT
Y si i # j, denotando por 7;; a la probabilidad de inclusion de las
unidades distintas i y j en la muestra, tenemos

Cov(ei,ej) = E(eiej) — E(el)E(e]) = Tl,'ij — 7Ti7Tj =

nn-1) n*  (N-m)n
N(N—1) Nz N2(N-1)

Asi, sustituyendo estos resultados en la covarianza de las medias
muestrales, tenemos que

COU(T’s: Xs) =
1 (N —n)n

ﬁNallN— ylz Cov(el, ])—

i=1  j=#i

—(N —
“11 _z yi(Nx — Ng(N _n);)l

N—n N—n N N—n
—a — 1«
NTL 11 (N_].)n 1001

N—-—n N—-—n
m (11 — a10@01) = m#n:

donde hemos denotado por
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1 N
Agm = Nz yikxim'
i=1

Ejercicio 3.17. Proponer un estimador insesgado de la covarianza
de las medias muestrales obtenidas por muestreo irrestricto
aleatorio de tamano efectivo fijo n.

Solucion. Basandonos en el ejercicio anterior, sabemos que la
covarianza de las medias muestrales en muestreo irrestricto
aleatorio de tamaro efectivo fijo n es

N—n

Cov(ys, Xs) = N = Dntar

Como un estimador insesgado de la covarianza poblacional p4 €s

deducimos que el estimador buscado es

N—n N—n

Cov(¥s, %) = =y A

U1 =

donde hemos denotado la covarianza muestral por

1
mqq = EZ(yi - ys)(xj - fs)-

iES

Ejercicio 3.18. De una poblacion finita U de tamafio N se
selecciona una muestra irrestricta aleatoria s de tamafno n de dicha
poblacidn, y posteriormente se selecciona otra muestra irrestricta
aleatoria s’ de tamafio n’, n + n’ < N, de la poblacion resultante
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U — s. Obtener la covarianza de las medias muestrales de las
muestras s y s'. Finalmente proponer un estimador insesgado de
dicha covarianza, calculable con los datos muestrales.

Solucion.
Cov(Js, ¥s1) = E[Cov (s, Ys:[S)] + Cov[E (Fsls), E (Vs |5)]
Como
Cov(¥s, Ysi|s) = ¥sCov (1, ¥ |s) = ¥s- 0 =0,
deducimos que
E[Cov(¥s, ¥si|s)] = E(0) = 0.

Por otro lado,

E()_lslS) = Vs

y

_ — N)_l - Tl}_/_g

Esls) =yy-s = ——,

(Vsr1S) = Yy—s N —n

por lo que
_ _ _ Ny —ny,
CovlEelS), EGals)] = Cov (70— =

Ny n
Cov (3_’5: 4 ) - N V(ys) =

N—n —n
n N-n o?
0— o°=— :
N—n(N-1)n N—-1
concluyendo que
Cov (T o) = —
OV \Ys) Ys1) = N—1

Un estimador insesgado de esta covarianza, dada la relacién
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o2 S2
N—-1 N’
y que la cuasivarianza poblacional es estimada insesgadamente por
la cuasivarianza muestral en el disefio de muestreo irrestricto

aleatorio, concluimos que

_ 52 s?
COU()_/S, )_’SI) = _W = _ﬁ;

donde s? es la cuasivarianza muestral de la muestra irrestricta
aleatoria s de tamaro efectivo fijo n, de la muestra irrestricta
aleatoria s’ de tamafio efectivo fijo n’, o bien (preferiblemente
desde un punto de vista de reduccion de la varianza del estimador,
y aprovechando toda la informacion muestral) de la muestra s U s’
de tamafio efectivo fijo n+n', que es también una muestra
irrestricta aleatoria de la poblacion finita.

Ejercicio 3.19. Demostrar que un estimador insesgado de la media
poblacional y, es el estimador t,. definido sobre la muestra de
tamario efectivo fijo s € U de la poblacion finita de tamafio N:

tc=V;+c,Si1€EsSYyN¢&s
t.=y,—c,Si1&syNEs
t. = Y5, €n otro caso,

siendo y, la media muestral con disefio de muestreo irrestricto
aleatorio de tamario efectivo fijo n, y ¢ una constante real.

Solucion. Podemos clasificar el espacio muestral de muestras de
tamano efectivo fijo n, S, en cuatro sucesos disjuntos:

S={1les,N¢s}u{l¢és,Nes}U{1l,Nes}U{1,N ¢ s}
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Entonces, llamando a estos sucesos en este orden Sy, S,, S3 ¥ S,
respectivamente, tenemos de la esperanza como esperanza de
esperanzas condicionadas, sustituyendo las probabilidades de los
sucesos obtenidas por la regla de Laplace, y calculando las
esperanzas condicionadas por los sucesos enumerados, que

4
E(t) = ) pSOECEIS) =
i=1

(N — 2) .
n(T—)l (% + ; Yu-ny T C) +
n

(N — 2) .
G )+
n

(-2)
TL(IT[)Z (yl + YN n n—2 }_]U_{l’N}> N
n

n n

.2

W?U—{l,N} =
n
(N-m)n/y; n—1_
N =D (n e o +e) 4
(N—-—nn/yy n—1_
N(N —-1) ( n n Yu-{1ny C) *
nn—1) (y1+yy n—2_
N(N — 1)( n * n yU_{l’N}> *
(N—-n)(N—-n—-1) _
N(N . 1) yU—{l,N} =
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n—1
01 +yn) [N(N Dt —nl"
2IN—-n(n—-1) (n—-1n-2)
NN-1) | NN-D
(N-n)(N-n-1)|

YUu—{1,n})

N(N —1)
yitow, NSy [N*=3N +2
N N-2| NIN-1)
?’:13’1':_
N Y

Por lo tanto el estimador t,. es insesgado para estimar la media
poblacional.

Ejercicio 3.20. Comprobar que el coste esperado de seleccionar
una muestra aleatoria simple con reemplazamiento de tamano fijo
n = 2 es menor que el coste esperado de una muestra de tamaro
fijo n obtenida por muestreo aleatorio simple sin reemplazamiento.

Solucidn. Si suponemos que el coste por unidad observada es ¢ >
0, el coste esperado de una muestra aleatoria simple con
reemplazamiento es

cE[v(s)] < cn,

ya que el tamafio muestral efectivo, o numero de unidades distintas
en la muestra aleatoria simple con reemplazamiento s de tamario
fion=>2,es1<v(s)<n,yconv(s)=1,2,..,v,..,n, &l
tamario muestral efectivo de la muestra s, siendo

p(v) >0
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paratodov =1,2,...,n.

Por otro lado, tenemos que en el muestreo aleatorio simple sin
reemplazamiento de tamafio fijo n, el tamafio efectivo fijo de cada
muestra con probabilidad positiva es v(s) = n, constante que al
multiplicarla por el coste por unidad nos da el “coste esperado de
una muestra aleatoria simple sin reemplazamiento”, es decir

cn.

Ejercicio 3.21. Si en el muestreo aleatorio simple con
reemplazamiento de tamafio fijo n, tomamos como estimador de la
media poblacional a la media muestral de las unidades distintas que
aparecen en la secuencia muestral, probar que este estimador es
menos preciso que la media muestral de las n observaciones en el
muestreo aleatorio simple sin reemplazamiento. ;/Qué se puede
decir comparando la precision con la media muestral de las n
observaciones en el muestreo aleatorio simple con
reemplazamiento de tamafo fijo n?

Solucién. Para ello basta ver que ambos son insesgados para la
media poblacional. EI caso del muestreo aleatorio simple con
reemplazamiento de tamafio fijo n es materia de teoria basica. El
otro caso puede verse de este modo,

E() = EE(yy|v)

Donde E (¥, |v) es la esperanza de la media muestral en muestreo
aleatorio simple sin reemplazamiento de tamafo fijo v, que
coincide con la media poblacional. EI promedio de medias
poblacionales constantes es la media poblacional.

Aplicando el Teorema de Madow, la varianza de la media muestral
¥y, €S

145



V() =EV(@ylv) =E l(N——l)v 2] =
N —
&= 1’;n o2 = V(5,)

siendo esta ultima varianza de la media muestral con disefio de
muestreo aleatorio simple sin reemplazamiento de tamafio fijo y
efectivo n.

Pero también, vamos a ver si es posible probar que

0.2

Viw) =E lm 2] = V()

siendo esta ultima varianza de la media muestral con disefio de
muestreo aleatorio simple con reemplazamiento de tamafio fijo n.
Para verlo definimos la funcion

_1 N—v
o) ===

y comprobar que para 1 <v < n, f(v) = 0. En efecto,

(N-Dv—-(N-v) Nx¥-1)

friv)= (N —1)2v? (N —1)2v2 20

Por lo que la funcion f es creciente y la derivada toma valor 0
cuando v = 1, es decir cuando alcanza el minimo de f. Como

1
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En conclusion, el estimador es mas preciso o no que la media
aritmética de las n observaciones por muestreo aleatorio simple
con reemplazamiento dependiendo del signo positivo 0 negativo
del promedio (de valores positivos y negativos)

> Fowm.
v=1

Ejercicio 3.22. Indicar si puede seleccionarse una muestra
irrestricta aleatoria de tamafo 5 de una poblacion finita de tamafio
326, con un generador de nimeros aleatorios independientes y
cada digito con distribucion uniforme en {0, 1, 2, ..., 9}.

Solucion. Si se puede, bastaria con gue numerasemos las unidades
de la poblacion finita desde el numero 1 al 326. Seguidamente
seleccionariamos grupos de tres digitos aleatorios sucesivos, si el
primer grupo esta entre 001 y 326, la unidad seleccionada es la
identificada con ese grupo; si no estuviese entre esas cantidades, se
procederia a una nueva seleccion de tres digitos aleatorios
sucesivos hasta que se seleccionara un identificador de una unidad
de la poblacion finita. En la segunda unidad a seleccionar
procedemos similarmente, con la particularidad de que si el
identificador ya hubiese sido seleccionado en la primera unidad de
la muestra, repetiriamos el proceso hasta que fuese un identificador
distinto al anterior. Y asi sucesivamente hasta seleccionar el quinto
grupo de tres digitos comprendidos entre 001 y 326 que no
coincidan con el identificador de las unidades ya anteriormente
seleccionadas en la muestra irrestricta aleatoria.
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Ejercicio 3.23. Proponer un estimador insesgado del producto de
dos medias poblacionales en muestreo aleatorio simple sin
reemplazamiento de tamafo efectivo fijo n.

Solucion. De la relacidn

YX = E(yx) — Cov(y,%x) = E(yx) — NN—S

donde S, , es la cuasicovarianza poblacional, que es estimable
insesgadamente por la cuasicovarianza muestral, resulta como
estimador insesgado de Y X el siguiente

e 1)Z(yl 7 - 0.

Donde ahora y; y x; son los valores de las variables y y x
respectivamente en la i-ésima unidad de la muestra aleatoria
simple sin reemplazamiento de tamafio efectivo fijo n.

Ejercicio 3.24. Obtener el tamafio muestral n del muestreo
aleatorio simple (disefio muestral mas) en funcion del tamafio
muestral efectivo m del muestreo aleatorio simple sin
reemplazamiento (disefio muestral mia) que conduce a una misma
varianza del estimador media muestral, y reciprocamente, es decir,
m en funcion de n en las mismas condiciones.

Solucién. Igualando las varianzas del estimador media muestral
con ambos disefios muestrales tenemos que

o2 N—m

n _(N—l)mg

Simplificando el factor comin o2 y despejando, tenemos que
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1
(N-1Dm N-1 1l-%
" N-m N_ 1 T

m m N

Obviamente, sim - N, n — oo.

Reciprocamente, de las igualdades anteriores, concretamente
del primer y segundo términos, tenemos que

n(N—-m)=(N—1)m.
De donde despejando m tenemos que
nN =m(N — 1+ n).
O bien,

_ nN
N—1+n

Obviamente, sin - oo, m - N.
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Capitulo 4

Muestreo estratificado

Este tipo de muestreo se presenta cuando la poblacion finita se
clasifica en clases o estratos, estimando las funciones paramétricas
poblacionales a partir de las estimaciones obtenidas en los estratos.

4.1 Diseno estratificado

Si lapoblacidn finita de tamafio N se clasificaen L estratos o clases
de modo que si el tamafio del estrato h (h =1,2,...,L) es Ny,
tendremos

N

thN.

>
Il
=

El tamano relativo del estrato h-ésimo es W, = N, /N, de modo

que
L
2 Wh = 1.
h=1

Dicha notacion viene de “weight” en inglés, que significa “peso”.

Una muestra estratificada se obtiene al seleccionar
aleatoriamente n, unidades en el estrato h, con 1 < n, < Ny, si el
disefio usado es el mia en el estrato h-ésimo. En general, 1 < n,,
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con disefio mas en el estrato h-ésimo. Ademas suponemos que la
seleccion dentro de cada estrato es independiente del resto de
estratos, es decir no hay ninguna dependencia entre las unidades
seleccionadas en uno y otro estratos cualesquiera. El tamafo de la
muestra estratificada es

ny.

i
=

h=1

Si y es la variable de interés o de estudio, notaremos por yy al
valor de la variable de interés en la unidad k del estrato h. Entonces
la “media del estrato h” es

la “varianza del estrato h” es

1 <
o = N—Z()’hk — )
hi=1

el “total del estrato h” es
Np

Th =Ny, = Yhk
k=1

y la “cuasivarianza del estrato h” es

Nho-i%

P =—"r
TN, -1

La media poblacional admite esta nueva expresion en el caso
de una poblacién estratificada,
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L Nn
= N = z 1%
N z 2 Yhk = 2 WYn = nWYh-

La varianza poblacional es

L Np
ISR
=N Yok —Y)" =

h=1k=1

siendo S2 la cuasivarianza poblacional. Finalmente, el total
poblacional es

h=1 h=1

La varianza poblacional admite la siguiente descomposicion

L L
2 = Z Whop + Z Wy (n — )%
h=1 h=1

Se suele decir que la variabilidad total se descompone en la
variabilidad dentro de estratos mas la variabilidad entre estratos.
En efecto, restando y sumando y;, dentro del paréntesis,

L Nn
1
? = N;;[(m 70+ Gn— P =

L Np

Nz Z(}’hk V)t +— Z Ny(¥p —¥)? =
L L
1 o1 o
Nz Ny oy, +Nz N,(yn — ¥)7,
h=1 h=1
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que es lo que queriamos demostrar. El doble producto se ha
anulado porque

L Np

2 Z Z(yhk V)G —y) =
h=1 k=1
L Np

2> Gn =) ) O =) =
h=1 k=1

L
2 Z(J_’h — ¥)(Npyn — Npyp) = 0.
n=1

4.2 Estimacion de la media poblacional

Denotando por ygp,) a la media muestral en el estrato h, un
estimador insesgado de la media poblacional es

L
Vst = z Whys(h):
h=1
donde el subindice st de y; viene de “stratified” que significa

“estratificado” en inglés. En efecto, si el disefio mas se aplica en
cada estrato independientemente

L L L
Z Whysimy| = Z WhE[}_’s(h)] = Z Whyn =Y.
h=1 h=1 h=1

La varianza de este estimador es

E(yse) = E

L L L
2
_ _ _ Op
V(yst) = Z V|Whysam| = Z WiV sy = Z Wi —,

h=1 h=1 h=1 h
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siendo n;, el tamafio muestral en el estrato h (h = 1,2, ..., L) con
disefio mas. La generalizacion para disefio mia seria directa. Un
estimador insesgado de la varianza ya calculada es

L o2
S h
V(yst) = E thn )
h=1 h

siendo s7 la cuasivarianza muestral en el estrato h, es decir

-y S(h)]

B‘N

y la media muestral en el estrato h es

np

B 1

Ys(h) = n_hz Yhk;-
i=1

4.3 Estimacion del total poblacional

El estimador usual, en muestreo estratificado con disefio mas en
cada estrato, del total poblacional T = Ny es T = Ny, pues

E(T) =NE(¥s) =Ny =T.
La varianza de este estimador es

2

ZNn
np

V(T) = N2V (§g) = N2 z W2

que puede estimarse insesgadamente por
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ya que E(sf) = o con disefio mas de tamafio muestral n;,. La
generalizacion para disefios mia en cada estrato es similar.

4.4 Estimacion de la proporcion poblacional

Como hemos visto, la proporcion poblacional y la proporcion
muestral es una media aritmética de una variable de interés que
toma valores cero o uno, y por ello el estimador insesgado de la
proporcién poblacional P es, en muestreo estratificado con disefio
mas independiente en cada estrato, el estimador

donde P, es la proporcion muestral en el estrato h. Como caso
particular de estimador estratificado, tenemos

pues sz = n,P,0,/(n, — 1) es la cuasivarianza muestral en el
estrato h.

La generalizacion para disefios mia en cada estrato es similar.
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4.5 El problema de asignacion muestral

Dado el tamafio muestral n, se denomina asignacion muestral al
reparto de las n selecciones de la muestra en los L estratos, es decir
consiste en fijar los tamafios muestrales n;, (h =1,2,...,L) en
cada estrato, de modo que

ny.

i
N

h=1

Algunos tipos de asignacion muestral son los siguientes.

Asignacion igual. Consiste en asignar el mismo tamafio muestral

en cada estrato, es decirque n; = :-- = n, = --- = n;. Como
L
n= Z n, = Lny,
h=1

deducimos que la asignacion igual esn;, =n/L (h = 1,2, ...,L).

Asignacion proporcional. Consiste en asignar a cada estrato h, un
tamano muestral n; proporcional al tamano del estrato Ny .
Entonces, n; « N, 0 bien n, = cN, donde c es la constante de
proporcionalidad, por lo que

L

L
n= nh=ZCNh=CN,
h=1 h=1

de donde ¢ =n/N, y por tanto n, =nW, (h=1,2,..,L). La
varianza del estimador estratificado de la media poblacional con
asignacion proporcional es
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L
_ 1 o’ _
V(prop, ¥st) = ;2 Whop < —= V(mas, ys),
h=1

debido a la descomposicidn de la varianza poblacional en variacion
dentro y entre estratos. Es decir, la asignacion proporcional con
diseilo mas dentro de cada estrato proporciona un estimador
estratificado mas preciso que la media muestral con disefio mas.

Asignacion minima. Fijado el tamafio muestral n, la asignacion
minima consiste en asignar a cada estrato un tamafio muestral n,
de modo que la varianza V(y,;) sea minima. Para calcular los
tamarios muestrales utilizamos el método de los multiplicadores de

Lagrange con la restriccion
L
z np = n.
h=1

El lagrangiano es L*,

L L

L
* — 20-’%
L"'=V(yg)+ 1 Znh—n =ZWhn—+/1 Znh—n )
h
h=1

h=1 h=1

donde A es el multiplicador de Lagrange. Resolviendo,

oL _ _th“_f%JrA —0(h=12..,L)
ony, n;
de donde
Vi Whon _ Yho1 Wh‘fh,
nn n
y por esto
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Wy op

n, =n (h=1,2,..,L)

L

h=1 Whah
es la asignacion minima que consiste en asignar un tamafio
muestral en el estrato h proporcional al producto W,o, ©
equivalentemente al producto Ny, oy,.

La varianza del estimador estratificado de la media
poblacional con asignacion minima es ahora, sustituyendo los
tamanos muestrales en la formula de la varianza

2

L L

_ 1 1 _

V(min, ys) = - z Whop | < ;z Wyof; = V(prop, Vs,
h=1 h=1

es decir, con la asignaciéon minima se mejora la precision del
estimador estratificado de la media poblacional respecto de la
asignacion proporcional.

Esta misma asignacion muestral se hubiera obtenido si
minimizaramos el tamafio muestral total

L
n = Znh
h=1

sujeto a una varianza prefijada V = V(y,;) como restriccion.

Asignacion ¢ptima con costes variables. Admitiendo que el coste
de observacion de una unidad muestral del estrato h es Cy, Y el
coste total de la muestra es C, podemos minimizar la varianza
V(y,:) sujeta a la restriccion

L
C = 2 Chnh.
h=1
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En este coste se supone que el coste total depende del nimero de
selecciones de unidades en cada estrato y no del tamario efectivo
de las muestras en los estratos. EI mismo resultado se da cuando se
minimiza el coste C sujeto a una varianza prefijada V = V (y;). El
lagrangiano sera ahora

gw H(zchnh ‘)

y derivando parcialmente L* respecto a n;, e igualando a cero,

S—Zl=—WZ:h+ACh=0 (h=12,..,L)

de donde

Whon yE_ Whon

VR C—
ny n

y por tanto

Whon

n,=n ] \/?;hﬂh (h=1,2,..,L),

h=1 \/C_h

es decir n;, es proporcional a Whah/\/c—h- En esta asignacion se
encuentra una solucion de compromiso entre el coste y la precision.
El tamafio muestral en el estrato h, nj,, puede expresarse en funcion
del coste prefijado C. En efecto,

)

L L
_Wy,o,+/C
C=Z:Chnh=n2h_1 nOn+/ Cn

. Whoy

h=1 \/C_h
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luego

. Wyop

. h=1 \/C—h
Z}L1=1 WhO'h\/C_h’

de donde sustituyendo, tenemos finalmente

Whop, Whop,

o . &
L Whon Z%l:1Wh0'h\/C—h

h=1 \/C—h

La varianza del estimador estratificado de la media
poblacional con asignacidn optima con costes variables es

L L
1
V(6pt, ys) = - (Z WhUh\/C_h> (Z V\'}r?n) =
h=1 h

h=1

I 2
1
E (2 WhO'hﬂ Ch) .
h=1

ny,=n (h=1,2,..,L).

Asignacion fijada. Si los tamafios muestrales n, (h =1,2,...,L)
estan prefijados previamente, el tamafio muestral n esta también
prefijado previamente. Entonces la varianza del estimador de la
media poblacional en muestreo estratificado con asignacion fijada
es la tradicional recogida en este libro.

Asignacion valoral. Dado el tamafio muestral total n, la
asignacion valoral consiste en distribuir el tamafio muestral n, en
el estrato h de modo que n;, sea proporcional al total del estrato h,
Ny, yy. Es decir,
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n o on n n
N1y, Npyn Ny, XiiNpyy Ny’
de donde

Whyn

ny,=n (h=1,2,..,L).

Asignacion n;, < W, o7 Este tipo de asignacion produce la misma
precision que la asignacion proporcional, y por tanto es mas precisa
que la media muestral en el disefio mas. En efecto, si

Wy oy
np =N > (h=1,2,..,L),
n=1 Whop
. L L
V(yst) = E z Wy Z Whoﬁ = V(prop; yst);
h=1 h=1

pero esta asignacion no tiene utilidad préactica porque requiere el
conocimiento adicional de los valores o/ ademas de los de W,,, y
con éstos ultimos ya se consigue la misma precision con asignacion
proporcional.

Asignacion especial. Consiste en realizar un censo en el estrato 2
0 de unidades grandes, es decir el tamafio muestral efectivo en el
estrato 2 es n, = N,, y tomar una muestra de tamafio efectivo fijo
n, con disefio mas en el primer estrato de los dos en que se divide
la poblacion por un punto y = y + ko separador del primero del
segundo estrato segun los valores que tome la variable de interés
en cada unidad. La varianza del estimador es
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N1_n1012
N, —1ng

V[W13_’s(1) + W23_’2] = Wy

Esta varianza es menor que la del muestreo aleatorio simple sin
reemplazamiento y la media muestral, cuando y solo cuando

N —no?

N—1n’

V(esp, Wi¥sry + Wy, ) <

0 bien

N?(N —N, —1)(n — N,)o? > (N — N,)*(N — 1)no?,
pero como

Ny N, N, — _

g2 = Walz +W0'22 +N_1(y2 _y)Z,
tenemos
N,N (¥, — y)* -

(N — N,)o = No? — Nyo5 — N-N, =

N,N(ko)?

N2 ,
7 TTN-N,

pues y, >y +ko=y,y c?>0. De las dos desigualdades
ultimas, obligando a que

N2(N — N, —1)(n — Ny)o? >

NyN (ko)?

(N = N)(N — Dn [Naz =N

conseguimos una condiciéon suficiente para que el estimador
estratificado con asignacion especial sea mas preciso que la media
muestral con disefio mia de igual tamafio muestral efectivo n, con
lo que operando resulta
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2 S (N—1)(N—-Ny)n—N(N —-N, —1)(n— NZ),

& N,(N — Dn

0 equivalentemente al simplificar

y como N, < n llegamos a que

N
k?>——1,
n

y al haber supuesto que k > 0 queda

N
k> |——1.

n
Por lo que una cota inferior para que el punto y de
estratificacion para afijacion especial y dos estratos (uno primero
de unidades pequefas que se muestrea, y otro segundo de unidades
grandes que se incluyen todas en la muestra a modo de censo en
este estrato) proporcione estimaciones mas precisas que la media
muestral usando disefio mia en ambos estimadores, es que el punto

de estratificacion sea
~ /N
y>y+oX ;—L

Si la variable de interés de las unidades estan ordenadas en
orden creciente, Glasser (1962) dio la condicidn suficiente de que
el punto de estratificacion verifique

_ N
y>y+oX |—
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para que con disefio mia en el primer estrato y asignacion especial,
se mejore la precision respecto del disefio mia sobre toda la
poblacion e igual tamafo muestral efectivo total en ambos casos.
Ruiz Espejo (1985) dio la condicidn suficiente mejorada para este
propoésito que es compatible con la cota de Glasser.

4.6 Estimacion de la varianza poblacional

Si el disefio muestral empleado dentro de cada estrato es el mas,
vamos a obtener un estimador insesgado de la varianza poblacional
en el muestreo estratificado. Partimos de la descomposicion de la
varianza en variacion dentro de estratos y entre estratos,

L L
0% = Z Whap + z W (n — 3)*.
h=1 =1

Para estimar o2, el primer sumando no presenta ningdn
problema con diseflo mas en cada estrato puesto que la
cuasivarianza muestral s# es un estimador insesgado de o, la
varianza del mismo estrato. En cuanto al segundo sumando,
sustituyamos y,, e y por sus estimadores insesgados yspn) € Ve, Y
calculemos la esperanza matematica:

L
E {Z Wh[ys(h) - yst]z} -
h=1

L
E <z Wil Gn = ) + [Ty — Fn] = Gse — 37)}2>,
h=1

sumando y restando (y; — ¥). Desarrollando el cuadrado entre
[laves y sustituyendo, tenemos que la esperanza anterior es igual a
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E

L
+E {z Wi [Vsy — }_’h]z} +
h=1

L
— 2E {Z Wi |75y — Pn] Gse — ;v)} +
h=1

L
z Wy (¥, — ¥)?
h=1

E

L
D WG = )2
h=1

L
ZE{ Wi Fn = ) |[Fsny — yh]} -
I

=1

2E

L
> W G = NGt = 7)
h=1

L L 5 L 5 L 5
_ _ Op Op Op
th()’h_Y)z +ZWh—+ZWhZ__ZZWhZ—,
np np np

h=1 h=1 h=1 h=1

porque los dos ultimos sumandos se anulan; luego el resultado final
es

L L
L, o}y
Wy(yp—y)c+ ) Wp(1—Wp) —
h=1 h=1 h

por lo que el segundo sumando de ésta Ultima igualdad es el sesgo
de

L
z Wh [ys(h) - yst]z
h=1

como estimador de
L
Z W, (n — )7,
h=1
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y en consecuencia, el estimador insesgado de la varianza
poblacional o2 en muestreo estratificado con disefio mas en cada
estrato independientemente, es

L L L
2
_ _ 12 Sh
o2 = E W,s? + E Wi Vst — Vse|” — E Wh(l—Wh)n—.
h=1 h=1 h=1 h

Una formula mas compleja se puede dar para estimar la
varianza poblacional en muestreo estratificado con disefio mia
independientemente dentro de cada estrato (Miras, 1985). Otros
estimadores insesgados de la varianza en muestreo estratificado se
deben a Ruiz Espejo y Delgado Pineda (2008c).

4.7 Posestratificacion

A veces se utiliza un disefio no estratificado para seleccionar la
muestra, pero una vez seleccionada se decide estratificarla y
estimar la media poblacional y por una media posestratificada. De
este modo, el tamafio muestral en el estrato h, n;,, es aleatorio antes
de seleccionar la muestra, y fijo una vez seleccionada. El estimador
posestratificado j, es entonces

L
yps = z Whys(h)»
h=1

similar al estimador estratificado salvo que la media muestral Y

tiene ahora un namero aleatorio n;, de unidades seleccionadas en
el estrato h. Ya no son los valores n;, fijados previamente sino que
son valores aleatorios que se concretan con la muestra obtenida.
Para calcular la esperanza y la varianza del estimador uso de la
esperanza y varianza condicionadas al tamafio muestral aleatorio
ny. En efecto,
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£G5e) = ElE )] = £ Waelgnion]| -

L
E (Z th’h) =E@) =1y,

h=1

por lo que el estimador ¥, es insesgado para la media poblacional.
Su varianza se calcula asi,

V(ps) = V[E(ypsmh)] + E[V(ypsmh)]'

pero el primer sumando es cero porque E(}_’pslnh) =y, y entonces

- of - 1
V(9ys) =E (Z W n—) = Z W2 oEE (n—)
n=1 A = h

Para calcular esta esperanza anterior, sea W), = nj,/n el tamafio
relativo de la muestra en el estrato h, mientras que W, = N, /N es
el tamafio relativo del estrato h en la poblacion. Con disefio mas,
W, estima sin sesgo a W,. Podemos escribir

_ _ W, — Wy,
nhanhzn(Wh—Wh+Wh)=nWh 1+— ’

Wh

luego

1 1 1

Nnp B nWh Wh — Wh,

1+ —w,
pero si
h— YWh
<1,
Wh

168



algo razonable porque W, estima sin sesgo a W, y ademas
converge en probabilidad a dicha funcién paramétrica, nos permite
expresar la aproximacion del desarrollo en serie de potencias
siguiente

1 1 [1_Wh—Wh+(Wh—Wh)2_m]z

np =:nV%1 Mﬁl MG?
~ ~ 2
11 Wy, =W, (W, —W,)

- —_ + >

nwﬁl MQ} W@

donde hemos tenido en cuenta los tres primeros términos del
desarrollo en serie. Tomando esperanzas,

1 1 v(w, 1 W, (1—W,
E(—)z—1—0+ (zh)= 1 4+ W zh).
np nWy w nWy, nWw,

Sustituyendo esta relacion en la varianza del estimador
posestratificado, tenemos

L L
) 1y 1 1— W,
V(3ps) = ) WERE (—) ~ = > Whof (1+—)
h=1 h h=1 h

en términos de su desarrollo en serie de potencias de hasta n=2.

Por ultimo, veamos que este método de estimacion se basa en
que conocemos los tamanos relativos de los estratos W;,. En efecto,
si utilizaramos el estimador

L
}_]pSO = Z Who}_]S(h)’
h=1

con Wy, cualquiera, tendremos que
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L

yps = ypso + Z(Wh - Who)ys(h)»
h=1

por lo que

L
B(psyi 7) = = ) (Wi = Wi, )7
h=1

es el sesgo del posible estimador posestratificado con W,

cualquiera, que no depende del tamafo muestral n. Por lo tanto, no
es aconsejable usar la estratificacion a posteriori 0
posestratificacion si los tamafios relativos de los estratos W,
(h =1,2,...,L) no son conocidos en la fase de estimacion.

Un estimador insesgado de la varianza del estimador
posestratificado puede obtenerse a partir del Teorema 1.4, en
concreto, para muestreo aleatorio simple con reemplamiento de
tamario fijo n, si denotamos por y, a la media muestral y por s? a
la cuasivarianza muestral

SZ

?(yps) - 3_’55 - 3732 + ;
4.8 Ejercicios resueltos

Ejercicio 4.1. En un estudio por muestreo estratificado se decide
utilizar asignacion especial para el tercer estrato (de unidades
grandes) y utilizar asignacion igual en los dos primeros estratos de
TF(n,)y de TEF (n,) respectivamente donde los disefios que se
emplean son mas con g4y, y mia con y,). Proponer un estimador
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insesgado de la media poblacional para este disefio y calcular su
varianza.

Solucion. Un estimador estratificado insesgado de la media
poblacional y que se propone es

Vst = WiyVs) + Ways) + Ways,
siendo W, = N, /N el tamafio relativo del estrato h (h = 1, 2, 3).
La varianza es
2

_ 01 N, —n, 03
V() = W2 4 w2222

con ny =n,=MmM-—n3)/2=m-—N;)/2, siendo n; = N3 el
tamano muestral efectivo en el tercer estrato.

Ejercicio 4.2. En las condiciones del ejercicio anterior, proponer
un estimador insesgado de la varianza del estimador de y.

Solucion. Un estimador insesgado de la varianza del estimador
estratificado insesgado de la media poblacional es

2

~ S1
v = W2 —+ W72 :
(yst) 1 n 2 N, n,

2
Ny —n, 85

siendo s# la cuasivarianza muestral obtenida con disefio mas de
tamanio fijo n; en el primer estrato, y s la cuasivarianza muestral
obtenida con disefio mia de tamano efectivo fijo n, en el segundo
estrato.

Ejercicio 4.3. En una poblacion estratificada en 2 estratos, se ha
obtenido que W; = 0.4, y por una muestra piloto se sabe que
aproximadamente ¢? = 100, 67 = 81 y o2 = 225. Suponiendo
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que el tamafio poblacional N es suficientemente grande, calcular el
tamafilo muestral n para que una muestra con asignacion minima
proporcione la misma varianza que un disefio mas sobre toda la
poblacion de tamafio muestral efectivo n* = 150, para estimar la
media poblacional.

Solucion. Como

~ g 225
V(ys)=F=1_50=1-5;
y
2 2
V(min, y )=E<ZW0> =l(04—'10+06'9)2=88.36
» Vst n - h%h n' . n

Luego, si

~ o 88.36
1.5 =V(y;) = V(min, y5) = —

se deduce que

es decir, el tamafo muestral requerido es n = 59.

Ejercicio 4.4. Determinar la asignacion proporcional en cada
estrato, si el tamafio muestral total esn = 1000, y hay 5 estratos
de tamafios relativos 0.2,0.3,0.1,0.25 y 0.15. ;Cual es la mayor
diferencia absoluta de tamafios muestrales con respecto a la
asignacion igual?

Solucidn. La asignacion proporcional es
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(200sih =1
300sih =2
np =nW, =<100sih =3
250sih = 4
\150sih =5

La asignacion igual esn; = 1000/5 =200(h =1,2,...,5). En
los estratos 2 y 3 se dan las mayores diferencias absolutas entre
ambas asignaciones pues |300 — 200| = |100 — 200| = 100, que
es mayor que las desviaciones absolutas restantes, que son 0, 50 y
50.

Ejercicio 4.5. Para estimar la proporcion poblacional P de
inclinacion de voto a cierto partido politico en el conjunto de
esparioles con derecho a voto, se ha dividido geograficamente a los
votantes en dos estratos: litoral y centro, de modo que el tamafio
relativo de ambos es W; = W, de un total de 20 millones de
votantes. Se decide usar asignacion igual n, = 5000 (h =1,2)y
resultan, con diseflo mia en cada estrato, las proporciones
muestrales P, = 0.35 y P, = 0.28 . Estimar P por muestreo
estratificado con asignacion igual y estimar insesgadamente la
varianza de tal estimador.

Solucion. El estimador estratificado sin sesgo de la proporcion
poblacional P es

2
P = Z w,P, = (0.5-0.35 + 0.5-0.28) = 0.315,
h=1

luego la proporcion estimada de voto favorable es del 31.5%.

Un estimador insesgado de su varianza es
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2

A —ny, P

VP 2 h th_
- np — 1

1 9995000 1
4100000004999

que representa un error de muestreo estimado muy pequefio, por lo
que el estimador P es muy preciso.

(0.35-0.65+ 0.28-0.72) = 0.0000214

Ejercicio 4.6. En una comarca compuesta por tres pueblos
numerados del 1 al 3, se desea conocer la edad media de sus
habitantes. Para ello se dispone de un presupuesto de 10000 euros,
y se tiene un costo por observacion C; = C, = 8y C3 = 12 euros
respectivamente por encuesta. Determinar los tamafios muestrales
ny, en cada pueblo, y el tamafio muestral total n, si de una encuesta
piloto previa se ha estimado que las cuasivarianzas muestrales son
st =30%, s2 =322y s =40%, y que se dispone de la
informacion del tamafio total de habitantes en cada pueblo N; =
25000, N, = 12000 y N3 = 2000. El objetivo es obtener la
méaxima precision a coste fijo.

Solucion. La asignacién n;, debe ser proporcional a Ny oy, /+/Cy,

(h=1,2,3) por tratarse de asignacion oOptima con costes
variables. Por tanto,

Nyo; 25000 - 30
n, ~ 265165.04

G B

Nyo, 12000 - 32
n, « ~ 135764.5

G B
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_Nso; 200040
n =
U JG V12

Por otro lado tenemos que el coste total es

~ 23094.011

10000 =C = Y Cpny, = 8ny + 8n, + 12n; = 34845645t

3
=1

h

siendo t la constante de proporcionalidad, de donde

. 10000
 3484564.5

= 0.0028697991,

y por tanto,
n, =t-265165.04 = 760.97 = 761 habitantes
n, =t-135764.5 = 389.60 = 390 habitantes
nsy =t-23094.011 = 66.27 = 66 habitantes

Es decir, en total entre los tres pueblos de la comarca, se debe
encuestar a un total de 1217 habitantes, 761 del primer pueblo,
390 del segundo, y 66 del tercero. Se puede comprobar que el
coste total resultante sera 761- 8 + 390-8 + 66 - 12 = 10000.

Ejercicio 4.7. Una empresa de publicidad quiere estimar la
proporcién de hogares en un municipio donde se consume cierto
producto. EI municipio es dividido en tres estratos de tamafios 155,
62 y 93 hogares respectivamente. Una muestra estratificada de
tamafio muestral total 40 hogares se selecciona con asignacion
proporcional. Estimar la proporcion poblacional pedida y dar una
estimacion insesgada de su varianza, si haciendo uso de disefio mia
independientemente en cada estrato, el nimero de hogares en las
muestras que consumen el producto son 16 , 2 y 6
respectivamente.
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Solucion. El namero total de hogares en el municipio es
N =Y3_, N, = (155 + 62 + 93) = 310 hogares.

La estimacion estratificada de la proporcion de hogares que
consumen el producto es

=t ——=+ ——— = 0.60

3
_zNhA 15516 622 93 6
B N 31020 3108 31012

donde

V(P,) = ~10.024sih = 2

0.020sih =3

R N, —ny, th‘h 0.007sih =1
Nh np — 1

Es decir, sustituyendo
V(P) ~ 0.0045,

que es el valor aproximado del estimador insesgado de la varianza
del estimador de la proporcion P en muestreo estratificado, es
decir, una aproximacion por redondeo de la estimacion insesgada
de la varianza buscada.

Ejercicio 4.8. Una poblacion finita U estd clasificada en dos
dominios o estratos disjuntos que denotamos por su subindice h =
1, 2. Estimamos la diferencia de medias de los estratos, D = y; —
y,, por medio del estimador insesgado d diferencia de medias
muestrales respectivas obtenidas por disefios de muestreo aleatorio
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simple con reemplazamiento independientes de tamarios fijos n, y
n,. Demostrar que el estimador d es insesgado para estimar D,
obtener su varianza, y minimizarla sujeta a que n = n; +n,.
Obtener tambien la asignacion muestral optima que minimiza la
varianza de d sujeta a que el coste total C = c;n; + c,n,, asi como
la varianza de d resultante. Proponer un estimador insesgado de las
varianzas resultantes.

Solucion. El estimador d = ys1) — ys(2) diferencia de medias
muestrales independientes, es insesgado para estimar D pues
E()_'s(h)) =y, Y la esperanza matematica de una diferencia es la
diferencia de las esperanzas, que en nuestro caso es D = y; — y,.
Y tiene por varianza

of 03

V(d) =V(Jsry) +V(Fs)) = P

Para minimizar V(d) sujeto a que n = ny + n,, usamos el método
de los multiplicadores de Lagrange. El lagrangiano es

A=V(d)+A(n —ny —n,),

donde A es el multiplicador de Lagrange, que es solo uno porque
hay una sola restriccion. Resolviendo, para h = 1, 2, tenemos

dA of
— ==
ony, 2ny,
Por lo que
Oh Oh
np = =

=—N—-,

despejando A al exigir la restriccion sobre la suma de los tamafios
muestrales. Al sustituir estos valores de la asignacion muestral
minima, obtenemos la varianza minima del estimador d como
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1
Vmin(d) — E (0-1 + 02)2-

De modo similar, la asignacion muestral Optima que
minimiza la varianza del estimador d sujeto la restriccion del coste
presupuestado C = c;nq + c,n, , usando del método de los
multiplicadores de Lagrange, nos da como resultado para h = 1, 2

C Uh/\/C—h
Z%l=1 Uh\/C—h

Que sustituidas estas asignaciones muestrales Optimas en la
férmula de la varianza de d nos da como resultado

1 2
Vspt(d) = C (o14/c1 + 024/c2)

Tanto las asignaciones muestrales de minima varianza y
Optima con costes variables dependen de parametros desconocidos,
por lo que dichas asignaciones solo podrian ser estimadas con una
muestra piloto. Un estimador insesgado de la varianza de d es

np =

2 2
Vid) =2+
1 2

siendo s? la cuasivarianza muestral en el estrato h, y n, la
asignacion muestral en el estrato h. En los casos de las
asignaciones obtenidas no podemos conocer dichos tamanos
muestrales en la préactica sin conocer las varianzas de los estratos,
por lo que fijados los tamafios muestrales (pudiendo ser tras
estimarlos con una muestra piloto), el estimador insesgado de la
varianza seria valido.
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Ejercicio 4.9. Una poblacion finita clasificada en dos dominios o
estratos tiene definida sobre sus unidades la variable indicadora de
un tercer dominio no necesariamente disjunto de los anteriores.
Estimar sin sesgo la proporcion desconocida de unidades de la
poblacion que estan en este tercer dominio, usando muestreo
estratificado con asignacion proporcional al tamafio de los dos
primeros estratos y usando independientemente muestreo aleatorio
simple con reemplazamiento en cada uno de los dos primeros
estratos. Estimar insesgadamente la varianza de la estimacion
anterior.

Solucion. Denotamos por N el tamafio de la poblacion finita, y por
N, el tamario del estrato h = 1, 2. Definimos la variable y;,, = 1 si
la unidad k es del tercer dominio, e y;,, = 0 si launidad k no es del
tercer dominio. La media de la variable y en el dominio o estrato h

es la proporcion P,. Como
2
z N
— N

un estimador insesgado de la proporcion P; de unidades de la
poblacion finita en el tercer dominio, haciendo uso de técnicas de
muestreo estratificado

donde p;, es la proporcién muestral de unidades del estrato h (=
1, 2) que estan en el tercer dominio.

La asignacion proporcional consiste en que si n es el tamafio
muestral total, el reparto de este tamafio muestral en los dos
primeros estratos es proporcional al tamafio de los estratos. En
concreto, n;, = nNy /N parah = 1, 2.
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La varianza de P; es

2\ N2 N2 P,Q

= h hth¥h

V(P) =Y V) = )
h=1 h

NZ n
=1 h

por lo que, sustituyendo la asignacion proporcional, la varianza
admite la expresion

prop( 3) - Z_Pth

Y como la varianza P,Q;, es estimable insesgadamente por el
estimador cuasivarianza muestral en el estrato h-ésimo en el
muestreo aleatorio simple con reemplazamiento, es decir por
nypnqn/(ny, — 1), resulta que el estimador insesgado de la
varianza de P; es

2

. - 1 Nh nhPth Prqn
7 (P.) = Z —
PI‘OP( 3) h_ . (Nh — N/n)
2 2
z Ny prqn
nNN, — N2
h=1

donde q;, = 1 — p;, es la proporcion muestral en el estrato h de
unidades seleccionadas que no pertenecen al tercer dominio.

Ejercicio 4.10. Proponer un estimador insesgado de la diferencia
D; = y; — y entre la media del dominio o estrato i y la media
poblacional. Obtener la varianza de este estimador usando
muestreo aleatorio simple con reemplazamiento
independientemente en cada estrato. Obtener la asignacion
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muestral de minima varianza, y estimar sin sesgo la varianza del
estimador de D;.

Solucion. El estimador natural de la diferencia D; = y; — y es la
diferencia

L
_ _ _ Ny _
di = Vsii) — Vst = Vsi) — z N st =
h=1

L
_ N; Np _
o3

donde hemos denotado por y.; al estimador usual de la media
poblacional en muestreo estratificado, por ysp) a la media

muestral en el estrato h, y por L al nimero de estratos considerado.
Este estimador d; es insesgado de la diferencia D; pues la
esperanza matematica de la diferencia de dos variables aleatorias
es la diferencia de las esperanzas matematicas de dichas variables.
La varianza de este estimador es
2 L

o? N; N\ 2 o2
vy =-(1-5) + 2 (F) o
i h

h=i

Para obtener la varianza minima al variar los tamanos
muestrales n;, sujetos a la condicion
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Resolviendo, derivamos parcialmente el lagrangiano con
respecto a cada uno de los tamafios muestrales de los estratos, de
modo que si h # i,

oA Njop 1—0
on,  2nZNZ2
y
oA (1 Nl-)2 o? =0
on; N/ 2n? B
De donde si h # i,
Np n;
C,

Npo, (N —N)o;

donde ¢ es una constante que se determina imponiendo la

restriccion
L

h=1

)

L
Z Npoy + (N — N;)o;

h=i

por lo que la asignacion muestral de varianza minima resulta ser
para h # i,

Ny oy,
Tlh =N
ki Npop + (N — N)a;
y
(N — N;)o;
n;

=n .
Sk i Npop + (N — N)a;

Un estimador insesgado de la varianza del estimador d; es
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L
0 (1 Nl-)2 s? N7 sf
Yo N n; ] N?2 Tlh,
h=+i
donde s7 es la cuasivarianza muestral en el estrato h = 1,2, ..., L,
obtenida con muestreo aleatorio simple con reemplazamiento

independientemente en cada estrato con el tamafio muestral n,.

Ejercicio 4.11. Obtener la asignacion muestral éptima con costes
variables que minimiza la varianza del estimador diferencia de
medias muestrales como estimador insesgado de la diferencia de
medias de dos dominios disjuntos, usando muestreo aleatorio
simple sin reemplazamiento independientemente en cada dominio.

Solucion. El estimador de la diferencia de medias de dominios D =
vy, — ¥, €s el estimador diferencia de las medias muestrales

d= 375(1) - 375(2):

obtenida con disefio de muestreo irrestricto aleatorio de tamafo n,,
independiente en cada dominio h = 1,2 . Este estimador es
insesgado para estimar D por ser la esperanza matematica de una
diferencia, la diferencia de las esperanzas matematicas respectivas.

La varianza de d es

Ny —ny N, —n,
V(d) = ———5f +——=573,
(d) Ny ot TN %2

donde S? = N0 /(N,, — 1) es la cuasivarianza del dominio h =
1,2. Para obtener la asignacion éptima con costes variables, el
lagrangiano es

A= V(d) + A(C —Cinqg — Cznz),
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donde C es el presupuesto del procedimiento de muestreo, y c;, es
el coste por observacion de una unidad en el dominio h = 1, 2.
Resolviendo, derivamos parcialmente el lagrangiano con respecto
a cada una de las variables n;,, e igualamos a cero:

dA SE . 0
— = ——F — ACy = U,
ony, 2n n

para h = 1, 2. De donde,

np = CSh/\/a-

La constante ¢ se calcula de la restriccion

C=cny +con, = C(51\/a + 52\/0—2):

por lo que parah = 1, 2,
Sn/\/cn
Siver + Save,

es la asignacion muestral pedida, donde S; es la cuasidesviacion
tipica en el dominio h-ésimo.

nh=C

Ejercicio 4.12. Obtener la varianza minima del estimador usual
estratificado

L
Vst = 2 Wh}_’s(h)-
h=1

El tamario de la poblacion finita es N y el tamafio muestral total es
n < N, seleccionando muestras irrestrictas aleatorias de tamafno ny,
independientemente en cada estrato.
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Solucion. Minimizando la varianza del estimador usual
estratificado sujeto a la restriccion

n = Nnp,

=

h=1
haciendo uso del procedimiento de los multiplicadores de
Lagrange, obtenemos que parah = 1,2, ..., L,
vvﬁSh

ny, =Nn—o———.
L
i=1 VViSi

Estos tamaios muestrales deben ser aproximados por los
numeros naturales mas préximos o que hagan factible el muestreo.
Sustituyendo los valores obtenidos de los tamafos muestrales

efectivos en cada estrato, en la formula de la varianza del estimador
usual en muestreo estratificado, que es

L
_ Ny —ny
V(yse) = Z Wy W&f;
£t hMp

obtenemos la varianza minima pedida,

L 2 L

B 1 1 5

Vmin(yst) = E z WhSh - Nz WhSh'
h=1 h=1

Este valor obtenido es siempre positivo, aungue aparentemente nos
lo haria dudar la relacion siguiente,

L L 2
z W,S? — z Wy,S, | =0,
h=1 h=1

por ser la varianza siempre positiva o0 cero, duda especialmente
aparente pero engariosa para valores de n proximos a N.
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Ejercicio 4.13. Proponer un estimador insesgado del producto de
dos medias de dos dominios disjuntos, calcular su varianza, y
obtener un estimador insesgado de la varianza del estimador
propuesto.

Solucién. Seleccionando dos muestras aleatorias simples
independientes de tamarios fijos n; y n, respectivamente, tenemos
como estimador insesgado del producto de medias de dos
dominios, y;y,, al estimador producto de dos medias muestrales
independientes, ys1)Ys(2)- En efecto,

E(YscyVs2) = E(Vs)E(Ts2)) = 7172

La varianza del estimador producto de medias muestrales es

VeV 2 = _ 2
V(FsyTs@) = EF27%0) — [EGsws@)] =
E(750)E(Vi) — 7175 =
[V (Tswy) + 72V Fsy) + 73| — 7253 =

2 2 2 2
010, 01 _, 03 ,
ol B T e £ ¢
ngn, ng n;

Un estimador insesgado de esta varianza es

st s2 2

o s -
V(TsyPs)) = . n—ll [y +V(Fs))] +

S5 N
— [ + Vsl =
2

2 o2 2 2
S1 82 S1 2 S2 2

3 — + n, V5@ + n, Vs
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Ejercicio 4.14. Comparar la relacion entre las varianzas obtenidas
por muestreo estratificado con asignacion proporcional y por
muestreo aleatorio simple, usando como disefio basico el muestreo
aleatorio simple con reemplazamiento, y también usando como
disefio basico el muestreo irrestricto aleatorio.

Solucién. La asignacion proporcional consiste en asignar un
tamafo muestral n, = nW, proporcional al tamano relativo del
estrato correspondiente.

Con disefio basico de muestreo aleatorio simple (con
reemplazamiento), la varianza del estimador estratificado es

L 0',%
VG = ) W,
Ny
h=1
donde sustituyendo la asignacién proporcional, resulta

L
_ 1 5
Vprop Fse) = Ez Whoy.
h=1

Como la varianza del estimador media muestral con disefio
de muestreo aleatorio simple con reemplazamiento de tamario fijo
nes

Vinas (ys) — 7»

entonces la relacion pedida sera

Vprop (yst) . Zﬁ=1 Who-i%
Vinas (ys) o?

<1,

relacion constante que no depende del tamafio fijo muestral n.
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En el caso de usar el disefio de muestreo irrectricto aleatorio
de tamafio efectivo fijo n, la formula general de la varianza del
estimador usual en muestreo estratificado es

L
. (1 1y
V@) = ) WE (=) sk,
e~ np h

de donde sustituyendo la asignacién proporcional, obtenemos

L
B 1 1 )
I/I)rop Vse) = (E - N) Z WhSh .
h=1

Como sabemos que con disefio de muestreo irrestricto aleatorio de
tamarfio efectivo fijo n sobre toda la poblacion finita, la media
muestral tiene por varianza

Vinia () = (1 1)52
mia yS - n N )
concluimos que la relacion buscada es
Vi)rop (yst) . Z%i:l WhSi%
Vmia(ys) 52 ,

relacion que es también constante y no depende del tamafo
efectivo fijo muestral.

Ejercicio 4.15. Con los datos disponibles de un muestreo
estratificado aleatorio con disefio basico de muestreo aleatorio
simple con reemplazamiento, proponer un estimador insesgado de
la varianza poblacional.

Solucion. Como la varianza poblacional admite la relacién
siguiente
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L L
0% = Z Whop + Z Wy (¥ — ¥)? =
n=1 n=1

L L
Z Whop + Z Whyr — ¥2,
n=1 h=1

un estimador insesgado de la varianza poblacional es

L L 5 L 5
— _ Sh _ Sh
0% = z Wysi, + Z W (ysz(h) __> — Vi + z Wi —,
np np

h=1 h=1 h=1

donde el altimo sumando es un estimador insesgado de la varianza
del estimador usual en muestreo estratificado.

Otro estimador insesgado de la varianza poblacional, ya que

L Np
2 1 2 —2
g" = WhN_ Yhi =YV
h 4
h=1 i=1
es el estimador
L 1 np L 5
— S
— 2 =2 2 °h
Uz—th— yhi_yst+zwh_'
np np
h=1 =1 h=1

Ejercicio 4.16. Con una muestra piloto se desea estimar el tamafno
muestral deseable n para que la varianza del estimador insesgado
usual en muestreo estratificado con asignacion proporcional tenga
un valor aproximado v, usando como disefio basico el muestreo
irrestricto aleatorio.

Solucién. Bastard igualar v a la varianza del estimador
estratificado, es decir,
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L
_ 1 1 5
v= Vprop(yst) = (E - N) z WhSh,
h=1

de donde, despejando n y llamandole tamafio muestral exacto para
que la varianza del estimador estratificado con asignacion
proporcional sea v, tenemos

Yh=1 WhSi;
T .
v+ NZﬁ:l WhSh

Asi, el estimador de n, que llamamos 7 seria

En esta aproximacion hemos sustituido las cuasivarianzas de
los estratos S7 por sus estimaciones insesgadas, las cuasivarianzas
muestrales en los estratos s7 a partir de la muestra piloto.

Ejercicio 4.17. Obtener la varianza del estimador usual en
muestreo estratificado, con asignacion proporcional, para estimar
una proporciéon poblacional. Dar un valor para que el tamafio
muestral total asegure una varianza menor o igual a una cantidad
constante v. Dar un valor exacto para el tamafio muestral si
sabemos que la proporcion del estrato h verifica que P, (1 — Py,) =
1/10.

Solucion. La varianza del estimador pg, usual en muestreo
estratificado con asignacién proporcional es

L 2
N—nl NhPth<

Nn N N,—1 "
h=1

Vi)rop (pst) =
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desigualdad que se verifica cuando

izL N PnQn
NZ&h=1"N, — 1

v+ Yk St
IV2 Zh_l Nh - 1

nz=

Pero este valor de n, el menor valor de los que verifican la
desigualdad, no puede ser conocido ya que depende de las
proporciones de los estratos P, que son desconocidos antes de
realizar las observaciones por muestreo.

Si aceptamos que P, Q; = 1/10, sustituyendo la cota inferior
obtenida antes, tenemos que como P, Q;, < 1/4,
1 g Ny 1 g NiPaQn
4N 2 hleh_l - N2 h=1 Nh—l

1 o N? 1 o, NFPLQY
v Ionz =N, =1 VY NzZR=1 N, -1

n >

que si seria una cota inferior determinada para la eleccion del
tamafno muestral efectivo fijo n que proporcione un estimador
usual en muestreo estratificado de la proporcion poblacional con
asignacion proporcional cuya varianza esta acotada superiormente
por la constante v. En la practica, si

L v Ny

AN2“h=1N, —1

1 o N
v+ IONZLh=1T, — 1

n >

)

garantizamos la desigualdad buscada.

Ejercicio 4.18. Dar una cota inferior del punto de separacion de
estratos para que usando muestreo estratificado con dos estratos, el
segundo de inclusion segura en la muestra, proporcione
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estimadores mas precisos que el muestreo aleatorio simple sin
reemplazamiento del mismo tamafio muestral sobre toda la
poblacion finita. (Es util esta cota inferior directa o
indirectamente?

Solucidn. Si la poblacion finita estd ordenada en orden creciente
por su variable de interés y, con k = 1, 2, ..., N, es decir,
VISY2S SV <SS YN
el punto de estratificacion y que divide la poblacion en dos
estratos, el primero formado por las unidades k con
Yk < Y,

y el segundo estrato formado por las unidades k con

Y =< Yk

Con asignacion especial consistente en seleccionar una muestra
aleatoria simple sin reemplazamiento de tamafo n, en el primer
estrato, y en seleccionar todo el segundo estrato en la muestra, es
decir, n, = N,. El tamafo muestral total es n = n, + n,. Entonces
sabemos que si el punto y de estratificacion o de separacion de
estratos verifica
N
y>a+o X o 1

siendo N el tamafo poblacional, el estimador estratificado con
asignacion especial de la media poblacional a, concretamente
Wiysay + Ways

(donde W), es el tamafio relativo del estrato h, ys1y es la media
muestral en el primer estrato, e y, la media del segundo estrato),
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verifica que es insesgado y mas preciso que la media muestral con
muestreo aleatorio simple sin reemplazamiento de tamafio muestral
comdn n.

Sin embargo el conocimiento de esta cota inferior supone
conocer perfectamente tanto la media poblacional a, como la
desviacion estandar poblacional . Si conociéramos a, no seria
necesario estimarlo. Pero aun desconociendo el verdadero valor de
a, si disponemos de una muestra piloto previa a la estimacion
estratificada con asignacion especial, podriamos estimar los
parametros e y o. Llamemos a* y o* a estos estimadores pilotos.
Entonces, podemos estimar la cota inferior por la cota piloto
inferior

a*+o"xX |——1
n

de modo que si aproximadamente el punto de estratificacion y es
mayor que dicha cota piloto inferior, el estimador estratificado con
asignacion especial proporcionara estimaciones por lo general mas
precisas que las proporcionadas por la media muestral con
muestreo aleatorio simple sin reemplazamiento del mismo tamanio
muestral n.

Ejercicio 4.19. Desarrollar una teoria de anélisis de la varianza en
disefos experimentales con una base inferencial objetiva.

Solucion. En modelos de disefio experimental tradicional se
supone que un namero infinito de posibles observaciones pueden
ser obtenidas de un experimento. Ademas suele considerarse que
estas observaciones pueden ser modeladas estadisticamente e
incluir una variable de error que suele estar supuestamente
distribuida Normal con algunas condiciones adicionales. La
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comprobacion practica de tal distribucion de los errores no es
posible. Por esto, el uso del disefio experimental tradicional
requiere asumir circunstancias que podrian estar lejos de las
verdaderas condiciones de trabajo. Algunas consecuencias posibles
de tales suposiciones son las conclusiones Yy resultados
inferenciales sin verdadera base logica solida.

Algunas aplicaciones de la teoria objetiva desarrollada en este
ejercicio son la agricultura natural, industriales, sociales,
biomedicina, etc. Con la presente vision tenemos la ventaja de
trabajar sin el uso de hipotesis no verificables, algo que no superan
los metodos clasicos de disefio de experimentos. Nuestro modelo
esta basado en hechos, como ocurre con la teoria de muestras de
poblaciones finitas de unidades identificadas.

Disefnios experimentales de un factor. Partimos del modelo
realista siguiente; parat = 1, 2, ..., T y paracada tratamiento t, i =
1,2, ..., N, disponemos de una poblacién finita de tamafio N;. El
modelo de un factor es:

Xti=A+Bt+gti

Donde T es el nimero de tratamientos, y para cada tratamiento t
tenemos un numero maximo posible N, de observaciones
diferentes, una por cada unidad de la poblacion en la que se podria
experimentar el tratamiento t. Los tratamientos (niveles o estratos)
son estocasticamente independientes, y para cada tratamiento t
realizamos un namero finito o tamafo muestral n, de
observaciones 0 experimentos a partir de la poblacién finita con
tamafio o numero finito N, de posibles resultados de los
experimentos con el tratamiento comun t. El valor X;; es la
observacion fijada de la variable de interés de la poblacion finita o
en el estrato de la unidad i-ésima para el tratamiento t. El valor A
es la media comun para toda la poblacion finita completa,
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considerando todos los tratamientos t y todas las unidades
poblacionales i en cada estrato o tratamiento t. El valor B; es el
valor medio afiadido al valor media comun A en el tratamiento ¢.
Y & es el error o desviacion de la observacion X,; con respecto a
la media del tratamiento t, es decir, respecto a A + B;. Por ello, se
puede definir el error para la unidad i en el tratamiento t como la
variable ¢;; = X;; — A — B;.

El nimero total de unidades experimentales, o tamafio
poblacional finito de posibles experimentos observados o de
productos en la industria, es

=
~

T
N =
t=

N

g
I

=

=
]
= A

1= t

La media poblacional finita global de las observaciones de la
variable de interés es

T N¢ T
_ 1 1 _
SONRTINE
t=1i=1 t=1

El tamafio muestral de experimentacion efectiva para el
tratamiento o estrato t es n;, y por tanto el tamafo muestral global
de experimentacion para los T tratamientos es

T t

n= 71

t=1i=1

hﬁ

ng

Hh

o~
Il
Hh

Y el coste total de experimentacion es

c = Ctnt

T
t=1

siendo c; el coste por experimento con el tratamiento t.
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La media muestral estratificada es

donde x; = X;;, , siendo el subindice j; la i -ésima unidad
seleccionada en la muestra del estrato o tratamiento t.

La media del estrato o tratamiento t es

Nt

_ 1

Xe. = ﬁtz Xti
i=1

La media muestral t-ésima, obtenida por observacion muestral del
tratamiento t en las n; unidades de la muestra seleccionada de la
poblacion de N, unidades, es
ng
Xt =— ) Xti

n
ti=1

Seria préactico, aunque no necesario, tomar n; constante
independientemente del tratamiento t. En estas condiciones, la
descomposicion del modelo estudiado de disefios experimentales
de un factor sera

X=X+ X — X))+ Xy — Xp)

Donde A = X, B, = X;. — X Y & = X;; — X,., Y entonces tenemos
que

b
=
%

I
o

ya que
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N¢
z & =0
i=1
ya que
N¢
ZXti = N X;
i=1

Los estimadores tradicionales en muestreo estratificado de
poblaciones finitas de A y de B, son respectivamente

By = X¢ — Xt
La varianza del primero de estos estimadores insesgados es

ng

Xti

T
. 1
V(A) =V(xy) =V NZ

t=1 i=1

SIS

T
1 o
= mz N{V(x,)
t=1

Donde V(x,) = a7 /n, con disefio de muestreo aleatorio simple
con reemplazamiento de tamaiio fijo n; sobre una poblacion finita
de tamafio N,. También admite la expresion
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_ Nt _nt 0-2
VD =
t t

con disefio de muestreo aleatorio simple sin reemplazamiento de
tamarfio efectivo fijo n; sobre una poblacion finita de tamafio N;.
En ambos casos hemos denotado

Donde ahora, V (x,) = sZ/n, en el muestreo aleatorio simple con
reemplazamiento, y también

~ A&'_'ntsg
iy
t t

en el muestreo aleatorio simple sin reemplazamiento, siendo

ne
1
2 = )2
St — Xt — X
t n, — 1 21( ti t)

la cuasivarianza muestral para el tratamiento t.

La estimacion insesgada de la funcion paramétrica B, es el
estimador x; — Xy, ¥ Su varianza se obtiene del modo

1% 1%
L’(ét) = Cov j% _'Rizgzlvtft,j% _'R;:EIIfot
t=1 t=1
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_ 2Ny _
=V(x) — TV(Xt) + V(Xst)

T
NN 1 .
_ (1 _ T) V(E,) + ﬁz N2V (Z,)
t=1

Un estimador insesgado de esta varianza se obtiene de este modo,

V( t) (1_i>v( Xe) + NLET: [7 (X¢)

T
7|V = NP + ) NED ()

h=+t

A partir de estos estimadores insesgados es posible obtener
intervalos de confianza aproximados para las funciones
parametricas A y B; haciendo uso de la desigualdad de Chebychev,
y consecuentemente es posible contrastar hipétesis nulas
relacionadas con dichas funciones paramétricas.

Diseflos experimentales de dos factores. De modo similar al
caso de diseiios experimentales de un factor, el modelo de dos
factores es generado por la ecuacion

Xtij =A + Ft + Ci + (FC)tl + gtij

Donde t =1,2,..,T, siendo T el numero de tratamientos del
primer factor (factor “fila”),i = 1,2, ..., 1, siendo I el nimero de
tratamientos del segundo factor (factor “columna”), y siendo j =
1,2, ..., N, donde N;; es el nUmero de unidades de la poblacion
finita o celda (ti) de la que se se selecciona la muestra con los
tratamientos t e i del primer y del segundo factor respectivamente.
El valor A viene de “average” (en inglés), que significa
“promedio”, F viene de “fila” y C de “columna”. La poblacion
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finita sobre la que se hacen los posibles experimentos tiene un
tamafio

T I
N: Nti:thlzzN.i

1
1i=1 t=1 i=1

-

T I
t=1i=1 j=1

ti T
t=

Donde hemos denotado, parat = 1,2, ...,T

I
Nt' - z Ntl
i=1

Yparai =1,2,..,1

T
p1i==:E:A%i
t=1

Si el tamano muestral en la celda de los tratamientos t e i es
ng;, entonces el tamafio muestral total para todos los pares de

tratamientos es
Tlt. = Z Tl.i

I
1 =1

T I T
t=1i=1 t=

También seria practico, aunque no necesario, tomar n;; constante

independientemente de la celda en que se experimente.

Y el coste total de experimentacion sera

c =

T
CtiNgi
t=

I
1i=1

Siendo c;; el coste por experimentacion en la celda (ti), medido en
unidades monetarias.
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En el diseiio experimental de dos factores la media
poblacional global es

T

1 I Ngi
Nz Z ZXW Nz Z NeiXei

t=1i=1j=1

T 1
1 _ 1 _
t=1 =1

Ahora el modelo experimental de dos factores puede
descomponerse del siguiente modo maés general

X}U ==X;+'C¥t.—'Xj'+'cyi.—ﬂg)
+ (th - X + X) + (th] )?tl)

El primer sumando representa la funcién paramétrica promedio
general A, el segundo representa la funcion paramétrica del
tratamiento t del primer factor, F;, el tercer sumando representa la
funcion parameétrica del tratamiento i del segundo factor, C;, el
cuarto sumando representa la funcion paramétrica interaccion de
los tratamientos ¢ e i del primer y segundo factor respectivamente,
(FC)¢;, Yy el quinto sumando representa el error o desviacion &;;.

Un estimador insesgado de A es

.~ oA 1 Ni; 1 _
A=X=Xg= N — /) Xtij = sz NeiXyi.
ti

d d d
t=1i=1 j=1 t=1i=1

Siendo x;;; = Xtik; la observacién muestral j-ésima en la celda
(ti). El tamafio muestral total es
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Siendo n;; el tamafio muestral en la celda (ti) donde los
tratamientos F; y C; son experimentados simultaneamente.

La varianza de A es

V(4) = T Z Z 2V (%)

t=1i=

Donde V(%,.) = oZ./ny; en el muestreo aleatorio simple con
reemplazamiento de tamafio fijo n;; en la celda (ti), o bien

2
Ny — ny; 04
N —1 ny

V(fti-) =

en el muestreo aleatorio simple sin reemplazamiento de tamarfio
efectivo fijo n en la celda (ti).

La expresion de la varianza poblacional de la celda (ti) es

Utl Nt Z(th] th
[

Una estimacion insesgada de la varianza de 4 es

T 1
1 -
Ry
t=11i=1

Donde V(%) =sA./ng; en muestreo aleatorio simple con
reemplazamiento de tamario fijo ny; en la celda (ti), o bien

2
N¢i — g Sg;.

V(fti-) — N.. .
ti ti

en el muestreo aleatorio simple sin reemplazamiento de tamafo
efectivo fijo n;; en la celda (ti). La cuasivarianza muestral es
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Un estimador insesgado de F; es

Ft - xt.. - fst

Donde
I Mg I
=D Y Ky =
Xi. = — Xpii = — Npi Xpi.
t 1y L 2 tij 1. 2 tiXti
=1 j=1 =1
Y

Tlt. == z nti

i=1

Ademas se puede comprobar que
T T
t=1 t=1
La varianza de F, se obtiene como sigue

T
. 1
V(F,) = N7 (N — N.)?*V(x,.) + Z N,E.V(fk..)]

k=t

Donde parat =1,2,...,T,

I

V() = z (%)2 V(%)

i=1

También un estimador insesgado de la varianza es
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T
1 X )
P(F) = 5 |V = NP () + z N,E.V(fk..)]

k+t

Siendoparat=1,2,...,T,

nt' 2 A~ _
(24) P
: Nng.

=1

Para el segundo factor y el tratamiento i, tenemos la
estimacion insesgada de C; como

Ci = X.j- — Xgt

Donde
T MNgi
=y
X =— Xtii
[ n; . tij
t=1 j=1
Y también

=1

Similarmente tenemos la varianza
1 I
V(C) = e (N = N,)?V(x;) + Z N3V (%.;.)
j=1
Que es estimable insesgadamente por
I
7(C) = % (N = N P(E) + ) N3V (%)
j=1

Donde
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M'ﬂ

(ntl> V(%)

Una estimacién insesgada de la interaccion (FC); es

t=1

(FC)y = Xpio — Ky — X + Xy
Y su varianza viene proporcionada por la expresion
V[(F/?)ti] -
V(x.) — Cov(Xyy., Xp..) — Cov (X, X.5.) + Cov(Xyy., Xgp) +
V(x;..) — Cov(Xs.., X¢i.) + Cov(Xy.., X.;.) — Cov(Xy.., Xgp) +
V(x,;)— Cov(x,.,X:.) + Cov(x;,xs.) — Cov(X,;., Xs) +
V(xst) — Cov(kst, Xp..) — Cov(Xge, X.i.) + Cov(Ksp, Xpy.)-

Ahora se puede calcular todos los sumandos del segundo miembro
de la expresion anterior. Conocemos los valores de las varianzas

V(fti')i V(ft)l V(fl) y

T 1
1
V(fst) = mz Z Nth(xtl

t=11i=1

Y de las covarianzas

_ _ Ngi
Cov (X, Xp..) = Cov(Xy.., Xp.) = N—“V(xti.),
t.

_ _ Nei . _
Cov(x.;.,X:.) = Cov(iy., X.p.) = N—fV(xti.),
'l

2

L L I\
Cov(x;.,x.;.) = Cov(x.., Xt..) = Nt-]\l/-i V(x:.),

oo - Nei o
Cov(xti-r xst) = COU(xSt, xti') = le(xti')l
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COU(ft.., fst) - COU(JES,:, ft) =

I
1 ye
N,.N Z NtiV(xti-);
l=

ﬂ

Cov(x.;,xXs) = Cov(Xy, X.p.) =

th(xu
t:

Cada una de las expresiones anteriores puede estimarse sin
sesgo de las mismas expresiones sustituyendo V(i;.) por su
estimacion insesgada ya vista anteriormente V(x,.) . Como
consecuencia, es posible estimar sin sesgo la funcion paramétrica
interaccion (FC);;, y estimar sin sesgo la varianza de dicho
estimador. También es posible por tanto estimar por intervalo y
contrastar hipotesis sobre su valor concreto.
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Capitulo 5

Muestreo posagrupado

Este tipo de muestreo se presenta cuando queremos tener la
precision del muestreo estratificado o similar, y no disponemos de
los tamafios de los estratos pero los podemos estimar en una
primera fase. De este modo se puede estimar la media poblacional
con un estimador similar al estratificado, pero que incluye
estimaciones de los tamarios relativos de los estratos, y pudiendo
también estimar sin sesgo su varianza. Una aplicacion de este tipo
de muestreo es el problema de no respuesta en una encuesta, que
queda resuelto a nivel formal con muestreo posagrupado.

5.1 Disefno posagrupado
Este disefio consta de dos fases de muestreo.

En la primera fase seleccionamos una muestra de tamafo m
con disefio mas y observamos el indicador del estrato en cada
unidad de la muestra. Clasificamos la muestra seleccionada de
tamafio m en [ grupos o estratos seleccionados distintos (1 <[ <
m,l < L). El nimero [ es aleatorio. Sean m,, y wy, = my,/m
respectivamente la frecuencia absoluta y la frecuencia relativa
muestrales del grupo o estrato h. Tenemos que

l l
h=1 h=1
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ymy, = wy,, = 0 enlosrestantes estratosh =1+ 1,1 + 2, ..., L. De
este modo el valor de [ es conocido tras la primera fase.

En la segunda fase, para cada grupo o estrato h seleccionado
en laprimerafase (h = 1,2,...,1) con m; = 1, es decir con alguna
unidad seleccionada en el estrato en la primera fase, procedemos a
seleccionar con disefio mas de tamafio fijo n, de entre las Ny,
unidades que contiene su grupo o estrato h, tamafo N, que es
conocido antes de la segunda fase de muestreo. Observamos la
media muestral yg,) y obtenemos la cuasivarianza muestral sg
que requiere un tamafio muestral n,, > 2.

En estas condiciones, definimos el estimador posagrupado
siguiente

l
Ypg = z WhYs(h)
h=1

para el cual no son necesarios los tamafnos y los marcos de los
grupos o estratos [ + 1,1 + 2, ..., L, pero para los primeros [ grupos
0 estratos los marcos de trabajo deben ser conocidos. Indicamos
que la distribucion de los valores

m,y, es multinomial de parametros my W,.

Veamos que el estimador y,, es insesgado para estimar la
media poblacional y. En efecto,

L
z Wh3_’s(h)|WhB =
h=1
L L L
E; {Z wpE; [}_’s(h)]} = Z Ei(wp)yn = Z Whyn =Y.
h=1 h=1 h=1

E(#pg) = E4 {Ez
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5.2 Varianza del estimador posagrupado

La varianza del estimador y,,, puede calcularse haciendo uso del
Teorema de Madow,

V(ypg) = Ele()_/pg) + VlEZ(ypg)'

donde
L L O—,%
v (ypg) - Z WfZLVZ [J_’s(h)] = Z Wrzl .
h=1 h=1 h
L 2
_ Op
AACHESW A
np
h=1
y donde
2 E;:(m})  Vi(my) + [E;(mp)]?
El(Wh) - mz = mz —
W, (1 — W) + mWy? _ W,[1+ W,(m —1)]
m m '
También
L L
E, (ypg) = Z wpE [ys(h)] = Z WhYh
h=1 h=1
y entonces
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L

%z 2, (1 — Wp) + — zzyhyg( Wy Wy) =

h=1 =1g#h

L
—z th——y —Z Wy (¥n — 7).
h=1

Sustituyendo ambos sumandos de la descomposicion de la varianza
total en dos téerminos, obtenemos la varianza buscada del estimador
posagrupado.

Un estimador insesgado de la varianza V(ypg) es el siguiente

m ma—1 7™ ",
h=1
_1 z z WnWgYs(n)Ys(g):
=1g+h

del cual su razonamiento es debido a Ruiz Espejo (1993).

Otros desarrollos semejantes relacionados con disefio mia
independientemente dentro de cada grupo o estrato han sido
obtenidos por Ruiz Espejo y colaboradores (2006).
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5.3 Estimacion insesgada con no respuesta

El problema de la no respuesta surge en las encuestas por muestreo
cuando una parte de los encuestados se niegan a facilitar sus
respuestas. Si partimos de una muestra con disefio mas de tamario
fijo m y parte de la muestra seleccionada se niega a contestar o no
colabora con su respuesta, podemos entender que hay dos estratos
implicitamente: uno primero de respuesta y otro segundo de no
respuesta. Los tamafios de estos estratos son desconocidos. Si en
estas condiciones tomaramos como estimador de la media
poblacional y a la media muestral de las respuestas conseguidas,
ésta es la media muestral del estrato de respuestas yg). Este

estimador es sesgado para estimar y, ya que
B[D_’s(1)i y] = E[J_’s(1)] —y =y — Wy + Wry,) =
WZ (3_]1 - }_/2)»

un sesgo desconocido pues depende de tres funciones paramétricas
W,, y1, € ¥, que son desconocidas.

La solucion a este dilema la proporciona el muestreo
posagrupado. En concreto, si en la primera fase obtuvimos los
tamafnos muestrales aleatorios m; = 1y m, > 1, de manera que
m = my; + m,, consideramos que la muestra s(1) es de tamafio
fijo n,; que puede ser por ejemplo n; = m;, mientras que la
muestra del segundo estrato en la segunda fase es una submuestra
s(2) de tamaiio fijo n(,) de la muestra seleccionada de tamafio ya
fijo n, = m, en la primera fase, y que submuestreamos con disefio
mas de tamafio efectivo prefijado npy con 2 <n(,) . Esta
submuestra s(2) requiere un mayor cuidado y esmero en la
obtencion de respuesta, pues ya obtuvimos la no respuesta de
dichas unidades en la primera fase. Denotando w;, = m;/m, el
estimador insesgado de la media poblacional con no respuesta es
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Ynr = W1Y1) + W2Y(2),

y un estimador insesgado de la varianza de este estimador es algo
laborioso de obtener pero técnicamente deducible a partir del
muestreo posagrupado y teniendo en cuenta la nueva fase de
submuestreo con disefio mas que se desarrolla en la muestra de no
respuesta en el segundo estrato, también llamado estrato de no
respuesta. La formula exacta del estimador insesgado de la
varianza puede consultarse en el articulo de Ruiz Espejo (2011a):

1 2
V() = miz Wi},
h=1

2
+ z Wh [y(zh) -Vm)] - yﬁr}
h=1

—

2
%)

+ > —wy).
(m — Dngy (mwy —w,)

Donde o2=s% y o2= n,sty/(n,; —1) siendo s* la
cuasivarianza muestral de las respuestas en cada estrato h que se
subindica. Por tanto, m; =2y m, > 2. Ademas, el estimador
V(¥1y) = st/ny y singy es el tamafio muestral en el segundo
estrato 0 nimero de respuestas de la submuestra

_ gzi 5(22) 2 [ 1 1 ]

=S _|_
nz n(z) (2) nz - 1 n(z)

Como se puede apreciar, es casi un caso particular de muestreo
posagrupado con dos grupos o estratos, en el que ahora se considera
una tercera fase de aleatorizacion por submuestreo en la muestra de
no respuesta en segunda fase del segundo estrato.
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5.4 Ejercicios resueltos

Ejercicio 5.1. Una poblacién finita es objeto de muestreo con
disefio mas de tamafo fijo igual a 10, donde se aprecian dos
estratos cuyos tamanos relativos estimados por las proporciones
muestrales son 3/5y 2/5. En una segunda fase se estimaron de
cada estrato la media muestral y la cuasivarianza muestral con
disefio mas dando lugar a los pares de estimaciones (ys(h), sﬁ/nh)
siguientes para h =1,2: (6,5), (2,2) . Estimar la media
poblacional por muestreo posagrupado y dar un estimador
insesgado de su varianza.

Solucion. El estimador de la media poblacional es

2

_ _ 3 2

ypg ZZWhys(h) =§6+§2=44
h=1

Y el estimador insesgado de su varianza, aplicando la formula
general es

V(,4) = 0.0252.

Ejercicio 5.2. Para estimar la media poblacional en presencia de
no respuesta hemos observado que el 40% de los cien encuestados
inicialmente no responden con disefio mas. La media muestral de
respuestas en esta fase inicial fue de 10 y la cuasivarianza muestral
fue de 60. Posteriormente se submuestrea con diseiio mas de
tamafio muestral 8 la muestra de no respuesta en la primera fase
dando lugar a una media muestral de 0 y una cuasivarianza
muestral de 16. Estimar la media poblacional y decir si es posible
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proponer un estimador insesgado de la varianza del estimador de la
media poblacional.

Solucion. El estimador de la media poblacional es
W1Y1) + W2y 2) = 6,

mientras que el estimador insesgado de su varianza es técnicamente
posible sustituyendo en la expresion del estimador insesgado de la
varianza los valores w; = 0.6, w, = 0.4, m =100, n, = 60,
m, = 40,1, = 8, 1) = 10, s{ = 60, ) = 0,y sy = 16.

Ejercicio 5.3. Obtener la esperanza matematica y la varianza del
estimador usual en muestreo posagrupado en el caso de dos
estratos, grupos o dominios disjuntos, usando en todos los disefios
basicos muestreo aleatorio simple con reemplazamiento.

Solucion. Consideramos una poblacion finita de tamafio N,
clasificada en dos estratos. El estimador usual en muestreo
posagrupado es

2
)_’pg = z Whys(h)r
h=1

donde w;, = m;,/m, donde m,, sigue una distribucioén binomial de
parametros m y W;,, siendo m el tamafio muestral en la primera
fase y W, = N,,/N el tamafio relativo del estrato h =1,2.
Entonces sabemos que E;(my) =mW, y ademés V,(m;) =
mWy, (1 — Wy) = mW;W,. También y,,) es la media muestral en
el estrato h = 1,2, obtenida por muestreo aleatorio simple con
reemplazamiento de tamano fijo n,, muestreos independientes en
cada estrato obtenidos en una segunda fase.

214



La esperanza matematica del estimador j,, es la media
poblacional, pues

E(3pg) = F1Ex(Fpglwn) = By (Z whyh) Z Wi = 7

La varianza del estimador usual se obtiene mediante el teorema de
Madow,

V(ypg) = E,V; (37pg|Wh) + V1E2(3_’p9|wh)-

2 2 2

o
Va(Gglwn) = D wiVa(Fagn) = ) wi -
h=1 h=1 h

y
EiV, (ypglwh) Z E; (Wh) — =
2 2
1 oA o
—[Z Wy + (m — 1>ZW£—”],
m np np
h=1 h=1
pues
FE 2 2
E,(w) = 1(7”2%) _ Vi(my) +2(mWh) _
m m
mWy(1 = Wy) = m*Wy;  Wy[1+4 (m — W]
m?2 B m '
También,
2 2
E, ()_’pg|Wh) = Z wpE, (ys(h)) = Z WhYh
h=1 h=1
y
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2
V1E2 (ypglwh) = C0v1 Z Whyh; Z Wgyg =
= g=1

2

2
D TuFgCovi (ww,) =
h=1g=1

2 yavi(wp) + Z Z YnygCovy (Wh»Wg) =

h=1 g#h

2
_ mWh(1 — Wh) _
z Yh + 2y,y,Covy(wy, 1 —wy) =

h=1

1
E 3_’£Wh (1 —=Wp) = 2y1y,Vi(wy) =
h=1

L W, G — )2
m 1 201 —Y2)".

Por lo que de todo ello,

V(5p0) = [Z —+<m—1>ZWn

2

L W, G — )2
m 1 21 —Y2)%,

0 hien,

2 2
h _
V(ypg) E; (Z i%n_> + =W W, (5, — ¥,)%
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Ejercicio 5.4. Proponer un estimador insesgado de la varianza del
estimador usual en muestreo posagrupado con disefio basico de
muestreo aleatorio simple, para dos estratos.

Solucion. De la ultima formula de la varianza del estimador usual
en muestreo posagrupado, sustituyendo los parametros
desconocidos por sus estimaciones insesgadas correspondientes,
tenemos como estimador insesgado de la varianza de y,, a

. 2 5 S,Zl 1 mpwp (1 —wp) [, S,Zl
V(yzog)zzwhn_'Fa -
h=1 h

2
-1

h=1

W1W2Vs(1)Vs(2))

pues la esperanza matematica de este estimador es igual a la
varianza de y, .

Ejercicio 5.5. Obtener la varianza del estimador usual en muestreo
posagrupado cuando consideramos dos estratos, y como disefo
muestral basico al muestreo irrestricto aleatorio.

Solucion. El estimador usual en muestreo posagrupado es casi el
mismo en apariencia para disefio basico de muestreo irrestricto
aleatorio que con muestreo aleatorio simple. Ahora es

2
Ypg = 2 WhYs(h)»
h=1

donde w;, = my /m es la proporcion muestral en la primera fase de
unidades de la muestra irrestricta aleatoria que pertenecen al estrato
h = 1,2,y ahora my, se distribuye segin geométrica de parametros
m, N 'y W}, siendo m el tamafno muestral en la primera fase, N el
tamarfio poblacional, y W), = N, /N el tamafio relativo del estrato
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h = 1,2. Por tanto, E;(m;) = mW,, y la varianza es V,(m;,) =
mW,(1 —Wp)(N —m)/(N —1). También ygp) es la media
muestral independiente en el estrato h = 1,2, obtenidas con
muestreo irrestricto aleatorio de tamario efectivo fijo n, en una
segunda fase.

La justificacion de que y,, es insesgado para estimar la

media poblacional es analoga al caso de muestreo aleatorio simple
con reemplazamiento como disefio basico.

La varianza de este estimador se obtiene por el teorema de
Madow,

V(y’pg) = E1V; (37pg|Wh) + V1E2(3_’pg|wh)-

Desarrollando,

nhUh
Vol Vpa|W ZW oy ZW
2( rg h) h 2( S(h)) h Nh—l nh
y
_ 2 Nh_nho-f%
E\Vy(Fpglwy) = Z El(Wh)ﬁ_ -
h— 1 Ny
h=1
2 2
Z +WN(m—1) Ny, — ny, of
_ (N—1)m "(IN-Dm| N, -1 n,
pues

Ey(wi) = Vi(wy) + [Ex(wp)]? =

m 2
+Wh=

1
—W,(1—-W,
— W (1 - W) 5
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m N—m }:

+Wh[1_(N—1)m

ol

W N(m—-1)
[(N — Dm +Wh (N — 1)m]'

Por otro lado,

2 2
E, (J_’pg|Wh) = Z wpE, ()_’s(h)) = Z WrVh,
h=1 h=1

2
V1E2()7pg|Wh) = Cov, Z th’h;z WgYVg | =
h=1 g=1

2
z Vi (wp) + 29, 7,Covy (wy, 1 — wy) =

h=1
2
Z—Zwu w,) N=m s sww,——™
h_13’h h h (N —1) Y1Y2W1 2(N—Dm
W, W, ————— (5, — 7,)2.
1 Z(N—l)m(yl ¥2)

Por tanto, podemos dar una férmula general exacta de la varianza
del estimador usual en muestreo posagrupado sustituyendo los
valores obtenidos, o bien, la formula

— Ny Oy
V(ypg) E1 (Z Wh Nh -1 Tlh) +

WiW, m (V1 — ¥2)*
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que nos permitira proponer de modo mas sencillo un estimador
insesgado de esta varianza.

Ejercicio 5.6. Proponer un estimador insesgado de la varianza del
estimador usual en muestreo posagrupado con dos estratos y disefio
basico de muestreo irrestricto aleatorio.

Solucion. Por un razonamiento similar al realizado en el Ejercicio
5.4. de este Capitulo, estimamos sin sesgo los parametros
desconocidos en la féormula de la varianza del estimador usual. Asi
tenemos,

N—-m mwyw,  _
_1 Vs(1)YVs(2) =

2 2
Zwﬁ—Nh _nhS—h+
£ N, ny

2 2
N—mz:(_2 +Nh—nhs_h>wh(1—wh)_
N-—-1 e yS(h) Nh np m—1

N-mww,  _
2 N—1m— 13’5(1)3’5(2)-
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Ejercicio 5.7. Obtener la esperanza matematica y la varianza del
estimador usual para el caso de no respuesta en una primera fase
del muestreo, con disefio basico de muestreo aleatorio simple.

Solucién. El estimador usual de la media poblacional con no
respuesta es

Ynr = les(l) + WZ)_IS(Z)»

donde w,, = my/m es la proporcion muestral en la primera fase
del estrato o dominio de respuesta (h = 1) o bien la proporcién
muestral en la primera fase del estrato o dominio de no respuesta
(h = 2); ys(1) es la media muestral de respuestas recogidas en la

segunda fase, obtenida por muestreo aleatorio simple con
reemplazamiento de tamafio n;, = my, en el estrato de respuesta, es
decir la media muestral de las respuestas obtenidas en la primera
fase; finalmente y,) es la media muestral obtenida en una

submuestra aleatoria simple de tamafno prefijado n, en tercera

fase de la muestra aleatoria simple de no respuesta de tamafio n, =
m, que dio lugar la segunda fase con su no respuesta, y que a su
vez es parte, posiblemente con repeticiones de unidades, de la
muestra aleatoria simple en el estrato o dominio de no respuesta
obtenida en la primera fase.

La esperanza matematica de este estimador es
E(Yny) = E1E2Es(Pny) = Ey [W1Ez(3_’s(1)) + WzEz()_’(Z))]»

donde Y,y = E3 (ys(z)) es la media muestral de la muestra en la
segunda fase en el estrato de no respuesta. Entonces,

EWnr) = Ex(Wi Y1 + woy,) = Ey(W)y1 + E;(W)y, =

Wiy + Wy, =y,
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que es la media poblacional, y por tanto y,, es un estimador
Insesgado.

La varianza del estimador usual y,,, es, aplicando el teorema
de Madow,

V()_’nr) = E1V, (ynr) + V1 E; (ynr)-
Aplicando esta formula por partes,

Vo(Vnr) = Vo(Pprlwy) =
, 01 2 _ _
Wy n_1 +w; [E2V3 (yS(Z)) + V3E; (Ys(z))] =

nq )
2 2 2
w2 01 2 [(le — 1o 02] _
1 — — —
1 NaN(2) n;

1 o2 5
— > Wyof +—=—|E,(w?) ——=| =
h%h n(z) 1( 2)
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pues

W, W-
E,(W2) = Vy(wy) + WE = ——2

Y. [1+ W,(m—1)].
m

Por otro lado,

E; (VnrlWr) = wiyg + wy iy,

de donde
_ W1W2 — \2
V1Ey; Py lwp) = (1 — ¥2)°.
Por lo que resumiendo,
(m - 1)W2 02
V —_
Fnr) = —+ —

o0 incluso también tenemos esta otra formula,

2 2
] w; Wo Wo
V() = Eq [W1 + 0, < - + >] +
m Tl(z) mn(z) m

W, W.
: 2()’1 }_’2)2,

que nos permitira estimarla sin sesgo de modo mas sencillo.
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Ejercicio 5.8. Obtener un estimador insesgado de la varianza del
estimador usual con no respuesta, usando como disefio basico el
muestreo aleatorio simple.

Solucion. De la altima formula de V (y,,,-), tenemos que estimando
sin sesgo los parametros desconocidos en dicha formula, tenemos
el siguiente estimador

2
S1 WZ Wy Wy
m Tl(z) mn(z) m

wiwy [, st . _
m_1 Ys(v) — + ys(z) V(}’s(Z)) — 2Y51)Vs(2) |
donde
— n — n
2 _ <2 _ 2 2 _ 2 2

siendo sZ la cuasivarianza muestral de tamafio fijo n; en el primer
estrato o dominio, y s(z) la cuasivarianza muestral de tamafo n )

en el segundo estrato o dominio. Como

V()_’(Z)) = V1E2E3()_’(2)) + E1V2E3()_’(2)) + E1E2V3()7(2)) =
o) 03 o)
Vi (Yy) + E1V,(3,) + ELE, =E,(— |+ ELE;
n2) n; nw)/)

entonces un estimador insesgado de esta varianza es

S(Z) 2 [ 1 1 ]

=S +
ne) ()nz—l ne)

. .
V(@) =—=+

Ejercicio 5.9. Queremos estimar la media poblacional y la varianza
de tal estimador ante el problema de no respuesta. ;Qué tamafio
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submuestral debe tomarse de la muestra de no respuesta para
estimar sin sesgo la media poblacional? ¢;Qué tamafno submuestral
debe tomarse de la muestra de no respuesta para estimar sin sesgo
la varianza del estimador de la media poblacional?

Solucidn. Para que el estimador insesgado de la media poblacional
con no respuesta pueda usarse es necesario que haya respuestas (la
necesidad de observar datos del primer estrato, de respuesta, no es
indispensable, como en el segundo estrato de no respuesta), pero el
tamafo de la submuestra dentro de la muestra de no respuesta debe
ser al menos de uno, es decir, el tamafio de la muestra de no
respuesta debe ser n, > 1 y el tamafio de la submuestra de la
muestra anterior debe ser n) =1 . Sin embargo, para la
estimacion insesgada de la varianza de este estimador usual para
no respuesta, es necesario un tamafio muestral de no respuesta que
sea n() = 2, pues solo asi podria obtenerse la estimacion de la
cuasivarianza muestral en el estrato de no respuesta necesaria para
la obtencidn del estimador insesgado de la varianza del estimador
usual de la media poblacional con no respuesta.
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Capitulo 6

Estimadores indirectos

En este capitulo vamos a ver tres estimadores (de razdn, de
producto, y de regresién) que ademas de la informacion
proporcionada por observacion de la variable de interés y, utilizan
otra variable x, que llamamos auxiliar, conocida en todas las
unidades de la poblacion finita. Esta informacion permite construir
inicialmente estimadores sesgados pero que podrian proporcionar
estimaciones con pequefio error cuadratico medio.

6.1 Estimador de la razon poblacional
Se define la “razon poblacional” a la funcion paramétrica

Ny v
R=-—2=%

Nx x
Es el cociente del total poblacional de la variable de interés entre
el total poblacional de la variable auxiliar. Esta funcion paramétrica
R puede estimarse por la “razén muestral”
_ NYs

R = —.
s NXg

><||U)"<I

Su sesgo puede obtenerse de este modo,

Cov(R,%s) = E(R%;) — E(R)E(%s) = E(,) — E(R)x =
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y—E(R)x,
de donde

B Cov(ﬁ, fs)

B(R;R)=E(R)-R = =

Es la expresion exacta del sesgo de la razon muestral como
estimador de la razon poblacional, ya sea con disefio mas o0 mia.

El sesgo aproximado se obtiene de que

Vs _ys_Rfszys_Rfsf

X X X X

)

suponiendo que las variables y y x son positivas, y como ademas

X X 1
X, X+HX—% q Ke—X
X
= = = )2
Xs—x (Xg—X)
1 ——— —— —
X
siempre y cuando
Xg— X
= ‘<1,
X

con lo que disponemos finalmente del desarrollo en serie

ﬁ_RJs—_f?’fsll_fsijr(fs—f)z_... |
X

X X2
de donde el sesgo de R expresado asintGticamente es
B(R)=E(R-R) =

E[()_/S - Rfs)(fs - f)] E[(}_]s - Rfs)(fs - f)z]
- 2 * i3
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pues el primer sumando del desarrollo en serie verifica

() = EG - R =~ - 5) =0
e — —_ x = — —_ = .
7 70 Ws s)=Zz0 Y

En concreto, si aproximamos el sesgo de R por los dos
primeros términos del desarrollo en serie, tenemos que para disefio
mas o mia,

B(ﬁ) ~ _E[(:)_’s - Rfs)(fs - f)] _

xZ

. E[ys (fs - f)] — RE [fs(fs - f)]

—Cov(y,, Xs) + RV (xs)
X2 '

La varianza aproximada del estimador R de R se obtiene
considerando el primer término del desarrollo en serie de

p_p s T REs

X
Con esta aproximacion, E(}?) ~ Ry la varianza aproximada es

—Rx5) V(¥ + R*V(Xs) — 2RCov(Js, Xs)

~ V.
V(R) ~ SfZ fZ

Ahora bien, como V (3;) = g /n,V(%s) = o5 /n,y

o
Cov(Fs, s) ===

con disefio mas, concluimos que
V11?~—1(2+R22 2Ra,,)
( )anz Oy Ox — &¢R0yx ).

Analogamente, con disefio mia,
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o N—n
Cov(ys, Xs) = N—nSyx

siendo la cuasicovarianza poblacional

N
1 _ _
Syx = mi(yk —V)(xp — %) = Sxy
k=1

(Hansen, Hurwitz y Madow, 1953, p. 97), por lo que

N —

n
T (S2 + R*S? — 2RS,,;).

V(ﬁ) ~

6.2 Estimador de razon de la media poblacional

Recibe este nombre el estimador de la media poblacional y con
informacion auxiliar x el estimador

tR - ﬁf

Este estimador de razdn es sesgado, pero por las propiedades
vistas anteriormente, su sesgo es nulo aproximandolo por el primer
término del desarrollo en serie, y su varianza aproximada haciendo
uso de la misma aproximacion es

1
V(tg) = - (62 + R?02 — 2Roy,)

con disefio mas, y

N—n
Nn

V(ty) = (S2 + R%SZ — 2RS,,)

con disefio mia.
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6.3 Tamano muestral del estimador de razon

Para obtener el tamafio muestral n para que el estimador de razén
tr = Rx de la media poblacional y difiera de ésta menos que su
error maximo absoluto admisible de muestreo e con un cierto nivel
de confianza 1 — a, recurrimos a la desigualdad de Chebycheyv,
pues hemos visto que E(tz) = y. Tenemos que aproximadamente

_ V(tr)
plltn -7l <e}z1- B =1-a

De donde
ae? = V(tg),

y sustituyendo sus expresiones aproximadas, obtenemos los
tamafos muestrales buscados, ya sea para disefio mas

oy + R?0y — 2Ro,,

n= )
ae?
0 para disefio mia
1
n=~=
l+ ae?
N = S7 4+ R?S; — 2RS,,

6.4 Ganancia en precision del estimador de razon

Para comparar los métodos inferenciales con disefio mas o mia
entre la media muestral y el estimador de razon, escribimos sus
varianzas exactas y aproximadas. Con disefio mas tenemos

2
0.
V(ys) = %
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1
V(ty) = - (02 + R?0? — 2Ro,,).

Luego, si esta aproximacion fuera una igualdad,
V(tg) <V (Js)
si y solo si
R?0% — 2Ra,, < 0,

0 bien, como el coeficiente de correlacion de las variables y y x es
p = 0y/(0,0,) ysi R > 0 como es habitual cuando las variables
de interés y auxiliar son positivas, tenemos si y solo si

Ro,

p = :

20,

Se puede comprobar que esta misma relacion debe verificarse
en condiciones similares para que con disefio mia la precision del
estimador t; sea mayor o igual a la de la media muestral con
idéntico disefio mia.

6.5 Estimador de razon en el muestreo estratificado

Los dos tipos principales de estimador de razén cuando se usa
muestreo estratificado son el estimador separado de razon vy el
estimador combinado de razon.

El estimador “separado de razon” en muestreo estratificado
es aquél que usa del estimador de razén en cada estrato
independientemente. Su expresion es
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tsp = Z WhRyXp,
n=1

donde R, %, es el estimador independiente de razon en el estrato h.
Su varianza es

L
V(tsg) = z thV(R\hfh)'
h=1

donde
V(R\hfh) - f}le(R\h),

y con disefio mas
1 2 2 2
V(Ry) = o (Uhy + Riop, — 2Rp0nyx)

y con disefio mia

. Ny,

V(Ry) = —Nhnh " (S2, + RESE, — 2Ry Shyx),

donde Rh = _')_/h/fh,

5 N, —1
Ohy = N, Shy N, Z(yhk Yn)?,

etc.

El estimador “combinado de razén” en muestreo estratificado
es aquel que usa del estimador de la razon al cociente de los
estimadores estratificados para la variable y y el de la x. Su
expresion es

Vst _
tCR = _ix.

st
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Debido a que tenemos la aproximacion

& R =~ )_’st __Rfst’

el estimador t.-, es aproximadamente insesgado y su varianza es
también aproximadamente

V(tcr) = V(¥st — RXg) =
V(yse) + sz(fst) — 2RCov(Yst, Xst),

que con disefio mas independientemente en cada estrato sera igual
a

L
1
Z W2 - (0%, + R%0f, — 2Rapy,y),
h=1

mientras que si el disefio fuera mia independientemente en cada
estrato sera igual a

L
Np —ny,
Z W2 N (S,Ey + R%SZ, — 2RShyx),
= hh

CONR =y/x.

6.6 Estimador de producto de la media poblacional

Es un estimador semejante al de razdn, pero su uso se limita a
cuando existe una relacion de proporcionalidad inversa entre la
variable de interés y la auxiliar, o bien hay estabilidad en los
productos y,x;, (k=1,2,..,N). En estos casos se propone el
“estimador de producto” que se define como
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_ X
tp = —_
Pp=JYs P

Para conocer sus caracteristicas, lo expresamos del modo

1
tr == (s —F+ (I~ T +7) =

_(1+ys_)_’>(1+xs_f>
y 7 <

de donde

Cov(ys, Xs)

E(tp) =y +

es decir, el sesgo del estimador de producto tp para estimar la
media poblacional y es

B Cov (¥, X)
B(tP;y)z fs Si

que admite distintas expresiones segun sea el disefio muestral
usado. De la formula extendida de tp, tenemos

ty— 5 = }.}(375;)7+xs;f+)75;)7xs;f>,
de donde aproximando por los términos cuadraticos tenemos
(tp =¥ = (s — 9)? + 2R(s — Y (x5 — X) + R*(xs — %)%,
de donde
ECM(tp; ¥) = E[(tp — %] »
V(¥s) + 2RCov(¥s, X5) + RV (X;),
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que toma distintas expresiones segun el disefio muestral usado.
Haciendo uso de esta aproximacion (y considerandola como
igualdad), el estimador de producto tiene menor o igual varianza
que la media muestral en los disefios mas y mia siempre y cuando
el coeficiente de correlacion entre las variables y y x verifica

Ro
p<——=.
20y
Es inmediato proponer estimadores de producto separado y
combinado en muestreo estratificado.

6.7 Estimador de regresion de la media poblacional

Cuando los puntos (y,x;) con k=1,2,...,N, donde y es la
variable de interés y x es la variable auxiliar, estan situados sobre
una linea recta que pasa por el origen y;, = ax, el estimador de
razon es el mas indicado. Si fueran los productos y, x; = a los que
fueran estables entorno al valor constante a, el estimador de
producto es el méas indicado. Pero si la relacion es lineal del tipo

Yi = a+ bxy

0 linea recta que no pasa por el origen (a # 0) aunque puede pasar
por el origen también (a = 0), entonces el “estimador de regresion
lineal” para la media poblacional y se obtiene razonando de este
modo. Por un lado se dara

y =a+ bx

Vs = a + bx,,
por lo que restando la segunda de la primera igualdad,
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)_]_)_]S = b(f—fs),
de donde se propone como estimador de regresion lineal a
Vri = Ys + b(xX — Xs),

siendo b una variable aleatoria. Su sesgo para estimar la media
poblacional se obtiene de que

E(yrl) =y+ fE(b) - E(bfs) =y - COU(b, fs);
es decir
B(yrl; 37) — E(yrl) —y= —COU(b,fs).

Si b fuera constante, el valor de b que minimiza la varianza
del estimador de regresion se obtiene de este modo.

V(yr) = V() + b*V(Xs) — 2bCov(¥s, Xy),
que con diseflo mas admite la expresion
~ 1
V() = - (aﬁ + b?%0? — Zbny),
y con disefio mia se expresa del modo
N—n
V(i) = i (S2 + b%S2 — 2bS,,,).

Llamando f(b) = V(¥,;), la funcion alcanza su minimo
cuando f'(b) = 0, o bien

_ Oyx Syx
of  S¢

Ademas es minimo puessin < Ny oz > 0, f''(b) > 0. Para este
valor minimo de b la varianza toma el valor

oy
Vmin(:)_’rl) = 7 (1 - pz)
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en el caso de disefio mas, y

N —n
Nn

= — 2 2
Vinin 1) = Sy (1-p°)
en el caso de disefio mia. En realidad el valor minimo de b asi
obtenido es una funcion paramétrica que seria desconocida antes
de realizarse el muestreo, y estimable después del muestreo, por lo
que para aplicar estos resultados tendremos que estimar b por su

estimador minimo-cuadratico (segun Cochran, 1977)

b= ZkES(YIc — ys)(xk - fs) _ Syx
Ykes(Xp — X5)? Sy

6.8 Comparacion de precisiones

Una vez obtenidas la varianza exacta para las medias muestrales
con disefio mas y mia, y las correspondientes aproximadas para los
estimadores de razén, de producto y de regresion, podemos
concluir que el estimador de regresion lineal tedrico es mas preciso
que la media muestral siempre que p # 0, y en el caso p = 0 las
varianzas coinciden (tomando como varianza del estimador de
razon a su aproximacion). El estimador de regresion lineal tedrico
es también mas preciso que el estimador de razon siempre, y sus
varianzas (aproximada en el caso de razén) coinciden cuando
R = p&.
Ox

El estimador de regresion es también mas preciso que el
estimador de producto siempre (si la varianza aproximada de este
fuera una igualdad), y sus errores cuadraticos medios aproximados
coincidirian cuando
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6.9 El estimador de regresion con estratificacion

El estimador de regresion separado en el muestreo estratificado es

L
Vris = Z WhYrin,
n=1

donde el estimador y,.;;, es el estimador de regresion lineal en el

estrato h-ésimo. Su uso requiere estimar L valores by, uno por cada
estrato. El estimador de regresion combinado es

Vrie = Yst + b(x — fst);

el cual requiere estimar un solo valor de b.

6.10 Ejercicios resueltos

Ejercicio 6.1. Se desea estimar la produccion de trigo total en cierta
comarca. Para ello se toma como unidad de muestreo la parcela
dedicada a dicho cultivo, y se conoce como variable auxiliar la
superficie de terreno de las parcelas individualmente. Si se supone
que la produccién de trigo es proporcional a la superficie sembrada
en cada parcela o unidad, justificar que el estimador de razon es un
indicado estimador para estimar la produccidn total de trigo en la
comarca.

Solucion. Si existe una relacion de proporcionalidad aproximada
v =cx; (k=1,2,...,N), siendo N el numero total de parcelas
sembradas en la comarca de trigo, y, la produccion de trigo en la
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unidad k, x; la superficie sembrada de trigo en la unidad k, y c la
constante de proporcionalidad, tenemos que el estimador del total
de trigo producido de razon es

NtR - N}_/Sx__,

S

pero como y, = cx, aproximadamente,

X
Nty = Ncxs— = Ncx = Ny,
xS
con lo que queda demostrada su adecuacion pues

21}2721 Xk _ 21}2,:1 CXk _ 21}2121 Yk
N N N

cxX =c¢ =Y,

siendo Ny el total de trigo producido en la comarca.

Ejercicio 6.2. Determinar el tamafio muestral n necesario para que
el estimador de razon tp = (y;x)/x,, de la media poblacional y de
cierta variable de interés y, difiera de tal funcion paramétrica
menos que 5 al nivel de confianza del 95%. Ademas N = 1000, y
de una muestra piloto se estima que S; =30,R =2,S; =15y
Sxy = 3.

Solucion.

1

n
ae?

T
~ +
N~ S} + R2S7 — 2RS,,

Ejercicio 6.3. Para estimar el consumo medio de las familias de un
pais se ha utilizado el estimador de razon con la variable auxiliar
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“renta familiar”. Indicar la conveniencia o no de tal estimador para
tal objetivo.

Respuesta. Razonando como en el ejercicio 6.1, el estimador de
razon serd adecuado cuando exista una proporcionalidad entre
“consumo familiar” y “renta familiar” en tal pais. Es decir, el
estimador de razon es deseable cuando la dependencia entre el
consumo y la renta familiares sea aproximadamente una linea recta
que ademas pase por el origen. Si la dependencia es lineal pero la
recta no pasa por el origen, puede utilizarse el estimador de
regresion razonando de modo analogo, como se hara en el ejercicio
6.5.

Ejercicio 6.4. La experiencia de unos directivos de unos grandes
almacenes les hace admitir que las ventas de cierto producto en un
dia es inversamente proporcional a su precio de venta al pablico.
En esta situacion qué estimador propondria, como asesor de la
empresa, para la venta media mensual pudiendo conocer las ventas
en 5 dias diferentes seleccionados con disefio mia, y sabiendo los
precios de venta de los 25 dias que abre al publico dichos
almacenes en ese mes.

Respuesta. Llamamos y, a las ventas del producto en el dia k
(k=1,2,..,25), y x; al precio del producto en ese mismo dia.
Admitimos la relacion aproximada y, x; = ¢, segin nos informan
los directivos. Queremos estimar la venta media mensual del
producto a lo largo de los 25 dias laborables del mes. Tal media
poblacional es denotada por y, y la media muestral de ventas en los
5 dias de observacion es y.. El precio medio mensual del producto
es x, y la media muestral de precios es x.. En estas condiciones y
ya que se da una relacion aproximada entre y, y xj de
proporcionalidad inversa, un estimador deseable de y es el
estimador de producto
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Ejercicio 6.5. En una urbanizacion de N viviendas se dispone de
la informacion auxiliar x nUmero de residentes por vivienda. Se
sabe ademas que se verifica que la superficie en metros cuadrados
de las viviendas (variable de interés y) mantiene una relacion
proxima a la lineal, y, = a + bx;, (k =1,2,...,N). Estudiar la
conveniencia del estimador de regresion lineal para estimar la
superficie media de las viviendas de dicha urbanizacion.

Solucién. Como tenemos la relacién lineal entre las variables de
interés y la auxiliar, también y; = a + bx y podemos escribir

3_] _ }_/ n ZkES(yk - ys)(xk - fs)
rt * ZkEs(xk - fs)z

ZkES(a + bxk —a-— bfs)(xk - fs)
Ykes(xx — X5)?

a+bx; +b(x— %) =a+bx=7.

(f_fs) -

a+ bxg +

(X —x5) =

Luego el estimador de regresion lineal es un estimador
adecuado si se da la relacion aproximada lineal y = a + bx en las
unidades de la poblacion finita.

Ejercicio 6.6. Si se sabe que el coeficiente de correlacion lineal es
Pyx = 0.4, determinar la ganancia en precision del estimador de

regresion lineal con respecto a la media muestral, ambas con disefio
mia.

Solucién. Como
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_ N—n _
Vyn) = WS_’)% (1 —p?) = 0.84V(y5),

la ganancia en “precision” (inversa de la “varianza”) sera
1 1 1 ( 1
V(:)_’rl) V(J_’s) V(ys) 0.84 V(ys)

es decir, hay ganancia en precision positiva del estimador de
regresion lineal Optimo teorico respecto del estimador media
muestral ambos con disefio mia.

— 1) = 0.19 > 0,

Ejercicio 6.7. Estimar la media poblacional y por el método de
regresion lineal sabiendo que se dispone de los siguientes datos.
Medias muestrales, de la variable de interés 5, de la variable
auxiliar 3. Media poblacional de la variable auxiliar 4. Estimador
minimo-cuadratico del coeficiente de regresion lineal 2.

Solucion. El estimador de regresion lineal es

V=V +b(E—%)=5+2(4—-3)=7.

Ejercicio 6.8. Obtener el sesgo del estimador media de razones,

,:—1 Vk
s — )
n X
kes K

como estimador de la razbn R = y/x con muestreo irrestricto
aleatorio de tamafio efectivo fijo n, de una poblacion finita U de
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tamafio N . Obtener estimadores insesgados de la media
poblacional y basados en el estimador 7; y en el sesgo obtenido.

Solucion. El sesgo de Hartley y Ross de 7, para estimar R €S

Yi
BHR(TS)—E(rs) R_ ___z = =
lEU ieEU
y
D ST 2
N L7 )T T Nzilux, M T -
IeEU leu

El estimador insesgado de Hartley y Ross de la media poblacional
y €s entonces

typ = X1y — XByp(ii) = %1 + Cov C:l xi) =
i

N-1 (N—-1)n

m _(xl Xs) = Xts + m(}’s — XsT5).

Otro estimador insesgado de la media poblacional puede obtenerse
del estimador insesgado de la covarianza

Vi 1 __
Cov|—,x; | =— —(xl—x) =y, — X',
Xi N & X;
LES
ya que X es una magnitud poblacional conocida, que proporciona
al estimador insesgado de la media poblacional a la media muestral
Vs-
Otra forma de calcular el sesgo de i para estimar R €S

E(¥s)

B(3) = EGR) ~ R = E() — 525 =
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EGEGE) — EGY) _
X

E(5)E(Xs) — E(5s%s) + E(7%5) — E(J5)
= =

—Cov(iy, Xs) + E (ks — ys)

X
Podemos considerar como estimador insesgado de E (izxs — y5) al
estadistico

siendo tyg el estimador insesgado de la media poblacional
propuesto por Hartley y Ross. Como E(tyr) =E() =7y,
igualando los estimadores insesgados obtenidos de los sesgos de
Hartley y Ross con el correspondiente a la otra expresion del sesgo
de 7; podemos construir un estimador insesgado de la covarianza
Cov(iy, x;) del modo

Ys  _ 1 — —Vs S
Z + 1, = = Cov(ig, Xs) + ) N(n—1)|,
de donde
Cov(7s, Xs) = m()'s XTs).

Sustituyendo este estimador insesgado en la férmula del estimador
insesgado del sesgo de 7, tenemos

B(rs l(N_ 1) s_}_'s) +fs7:s_ys]-
Por tanto otro estimador insesgado de la media poblacional es
t = x|7; — B(7)] =
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N(n—l)__+N(n+1)—2n_ L
(N—Dn T (N—Dn 25 %'s

De este estimador y del de Hartley y Ross, podemos obtener otro
también insesgado de la media poblacional que no depende de la
media muestral y; en el muestreo irrestricto aleatorio de tamano
efectivo fijo n,

, nN—=-1) _ _ (m—-1N __
t ZN——TLxSTS_N——Tler.

Ejercicio 6.9. Definimos el estimador producto del tipo

donde el denominador es la media armonica equiprobable entre las
muestras conjunto o no ordenadas de tamario efectivo fijo n de una
poblacidn finita de tamafio N, y x es una variable auxiliar positiva.
Comprobar que el disefilo muestral p definido para toda muestra
conjunto s de tamario efectivo fijo n,

m
E

n S
proporciona un estimador insesgado de la media poblacional y.
Finalmente obtener la expresion de su varianza.

p(s) = >0,

Solucion. Veamos primero que p es un disefio muestral no
ordenado definido sobre el conjunto S = {s:s c U, card(s) = n},
siendo U el conjunto de N unidades de la poblacion finita. En
efecto, para toda muestra conjunto de tamafo muestral efectivo n,
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) 1+ =

p(s) = T = >0
Zsesx—_s (n) Xs Zsesf_s
por ser x una variable positiva. Ademas,
%; Z;es%;
zp(s)zz Sl = 1S=1'
SES SES Zsesx—_s ZSESX__S

La esperanza matematica de tp es

E(tp) = Z tp(d)p(s) = Zf:fs (N?f = (;’)Zys =Y,
n/ \n

SES SES SES

por ser la media muestral y, de tamafno efectivo fijo n un
estadistico insesgado de la media poblacional con disefio de
muestreo irrestricto aleatorio.

La varianza de tp €s
2 2 X5ys m =2
V(tp) = BB = [ECp)? = ) 20— 5 =

mz
( ) X
X
SES n S

1
fs:)_’sz - 3_’2:
)2

n SES

m

que es estimable sin sesgo si y solo si la probabilidad de inclusién
de todas las unidades i y j es positiva, lo cual se verifica para
cualquier disefio muestral p con n > 2.
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Ejercicio 6.10. Proponer un disefio muestral no ordenado para el
que el estimador de razon usual de la media poblacional resulte
insesgado con una variable auxiliar positiva, y calcular su varianza.

Solucidn. El estimador de razén usual es

Un disefio muestral de tamario efectivo fijo n que hace de este
estimador insesgado para la media poblacional y es

p(s) = s S0
()
Ademas,
z p(s) = Lz Xs =1
SES X (]T\l,) SES ) ,

por ser la media muestral de tamafo efectivo fijo n insesgada para
la media poblacional en muestreo irrestricto aleatorio.

Veamos tp que es insesgado con este disefio muestral. En
efecto,

E(ty) = Zi—xx’(c,\,) =EG) =7,
n

La varianza de ti con este disefio muestral es

V(tg) = E(tg) — [E(tp)]* =

LS SRR I o S
SES fsz f(lr\l[) (Ir\l[) SES fs
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Ejercicio 6.11. Una estrategia muestral (p;,t;) s insesgada para
estimar el parametro poblacional M, . Ademas t, es otro estadistico
positivo cuya media de sus inversas ponderadas por p; es m,.
Demostrar que el estimador

tt
Pt
m;

con el nuevo disefio muestral

1

myt;

p(s) = p1(s)

constituye una nueva estrategia (p, t) insesgada para estimar M.
Obtener una expresion de su varianza.

Solucion. El disefio muestral p lo es porque si t, es positivo para
toda muestra s € S, la media de sus inversas ponderadas

1
m, =Zt2(d)p1(s) > 0,

SES

donde d es el dato muestral asociado a la muestra s. Por tanto, el
disefio muestral p verifica las condiciones

1
p(s) = WM(S) >0
y
1 1
;p(s) - mZ;tz(d) pi(s) =1

Luego, la esperanza matematica de la estrategia (p, t) s

d d
E(p,t) = Z f{d)t( )t:Zczi) p1(s) = M;.

m
SES 2

249



Por lo que (p, t) es una nueva estrategia insesgada de M, .

Su varianza es

2 2
Vip,t) = z t1 (d)tzz (d) m, py(s) — M? =

SES mz tz (d)
2(d)t,(d
IO

Ejercicio 6.12. Si (p, t;) es una estrategia insesgada para estimar
M;, coni = 1,2, proponer otra estrategia insesgada de M, del tipo
de razon basada en las primeras, suponiendo que t, €S un
estadistico positivo.

Solucioén. La estrategia que proponemos es (p’, t'), donde

t;1(d)
t'(d) = M,,
(d) LM
y el nuevo disefio muestral es
o b2 (d)
p (S) - M2 p(S)l

que es positivo para toda muestra s, y verifica que

o=
P(S)—E—l-

SES
Luego,
, o\ h(@ t(d) B
ﬂ%w_zQwM”%p@_m.
SES
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La varianza de esta estrategia es

tf (d)
ty(d)

V(p',t) = M, Z p(s) — M7.

SES

Ejercicio 6.13. Proponemos como estimador de regresion
modificado con disefio de muestreo irrestricto aleatorio a

1 _
_ R diesyile—x)
t = yS + (‘x — xS);
Ho2

con uy, la varianza poblacional de la variable auxiliar x. Notese
que el término

1 _
EZiES yi(x; — X)
Ho2

es un estimador insesgado del coeficiente u;4 /g, que minimizala
varianza del estimador de regresion lineal usual si el coeficiente b
fuera una constante. Obtener la esperanza matematica del
estimador propuesto t y estimar insesgadamente el sesgo de t.

Solucion.
1 _ _
E{|-Sies vir - ®)| & - %)
E(t) = ajo + P =
02

Cov(ﬁs: fs)

alo - .
Uo2

Aqui hemos denotado por p, a la media muestral de los valores de
la variable p; = y;(x; — x). Por lo que un estimador insesgado del
parametro Cov(ps, X;) €S
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(N - 1)n2 Z yl(xl - x)Z

i€s
o bien,

N—n
Nn Spxs

siendo s,, la cuasicovarianza muestral de las variables p y x.
También podiamos haber procedido asi:

1
E{ Ez yi(x; — f)] (x —fs)} -

iES
E lg (na;; —nagpaoq)(ao; — a01)] =

ao1E(a;; — a10091) — E(a11001 — 10001 01) =
ao1t11 — E(a1a91 — a19Q01®01)-

Por lo que, sustituyendo en el numerador de la fraccion que explica
la esperanza matematica de t, tenemos la esperanza buscada.

Un estimador insesgado del sesgo de t es

~ ao1f11 — (A11091 — A19Ag1A01)
B(t) = )
Ho2

0 bien, directamente otra expresion de un estimador insesgado del
sesgo de t es

R [ZLES Vi (xl )] (x — xs)
B(t) = =
Ho2

(ay1 — a10a01)(@p1 — ap1)

Uo2
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O bien,

B(t) = - 2

O también, la mas recomendable, al disponer de un mayor grado
de libertad en la estimacion que la anterior,

N —n _
WZL'ES yi(x; — x)z

B(t) = -
Uo2

Como consecuencia, el estimador t — B(t) es insesgado para
estimar la media poblacional y.

Ejercicio 6.14. El estimador diferencia, con muestreo irrestricto
aleatorio de tamaro efectivo fijo n, se define como

tp = ys + X — Xq.

Justificar que este estimador es insesgado para estimar la media
poblacional y. Obtener su varianza, y estimarla sin sesgo.

Solucion. Es insesgado t;, pues
E(tp) =E@s)+x—E(x) =y —x+x =Y.
Su varianza es

V(tp) = V(s +V(xs) — 2Cov(ys, Xs) =

N_nSZ+N_nSZ N—nS _
Nn ™ Nn 7% Nn “Y*
N—n

(S5 + 52 = 25)x).

Un estimador insesgado de la varianza V (tp) es
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. N—n

V(tp) = N (53% + 5% — ZSyx),

donde aparecen cuasivarianzas muestrales y la cuasicovarianza
muestral de las variables y y x.

Ejercicio 6.15. Disponemos de dos estimadores de la media
poblacional y, el estimador diferencia tp, =y, +x —xg, y el
estimador suma que definimos t; = y; + x; — x. Enellos, x esuna
variable auxiliar. Obtener sus varianzas y compararlas. ;Podemos
saber con los datos de la muestra cual estimador es mejor en
precision en un caso practico?

Solucion. Ambos estimadores tj, y ts son insesgados para estimar
la media poblacional y. El estimador diferencia es méas preciso que
el estimador suma si y solo si

V(tp) < V(ts).

El concepto de “precision de un estimador insesgado” es la
inversa de su varianza. La condicidn anterior es equivalente en
muestreo aleatorio simple de tamafio fijo n a que

Cov(ys, Xg) = % > 0,

que equivale a que
H11 > 0.

En ellas hemos denotado por 14, ala covarianza poblacional de las
variables y y x, parametro desconocido que puede ser estimado
insesgadamente, en muestreo aleatorio simple de tamario fijo n, por
el estimador
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i = %Z yi(x; — %).
LES

Si este estimador fuese positivo, como estima insesgadamente a la
covarianza poblacional (y por ser una media muestral, su varianza
en muestreo aleatorio simple es una constante por n~1), indicara
que aproximadamente dicha covarianza poblacional es positiva
también, y por tanto el estimador diferencia es mejor, desde el
punto de vista de su precision aproximada, que el estimador suma.
Otro estimador insesgado de la covarianza poblacional en muestreo
aleatorio simple es

n

1 _
Mmys = mz yi(x; — Xs),

iES

n—1

que es la cuasicovarianza muestral en muestreo aleatorio simple de
tamarfio n, que tiene un grado de libertad menos que el anterior
estimador insesgado.

En el razonamiento anterior podemos cambiar el sentido de
todas las desigualdades para concluir cuando conviene elegir el
estimador suma como mejor que el estimador diferencia.
Finalmente, si hacemos de todas ellas igualdades, nos indicaran
cuando ambos estimadores son equivalentes, y si fi;; = 0 de la
muestra inferimos que ambos estimadores serian aproximadamente
equivalentes o tendrian similar precision.

Por ultimo, si en lugar de muestreo aleatorio simple
hubiéramos usado el muestreo irrestricto aleatorio de tamario
efectivo fijo n, la muestra, s, seria ahora un conjunto. Los
razonamientos serian semejantes, teniendo en cuenta que ahora

N —n N —n

Cov(ys, Xs) = TN Svx T = Dn P
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por lo que las comparaciones y desigualdades para elegir entre los
estimadores diferencia y suma (sustituyendo la muestra ordenada
s por la muestra conjunto s) siguen siendo validas en el muestreo
irrestricto aleatorio de tamafno efectivo fijo n. El estimador
insesgado de la covarianza poblacional con el maximo grado de

n yl l ’

LES
que es una media muestral. Otro estimador insesgado en muestreo
irrestricto aleatorio, de la covarianza poblacional ¢, con un grado

de libertad menos que el anterior, y recomendado cuando se
desconoce x, es

N—1 n

LES

Ejercicio 6.16. Los estimadores tradicionales en muestreo
aleatorio simple con reemplazamiento de tamano fijo n con
informacion auxiliar, es decir el estimador de razén, el de regresion
lineal y el de producto, ¢proporcionan estimaciones insesgadas de
la media poblacional? Describir consecuencias de la respuesta
anterior cuando los estimadores se aplican a cantidades
econdmicas.

Solucion. Como se estudia en la parte tedrica de estimadores
indirectos, los estimadores de razon, de regresion lineal y de
producto son aproximadamente insesgados. Es decir, son
insesgados para estimar la media poblacional bajo hipotesis que por
lo general no se dan en la practica, como una relacion de
proporcionalidad directa, una relacion lineal, o una relacion inversa
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entre la variable a observar de interés y la variable auxiliar. De
hecho, si estas relaciones se dieran, un solo dato daria estimaciones
exactas en el caso de los estimadores de razén y de producto,
mientras que con dos datos diferentes tendriamos estimaciones
exactas en el caso del estimador de regresion.

La consecuencia es que estos tres estimadores son sesgados
en condiciones generales, lo que se traduce en que estas
“estimaciones’” con datos econdmicos no son “‘justas en promedio”
0 son sesgados para el parametro media poblacional a estimar.

Ejercicio 6.17. Corregir los estadisticos “producto de medias” y
“media de productos” para conseguir con ellos estimadores
insesgados de la media poblacional en muestreo irrestricto
aleatorio de tamarno fijo n.

Solucion. El estimador “producto de medias” esta proporcionado
por la formula

Para muestreo irrestricto aleatorio o muestreo aleatorio
simple sin reemplazamiento de tamafio muestral fijo n. El sesgo
del estimador “producto de medias” t;, €S

B(t,) = " M
(tp) _ (N _ 1)711401 11,

donde A,; es la media poblacional X, y M;; es la covarianza
01 11

poblacional de las variables y de interés y x auxiliar. Un estimador

insesgado de este sesgo es

Bi(t) =~ ()= "
N _(N—l)nA01 H _N(Tl—l)Am

mqq,
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donde m,; es la covarianza muestral de las variables y y x. Otro
estimador insesgado del sesgo de t,, es

— N—n
B,(tp) = (N — Dndy, (a11 — a10401),

donde a; es la media muestral de los productos y;x;, 0 momento
muestral con respecto al origen de 6rdenes 1y 1. Entonces, dos
estimadores “producto de medias™ corregidos insesgados para la
media poblacional ¥ en muestreo irrestricto aleatorio de tamano
muestral fijo n son

(1001 N—n m
Ao1 N(n —1)Ay, H

tup = tp — E(tp) =

a10a01 . N —n
Aoy (N — 1)ndy,

tup =ty — EZ(tp) = (a11 — azodor)-

Otro estimador tipo producto, basado en el estadistico “media
de productos”, es

1
_ ﬁZiES YiXi  aqq

t - )
" X Ao1

el cual tiene el sesgo, para disefio de muestreo irrestricto aleatorio
de tamafno muestral fijo n,

— A11 Mll
B(tmp) = E(tmp) =7 = 7= Asg =
01 01
Este sesgo es estimable insesgadamente por
(My4) _ (N—1)n m
Apq N(n —1)Ay, H

Ez(tmp) =
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Yy por

11 — 10401 a11
Ap1 Ap1

— a
Bz(tmp) = — Aqp-

Asi, se pueden elaborar dos estimadores corregidos insesgados
basados en el estadistico “media de productos”, concretamente

1 (N—-1)n
1 N(n—1)Ay,

tump = tmp — Bl(tmp) = A mqq,
0

el cual es un estimador media de productos corregido insesgado, y

t:me =tmp — B;(tmp) = Qq0-

Este ultimo estimador corresponde directamente a la media
muestral en el muestreo irrestricto aleatorio de tamafio muestral fijo
n, que no depende del estadistico media de productos.

Ejercicio 6.18. Proponer un estimador insesgado de la media
poblacional que aproveche el estadistico producto de medias
muestrales, en muestreo irrestricto aleatorio.

Solucion. El estimador producto tp fue propuesto por Murthy
(1964) con disefio de muestreo aleatorio simple sin
reemplazamiento de tamafno muestral efectivo n. El estimador
producto, de la media poblacional ¥ = (1/N) ¥ ¥, v;, siendo N el
tamafo poblacional, puede expresarse del modo

Aqui y; = (1/n) X;esy; €S la media muestral de la variable de
interés y, X = (1/n) X;es x; €S la media muestral de la variable
auxiliar x positiva en todas las unidades de la poblacion finita, el
subindice s es la muestra no ordenada o conjunto de tamafio
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muestral efectivo o cardinal n, y ¥ = (1/N) YN, x; es la media
poblacional de la variable auxiliar.

El objeto de este ejercicio es indicar que aunque el uso de
informacidn auxiliar en la estimacion de funciones paramétricas es
realizada en los articulos de investigacion sobre el tema con mucha
frecuencia con aproximaciones del sesgo y del error cuadréatico
medio, sin embargo en algunos casos, como los que presentamos,
estos sesgos pueden corregirse. Ademas damos orientaciones utiles
para el uso eficiente de estos procedimientos mediante métodos de
estimacion insesgada del valor optimo del que depende el
estimador insesgado de minima varianza de una clase de dichos
estimadores de la media poblacional.

Proponemos varias clases de estimadores producto
corregidos insesgados. Unas clases de ellas son basadas en un
estimador producto generalizado corregido insesgado en base al
estimador producto generalizado, que era sesgado para la media
poblacional y cuyo sesgo fue identificado con exactitud, debido a
Ruiz Espejo (1991). Otras clases de estimadores producto
corregidos insesgados han sido introducidas en este libro, que nos
permitiran seleccionar un estimador 6ptimo teorico que depende de
una funcion parametrica desconocida antes del muestreo, pero esta
funcion paramétrica puede ser estimable insesgadamente a partir
de la misma muestra e informacion disponibles; lo que nos permite
obtener estimadores aproximadamente 6ptimos. El estimador
insesgado tedricamente Optimo tiene una varianza menor o igual a
la “varianza del estimador producto corregido insesgado” debido
al autor (2016c).

El estimador producto generalizado fue propuesto por Ruiz
Espejo (1991) y su expresion es la siguiente
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375 [fs + k(f - fs)]
7 .

tpg =

Aqui k es una constante. Este estimador general tp. es en general
sesgado, y generaliza a la media muestral insesgada y; (para k =
1) y al estimador producto sesgado tp (para k = 0).

Para obtener el estimador insesgado a partir del estimador tp
obtenemos la esperanza matematica de éste.

E(ysxs) _k Cov(¥s, Xs)
X X

E(tpg) =

_ Cov(F, %) +JX . Cov(ys, X5)
- -

Cov(ys, Xs)

y+ @A -k

De aqui, el sesgo de este estimador producto generalizado tp. €s

Cov(ys, Xs)

B(tpg) = E(tpg) —y = (1 — k)
Este sesgo puede ser estimado insesgadamente por

~

—a-nr s
B Nni ~*

Bltpe) = (1 — k) S22

Aqui hemos denotado por Cov(j,, %) a un estimador insesgado de
la covarianza

N—n

Cov (¥, X5) = NSy

Siendo S, la cuasicovarianza poblacional de las variables y y x,
es decir

N
1 _ _
Syx = mi@’t — ) (x; — x).
i=1
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Esta cuasicovarianza poblacional S, , puede ser estimada

Insesgadamente a partir de cualquiera de uno de estos dos
estadisticos, con n — 1 grados de libertad

1
n—1

D 0= )i = %),

IES

Sy,x =

O bien, con n grados de libertad

/ _ N _
Syx = (N __1)nzyi(xi — X).

[ES
Por tanto, un estimador insesgado de la cuasicovarianza
poblacional S,, , puede ser S, , = s, 0 bien §,, = s', . Como

consecuencia, una clase (al variar la constante k) de estimadores
producto generalizado insesgados sera

. n
tpou = tpc — B(tpg) = tpg + (1 — k) N Sy

Y otra clase relacionada de estimadores producto generalizado
insesgado es

N—n

/ _ /
t'peu = tpg + (1 — k) Nz S v

De este modo queda corregido el sesgo del estimador
producto generalizado. Sin embargo el valor exacto de k que daria
lugar a un estimador insesgado Optimo de cada clase de
estimadores no es facil de obtener ni de estimar. Por esto vamos a
proponer otra clase de estimadores insesgados basada en el
estimador producto generalizdndolo de modo mas sencillo y
tratable estadisticamente.

Proponemos la siguiente clase de estimadores producto
generalizado
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_ }_/st + k(f - fs)

tpgr = 7

Donde aqui, k es una constante. Este estimador tiene por esperanza
matematica
E()_’st) . 3_’32 + COU(}_/S,JZS) —y+ N — nS

T X YT Nz v

E(tpg) =
Por lo que un estimador insesgado, para todo valor constante
posible de k, basado en el estimador tp¢, €s

N—n
Nnx

/
S y’x.

tpgru = tpgr —

La varianza del estimador producto generalizado insesgado
tpciy, S€ Obtiene a partir de

1
ﬁ [V(J_’st) + kZV(fs) - ZkCOU()_/SfS, fs)]-
N—-—n
V( Nnx = y’x> -

N-m?/ N \* N-n 2
( Nnx ) (N — 1) (N _ 1)Tl [AZ; y(x-x) — Al;y(x—f)]'

V(tpg) =

c (t N—n, )
OV\'P6" "Npz ° v
N —

n
N2 [Cov(}_’sfs, S'y}x) — kCOU(fS, S,y,x)]-

Hemos denotado por A con subindice al momento poblacional de
orden que se subindica, para la variable que se describe a
continuacion en el subindice tras el orden del momento no central
y del punto y coma *;”. Por esto, si queremos optimizar el valor de
k que minimice la varianza V(tps,,), debemos derivar esta
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varianza con respecto a k, e igualar a cero. De aqui se obtiene que
multiplicando ambos miembros por x?2, resulta la ecuacion

N—n
2kV (x,) = 2Cov(y X, Xs) — 2

Cov(x;, s’y'x).

Por lo que el valor optimo de k que hace minima la varianza
V(tpgr,) sera
) Cov (.2, &) — = Cov(%;, 'y )
e V(%)

Este valor es una funcion paramétrica que no es conocida antes de
realizar el muestreo, por lo que su valor es tedrico con miras a
determinar el estimador producto generalizado corregido insesgado
optimo. Sin embargo, dicho valor optimo puede ser estimado
insesgadamente antes de elegir el estimador insesgado tpgq
concreto con el que estimar la media poblacional y. Sustituyendo
en la formula de kg, las covarianzas del numerador por sus
estimadores insesgados respectivos, se obtiene un estimador
insesgado de k¢, cOncretamente
= Cov (7, %s, %5) — %C’o\v(@, Sy
V(xs)

El denominador es una constante conocida, que no depende de los
valores de la variable de interés y, sino que solo depende de la
variable auxiliar x definida y conocida para todas las unidades de
la poblacion finita de tamafio N y del tamafio muestral n, ambos
tamafios conocidos. Los estimadores insesgados concretos de
dichas covarianzas pueden obtenerse del modo siguiente

C/(-)\U()_/st,fs) = }_’sfg - E\'(}_’sfs”Z = :)_’sfs2 — VsXsX =

}_’53?5 (fs - JZ)-
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—~ N—n, N—-n
Cov(xs,s y.x) ~ TNn Sxy(e—%) = N1 S x,y(x—%)

(N _ 1)n2 Eyl(xl - x)Z

LES

Finalmente, hacemos notar que el valor optimo de k = kg,
es un minimo global, porque la derivada segunda de la varianza
V(tpgr,) cOn respecto a k% , da un valor positivo
independientemente de k (salvo en el caso particular en que la
variable auxiliar x fuera una constante positiva en todas las
unidades de la poblacion finita, un caso trivial en el que tpg,, =
tpe, = tp = ¥s). Concretamente

dZV(tPG/u) ZV(-XS)
dk? X2

Como consecuencia, la varianza V (tp¢,,,) alcanza el minimo
global para una variedad infinita de valores reales de k entre los
que se encuentra k = 0, en cuyo caso tendriamos el “estimador
producto corregido insesgado” debido al autor. Luego con el valor
optimo de k = k¢, se obtendria un estimador tp,,, que mejora la
precision del ultimo estimador indicado. En la practica,
sustituyendo kg, por su estimador insesgado Eépt los resultados

obtenidos con el estimador tp,,, SON aproximadamente ptimos ya
que su varianza estara proxima a la varianza minima global.

> 0.

Se puede estimar insesgadamente la varianza del estimador
tpcn,. Para ello sabemos que

N —n .
V(tpgry) = V(tpgr) +V <_ N S y,x>

N—-n
—2Cov (tPG”WS y’x>.

265



Por lo que sustituyendo en el segundo miembro las dos varianzas y
la covarianza por sus respectivos estimadores insesgados,
obtenemos el estimador insesgado de la varianza V (tpg,q,), Y que
denotamos por la notacion habitual ¥ (tpg,,). LOS tres sumandos
del segundo miembro de la ultima formula son estimables
insesgadamente. VVedmoslo detenidamente.

Primer sumando:

1
— [V(J_’st) + kZV(fs) - ZkCOU()_/SfS, fs)]-

V(tpe)) = 72

De aqui, el estimador insesgado del primer miembro es
_ 1. _ —
V(tpe) = ﬁ [V(Yst) + sz(xS) — 2kCov(ysxs, xs)]-
Donde
V(5is%s) = yixi — {[E(7sx5)]1%}.

Siendo

_ 2
(BGEI) = | (3 +525,.) | -

2

oy (N—1\" N—-n__
P+ () St 29S| =

20000+ () (i) oo

Ahora,
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o N—n 5 5
V(s) = N1 Sy = Nn(n—l)z(yl Vs)©.

lES

(A1 = A10401)°] = [(410)°] + GP)%2 — 2(A11410)%

Donde
- 2 N—n
[(Al,l) ] = Aq;y2x2 — N1 SJ%x =
1 2.2
LES iEs
Siendo
1
Ay — A11 = EZ YiXi-
LES

También

— ~ B N—n

y?) = ysz —V(s) = ysz T T Nn S)%-
Y

(A1141,) = [EGO)E®)] = E(y2x) — Cov(yx,y) =

N-—-1.
a1 — N Syx,y =
1 N-1
EZ yix; — mZ(%xi - a1,1)(}’i - a1,o)-
i€s i€s
Finalmente,
(ysy,x) = ysS,y,x - C/O\v(ys: S,y,x)-

Donde
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S'y,x (N — 1) Z%(xl — X).

[ES

Por lo que

— N—n N—n
CO”(J’S'Sy,x) ~ TNn Sy(x-%)y = N1 Sy(x-%),y =

Nn(n_l)Zyl(xl %) (Yi — Vs)-

lES

Por otro lado,

V(fs) = (N (Aoz A%,1)-

Para terminar, ya hemos visto que
Cov(JsXs, Xs) = YsXs(Xs — ).

Sequndo sumando:

()
Nnx ©¥*) =
N-n\*/ N \* N- —
v [AZ X=X A7, _—]=
Nnx /) \N -1/ (N - yx=%) = C1y(x-%)
(N—n>2< N )ZN—n ,
Nnx N-—1 Nn Sy(-%)°
Donde

1 _ 2
Sye—i) = — Z[Yi(xi — %) — A1y e-n)] -

iEs

Con
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1 _
A1;y(x-%) = EZ Yi(xi - X)

IES

Tercer sumando:

N—-—n

N —

-2
Nni?

[Cov(ysxs S yx) kCov(xS S yx)]

Que es estimable insesgadamente por

N —n

-2
Nnix?

[C/o\v(ysfs, s’y’x) — kC/o\v(fS, s’y,x)].
Donde

Cov(7s%s,5'y,1) = FoZsS'yx — [EGsE)E(s"y,0)].

Como

_ _ .. N-—n -
E(ysxs) = Cov(ys, X5) + E(Js)X = —Sy,x + E(¥5)x.

Nn
Y
N
E(s'y,x) =Sy, = Z 1 (x; —
i=1
Entonces
[E(y’sfs/)E\(S,y.x)] ( x) + x[E(yS)E(s yx)]
Donde
( x) (S yx) V(S yx) (S yx) 1)n 3%::2)] =
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2
(5 yx) (N _ 1)n Sy(x—%)"
Siendo

1 _ 2
Si(x—f) - mz:[yi (x; —X) — al;y(x—f)] :

iEs

[E(ys)/E\(S’y,x)] = (37/5;0 = yssly,x - C/O\v(}_ls, S,y,x) -

VsS'yx — Nn(n 1) z yi(xe = %)y — Ps)-

iES
Que ha sido calculado con anterioridad. También,

—r N—n., N—-—n
Cov(xs,s y,x) ~ TN\n Sxy(e—%) = N1 S xy(x-%) =

(N _ 1) zzyl(xl _x)Z

lES

Por todo ello concluimos que el estimador producto
generalizado corregido insesgado propuesto admite un estimador
insesgado de su varianza con la informacion auxiliar disponible y
con el disefio de muestreo irrestricto aleatorio de tamafio efectivo
fijo n. Ademas, este estimador insesgado de V(tps,,) puede
calcularse en cada caso concreto mediante las estimaciones
proporcionadas en esta seccion, que aungue puedan ser laboriosas,

resultan realizables cuidadosamente en la préactica.

Ejercicio 6.19. Proponer un estimador insesgado de la media
poblacional con informacién de dos variables auxiliares, en

muestreo irrestricto aleatorio.
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Solucion. Un estimador insesgado general t,, que aprovecha toda
la informacidn auxiliar disponible, concretamente el estimador

2
=ys + Z ki(%; — %i5)-
im1

Donde los dos valores k; son constantes conocidas para todo i =
1,2; x; es la media poblacional de la variable auxiliar i-ésima; y
X; s es la media muestral de la variable auxiliar i-esima para la
misma muestra aleatoria simple sin reemplazamiento s, de tamafio
n, seleccionada. Asi, tenemos

Mz

1
lN
k=1

Xio = —
l,S n
ke

Siendo x; el valor de la variable auxiliar i-ésima en la unidad k
de la poblacion finita, es decir, con uno de los valores posibles de
k =1,2,...,N. Sabemos que la esperanza matematica de la media
muestral coincide con la media poblacional de la misma variable.
Por tanto, E(y,) = y, y también para todo i = 1, 2, tenemos que
E(%;s) = x;, haciendo uso de las propiedades del disefio de
muestreo aleatorio simple sin reemplazamiento de tamafio efectivo
fijo n.

Yaque x; s es una media muestral, es un estimador insesgado
de la media poblacional x;, por lo que tomado la esperanza
matematica de t,, tenemos
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2
B(t) = B |7+ ) Jilfi = fi,s)] =

=1

2
EGD) + ) kil%— E(%5)] = 7
i=1

Debido a las propiedades de la esperanza matematica, ya que para
todos los valores posibles de i = 1,2, tanto k; como X; son
constantes. En resumen, el estimador general t,, es insesgado para
estimar la media poblacional de interés, con muestreo irrestricto
aleatorio.

Haciendo uso de las propiedades de la varianza de una
variable aleatoria, tenemos que

2
Vs + Z ki(fi - fi,s)]
i=1

2 2
=V + Y KV(5) =2 ) kiCou(Fe 7,)
i=1 =1

2 2
+ z Z kikjCov(%ys, %j,s)-

i=1 j#i

V(t) =V

Aqui, en el altimo miembro, todo son constantes conocidas antes
de proceder al muestreo y a la fase de estimacion, salvo las

funciones paramétricas V (¥s) y Cov(¥,, %;5), con i = 1,2. Por
esto, la varianza del estimador general t,, puede ser estimada sin
sesgo del modo

2 2
V(tu) = V(ys) + z kizv(fi,s) —2 2 kiC/O\v(ys: JEi,s)
i=1 i=1
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2 2
_I_ Z Z klk] COU()EL,S; fj,S)'

i=1 j=#i

Donde V(3;) y Cov(¥, %;s) son los estimadores insesgados
respectivos uno a uno de las funciones paramétricas V(y;) Yy
COV()_’s,fi,s), de modo similar a como explico en el articulo

reciente de Ruiz Espejo et al. (2013). A continuacion vamos a
obtener dichos estimadores insesgados en el muestreo irrestricto
aleatorio de tamafio muestral efectivo n.

o N-n-— N-n, N —n _
V(ys) = Sy) = Nn Sy = Nn(n — 1)Z(yk _ys) .
kEs
Y
C/O\v(ys' JEi,S) = ( yxl) = S yXi =
1)n22yk('xlk x)

kEs

Hasta aqui hemos supuesto que los valores constantes k;
estaban fijados de antemano y eran conocidos para concretar el
estimador insesgado t,,. Sin embargo, es posible estudiar qué
valores concretos de k; minimizan la varianza del estimador
general insesgado bivariante t,,. Para ello, derivamos parcialmente
la expresion de la varianza V' (t,,) con respecto a k;, e igualandolas
a cero obtenemos un sistema de 2 ecuaciones lineales con 2
incognitas (que son las constantes optimas k; = k; ¢,,¢). En efecto,

el sistema de ecuaciones lineales es el siguiente

av(ty)
ok;
i=1,2
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Que resulta ser entonces

2
kiv(fi,s) + Z ijO'U(fi’S, fj,s) = CO’U(}_/S, fi,s)
J#i
i=1,2
También se puede comprobar que

0%V (ty) _
Tizu = ZV(XLS).

Que es una constante positiva, salvo que la variable auxiliar i-
esima sea constante en todas las unidades de la poblacion finita, en
cuyo caso el término correspondiente a dicha variable auxiliar se
anula en la formula del estimador t,, por lo que su expresion se
reduciria a una estimacion basada en una variable auxiliar al
eliminar aquélla en la que la variable auxiliar no aportara una
informacion con alguna variabilidad.

Para i # j, tenemos que

0%V (ty)

okiok; 2Cov (%5, X 5)-

Finalmente, las derivadas parciales de orden tres se anulan en
todos los casos, por lo cual concluimos que se obtiene un minimo
global de la funcidn real bidimensional para ciertos valores k; =
k;spe que son Optimos y calculables tedricamente en cada caso
concreto. Salvo casos triviales, los valores criticos son los éptimos
que minimizan la varianza del estimador t,, ya que los menores
principales de la matriz de covarianzas son positivos. Excluimos el
caso trivial en que exista un coeficiente de correlacién 1 6 —1 entre
las medias muestrales de las dos variables auxiliares. Veamos a
continuacion la solucién optima teorica en el caso de disponer de
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dos variables auxiliares con un coeficiente de correlacion absoluto
menor que 1.

En el caso en que el numero de variables auxiliares es 2,
tenemos que la solucion concreta del sistema de ecuaciones lineales
viene dada por estas formulas.

V(xz S)Cov(ys, X1 S) Cov(ys, Xo S)Cov(xl 6 X S)
V(xl’S)V(xz’S) [Cov(x1 s) X2 3)]

V(xl S)Cov(ys, X S) Cov(ys, X1 S)Cov(xl ¢ X S)
V(x1 S)V(xz S) — [Cov(x1 X S)]

Que son constantes optimas desconocidas, pues son funciones
parametricas que dependen de todos los valores de la variable de
interés en las unidades de la poblacion finita. Con estas constantes,
si las conociéramos antes de realizar el muestreo y de observar en
la muestra seleccionada la variable de interés, el estimador
insesgado de regresion bivariante seria

kl ,opt —

ks opt =

2
=ys + z ki,épt(fi - fi,s)-
i=1

Y alcanzaria su varianza el valor minimo global con (kl,épt, kz,épt)
entre todos los posibles valores del plano real para (k4, k,). Pero la
realidad es que no conocemos estas constantes dptimas teoricas en
un estudio concreto, por lo que cabe estimarlas sin sesgo
sustituyendo, en el numerador de la expresion de cada una de
dichas constantes Optimas, las funciones parametricas
Cov(¥,%; ) por sus estimadores insesgados (al variar i = 1,2)
que obtenemos a continuacion.

— N—n

COU(YS} JEi,s) = N—nS,y,xi (N 1)112 2 Yk ('xl k — )

keEs
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De ese modo, ya que los demas términos de k; ¢, Son constantes

conocidas de antemano, obtenemos los valores éptimos estimados
sin sesgo siguientes

2 V(x2 5)Cov(¥g, ¥y) — Cov(Fs, %z 5) Cov(Xy 5, % 5)
1,6pt —
V(xl’S)V(xz’S) [Cov(x1 $) X2 3)]
2 V(x1 5)Cov(¥g, Tz5) — Cov(Js, Xy 5 ) Cov(Xy 5, % 5)
2,6pt —

V(xl S)V(xz S) — [Cov(x1 s X S)]

Por todo ello, parece indicado partir del estimador

2
Vs + z Ei,épt(fi — Xi5).
i=1

Este estimador es similar al qgue hemos estudiado como bivariante
insesgado t, al sustituir los valores k; por los valores que estiman
sus valores optimos, es decir, por Ei,épt. Pero como estos ultimos
estimadores no son constantes sino variables aleatorias, tienen un
efecto en t’ que lo hacen sesgado en general para estimar la media
poblacional y.

El estimador bivariante 0ptimo teorico es

2
=ys + z ki,épt(fi - Jzi,s)-
i=1

Tiene una varianza

opt(tu) = V(ys) + Z kl optv(fi,s)
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—2 z ki,éptcov(ys: fi,s) + 2 kl,éptkz,éptcov(fl,wfZ,s)-
i=1
Por lo que esta varianza Optima teorica V. (t,) puede ser

estimada sin sesgo a partir de las estimaciones insesgadas
siguientes.

D) = sE = S =702
Ys) = TNp Y T Nn(n—l) Vi = s
kes
También
N—n\* —
{[Cov(ys'fl,s)]z}z( Nn ) (SJ%;xl)
N n ’ ! 2 Y 7 !
= () [ = P(s'y0))
Donde
Syxz (N 1)nzyk(xlk )
kes
Y

V(syx)—(N [ Zyk(xlk ]

kEs
__N* N- ~ N(N n
~ (N-1)2% Nn Y(xl 0] (N —1)2n Sy (xi—%)
B N(N —n) B 5
- (N —1)2n(n —1) Z[YR(xi,k o xi) o al;y(xi—fi)] .
keEs

Siendo
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Y también

o~ N—-n?’, 6 —
[Cov (3 71)Cov (o 20)] = () (SyrSyss)

N —ny\? .
N ( Nn ) [S’y'xlsly'xz N Cov(sly.xysly,xz)]-

Donde

_ NE
Cov(s'yyr8'yx2) = G =92 COV My Gy -]

N? N—n —
= (N — 1)2 Nn [SJ’(x1—f1);y(x2—fz)]

N(N —n)
= (N _ 1)2nSy(x1—f1),y(x2—aZ2)
3 N(N —n)
- (N-1D2%n(n-1)

X ) [k = 1) = Gy ey [ Gz = %2) = Qi)
keEs
El resto de la demostracién es un ejercicio algebraico
relativamente asequible.

El estimador que hemos estudiado anteriormente no es
posible llevarlo a la practica pues, aunque tiene muy buenas
propiedades tedricas, depende de funciones paramétricas que son
desconocidas y que deben ser estimadas sin sesgo. Asi si
sustituimos los valores oOptimos k; ¢, por sus estimadores
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insesgados l?i,épt , el estimador resultante t' es sesgado,
concretamente

2
t'=ys + Z kiope(%; — %1 5).
i=1

Sin embargo, se puede corregir para que sea insesgado, del
modo siguiente

2 2
t’u = 375 + Z ]zi,épt(fi - JEi,s) - z C/O\v(iei,épt» fi,s)-
i=1 =1

Aqui C/o\v(lf:i,épt, fi,s) es un estimador insesgado de la covarianza
Cov(lf:i,épt, fi,s), que mas adelante pasaremos a concretar cOmo
obtenerlo para que sea Util en la practica. Para demostrar que t',, es
insesgado nos basamos en que Cov(k; gy, X;5) €5 un estimador
insesgado de la esperanza matematica de k; 4, (%; — %;5). En
concreto se puede ver que

—

{E[El,épt(’?l - fl,S)]} =
[E(l’él,épt)/E'—\(fl - fl,s)] + C/O\v(k\i,épt»fi,s) =
[E(i‘;'l,:;—)t\) X 0] + C/O\v(i‘;'i,(')pt!fi,s) = C/O\U(iei’épt, fi,s)'

Para calcular este altimo estimador, es un ejercicio asequible
pero cuidadoso en el caso bivariante a partir de los estimadores
insesgados necesarios siguientes.

— A~ _ _ — (N—n, B
Cov[Cov(yS, xl-,s),xi,s] = Cov( N Sy’xi,xi’s) =

[ N—n _1]_ N-n N-ny_,

COU l—(N — 1)7’1, al;y(xi—fi)l xi,S] - (N . 1)n Nn [ y(xl_fl)z]
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_ (N —n)* 2
T N(N — D)n2 Y&i—x)?

(N —n)? 2 2
= (N . 1)2n2 (n . 1) Z [yk(xi,k - xi) - al;y(xi—fi)z] .
kes

Y de modo similar, en el caso bivariante,

T = o = (N—-n)?*
Cov[COV (3o Tas). as] = ey — oz Syt
(N -n)* |
- N(N — 1)n? S y(xp—%2),%1
(N — n)? ) .
- N(N — 1n3 ZYR(xz,k - xz) (Xl,k — xl).
k€s

Etc.

Ejercicio 6.20. Ajustar un modelo de regresion lineal multivariante
por el método de minimo error cuadratico medio en una poblacién
finita, y estimarlo de modo insesgado a partir de muestras aleatorias
simples sin reemplazamiento.

Solucion. El modelo a ajustar es
vy =ko+kixy +kyxy + -+ kpx, +e.

Teniendo en cuenta que, en este caso general, hay m variables
explicativas o auxiliares, que son las que hemos denotado por
X1,Xy, ..., Xm. LOS valores ky, ki, k,, ..., k,, SOn las constantes
que determinan el modelo de regresion lineal multivariante 6ptimo.
La variable y es la variable explicada o de interés. El error
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cuadratico total poblacional, proporcional al error cuadratico
medio poblacional, en este caso es

N N m 2
— 2 _
¢ - e, = z Vi — kO z errl
=1 =1 r=1

Para minimizar este error cuadratico total (o
equivalentemente el error cuadratico medio, ¢/N), derivamos
parcialmente la funcidn ¢ con respecto a cada una de las variables
k. con r=0,1,...,m, e igualamos a cero cada una de esas
derivadas parciales. El sistema resultante es equivalente al
siguiente

( m
Al;y == ko + Z ijl; X;
j=1
m

Al,l;y,xr = kOAl; Xy + krAZ;xr + Z ijl,l; Xj Xy
=1

j)
J#ET

\ r=172,..,m.

Este sistema de ecuaciones lineales tiene m + 1 ecuaciones con
m + 1 incognitas. También puede expresarse del modo siguiente
mas simplificado

( m
Al;y == kO + Z ijl; Xj
Jj=1
m

Ai1,yx, = koA1x, + Z KjA11; %%,
j=1
\ r=1,2,..,m.

Matricialmente se expresa de este modo

a = kA.
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Donde
a=aixm+1) = Ay Atyx, " Ay,

k = k1><(m+1) pm (ko kl cee km).

Y finalmente,
1 Al; Xq Al; Xm
A= AmiDx(mn) = Alf o At At
Al; Xm Al,l; XmX1 Al,l; XmXm

Esta matriz A depende exclusivamente de la informacion auxiliar
de las variables explicativas del modelo de regresion lineal
multivariante. La solucion del sistema se obtiene del modo

k=aA"1.

Y las soluciones estimadas insesgadamente, k, requieren
estimar insesgadamente cada una de las componentes del vector a,
en muestreo irrestricto aleatorio por las medias muestrales
correspondientes, es decir, mediante el vector estimado
Insesgadamente componente a componente @ obtenemos las
estimaciones insesgadas de los valores optimos del ajuste lineal

multivariante. En concreto, lo formalizamos del modo
k=aAa1.

Es preciso aclarar que cada modelo estimado depende
directamente de la muestra seleccionada, y que habra tantos
modelos estimados como muestras distintas (para los mismos
estimadores de @), pero en promedio las estimaciones en k son
insesgadas para las componentes respectivas del vector optimo k,
que es unico salvo casos triviales como el de que algunas de las
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variables auxiliares coincidan entre si o alguna fuera constante, etc.
de modo que la matriz A no tuviera inversa.

Un ejemplo de aplicacion de este tipo de regresion lineal
multivariante objetiva es el que nos provee de un estimador
insesgado de la media poblacional ¥ = (1/N)XN.y;
aprovechando la caracteristica del modelo consistente en que
minimiza el error cuadratico total poblacional. En concreto, el
estimador de la media poblacional y es

=

y = kx* = aA 'x".

Donde x* es la matriz del vector columna de dimensiones
(m+1)x1, que es la matriz traspuesta de la matriz x =
1 % X2 - Xm)ixmms1)- CON X = (1/N) Yila Xri» QUE €5
la media poblacional de la variable auxiliar r -ésima (r =
1,2,..,m). Dicho estimador y es insesgado y éptimo, para
distribucion libre, para ajustar el modelo éptimo (de minimo error
cuadratico total poblacional), pero en general podria ser
supuestamente sesgado para estimar la media poblacional y.

Que el componente A, .y, puede estimarse insesgada y
optimamente por a; 1., ,. = (1/n) XL, yix,; puede demostrarse
de este modo.

E(yixyi) = ¥ % + Cov(y xy,;)
_ 1 _
=Y X+ Nz yi(xr,i - xr)-
€U
El estimador insesgado e invariante por permutaciones es

(Al,l;y,xr) = E(yle,l) =Ys Xp + a1,1;y,x, — Vs " Xy
n

= A1 1,90, = (1/n) YiXei = (1/n) 2 YiXyi-

i=1
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En realidad, lo que ocurre es que hemos tratado de minimizar

M=
)
e

en lugar de minimizar

2
€;

-

=1

sujeto a que € = 0, donde & = (1/N) YN, e; es el error medio
poblacional. Si hacemos esto ultimo, el lagrangiano es

N N
=Sy e
i=1 i=1

y depende también de todos los coeficientes del ajuste lineal, es
decir de kg, k1, ..., k.. Su resolucion nos da las ecuaciones

m
oL
== 2 oN( =4y, + ko +ZkTA1;xr AN =0
ok L,

oL
ok;

m
2N <_A1,1;y,xj t oAy, x; + z kyAq 1 xr,xj> —ANAg,, =0

r=1
j=12,....m

Despejando el multiplicador de Lagrange A resulta ser de la
primera ecuacion A = 0, pues la restriccion
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m
Al;y = ko + Z kT'Al; Xy
r=1

obliga a este resultado. Resolviendo el sistema de ecuaciones
resultante de esta simplificacion, que no es mas que el sistema
inicial considerado sin restriccion, determinamos los coeficientes
ko, k1, ..., ky, Optimos sujetos a la restriccion, que son los mismos
ya obtenidos anteriormente. Asi se garantiza el ajuste optimo de
error medio poblacional cero, y optimo en el sentido de minimo
error cuadrético total poblacional. Por tanto se trata de un ajuste de
minima varianza V(e) = A,., = A1 1. puesto que A;., = e = 0.
Como consecuencia, se puede asegurar que el estimador y
propuesto es insesgado para estimar la media poblacional y. Pero
ademas, al ser invariante ante permutaciones de los identificadores
de la muestra aleatoria simple con reemplazamiento, el estimador
y es insesgado y uniformemente de minima varianza para estimar
la media poblacional y para distribucion libre (Zacks, 1971, p.
150), en las condiciones dadas de unas mismas variables auxiliares
disponibles. Una consecuencia inmediata es que hemos encontrado
un estimador insesgado y de minima varianza uniformemente
mejor que el estimador de regresion lineal clasico cuando se
dispone de una variable auxiliar. Lo mismo se puede decir cuando
se dispone de un nimero finito de variables auxiliares.

Veamos ahora la estimacion y el contraste de hipotesis del
“error cuadratico medio del ajuste linecal multivariante Optimo
objetivo en poblaciones finitas”. Tal error cuadratico medio se
puede expresar del modo

e? — &2 = E(e?) = e2,

=

1
ECM =V(e) = —
N i=1

pues el error medio poblacional del ajuste éptimo vimos que es
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Aqui

e =y, —ko— Z k.

r=1

Siendo k, = k, ¢, los valores 6ptimos del ajuste.

También obtenemos el “error cuadratico medio del ajuste”

con los valores estimados sin sesgo k, =k, ¢, (CON 7 =

0,1,2,..,m), siendo m el namero de variables auxiliares o
explicativas, y x,; el valor de la variable auxiliar x,. en la unidad i

(coni =1,2,...,N) de la poblacion finita de tamafio N. El error
cuadratico medio del ajuste, con los valores ajustados estimados

insesgadamente Er,épt, da lugar a otros valores del error é pero su

esperanza E[E(é|s)] = e, y por tanto promediando en toda la
poblacidn finita concluimos que E(é) = E(e) = 0. Ahoraes

m
i =Yi— kO,(’)pt - § kr,c’)ptxr,i-

r=1

El ECM del ajuste 6ptimo tedrico es ECM = V(e). Tenemos
entonces que

N N
V(e) = %Z c? = %;{E[Ews)l}z = E(IE@)I) =
N

=Y IE@)) = %iE(é?) —%i 4C)

i=1
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De las expresiones anteriores es posible estimar sin sesgo el
error cuadratico medio del ajuste Optimo tedrico y el error
cuadratico medio del ajuste concreto realizado con una muestra
aleatoria simple sin reemplazamiento s de tamafo n.

Para ello seleccionamos tres muestras independientes por
muestreo aleatorio simple sin reemplazamiento, de tamafio comun
n:s,s'ys'". Con las dos primeras muestras realizamos dos ajustes
lineales multivariantes objetivos, y con la tercera muestra
observamos los “errores” en cada ajuste anteriormente realizados

con s 'y s’ mediante las respectivas estimaciones insesgadas I?r,épt
y k'y6pe, “errores” que denotamos por &; y é'; respectivamente,
para toda unidad i € s”’. En esta tercera muestra s’’ estimamos sin
sesgo el “promedio del error al cuadrado” E (éiz) por
(éiz + é'iz) /2, y estimamos sin sesgo la “varianza del error” V (¢é;)
por (é; — é';)?. Asi podemos estimar el error cuadratico medio

Optimo tedrico del ajuste lineal multivariante objetivo, mediante el
estimador insesgado

N 1 ) . 1 A N
V(e) =%Z(ei2+ei2)+EZ(ei—ei)2.

iESs!I iESII

El “error cuadratico medio del ajuste concreto obtenido por
una muestra aleatoria simple sin reemplazamiento s de tamafo n”
es el que denotamos

1 N
ECM(s) = Nz 82 = E(e2).
i=1

Asi, ECM((s) se estima sin sesgo por

_ 1O
ECM(s) =£z é;.

iEs!
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A partir del estimador insesgado propuesto ECM(s), €S
posible calcular su varianza del modo siguiente

N
N N—n 1 _ 2
VIECM =——z 52 _ ECM =
[ECM ()] = v, 1[el ()]
1=
N N 2
Nz AN (52 21N 52
(N—1)nN_1 LONLL
1=

N 1% 1v N

—n —n

N AN (18 ) | = M e,

(N —1)n|N « N ¢ (N—-1)n
=1 =1

Ya que la muestra s’ con que se estima ECM(s) es seleccionada

por muestreo aleatorio simple sin reemplazamiento de tamano

muestral efectivo prefijado n. Son propiedades conocidas de este
disefio muestral.

De la expresion obtenida anteriormente, tenemos su
estimador insesgado por las propiedades del muestreo aleatorio
simple sin reemplazamiento de tamafio n > 2, concretamente

2
S N — 1
VIECM(s)] = T _nl) Z (él? - Z éf) .

iESIH iESII

Pues la cuasivarianza muestral de la variable €2 es un estimador
insesgado de la cuasivarianza poblacional de la misma variable en
el muestreo aleatorio simple sin reemplazamiento de tamafo n.

Hemos necesitado de la muestra independiente s" para
estimar insesgadamente dicha varianza V[E/CT/I(S)] porque el
ajuste depende de sy, por ello, si hubiéramos basado el estimador
de la varianza en la cuasivarianza muestral de la muestra s se
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hubieran podido producir sesgos apreciables ya que los valores del
error é en el estimador dependerian de las unidades de la muestra
s con las que hemos estimado las constantes éptimas k, s, del

ajuste con la muestra s.

Ya que el error cuadratico medio del ajuste con una muestra
aleatoria simple sin reemplazamiento genérica s de tamafo n,
ECM (s), coincide con la varianza del error extendido a todos los
posibles ajustes con muestras aleatorias simples sin
reemplazamiento s independientes de tamafio muestral n, V (&), de
la desigualdad de Chebychev tenemos que

p{|ECM(s) — ECM(5)| < ¢} >

VIECM(s)] VIECM(s)]
1- — =1 =
& &
Por tanto, es posible obtener intervalos al nivel de confianza (con

probabilidad) mayor o igual aproximadamente a 1 — «a para la
funcion paramétrica ECM (s), pues seria

J— 2
_ |V[ECM()] | N-n o, 1 z o
° a ~ |aNn(n—1) £ TRl )
Lesr

iES!I

En concreto, el intervalo de confianza es precisamente el intervalo
abierto siguiente

I =(ab)=(ECM(s)— & ECM(s) + ¢ ).

Donde

2
1 N—n 1

a=— ) et - &7 -~ et
n aNn(n—1) £ n

iEs!I lES
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b_le2+ N—n .o 1ZA2
n i aNn(n —1) “ T h i

iESsI ies’! ies'’

Como consecuencia, es posible contrastar en base a dichos
intervalos de confianza aproximados obtenidos, cualquier hipotesis
nula simple del valor concreto que pudiera tomar el ECM (s) del
ajuste lineal multivariante objetivo en poblaciones finitas con la
muestra aleatoria simple sin reemplazamiento s de tamafio n, en
base a una muestra aleatoria simple sin reemplazamiento s”, de
tamarfio n, independiente de la anterior (s).

La region de aceptacion del contraste es el intervalo de
confianza I al mismo nivel de confianza 1 — «, pues si el valor
dado para el ECM(s) en la hipotesis nula simple pertenece al
intervalo de confianza I, se debe aceptar dicha hipotesis al nivel de
confianza mayor o igual aproximadamente a 1 — a.

Con todo lo expuesto, hemos visto que es posible “estimar
insesgadamente” el error cuadratico medio Optimo tedrico del
ajuste de regresion lineal multivariante objetivo basandonos en dos
muestras aleatorias simples sin reemplazamiento independientes de
tamafio fijo comun n, asi como “estimar insesgadamente” el error
cuadratico medio del ajuste estimado insesgadamente al ajuste
Optimo con una muestra aleatoria simple sin reemplazamiento s de
tamarfio n, obtener su varianza (del estimador del ECM) y estimar
insesgadamente esta varianza.

Todo ello permite estimar puntualmente y por intervalo, asi
como contrastar hipotesis nulas simples sobre el valor numérico del
error cuadratico medio del ajuste estimado con una muestra
aleatoria simple sin reemplazamiento de tamafio n, en base a otra
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muestra con el mismo disefio pero independiente de la anterior y
del mismo tamafo, al nivel de confianza mayor o igual
aproximadamente a 1 — a.

Generalizaciones de estos resultados serian:

(1) Considerar que la muestra independiente s’' tenga un tamafio
muestral fijo ¢ > 2, pero no necesariamente igual al tamafio de la
muestra del ajuste n. Para ello bastaria sustituir en las formulas de
este ejercicio el valor de n por el valorde c,con2 < c < N.

(2) Considerar en la estimacion insesgada del error cuadratico
medio para el ajuste optimo téorico dos 0 mas muestras aleatorias
simples sin reemplazamiento con las que ajustar el modelo lineal
multivariante insesgado. Esto tiene consecuencias en el estimador
pues ahora depende de los errores en cada unidad por cada ajuste,
que son dos como hemos considerado, pero en general pueden ser
mas de dos hasta tantos como posibles muestras aleatorias simples
sin reemplazamiento de tamario n, es decir, como las

)

n

muestras con dicho diseiilo muestral. Como ademas estas muestras
se obtienen independientes, en realidad es un namero infinito de

posibles de ellas basadas en las (IX) distintas posibles y en todas

sus posibles repeticiones a partir de ellas.

Ejercicio 6.21. Proponer un estimador éptimo en muestreo doble
que usa disefio muestral aleatorio simple con reemplazamiento en
cada fase, observando una variable auxiliar en la primera fase y la
variable de interés en la segunda fase.

Solucion. Entendemos por muestreo doble aquel procedimiento de
muestreo que se desarrolla en las siguientes dos fases.
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En una primera fase se selecciona una muestra aleatoria
simple con reemplazamiento s de tamafno fijo n, a partir de una
poblacidn finita U de tamafio N, y se observa la variable auxiliar x
en las unidades seleccionadas. Sea el vector reordenado
(x4, %5, ..., x,) Obtenido a partir de la muestra ordenada de datos
((k,x;): k € s) de la variable auxiliar x. En dicho vector pueden
aparecer observaciones repetidas ya que el muestreo es con
reemplazamiento.

En una segunda fase se selecciona una muestra aleatoria
simple con reemplazamiento de tamafio fijo n’, a partir del vector
reordenado (x4, x,, ..., X,) que contiene las n observaciones de la
variable auxiliar, y por tanto tiene un tamafo efectivo fijo que es
un nimero natural “mayor o igual que 1” y “menor o igual que n”
de unidades de la poblacion finita. En esta submuestra de tamafio
fijo n' obtenida en la segunda fase observamos la variable de
interés y que recogemos en el vector reordenado que denotamos
(1, V2, -, Yn,) Que puede contener observaciones de unidades
repetidas también.

Queremos estimar la media poblacional de la variable de

interés,
1
y = NZ Yi

€U
Para ello proponemos en el muestreo doble anteriormente
descrito el estimador

_')_/d == aA_lft

Este estimador ha sido propuesto anteriormente, y ahora el
VECtOr X = X;(m+1) NO esta tomado a partir de la poblacion finita

porque la variable auxiliar solo se conoce dentro de la muestra de

292



tamafio fijo n, sino que estd tomado del vector reordenado
(x1, %5, ...,X,) CcOMo poblacion de referencia obtenida en la
primera fase. EI ndmero m + 1 es el nUmero de parametros a
ajustar en el modelo lineal

m
Vi = ko + z k. fr(x;) + e;
r=1

Aqui kg, k4, ..., k., SON las constantes o parametros a ajustar, f-(x)
es la funcion real de variable real r-ésima usada en el ajuste, vy e;
es el error del ajuste en la unidad poblacional i € U.

En concreto,

a=aixm+1) = Aty Avuyae 7 ALty @)

Siendo

n
1
Al,y = EZ Vi
=1

Y parar =1,2,...,m,

1 n
ALty fr) = ;Z yife (%)
j=1

Que son estimables insesgadamente y de minima varianza para
distribucion libre respectivamente por

nr
1
A,y = ? Vi
i=1

Y parar =1,2,...,m,

nr
1
A1,1;y,f(x) = ?z Vifr(x;)
i=1
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La matriz cuadrada A = A(m41)x(m+1) resulta ser

1 As; 0 At; frn ()
a=| Avae Aua@Aa® T ALLA MG
AL fn0) AL ) 7 ALL frn (0, frn ()

Esta matriz A depende exclusivamente de la informacion
auxiliar de las variables explicativas del modelo de regresion lineal
multivariante. Por ejemplo,

n
1
A1 £.00. 00 = ;Z fr(xj)fs (xj)
j=1

Paratodor,s =1, 2, ..., m.

Finalmente, el vector X = X;(;n+1) resulta ser el siguiente

x=0 Ay Aupm v AL faw)

Donde parar = 1,2, ...,m,

n
1
A1 ) = gz fr(%)
=

Probamos en el Ejercicio anterior que el ajuste proporciona
un estimador insesgado para y,,, que es la media muestral de la
variable de interés en la primera fase. Ademas “la varianza de tal
estimador” en la segunda fase, V, (y;), minimiza para distribucion
libre la varianza vectorial de cualquier estimador del vector
(m + 1)-dimensional a, que permite estimar el ajuste de modo
insesgado y de minima varianza para distribucion libre del modelo
general lineal propuesto.
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Es sencillo comprobar entonces que el estimador y,; es
insesgado para la media poblacional y de la variable de interés:

E(yd) = E; [Ez(yd)] = E1()_’n) =y

Ademas, teniendo en cuenta el teorema de Madow, su
varianza verifica que

V) = B0l +VilEaGa)l =
2
BTl +ViG) = B2 ,Gol + =

Aqui la media muestral en la primera fase y,, es estimador
insesgado para y, y de minima varianza para distribucion libre
(Zacks, 1971, p. 150), oy es la varianza poblacional para la

variable de interés, E;[V,(¥4)] minimiza el valor esperado de las
posibles varianzas con dicho ajuste lineal para distribucion libre, y
por tanto V (y,) alcanza el minimo de cualquier estimador con el
ajuste lineal dado para distribucion libre. Es decir, el estimador y,
es optimo en este sentido para distribucion libre en el muestreo
doble usando muestreo aleatorio simple con reemplazamiento en
ambas fases y con submuestreo en la segunda fase. También la
media muestral es insesgada y de varianza minima para estimar la
media poblacional en el muestreo aleatorio simple con
reemplazamiento de tamafo muestral fijo, entre los estimadores
lineales, cuando la poblacion tiene varianza finita, como es el caso
de cualquier variable de interés uniforme discreta asociada a una
poblacidn finita. Este es un ejercicio sencillo usando la técnica de
los multiplicadores de Lagrange para minimizar la varianza del
estimador lineal sujeto a que sea insesgado.

Una consecuencia directa de este Ejercicio es que el
estimador propuesto para la media poblacional a partir del modelo
general lineal propuesto aqui, o a partir de m variables auxiliares
conocidas de antemano como hicimos en el Ejercicio anterior, es
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estimador insesgado de minima varianza para distribucion libre con
el estimador insesgado de minima varianza ajustado al modelo
lineal. Es decir, es optimo en dicho sentido descrito.

Una critica que se hacia al muestreo aleatorio simple con
reemplazamiento de tamafo muestral fijo n era que el muestreo
aleatorio simple sin reemplazamiento de tamano efectivo fijo n
proporciona al estimador media muestral insesgacion y mas
precision que el anterior. Esta critica carece de interés practico al
observar que con muestreo aleatorio simple con reemplazamiento
se obtienen muestras con menor coste esperado que con muestreo
aleatorio simple sin reemplazamiento del mismo tamafo muestral
n, ya que las unidades pueden aparecer repetidas en el disefio
muestral con reemplazamiento y como consecuencia el tamano
efectivo no es fijo sino menor igual a n, y por tanto el coste
esperado es menor o igual al coste del tamario efectivo fijo n.

El modelo general lineal que hemos propuesto con una
variable auxiliar no tiene que tener solo dos parametros de ajuste a
minimizar, como seria el caso de ajustar una recta de y sobre x, ni
siquiera tiene que ser un polinomio necesariamente. Un ejemplo
tedrico supuesto distinto a estos podria ser el siguiente

v = ko + kie*t+ k, + ¢;

xl-+2

Donde en este modelo lineal con m = 2 tenemos las funciones

fi(x) =e”*
Y
_ 1
f2(x) —m
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También es posible ajustar un modelo lineal multivariante si
en la primera fase se hubieran observado m variables auxiliares en
la muestra aleatoria simple con reemplazamiento de tamafio fijo n.
Incluso pueden ajustarse otras posibilidades funcionales a partir de
las variables auxiliares observadas en la primera fase del muestreo
doble. El razonamiento es similar al propuesto en este Ejercicio o
bien en lineas semejantes a las expuestas en el Ejercicio anterior.

Obviamente el modelo concreto que se proponga en cada caso
tiene que tener una gran fiabilidad basada en la experiencia, es
decir, que ha de ser propuesto por expertos en el tipo de datos
manejados y con experiencia en el area de trabajo al que se aplica
el modelo. En este sentido, existe la posibilidad de que dos 0 mas
expertos distintos propongan distintos modelos lineales concretos,
y es entonces cuando se tiene que llegar a un consenso o acuerdo
del modelo més conveniente para el fin que nos proponemos. Una
propuesta de solucion de consenso es que cada experto, de los m
disponibles, aporte su funcion de ajuste segin su conocimiento, y
que el modelo con los datos se encargue de seleccionar el mejor
ajuste lineal de dichas funciones.

El hecho de habernos referido al “muestreo de poblaciones
finitas” se debe a que es en poblaciones finitas donde tiene sentido
hablar de muestreo aleatorio simple con reemplazamiento con
unidades reales identificadas y accesibles. Hablar de muestreo
aleatorio simple con reemplazamiento de una poblacion infinita
limita a muestras artificiales obtenidas con un ordenador y sin salir
del mismo, es decir las unidades no pueden estar identificadas todas
con el medio o los medios de acceso fisico para observar los datos
auxiliares o de interés en todas sus unidades.

La conclusion final es que queda resuelto un problema de
optimizacion en la estimacion de la media poblacional en muestreo
doble con muestreo aleatorio simple con reemplazamiento en las
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dos fases y submuestreo en la segunda fase, haciendo uso de tres
procedimientos de optimizacion, dos de ellos en estimacion para
distribucion libre (opcionalmente de estimacion insesgada de
minima varianza para la media poblacional con poblacién de
varianza finita, entre todos los estimadores lineales) y el otro en el
ajuste del modelo general lineal en poblaciones finitas.

Una posible critica a esta resolucion del problema de
optimizacion es que si el tamafo poblacional N es conocido, el
conjunto de poblaciones finitas con distribucion uniforme discreta
con N valores posibles de la variable de interés es mucho mas
concreta que el conjunto de todas las posibles poblaciones teoricas
como presupone el método de optimizacion para distribucion libre,
por lo que un estimador optimo para distribucion libre puede no
serlo para el conjunto reducido de poblaciones finitas de
distribucion uniforme discreta con N valores de la variable de
interés. De hecho, como justifica Ruiz Espejo (1987¢), no existe tal
estimador “insesgado y uniformemente de minima varianza”, ni
siquiera “uniformemente de minimo error cuadratico medio”, en el
modelo de poblacidn finita fijada, que es un modelo diferente pero
maés proximo al modelo de muestreo doble con submuestreo, con
observacion de una variable auxiliar en la primera fase de
muestreo.

Ejercicio 6.22. Proponer un estimador insesgado &ptimo en
muestreo aleatorio simple con reemplazamiento de tamaio fijo n,
haciendo uso de una una variable auxiliar x de media poblacional

X=0/N)YN ;.

Solucién. Entendemos por estimador de regresion lineal clasico
para la media poblacional ¥ = (1/N) YN, y; uno que tiene la
forma del tipo
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t =ys + bs(X — xy).

A continuacion vamos a minimizar su error cuadratico medio,
obteniendo el valor Optimo teérico de b = by, , asi como el
estimador optimo teorico e insesgado t,, Y SU varianza minima
teorica V (t,,). Finalmente obtenemos un estimador insesgado
optimo t' 1, practico que aproxima al tedrico de varianza minima.

Para obtener el valor tedrico minimo de b = by, ,
minimizamos el error cuadratico medio del siguiente modo. Sea

b =) V=5 —b(¥ - %)’

SES
= (Y - }_’s)z + bz()? - fs)z — 2 b(Y - ys)()? - fs)-

Minimizamos la funcién ¢ derivando con respecto a la variable b
e igualamos a cero para obtener el punto critico de minimo global.

dp o e
== ;Zb(x — %) - 2;(1/ — (X — %) = 0.

De donde

_ ZSES(Y - ys) (X - fs)
ZSES(X - JZs)z
. ZSES Y(X _ JEs) B ZsES ys()? - JZs)
ZSES(X - fs)z ZSES(X - fs)z
_ Cov(Fs, %)
Vixs)
Al suponer que b es una constante, el estimador t, seria insesgado
para estimar Y. Pero si esta variable b fuera aleatoria, digamos by,

el valor minimo de b = b,,;, que haria la minima varianza del
estimador t seria

b

,_ Cov(s %)
C O
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El estimador 6ptimo tedrico y su varianza se obtienen sustituyendo
el valor optimo de b = b, en el estimador, por lo que tenemos
que el estimador tedrico insesgado de minima varianza es

COU()_IS, fs) —
V) )

Pero no puede usarse porque el numerador es a su vez una funcion
paramétrica que no es conocida en el muestreo. Su varianza minima
se obtiene de este modo

tmin = Vs T

[Cov(F5, X5)]°
[V (%5)]°

V(tmin) = V(ys) + V(fs)

Cov(y., X
L E0 ) o 2

V(%s)
[Cov(Fs, %5)]
Vi)

Un estimador practico insesgado y de minima varianza seria el
siguiente

= V(J_’s) -

Cov(y., %) _ Cov|Cov(¥.,x.),x
t’min = )_’s + (3? S) (X - xs) [ ({]S S) S]
V(xs) V(%)

1 - 1 _
3 Lies Vil = X) @ _)+$ZiEs3’i(Xi—X)2

V(%s) V(xs)

Este estimador es valido para muestreo aleatorio simple con
reemplazamiento de tamario fijo n, que es el estimador “insesgado
optimo” o “insesgado de minima varianza” para la media
poblacional Y usando la informacion auxiliar x ya que resulta
invariante ante permutaciones en el orden de la muestra ordenada
s.

=ys +

Para muestreo aleatorio simple sin reemplazamiento de
tamario efectivo fijo n tendremos el estimador de regresion lineal
corregido insesgado propuesto por Ruiz Espejo (2013b), ya que el
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razonamiento hasta la penultima igualdad es totalmente similar
para muestras no ordenadas equiprobables como es el caso de
muestreo aleatorio simple sin reemplazamiento de tamafio efectivo
fijo n.

Los tres altimos estimadores insesgados de covarianzas
pueden obtenerse razonadamente de la muestra aleatoria simple
con reemplazamiento de tamafo fijo n, y también el estimador
insesgado Gptimo proporcionado por by = Cov (¥, X5)/V (%) de
la funcion parametrica b,y .
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Capitulo 7

Disefio de probabilidades desigua-
les

En este capitulo estudiamos los métodos mas importantes de
muestreo con probabilidades desiguales: el muestreo con
probabilidades proporcionales al tamafio con reemplazamiento
debido a Hansen y Hurwitz (1943), el esquema de muestreo con
probabilidades proporcionales al tamafio sin reemplazamiento
debido a Sanchez-Crespo (1980), y el muestreo con probabilidades
de inclusion proporcionales al tamafio que utiliza el estimador de
Horvitz y Thompson (1952). En todos ellos se proporciona un
estimador insesgado de la media poblacional, y un estimador
insesgado de su varianza.

7.1 Disefio de Hansen y Hurwitz

Es un disefio ordenado TF(n) que asigna una probabilidad p, de
seleccionar la unidad k en cada una de las n selecciones
independientes, donde el resultado de la i-ésima seleccion es el i-
ésimo componente de la muestra ordenada o vector de unidades s.
Los valores p;, son niumeros positivos conocidos tales que

N
z Pk = 1.
k=1
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No es un disefio de tamafo efectivo fijo, pues pueden
aparecer repetida una o varias unidades en la muestra ordenada. En
un esquema de urna con bolas numeradas, seria el caso de M bolas
de las cuales M,, de ellas tienen la anotacion k, y por tanto

Mk = Mpk (k = 1, 2, ,N)

Se realizan con el disefio de Hansen y Hurwitz selecciones con
reemplazamiento, es decir, una vez observada la bola extraida se
reincorpora a la urna antes de la siguiente seleccion. Observar que
en el caso particular en que p, = 1/N (k = 1,2, ..., N) el disefio
es el ya estudiado mas. A veces la situacion inicial es de disponer
una variable auxiliar x, >0 (k=1,2,..,N) y se asignan
probabilidades de seleccion

Xk Xk
YievXi Nx

Pk (k=1,2,..,N).

Si x;, €S un nimero entero positivo paratodo k € U, ny, = xy,
puede ser la composicion de la urna para seleccionar la muestra
ordenada con este disefio de Hansen y Hurwitz. Las probabilidades
de inclusion son ahora

e =1—(1—p)"
ysik #meU,
Tom=1-A-p)"—A-p )"+ 1A —pr — )"

que generalizan el disefio mas.
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7.2 Estimador insesgado de Hansen y Hurwitz

El estimador mas importante asociado a este diserfio es el estimador
de Hansen y Hurwitz (1943) tambien llamado estimador Hansen-
Hurwitz, que se define asi

Yk _ Yk€k
Nnpy, kEUank'

thp =

kes
donde en una muestra ordenada s la unidad k aparece un nimero
de veces e, (=0,1,2,...,n) al ser p, >0 la probabilidad de
seleccion constante de la unidad k en las n extracciones de una
bola aleatoria. Es decir, e, es el nimero de veces que la unidad k
aparece en la secuencia de la muestra ordenada s con disefio de
Hansen y Hurwitz. Al ser independientes las selecciones de la urna,
el modelo creado es wuna distribucion N -dimensional
(eq,€y, ..., €k, -, €x) Que se distribuye multinomial de pardmetros
ny pg. Es decir,

E(ex) = npy,
V(er) = npr(1 —py),
E(eg) = V(ex) + [E(e)]* = np, — np; + n?py,
ysik#meU,
Cov(ey, em) = —NPrPm,
E(exen) = Cov(ey, ey) + E(er)E () = (n* — n)pyPm.

El estimador t;; es insesgado para la media poblacional,
pues
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7.3 Varianza del estimador Hansen-Hurwitz

Directamente

V(tHH) = E(tI%IH) -y

Pero

N2n2pf N2n2p.pm

2 2
e e.e
E(tfm) _ E( Yk €k n YirYm€k m) _
keU k+meU

E( DE ) oor E(ekem)] -

kimeU

Nzn2

2

VP
Z % (npy — npf +n?p2) +
iy Pk

1

N2n2

YrYm
PkPm

1
! z
kEU

kEU

keUu kimEU

1 123&3 N?y?

—_ = z _I_NZ—Z_ ,

N2<n p,%pk Y n
kKeUu

(N°PrPm — NPKPm) | =

k+meu

1
N2

de donde

1 (1 yi N?2y?
HH N2 nkZEUp,% n
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7.4 Estimador insesgado de la varianza

El estimador insesgado de la varianza es

2
2 Yk 242
ZkES (Z_Z — NtHH) ZRESE - n’N tHH

N?n(n—1) N N2n(n—1)

V(tyy) =

desarrollando el cuadrado y teniendo en cuenta que por la
definicidn del estimador tyy,

& == TLNtHH.

Pk

keEs

También admite la expresion siguiente ya que la varianza es
invariante por cambio de origen,

2
Xkes (Z—Z - N3_’) —n(Ntyy — Ny)?
N?n(n—1) ’

V(tyy) =

0 bien, desarrollando los cuadrados del numerador y simplificando
teniendo en cuenta la definicion del estimador t;, obtenemos el
numerador de la segunda expresion del estimador insesgado de la
varianza de tyy. De este modo queda una nueva expresion de
V (tyy), donde el primer sumando del numerador puede expresarse

asi
2 2
Z (‘yk ‘Ny> - Z (y‘k ‘Ny> Ck:
= Pk Pk
S

keu

Efectivamente, el estimador es insesgado porque
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~ 1 2
E[V(tuw)] = Nen(n—1) kze[:] (Z_i - N)‘/) npy — nNZV(tHH)];
0 bien,
E[V(tHH)] = m [N?nV (tyy) — N2V (typ)] = V (tyw).

7.5 Estimador insesgado de Sanchez-Crespo

El estimador de Sanchez-Crespo es analogo al de Hansen-Hurwitz
y también ahora la unidad k (k =1,2,...,N) tiene asociadas
M, = Mp, bolas con su identificador dentro de la urna. El disefio
de Sanchez-Crespo varia en que la seleccion de bolas para
establecer la secuencia s de unidades en la muestra ordenada, se
hace sin reemplazamiento. Con este esquema de muestreo, se
define como e;, el niUmero de veces que la unidad k es extraida de
la urna, siendo el vector N-dimensional (eq, e, ..., €, ..., €y) Una
variable aleatoria hipergeométrica generalizada cuya funcion de
cuantia es

p(ell ey eN) =

y cuyos principales momentos son

E(ek) = NPk,
M—n
V(er) = V=1 npg (1 — i),

yparak #m € U,
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M—n
M-1

Cov(ek, em) = — NPk Pm-

De estos momentos podemos comprobar que el estimador de
Sanchez-Crespo

Yk _ Yk€k
Nnp,, keUank

tsc =

kes
es diferente al de Hansen-Hurwitz ty,, que aungue se escriban
igual, el significado de la muestra s ha cambiado y la distribucion
de las multiplicidades e;, ha cambiado consecuentemente. A pesar
de haber cambiado la distribucion, la esperanza de e, sigue siendo
igual, y por tanto la demostracion de la insesgacion del estimador
tsc NO queda afectada en nada sustancial, y ambos estimadores son
insesgados para estimar la media poblacional y con sus
correspondientes disefios muestrales.

La varianza del estimador Sanchez-Crespo puede obtenerse

ahora asi
Yk€k
V(tsc) = V(E N > =
=y P
1 Vi YiYm
NZn? —V(ex) + Cov(eg, em)| =
=y Pr ramey PkPm
M-—n 1 yi
—{NZn2 z —n(l — Dk) — R;Uyk%nn =
m

M-1 Nzn _2pk —N y = mV(tHH) < V(tHH)
keU
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Un estimador insesgado de la varianza de tg- con el mismo
disefio muestral de Sanchez-Crespo es

Vitse) = MI\; nNzn(n —1) Z ( thc) '

En efecto, de modo similar a lo que hicimos con el estimador
insesgado de la varianza de ty, ahora tenemos que

M — n 2keu (gk NJ’) ex — n(Ntgc — Ny)?

V(tse) = ,
(tsc) M N2n(n—1)

de donde
—n
M N2?(n-1)

M — M-1
e [( “Dn_ 1] V(tse) = V(tse).

E[V(tsc)] = N2V (tyy) — N2V (tse)] =

7.6 Muestreo con probabilidades de inclusion

Este disefio puede ser introducido para muestras ordenadas o
muestras no ordenadas. Basicamente consiste en proporcionar un
estimador insesgado de la media poblacional, que llamamos
estimador de Horvitz y Thompson (1952), y otros estimadores
insesgados de la varianza del estimador anterior. El estimador
Horvitz-Thompson se define indistintamente para disefio no
ordenado

Yk Yk€k

tor = =
HT Nﬂk Nﬂk,
kes keU

y para disefio ordenado también

310



b= z Yk _ YK€k
HT NT[k NT[k,
ker(s) keu

donde en ambos casos e, es una variable aleatoria indicador que
toma valor 1 si la unidad k pertenece a la muestra, y toma valor 0
si dicha unidad no pertenece a la muestra. Por tanto e, no recoge
el efecto de la multiplicidad de una unidad en la muestra ordenada,
sino solo su pertenencia o no a la muestra. Es sencillo ver que

E(e,) =1-p(k€s)+0-plk &s)=my,
y COMO e? = ey,
V(er) = E(eg) — [E(e))* = mp — mjp = mp (1 — my),
ysik #meU,

E(exe,) =1-p(lkymes)+0-p(kom & s) = myy,

Cov(ek, em) = E(eren) — E(er)E(en) = Mgm — Ty T,

Por tanto, el estimador ty es insesgado para estimar la media
poblacional pues

Ve yeE(ex)  _
E(tyr) =E = — =.
(tar) ( Nﬂ}() N7, y
keUu keU
La varianza del estimador t,; se obtiene asi
1 YK€k
V(tyr) = mv< ) =
Ty
keU
1 e e e
TV 3 con(ats 2mm)
keu T k#meu K m
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LIS 2+ Y 29 e, em)] -
keU i kemey KM
1 |INC vk iy,
%) _zﬂk(]- - T[k) + = (T[km - 7Tkn-m) .
N ), MTgTm
keU k+meU

Si my,,, > 0 para todos los pares k # m € U, entonces un
estimador insesgado de la varianza del estimador Horvitz-
Thompson es

. 1
V(t = —
( HT) NZ T T Them,

(1 —m) 4+ z Vi Ym (Tkm —”k”m)],

kES k#+mes

que admite la expresion siguiente en funcién de la variable

aleatoria indicador
y
Z 2 (1 - T[k) ek
keu

V(tyr) = NZ

Vi Ym (Tem — T TTy)

Ty Tkm

ekem .

k+meu

Obviamente, las propiedades de las esperanzas matematicas de los
indicadores y sus productos son conocidas, por lo que
sustituyéndolas podemos concluir que

E[V(tHT)] =V (tyr).

Otro estimador insesgado de la varianza del estimador
Horvitz-Thompson es el proporcionado por Yates y Grundy (1953)
que podemos expresar asi (variando k y m)

_ 2
TrTTm — Mm (}’k }’m) .
km T Tim

N 1
Vyg(tyr) = Nz z -

k<mes
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— 2
1 TTETlm TTkm (yk ym) eLe
k
Tk Ty m

7.7 Ejercicios resueltos

Ejercicio 7.1. Se selecciona una muestra ordenada de tamaro fijo
n = 4 con disefio de probabilidades proporcionales al tamafio con
reemplazamiento. La muestra seleccionada es (4,3,5,7) y los
valores de la variable de interés observada en dichas unidades han
resultado ser ordenadamente (33,21,15,9). Estimar la media
poblacional con el estimador Hansen-Hurwitz y para el estimador
Sanchez-Crespo (si la seleccion hubiera sido sin reemplazamiento),
asi como sus varianzas con la misma muestra ordenada de tamafio
fijo. Como datos del problema, el tamafio poblacional es 20, y las
probabilidades de primera seleccion sonp, = p; = 1/20y pc =
p> = 1/40. El ndmero de bolas en la urna antes de la primera
seleccidn es de 80.

Solucion. El estimador insesgado de la media poblacional con el
estimador Hansen-Hurwitz y Sanchez-Crespo coinciden para la
misma muestra aunque el disefio muestral habria cambiado de uno
a otro estimador. Con los datos del problema,

tHH — tSC == 265

En cuanto a los estimadores insesgados de la varianza,
cambian de valor numérico ademas del disefio muestral, qguedando

V(tyy) = 105.8; V(tgc) = 100.5
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Ejercicio 7.2. Se obtiene una muestra con disefio de probabilidades
de inclusion. Esta muestra seleccionada resulta ser reducida la
muestra no ordenada {2, 1} y los valores observados son y, = 4 e
y; = 8. Si las probabilidades de inclusién son

1 2 2

T4 = — T, = —, T = —,

1 2 3 1,2 9

estimar insesgadamente la media poblacional y estimar sin sesgo la
varianza de tal estimador, si el tamafio poblacional es N = 4.

Solucion. El estimador insesgado de la media poblacional es el
estimador Horvitz-Thompson, que para los datos recibidos la
estima en

tyr = 7.5
Y un estimador insesgado de su varianza es por el primer método
V(tyr) =23.5,
mientras que por el estimador de Yates y Grundy seria

Vye (tyr) = 0.

Ejercicio 7.3. De una poblacion finita de tamafio N, se selecciona
una muestra ordenada de modo que la primera seleccion se realiza
con probabilidades proporcionales al tamafio indicado por la
variable auxiliar positiva x, y las n — 1 restantes unidades se
obtienen con probabilidades iguales sin reemplazamiento.
Demostrar que la probabilidad de seleccion de una muestra s de
tamafo efectivo fijo n es proporcional a la media muestral x;.

Solucion. La probabilidad de seleccionar launidadi = 1,2, ...,N
en la primera seleccion de la muestra ordenada, es
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pr(iy) =
T Ny

La probabilidad de seleccionar la unidad i, # i; en la segunda
seleccion de la muestra ordenada es

1

p2(iz|iy) = N—-1

La probabilidad de seleccionar la unidad i; # i, i, en la tercera
seleccion de la muestra ordenada es

S 1
p3(izliy, i) = N_2

Asi llegaremos a que la probabilidad de que la unidad i, #
i1,i9,...,1y—1 S€A@ Seleccionada en la n-esima seleccion de la
muestra ordenada es

1
N—(n-1)

pn(inlib L2 e in—l) -
Por todo ello, la probabilidad de seleccionar la muestra ordenada
S = (il, iz, i3, ey ln) es
p(s) = p1(LDP2(i2|i)P3(i3iy, i2) - Pp(inliy, iz, o lno1) =

xi, 1 1 1 _xy, (N —n)!
NXN—-1N-2 N-(n-1) x% N!'

Considerando ahora muestras conjunto o no ordenadas, la
probabilidad de seleccionar la muestra s = {iy, i,, i3, ..., iy} €S

nxi-N— !
p)= > SEI gy

J=1
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Este disefio muestral ordenado, debido a Midzuno (1951), y
su disefio muestral no ordenado deducido proporcionan
estimadores de razon insesgados para estimar la media poblacional

Y.

Ejercicio 7.4. Demostrar que el estimador
1 1 ;
RS /] 2yl I
NZ, N? L T
lES lES]?#lES

es insesgado para estimar la media poblacional y, cuando s es una
muestra conjunto o no ordenada, y las probabilidades de inclusion
de primer y de segundo ordenes son positivas.

Solucion. Denotamos por e; a la variable aleatoria que toma valor
1sii €s,ytoma valor 0sii €& s. Entonces podemos escribir el
estimador t de la forma

= ) ety )
= — —e — €6,
N2 ' m

ieU LEU j#i€eU

de donde

1 N Vi 1 Yj
E(t)=E mz—l +FZ n—ijel-ej
LeU

IEU j#Ii€U

%Z%E( l)+ z z y]E(ele])_

LEU LEU j*¥i€eU

VLY D ) Y-

IEU IEU j#i€U lEU jeU
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Ejercicio 7.5. Justificar que el estimador

o Z Z (3’1 y]
2N?2

IES j#ILES

es insesgado para la varianza poblacional, donde el disefio muestral
verifica que las probabilidades de inclusion de segundo orden son
positivas.

Solucion. Como vimos en el Ejercicio 1.7,
1 2
2 _
g, B
LeEU j*i€eU

por lo que un estimador insesgado de a2 es

(yl y, B
2N2 T, 9T

LEU j#i€eU

g, 3 0

i€Esj#i€s

siendo e; la variable aleatoria indicador de la unidad i en la
muestra, es decir e; toma valor 1sii € s, y toma valor0sii € s.
También hemos denotado por ;; = E(e;e;) a la probabilidad de

inclusion de las unidades i y j en la muestra. Este estimador se
debe a Yates y Grundy (1953).
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Ejercicio 7.6. Haciendo uso del estimador de Hansen y Hurwitz,
proponer un estimador insesgado del tamafio de la poblacion finita
N. Obtener la varianza del estimador, y deducir la desigualdad
entre la media armonica y la media poblacional cuando la variable
considerada es positiva.

Solucion. Tomando como probabilidad de seleccion de la unidad i
al tamano relativo positivo, al ser x una variable positiva,
Xi
Pi= Nz

tenemos que

p; =1

-

=1

El estimador insesgado del tamafio poblacional, es el
estimador usual de Hansen y Hurwitz del total de la variable
unidad, es decir

n

-1 1
N=—>—,
N & Py ;

j=1

donde k; es la unidad seleccionada en la j-ésima seleccion de la
muestra ordenada o secuencia. La varianza de este estimador es

/@) =23 (L n) (Z—)

Como la varianza de N es siempre positiva o cero, deducimos
que
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=1
de donde,
N
~ 1
xZ— > N,
e X
=1
o bien,
1 -
Toy 1°7°
NZi:lx_i

es decir, la media armonica de valores positivos es menor o igual a
la media aritmética de esos mismos valores.

Ejercicio 7.7. En el procedimiento de muestreo aleatorio con
probabilidades distintas de seleccion sin reemplazamiento debido
a Sanchez-Crespo, obtener la composicién de la urna con bolas
repetidas o no repetidas de la misma unidad de la poblacion que
guardando la proporcion de bolas inicial, sea mas eficiente para que
el estimador de Sanchez-Crespo sea el mas preciso entre sus
posibles para estimar la media poblacional.

Solucion. Si la composicion de la urna es de M, bolas con el
mismo identificador de la unidad k (k = 1, 2, ..., N), en total hay

N

sz:M

k=1

bolas en la urna entre las unidades de la poblacion finita de tamafio
N . Obtendremos el maximo comun divisor m del conjunto
{M,:k =1,2,...,N}. La composicion de la urna que resulta mas
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precisa es la que asigna a la unidad k de la poblacién finita un
numero M, /m de bolas con su identificador k. En total habra
N
My M

m m
k=1

bolas en la urna mas precisa. De este modo el nimero total de bolas
en la urna serd el minimo posible que puede proveer un
procedimiento y un estimador de Sanchez-Crespo para estimar con
su esquema la media poblacional y que respete la proporcionalidad
de los valores enteros M, . Como la varianza del estimador de
Sanchez-Crespo es

M-—n
Vitse) = 3 —7V(tun)

proporcional a la varianza del estimador de Hansen-Hurvitz, por lo
que la varianza se minimiza cuando la fraccion

M—n_ v
M—l_f( )

es la menor posible con M > n > 2. En efecto, derivando la
funcion f respecto a M, tenemos

~1-M-n) n-1

/M_M
frM) = M-1)2  (M—1)2

> 0.

Por lo tanto, la funcion f es creciente y por esto se hace minima
para el menor valor posible de M, es decir cuando el maximo
comun divisor de los M, sea 1. En el caso de que el maximo comdn
divisor fuera un entero m > 1, la composicion de la urna seria
M, /m bolas como la multiplicidad de la unidad k en la urna en
extracciones sin reemplazamiento de minima varianza para el
estimador de Sanchez-Crespo, que respeta la proporcion M, /M
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para la unidad k entre las posibles multiplicidades en la urna para
las unidades de la poblacion finita.

Ejercicio 7.8. Una muestra ordenada seleccionada de una
poblacion finita es s = (1,2, 1), con los valores observados y; =
1, ey, =2. Si el diseiio es muestreo aleatorio simple con
reemplazamiento de tamafio fijo 3, de una poblacion finita de
tamano 4. Se pide: Estimar la media poblacional con el estimador
Horvitz-Thompson. Estimar sin sesgo la varianza del estimador
anteriormente usado.

Solucion. El estimador Horvitz-Thompson es

Yi _3-64 192

t =
HT Nm, 229 229
ker(s)

donde

_, (1 1>"_1 (3)3_229
e N/~ \a) T 2s6

Un estimador insesgado de la varianza del estimador anterior

es
V(tyr) =
1 2 Ty — T3 T
L Zy_’;(l—ﬂk)‘F YieYm (Tem — T M) _
N? T, T T T rem
keEs k#+mes
135-256-9 + 128(72 - 256 — 2292)
16-9 - 22972

donde

—1-2(1 1)"+(1 )’ -
Mhem = N N) T 32
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Ejercicio 7.9. Proponer un estimador insesgado de la media
poblacional basado en el estadistico media-de-razones con
esquema muestral de probabilidades desiguales. Calcular su
varianza y estimar insesgadamente esta varianza.

Solucion. El estimador insesgado media-de-razones es

TN
N &=d X;
LES

tur =

tanto para el esquema muestral de Hansen y Hurwitz, como para el
esquema muestral de Sanchez-Crespo. Bastaria con que en el
primer esquema muestral tomaramos p; = x;/Nx (i = 1,2, ...,N)
como probabilidad de seleccionar la unidad i en cada extraccion, y
en el segundo esquema muestral M; es el minimo numero natural
proporcional a x; > 0, paratodoi = 1,2, ..., N; por esta razon, 1
es el maximo factor comiun de {M;:i=1,2,..,N} con la
proporcionalidad M; «< x; (i = 1,2, ..., N).

De la teoria vista, deducimos que la varianza del estimador
tyg €S

1
Vuu (tyr) = - (A-1401 — Ap),

donde

1 .
Ayj = NE yix]

=
es el momento poblacional no central de ordenes ky j. De modo
similar, tenemos

M-1

Vsc(tmr) = Viun (tyr)
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donde M =YY M

El estimador insesgado de esta varianza para el primer
esquema muestral es

. Vi
Vir (Emr) = - 1( z 5 € t1\2/1R> =
iev
, 2
iU (f% - tMR) e;
nn—1) ’

donde e; sigue la distribucion multinomial de parametros ny p;
(i=1,2,...,N). Para el segundo esquema muestral es

. M—-—n 1 y?
Vsc(tmr) = W n—l( z 5 e t1\2/1R>=

€U

MM n(n—l)Z( __tMR) i

donde ahora e; sigue el esquema muestral de una distribucion
hipergeomeétrica de parametros N,n,y M; (i =1,2,...,N).

Ejercicio 7.10. Proponer una seleccion de una muestra de unidades
de una poblacidn finita que en cada seleccion se obtiene una unidad
i con probabilidad proporcional (e independiente) a cierta cantidad
positiva x;. Explicar la seleccion de la muestra en el caso de que la
muestra sea sin reemplazamiento de unidades.

Solucion. Consiste en dividir o clasificar el intervalo [0, 1] en
tantos subintervalos como es el tamafio poblacional N . Asi,
Ilamando a
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Xi
Pi =N o
j=1%j
El primer subintervalo seria

[0' pl)

El segundo subintervalo seria

[p1,p1 + P2)

El tercer subintervalo seria

[p1 + D2, P1 + D2 +P3)

Y asi sucesivamente hasta el ultimo o N-ésimo, que seria

2]

Seguidamente se seleccionan un grupo de digitos, que siguiendo al
numero 0., estuviese en uno de los subintervalos descritos. La
primera unidad seleccionada seria la que su identificador indica la
posicion del subintervalo seleccionado. Las siguientes selecciones
de unidades de la muestra se obtienen de modo similar a como
hemos obtenido la primera, con los sucesivos digitos generados
aleatoriamente.

En el caso sin reemplazamiento de unidades se procede
similarmente, pero desechando unidades ya extraidas antes.
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Capitulo 8

Muestreo por conglomerados

Un conglomerado es una clase o parte de una clasificacion de la
poblacidn finita en que se divide dicha poblacion. La diferencia
entre un conglomerado y un estrato es que el primero se selecciona
aleatoriamente, mientras que el segundo se selecciona con
seguridad, es decir se incluye con seguridad en la muestra aunque
no sea en la totalidad de sus unidades. Cuando hablamos de grupos
en el muestreo posagrupado, los grupos seleccionados en la
primera fase, se muestrean en la segunda fase con seguridad, por lo
que reciben el nombre de estratos también.

Si tenemos L conglomerados, cada uno de ellos contiene
varias unidades elementales de la poblacién finita. Llamando i al
conglomerado i-ésimo (i = 1,2, ..., L) que contiene N; unidades
(secundarias) de la poblacion finita, el nimero total de unidades de
la poblacion finita, namero total de unidades secundarias o
elementos de la poblacidn, o tamario de la poblacion finita es

En el muestreo unietapico por conglomerados (0 muestreo
por conglomerados sin submuestreo), se seleccionan n
conglomerados de entre los L que constituyen el colectivo, y dentro
de cada uno de estos n conglomerados se observan todas las
unidades secundarias que contienen. De este modo, los
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conglomerados son las unidades de muestreo y las unidades
secundarias son las unidades de observacion ya que es de las
unidades secundarias de donde se obtiene u observa la informacion
de la variable de interés.

Denotamos por y;; a la variable de interés observada en la
unidad j -esima del conglomerado i-ésimo (j =1,2,...,N;i =
1,2,...,L). La media del conglomeradoi (i =1,2,...,L) €S

Nj

B 1

Vi = ﬁlz yijr
j=1

y el total del conglomerado i es N;y;. La media poblacional es

La cuasivarianza del conglomerado i es

N;
1 z 2 N;
2 __ — — l 2
j=

y la cuasivarianza poblacional es

L Nj

1 , N
2 _ __ - — 2
S _N—1zz(y” V) =19

i=1 j=1

En estas condiciones, el analisis de la varianza o variacion
total se puede descomponer en la variacion dentro de
conglomerados y la variacion entre conglomerados, de modo igual
al muestreo estratificado,
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o? =ZL:—0 +Zﬁ(yl y)2.

i=1
El “coeficiente de correlacion intraconglomerados™ es
L k;tm(ylk y)()’im_y)

(=1 LNl(Ni _ 1)
0-2

5 =

)

que es un indicador del grado de homogeneidad de los
conglomerados, donde en el denominador aparece la varianza
poblacional.

8.1 Muestreo por conglomerados de igual tamano

En el caso en que los conglomerados sean del mismo tamafio,

N;=N (i=1,2,..,L),

la media muestral en muestreo por conglomerados unietapico es

n N n
IR IRTEIRL

N ‘ n

donde n es el tamafio muestral, 1 < n < L, o numero de unidades
primarias o conglomerados seleccionados en la muestra. Este
estimador es insesgado para estimar la media poblacional y, pues

en este caso la media de las medias de los conglomerados coincide
con la media poblacional. En efecto, yaque N = LN,

L L N L N
1O 1 _
DREIN DRSS PP IR

i=1 i=1  j=1 i=1 j=1

SIP—‘

o~ =
=|| =
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La varianza de y,. se obtiene directamente tanto para disefo
mas como para disefio mia. Para disefio mas,

2
Os5.
V(y,) = :

Para disefio mia,

= L— nSJZ,i
V(yc) = 7

L

Pero desarrollando 03—31. tenemos

oZ LZ(yl y)? = ZZ(%J y) =

N
Z Z(yi,- =7+ ) G = D) Oim — 7
1=1]J=1 k+m
— 2
%02 + NN 1026 = a:[l + (N — 1)6],

lo que nos permite expresar de otros modos la varianza del
estimador media muestral de las medias de los conglomerados
unietapicos. En concreto, haciendo uso de la aproximacion

(L—1)N=N -1,

es comun ver la formula aproximada con disefio mia,
N —nN o*?

N—-1 nN

V(i) = [1+ (N —1)6],

que permite comparar facilmente su varianza con la de la media
muestral de igual tamafio muestral si no hubiera conglomerados.
En general se aprecia que la ganancia en precision es mayor cuando
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d~—-1/(N—1).Sié§ =0, el estimador por conglomerados de
igual tamafo unietapico tiene similar precision que el estimador
media muestral de igual tamafio muestral. Si § > 0, el muestreo
por conglomerados de igual tamafio unietdpico tiene menor
precision que el estimador media muestral de igual tamafio
muestral. Si § < 0, tiene mayor precision. Por lo tanto, lo ideal es
agrupar unidades secundarias que sean diferentes o heterogéneas
entre si segun la variable de interés dentro de cada conglomerado.

La estimacion del total poblacional, de la proporcion
poblacional, y del porcentaje poblacional, siguen en lineas
semejantes. La determinacion del tamafio muestral para obtener un
error absoluto méaximo e para un nivel de confianza 1 — a se
resuelve de modo similar usando la desigualdad de Chebychev,
pero ahora aparecen dos funciones paramétricas desconocidas: o2
yé.

En concreto, con disefio mas,

a?[1+ (N —1)6]
ae’N ’

n =

mientras que con disefio mia,

L
ae?(L — 1)N
d2[1+ (N —1)6]

+1

8.2 Muestreo sistematico

En el caso en que el tamafno poblacional N sea divisible por el
tamafo muestral n, sea L = N/n. En el muestreo sistematico,
existiran L muestras conjunto o no ordenadas distintas de tamafio
efectivo n que se seleccionan del siguiente modo:
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a) Se selecciona una unidad entre las L primeras de la poblacion
finita, y cada una de las primeras L unidades con probabilidad
1/L.

b) Las restantes n — 1 unidades de la muestra son las que
ocupan los lugares relativos identicos en los n — 1 restantes
grupos de L unidades de la poblacion finita.

Habra entonces L muestras posibles,
s;={i,L+i,2L+i,.,.N-L+i},i=12..,L;
con una probabilidad de seleccién iguala 1/L = n/N.
Algunas ventajas de este metodo de muestreo:

a) La muestra se extiende a toda la poblacion.

b) Puede recoger el efecto de estratificacion debido al orden en
que se numeran las unidades de la poblacion finita.

c) Es de aplicacion y comprobacion sencillas.

Algunos inconvenientes del muestreo sistematico:

a) En caso de periodicidad de la variable de interés, podria
aumentar la varianza del estimador media muestral.

b) El problema tedrico que se presenta en la estimacion de las
varianzas, pues no existen estimadores insesgados de la
varianza de la media muestral con muestreo sistematico de
arrangue simple, salvo con el apoyo de otra muestra.

Si se selecciona la muestra s; con probabilidad 1/L, tendremos
como estimador la media muestral

n

1 .

B == Viugon (=12,..,0)
j=1

que es insesgado para estimar la media poblacional y, pues
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L L
L 1v. Ivilv 1
E(¥s,) = ZZ Vs; = ZZ EZ VitL(j-1) = NNY =Y.
i=1 i=1 j=1

Como L es el nimero de muestras posibles, su varianza sera

L
1
V(ysi) =7 (ysi - 3_’)2 - alfs'
L
i=1

que es la variabilidad entre (del inglés “between’) conglomerados
0 muestras, o bien,

L n L n
— _ \2 _ 12
W) = ) Gy =7 =No? = > > Diasgn ~ %l
1

i=1 j: i=1 _]=1

haciendo uso del andlisis de la varianza. Por tanto,

L n
1
V()_Isi) =0’ - Nz Z[yi+L(j—1) - 3_’si]2 =0% — Uv%zs:

donde

L n
1 2 1
U\fzs = Nz Z[yHL(j—l) - ySi] = ZZ Uiz

i=1 j=1 i=1

es la variacion dentro (del inglés “within”) de conglomerados o
muestras. De la formula de la varianza, podemos comparar la
precision del muestreo sistematico con la de otros métodos de
muestreo de igual tamafio muestral.

También podemos considerar que el muestreo sistematico es
un muestreo por conglomerados de igual tamafio unietapico o sin
submuestreo. En él se selecciona un solo conglomerado, y
aplicando entonces los resultados del muestreo por conglomerados
unietapico, tenemos que L es el niumero de conglomerados, el
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tamafo muestral coincide con el tamafio de un conglomerado n =
N,y el tamafio muestral de los conglomerados seleccionados es 1.

8.3 Muestreo por conglomerados de tamano desigual

Cuando los conglomerados son de tamario desigual, es decir los N;
son distintos o no todos iguales, entonces podemos denotar

N;
yi = Z)’ij = N;y;
=1

al total del conglomerado i-ésimo (i = 1,2, ..., L) de tamafio N; y
de media y; . Dada una muestra de n unidades primarias o
conglomerados de los L que componen la poblacion, una
estimacion insesgada del total poblacional, Ny, de la variable de

interés y es
n
=5y =1y
_TL. Yi = LYt
=1

siendo

L

Ny =) yi=Lyr

i=1

Su varianza para disefio mas es

L

oF -
V() = V@) = 22 =2 = 3,
i=1

que es estimable sin sesgo por
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R i n N2
V() =L ey S Vi — ¥e)*.
=1

Su varianza para disefio mia es

que es estimable sin sesgo por

) L(L — L(L —1n) %
RO )
i=1

n Yi nn-1)

Otros métodos de estimacion en el caso de muestreo por
conglomerados unietapico de tamafio desigual, usando disefios de
probabilidades desiguales, son semejantes a los ya vistos para
unidades de la poblacion finita en una sola etapa.

Asi, por ejemplo, si p; = N;/N es la probabilidad de
seleccionar el conglomerado i, el estimador Hansen-Hurwitz del
total poblacional es
b= Vi ’

n .
LES Pi
siendo s la muestra ordenada obtenida por disefio de
probabilidades proporcionales al tamafio del conglomerado con
reposicion. Como vimos, este estimador es insesgado para el total
poblacional Ny, su varianza es

1 Vi 2
V(t =—E -(——L-),
(t) ~ ) P o Yr

IEU

y un estimador insesgado de la varianza del estimador t es
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v = n(n — 1)2 <__ t)

También podemos usar el estimador Sanchez-Crespo en
similares condiciones. Entonces, el esquema muestral es sin
reposicion, el estimador es el analogo

N
np;

iESs
Su varianza es

RET e
_M_1 pl pl yT )
ieU

y un estimador insesgado de esta varianza es

M-n 1 (yk t)z
M n(n—l)keS Dk

V() =

Otro estimador posible sin reposicion es el proporcionado por
el estimador Horvitz-Thompson del total poblacional Ny siguiente

=y 2
: Ty
ier(s)

que es insesgado para estimar el total poblacional, su varianza es

YkYm

Ty,

V(o = (1—n1)+ >

iEU k£+meUu

(Tkem — ),
y un estimador insesgado de esta varianza es
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YiVYm TTkm — MgTlm

TTTlm TTkm

PO =) Z-m)+

ier(s) L k+mer(s)

8.4 Submuestreo con conglomerados de igual tamafio

Se produce la situacion de “submuestreo” cuando en una primera
etapa se seleccionan n unidades primarias o conglomerados con
disefio mas, y después en una segunda etapa se selecciona un
numero determinado de subunidades o unidades secundarias o
finales con disefio mas de cada uno de los conglomerados
seleccionados en la primera etapa. Vamos a ver en esta seccion el
caso en el que las unidades de primera etapa son de igual tamafio,
y en segundo lugar, veremos en la seccion siguiente, el caso que se
presenta cuando las unidades de primera etapa son de tamano
desigual.

Denotando por y;; al valor de la variable de interés de la j-

ésima subunidad en la i-ésima unidad primaria, la media muestral
por subunidad en la i-ésima unidad primaria es

m

3 1

Vs(@i) = EZ Yij»
j=1

donde m es el tamaiio muestral de la submuestra en el
conglomerado i. La media global de muestra por subunidades es

S|

y= Vs(i)»

n
i=1

donde n es el tamafio muestral en la primera etapa o numero de
conglomerados que se seleccionan en la muestra. La varianza entre
medias de unidades primarias es
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L
I
0? =7 ) Gi— )
i=1

La media de varianzas de unidades secundarias dentro de unidades
primarias es

Entonces, si n es el nUmero de unidades primarias seleccionadas, y
m es el nimero de unidades secundarias o subunidades por
conglomerado seleccionado en la segunda etapa, y las muestras
extraidas por disefio mas, el estimador y es insesgado para estimar
la media poblacional y, y su varianza es

VG) =+~
n mn
En efecto,
n L
= = 1 — 1 = =
E() = E1[E,(y)] = E4 EZ yi | = ZZ yi =Y.
i=1 i=1

Y la varianza es

V) =WIE.(3)] + Er[V2()].

1 n
EG) =) %
i=1

2
VB ==
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n n
02 11
Vz()’) = Z Z [yS(l)] le - = __Z 0_221_,

m nmnd
=1 =1
1 1 1
E.[V,(»)] =—E s | =—0o2
V2] = m 1(71 1021) nm“z
1=
Luego,
_ d? of
V) =—+—.
n nm

Un estimador insesgado de esta varianza es

V(z)_512+IV—1 ,
)=y nmN 52/
donde
1 n
_ —12
512 = n 12[%@') )’]
=1
y
n m n
_ 2 . 1 2
s2 n(m D [}’ij — ys(i)] 0 ' S2i-
i=1j=1 i=1
En efecto,
n n
—_— —_— 2 —_— —_
(n—1)sf = Z[ys(i) - }’] = z ysz(i) —ny?,
i=1 i=1
por tanto
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(n— D, (s3 )—2 Zﬁi o2 -

=1 =1
pues
_ _ 2 _
Ea Y5 = {E2[Fsw ]} + ValFsw)]
y
E,(¥?) = [E;()]* + V(D).
Luego,
n n
2 1 —1 2
(n_l)Ez(Sl)—Z yl_gz Vi ngO-ZL
=1 i=1 =1
y promediando sobre la primera etapa de disefio mia,
n—1

E[(n—1Dsf] = E;[(n — DE,(sD)] = (n — Dof + =—o03.
Nm

Por tanto, s# es un estimador de o con un sesgo o2 /(Nm). Como
sZ es un estimador insesgado de o5, podemos proponer como
estimador insesgado de la varianza de y a

h
V( )__ SZI

donde ¢ es una constante que se obtiene al asegurar que tal
estimador sea insesgado. En efecto, de que

E[V)] =v(Q),
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obtenemos que
N-1
nmN’

Cc =

de donde concluimos que el estimador insesgado buscado es

La distribucién de la muestra en las dos etapas se puede
obtener al admitir la funcién de coste del tipo

C =cyn+ cpnm,

es decir, el coste total es la suma de los costes proporcionales al
numero n de unidades primarias seleccionadas por el coste c; de
seleccionar una unidad primaria, y al nimero nm de unidades
secundarias seleccionadas por el coste ¢, de observacién por
unidad secundaria. Como tenemos la varianza

2 2

= _ 091 6 0y

n nm
para minimizar esta varianza para el coste total fijo C, tenemos el
lagrangiano

L*=V(y)+ A(C — ¢;n — c,nm)

que se resuelve asi,

or 1, 1a}
%Z —ﬁO'l —EE—A(Cl‘Fsz) =0

aL* 1
om  mm?

Luego,
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1 1

A=— g — 02 =
n2(c; +c;m) + n?m(e; + c,m) 2
1
c,n2m? %’

o bien, multiplicando por n?m?2c,(c; + c,m), tenemos
m?c,0f + mcy,058 = (¢ + c,m)o?,

que reordenando y simplificando resulta la ecuacion de segundo
grado en m

m?c,0f — c,04 =0,

que resolviendo queda el valor éptimo tedrico

C1 022

)
c,072

m =

pues la raiz negativa no la consideramos ya que m > 0. Hemos
dicho que es un Optimo tedrico porque depende de funciones
parameétricas que son desconocidas sin un censo. Finalmente

C
n=——.
¢, +com

También es posible estudiar el caso de submuestreo con
unidades de primera etapa iguales en tamafio, cuando el disefio
basico usado es el disefio mia en la primera y segunda etapas. En
este caso el estimador media de las medias muestrales y es también
insesgado y un estimador sin sesgo de su varianza es

L—n nN—m

V(%) = 2 4“0 2.
&) Ln Sl+L Nmn 52
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El tamafio muestral optimo tedrico de m, sujeto a un coste
prefijado C = c¢;n + c,nm, es ahora

152

-9

donde

L
1 Z

5'2: S 52
1=

L N 1 L
2
52 E E =V =—E Sz

8.5 Submuestreo y conglomerados de tamario desigual

Veamos un tratamiento a esta situacion. La unidad primaria i se
selecciona con probabilidades proporcionales a p; > 0, con

pi=1'

-

=1

Ademas podemos suponer que las n selecciones se hacen con
reemplazamiento. La submuestra es de tamafo m; subunidades de
la unidad primaria i, con disefio mas. Si la unidad primaria i se
selecciona méas de una vez, se restituye la totalidad de la
submuestra seleccionada independientemente de tamafo m;
unidades secundarias con disefio mas con reemplazamiento. Un
estimador insesgado del total poblacional Ny es
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n _ L _
1 2 Niysay 1 z Niys)
t=— = — —e;.
n Pi n bi

i=1 i=1
En efecto,

L

L
1 N:E5| Vi 1 N:y;
- 2 : i 2[)’5(1)] el == E : iYVi El(ei) _ N)_/,
n p;i n 4 pi

i=1

E(t) =E;

siendo e; el ndmero de veces que la unidad primaria i es
seleccionada en la muestra, con E;(e;) =np; (i =1,2,...,L). La
varianza de t se obtiene haciendo uso del Teorema de Madow,

V(t) = E Vo () + V1 E;(b).

L

=S = LY e M

siendo ¢ la varianza dentro del conglomerado i-ésimo, donde
ahorai=1,2,..,L.

1< N? g7
l l

E Vo (t) = ﬁz E1(ei2)_25 =
i=1 Pi T

L 2
zl—pi+npi x4
N2 L.
- np;i m;
=1
También,
IO NE Vs 180 N
Ez(t)zaz iLo .S(l) eizgz l%’lei’
i=1 Pi = P
y
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Luego,

L
1—»,+n
l

i=1

Y un estimador insesgado de esta varianza es

_ NZs?  NE(L=p)isq
V(t)=2[ il B i bi ys(l)]ei,

2..2
npim; nep;

donde s? es la cuasivarianza muestral dentro del conglomerado i.
8.6 Ejercicios resueltos

Ejercicio 8.1. Un establecimiento comercial dispone de 1500
facturas que recogen los ingresos durante un mes de trabajo; se
desea estimar la media por factura mediante muestreo sistematico,
tomando un arranque aleatorio entre las primeras 15 facturas. Por
la experiencia pasada se sabe que el coeficiente de correlacion
intraconglomerados es aproximadamente 0.05. Se desea saber si la
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varianza del estimador usual en muestreo sistematico es mas del
doble que la varianza de la estrategia “disefio mas, media muestral”
con idéntico tamano muestral.

Solucién. El tamafno de la muestra sistematica es

N 1500 100
n=——s————= ,

L 15
que coincide con el tamario del conglomerado N. La varianza de la
media muestral con muestreo sistematico es

2
V@) = [1+ (= 18] = VEI[L + (n = 5] = 5.95V F)

que es mayor que el doble de V (¥;).

Ejercicio 8.2. Con el fin de estimar la calidad de cierta marca de
cerillas, se examina la produccion que esta empaquetada en cajas
de 50 fosforos. ElI nimero de cajas producido es de 300. Para
estimar la proporcion de cerillas defectuosas, se prueban 5 cajas de
modo destructivo y la proporcion estimada de unidades defectuosas
por caja en las 5 muestreadas es de 0.04. ;Cual sera la varianza de
este estimador si la proporcion muestral estima bien la proporcion
poblacional, y el coeficiente de correlacién intraconglomerados es
0?

Solucién.

. N—nNP _
V(P) = T nl% [1+ (N —1)6] = 0.00015
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Ejercicio 8.3. En el problema anterior, ¢cual sera el tamafo
muestral de cajas o unidades primarias para que el error maximo
de muestreo sea igual a 0.001 para un nivel de confianza del 90%?

Solucion.
NP
n =~ - aeQz po 7~ 612
W =DN| T N=—Ds TVN-1

que como es superior a las 300 disponibles, seria necesario un
muestreo exhaustivo de la totalidad de la produccién, pero al ser un
proceso destructivo se hace desaconsejable el estudio.

Ejercicio 8.4. Averiguar el tamafio muestral n necesario para
asegurar que el estimador y., de la media poblacional y, con
conglomerados del mismo tamafio 30, fijado un error absoluto
méaximo de muestreo de 0.05 para un nivel de confianza del 95%.
El tamafio poblacional es de 30000 unidades. Ademas la
experiencia en estudios anteriores nos da una estimacion de la
varianza poblacional de 0.15 y una estimacion del coeficiente de
correlacion intraconglomerados de 0.1.

Solucién.

Ng?
n= ~ 136.

_ ae? o2
(N —=1N 1+(1V—1)5+N—1]

Ejercicio 8.5. En una empresa industrial se empaquetan los
productos en lotes de 10 unidades, produciéndose diariamente
2000 lotes. Con el fin de estimar la calidad del producto se procede
a la estimacion de la media poblacional de cierta caracteristica de
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interés, en muestreo bietapico, seleccionando 20 lotes con disefio
mas, y dentro de cada lote extraido se examinan 3 subunidades con
disefio mas. Estimar sin sesgo la varianza del estimador usual

sabiendo que de la muestra obtenemos que

1 n
— =12
=Tl—1_§ [ys(i)_y] -
=1

y
n m
Szz Zz:y_)_/ .]2
2 n(m £ £ ij s(i)
Solucién.
17(=)—512+N_1 2 203 L 9 3 0,015+ 0.045 = 0.06
Y = T T mN 2 T 20 T 600° -

Ejercicio 8.6. En una primera fase se selecciona con disefio mas de
tamafno muestral 5 una muestra ordenada. En una segunda fase, de
la muestra anterior se selecciona una submuestra con disefio mas
de tamafno muestral 2. Obtener la varianza de la media muestral de
los datos observados en la segunda fase, en funcion de la varianza
poblacional.

Solucién. En la primera fase seleccionamos una muestra de tamafio
n =25, y denotamos por y', S? y 6% a la media muestral,
cuasivarianza muestral y varianza muestral respectivamente en la
primera fase sin submuestreo. En la segunda fase se submuestrea
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la muestra de la primera fase con el nuevo tamafio muestral 2, cuya
media muestral y, es de la que se nos pide su varianza. Usando el
Teorema de Madow en dos fases,

V(_)_ﬁz_n—l_2
2Ly T m mn '
de donde

B n—1 n—1 2

EV,(y) = mn Ei( 2) = mn 02:502
También,
E,(¥) =¥/,
de donde
- y g2 g2

VE,(7) =V (¥) = 7 = ?

L.uego,

3
V) = E1Vo,() + VIE, (D) = EUZ,

siendo 2 la varianza poblacional.

Ejercicio 8.7. ;Cuando se puede Illamar una particion en
conglomerados con el nombre de estratificacion?

Solucion. Cuando se seleccionan todos los conglomerados para ser
observados total o parcialmente por muestreo.

Ejercicio 8.8. Proponer un estimador insesgado de la varianza
poblacional en muestreo por conglomerados sin submuestreo, es
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decir cuando todas las unidades secundarias pertenecientes a los
conglomerados seleccionados son observadas.

Solucidn. Si el procedimiento de seleccion de unidades primarias
en la muestra de conglomerados s; tiene probabilidades de
inclusion m,, y my,, positivas para cualesquiera unidades primarias

h # g, el estimador insesgado de la varianza poblacional o2 es

7= w IS S w, ~4g)”

hesq hes; g#hesq gh

siendo W, el tamario relativo del conglomerado h, u; la media del
conglomerado h, y o la varianza del conglomerado h.

Si L es el nimero de conglomerados, y ey, es el indicador del
conglomerado h en la muestra, tenemos que

E(a?) =

i —E(eh)+z Z W, W, ”g) E(ene,) =

=1g=h+1 gh
L —
Z 1y +Z Z Wy W, (ur, — Hg)
h=1 =1g=h+1

por lo que el estimador propuesto es insesgado para estimar la
varianza poblacional. Hemos usado la notacion usual en muestreo
estratificado que es valida porque los conglomerados son una
clasificacion de la poblacion finita, como lo son los estratos.

Ejercicio 8.9. Seleccionamos una muestra sistematica s de tamario
m, de una poblacién finita U de tamafio N, y posteriormente

348



seleccionamos una muestra irrestricta aleatoria » de tamano n <
N — m de entre las unidades de U — s. En tal caso, el estimador
para la media poblacional usado es para una constante £,

t =pys + (1 — By

Comprobar que es insesgado, y obtener un estimador insesgado de
su varianza cuando es posible.

Solucidn. Para ver que es insesgado t, procedemos de esta manera:
E(t) = EE[BYs + (1 — By |s] =
BEWs) + (1 = PEIE(Gy )] =
By + (1 =BEGy-s) =

N)_’_m)_’s)z
N—-m

By+ 1 -py=7.
La varianza de y,. la obtenemos por la formula de Madow,

V(:)_]r) - E[V(}_/T|S)] + V[E()_lrlS)],

py+ (- pE(

donde

VIEG )] =V(y-s) = 7V (5s).

(N —m)?
Ahora tenemos que
V() =B V() + (1= BV(E) + 28(1 — B)Cov(Fs, 7).
Como,
Cov(¥s, yr) = EXE[(Vs = V) Gr = Y)Is]} =
E[(7s = VE@: —yIs)] =
Els =9 Gy-s =M =
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m

E{G: -7 |-

N—m
m

V(¥s).

-9} =

N—m
Por tanto,
V() =B V(s +

2

m
(1-p)? {E [V(}_’r|5) + m‘/(}_’s)]} -

26(1 —
B My (5 =
m 12
8= =P 5] VO + A= BEV s

Asi, como la media muestral en el muestreo sistematico no tiene un
estimador insesgado de su varianza V(y,), para § =m/N ,
podemos escribir

2

v =(1-3) EVGl9)

que solo en este caso admite el estimador insesgado
7 =(1- T)Z V(5|5 fijada) =
N

2
s ,
(N—m)n " nN2 "

N

( m)ZN—m—n =(N—m)(N—m—n)S2

donde s? es la cuasivarianza muestral de la variable y en la
muestra irrestricta aleatoria r dentro de U — s. Este estimador
recibe el nombre de Rana y Singh por ser ellos sus descubridores.
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Ejercicio 8.10. En el muestreo sistematico de doble arranque,
consideramos como estimador de la media poblacional y a la
media aritmética de las medias muestrales de tamafio n = N /L de
las dos muestras sistematicas s; y s, obtenidas por muestreo
irrestricto aleatorio de tamario 2 de entre las L unidades primarias.
Obtener un estimador insesgado de la varianza poblacional.

Solucidén. Obtenemos una muestra irrestricta aleatoria s de tamano
2 de entre las L unidades primarias. Llamando y; e ys, a las
medias muestrales de las dos muestras sistematicas de tamafo n
cada una, el estimador insesgado de la media poblacional propuesto
es

- .}_]Sl +3_152 _ ﬂll +Ml2

Vs 2 2

donde Mi; €S la media del conglomerado j-ésimo obtenido por

muestreo aleatorio simple sin reemplazamiento de tamafio 2 de
entre los L conglomerados o unidades primarias correspondientes
a las muestras sistematicas seleccionadas. Obviamente,

Un estimador insesgado de la varianza poblacional o2
aprovechando el resultado del Ejercicio 8.8, es

oy dily y Don)

hes h €s g>hes

en donde, por ser obtenidas las unidades primarias por muestreo
irrestricto aleatorio de 2 unidades de entre las L posibles,
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S
(2)
ysih+g=1,2,..,L, tenemos
i =(L52)= 2
VT

Ejercicio 8.11. En las condiciones del ejercicio anterior, obtener
un estimador insesgado de la varianza del estimador propuesto de
la media poblacional, que dependa de las varianzas o7 de las
muestras sistematicas h € s.

Solucién. Obtenemos en primer lugar la varianza del estimador
propuesto,

_ 1 . _
V() = ZV(ys1 +9s,) =

1
Z [V(3731) + V(ysz) + ZCOU()_]S1’)_]52)]’

donde
L&
_ N2
V(ysl) = 2 _NE Z(yl ySh)
h=1i€esp
1 : 1o
02—N<Na2—nz_§h>=02—a2+zzyfl=

h=1 n=1
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V(5s,) = EV(Fs,Is1) + VE(5s,|s1)-

, _ 2
Oy-s; _ ZiEU—Sl(yi — yU—Sl) —

(N —n)n

V(yszlsl) =

1 2
ZieU—sl yiz “"N—n (ZieU—sl yi)

(N —n)n '
de donde
2
Ny —ny,
E Naz_nazsl_( N_n81)
EV(vy. =
(YSzlsl) (N _n)n
(N —ma; — 57— [N?*5% = 2Nny? + n?E(32)]
(N —-n)n B

_ _ 1 _
a, N?y*—2Nny?+n? (02 —7Zh=10 + yz)
n (N —n)?n

También,
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_ _ Ny —ny
E(Ps,|51) = Vy-s, = Tnsl

nZ

VE(Js,ls1) = N=n)? V(5s,) =

w7 i)

| —

Finalmente,

COU(}_/Sl,)_/SZ) = ECOU(}_Isl,}_/52|Sl) + COU[E(}_/51|S1),E(}7$2|51)]

Ny —ny
=0+ Cov (ysll%) =
N — ) =
. L
n
_N—n<02 —thlaﬁ)

Por lo que hemos completado la varianza del estimador media
aritmética de las medias muestrales de las dos secuencias
sistematicas correspondientes a los dos arranques aleatorios sin
reemplazamiento. En concreto, simplificando,

N?(n+1) + N(—4n? — 2n) + 4n3

V(ys) = —[ (N — n)z 0'2 +

N2 2 L
N4+ 4Nn —4n“ +n 12 5
(N —n)2 L L.

h=1

Para elaborar un estimador insesgado de la varianza de y;
bastara sustituir, en la formula de su varianza obtenida, los
parametros por sus estimaciones insesgadas. Del ejercicio anterior
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tenemos que la varianza poblacional o2 es estimable sin sesgo y

obtuvimos la expresion exacta de este estimador a2. También, un
estimador insesgado del parametro

es la media aritmética de las varianzas de cada muestra sistematica
S1 Y S,, es decir

2 2
O, -+ as,
> )

Finalmente, sustituyendo estas dos estimaciones insesgadas en
lugar de los parametros correspondientes, tenemos el estimador

insesgado de la varianza V (¥,), y que denotamos V (¥,).

Observar que en el muestreo sistematico de arranque simple,
la varianza poblacional no admite estimador insesgado porque
existen al menos un par de unidades distintas de la poblacion iy j
con probabilidad de inclusién 7;; = 0, y como consecuencia no es
posible construir un estimador insesgado de la varianza de la media
muestral con dicho disefio muestral sistematico de arranque simple.

Ejercicio 8.12. En el muestreo por conglomerados de igual tamafo
sin submuestreo, con seleccion de conglomerados por disefio de
muestreo aleatorio simple con reemplazamiento, proponer un
estimador insesgado de la varianza del estimador usual de la media
poblacional.

Solucion. El estimador usual de la media poblacional en muestreo
por conglomerados de igual tamafio sin submuestreo es
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1
ycza

Vi

-

=1

donde n es el tamafio muestral de conglomerados de igual tamario
seleccionados, e y; es la media del conglomerado i -ésimo
seleccionado en la muestra. La varianza del estimador y,. es

2
Oy,

L
_ 1 _
V(y) = - =E;(%‘—}’)2

siendo L el numero de conglomerados en la poblacion. Asi, el
estimador insesgado de la varianza V (¥,.) es

o 1 O
V(e = m;(yl' —¥e)

debido a que la cuasivarianza muestral en el muestreo aleatorio
simple con reemplazamiento es un estimador insesgado de la
varianza poblacional.
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Capitulo 9

Etica y filosofia del muestreo

En este capitulo presentamos elementos basicos de los métodos de
inferencia, sus inicios, su utilidad y se aportan argumentos que
orientan a la busqueda de un método de inferencia estadistica
objetivo y a su fundamentacion.

9.1 Introduccioén

Consideramos de interés aquellas variables observables
objetivamente definidas y en las que no haya ambigliedades a la
hora de ser interpretadas por el consultado y por quien anota el dato
de las posibles unidades medidas, observadas o encuestadas al
efectuar sus respuestas. Para el observador, estadistico o
encuestador lo importante, ademas de amar, honrar y respetar al
observado o encuestado por su dignidad como ser humano y
persona, son las observaciones reales en las unidades de la
poblacién y de la variable de interés que han sido definidas con
claridad para cada estudio concreto. De ellas, mediante el
tratamiento estadistico descriptivo o inferencial, se podran extraer
conclusiones que justifiquen otras decisiones o acuerdos asociados
y consecuentes que promuevan un mayor bienestar social,
personal, y de trascendencia humana.

El método racional en el que basamos las hipdtesis y las tesis
0 conclusiones es de tipo l6gico basado en verdades reveladas
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comunes y coincidentes en la cultura judeocristiana y aplicado a las
metodologias estadisticas. Cualquier variable de tipo de salud,
social, econOmica, etc. puede ser estudiada definiendo
adecuadamente las unidades de la poblacion que interesa estudiar
y definiendo la variable de interés con nitidez y el instante o
periodo temporal de referencia.

La hipotesis de trabajo es sencilla. Basicamente puede
resumirse en que el hecho demostrado matematicamente de que ‘A
implica B’, no necesariamente implica l6gicamente que ‘(No A)
implica B’. En general, nos referimos a ‘A’ como el conjunto de
premisas de las que matematicamente deducimos que implican ‘B’
que es un conjunto de conclusiones o tesis. Sin embargo, aunque la
primera  implicacibn  matematica se  demuestra  muy
concienzudamente en la ciencia estadistica, alguna o algunas de las
premisas que constituyen ‘A’ no se comprueban de modo alguno
al aplicarse a estudios practicos concretos. Luego, para estos
estudios practicos, algunas de las condiciones o premisas podrian
no estar en ‘A’, o lo que es lo mismo podrian estar en ‘(No A)’.

Entonces, haber demostrado que ‘A implica B’, si en el caso
practico las premisas ‘A’ no han sido comprobadas o aseguradas,
la condicidon de hecho podria ser en realidad ‘(No A)’, con lo que
la demostracion matematica seria inutil a efectos de justificar ‘B’ o
‘(No B)’, especialmente si no se ha demostrado que ‘(No A)
implica B’ o bien ‘(No A) implica (No B)’.

En muchos libros se supone o acepta implicitamente que una
vez demostrado el resultado matematico ‘A implica B’, todos los
ejemplos de aplicacion siguientes se ajustan a las hipotesis o
premisas ‘A’. Suponer que ‘A’ es cierto en el ejemplo no es
suficiente en la préactica de la inferencia, sino que es necesario
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saberlo y poder comprobarlo, no solo suponerlo, lo cual es mas
dificil de lo que parece a primera vista.

En las ciencias naturales, de la salud, sociales, economicas,
etc. la realidad es que no suele ser posible afirmar si se da ‘A’ o
‘(No A)’, por lo que no podemos concluir que se dara ‘B’ al poder
ocurrir ‘(No A)’, a pesar de demostrar que ‘A implica B’. Una de
las formas de concluir ‘B’ como cierta siempre seria demostrar que
tanto partiendo de ‘A’ como de ‘(No A)’ llegamos a la misma
conclusion ‘B’, pero esto no suele justificarse en la mayor parte de
inferencias estadisticas mas tradicionales o clasicas.

Las deducciones matematicas tienen gran fuerza y justifican
el modo de abordar los problemas de inferencia estadistica en la
practica. Pero de nada sirve demostrar matematicamente si a la hora
de aplicarlo no sabemos si las premisas del razonamiento son o no
son verificadas en los ejemplos practicos de los que se desea
informacion veraz estadistica. Para asegurar su objetividad, el
método estadistico debe estar demostrado matematicamente, y
ademas ser objetivo y seguro en su utilizacion practica al verificar
la realidad material de trabajo las hipotesis del método estadistico.

Los métodos estadisticos que no permiten conocer Si sus
hipotesis son realistas en la practica podrian interesar a ciertas
ciencias matematicas abstractas, o0 como ilustracién orientativa de
sus utilidades potenciales, pero siendo honradamente realistas, si
existen otros metodos estadisticos que se ajusten a las condiciones
naturales y reales de presentacion de los datos a observar, no cabe
duda que estos métodos son prioritarios ante aquellos que solo
tienen rigor matematico pero no rigor objetivo en su aplicacion en
realidades constatables.

Asi  pues no nos interesan métodos potencialmente
utilizables, sino aquellos que con seguridad son correctamente
aplicados.
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Algunas de las hipotesis potencialmente Gtiles pero sin valor
social practico es suponer que la poblacion estadistica es infinita o
que su distribucion de probabilidad es una determinada, sin
posibilidad de comprobacion posible en la practica o con clara
contradiccion con los hechos conocidos como que la poblacion es
finita de hecho y de que la distribucion objetiva de partida es
uniforme discreta.

Como métodos estadisticos mas objetivos estan los “métodos
de estadistica descriptiva” (que cuando las poblaciones son grandes
resulta costosa, lenta y con facilidad de introducir errores en los
datos por la gran cantidad de ellos a manejar) y el “muestreo de
poblaciones finitas fijadas” que permite controlar mejor algunas
dificultades practicas o costes inasumibles presentados en las
estadisticas descriptivas y en los censos.

En la Union Europea cada estado miembro tiene sus propias
leyes y propias medidas desarrolladas independientes y acordadas
a nivel politico. En los ultimos afios se van dando pasos en el
sentido de compartir las informaciones estadisticas de caracter
social a nivel oficial, publico y privado. En Estados Unidos se han
desarrollado menos las politicas de proteccion social y carecen de
la experiencia de las europeas que existen desde finales del siglo
XIX.

Los procedimientos de recogida y tratamiento de la
informacion estadistica haciendo uso de tecnologias de la
informacion y de telecomunicaciones hacen posible hoy el
conocimiento de la realidad, coyuntura, y en ciertos casos incluso
de supuesta prevision del bienestar social. Pero todo esto contrasta
con la situacion de desconocimiento, carencia de registros de
nacidos, o del dudoso comportamiento de los funcionarios en
algunos lugares del planeta. Es necesario un registro de los
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ciudadanos identificados y localizables para realizar con unas
minimas garantias los estudios estadisticos inferenciales sin caer en
tener que suponer que la realidad es como alguien supone sin base
segura y cierta.

La ética aplicada crece progresivamente como consecuencia
de los avances tecnologicos y cientificos, y de la toma de
decisiones y consensos politicos, sociales y econdmicos. La
moralidad de estos avances esta en la mesa de analisis y de
discusion. En cualquier caso se trata de alcanzar un “bien comuin”
entendido como “conjunto de aquellas condiciones de la vida social
que permiten a los grupos y a cada uno de sus miembros conseguir
mas plena y facilmente su propia perfeccion” (Gaudium et Spes,
26, 1). Todo ello comporta el respeto a la persona, el bienestar
social y el desarrollo del grupo, asi como la paz. Para ello la
educacion de la familia y la responsabilidad en el trabajo
constituyen el medio por el que el hombre participa en el bien de
los demas y de la sociedad (Centesimus Annus, 43).

Las ciencias sociales buscan a menudo el apoyo de los datos
tomados de la realidad. Sus fuentes principales son las estadisticas
y las encuestas, que al ser interpretadas y utilizar un criterio
subjetivo propio, muchas veces de un mismo dato se llega a
concluir una cosa o la contraria.

Las estadisticas en Estados Unidos segun el Census Bureau
(Schmidtz y Goodin, 2000) como en Espafia (Ruiz Espejo, 1998b)
apuntan a mejoras en la evolucién de las rentas familiares en los
anos de final del siglo XX. En Espafia se obtuvieron los datos por
métodos de inferencia objetiva de poblaciones finitas.

Como cientificos debemos aportar los mejores medios para
describir la realidad, en aras de proponer politicas tanto publicas
como privadas que ayuden al desarrollo del bienestar social en base
a la responsabilidad personal. Uno de los procedimientos para
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describir la realidad, aungue no sea el Unico, es el de los métodos
estadisticos.

Cuando queremos conocer la situacion de hecho de una
poblacion humana en un determinado instante de tiempo, existen
muchas posibles teorias estadisticas que podrian ser aplicadas al
caso desde un punto de vista tedrico. Sin embargo, un somero
analisis de la realidad a investigar hace que muchas de las teorias
que se explican como posibles candidatas a explicar la realidad no
asumen realidades evidentes que aparecen y que deberian de
tenerse en cuenta para poder aplicarse a un caso concreto. Algunas
teorias asumen hechos contradictorios con las realidades que
pretenden investigar.

Muchas teorias estadisticas parten del hecho de que la
poblacidn sobre la que se trata de inferir puede ser representada por
una funcion de densidad que es conocida salvo algun o algunos
parametros a estimar. La funcion de densidad tiene propiedades
matematicas que permiten desarrollar caracteristicas inferenciales
propias validas para el modelo teérico postulado o supuesto, pero
no necesariamente validos para otros casos o hipotesis. Es el caso
de la inferencia llamada paramétrica clasica.

Los modelos de inferencia paramétrica clésica, inferencia
bayesiana, inferencia no paramétrica, inferencia de distribucion
libre, modelos de poblacion finita fijada, modelos
superpoblacionales, etc. y posibles combinaciones de ellos son
algunas de las hipétesis de trabajo estudiadas en contextos
matematicos, pero sin comprobar la teoria formal en la realidad a
la que se aplique, es decir que las hipdtesis sean consistentes con
los hechos.

Un ejemplo muy presentado es el adoptado al tratar de inferir
sobre una poblacion estadistica que de hecho es finita, tratandola
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como si fuera infinita en el analisis inferencial. Lo evidente, en este
caso, es decir que para concluir algo sobre la poblacion real es un
mal comienzo basarse en una falsedad aunque sea aproximativa.
Esto es mas grave si la falsedad se refiere a personas o grupos
sociales.

Otro ejemplo de muchos modelos inferenciales es suponer
que la distribucion poblacional es conocida de antemano, hipotesis
que podria ser valida sobre el papel o para ser simulada por el
ordenador para obtener muestras de tal modelo tedrico. Pero lo que
importa es saber si tal modelo de distribucion de la supuesta
poblacion se corresponde y existe en la realidad que se trata de
analizar e inferir. De hecho, no he podido recabar ningun
testimonio seguro del mundo natural (no simulado artificialmente)
que pueda afirmar que sin lugar a dudas tal modelo ha sido
comprobado en la realidad con plena seguridad. Para que esto
ultimo tenga sentido ha de aceptarse el hecho de la existencia de la
probabilidad en la fisica, y en particular al caso al que trata de
aplicarse la teoria estadistica. La respuesta a esta cuestion es muy
polémicay a mi modo de ver no resuelta con claridad y objetividad
hasta ahora (Sprott, 2000).

A nivel cientifico, por un lado teérico me permite afirmar que
las teorias estadisticas inferenciales son todas matemaéticamente
aceptables por los razonamientos I6gicos que los sustentan, pero
por el lado practico dudo de la utilidad de muchas teorias al ser
aplicadas en la practica porque se aplican sin la seguridad de haber
comprobado con certeza la adecuacion de sus hipotesis a la realidad
que tratan de inferir o estudiar con la mayor veracidad posible.

Cuando el objeto final del estudio es el propio hombre como
su salud al estudiar la eficacia de tratamientos médicos,
farmacéuticos, salud publica, etc. es importante decir la verdad y
no basarse en falsos conceptos. Actualmente la poblacion mundial

363



se aproxima a los 7000 millones de personas, pero nunca
podriamos decir que hay infinitas personas, ni nunca las habra en
el mundo que conocemos. Este hecho evidente, tenido en cuenta en
el analisis estadistico formal, hace que muchas de las teorias
desarrolladas por los tedricos (en concreto, los métodos
inferenciales para poblaciones infinitas) dejen de tener interés para
los propoésitos que nos planteamos, y nos hacen dirigirnos a
modelos de poblaciones finitas aunque el nimero de sus unidades
sean muy numerosas.

Los modelos de distribucion de poblaciones infinitas han
servido de estudio tedrico facilitando el estudio de otros modelos
de mayor aplicabilidad, pero sus conclusiones no dejan de ser un
cumulo de trabajos sobre el papel en libros o revistas alejados del
interés de aclarar el estado en que se encuentra una poblacion
humana o social. Que la logica utilizada en resolver cuestiones
teoricas sea de alto nivel, sirve de poco si no da luz sobre el
problema concreto a resolver. La ciencia tiene sentido cuando lo
descubierto sirve para algo. Asi los razonamientos matematicos
que se basan en el andlisis infinitesimal estudiado por fisicos y
matematicos clasicos no aportan siempre mayor claridad para
inferir sobre poblaciones de la realidad natural. Un ejemplo de este
tipo de libros es el de Cramér (1953).

Sorprende que este tipo de teorias sean explicadas en otros
estudios universitarios, como medicina, ciencias empresariales,
etc. con contenidos mas especificos y objetivos reales concretos
diferentes a los que pueden guiar un cientifico abstracto a quien le
vale que tenga alguna ldgica aunqgue sin utilidad practica clara.

No se trata de aplicar una teoria sin mas a unos datos
cualesquiera. Sino de decidir con qué teoria podemos aclarar la
situacion real que se estudia para que sea de la mayor aplicabilidad,
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desde un punto de vista honesto y clarificador de las realidades de
las que deseamos recabar informacion para inferir estadisticamente
su situacion en determinado tiempo y lugar.

Existe una via infalible para la ciencia consistente en la
posibilidad de demostrar la falsedad de teorias mediante la
contraevidencia, que permite al investigador honesto
cientificamente abandonar la teoria falsa. Las matematicas pueden
demostrar teorias inalterables con certeza. Los filésofos de la
ciencia al comprender las dificultades reales para sostener
cientificamente verdades inalterables, introdujeron el concepto de
teoria probable, que puede ser contrastada al conocer nuevos datos
de la observacion empirica. Sus teorias se basaron entonces en el
concepto de la probabilidad adn sin saber probar su validez
cientifica en la practica como veremos mas adelante.

Los métodos inferenciales tienen la ventaja de que para
conocer un parametro poblacional con determinada precision no es
necesario conocer la variable que aporta cada individuo o unidad
poblacional. Basta observar la variable en una muestra de esas
unidades seleccionadas aleatoriamente de la poblacién finita, en
muchos casos de una proporcion de tamafio inferior al uno por mil.
Para hacer esta seleccion de unidades de la muestra se requiere
tener un censo actualizado en el momento de referencia de la
encuesta o de las observaciones. Ademas se precisa que toda
persona seleccionada en la muestra pueda ser identificada,
localizada y observada. Otra condicion es que la informacion
recabada de cada unidad sea verdadera pues de otro modo deberia
ser posible inspeccionar los datos ofrecidos por cada encuestado o
informante aunque sea solo a una submuestra aleatoria de los
encuestados, y comprobar en ellos los datos sin error alguno (Ruiz
Espejo, 1988a).
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Los metodos de muestreo de poblaciones finitas fijadas
aungue sean de gran tamafio permiten ahorrar tiempo material y
presupuesto economico o trabajo humano para conocer con cierta
precision el parametro requerido, que usualmente es la media
poblacional de la variable de interés, aunque pueden estudiarse
varias variables de interés con la misma muestra de unidades. Una
pequeia parte de la poblacion, llamada muestra, puede informar
con precision sobre la totalidad de la poblacion.

En realidad los intentos por realizar censos son ciertos en los
imperios egipcio y chino miles de afos antes de Jesucristo, asi
como los imperios griego y romano. Tambien hay referencias de
censos del pueblo judio en tiempos de Moisés, David y Salomén.

Los conocimientos seguros anhelados por los cientificos del
siglo XV y del XVI pasaron a ser en muchos casos conocimientos
probables o inciertos con el uso de métodos estadisticos o bien de
un cierto nivel de confianza con el uso de la inferencia. Pero en
nuestros dias ya tenemos elementos para diferenciar métodos
inferenciales que incorporan herramientas no objetivas que podrian
hacer invalidar o tomar con cautela las conclusiones del estudio
concreto cientifico que se baso en ellos.

El concepto de probabilidad surgié en el siglo XVII con las
teorias del analisis combinatorio y sus aplicaciones a los juegos de
azar, que con el tiempo trajo el desarrollo de teorias estadisticas
inferenciales.

Los Padres Fundadores Americanos en 1790 fijaron la
realizacion de los censos de poblacion en cada Estado cada diez
afios. Las poblaciones censadas sirvieron para fijar la contribucién
financiera de cada estado a la Unidn, asi como para asignar el
numero de delegados que cada estado podia enviar a la Camara de
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Representantes en Washington, en inglés llamada “Hause of
Representatives” (Anderson, 1988).

El origen metodoldgico de la sociologia puede ser sefialado
en las estadisticas sociales de Adolfo Quétélet en 1835, precursor
de las descripciones y mediciones de fendmenos sociales con
pretensiones de rigor cientifico y con técnicas de inferencia
estadistica.

En las décadas de 1870 a 1900 se crearon los “Labour
Departments” (Ministerios de Trabajo) tras las recesiones
economicas en los principales paises industrializados, haciendo de
la proteccion de los trabajadores su principal propdsito, incluyendo
la prioridad del apoyo estadistico. Asi las encuestas de
presupuestos familiares se desarrollaron entre los afios 1850 y
1940, que concentraban sus intereses casi exclusivamente en
familias de trabajadores.

Historiadores de la estadistica han situado el comienzo del
uso oficial de los estudios y encuestas por muestreo a fines del siglo
XIX, en concreto el Gobierno noruego considero en 1894 llevar a
la préactica algunas politicas sociales nuevas como normativas de
pensiones y seguros de enfermedad. Al requerir informacion mas
completa que la que se recogia en los censos, la Oficina de
Estadistica Noruega empez0 a realizar encuestas por muestreo
representativo, no de tipo probabilistico, a gran escala para
informar a las politicas gubernamentales (Seng, 1951). A. N. Kiaer,
director de la Oficina Estadistica Noruega, desarrolld en la practica
estas encuestas en 1895.

Hacia 1920 Sir Ronald Fisher empez6 a esbozar la teoria
estadistica de la contrastacion de hipotesis, y unos diez afios
después Jerzy Neyman y Karl Pearson la dotaron de los
instrumentos técnicos formales necesarios para su utilizacion
generalizada que actualmente han sido cuestionadas. Tales teorias
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reposan sobre el concepto de probabilidad cuya existencia real en
el mundo no se ha podido demostrar. Sin embargo es un
instrumento conceptual que permite avanzar en el llamado
“conocimiento probable” basado en datos y experiencias, pero no
es un “conocimiento seguro” ni absoluto, y por tanto no puede
considerarse conocimiento realmente.

En la literatura socioldgica, la contrastacion de hipotesis
aparece a mediados del siglo XX, un ejemplo es el libro de Goode
y Hatt (1952). Seglin estos autores “las hipotesis han de ser
empiricamente demostradas como probables o no probables”, y en
ello consiste la prueba, en contrastarlas con los hechos para
concluir su aceptacion o rechazo. La logica de la prueba la
atribuyen a los métodos de John Stuart Mill. Pero esta
demostracion o prueba no son seguras pues conllevan dos tipos de
errores posibles: aceptar una hipdétesis falsa, y rechazar una
hipotesis cierta. Para ellos, la ciencia no consigue absolutos, sino
que reduce la cantidad de incertidumbre. Esta manera de ver las
cosas revela la desconfianza a la verdad cuando ésta existe.

En los afios de 1970 la Organizacion para la Cooperacion y
Desarrollo Economico (OCDE) realizd algunos progresos de
concrecion en la elaboracion de indicadores sociales en los paises
miembros de la organizacion, que tuvo su influencia en Espafia. El
Instituto Nacional de Estadistica espafiol ha publicado indicadores
sociales en los afos 1991, 1997, 1999, 2001, etc. Los sistemas
integrados de estadisticas sociales como concepto europeo de la
década de 1990, han sido presentados por estadisticos holandeses
y escandinavos desde sus respectivos paises (Van Tuinen, Altena e
Imbens, 1994).
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A nivel de Naciones Unidas se han publicado titulos en 1974,
1986, 1991 y 1996 sobre estadisticas sociales y otras disponibles
pueden consultarse en www.un.org.

Los actuales paises desarrollados tienen censos de poblacion,
vivienda, agricultura, industria, etc. como algo cotidiano para su
buen funcionamiento. EIl Instituto Nacional de Estadistica (INE)
espafiol va adaptando sus normas de trabajo y metodologia
estadistica a las directrices de la Union Europea, a través de su
Oficina Estadistica de las Comunidades Europeas (Eurostat). La
Oficina del Censo de los Estados Unidos (U. S. Census Bureau)
aborda a nivel de contribuciones personales por expertos
estadisticos y de reuniones de profesionales los problemas surgidos
por la creciente globalizacion y sus implicaciones estadisticas.

Ademas de un recuento de la poblacion que recoge la
direccion e identificacion de los ciudadanos, el censo tiene un
interés anadido como marco basico para poder extraer de la
poblacion muestras de personas de modo aleatorio y probabilistico.
En Esparia los censos de poblacidn se realizan con una periodicidad
de diez aflos. Ademas existen bases de datos publicas e
informatizadas en muchas areas de interés social referidos a
periodos mas breves o incluso continuos.

Los métodos de muestreo han sido utilizados cientificamente
y socialmente a lo largo del siglo XX, desarrollandose los
fundamentos que relacionan las muestras con la poblacion. Asi, el
Instituto Internacional de Estadistica reconocio estos métodos
como instrumentos validos de investigacion y desde entonces son
de amplio desarrollo y uso en el mundo estadistico cientifico y
oficial. Un libro que recoge las principales aportaciones cientificas
del muestreo de poblaciones finitas es el de Ruiz Espejo (2013c).

Tiene sentido desarrollar métodos estadisticos y tecnologias
informaticas objetivos que faciliten el seguimiento de variables de
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interés social, de salud, etc. que informen para poder desarrollar
politicas efectivas para paliar necesidades humanas con un
fundamento solido y no a ciegas. Los métodos estadisticos de
investigacion social cientificamente correctos y de garantia, Utiles
y eficaces, coherentes en sus hipotesis con los objetivos reales de
estudio, han sido objeto de estudio desde finales del siglo XIX. Tras
varias décadas de investigacion reflejada en revistas cientificas de
estadistica, a fines de los afios cuarenta del siglo XX aparecieron
los primeros libros recopilatorios de métodos y teorias de muestreo
de poblaciones finitas, tanto en Reino Unido como Estados Unidos,
y posteriormente en otros paises como Francia, Espafia, India,
Holanda, Italia, etc.

La globalizacion de los mercados y el desarrollo de la
sociedad de la informacion son dos factores que afectan de modo
creciente a los registros de empresas estadisticas (Nielsen y
Plovsing, 1997). De hecho se plantea la necesidad de crear un
registro satélite internacional para propositos transnacionales. La
integracion eficiente de los estudios aportados por diferentes
empresas o0 fuentes estadisticas independientes para contribuir a
resultados conjuntos de mayor interés y calidad de los usuarios, ha
sido tratado estadisticamente por Ruiz Espejo, Singh y Singh
(2001).

Existen investigaciones que suponen que cada investigador
puede aportar al analisis inferencial su propia idea subjetiva o “a
priori” acerca de 10 que hasta ahora nadie ha visto u observado
completamente sobre como se comporta en realidad. Estas ideas
subjetivas se plasman en la formulacion de un modelo teorico de
las posibles poblaciones estadisticas, de distribuciones
poblacionales, o de alguno de sus parametros. Casos particulares
de esta situacion se da en la practica al emplear métodos de
inferencia paramétrica clasica o de inferencia bayesiana. En ellas
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las conclusiones siempre estan influidas por la idea subjetiva o por
las elecciones personales del investigador al aportar su modelo y
opinion de como se comporta la realidad exterior a €l y no conocida
perfectamente por él.

Pensamos que aceptar subjetividades para describir o inferir
sobre hechos objetivos, no es una via aceptable pues lo subjetivo
influye en el resultado, cuando el hecho objetivo no se altera
sensiblemente por lo que piense de €l un investigador. De aceptar
distintas aportaciones subjetivas, obtendriamos con los mismos
datos observados distintas tesis a veces incompatibles. La
objetividad de los hechos no se altera por la idea personal que la
redefina subjetivamente. No es posible aceptar que una sola
realidad sea muchas cosas posibles incompatibles entre ellas
dependiendo de la opinidn del observador de la misma realidad
unica.

La utilizacion de cualquier método estadistico basado en
hipotesis subjetivas solo podria considerarse como provisional, no
como método objetivo explicativo de una Unica realidad.

Para terminar este capitulo anotamos argumentos de fe que
sostienen el enfoque que hemos hecho. Las referencias pueden
consultarse del texto de la Biblia de Jerusalén (1999).

Exodo 20,16; Deuteronomio 5,20: “No daras testimonio falso
contra tu projimo.” (Revelaciones de Dios en el monte Sinai y en
el monte Horeb).

Levitico 19,11: “No hurtaréis; no mentiréis; no 0s enganaréis unos
a otros.” (Prescripciones morales de Dios a Moisés, para la
comunidad de los israelitas).

Levitico 19,35-36: “No cometais injusticia ni en los juicios, ni en
las medidas de longitud, de peso o de capacidad: tened balanza
exacta, peso exacto, medida exacta y fanega exacta. Yo soy Yahvé
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vuestro Dios, que os saqué del pais de Egipto.” (Revelacion de Dios
mientras los israelitas atravesaban el desierto).

Judit 9,11: “No esta en el numero tu fuerza, ni tu poder en los
valientes, sino que eres el Dios de los humildes...” (Plegaria de
Judit a Yahvé).

Sabiduria 11,20: “Pero ti regulaste todo con medida, nimero y
peso.” (Oracion dirigida al Sefior).

Mateo 5,17: “No penséis que he venido a abolir la Ley y los
Profetas. No he venido a abolir, sino a dar cumplimiento.”
(Palabras de Jesus a sus discipulos, que confirman la Revelacion
de Dios en los montes Sinai y Horeb, y en la travesia del desierto).

Mateo 15,19-20: “Porque del corazon salen... falsos testimonios...
Eso es lo que contamina al hombre; ...” (Doctrina de Jesus sobre
lo puro y lo impuro).

Mateo 19,18; Marcos 10,19; Lucas 18,20: “... no levantaras falso
testimonio, ...” (Palabras de Jesus al joven rico).

Juan 17,19: Y por ellos me santifico a mi mismo, para que ellos
también sean santificados en la verdad.” (Palabras de oracion de
Jesus dirigida a Dios Padre de peticion por sus discipulos fieles).

No son las Unicas revelaciones, pero las considero claves para
hacer una inferencia estadistica objetiva.

Es obvio que decir de una poblacion humana que es como no
es en realidad, es levantar un falso testimonio contra los individuos
de la poblacion finita.

También considerar que una persona puede responder a la
misma pregunta con dos cantidades diferentes es mentir por parte
del que responde o del que toma la observacion y anota dos
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respuestas numéricas del mismo dato, pues falta a la exactitud de
la medida.

Por otro lado, decir que se selecciona una muestra que has
encontrado de hecho como si fuera tomada con unas condiciones
de aleatorizacion concretas sin posible comprobacion de quien lo
dice, es afirmar como cierto algo que es incierto, o lo que es lo
mismo mentir o engafnar o exponerse a ambas cosas sobre el
procedimiento de seleccion.

9.2 Bases bibliograficas

En esta seccion estudiamos métodos estadisticos y de muestreo de
poblaciones finitas, asi como las politicas editoriales en las
publicaciones de docencia y de investigacion estadistica. Vemos
los métodos objetivos de observacion y de estimacion estadistica
como es el muestreo de poblaciones finitas y recogemos las
referencias bibliograficas de caracter internacional mas destacadas.

Para poder abordar estudios estadisticos con garantias
cientificas y realistas, es necesario disponer de un marco constante
0 periddicamente actualizado y renovado de las personas, familias,
empresas, industrias, etc. objeto de estudio sobre las que se
pretende tener informacion rapida y a bajo coste, basandonos en la
identificacion, accesibilidad y recogida de la informacion cierta de
aquellas unidades que hayan sido seleccionadas en la muestra en el
caso de ser un estudio inferencial apropiado y ético.

En un estudio inferencial caben dos tipos de errores:
observacionales y cientificos. Los errores observacionales son
aquellos que resultan de al menos una observacion de un dato
erroneo que se incluye como cierto o verdadero en el estudio
estadistico. Este tipo de errores pueden ser reconducidos
cientificamente, por ejemplo inspeccionando una submuestra de la
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muestra que contenia posibles datos erroneos y conociendo su
verdadera magnitud (Ruiz Espejo, 1988a).

Otro tipo de error en la estadistica aplicada consiste en
aceptar planteamientos o hipoétesis de estudio que no concuerdan
con las realidades a las que se aplican, ya sea por suponer
condiciones o premisas logicas que no existen en la realidad, no se
dan, o bien por la imposibilidad de saber o comprobar en la practica
que la suposicion hecha es cierta o no entre la infinidad de este tipo
de suposiciones que es posible hacer. Pues basarse en un error casi
seguro no es buen fundamento cientifico para basar una
investigacion objetiva. A partir de una mentira casi segura, poca
verdad puede deducirse salvo que hagamos mucho maés efectivas
las observaciones verdaderas que el modelo supuesto.

Los errores probables de un estudio inferencial es algo
posible y real en los métodos estadisticos objetivos, pero también
estos errores son controlables en gran medida y estimables sin
sesgo basados en un concepto de probabilidad como instrumento
de seleccion de la muestra y aprovechando eficientemente esta
informacion muestral.

Otra cosa seria asumir errores evitables o basar el estudio en
hipotesis inciertas o asumidas sin certeza posible en su objetividad
por ser asumidas sin comprobacién posible en la préactica y por
tanto de dudosa adecuacion.

La inmensa mayoria de métodos estadisticos que ocupan los
contenidos de las revistas de investigacion en el ambito anglosajon
pueden tener aspectos novedosos matematicos pero no rednen los
requisitos evidentes presentados en la practica al abordar estudios
sociales, administrativos o de las estadisticas oficiales para reflejar
los hechos reales que acaecen en las sociedades y que pretenden
conocer inferencialmente con la mayor calidad y objetividad. Este
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es uno de los criterios necesarios a tener en cuenta para la mejora
de la calidad de las estadisticas sociales (Desrosiéres, 2000).

Actualmente la materia de muestreo de poblaciones finitas ha
superado etapas de consolidacion de tecnicas especializadas desde
los afios 30 y 40 del siglo XX. Los avances teoricos y practicos que
permiten fundamentar sus bases cientificas y desarrollar su
matematica formal puede verse en distintos libros como los de
Cassel, Sarndal y Wretman (1977), Cochran (1977), Fuller (2009),
Hedayat y Sinha (1991), Miras Amor (1985), Ruiz Espejo (2013c),
Tucker (1998), etc. Los planteamientos basicos son comunes para
todos estos libros, partiendo de una poblacion finita numerada con
la condicion de que sean identificables y localizables (accesibles y
medibles u observables sin errores) fisicamente si su indicador
numeérico fuese seleccionado en una muestra obtenida al azar por
un procedimiento probabilistico, de entre todas las unidades que
constituyen la poblacién finita.

Es cierto que muchas poblaciones finitas evolucionan con el
tiempo (hay nuevos nacidos y defunciones), pero en el
planteamiento basico no consideramos estos cambios ya que si
interesara estudiar la poblacion finita en otro instante de tiempo el
muestreo de poblaciones finitas como metodo objetivo sigue
siendo valido en el nuevo instante o periodo temporal.

Por otro lado no aceptamos que de una misma unidad puedan
aportarse mas que un solo dato u observacion numérica verdadera
del mismo fendmeno, lo que no ocurre en algunas teorias que
admiten que haya mas de una posible respuesta pudiendo darse la
invencion de todos estos datos salvo uno a lo sumo, pues de este
modo admitiriamos engafio, mentira, fraude o estafa si fueran datos
economicos por ejemplo. Asi preservamos el espiritu de la verdad
en nuestro estudio sobre la variable de interés, que observamos de
modo exacto.

375



Si una estimacion insesgada tiene poca variabilidad es que es
bastante exacta o casi sin error. La objetividad viene de considerar
una poblacion finita fijada que puede ser censada o numerada, y
sus unidades son identificadas sin error antes de proceder a la
seleccion de la muestra. La objetividad viene también de que no
necesitamos suponer algo incierto como hipétesis de trabajo, como
ocurre en otros tipos de inferencia. La objetividad surge también
de que en el muestreo de poblaciones finitas fijadas, la
aleatorizacion es un instrumento objetivo (y no supuesto) para
seleccionar la muestra con determinadas condiciones; y no
admitimos que la aleatorizacion sean unas propiedades
matematicas que se supone que la naturaleza de los datos obtenidos
cumplen sin comprobacidn alguna, como ocurre en la mayor parte
de las teorias clasicas. Ver, como ejemplos de inferencia clasica,
Zacks (1971), Rohatgi (1984), Murgui Izquierdo y Escuder Vallés
(1994), Casas Sanchez (1996), Stuart, Ord y Arnold (1999),
Garthwaite, Jolliffe y Jones (2002), Lejeune (2010), Young Yy
Smith (2010) y Olive (2014). No es correcto dar por cierto lo que
es incierto, y menos cuando hablamos de personas o grupos
sociales pues podria constituir un falso testimonio sobre personas
0 sociedades.

La mayor parte de las investigaciones de estadistica
matematica se desarrollan hasta la fecha a niveles de abstraccion
muy elevados, tanto que pierden el sentido de la realidad aun
conservando la légica en algun sentido. Tal vez se deba a que las
decisiones sobre la publicacion o no de cada aportacion esta en
manos de profesores universitarios que priman los contenidos
conceptuales tedricos de cierto nivel matematico como
herramienta, y aceptable para su presentacion en revistas o libros
cuyas editoriales buscan una rentabilidad que se concentra
especialmente en contenidos académicos mas que en contenidos de
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verdadero aprovechamiento practico y ético. Los contenidos Utiles
en la practica directa también son publicados pero en una
proporcion realmente limitada entre los efectivamente publicados
a nivel mundial. Ademas el interés cientifico sobre el papel de las
publicaciones cientificas se reduce a indicadores del namero de
citas anuales de los articulos de revistas, con sus muy limitadas
contabilidades por sus deficiencias en la practica al no ser
instrumentos fieles a lo que realmente es, y teniendo en cuenta el
nimero medio de paginas por articulo publicado, en concreto para
calcular el factor de impacto de las revistas cientificas. Se valoran
especialmente aquellos que incluyen tratamientos informaticos
elaborados que precisan de programas de calculo, graficos de alta
calidad, y todas aquellas aportaciones que hagan visibles de alguna
manera las contribuciones tedricas o practicas, lo que requiere unas
inversiones en software estadistico o asimilables con unos intereses
comerciales claros y un mercado de subvenciones oficiales poco
claro y diafano.

Autores que optan por aportaciones especialmente utiles y de
aplicacion inmediata util, llegan a ser tratados por los comités de
algunas publicaciones con mucha severidad, pues a la exigencia
personal del autor por aportar instrumentos practicos, se suma la
exigencia editorial de mantener un alto nivel de abstraccion y de
aportacion matematica del mismo nivel que a cualquier otro trabajo
aspirante aunque no tenga éste utilidad social o practica alguna. A
veces las revistas exhiben su intencion de publicar contenidos
aplicados, pero en realidad sus temas son casi exclusivamente
tedricos con alguna referencia a conceptos realmente aplicados, o
tratan temas de actualidad cientifica pero sin aportar ninguna
solucion real a lo que es materia de interés para el bien humano o
comun ademas de los propios interesados inmediatos como son los
autores, la universidad, la sociedad o la empresa o institucion que
financia la publicacion.
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Existe a mi juicio un exceso de respeto por contenidos
clasicos aungue sean poco realistas y poco objetivos. Un ejemplo
es el exceso de literatura entorno a la distribucion normal. En mi
opinidn se dio excesiva relevancia al “teorema central del limite”
que consiste en que la media muestral o0 media aritmética de un
niumero de observaciones de un mismo fendmeno converge
(cuando dicho nimero de observaciones aumenta hacia infinito y
segun distintos criterios de aleatorizacion) a la distribucion normal.
De este modo, se hizo recaer excesiva importancia a dicha
distribucion de probabilidad, pues en la teoria de disefio de
experimentos anglosajon la hipatesis de normalidad es de partida y
de llegada, y se aplica a otros estudios sociales y a un sin fin de
aplicaciones de la estadistica a pesar de que tal hipotesis de partida
como las condiciones probabilisticas de la aleatorizacion con que
se supone se extraen las observaciones sean por lo general
incomprobables en la realidad a la que se pretende aplicar. Sin
embargo también es posible estudiar disefio de experimentos desde
una perspectiva objetiva basada en muestreo de poblaciones finitas
fijadas (Ruiz Espejo, 2018f), que aporta objetividad en esta
materia.

La habilidad semantica y dialéctica de muchos estadisticos
profesionales ha hecho que sus afirmaciones sean en un tono
ambiguo, sugiriendo que los datos observados se ajustan bien
frecuentemente a una distribucion normal, lo cual no significa que
sea tal distribucion sino que estadisticamente no hay razones
significativas para rechazar la hipotesis de normalidad de los datos.
Pero no se le escapa a cualquier estadistico inteligente que no
rechazar una prueba dista mucho de asegurar que sea cierta. Por
tanto hay razones también para dudar de la suposicion de una
hipotesis que no ha sido rechazada ante un test de “bondad del
ajuste” de los datos a la distribucion normal.
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Las empresas e instituciones que se encargan de realizar
sondeos o0 estudios por muestreo se ven mas preocupadas por dar
una apariencia cientifica si hay ficha tecnica de sus estudios
estadisticos que a proporcionarlos de hecho al disefar, proyectar y
realizar los métodos que pretenden hacer valer en tales
investigaciones practicas.

Las estadisticas oficiales realizadas se mueven a niveles de
gran conformismo con las estructuras administrativas tradicionales
de los registros de datos, una inercia que rara vez incorpora
aportaciones técnicas y de verdadera investigacion aplicada de los
ultimos tiempos. Las aportaciones de soluciones a problemas de
indole técnico o cientifico planteados en la practica de encuestas o
muestreos, no siempre tienen eco en la préactica oficial o privada.
Lo que no quiere decir que no sea deseable.

La teoria de muestreo de encuestas ha sido muy influida por
los avances en tecnologias computacionales y de analisis de datos,
no siempre de modo objetivo, que han sido desarrollados desde el
siglo XX (Bellhouse, 2000).

Podriamos citar un gran numero de libros editados sobre
muestreo de poblaciones finitas y de recopilaciones de la materia
en las ultimas décadas. Muchos de ellos estan recogidos en la tesis
del autor (2003a). Por su trascendencia destacamos los de Hansen,
Hurwitz y Madow (1953) que aportd bases matemaéticas a su
estudio, y el de Wolter (1985, 2007) que recopilé material para el
analisis del error de muestreo en base a la estimacion de la varianza
de los estimadores de las funciones paramétricas. Ejemplos de
aplicacion de este libro son las metodologias originales de los
trabajos de Ruiz Espejo (2013c) y de Ruiz Espejo, Delgado Pineda
y Singh (2006).

Son muchos los autores (que omitimos) que también
presentan enfoques complementarios en algunos casos sobre los
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métodos de muestreo de poblaciones finitas de la mayoria de
continentes.

La estadistica explicada en las universidades espafiolas y en
general de todo el mundo siguen una direccion influida por los
avances de la matematica de los ultimos siglos, en concreto del
anélisis infinitesimal, calculo diferencial, analisis matematico,
analisis funcional, etc. De este modo se expandieron estos
conocimientos limitados por su subjetividad en la practica a otras
areas de la ciencia como la medicina, la economia, la empresa, etc.
Las aportaciones de cada ciencia solo servian para perfilar el tipo
de ejemplos y ejercicios a los que se aplicaba la metodologia
estadistica estandar que se consideraba comun para todas las ramas
del conocimiento cientifico sin hacer en muchos casos un analisis
de la objetividad de sus procedimientos en cada caso practico de
estudio.

Es de reconocer las aportaciones de muchos matematicos que
sin disponer de procedimientos objetivos como hoy disponemos,
han dado soluciones a muchos problemas surgidos en el campo
practico basandose en hipotesis o0 planteamientos proximos a las
condiciones que de hecho aparecen en el contexto de la ciencia
concreta a la que lo aplicaban.

Pero los métodos proporcionados por los censos, la
estadistica descriptiva (Mengal, 1999) y la inferencia objetiva de
muestreo en poblaciones finitas fijadas (Ruiz Espejo, 2013c), han
resultado ser los mas consistentes, realistas, y por tanto mas
objetivos.

Sorprende que tanto los censos como la estadistica
descriptiva hayan sido excluidos de los estudios universitarios en
facultades de ciencias matematicas pues son conocimientos
basicos, practicos y fundamentales para desarrollar la inferencia
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objetiva. Este tipo de estudios se relegan a personal técnico
administrativo como rutinas de trabajo, mientras que las
abstracciones matematicas de cierto nivel mas estériles en cuanto a
su objetividad se circunscriben a estudios superiores de grado o
doctorado y reciben por lo general los mejores reconocimientos y
apreciaciones académicas en dichas facultades.

Una diferencia de la inferencia realizada en poblaciones
finitas fijadas por muestreo, de otros tipos de inferencia, es que las
unidades seleccionadas lo son con un “procedimiento controlado
de aleatorizaciéon”, y no “de origen supuesto” como hace la
inferencia paramétrica clasica, bayesiana, no paramétrica, de
distribucién libre, etc. por lo general.

La seleccion controlada de la muestra en la inferencia
objetiva puede realizarse por medio de tablas de niUmeros aleatorios
(como se intentd inicialmente a principios del siglo XX), o bien con
ordenadores que generen esos digitos ejecutando programas
informaticos.

De este modo se hace posible la “descripcion y explicacion
de la realidad social objetivamente, sin deformarla con nuestros
deseos o intuiciones personales”, y asi hacer posible en las ciencias
humanas disociar la “pura observacion” de la “valoracion
subjetiva” de los fendmenos sociales contemplados.

Los métodos estadisticos objetivos se basan en hechos y en
datos de dichos hechos, por lo que describen la realidad o infieren
sobre ella en base a observaciones y métodos objetivos. Los
métodos inferenciales predictivos se basan en hipotesis sobre cdmo
se comporta el fendmeno estudiado ya sea a través de un modelo
presupuesto y por tanto subjetivo o no seguro. Por tanto los
métodos estadisticos predictivos tampoco superan las objeciones
més elementales en busca de objetividad en el procedimiento,
aungue puedan parecer mas imaginativos y descomprometidos con
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la busqueda de la verdad. El conocimiento objetivo se fundamenta
en las cosas que estan ahi y son, al alcance total o parcial del
investigador. No es algo en lo que baso supuestamente el
razonamiento, sin esfuerzo en conocer y por conocer apoyandome
en realidades.

Para impulsar nuestro conocimiento hay que estar abiertos a
las aportaciones de otras tecnologias que pueden redirigir las
investigaciones formales o técnicas, asi como dar oportunidades a
la imaginacion constructiva.

En los tipos de inferencia diferentes del muestreo de
poblaciones finitas fijadas con aleatorizacion controlada, el modelo
distribucional asumido para la variable estadistica o aleatoria de la
poblacion puede ser diferente de la supuesta o incluso no existir tal
distribucion que se presupone en la realidad. Dos argumentos
suelen ser esgrimidos en este caso.

El primero consiste en decir que aunque la distribucion
poblacional sea desconocida, podria aceptarse mediante un
contraste de hipdtesis. Nuestra objecion es que aceptar un modelo
no significa que sea el Unico aceptable para el mismo test y los
mismos datos. Incluso puede no ser ninguno de los propuestos.

Otro argumento utilizable es que las observaciones si no
existen en el caso concreto al que aplicar los métodos estadisticos,
estas pueden generarse o0 simularse mediante un programa
informatico adecuado de seleccion de datos. Nuestra respuesta es
entonces que los datos no son ya de una poblacién natural y real,
sino producidos artificialmente por un ordenador segin unas
instrucciones programadas, lo que reduciria el problema a un
estudio didactico o de simulacidn teorica sin implicacion préactica
social.
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Estas consideraciones no hacen menoscabo del interes
matematico y formal de los razonamientos que sostienen las
muchas técnicas estadisticas a las que se dedican la edicion de
cientos de revistas periodicas en el mundo, asi como libros y otros
materiales especializados. Su interés parece dirigirse a fomentar,
exhibir y aumentar la destreza cientifica de los investigadores en
matematicas o en la aplicacion de las técnicas estadisticas, lo cual
dista mucho de que su uso sea correcto en cualquier aplicacion por
el mero hecho de que sean consistentes matematicamente.

La coherencia de todas las hipdtesis con las realidades a las
que se desea aplicar, es otro requisito imprescindible para el buen
uso de las aportaciones matematicas en el contexto aplicado a
fenomenos no simulados sino reales y naturales. La deficiencia por
la que no sean coherentes es quizas que el profesor que lo explica
no siempre “esta en” o “‘se pone en situacion de” casos reales o con
quienes tratan de aplicar sus aportaciones. Aceptar muchas técnicas
estadisticas comporta un trasfondo de explicar fenomenos que no
tienen por qué seguir sus leyes y sus reglas de discernimiento.

Una estrategia de muestreo en poblaciones finitas fijadas
consiste en el par compuesto por el disefio probabilistico de
seleccion de unidades y el estimador del parametro poblacional del
que se trata de inferir. En Ruiz Espejo (1997c, 2011a, 2015b) se
presentan soluciones a problemas de este tipo de estrategias
muestrales en la préactica.

El seguimiento de las realidades sociales es algo muy
importante en la planificacion de soluciones a las necesidades de la
poblacion extendida cada vez a areas de mayor amplitud. Saber
cuales son los problemas es algo que se puede conseguir con
métodos estadisticos, pero resolverlos es la parte principal que no
puede ser atendida sin conocimientos objetivos del estado social.
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Muchos estadisticos pueden avalar técnicas como capaces de
aportar un meétodo cientifico para el conocimiento de realidades.
Lo que no es muy comun es defender aquellas que, tras una
reflexion constructiva por su objetividad y con la experiencia
sincera del cientifico conocedor de la ciencia inferencial estadistica
y atento a la moral, se mantienen vélidas ante las posibles
objeciones legitimas que pudieran hacerse. Esto Gltimo es lo que
pretendemos aportar en este capitulo como fruto de nuestra
reflexion.,

El resultado es la proliferacion de libros con grandes
abstracciones y un empefio de los autores en convencer de que tales
teorias son perfectamente aplicables a los datos que usualmente se
manejan en la materia de fondo a la que se dirige. Sin embargo es
fundamental la comprobacion de las hipotesis de trabajo de los
resultados matematicos aplicables a las condiciones concretas de
aplicacion.

Aunque no toda metodologia estadistica aporta la misma
claridad en el conocimiento social al ser aplicadas, pensamos que
algunas de ellas son totalmente objetivas para este fin. Veremos
cuales son estas metodologias 0 métodos razonando los porqués de
su utilidad real, es decir que sirven a su fin con objetividad. La
logica que empleamos no es solo de tipo matematico sino de
comprobacion de si las hipétesis empleadas en los teoremas y en
los razonamientos matematicos siguen siendo condiciones reales
estudio en la practica en la que se aplican.

Para un matematico, cualquier teorema bien demostrado es
ciencia, pero para aplicarse a un caso practico no todo teorema y
sus premisas son adecuados y respetan la realidad del mundo
natural al que se aplica. No carece de rigor matematico cada
teorema demostrado, pero al inferir en un caso concreto puede
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faltarse a la maxima coherencia y seriedad deseable si las hipotesis
no pueden comprobarse que son verificadas en la practica concreta.

El uso de métodos de investigacion estudiados en el
laboratorio matematico sin un fin Gtil practico definido y que
después se aplica sin fundamentar previamente en el método y en
las hipotesis basicas las realidades a las que pretendemos dar luz,
no contribuye sino a la confusion y a la creacion de resultados sin
base segura.

Con unos métodos de investigacion adecuados a los aspectos
de interés social y econdmico, es posible proyectar en base a
informaciones fidedignas obtenidas cualquier tipo de politica
social y disefar las disposiciones, convenios o0 pactos legales que
den un caracter de derecho positivo a los compromisos, los
acuerdos y las actuaciones consecuentes.

Los métodos estadisticos proporcionan instrumentos técnicos
para detectar la evolucion y el cambio de los hechos entre dos
instantes o periodos de tiempo determinados y lugar concretos. Su
uso ha sido importante en el U. S. Census Bureau y en otras
instituciones oficiales de estadistica.

Desde el punto de vista del desarrollo estadistico asistimos al
esfuerzo de adaptacion de los sistemas de informacion y de las
metodologias estadisticas de las economias y estados en transicion
de los paises del este de Europa tras su adhesion a la Union Europea
en las Gltimas décadas.

La sociedad global del bienestar no existe como realidad en
la actualidad pero puede ser realizable en el futuro, y esta
posibilidad de realidad es méas deseable socialmente que la realidad
global presente. Sin duda el papel de la estadistica objetiva es clave
en esa sociedad del bienestar y en la ya existente.
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La estadistica y en especial el muestreo de poblaciones finitas
tendran siempre un interés como ciencia aplicada, por resumir la
informacion de los habitantes del planeta, ademas de hacerlo de
modo econdmico al reducir los encuestados a una pequefia fraccion
de la poblacion total. Ademas no producira efecto cansancio de los
respondientes y de los encuestadores como se daria si todas las
personas fueran encuestadas repetidamente.

Sin embargo en Espafla no se dispone de ficheros
actualizados de todos los habitantes del pais que permitan
identificar y seleccionar muestras de ellos con fines sociales. En
este terreno los especialistas en informatica y sus soluciones
técnicas tienen en su mano resolverlo alcanzando una
administracion informatizada. Aungue es posible ya una seleccion
de muestras en algunas bases de datos a partir de ficheros parciales
continuos o secciones censales periodicamente actualizadas.

Es necesaria la interconexion entre teoria y aplicacion
practica, conciliando las condiciones de aplicacién practica de un
método y sus conceptos o hipotesis con la realidad que queremos
conocer objeto de estudio. Asi, los métodos objetivos para estudiar
el comportamiento social no tienen que ser decisivos en las
conclusiones del estudio, si aquellos se han fundamentado en datos
ciertos.

Tras el proximo capitulo concluimos que algunas de las
metodologias de inferencia estadistica son mejores que otras para
estimar parametros poblacionales de variables cuantitativas fijas y
observables de interés social. Esto no quiere decir que con tales
métodos quede todo explicado a la luz de ciertas definiciones
previas, 0 que no haya mas que un método bueno para conocer la
sociedad. Lo que si quiere decir es que para ciertos parametros
poblacionales de interés social que pueden describirse mediante
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variables cuantitativas y fijadas en cada unidad de la poblacion,
existen metodos claramente capaces de superar todas o mas
objeciones que otros muchos métodos estadisticos que ocupan un
lugar importante en las investigaciones y publicaciones cientificas
actuales, pero no superan las mismas objeciones.

La logica interna de una demostracion matematica es mas
facil de analizar que la verdad de las proposiciones practicas.

9.3 Desarrollos estadisticos

En esta seccion explicamos los argumentos fundamentales en que
nos basamos para hacer una seleccion de métodos de estadistica
inferencial tal y como se desarrollan en los cursos universitarios de
la materia.

Queremos hacer ver con claridad las razones que nos
impulsan a dudar de ciertas metodologias en la practica,
argumentando Idgicamente y respetando la verdad pues éste es el
fin de un estudio estadistico inferencial, arrojar luz y claridad al
fenomeno estudiado. También proponemos otras metodologias que
superan tales condicionantes, por lo que nuestra intencion es
plenamente constructiva, veraz y racional.

Uno de los puntos de partida para valorar estas metodologias
es la existencia real o no de la probabilidad en la naturaleza. No me
refiero al azar. Sino al hecho o ilusion sin base real de encontrar
indicios de que la probabilidad como concepto matematico
acufiado en 1933 por Kolmogorov sea revalidado en el mundo en
que vivimos.

El hecho de que algun libro de fisica como el de Pécseli
(2000) usen del concepto para explicar realidades no prueba su
existencia real. En las ciencias sociales ocurre algo parecido.
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Cuando realizamos un experimento y aun poniendo el
maximo cuidado en controlar todas las circunstancias importantes,
el resultado de tales casos varia de una observacion a otra en una
forma irregular que elude todo tipo de prediccion sobre el
resultado, y en este caso Cramér (1953) considera que la sucesion
de experimentos son aleatorios. Cualquier registro sistematico de
los resultados de sucesiones de experimentos constituye un
conjunto de datos estadisticos relativos al fenébmeno considerado.
El objetivo de la estadistica, para este autor, es investigar la
posibilidad de extraer de los datos estadisticos inferencias validas,
elaborando los métodos mediante los cuales pueden obtenerse tales
inferencias. Pero si las condiciones no fueran similares en cada
experimento sino que fueran exactamente las mismas, ¢habria
aleatoriedad o resultados diferentes en dos 0 mas experimentos asi
realizados?

Cramer aflade que debe modificarse toda teoria que no se
ajuste a los hechos, como principio general de toda investigacion
cientifica que se denomine como tal. Este principio racional puede
ser aplicado por la mayoria de escuelas de estadistica, pues damos
a continuaciéon argumentos de hecho para que reconsideren sus
estudios.

La mayoria de las investigaciones matematicas de tipo
estadistico en la actualidad utilizan hipotesis de partida en los
razonamientos que no pueden ser comprobadas o corroboradas
directamente “antes de” ni “durante” su aplicacion al fenomeno que
se estudia.

En concreto, se utiliza el concepto de distribucion poblacional
y se le asigna una distribucién determinada salvo uno o varios
parametros desconocidos de la misma que corresponden a una clase
de ellas del mismo tipo y distribucidn, pero de las que se trata de
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estimar dichos parametros para decir algo de las caracteristicas a
investigar (Rios Garcia, 1977).

La situacion anterior es la mas elemental presentada en la
inferencia parameétrica clasica. La situacion no varia mucho para
otros tipos de inferencia como la bayesiana o la no paramétrica,
donde las hipdtesis formuladas pueden hacerse aun mas
incomprobables y abstractas, despegandose mas de lo tangible,
comprobable y controlable para poder partir de unas condiciones
lo mas realistas y objetivas posibles, como seria deseable y se
requiere en la practica.

Utilizar la inferencia estadistica presupone la aceptacion,
como en la mayor parte de los métodos estadisticos, de que la
poblacion experimental (si existiera de hecho) de la que tomamos
muestras, se distribuye segun alguna teoria o modelo de
distribucion. Esto exigiria la comprobacion practica de unos
axiomas matematicos incomprobables a su vez que expliquen y
hagan valida la inferencia estadistica en tales ciencias
experimentales.

Aceptar en la realidad el concepto de ‘“poblacion
experimental” implica aceptar el concepto de la probabilidad, sobre
la cual no hay evidencia fisica ni consenso entre los cientificos de
su existencia real. A pesar de ello, la simulacion con ordenadores
de este concepto y estos modelos ha permitido resolver cuestiones
cientificas de caracter matematico, como por ejemplo los métodos
de Monte Carlo para el calculo aproximado del numero m (Rios
Garcia, 1977).

Como consecuencia, no podemos afirmar nada
experimentalmente a partir de la estadistica inferencial sin
comprobar las hipotesis o axiomas que fundamentan los métodos
estadisticos usados, que deben adecuarse a la realidad que
experimentamos. Pero como esta adecuacion Ultima es
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incomprobable en la mayor parte de los casos aplicados con las
técnicas estadisticas inferenciales dichas, podemos concluir que la
mayor parte de las investigaciones estadisticas de tipo matematico
aportan ademas de elaborados razonamientos logicos, poca o
dudosa luz sobre las realidades a las que se aplican.

La hipdtesis poblacional de normalidad, como axioma que ha
ocupado y ocupa el centro de los modelos de distribucion de los
datos experimentales, esta basada segun sus defensores en alegar
argumentos de tipo experimental. Este modelo de distribucion
poblacional no se suele justificar, pues es imposible de demostrar,
pero suele ser admitido como argumento explicativo de realidades
de tipo agricola o biologico en disefio de experimentos desde su
inicio con tal axioma de normalidad. El uso de la “distribuciéon
normal” en estudios aplicados es algo muy comun. Esta
distribucion fue descubierta por De Moivre en 1733, como
distribucion limite de la distribucion binomial, aunque su
descubrimiento paso inadvertido. Posteriormente Gauss en 1809 y
Laplace en 1812 la redescubrieron. Sus obras en las que publicaron
sus resultados fueron muy influyentes de modo que de modo casi
axiomatico sus seguidores consideraron que practicamente
cualquier distribucién estadistica en la practica se acercaria a la
distribucion normal con solo disponer de un nimero grande de
observaciones suficientemente precisas.

Asi se pensaba que la desviacion de cualquier variable
aleatoria respecto a su media se consideraba como un “error’ sujeto
a la “ley de errores” que a su vez se expresaba tacitamente como
asumible directamente por la distribucion normal.

El “teorema central del limite” que asegura que la media
aritmética de un gran numero de variables aleatorias
independientes e igualmente distribuidas, tiene una distribucion
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normal en el limite, y ampliaciones particulares posteriores de este
teorema que aseguran este comportamiento para funciones mas
generales que la media aritmética, asi como en distintas
condiciones de variables dependientes, hicieron que muchos
cientificos creyeran en la “ley de errores” como algo casi natural;
los experimentadores lo creyeron porque piensan que se trata de un
teorema matematico, y los matematicos lo creyeron por pensar que
era un hecho experimental.

Sin embargo estas creencias no deben ser absolutas, ya que es
dificil o casi imposible encontrar en la practica exactamente las
condiciones que garantizan matematicamente esa conclusion, y
ademéas la experiencia de muchos cientificos posteriores en
distintos campos de conocimiento nos hace ver que la “ley de
errores” no es ni mucho menos un absoluto, como puede verse en
la distribucidn de rentas en Economia que son de tipo “asimétricas
a la derecha” y no “normales y simétricas”. Lo que significaria la
falsacion de la teoria que, segun el filosofo Popper, por ello deberia
abandonarse como generalizable a cualquier fenomeno, y
debiéndose demostrar en cada caso su idoneidad al fendmeno
estudiado.

Las cuatro fases del proceso estadistico segun Rios Garcia
(1977), son: descripcién, analisis, contraste de hipotesis vy
aplicacion a la prevision. La primera fase tiene por finalidad
presentar los datos observados de diversas maneras describiendo
en todo momento la realidad constatable y objetiva mediante
operaciones simples de tipo matematico. La fase de analisis (de
construccion de un modelo tedrico que permite enunciar una ley),
y de contraste de hipdtesis (con nuevas experiencias que pueden
hacer confirmarla o rechazarla), corresponden a la estadistica
subjetiva e inductiva, en la que pueden obtenerse avances no
necesariamente “seguros” en el conocimiento de los hechos, sino
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solo “posibles” o “probables” y especialmente débiles cuando se
incorporan teorias y modelos subjetivos para su obtencion.

La fase de aplicacion a la prevision, o utilizacion de la ley
enunciada para anticipar los resultados de nuevas experiencias,
podria tener utilidad en algun caso, pero existen riesgos en su mal
uso practico debido a la formulacion de leyes incomprobables, o
por su inexistencia en la realidad o su evolucién a lo largo del
tiempo. En tales casos la prevision es parcial o totalmente a ciegas,
con sus consecuentes derivaciones que podrian falsear las
predicciones.

De estas criticas esta libre el muestreo de poblaciones finitas
fijadas que permite evaluar inferencialmente situaciones sociales
de hecho. Lo cual no elimina las limitaciones practicas del mismo.
Asi, por ejemplo, no siempre es posible reunir efectivamente los
requisitos imprescindibles para ser aplicado. No siempre es posible
disponer de un listado completo de las unidades que componen la
poblacién. Esta situacion, que podria presentarse, puede ser
subsanada con leyes censales que exijan a los ciudadanos,
empresas, pacientes, etc. su inscripcion en los “registros oficiales”
de los que se puedan obtener los listados siempre para beneficio de
los propios registrados y de la comunidad.

La estadistica matematica inferencial se basa en el concepto
de probabilidad, que puede no existir en la realidad como ha
afirmado el estadistico matematico italiano Bruno de Finetti (1974,
1975) en sus libros de teoria de la probabilidad.

De ser asi, surgen dos opciones en la estadistica préactica:
conformarnos con lo que sabemos por métodos descriptivos y
censales, o bien aprovechar los resultados matematicos de
estadistica inferencial simulando (por ejemplo, con ordenadores)
su existencia y reproduciendo “numero aleatorios” seleccionados
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de acuerdo a ese concepto tedrico de probabilidad que, aungque no
exista en realidad tal probabilidad, los “ntimeros aleatorios”
permitan reproducir sus propiedades y aprovechar los resultados
demostrados por estadisticos matematicos para resolver cuestiones
de tipo practico. De no ser asi, la posible existencia de la
probabilidad aunque no haya sido probada tampoco asegura
conocer su valor axiomatico exacto para cada suceso que nos
interese en la practica, debido a la imposibilidad real de conocerla
en su valor numérico exacto y, esto, si fuera objetivo e
independiente del tiempo. Si su valor exacto es desconocido, pocas
leyes podriamos aplicar en la practica con la minimas garantias de
seguridad en que las distribuciones probabilisticas utilizadas
inferencialmente sean las verdaderas o adecuadas en cada caso
concreto en que pretendamos usarlas con fines de utilidad practica,
como es en la investigacion social y biomédica.

A pesar de no saber en realidad si existe 0 no en la practica el
concepto de probabilidad, los cientificos han dado lugar a muchas
maneras de interpretarla o de definirla. La axiomética de
Kolmogorov parte ya de su existencia, y regula las condiciones
minimas que debe cumplir tal concepto, unas propiedades ldgicas
derivadas de las propiedades limite de otro concepto que si es
medible, la frecuencia relativa de un suceso.

El concepto de probabilidad de un suceso es el de frecuencia
relativa del mismo suceso y su limite al realizar una sucesion de
experimentos en idénticas condiciones. Al ser cada experimento
independiente de los anteriores y posteriores, para cada numero
finito de experiencias existe una frecuencia relativa de ocurrencia
del suceso, pero en realidad nunca se conocera el limite de la
sucesion de experimentos al no poder realizar el computo final de
la frecuencia relativa de los infinitos experimentos necesarios para
obtener el limite de tal sucesion de frecuencias producidas en las
sucesivas experimentaciones acumuladas.

393



De este modo, aunque la probabilidad de un suceso existiese,
tal probabilidad no podra ser conocida experimentalmente, sino
solo por aproximaciones que nos puedan proporcionar las
frecuencias relativas de dicho suceso en un numero finito de
experiencias observables. De aqui que la probabilidad, aun
existiendo supuestamente, no sera posible conocerla con exactitud
de la experimentacion.

Otro concepto de probabilidad es el de “probabilidad
intuitiva, logica o necesaria” debida a George Boole y propuesta
por el como una generalizacion de la logica, trata de medir la
relacion entre dos proposiciones concretas, una de las cuales no es
consecuencia légica de la otra.

El concepto de probabilidad utilizado por la relacion
“apuesta/premio” como cociente entre dos cantidades economicas,
de las que el denominador es una cantidad objetiva, y el numerador
es subjetivo para cada jugador o apostante, es otra definicion
subjetiva de probabilidad muy conocida entre jugadores y
economistas.

La confianza de un individuo en la realizacion de un suceso
es utilizado en la teoria clasica de la probabilidad, como ocurre en
la teoria bayesiana, debida al pastor protestante Thomas Bayes.
Para la teoria probabilistica e inferencial bayesiana, la asignacion
de probabilidades o de distribuciones “a priori” es algo que aporta
el propio investigador estadistico quien realiza unas valoraciones
generalmente subjetivas, que en muchos casos o en la mayoria son
inasumibles por otros investigadores aun compartiendo la misma
metodologia bayesiana, y por todos aquellos que creen en la
objetividad de las probabilidades y de sus distribuciones, si ambas
existieran.
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Las teorias subjetivas de la probabilidad tienen sentido para
el syjeto o individuo que aporta su idea u opinion “a priori” sobre
la probabilidad de los sucesos, y que puede modificar tal idea u
opinion al incorporar nuevos resultados experimentales sobre el
MiSmo suceso.

Para todos estos, 0 su gran mayoria, no tiene sentido plantear
un concepto objetivo de la probabilidad de un suceso compartido
por todos, sino que es mas bien un instrumento personal mas que
aspira a ser utilizado como herramienta en el proceso de analisis
teorico y formal con la posibilidad de incorporar nueva
experimentacion. Pero esta experimentacion no se obtiene siempre
por méetodos objetivos tampoco, sino que pueden contener un sesgo
intencional e incluso no probabilistico en la obtencion de los datos
ya que las unidades no estarian identificadas en algunos casos y no
serian accesibles con igual o supuesta probabilidad de cada
observacion en la practica.

De lo anterior podemos concluir que la estadistica moderna
que (con las excepciones de la estadistica descriptiva y de la
inferencia en poblaciones finitas fijadas, con probabilidades
simuladas por ordenador para la seleccion de unidades) esta basada
en el concepto de probabilidad intrinseca en la naturaleza de los
datos, puede considerarse una construccion logica pero con pies de
barro al apoyarse en concepciones de la probabilidad de los que no
hay garantias de su existencia. Por tanto, las consecuencias de las
teorias inferenciales que se fundamentan en ellas no pueden ser de
una garantia como si tales conceptos hubieran sido demostrados y
comprobados en la préctica.

En el siglo XIX, la calidad en la estadistica se entendia como
la consecuencia de la seguridad y la evidencia de naturaleza
exhaustiva en la actividad de la recoleccion de los datos censales
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de los cuerpos oficiales, concepcion inspirada por la propia “teoria
legal” que subyace en dicha filosofia de actuacion.

En los afios 20 del siglo XX el estado del bienestar introdujo
métodos de direccion estadisticos en el sentido actuarial de la
palabra (Desrosieres, 1997), lo que dio legitimidad social a los
datos elaborados estadisticamente vinculando cambios en el Estado
y en la concepcion de la estadistica como ciencia.

En la década de 1930, el estadistico americano W. E. Deming
fue quien introdujo el célculo probabilistico en la estadistica
oficial, concretamente en las primeras investigaciones por
encuestas de empleo y desempleo (Anderson, 1988). Hasta
entonces las muestras se seleccionaban con criterios de
representatividad o proporcionalidad (incluyendo el azar no
probabilistico), pretendiendo en todo caso que la muestra fuera una
miniatura de la poblacion sobre la que se queria inferir, pero sin
utilizar de hecho el propio concepto de probabilidad que ya
utilizaban y manejaban matematicos, filosofos, l6gicos, etc.

En la década de los afios 1940, Deming us6 las mismas
técnicas para el desarrollo del “control de la calidad” en la
produccion industrial, manejando el muestreo aleatorio y la
verificacion de defectos en los articulos producidos en serie en
Estados Unidos, y posteriormente en Japén y Europa con su
“quality movement” y “quality circles” en los afios 1980, y la “total
quality” y la “zero-defect” tan en boga las ultimas décadas en las
industrias automovilistica y electrénica.

Una dificultad de los métodos inferenciales basados en la
probabilidad es la de crear las condiciones experimentales para
reproducir las mismas caracteristicas en diferentes observaciones
de un mismo fendémeno aleatorio. En un ejemplo fisico, pensamos
que reproducir las mismas caracteristicas para evitar que el
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movimiento de las estrellas y planetas no influyera en las leyes
gravitacionales es practicamente imposible o no esta al alcance
humano pues aunque pueda parecer imperceptible a nuestros 0jos,
son cambios reales y de dimensiones muy grandes. Este cambio en
las causas (admitiendo la ley de la gravitacion universal como un
ejemplo), hace que sea suficiente en principio para producir efectos
diversos en la experimentacion sucesiva en la que el transcurso del
tiempo tiene su importancia en el cambio de las condiciones
externas.

Suponer que las distribuciones discretas, continuas y otras
méas generales, incluyendo mixturas de ellas, son el modelo
poblacional objetivo de la investigacion social no puede ser un
hecho seguro, pues hemos visto que las poblaciones humanas son
finitas, y si cada unidad tiene la misma probabilidad teorica (en el
sentido de Kolmogorov) de ser seleccionada en cada seleccion,
hace ver que la distribucion en este caso es uniforme discreta y la
muestra que origina los datos es una muestra aleatoria simple (ver
el concepto de distribucion uniforme discreta en el libro de Casas
Sanchez y Santos Peiias, 1995). Basicamente consiste en una
distribucién discreta que concentra probabilidad igual positiva en
un numero finito de puntos de la recta real.

Asi pues, la inferencia basada en modelos paramétricos o no
paramétricos se hace imposible de llevar en condiciones objetivas
aun en el caso mas sencillo de muestras aleatorias simples. Con
mayor razoén, si las observaciones son dependientes 0 con mayor
sofistificacion, seran modelos mas irreconocibles en la practica
desde la deseable objetividad.

En cualquier tipo de inferencia estadistica tradicional se
pretende conocer algo sobre la poblacion completa de partida en
base a una muestra de la misma poblacion. En la estimacién
puntual, la muestra de observaciones se utiliza para aproximar uno
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0 varios parametros desconocidos de la poblacion aunque ésta
pueda ser sospechada o conocida a excepcién de uno o algunos de
los pardmetros que actlan como constantes desconocidas en la
inferencia parameétrica o como distribuciones supuestas a su vez en
la inferencia bayesiana.

En la estimacion por intervalo, la muestra sirve para
proporcionar un intervalo que contiene al supuesto valor del
parametro de interés con determinado nivel de confianza. También
pueden estimarse por intervalo dos 0 mas parametros, dando lugar
a dos 0 més intervalos de confianza.

En el contraste de hipotesis, se trata de decidir si se acepta o
se rechaza una hipdtesis relativa a uno o varios parametros
poblacionales con cierto nivel de confianza, basandose en una
muestra aleatoria de datos procedentes de la observacion de la
misma poblacion sobre la que se trata de inferir sus caracteristicas.

En general, la estimacion por intervalo y el contraste de
hipdtesis pueden realizarse a nivel teorico conociendo la
distribucion exacta o aproximada de algun estadistico o funcion de
la muestra y que dependa del parametro a inferir. Para conocer tal
distribucion del estadistico, es necesario conocer la distribucion
poblacional de partida. Aun cuando existiera esa distribucion
poblacional (cosa no garantizada por las razones de que podria no
existir la probabilidad, ni es posible saber con certeza por lo general
el tipo de la misma), la distribucién del estadistico no es conocida
ni suele ser segura ni comprobable en la practica. Entre otras
razones porque no hay modo posible conocido de garantizar que
las observaciones hayan respetado rigurosamente las propiedades
probabilisticas de la seleccion aleatoria de dichas observaciones.

En la inferencia paramétrica clasica se supone que la
poblacidn se distribuye segun cierto modelo de distribucion o ley,
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que determina su clase de distribuciones (por ejemplo: normal,
uniforme, gamma, beta, etc.) antes de obtener las observaciones,
salvo uno o varios parametros a los que habria que estimar en base
a los datos observados o experimentales procedentes de la misma
poblacidn o de la clase de distribuciones poblacionales (clase que
se suele considerar fijada en todo el proceso inferencial).

Una vez fijados los parametros, determinan una Unica
distribucion de probabilidad de la clase de distribuciones. En la
inferencia paramétrica clasica el problema se reduce a estimar el o
los parametros desconocidos y supuestamente fijos con la ayuda
del modelo supuesto y de las observaciones que se toman. Asi la
distribucion del estimador de cada pardmetro depende del modelo
supuesto, por tanto de su o sus parametros, y de las observaciones,
asi como de la eleccion del estimador concreto o estimadores
tomados.

Algunos criterios de seleccion de estimadores son el principio
de maxima verosimilitud, el principio de suficiencia, el principio
de completitud, etc. También existen otros diversos métodos
estadisticos para la obtencidn de estimadores, como el método de
los momentos, el método de los cuadrados minimos, etc.

Una vez seleccionado el estimador por alguno de los criterios
0 métodos anteriores, puede estudiarse si verifican propiedades
deseables como la insesgacion, la varianza minima uniformemente,
la eficiencia asintotica, etc. que son de gran utilidad para apreciar
el estimador segun las propiedades que verifica. Libros como los
de Cramér (1953), Rios Garcia (1977), Stuart y Ord (1994), Stuart,
Ord y Arnold (1999), y Olive (2014) contienen elementos de todos
estos extremos apuntados.

Otro tipo de inferencia es la no paramétrica, en la que la
poblacion objetivo no pertenece a un modelo dado exceptuando
uno o varios parametros que toman un unico valor fijo vy
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desconocido cada uno de ellos, como suponiamos en la inferencia
paramétrica clasica. Sino que ahora la poblacion pertenece a una
clase de variables aleatorias de un tipo mas general, como podria
ser el de las variables aleatorias con funcion de distribucion
continua, o con funcion de densidad continua, o con una funcién
de densidad conocida salvo su media y su varianza (es decir,
conocida salvo cambios de origen y escala) u otras muchas
posibilidades en las que incluyan clases muy generales de
distribuciones entre las que se supone se encuentra la poblacion
objetivo que es en concreto sobre la que queremos inferir.

Las restricciones realizadas para definir la clase de
distribuciones posibles de la poblacion objetivo pueden provenir de
condiciones de buenas cualidades de facilidad en el manejo
matematico por estar ya estudiadas sus propiedades inferenciales o
de condiciones de origen o de propiedades de tipo matematico
(como pueden ser la continuidad, derivabilidad sucesiva de las
funciones, etc.). En este tipo de inferencia no paramétrica, al
aumentar el namero de posibles poblaciones es légico que la
poblacidn objetivo pueda estar mejor aproximada entre las posibles
que en el caso paramétrico, aunque no siempre seria asi.

Para la inferencia no paramétrica tampoco tenemos garantias
de que las observaciones disponibles se hayan seleccionado segln
las condiciones de aleatorizacion supuestas sobre el papel, al igual
que ocurria en la inferencia paramétrica clasica. La posible no
existencia de la probabilidad como causa de los posibles datos,
sigue pesando sobre este tipo de inferencia. También la imposible
comprobacion de que la seleccion probabilistica supuesta se
produce en la practica, ya que no hay unidades identificadas y
accesibles en general.
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Un caso particular de inferencia no paramétrica es la
inferencia de distribucion libre. En este caso se supone que la
poblacion puede ser cualquiera (libre), desconocida y fija, sin
limitaciones particulares como ocurre en la inferencia no
paramétrica habitual.

Del mismo modo que la inferencia no paramétrica no puede
mejorar desde un punto de vista practico las inferencias por
suponer hipoétesis sin comprobacion posible, como ocurre en la
paramétrica clasica, la inferencia de distribucion libre mejora
siempre a la inferencia no paramétrica ya que los datos pueden ser
mejor aproximados por cualquier posible poblacion, mientras que
en las otras inferencias el rango de poblaciones es menor entre las
que dilucidar la mejor poblacion concreta aproximada a los datos
obtenidos. Otra deficiencia de la inferencia de distribucion libre es
que da la misma importancia a una distribucion posible como es
una distribucidon uniforme discreta, como a otra imposible que
contradiga las condiciones practicas.

La inferencia bayesiana parte de una distribucion poblacional
que como en los casos anteriores de inferencia paramétrica o no
parametrica se supone conocida de entrada salvo alguna o algunas
constantes, cuya distribucion es subjetiva aunque no podran
comprobarse estos extremos salvo que haya un control real de la
distribucion o distribuciones “a priori”.

Ademas se tiene la existencia supuesta de uno 0 mas
parametros poblacionales desconocidos de antemano y que a su vez
se supone que serian variables aleatorias con una determinada
distribucion de probabilidad subjetiva, cuya justificacion no
siempre es suficiente a juicio de muchos autores, como por ejemplo
Rios Garcia (1977).

En realidad la I6gica que soporta tal afirmacion no difiere
mucho del esgrimido en la adopcion de una distribucion de
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probabilidad en la inferencia paramétrica, pues sera en la mayoria
de los casos una suposicion incomprobable e injustificable en sus
extremos, si bien puede tener algo de aproximacion subjetiva que
puede basarse en experiencias anteriores, pero insuficientes para
poder afirmar con seguridad cudl es la distribucion (O’Hagan,
1994).

Sin embargo la probabilidad condicional puede ayudar a
conocer mejor procedimientos de la inferencia estadistica objetiva
(Ruiz Espejo y Singh, 2003).

En la inferencia en poblaciones finitas la variable de interes
esta fijada en cada una de las unidades de la poblacién considerada
y puede afirmarse que la distribucion poblacional es uniforme
discreta si el procedimiento de seleccion asigna la misma
probabilidad a cada unidad de la poblacién finita.

Asi el argumento fundamental no es una suposicion
incomprobable sobre la naturaleza aleatoria en si de la variable
observada, sino més bien en los hechos de saber que la poblacién
es finita, que la variable se concreta en un valor fijo observable en
cada unidad de la poblacion finita y en que la aleatoriedad surge
solo de la seleccion aleatoria y controlada (artificialmente) de la
muestra de la poblacion finita.

Tal aleatorizacion no es proporcionada implicitamente por los
propios datos naturales a los que se accede, como ocurre en los
otros metodos estadisticos inferenciales tratados como los
paramétricos, no paramétricos, de distribucion libre, o bayesianos.

La aleatorizacion en la inferencia en poblaciones finitas
fijadas procede de la aplicacion de métodos de muestreo con
seleccién aleatoria y probabilistica de unidades que puede
simularse por ordenador que genere numeros aleatorios que
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permitan obtener las unidades de la muestra (aleatoria antes de la
seleccion, y fijada después) con la que, al ser observadas tales
unidades de la muestra seleccionada, poder basar nuestra inferencia
objetiva.

Asi cualquier unidad de la poblacion finita puede ser
seleccionada en la muestra y observada, medida, encuestada e
inspeccionada en su caso, para aportar su informacién cierta al
estudio concreto para el que se requiere informacion. Esto no
ocurre por lo general en otros tipos de inferencia, donde se accede
a los datos disponibles, aungque no suponga un esfuerzo especial y
requieran atenerse a unas propiedades determinadas de disefio
probabilistico, por buscarlos de hecho donde los haya. En estos
tipos de inferencia, seria una muestra de pacientes los que
consultan en cierta semana a un medico. Pero en el muestreo de
poblaciones finitas se requiere conocer la lista de pacientes, y de
ella seleccionar la muestra por métodos probabilisticos y no de un
mero azar que luego interpretemos que es una muestra aleatoria
simple o con otro disefio de muestreo determinado sin hacer nada
para asegurarlo en la préactica.

En la inferencia de los modelos superpoblacionales y en
estudios analiticos, se supone que el dato fijo observado es una
muestra aleatoria de tamafio uno de un modelo probabilistico que
se supone actla para generar los datos en cada unidad e inherente
a la naturaleza de la misma. Este modelo puede ser comun para
todas las unidades o diferente dependiendo de la unidad o de la
observacion. Por ello este modelo no es seguro ni comprobable
como hemos visto en otros tipos de inferencia, y puede ser un paso
en el vacio que separa la teoria de la realidad concreta a la que se
pretende inferir o aproximar inferencialmente.

Esto es cierto ademas porque de suponer un modelo asi, cada
unidad puede dar un dato distinto en cada ocasion en que se le
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observe, pero contradice la realidad cuando en ella nos interesamos
por hechos unicos y fijos (datos fijos o fijados), ademas de que son
observables y medidos sin error. La posible suposicion de que tales
datos fijos son provenientes de un mismo modelo aleatorio es en si
misma equivoca y no se atiene a la exactitud de los hechos.

En los estudios socioldgicos es muy comun usar las formulas
matematicas para estimar y calcular errores pero estas formulas
suponen que la seleccion de la muestra es de tipo probabilistico,
algo que no suele ocurrir en el tipo de estudios 0 sondeos por cuotas
(Martinez, 1999).

La estimacion y el contraste de hipdtesis propios de la
inferencia con suposiciones que deforman la realidad, no hacen
sino obstaculizar el conocimiento de métodos objetivos al
ocuparles un tiempo precioso que se ha negado a éstos que no dan
pasos en el vacio. El empefio en que los métodos inferenciales
tienen que suponer que la poblacion puede representarse por
funciones de densidad en muchas aplicaciones no obedece mas que
a la conveniencia matematica para argumentar logicamente el
modelo a nivel tedrico, mas que en un verdadero conocimiento del
caso concreto propiamente dicho del que se trata en la practica.

El muestreo de poblaciones finitas con datos fijos vy
observados sin error es uno de los métodos estadisticos que gozan
de la mayor objetividad y es uno de los procedimientos
inferenciales de mayor uso en la estadistica oficial en los paises
mas desarrollados y democréaticos. También es la base técnica para
muchos indicadores oficiales del bienestar y en su recogida de
datos.

Otras técnicas de inferencia se desarrollan en contextos de
educacion universitaria y de investigacion tedrica pues son
aportaciones de menor importancia real por su trascendencia
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aungue a veces de mayor impacto en investigacion segun criterios
universitarios del ambito inglés, lo que da indice de la disociacion
entre el mundo académico y la practica de nivel objetivo.

En Espafia, el “Instituto Nacional de Estadistica”, el “Centro
de Investigaciones Socioldgicas”, y el “Instituto de Estudios
Fiscales” son tres ejemplos importantes donde se disefian y desde
donde se efectuan estudios de caracter censal, estadistico,
sociopolitico y socioeconémico. En Estados Unidos, los censos de
poblacidn, de tipo electoral, y algunos otros mas relacionados los
realiza el “U. S. Census Bureau”, y también tienen importancia los
censos y recuentos de tipo laboral (“Labour Force”).

En la mayor parte de los paises existen fuentes estadisticas
oficiales desagregadas en un conjunto de organismos oficiales a los
que les afecta aunque, en el caso de Europa, con unas directrices
nacionales y multinacionales dirigidas desde Eurostat, la “Oficina
Estadistica de las Comunidades Europeas”, o desde la OCDE, la
“Organizacion para la Cooperacion y el Desarrollo Econdmico”,
para facilitar la comparabilidad interna y externa de los datos
obtenidos entre diversos paises 0 regiones, areas geograficas o
politicas.

Ademas existe un conjunto de empresas privadas que
conjunta o individualmente colaboran en la realizacion de estudios
estadisticos de prediccion electoral, sondeos de opinion,
investigacion de mercados, etc. asi como empresas que aportan
tecnologias para la realizacion de estos estudios.

Como rama cientifica la inferencia estadistica objetiva tiene
los mismos fundamentos en todos los paises donde se investigan
estos métodos de alta calidad estadistica. La recogida de datos se
realiza en los estudios por observacion fisica o registral, o por
entrevista postal, presencial, por internet o telefonica. En algunos
casos se procede a posteriori a efectuar inspecciones o
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supervisiones de los datos recabados en la primera fase, para
corregir posibles sesgos por posibles errores de medida o por
efectos de la no respuesta (Ruiz Espejo, 1988a).

Los sondeos 0 muestreos por cuotas tan usados en centros
oficiales de investigacion de la opinion publica asi como de
empresas de estudios socioeconomicos y de sondeos de opinion, no
tienen por lo general base probabilistica y por tanto no son
inferencia estadistica objetiva aungque en muchos casos vistos se les
de esa apariencia al presentar informacion de errores de muestreo
o intervalos de confianza cuando éstos solo son posibles con
selecciones controladas probabilisticas de las unidades de la
poblacion en base al marco actualizado de todas las unidades de la
poblacidn. Si no hay probabilidad en la seleccion de la muestra, no
puede hablarse de insesgacion o de varianza de los estimadores o
de nivel de confianza o de intervalos de confianza.

Otro tipo de estafa es realizar un muestreo sistematico o de
otro tipo mas complejo que incluye el azar en la seleccion de
unidades, y presentar las conclusiones del estudio como si fuera
hecho por muestreo aleatorio simple y utilizando sus formulas,
cuando no fueron obtenidos los datos por este procedimiento de
aleatorizacion.

La desconexion real entre las premisas exigidas en la teoria y
las condiciones practicas en que se realiza el estudio, le hace
carecer de rigor y garantias para ser presentado como cientifico y
como estudio objetivo. Esto es extensivo a otros tipos de materias
estadisticas, como el modelo general lineal, los métodos de
regresion, el analisis multivariante, la teoria estadistica de la
decision, el disefio de experimentos, la biometria, etc. que por lo
general necesitan mayor concordancia entre las hipotesis de trabajo
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y la préactica, que las hipotesis aplicadas sean hechos objetivos y no
meras suposiciones, etc.

Un ejemplo practico en el que se puede ver por qué es tan
Importante comprobar las hipotesis formuladas matematicamente,
es el de Ruiz Espejo y Singh (2001), en el que se justifica como
ante unos mismos datos observados, las diversas hipotesis que
pueden formularse tedricamente de como surgen los datos
generados, hacen seleccionar distintos estimadores insesgados a
veces Unicos, e incluso 6ptimos. En la practica estas hipotesis de
partida del modelo no suelen ser comprobadas ni comprobables,
sino que queda en manos de la decision tomada por el investigador
encargado del estudio.

En otras palabras, ante un caso de duda, es el investigador o
el estadistico quien desde su subjetividad o experiencia decide al
final el estimador insesgado u 6ptimo siempre que tuviera razon al
seleccionar el modelo subjetivo que propone como generador de
los datos, de lo cual nunca sabremos la verdad con exactitud en la
mayor parte de las inferencias estudiadas.

En este sentido, puede influir la “opinién” del experto en los
resultados del estudio ademas de la propia “realidad” que genera
los datos, se valora la opinién subjetiva de una persona como la
verdadera realidad. Asi en muchos tipos de inferencia se antepone
la idea subjetiva de una persona a la verdad, lo cual seria una
desorientacion o perversion ante la informacion objetiva que se
busca y es posible obtener.

Indicamos que en todos los tipos de inferencia explicados,
salvo la inferencia objetiva en poblaciones finitas, no requieren de
un listado identificador de todas las unidades de la poblacion. El
hecho de que en un estudio muestral se realice sin controlar
efectivamente la seleccion probabilistica de la muestra, hace
debilitar en muchos aspectos la fuerza de la verdad y de la
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comprobabilidad de las posibles respuestas que dan los
encuestados y, por tanto, de las conclusiones del estudio.

9.4 Bioestadistica

En esta seccion, que inicialmente fue un trabajo académico, que
ampliaba mis investigaciones, titulado Investigacion Etica y
Bioestadistica, vamos a hacer un repaso a los diversos aspectos que
consideramos mejorables o advertibles respecto a la ética del uso
de la Bioestadistica como medio para investigar o aproximar
cientificamente la eficacia de medios saludables en personas sanas
asi como de tratamientos o terapias curativas para los pacientes de
diversas enfermedades.

Uno de los fines de la bioestadistica es determinar si un
tratamiento medico es mas eficaz que otros ya disponibles.

La bioética se centra en el hombre-persona, mientras que la
bioestadistica se centra en la objetividad de lo que podemos
conocer o inferir de unos datos experimentales. Por tanto tiene
prioridad un trato digno con las personas antes que avanzar en el
conocimiento cientifico (la caridad o el amor a las personas sobre
la verdad o el conocimiento de las personas). Pero tampoco
dariamos un trato digno a las personas si no tuviéramos un buen
conocimiento cientifico para curar o paliar sus enfermedades o
dolencias cuando aparecen.

El estudio de la estadistica aplicada a la Biomedicina ha sido
objeto de diversos libros en las ultimas décadas. La estadistica que
emplean estos libros suelen ser de tipo inferencial basada en
supuestas hipotesis de normalidad de los datos obtenidos, lo que
permite aprovechar los métodos estadisticos llamados clasicos con
dichas hipotesis. Algunas referencias de estos libros se encuentran
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en las Referencias, y especialmente también en la bibliografia de la
tesis doctoral en Sociologia del autor (2003a).

Con métodos de muestreo y estimacion en poblaciones finitas
tenemos actualmente instrumentos para inferir objetivamente sobre
parametros de poblaciones finitas, como son todas las poblaciones
humanas. Recurrir a lo que no es con la intencién de afirmar cosas
sobre lo que es, no es un camino correcto. Un ejemplo de ese tipo
de abuso seria suponer que la poblacion humana es infinita con la
intencion de concluir cosas sobre una poblacion que sabemos que
es finita. No seria ético. También hacemos ver que la ciencia debe
basarse en hechos para concluir su tesis, pues construir una ciencia
basada en suposiciones no comprobadas o0 no comprobables es una
tarea sin fundamento practico cuando lo que se desea con ella es
concluir algo fiable de realidades, no de hipétesis supuestas. Para
evitarlo la ciencia estadistica ha desarrollado instrumentos cada vez
mas adecuados y objetivos para estimar parametros poblacionales
y contrastar hipotesis estadisticas como puede verse en el libro del
autor (2013c) y en los primeros capitulos de este libro.

Basicamente decimos que no es posible hacer inferencias
objetivas si no se reunen estos requisitos: (a) Seleccidn
probabilistica de las unidades u observaciones en la muestra; y para
ello, es necesario que las unidades sean finitas, identificadas, y
accesibles para obtener su dato verdadero. (b) El disefio muestral
anterior debe completarse con el método de estimacién insesgada
del parametro de referencia, y el método de estimacion insesgada
de la varianza del estimador anterior del pardmetro de referencia,
siempre que sea posible completar esto altimo.

Naturalmente lo deseable es mantener en salud a las personas
desde su concepcion hasta que esto sea posible. Para ello trasmitir
la experiencia reflexiva de los padres adultos con bondad a los hijos
menores desde pequefios es insustituible y una garantia de una
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buena educacion, asi como la trasmision de la fe, la sabiduria, unas
virtudes y unos valores que otras instancias superiores no deberian
imponerles sino facilitarles el libre ejercicio de su conciencia y su
voluntad. Por tanto, no consideramos que el recurso al tratamiento
farmacologico como primera instancia sea lo mas adecuado sino
que creemos que dar unas condiciones de educacion por los padres
asesorados por sacerdotes u otros profesionales para los hijos puede
ser un medio pacifico y mas efectivo para prevenir enfermedades e
infecciones.

En este camino la bioestadistica puede estudiar también
modos de vida saludables y la conveniencia de ciertos habitos
buenos como puede ser hacer ejercicio fisico. Una publicacion que
estudia estos aspectos y otros mas profundos con base estadistica
es Journal of Marriage and Family, entre otras revistas
sociologicas. La prevencion siguiendo pautas de vida saludables es
algo que debe conocerse y practicarse, también desde una
perspectiva religiosa y/o sociologica, que podria ser corroborada
por la estadistica.

A veces se presenta la enfermedad y entonces es necesario
recurrir al médico quien dispondra de conocimientos y el apoyo de
la estadistica para confirmar los efectos beneficiosos de
medicamentos como una solucién no primaria pero si al alcance
ante una persistencia de la enfermedad.

La bioestadistica, como ciencia experimental, no puede
prescindir de la experimentacion y la recogida de datos, pues éstas
constituyen la frontera que diferencia a las ciencias empiricas de
las que no lo son (Sgreccia, 2012). Un ejemplo es el caso de la
penicilina que como antibiotico hace mas de un siglo permitia curar
diversas enfermedades como la pulmonia, pero que, con los afios,
la resistencia de los agentes causantes de algunas de esas
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enfermedades, hacen de la penicilina ineficaz en ciertos casos
infecciosos actuales. Por esto, la experimentacion debe seguir
buscando las nuevas causas de las enfermedades actuales y darles
tratamientos contrastados para su curacion segun estudios
recientes.

Llegado a este punto, vemos importante indicar que la
estadistica describe datos reales, o bien, con ellos trata de inferir
objetivamente sobre los pardmetros poblacionales. Es por tanto
muy aventurado querer extrapolar el valor de los datos para
predecir el futuro o para inferir sobre una poblacion que se ha
supuesto como posible generadora de los datos, pues en estos casos
la estadistica dejaria de ser un medio objetivo para convertirse en
un medio subjetivo de analisis expuesto a mas errores. En ese caso
los métodos subjetivos afiaden a las conclusiones errores debidos a
las hipdtesis afiadidas con las que se razona para concluir unas
estimaciones o un contraste sobre otra hipotesis estadistica. Este es
el caso de las inferencias clasica, bayesiana, y otras mas, en cuyos
fundamentos son necesarios suposiciones sobre la poblacion y a
veces sobre los parametros.

Si queremos conocer el efecto benéfico del medicamento éste
ha de ser probado en una muestra de la “poblacion finita”
compuesta por todos los enfermos que la padecen de esa poblacién
en un instante o en un periodo determinado. Daremos repaso a
algunas de las normas que regulan estos estudios de
experimentacion con pacientes con la intencion de aportar una
vision cientifica objetiva que respetando los principios generales
de autonomia de los pacientes, de modo que ayuden a curar a todos
ellos por el uso de métodos estadisticos investigados en los ultimos
anos, y estos nos informen correcta y adecuadamente de las
realidades investigadas en los pacientes.
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Ademas de posibles pacientes colaboradores con estas
investigaciones, es bueno concienciar a otros (aunque sean dos o
uNoS POCOS) para que su negativa a colaborar inicial se transforme
en colaboracion efectiva, basada en la beneficencia y posibles
recompensas personales, que permita concluir resultados objetivos
estadisticamente de “todos los pacientes”, que son a los que van
dirigidos los esfuerzos curativos. De otro modo, limitandonos a los
pacientes que voluntariamente quieran colaborar, los estimadores
serian sesgados y no tendriamos medidas estimadas sin sesgo del
error de muestreo que conllevarian, lo que limitaria el éxito
conclusivo del estudio experimental. Asi buscamos conseguir el
bien de todas las personas y distinguir lo que es ciencia objetiva de
lo que pueda ser pseudocientifico, 0 no complete todo el recorrido
para garantizar su objetividad.

En concreto, no podria garantizarse que una muestra sea
aleatoria simple solo por disponer un numero de datos de la
poblacion. La poblacion debe estar identificada por sus unidades
(personas) y éstas deben ser accesibles para los observadores del
estudio, en concreto a las personas seleccionadas en la muestra
aleatoria segun rigurosos métodos probabilisticos de obtencion de
la muestra. La muestra seleccionada es de identificadores, y por la
accesibilidad de las unidades de la muestra observamos a los
pacientes andnimos con dichos identificadores seleccionados.

Las inferencias clasica y bayesiana, entre otras basadas en
supuestas poblaciones infinitas, no hacen uso de un procedimiento
cuidadoso de seleccion de la muestra probabilistica representativa
en las poblaciones de personas, por lo que no podran concluirse
resultados objetivos con estos tipos de inferencia. Pueden suponer
que la muestra ha sido seleccionada segin un tipo de muestreo
concreto, pero no garantizarlo en la practica al no estar
identificadas sus unidades. Suponer que una poblacion es infinita
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cuando en realidad es finita es otro error de entrada y de
planteamiento que conllevaria posibles errores en las conclusiones
consecuencia de racionalizar una o varias falsedades sin prestar
atencion al aspecto ético en la ciencia en todas sus fases.

Al tomar decisiones no solo elijo qué cosas quiero hacer, sino
también qué clase de persona quiero ser. Ser mejor persona es
superior éticamente a tener mas o hacer mas. Ser honesto en la
ciencia es superior éticamente a publicar mas o con mas factor de
impacto. Lo ideal seria que ambas cosas estuvieran relacionadas
causa-efecto pero esto no es mas que un deseo.

La moral no puede ignorar o menospreciar las conclusiones
cientificas, y el cientifico debe tener en cuenta y practicar en su
investigacion las exigencias éticas, no siendo aceptables aquellos
métodos e investigaciones que no tengan en cuenta la dignidad de
las personas y la verdad. Moral y ciencia se complementan como
la fe y la razdn, y se condicionan mutuamente en el camino hacia
el bieny la verdad (Trevijano Etcheverria, 2011).

En la lucha contra la enfermedad desde que la medicina es
ciencia, el camino necesario para progresar y conseguir nuevas
metas no es otro que la investigacion y la experimentacion, llevadas
a cabo cientificamente y no solo de forma observacional o
empirica, de nuevos modos de intervencion farmacologica o
tecnoldgica como diagnostico y terapia (Ciccone, 2006). La
investigacion biomédica en sujetos humanos constituye la fase
final de un camino de investigacion cientifica que comenzando en
los laboratorios, sigue en los animales, para terminar en el hombre.
Este es un momento importante y lleno de problemas éticos de la
investigacion y la experimentacion consistentes en sucesivos
intentos para comprobar si (y en qué medida) la nueva intervencion
médica que se esta contrastando produce los efectos buscados en la
investigacion.
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Por investigacion se entiende cualquier actividad que se
proponga adquirir verdad o nuevos conocimientos. Es cientifica
cuando se lleva a cabo segun la metodologia de las ciencias
modernas. Se llama biomédica a la investigacion desarrollada en el
ambito de la salud y de la enfermedad, en el campo de las ciencias
bioldgicas y tiene como fin el conocimiento de nuevas modalidades
terapéuticas.

La experimentacion clinica de los farmacos o terapias nuevos
viene obligada también éticamente. Las hipdtesis fundamentadas
sobre los efectos beneficiosos que un nuevo farmaco o terapia
prometen tener sobre un organismo humano tienen su base a veces
en la experimentacion en laboratorio y con animales. Pero esas
hipdtesis deben ser contrastadas, utilizando el farmaco o la terapia
en seres humanos. Algunos riesgos son inevitables, ya que hay
caracteristicas bioldgicas individuales que tienen diversas
reacciones en unos organismos a otros con el mismo tratamiento.

De acuerdo con Ciccone (2006) y Sgreccia (2012) los
estudios clinicos generalmente se clasifican en cuatro fases. La
segunda y la tercera fases se prueban en pacientes con la
enfermedad antes de que el fArmaco se pudiera comercializar. En
todas las fases debe formularse el objetivo u objetivos, cual es la
pregunta que debe responderse, conocer los trabajos previos antes
de comenzar para ver si es aconsejable el estudio y si su disefio es
el adecuado, anular o reducir los sesgos, determinar el tamafio de
la muestra de pacientes y como se han de seleccionar. Debe fijarse
el parametro por el que va a medirse la consecucion del objetivo,
asi como otros parametros a estimar pero que no definen la
finalidad del ensayo clinico.

Como indican la Normas de Buena Préctica Clinica (2.3), los
derechos, la seguridad y el bienestar de los sujetos del estudio son
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consideraciones mas importantes que deben prevalecer sobre
intereses de la ciencia y de la sociedad (concretados en los
principios de no maleficencia y de beneficencia en la actuacion
médica). De aqui una de las limitaciones mas importantes del
bioestadistico, quien por un lado debe proporcionar informacién o
conocimiento inferencial objetivos y fiables, pero con el limite del
consentimiento informado de los sujetos de investigacion, quienes
pueden salir de la experimentacion en cualquier momento.

El respeto de la persona y la investigacion cientifica son
objeto de los puntos 2292 al 2296 del Catecismo de la Iglesia
Catolica (CIC).

Entre las normativas en materia de experimentacion hemos
seleccionado varias de ellas que orientaran nuestro trabajo en los
temas que afectan conjuntamente a la ética y a la bioestadistica, que
desarrollaremos en los siguientes contenidos.

En los ultimos afios hemos hecho avances en las ciencias
estadisticas, y vemos oportuno destacar los aspectos mas relevantes
y actuales de la estadistica y en su utilizacion con el fin de mejorar
la vida o aliviar los males, especialmente del ser humano. La
Bioestadistica es la ciencia estadistica aplicada a la vida. Asi los
avances en la objetividad de la estadistica tienen consecuencias en
el conocimiento de los instrumentos bioestadisticos que dan luz
sobre cuestiones como la prevencion de la enfermedad, la
enfermedad misma, los medicamentos que pueden curarla o
tratarla, etc. sin perder de vista que la persona a la que se destinan
estos estudios y conocimientos mejorados en definitiva es la
persona humana que debemos considerar como un fin en si mismo
y, por su dignidad, darle el trato humano y respetuoso que le
corresponde en todo momento.

El objetivo general de esta seccion es presentar
resumidamente los aspectos éticos relevantes en relacion con la
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salud y la experimentacion en seres humanos, y el objetivo
especifico consiste en destacar las aportaciones recientes en el area
de la Bioestadistica para el bien primordial de la salud humanay el
conocimiento cientifico que puede obtenerse en los estudios
saludables descriptivos o inferenciales de hechos y datos y/o por
observacion experimental de pacientes y personas sanas.

El fin de la Bioestadistica es aportar instrumentos cientificos
objetivos en la medida de lo posible como medios para resumir o
inferir el conocimiento y la informacion relevante de experimentos
observacionales, especialmente en seres humanos, y para concluir
consecuencias en ellos.

Nuestro objetivo es describir los avances recientes en este
area de la Bioestadistica y tratar de compaginar un conocimiento
mas objetivo y veraz con el objetivo prioritario de respetar a las
personas humanas y tratar de proporcionarles los medios mejores
como consejos saludables para una vida sana, asi como de la
busqueda, con ciencia objetiva, del mejor tratamiento posible de
las enfermedades y dolencias cuando estas aparecen.

En este caso la Bioestadistica es un medio, que debe ser
bueno, es decir, ético, objetivo y eficiente basado en datos y en lo
posible nunca en hipotesis supuestas y no comprobables sino s6lo
asumiendo condiciones de trabajo que sean hechos en la practica
real y concreta, para el tratamiento de la informacion estadistica
que proporciona un estudio 0 un ensayo ya sea de terapias
saludables o curativas en seres humanos.

Como material de Bioestadistica vamos a considerar la
inferencia en poblaciones finitas, ya que cualquier poblacion
humana es finita en un instante dado, por ejemplo la poblacién de
pacientes afectados por determinada enfermedad. De este modo
reconocemos la verdad de la realidad de pacientes en el modelo
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estadistico con el que estudiarla. Por otro lado nos interesa estudiar
hechos reales. Esto nos hace descartar como modelos todos
aquellos que necesitan “suponer como es la realidad” en lugar de
“reconocer su realidad” sobre el terreno. De este modo, podemos
prescindir de modelos de inferencia clasica y bayesiana, y de la
practica totalidad de los modelos superpoblacionales, pues
requieren sustituir realidades reconocibles por hipotesis tedricas no
comprobadas ni comprobables.

Por todo ello, nos centramos en el modelo de muestreo y
estimacion en poblaciones finitas (pues son estas las que nos
interesan en la préactica real y comprobada), con datos reales y
objetivos (que pueden medirse sin error en cada unidad de la
poblacién finita y con ningin dafio posible a las personas
observadas), seleccionados por muestras de acuerdo a disefios o
esquemas de muestreo que junto a un estimador asociado permiten
obtener conclusiones inferenciales objetivas (Ruiz Espejo, 2013c).

Otros métodos estadisticos, como los explicados en los libros
de Berger y Wong (2009), Good y Hardin (2006), Indrayan (2013),
Kupper, Neelon y O’Brien (2011), Lejeune (2010), Olive (2014),
Piantadosi (2005), van Belle y Kerr (2012), y de Winkel y Zhang
(2007), son de inferencia clasica u otros métodos que suponen
hipdtesis subjetivas en sus modelos de analisis de los datos. Libros
que han sido revisados por el autor, algunas de cuyas referencias
estan recogidas al final del libro. Mejoras en la objetividad de los
métodos estadisticos de experimentacion e inferencia son los
trabajos de Ruiz Espejo y Delgado Pineda (2008) y de Ruiz Espejo
(2013c).
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Declaracion de Helsinki

La Declaracion de Helsinki (DH) de la Asociacion Médica Mundial
(AMM) es la enumeracion de los Principios éticos para las
investigaciones medicas en seres humanos. Son 35 Principios de
entre los que comentamos los que consideramos de mayor interes
conjunto ético y bioestadistico.

En el Principio 12 se dice que la investigacion médica en
seres humanos debe conformarse con los principios cientificos
generalmente aceptados y debe apoyarse en un profundo
conocimiento de la bibliografia cientifica, en otras fuentes de
informacion pertinentes, asi como en experimentos de laboratorio
correctamente realizados y en animales, cuando sea oportuno.

En el Principio 16 se dice que la investigacion médica en
seres humanos debe ser llevada a cabo sélo por personas con la
formacion y calificaciones cientificas apropiadas, que la
investigacion en pacientes o voluntarios sanos necesita la
supervision de un médico u otro profesional de la salud competente
y calificado apropiadamente, y que la responsabilidad de la
proteccidn de las personas que toman parte en la investigacion debe
recaer siempre en un medico u otro profesional de la salud.

En el Principio 22 se indica que la participacion de personas
competentes en la investigacion meédica debe ser voluntaria, y que
ninguna persona competente debe ser incluida en el estudio a
menos que ella acepte libremente.

En el Principio 23 se dice que deben tomarse toda clase de
precauciones para resguardar la intimidad de la persona que
participa en una investigacion y la confidencialidad de su
informacion personal.
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En el Principio 24 se dice que en la investigacion medica en
seres humanos competentes, cada individuo potencial debe recibir
informacién adecuada acerca de los objetivos, métodos, fuentes de
financiacion, etc. de la investigacion. La persona potencial debe ser
informada del derecho de participar o no en la investigacion y de
retirar su consentimiento en cualquier momento, sin exponerse a
represalias. Despues que la informacion ha sido comprendida por
el individuo, el médico u otra persona calificada apropiadamente
debe pedir entonces, preferiblemente por escrito, el consentimiento
informado y voluntario de la persona. Y si el consentimiento no se
puede otorgar por escrito, el proceso para lograrlo debe ser
documentado y atestiguado formalmente.

Por todo lo anterior, la Declaracion de Helsinki (DH) se
ocupa de los aspectos mas importantes en relacion con el
consentimiento informado de los individuos que participen en una
investigacion, o del de su representante legal cuando corresponde
recurrir a él. La posibilidad de que un individuo pueda retirarse de
la investigacion en cualquier momento, hace que los métodos
inferenciales que puedan usarse para determinar la eficacia de los
tratamientos experimentales puedan carecer de base objetiva sobre
la que hacer las conclusiones al poder producirse la eventual no
respuesta durante la investigacion. Sin embargo, aparentemente en
la inferencia clasica o bayesiana, en las que cuando se suponen
poblaciones infinitas no se cuida la representatividad probabilistica
de la muestra a través del disefio muestral, puede parecer que si
pueden extraerse conclusiones pues todo se reduciria a obtener una
muestra de un tamafio determinado sin comprobar su
representatividad en la practica. Este proceso requiere de otras
hipotesis que hacen subjetiva y mas alejada de la realidad las
posibles conclusiones para la poblacion investigada a partir de una
muestra de ella, que ya no seria seleccion probabilistica en la
practica, aunque si lo pueda ser en su supuesto analisis estadistico
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teorico. Lo que no garantiza objetividad en las conclusiones al
perder todo rastro de control objetivo en la seleccion de la muestra
en el estudio.

Deontologia médica

En este apartado vamos a comentar el Codigo de Deontologia
Médica (Guia de Etica Médica), del Consejo General de Colegios
Oficiales de Médicos (2011), en los aspectos en los que la
Bioestadistica ha podido avanzar en sus conocimientos éticos.

El primer deber en la conciencia moral de cualquiera es
formar una buena conciencia, es decir, estudiar, buscar la verdad,
consultar con las personas prudentes para salir de dudas,
perseverar, etc. Para actuar bien, en el sentido de deber moral, ha
de ser en todos sus aspectos, sustancia y circunstancia. Si falla uno
de ellos se pervierte su bondad. Las reglas del buen hacer en las
acciones conforme a los imperativos de la razon, constituyen los
deberes profesionales. Toda profesion honrada tiene la indole de
servicio a Dios y a los demas. Ningun mandato moral preceptia lo
que hay que hacer para obtener tal o cual fin o bien, sino algo de
debido cumplimiento. La ética cuenta, como referentes normativos,
con la naturaleza (metafisica) y la razon.

El Cddigo de Deontologia Médica (CDM) a lo largo de un
preambulo, 21 capitulos, una disposicion adicional y disposiciones
finales, describe las normas cuyo incumplimiento supone incurrir
en falta disciplinaria.

En el capitulo tercero del CDM se exponen las Relaciones del
Médico con los Pacientes. En su Articulo 19.2 se dice que la
historia clinica de un paciente para su analisis cientifico,
estadistico, y con fines docentes y de investigacion se respetara
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rigurosamente la confidencialidad de los pacientes. Esto tiene la
consecuencia de que cada paciente deberia estar identificado por
un namero o clave que permita acceder a los datos estadisticos del
paciente, pero respetando la confidencialidad de los mismos, es
decir, guardando el anonimato del nombre y su persona que lo
identificarian, para los efectos de la explotacion estadistica de sus
datos. Esto puede hacerse mediante un carnet con el nombre y la
clave o numero del paciente que puede leer el médico en consulta,
pero el médico investigador o el profesional estadistico solo
accederian a la clave o numero identificador y a los datos
estadisticos del paciente ya de modo andnimo. Ademas esta
identificacion numérica es necesaria e imprescindible para poder
seleccionar muestras representativas de acuerdo con un disefio
muestral probabilistico para efectuar inferencias objetivas. Esto es
una de las hipotesis de trabajo del libro del autor (2013b), que
presenta los métodos inferenciales objetivos para poblaciones
finitas.

En el capitulo cuarto del CDM se detalla la Calidad de la
Atencion Médica. En el Articulo 26.2 se dice explicitamente que
no son éticas las practicas carentes de base cientifica y que
prometen a los enfermos la curacion, los procedimientos ilusorios
o0 insuficientemente probados que se proponen como eficaces, etc.
A este respecto hay que indicar que base cientifica puede tener un
método estadistico subjetivo, pero este sera siempre éticamente
inferior a un método estadistico objetivo con base cientifica y real.

El Articulo 30.1 indica que el secreto profesional debe ser la
regla; no obstante se enumeran algunas excepciones. En el Articulo
30.1.g se indica que el médico deberd mantener el secreto aunque
el paciente lo autorice. No obstante todo esto, entiendo que se
guarda secreto profesional aun cuando se obtenga de las historias
clinicas informacion anonima con fines estadisticos objetivos, cuya
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finalidad sea mejorar los tratamientos a los enfermos o tendentes a
su curacion efectiva.

En el 59.4 se dice que el médico investigador tiene el deber
de publicar los resultados de su investigacion por los cauces
normales de divulgacion cientifica, tanto si son favorables como si
no lo son. Advierte ademas que no es ética la manipulacion o la
ocultacion de datos (para obtener beneficios personales o de grupo,
0 por motivos ideoldgicos). De este articulo, deducimos que la
manipulaciéon de los datos con métodos estadisticos subjetivos,
como son la inferencia estadistica clasica y la bayesiana entre otras,
son menos éticas porque el modelo o los modelos supuestos
aportan subjetividad al manipular los datos.

Una consecuencia de la voluntariedad para ser incluido entre
los pacientes observables por experimentacion (con la cual se
proteje a los no voluntarios en su libre voluntad), deducida de los
métodos objetivos de inferencia en poblaciones finitas, es que las
conclusiones de un estudio estadistico basado en una muestra
aleatoria de voluntarios sélo podrian inferirse a funciones
parametricas de la poblacion de pacientes voluntarios. Asi, si se
respeta a todos los pacientes en su deseo de colaborar 0 no
colaborar con la investigacién, lo cual es ético y dignificante,
también en honor a la verdad se puede deducir que las conclusiones
del estudio estadistico no tendrian alcance sobre todos los pacientes
a los que después se desease tratar con los resultados de la
investigacion. La razon es que puede haber diferencia entre el
parametro de la poblacion de pacientes y el parametro de la
poblacion de los pacientes voluntarios. Lo que podria concluirse
para unos no tiene por qué concluirse para los otros. Esto se
demuestra matematicamente 'y puede resolverse también
matematicamente usando métodos objetivos de estimacion
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insesgada basada en hechos en el caso de que aparezca no respuesta
(como ocurre en los no voluntarios).

Algunas referencias que presentan soluciones a este
problema, que han sido estadisticamente investigadas
recientemente, son las de Ruiz Espejo (2011a, 2015b) y de
Thompson (2012). Con estos estudios adicionales se concluye que
con la participacion adicional de dos nuevos voluntarios elegidos
con un diseflo de muestreo aleatorio simple de entre los no
voluntarios de la muestra de pacientes en un primer intento, pueden
concluirse inferencias objetivas sobre toda la poblacion de
pacientes. Esto requiere convencer al menos a dos (0 mas) personas
seleccionadas en una submuestra de entre las que no estaban
dispuestas a participar en la investigacion médica, por ejemplo
proporciondndoles un seguro medico vitalicio, una pension o una
retribucién econdmica por su participacion acordes con las
consecuencias causadas por su participacion en la investigacion.
En cualquier caso, si se obtuviera la colaboracion de un ndmero
mayor a dos entre los no voluntarios en un primer ofrecimiento
seleccionados por el disefilo muestral, los resultados de la
investigacion serian insesgados, mas precisos y objetivos.

De este modo se conseguirian unas conclusiones validas para
todos los pacientes de la poblacion, no solo validas para los
pacientes potencialmente voluntarios en una primera instancia de
entre la poblacion de pacientes (y asi protegeriamos de hecho a
todos los pacientes de la poblacion, pues la investigacion inferiria
objetivamente sobre una funcion paramétrica basada en la
informacion proporcionable por todos ellos). Si no se consiguiera
la cooperacion posterior de los dos 0 mas primeros pacientes
seleccionados en una submuestra de entre los que en la muestra
inicial se manifestaran no dispuestos a ser objeto de investigacion
médica (pues de otro modo si no fueran los primeros, la
eliminacion de algunos seleccionados tiene el efecto de que el
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disefio muestral asi proporcionado haria sesgado el estimador, ver
Ruiz Espejo, 1986b), no podrian extraerse consecuencias objetivas
basadas en hechos mas que de entre los pacientes potencialmente
voluntarios, y por esto no podrian inferirse conclusiones objetivas
para toda la poblacion de pacientes. Todo lo que se afirmase sobre
esta poblacion de pacientes seria subjetivo, y por tanto menos
valido cientificamente que el método estadistico objetivo que
hemos explicado y referenciado.

Lo que ha de hacerse estadisticamente, por tanto, es
aprovechar la investigacion estadistica reciente sobre no respuesta
de los autores citados, con los recursos y la persuasion para obtener
la cooperacion de pacientes de la muestra inicialmente de no
voluntarios, y proceder a una recogida de datos (que puede ser en
consulta médica, en encuesta, o bien telematica) y calcular unos
estimadores de acuerdo con dichas investigaciones recientes que
proporcionan metodos objetivos de inferencia estadistica. Pues de
otro modo, se seguirian procedimientos subjetivos de recogida de
datos, analisis e inferencia que la ciencia verdadera no puede
garantizar aunque hubiera en ellos algunos rasgos racionales
incompletos o subjetivos.

En el capitulo veinte, Publicidad Médica, se insiste en su
Articulo 65.3 que la publicidad médica deber ser objetiva, prudente
y veraz, de modo que no levante falsas esperanzas o propague
conceptos infundados.

Buena practica clinica

En este apartado voy a dar repaso a los aspectos relacionados con
la Bioestadistica entre las Normas de Buena Practica Clinica
(NBPC de Enero de 1997 y corregida en Julio de 2002).
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En la Norma 6.4 se detalla el Disefio del Ensayo, y en la 6.5
la Seleccion y Retirada de Sujetos. En 6.7 la Valoracion de la
Eficacia, en donde deben especificarse los parametros de eficacia
(llamados ““funciones paramétricas de eficacia” en la inferencia
objetiva en poblaciones finitas) y otros aspectos relacionados. En
6.9 se trata de la Estadistica. En 6.9.1 se refiere a la descripcion de
los métodos estadisticos que se usaran, incluyendo el calendario de
todos los anélisis intermedios, en 6.9.2 se refiere al tamafio
muestral, pero en 6.9.3 se habla del nivel de significacion que sera
utilizado, lo que hace implicito una referencia a la inferencia
clasica que ha sido tan puesta en cuestion en los Gltimos afios (ver
por ejemplo Nuzzo, 2014) pues presupone sin demostracion la
normalidad de los datos, como si fueran de poblaciones infinitas,
aspecto gque es mejorado claramente por un enfoque que asegure un
nivel de confianza minimo estimado sin sesgo como se explica por
ejemplo en Ruiz Espejo (2013c).

En 8.2.11 se refiere a documentar valores/rangos normales de
procedimientos médicos/de laboratorio/técnicos/pruebas. En este
punto se supone que el medio es la estadistica clasica incidiendo en
la distribucion normal como medio de analisis supuesto, que no
probado ni objetivo. En 8.2.18 habla de documentar el método de
aleatorizacion de la poblacion del ensayo. A este respecto ya hemos
explicado que para que la muestra sea probabilisticamente
representativa de la poblacién de la que se extrae las unidades (de
la muestra de la poblacidn) estas deben estar numeradas e
identificadas para poder seleccionar una muestra aleatoria
probabilistica de acuerdo a las especificaciones necesarias del
diseio muestral para concluir objetivamente resultados
inferenciales.

En 8.3.6 se reincide en documentar los valores y rangos
normales que se revisan durante el ensayo. Las mismas criticas son
aplicables. En 8.3.14 se habla de documentar la confirmacion de
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los datos registrados. En 8.3.15 se trata de documentar las
correcciones de los cuadernos de recogida de datos. En 8.3.21 habla
de documentar que el investigador/institucion guarda una lista
confidencial de los nombres de todos los sujetos asignados con los
numeros de inclusion al ensayo. Permite asi al
investigador/institucion revelar la identidad de los sujetos e/o
identificarlos anonimamente en el estudio. La Norma 8.3.22 exige
documentar la inclusion cronologica de los sujetos por el nimero
asignado en el ensayo. En 8.4.3 se exige listar completamente los
codigos de identificacion de los sujetos incluidos en el ensayo para
el caso en que se requiera un seguimiento, guardando la lista de
forma confidencial durante el periodo de tiempo acordado. En 8.4.4
se refiere a documentar el Certificado de Auditoria (CA). En 8.4.7
se exige documentar el informe final del investigador al Comité
Etico de Investigacion Clinica (CEIC) y a la autoridad reguladora.

Investigacion biomeédica en seres humanos

Como indica el documento Pautas Eticas Internacionales para la
Investigacion Biomédica en Seres Humanos del Consejo de
Organizaciones Internacionales de las Ciencias Médicas (CIOMS)
en colaboracion con la Organizacion Mundial de la Salud (OMS),
el primer instrumento internacional sobre ética de la investigacion
médica —el Codigo de Nuremberg (CN)- fue promulgado en 1947
como consecuencia del juicio a los médicos que habian dirigido
experimentos atroces en prisioneros Yy detenidos sin su
consentimiento durante la segunda guerra mundial. Este Codigo
protegia la integridad del sujeto de investigacion y establecia
condiciones para la conducta ética de la investigacion en seres
humanos, destacando su consentimiento voluntario para la
investigacion. La investigacion en seres humanos debiera ser
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realizada o supervisada sOlo por investigadores debidamente
cualificados y experimentados.

En la Pauta 1 se da la justificacion ética de la investigacion
biomédica en seres humanos, que radica en la expectativa de
descubrir nuevas formas de beneficiar la salud de las personas. Los
investigadores y los patrocinadores deben asegurar que los estudios
propuestos en seres humanos estén de acuerdo con “principios
cientificos generalmente aceptados” y se basen en conocimiento
adecuado de la literatura cientifica pertinente. Pienso que el uso de
una inferencia estadistica objetiva como la que explico en este libro
es la mas ética entre las otras posibles inferencias subjetivas, que
estdn mas difundidas y aceptadas en la practica pero sin base o
fundamento ético que las avale.

La Pauta 2 dice que todas las propuestas para realizar
investigaciones en seres humanos deben ser sometidas a uno o0 mas
comités de evaluacion cientifica y de evaluacion ética para
examinar su merito cientifico y aceptabilidad ética. En la
evaluacion se han de considerar las fuentes fiables de conocimiento
en relacion, no reduciéndolas a consideraciones teoricas,
estadisticas o biologicas exclusivamente que podrian tener un
efecto limitante y reductor para la curacion de la enfermedad, sino
que cualquier otra fuente de conocimiento cientifico o de
experiencia sobre la materia a investigar deberia tenerse en cuenta
para un mejor andlisis y perfilar los mejores tratamientos a
comparar. Algunos ejemplos de este tipo de consideraciones son
los recientes articulos Editorial (2014) en la revista cientifica
Nature, y de Reardon (2014).

En la Pauta 3 se regula que los comités, tanto del pais del
patrocinador como en el pais anfitrion, tienen la responsabilidad de
realizar una evaluacion cientifica y una ética, estando también
facultados para rechazar propuestas de investigacion que no
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cumplan con sus estandares cientificos o éticos. Lo razonable es
que si los metodos estadisticos inferenciales son subjetivos, éstos
pueden ser éeticamente relegados o rechazados respecto a los
métodos estadisticos inferenciales objetivos.

Para las investigaciones con placebo los metodos de muestreo
de respuesta aleatorizada son los indicados en Chaudhuri (2011),
Ruiz Espejo y Singh (2003), y Warner (1965). Estos tienen menor
eficiencia que los métodos de muestreo tradicionales de respuesta
directa, pero salvaguardan el anonimato de a qué pregunta se
responde, es decir, la respuesta recogida como dato no sabe el
encuestador o el investigador a qué tratamiento responde de una
forma directa, con lo que se preserva la intimidad del encuestado o
del voluntario observado. Aunque en el analisis posterior si pueda
extraer conclusiones inferenciales a partir de la respuesta
aleatorizada obtenida de los sujetos de investigacion.

La Pauta 12 trata de la distribucion equitativa de cargas y
beneficios en la seleccion de grupos de sujetos en la investigacion,
es decir que los grupos o comunidades invitados a participar en una
investigacion debieran ser seleccionados de tal forma que las
cargas y beneficios del estudio se distribuyeran equitativamente, y
que debe justificarse la exclusién de grupos o comunidades que
pudieran beneficiarse al participar en el estudio. Desde un punto de
vista bioestadistico, la exclusién de un grupo o comunidad hace
que la poblacion estadistica sobre la que inferir se reduzca y que,
como consecuencia, los parametros sobre los que inferir han
cambiado. Esto tiene como consecuencia, como ya hemos
indicado, que los estimadores insesgados para la poblacion
investigada de hecho, sean sesgados para la poblacion objetiva de
todos los sujetos pacientes. Es decir, en la practica se da el efecto
de no respuesta y ésta deber ser estadisticamente tratada para
concluir resultados objetivos en poblaciones finitas. A este
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respecto insistimos en que dejar no representado en la poblacion a
investigar parte de los sujetos o pacientes, hace que los estimadores
insesgados para las funciones paramétricas de la poblacion
observable, o tenida en cuenta para la seleccion de la muestra, sean
sesgados para las mismas funciones paramétricas de la verdadera
poblacidn finita objetivo de todos los pacientes sobre la que se
pretende inferir. La solucidn a este problema ya ha sido comentada
en los casos anteriores en los que nos hemos referido.

La Pauta 19 trata del derecho a tratamiento y compensacion
de sujetos perjudicados, en el primer caso se indica que tengan
derecho a tratamiento médico gratuito de calidad por tal perjuicio,
y a un apoyo econémico o de otro tipo que pueda compensarlos
equitativamente por cualquier menoscabo, discapacidad o
minusvalia resultante, asi como en caso de muerte.

9.5 Conclusiones

La investigacion del conocimiento de las realidades sociales
concretas es una necesidad imprescindible para la actuacion
coordinada en busca del efectivo bienestar social de los ciudadanos
de una sociedad.

Por ello, los investigadores estadisticos pueden aportar
soluciones eficaces en este proceso para la basqueda de la verdad
con métodos objetivos que conecten las realidades sociales con los
medios l6gicos adecuados para este fin.

La ciencia y la técnica, y en especial la inferencia estadistica
objetiva, son recursos valiosos cuando son puestos al servicio del
hombre, promoviendo su desarrollo integral en beneficio de todos
los ciudadanos que responsablemente aportan lo que esta a su
alcance con honradez.
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La ciencia por si sola no indica el sentido de la existencia y
del progreso humano, especialmente cuando esta no esta ordenada
al hombre y a sus valores morales como sentido de su finalidad, al
mismo tiempo que somos conscientes de las limitaciones de toda
aportacion cientifica.

Dificilmente la ciencia y las tecnologias seran capaces de
llegar a resolver los problemas de siempre 0 mas acuciantes de la
humanidad como son sus limitaciones basicas en la vida, aunque
puedan hacerlos mas tolerables, compatibles o con una mayor
calidad de vida durante mas tiempo y para muchos hombres,
deseablemente su totalidad.

Los metodos estadisticos objetivos de investigacion del
bienestar social tienen que jugar un papel muy importante en esta
labor. Nuestra aportacion mas importante en este sentido se
concreta en discernir técnicas y metodologias cientificas
estadisticas mas acertadas a estos fines.

La estadistica descriptiva objetiva y los censos son los
mejores métodos posibles para la realizacion de estudios sociales
basados en hechos reales, desde el punto de vista de recabar
informacion completa sobre las realidades a conocer de una
determinada poblacion finita para ser realistas, ya sea humana o de
cualquier otro caracter de interés social.

Pero la informacion exhaustiva puede ser de un coste tan
elevado que los estudios por muestreo de dichas poblaciones finitas
proporcionen informaciones veraces y eficaces para los fines
propuestos a un coste razonable, para el aumento de la calidad de
los datos recogidos y de su tratamiento estadistico, y de la
limitacion del esfuerzo y trabajo necesario para disponer de
informacion fiable suficiente, asi como de la reduccion del tiempo
necesario para elaborar estas informaciones estadisticas con

430



respecto al que llevarian los censos de observacion exhaustiva en
toda la poblacion finita.

Si a esto unimos la posibilidad de dar medidas del error en las
estimaciones como consecuencia del uso de la aleatoriedad
probabilistica para la seleccion de la muestra, podemos concluir
que los meétodos de muestreo de seleccion probabilistica de
poblaciones finitas fijadas, aun no siendo infalibles, pueden ser de
gran ayuda por sus buenas aproximaciones de sus estimadores a los
parametros poblacionales con el nivel de confianza minimo
aproximado deseado.

La estadistica descriptiva, los censos informatizados y los
muestreos con fines sociales y de conocimiento descriptivo de las
sociedades tienen un valor relevante a escala local, regional y
nacional en muchos paises y a escalas mayores. También es un
deseable objetivo a alcanzar en el futuro la consecucién de
informaciones estadisticas del estado del bienestar a nivel
planetario.

Los métodos de muestreo de poblaciones finitas fijas son los
métodos de inferencia mas objetivos porque requieren el menor
numero de hipdtesis sin posible comprobacion vy, las hipotesis que
hace son realistas, de hecho o comprobables (Ruiz Espejo, 2013c).
Ademas conserva una gran flexibilidad por sus presupuestos
economicos reducidos y su rapidez en la puesta en practica de la
recogida de datos, a diferencia de los censos.

Otros metodos de inferencia requieren aportaciones
subjetivas en los modelos y no identifican las unidades de la
poblacién lo que hace imposible garantizar un control de la
seleccion probabilistica de acuerdo al disefio de muestreo o
incorporan elementos subjetivos en el analisis que puede hacer que
pierda validez en sus conclusiones si queremos que éstas sean
objetivas.
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La inferencia estadistica objetiva que hemos descrito se
orienta desde un principio a recabar informacion sobre hechos
determinados de las unidades de una poblacion finita con la mayor
coherencia. Otros métodos de inferencia pueden contener mayor
complejidad logica pero no estan adaptados al fin que buscamos,
que es informacion objetivamente obtenida y veraz.

En estos métodos objetivos cabe la posibilidad de
salvaguardar la confidencialidad o privacidad de las respuestas de
los encuestados con métodos de respuesta aleatorizada, debida a
Warner (1965) y analizados por Ruiz Espejo y Singh (2003).
También admiten el uso de informacion auxiliar objetiva de las
unidades de la poblacidn finita (Ruiz Espejo, 1998c).

La inferencia estadistica objetiva requiere menor nimero de
hipotesis, y éstas son mas asumibles con las condiciones de hecho
desde el punto de vista de su aplicabilidad. Por ello, los resultados
que se deducen son mas objetivos.

La existencia del concepto de probabilidad en el mundo real
es algo discutido. Pero aunque no exista, su concepto puede
simularse informaticamente para poder seleccionar de modo
controlado segun las caracteristicas del disefio muestral como si tal
probabilidad existiera, deduciéndose las propiedades matematicas
de la inferencia estadistica objetiva.

Algo diferente ocurre cuando se supone que la naturaleza de
los datos presentados y recogidos para su analisis estadistico son
de tipo probabilistico, lo que supone afirmar que la naturaleza se
comporta como las leyes de probabilidad de las hipotesis de tales
métodos de inferencia estadistica. Esto supone que la naturaleza se
comportaria como han pensado los matematicos al avanzar en sus
estudios teoricos, algo muy aventurado de reconocer y que escapa
a las posibilidades limitadas de los hombres hoy por hoy y de sus
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conocimientos seguros. No existe garantia de la existencia del
modelo probabilistico generador de los datos en la misma
naturaleza, ni tampoco de su conocimiento explicito de tal modelo.

De aqui que algunos autores hayan estudiado metodos
estadisticos robustos tratando de suplir esas carencias de los
métodos de inferencia basado en modelos subjetivos, cuando estos
modelos no tienen por qué ser verdaderos. Pero siguen adoleciendo
de que las propiedades de la aleatorizacion que generan los datos
son supuestas y no objetivas o controladas (Ruiz Espejo, 1990).

Debemos reconocer que en la puesta en practica de la
inferencia estadistica objetiva pueden presentarse situaciones no
previstas en la teoria. Asi, si un censo no contiene alguna o algunas
unidades de la poblacién, el marco censal como listado de las
unidades de la poblacion no es un perfecto punto de partida para
seleccionar la muestra. Pero su influencia, si no se presenta un
numero apreciable de casos de omision o multiplicidad, por lo
general es minima a efectos practicos siguiendo los protocolos de
registro tradicionales.

Conclusiones finales:

1. La globalizacion exige una nueva sociedad fundada sobre la
ciudadania global que desemboque en una sociedad a escala
mundial, y una de cuyas bases sea la mejora continua del
bienestar social.

2. Esta necesaria sociedad del bienestar debe marcar politicas y
directrices basadas en hechos ciertos y reales, lo que exige la
adopcion de métodos estadisticos y de inferencia objetivos y
fiables que reflejen e instituyan la realidad social en la que
actuar con medidas concretas.

3. Aunque ciertamente definimos y comprendemos el
significado del concepto de probabilidad, no hay pruebas de
que exista en el mundo natural. En concreto, es practicamente
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Imposible reproducir con exactitud las mismas condiciones
de experimentacion para observar datos de un mismo
fendmeno. Esto es especialmente cierto en fenomenos de tipo
social y del bienestar alcanzado por una poblacion humana
finita o de grupos humanos (en un instante dado) que estan en
constante evolucion y desarrollo.

. Si la probabilidad no existiera, solo los datos censales y la

estadistica descriptiva permitirian conocer los hechos
observados de una realidad social.

5. Aunque la probabilidad no existiera, es posible reproducir

con ordenador las mismas caracteristicas del concepto
matematico de la probabilidad, en cuanto a la generacion de
muestras aleatorias en condiciones predeterminadas
probabilisticas para la seleccion de unidades de la poblacion
finita. Haciendo uso de las propiedades de un estimador,
podemos inferir sobre parametros o funciones paramétricas
poblacionales de modo objetivo.

. Todos los demas métodos estadisticos de inferencia

desarrollados en la actualidad, suponen no solo la existencia
de la probabilidad en la realidad de los hechos naturales (algo
no demostrado), sino que los datos observados responden a
algun modelo subjetivo de probabilidad que el investigador
supone que es el que explica dichos hechos, pero sin
capacidad de aportar una demostracion que compruebe esto.

. Los métodos estadisticos de inferencia restantes basados en

el concepto de probabilidad como inherente a los hechos
naturales no dejan de ser meras aportaciones teoricas e
Imaginarias en cuanto a su aplicacion a datos naturales. Entre
estas incluimos a la inferencia parameétrica clésica, la
bayesiana, la no paramétrica, la de distribucién libre, la
basada en modelos de superpoblacion, etc. de los que no



negamos su aportacion légica pero si dudamos seriamente de

su aportacion objetiva en la practica.

8. En muchos casos las hipdtesis poblacionales contradicen los
hechos conocidos; por ejemplo, suponer que el tamafio de la
poblacion es infinito cuando sabemos que es finito, o bien que
las respuestas a una pregunta pueden ser varias cuando solo
una es la respuesta verdadera. De hecho, de una mentira como
base de un argumento poca verdad se puede deducir.

9. EI conocimiento estadistico de las realidades sociales
requiere el uso de méetodos objetivos y de medios adecuados
a sus fines respetando la moralidad y la ética en todo el
proceso.

Por todo ello, sugiero la necesidad y conveniencia de incluir
en la docencia e investigacion universitaria métodos de inferencia
en poblaciones finitas fijadas, y el esfuerzo por aplicar estos
métodos en los organismos internacionales como la ONU, la
OCDE, y en la Unidén Europea y Espana.

Consideramos también necesario no abandonar el estudio de
la estadistica descriptiva y de la inferencia estadistica objetiva en
los estudios universitarios en todos los niveles de educacion.

La alternativa seria equiparar y dar la misma dignidad a la
“ciencia verdadera” que a la “pseudociencia falsa” o posiblemente
falsa, ésta Gltima basada en sofismas, premisas inciertas o falsas,
argumentos invalidos aunque estén revestidos de apariencias
engafnosas como son las falacias, etc.

Este libro ofrece razonamientos validos que refutan tesis y
muchos razonamientos invalidos en la ciencia préactica, y deja al
descubierto las falacias presentes en algunos argumentos, asi como
las muchas premisas inciertas o falsas en que se basan la mayor
parte de las teorias inferenciales estadisticas. Entre ellas estan los
“sofismas a priori” porque el defecto esta al comienzo, es decir,

435



antes de empezar a razonar; y también los “sofismas de prejuicio”
que parten de la aseveracion de algo que se da por cierto sin que
esté comprobado ni demostrado. Son los casos de la inferencia
bayesiana y de la inferencia clasica, paramétrica, no parametrica,
semiparamétrica, superpoblacional, etc.

Dado que las premisas son el fundamento de la conclusion, el
sofisma de falsa premisa ha recibido asimismo el nombre de “error
fundamental”. Algunos autores lo han denominado modernamente
como “sofisma de simple inspeccidon”, porque para impugnarlos no
es necesario revisar los argumentos, los razonamientos o las
inferencias, sino que bastaria observar las premisas y detectar la
falsedad de una de ellas; pero dicha denominacion es inadecuada
porque muchas veces la falsedad de la premisa no puede
descubrirse mediante la mera inspeccion.

A veces se pretende demostrar una conclusion en base a la
opinion de una o varias personas cualificadas sobre el asunto que
se discute. Se denomina ‘““autoridad” a una persona o conjunto de
personas cualificadas para el conocimiento acerca de algo. Un tipo
de sofisma consiste en tomar una “proposicion como verdadera en
si misma”, prescindiendo de toda prueba, por el solo hecho de que
fue afirmada por una “autoridad”. El “argumento de autoridad” es
legitimo para apoyar conclusiones probables, pero es una falacia
cuando se pretende que sea suficiente para obtener una conclusién
rigurosamente demostrada. Asi, si sabemos que una proposicion
fue sostenida por Aristoteles, San Agustin, Santo Tomas de
Aquino, Leibnitz, o cualquiera de los grandes pensadores, podemos
considerarla como probablemente verdadera, pero para tener la
certeza de su verdad necesitamos una demostracion suficiente. La
cualificacién de una autoridad en unas competencias concretas, no
garantizan que se sea competente en cualquier otro tema en el que
pueda hacer afirmaciones al margen de su especialidad de
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conocimiento. Suele suceder que la autoridad cientifica ganada por
una persona en determinada disciplina, se traslade ilegitimamente
a otros ambitos del conocimiento en los que no ha acreditado
conocimientos reconocidos.

Creo que de nada sirve decir que la poblacion es de un modo
determinado supuesto, si en la practica no tenemos un listado de las
unidades de la poblacién o no pudiéramos acceder a observar el
dato en la unidad seleccionada en la muestra probabilistica. Porque
suponer que la naturaleza es aleatoria y que trabaja
incondicionalmente para nosotros proporcionandonos la muestra
directamente sin hacer nosotros nada por ello sino solo suponer
unas hipotesis de como es seleccionada, resulta ingenuo confiar
que nuestras hipotesis son respetadas por la naturaleza sin que
nosotros ni nadie pueda comprobar que es asi en la practica de un
estudio inferencial con datos del mundo real. Este punto debe hacer
reflexionar a los teodricos de la inferencia estadistica vy
consecuentemente descarten “modelos de supuestas propiedades”,
que nadie puede comprobar que éstas se cumplen en la practica y
en muchos casos son impracticables por las exigencias de las
hipotesis supuestas, pero gue son necesarias que se cumplan tedrica
y practicamente para poder afirmar algo con dichos modelos
supuestos y dichos datos seleccionados de la realidad fisica u
observacional de donde se obtienen de acuerdo o no a dichas reglas
I6gicas.

Todos estos razonamientos tienen su sentido dentro de un
marco legal que dispone la colaboracion de las personas o
ciudadanos, de los hogares, de las empresas y sociedades, etc. con
el estado de una nacién y con los estudios por muestreo basados en
sus censos o bases de datos. En este sentido se elaboran leyes que
obligan a los ciudadanos o a otros grupos sociales a colaborar en la
elaboracion de los censos 0 en encuestas oficiales. A estas
encuestas van dirigidas las reflexiones de este libro.
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Existen otro tipo de encuestas en las que los participantes
colaboran voluntariamente tras ser informados del interés de la
misma, por lo que su seleccion en la muestra no es aleatoria sino
por adhesion particular a los fines e interes del estudio. A estos
estudios los llamamos “muestreos de participacion voluntaria”.
Tienen su interés por ejemplo en estudios socioldgicos,
psicologicos, etc. En ellos el encuestado es el que elige participar
0 no en el estudio y por tanto la inferencia estadistica tiene poco
que aportar en este caso, pero si la estadistica descriptiva.

En otros casos el estudio por muestreo es por seleccion
opinatica. En estos la muestra es seleccionada por el investigador
que realiza el estudio, segun criterios que tienen unos argumentos
de representatividad o de tipo técnico que lo hacen viable.

Estos tipos de estudio por muestreo no siempre son aleatorios
de modo probabilistico, por lo que en estos casos tanto en los
estudios de participacion voluntaria de los encuestados, en los de
seleccién opinatica del investigador, como en aquellos en que se
produzcan ambos hechos de “voluntariedad de encuestados” y de
“seleccion por opinion del investigador” no entran dentro de los
estudios de inferencia estadistica objetiva al que nos hemos
referido en este libro salvo que la seleccion de la muestra pueda
realizarse por métodos de muestreo probabilistico sobre un marco
0 censo de todas las unidades identificadas, aunque se respete su
anonimato, de la poblacion finita sobre la que se desea realizar la
inferencia estadistica.

Como primer resultado, hemos de advertir que el uso de la
inferencia clasica y de la inferencia bayesiana, y otras basadas en
modelos superpoblacionales entre otros métodos estadisticos, no
son una via segura ni objetiva para realizar inferencias basadas en

438



hechos y fundamentos ciertos, pues a la variabilidad propia de la
inferencia hay que afiadir otras dos fuentes de error en sus analisis:

1. Tener que suponer como cierto lo que no es o puede no ser la
poblacion (por ejemplo, asumir como hipotesis la normalidad
de los datos observados en la experimentacion, que es un
reduccionismo). Una hipotesis supuesta no puede
considerarse como un hecho si aquélla no se demuestra y no
se prueba su veracidad.

2. Descontrol en la seleccion de la muestra aleatoria, ya que al
no identificar numeradamente a las unidades de la poblacion,
la accesibilidad a las mismas queda trastocada y/o
parcialmente  obstaculizada, favoreciendo la mayor
representatividad de unas unidades sobre otras o de unas
observaciones sobre otras pero sin tenerlo en consideracion
en el analisis estadistico clasico, bayesiano, no paramétrico,
0 superpoblacional de esos datos. Las hipotesis del disefio
muestral deben demostrarse en la practica, no solo suponerlas
y tratarlas como hechos que no son. No se puede confundir
una “hipoétesis supuesta” con un “hecho verdadero”.

Por otro lado, si es objetivo partir de la base cierta de que la
poblacién humana en estudio en un instante dado es finita, y su
tamarfio poblacional N (el nimero de personas a las que se dirige el
estudio) puede ser conocido de antemano (Ruiz Espejo, 2013c).
También es un elemento de analisis objetivo que las personas o
sujetos que forman parte de la poblacion finita estén identificados
y tengamos el medio de acceder a ellos, ya sea por medio de la
consulta médica o cuando su colaboracion sea requerida tras
manifestar su consentimiento informado a participar en el estudio
experimental. Ambos aspectos son considerados en el estudio de la
inferencia en poblaciones finitas con datos fijos observados, pues
en casos de discrepancias en las observaciones estas son
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consecuencia de fallos en la medicion del dato o en respuestas
defectuosas, maliciosas, 0 engariosas en el sujeto.

Al realizar inferencias objetivas en las que se presenta una
muestra de sujetos representativa de una poblacion de interés (por
ejemplo, todos los pacientes de una enfermedad en el mundo en
cierta fecha concreta), si queremos observar a todos los
seleccionados en una muestra, por el consentimiento informado la
muestra inicialmente se reducird a voluntarios de entre los
seleccionados. Pero para que el estudio tenga validez objetiva es
necesario obtener una muestra de entre los no voluntarios en el
primer intento de busqueda de consentimiento informado. Asi,
obteniendo la colaboracion de una submuestra de entre los no
voluntarios en un primer intento, pero que sean voluntarios en un
segundo intento, podemos concluir el estudio con estimaciones
insesgadas de la funcion paramétrica de eficacia “media
poblacional” de la variable de interés, y ademas tenemos la
estimacion insesgada de la varianza de la anterior estimacion
insesgada, lo que nos permitira obtener intervalos de confianza
estimados de la media poblacional, y como consecuencia contrastar
hipotesis sobre dicha media poblacional. Los trabajos iniciales en
los que se presentan estas posibles mejoras son los de Ruiz Espejo
(2011a, 2013d, 2015b) y de Thompson (2012).

De este modo se obtendrian conclusiones validas para toda la
poblacidn de pacientes o sujetos, no limitandonos exclusivamente
al estrato o subpoblacion de voluntarios en el primer intento (lo que
conllevaria sesgos de estimacion, y la imposibilidad practica de
obtener conclusiones objetivas sobre toda la poblacion de los
posibles pacientes), gue es como hasta ahora se habia regulado su
participacion en los estudios experimentales. Del modo que hemos
sugerido, se evitaria la hipétesis subyacente en la inferencia clasica,
bayesiana o superpoblacional (y otras muchas consideradas
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tedricamente, como la inferencia no parameétrica, semiparamétrica,
etc.) de que la media obtenida en el estrato de voluntarios es la
misma que en el estrato de no voluntarios, hipotesis que reduce las
conclusiones del estudio a los voluntarios. Y, en cualquier caso,
deberia de demostrarse que tal hipotesis de igualdad de medias en
ambos estratos fuera cierta para que los estudios sean algo mas
objetivos con dichos tipos de inferencia, cosa que no se hace con la
normativa actual, y asi las conclusiones de la investigacion no se
podrian afirmar de toda la poblacion compuesta por los voluntarios
y los no voluntarios. Asi pues, serian estudios teoricos bajo
supuestas hipotesis no comprobadas.

La confidencialidad de los sujetos que participan en la
investigacion puede conseguirse identificando al sujeto que
participa con un namero o clave que conste en su historia clinica,
y ésta esté desprovista de cualquier otra identificacion que revelara
la persona concreta de la que se trata. Esta es una hipotesis de
trabajo para la inferencia en poblaciones finitas, como se presenta
en Ruiz Espejo (2013c). Solo el médico tiene acceso a aportar los
datos de su paciente, a quien conoce personalmente en consulta o
en seguimiento, pero su historia médica seria confidencial y
anonima salvo en el identificador del paciente que seria una clave
de acceso a su historia clinica y a sus datos observados e
informacion auxiliar.

Como conclusion, el conocimiento cientifico necesario para
descubrir nuevos medicamentos o terapias requeriria, desde un
punto de vista bioestadistico, la colaboracion de sujetos voluntarios
para el estudio experimental y la colaboracion de otros sujetos no
voluntarios inicialmente de entre los que fueron seleccionados
aleatoria y probabilisticamente entre todos los posibles sujetos de
la muestra inicial, y que no se mostraron dispuestos a colaborar
para el fin de conocer los efectos de un nuevo tratamiento
terapéutico o medico para cierta enfermedad concreta o para la
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prevencion de la misma. Pero que después acceden a colaborar
como voluntarios en condiciones mas ventajosas en una
submuestra de la muestra de pacientes no voluntarios en el primer
intento de obtener su consentimiento informado.

Se presenta por tanto un dilema: desde un punto de vista
respetuoso de la dignidad de los sujetos humanos, es necesario el
consentimiento informado de éestos; pero en el caso de que hubiera
no consentimiento por parte de los sujetos, no podrian garantizarse
estadisticamente las propiedades del nuevo tratamiento para la
totalidad de los pacientes salvo que un nimero de éstos (de tamario
muestral mayor o igual a dos) seleccionados aleatoria y
probabilisticamente colaboren en el estudio en un segundo intento
de obtener su consentimiento informado para participar en el
estudio experimental.

Una alternativa es suponer que los sujetos voluntarios y los
no voluntarios son equivalentes o que sus parametros que miden la
eficacia del tratamiento no varian de uno a otro estrato o dominio,
algo que en teoria general seria falso. Pero para garantizar
estadisticamente la efectividad del tratamiento esta suposicion
debe ser demostrada y no solo supuesta. Demostrarlo seria mas
complicado (en realidad requeriria realizar un censo de todos los
sujetos y todos deberian ser voluntarios, lo que seria una
contradiccion con que hay algunos que no dan su consentimiento)
que trabajar con la hipotesis liberadora de que ambos estratos
podrian tener diferentes medias y varianzas, y entonces para
concluir resultados para toda la poblacion finita de sujetos bastaria
seleccionar una muestra aleatoria y probabilistica de cada uno de
los estratos (el de los voluntarios y el de los no voluntarios)
independientemente en cada uno de ellos. De este modo aunque las
funciones parameétricas (medias poblacionales de cada dominio)
indicadoras de la eficacia del tratamiento fueran iguales o no lo
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fueran en todos los casos, los métodos estadisticos que hemos
sugerido para la no respuesta permiten extraer conclusiones para
toda la poblacion de sujetos, no solo para los voluntarios como
ocurriria en el caso general en que no considerasemos la no
respuesta 0 no consentimiento iniciales como conformadores del
estudio experimental.

En efecto, llamando a la media muestral de voluntarios y; ,,,
donde v es el nimero de voluntarios a partir de la muestra
irrestricta aleatoria de tamafio n obtenida de toda la poblacion
finita de tamafio N, su esperanza matematica seria

n

E(1y) = E[EGunlv)] = ) E(Fyv)p).
v=0

Si el tamaio muestral n (1 <n < N) es menor o igual al
tamafo del estrato de no respuesta o de no voluntarios, que
Ilamamos N,, es decir n < N,, como la probabilidad p(v = 0) >
0 pues se puede dar el caso en que la muestra irrestricta aleatoria
esté toda en el segundo estrato, entonces la esperanza matematica
E(¥1|v = 0) no existe al no estar definida dicha media muestral
pues la muestra es de cero unidades, y por tanto la esperanza
matematica E (¥, ,, ) no existe.

Pero si el tamafio muestral n > N,, entonces el nimero de
voluntarios en la muestra recorre los valores siguientes v =n —
N,,n — N, + 1, ..., min{n, N, }, siendo N; el tamafio del estrato de
voluntarios de la poblacidn finita, es decir N; = N — N,. Y, en este
caso, p(v = 0) = 0 pues siempre habra voluntarios en la muestra
irrestricta aleatoria, y como consecuencia para todos los valores de
v de dicho recorrido la esperanza matematica E(;‘/Lvh/) =¥,
siendo y; la media del estrato de voluntarios en la poblacion, que
puede ser distinta de la media poblacional y. Asi, en este caso,

443



deducimos que la esperanza matematica incondicional es también
E(¥1,) = ¥,. Pero, en general, y, # y.

Aunque estas metodologias propuestas para tratar la no
respuesta surgieron a nivel teorico, de “Teoria de Muestras” para
ser aplicadas a datos recogidos en “Encuestas por Muestreo”,
hemos visto y asi hemos explicado su utilidad como ciencia
objetiva para tratar eticamente los datos estadisticos recogidos de
acuerdo a un disefio o un esquema muestral en estudios
experimentales, ya sean éstos observacionales (recogidos visual,
auditiva, tactilmente...) o terapéuticos (como consejos de un padre,
de un hermano o de un amigo, tratamientos psicologicos, etc. e
incluso tratamientos médicos tradicionales o de terapias nuevas en
fase de estudio).

En conclusion, es necesaria la colaboracion de sujetos que
inicialmente no consienten la experimentacion en si mismos, y que
sean voluntarios a su vez en un segundo intento entre los elegidos
aleatoriamente y probabilisticamente, para inferir conclusiones
objetivas validas para toda la poblacion de sujetos de la eficacia del
tratamiento. Esta conclusion no colisiona con el principio de
autonomia y del respeto a la dignidad de los sujetos que no pueden
ser obligados a consentir ser objeto de experimentacion si no es
informada, libre y voluntariamente, ya que esta dignidad de la
persona es un principio superior al de querer obtener conocimiento
cientifico y por tanto una verdad a cualquier coste, como el de no
respetar la libertad de las seres humanos que no estuviesen
dispuestos a asumir los riesgos de la experimentacion informada en
si mismos. Los fines de la ciencia y el conocimiento no pueden
imponerse a la voluntad de las personas, aunque esta voluntad
conlleve que los tratamientos no puedan ser estudiados
objetivamente segun la ciencia estadistica, y como consecuencia no
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puedan ser estudiados con validez para toda la poblacion de sujetos
0 pacientes.

Como, por otro lado, se regula que no estan permitidos
incentivos a la participacion voluntaria en los estudios
experimentales aparte de los ya considerados en justicia social,
cabe preguntarse si considerar que el efecto de poder estudiar de
modo objetivo el efecto de un tratamiento en toda la poblacién de
sujetos, no es suficiente razon para no incentivar con justicia social
a la participacion en el estudio de algunos de los no voluntarios
iniciales. Pues entendemos que la objetividad cientifica que se
obtuviera seria valida para toda la poblacion de pacientes o de
sujetos desde las fases dos y tres, por lo que pensamos que debe ser
valorado también en justicia social la colaboracion posterior de no
voluntarios iniciales en estas fases con otras condiciones de
participacion revisadas al alza. Pues si fueron no voluntarios con
las compensaciones que se propusieron y que aceptaron los
voluntarios iniciales pero otros rechazaron, con esas mismas
compensaciones raramente accederian a participar en el estudio en
otra fase si no se mejoran claramente las compensaciones en un
segundo intento de consentimiento informado.

Una solucion de compromiso a este dilema que sugerimos es
proporcionar unas compensaciones responsables de acuerdo con
los posibles dafios como consecuencia de la participacion en el
estudio experimental (y no solo como contrato retribuido prefijado
unico “pase lo que pase”), que puede ir desde sufragar los gastos
derivados de los desplazamientos y dias laborales perdidos en el
caso de no derivarse ningun efecto perjudicial en la salud del sujeto
que participa, pasando por retribuciones gradualmente
proporcionadas a los dafios derivados 0 seguros médicos
razonables por su contribucién al estudio, hasta indemnizaciones
y/o seguros médicos vitalicios y de otros tipos en casos de extremas
consecuencias. Estas condiciones deben ser perfectamente
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explicadas oralmente e informadas por escrito antes de obtener el
consentimiento informado de los sujetos. También pueden ser
mejoradas alguna o algunas de las clausulas firmadas para los no
voluntarios iniciales, para que puedan facilitar su participacion en
el estudio en un segundo intento si fueran seleccionados en la
muestra de no voluntarios en el primer intento.

Todo ello sin descuidar minimizar los riesgos de la
experimentacion en seres humanos como es preceptivo en
cualquier estudio de este tipo, hasta hacer de tales riesgos
practicamente nulos o despreciables a altos niveles de confianza.

Ciertamente, en la fase cuarta se puede obtener informacion
de toda la poblacion de pacientes sobre el medicamento en cuestion
que trata de conocerse, pero seria un elemento de riesgo
comercializar el medicamento sin experimentar entre los pacientes
no voluntarios iniciales en las anteriores fases del estudio por las
razones expuestas.

Por todo ello, no se trata de llegar a un consenso o acuerdo de
subjetividades de o entre estadisticos, sino de apreciar sobre todo
lo objetivo y lo cierto, por encima de lo que es opinable, subjetivo
y posiblemente falso. La ética exige una ciencia objetiva y
demostrada en sus premisas, planteamientos y argumentos, que
garantice sin errores lo que afirma.

La ética también da prioridad a la dignidad de las personas,
pacientes, voluntarios, etc. sobre cualquier avance de la ciencia en
el conocimiento de esas personas. La caridad es una prioridad sobre
la ciencia. La verdad es asi por si misma, y no es necesariamente
producto de consenso ni de una mayoria. La dignidad humana
exige sobreponer la caridad al avance de la ciencia, y anteponer la
verdad objetiva a cualquier decision colectiva o individual.
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Cuando decimos que “no hay verdad sin caridad, ni caridad
sin verdad” nos referimos a la verdad de la revelacion catolica.
Llevar esta afirmacion a una verdad del conocimiento de la ciencia
en general y de las personas, no seria correcta sin caridad ante todo
con las personas, pues no es licito revelar las imperfecciones
identificando al imperfecto, sin faltar a la caridad. Esta posible
identificacion queda entre el paciente y el médico.

De acuerdo con la identificabilidad de las unidades de la
poblacidn finita, seria posible una inferencia estadistica objetiva.
De acuerdo con el respeto a la voluntariedad de ser accesible una
unidad personal seleccionada en la muestra de individuos o
personas, tendriamos la solucion inferencial que hemos estudiado
del muestreo con no respuesta. Pero si las unidades seleccionadas
en la submuestra del “estrato de no respuesta en el primer intento”
no acceden todas a ser investigadas, entonces no seria posible,
hasta lo que hemos visto, una inferencia estadistica objetiva basada
en la “estimacion insesgada de la media poblacional”, y de un
estimador insesgado de la varianza de tal estimacion insesgada. La
solucion seria de nuevo submuestrear la submuestra del estrato de
no respuesta en los dos primeros intentos, lo que parece de bastante
complejidad. Pero pensar que en un tercer intento de obtener todas
las respuestas (prefijadas en numero), cuando ya ha habido no
respuesta en dos intentos anteriores y se han presentado no
voluntarios en dichas dos oportunidades previas, no resulta
inteligente pensar que en una tercera oportunidad todos los
muestreados sean finalmente voluntarios. Por este motivo, reiterar
submuestras de no voluntarios recurrentes carece de sentido
practico, ademas de las molestias que ocasionarian a los propios
encuestables o experimentables, y a los propios encuestadores o
experimentadores.

Otra alternativa posible es el uso de la estadistica descriptiva
objetiva de los voluntarios investigados, teniendo cuidado en que
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los datos sean verdaderos como mejor medio que obtener muchos
datos que puedan ser errados, evitando variables no definidas
claramente o difusas y que puedan dar lugar a respuestas ambigiias
0 no unicas ante un mismo hecho observado.

El aspecto que no se puede olvidar es el debido respeto vy el
debido amor a los encuestados u observados. Su libre voluntad,
para participar o no en el estudio, ha de ser tenida en cuenta. No
basta con una supuesta buena intencion del experimentador o del
encuestador. Un buen fin, como seria el conocimiento mas perfecto
y verdadero de una enfermedad o de un nuevo tratamiento médico
0 el estudio socioldgico de una actitud ante determinada cuestion
de una poblacion humana, no puede llevarse a cabo con medios
malos que no respeten o0 no amen a las personas de las que se
obtendria la informaciéon para tal fin. El fin bueno debe obtenerse
con medios buenos, pues de otro modo se pervierte la pretendida
bondad de la investigacion por muestreo. Una cita biblica que
puede ayudar a entenderlo es Romanos 3,8.

De este modo, muchas investigaciones por muestreo pueden
ser objetivas, pero en algunos casos requiere la libre colaboracion
de voluntarios, y esta libertad humana que no es predecible ni
modelizable objetivamente puede impedir la objetividad estadistica
inferencial de las conclusiones de un estudio.

Por tanto, es posible una inferencia estadistica objetiva
cuando las unidades de la poblacion finita estan identificadas,
aungue fueran personas anonimas, y todas las unidades a observar
fueran accesibles en el caso de ser seleccionadas en la muestra.

En otros casos, como en el que se presenta no respuesta, hay
métodos objetivos que podrian funcionar con mejores medios y
recursos asistenciales, pero no queda garantizada esta objetividad
inferencial debido a la libertad de las personas a ser observadas, al
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poder faltar parte de la informacion que la muestra seleccionada
probabilisticamente exigiria acceder teéricamente.

Hay métodos estadisticos que son objetivos tanto en el
sustrato matematico como en la puesta en practica de la
metodologia sobre el terreno. Nos referimos también a que
substituir realidades objetivas por hipotesis ideales es cambiar
ciencia objetiva por ideologia. Pues una idea sin comprobacion
posible como causa del anélisis estadistico da lugar a ideologia y
no precisamente a una ciencia objetiva.

Inferencia clasica. Presupone un modelo poblacional que en
muchos ejemplos no puede comprobarse en la practica, por lo que
puede ser o es ideologia y no ciencia objetiva. En este caso la
idealizacion consiste en sustituir la verdadera poblacion que existe
en el mundo real por la idea que el investigador pueda hacerse
subjetivamente usando funciones matematicas que supuestamente
aproximan la realidad pero sin la posibilidad de comprobar
fehacientemente su ajuste correcto a la realidad.

Inferencia bayesiana. Introduce prejuicios como la llamada
distribucion a priori, para concluir estimaciones sesgadas, donde
no las tendria la inferencia clasica. Ahora la ideologia se introduce
al sustituir un valor real de una poblacidn, que en principio puede
ser desconocido, por una distribucion subjetiva que representa la
idea que tiene el investigador bayesiano del parametro desconocido
que pretende estimar. Es decir, el investigador sustituye una
realidad concreta desconocida para él por una distribucion ideal
subjetiva y supuesta por él en el anélisis inferencial.

Estadistica descriptiva. No estda a salvo de posibles
manipulaciones tampoco este tipo de estadistica. Un ejemplo es, en
el caso de un histograma, sustituir la media de la variable
estadistica en un intervalo por el punto medio del intervalo; de este
modo, al promediar los puntos medios por las frecuencias relativas
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de los intervalos, el valor medio de la variable estadistica queda
afectada por la idea de que el punto medio del intervalo representa
a la media de la distribucion en dicho intervalo. Lo correcto seria
ponderar las medias parciales de la variable en cada intervalo por
sus respectivas frecuencias relativas y al sumar todos estos
productos obtendriamos sin error la media de la variable estadistica
completa. El idealismo, en este caso, consiste en sustituir la media
parcial de la variable en el intervalo por el punto medio del
intervalo, haciendo perder informacion y sesgando el valor del
parametro media de la variable estadistica si quisiéramos
reconstruir el valor medio ponderando las medias de cada intervalo
por sus frecuencias relativas y sumandolas todas ellas.

Otro ejemplo de idealismo es el que tiene lugar al usar la
distribucidon normal en base al teorema central del limite. Si bien es
cierto que la media aritmética de las observaciones obtenidas por
muestreo aleatorio simple de una misma poblacién con varianza
finita, tiende a ser normal asintéticamente en distribucion, no es
menos cierto que la mayoria de aplicaciones de este teorema no
comprueban en la practica la hipétesis de partida que da validez al
resultado, que la muestra sea en realidad una muestra aleatoria
simple con reemplazamiento. Esto es observable en revistas de
medicina basadas en datos de muestras al azar, pero no en muestras
aleatorias simples, es decir, que en cada dato se recoge la variable
de interés en un sujeto que es seleccionado independientemente con
probabilidades iguales y con la misma distribucion que la
poblacién de partida. Si no hay esta previa seleccién aleatoria
simple, no puede hablarse después con garantia de que los datos
elaborados sigan distribuciones aproximadamente normales, ji-
cuadrado, t de Student, F de Snedecor, etc. en base al teorema
central del limite ya que no se respeta en la practica una hipotesis
fundamental del teorema. En realidad lo que se hace es predecir
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que una muestra seleccionada al azar va a proporcionarnos una
muestra como si fuera aleatoria simple, lo cual puede ser intuitivo
pero no se prueba racionalmente. Si una intuicion tuviese un valor
aproximativo, entonces estariamos aproximandonos intuitivamente
a la aproximacion asintotica dada por el teorema central del limite.
Y en este proceso de doble aproximacion hemos perdido el hilo
conductor racional en aras de una practicidad que no puede
asegurar cientificamente lo que afirma al final.

Muchas de estas idealizaciones se basan en ideas surgidas en
el siglo XIX, en el que idealismo y el positivismo tuvieron gran
aceptacion (lzquierdo Urbina, 2015, p. 71), pero que dieron lugar
a muchas ideologias cientificas todavia en nuestros dias, llenando
pizarras y revistas cientificas hasta la actualidad.

En un problema de inferencia el objetivo no es decir la verdad
de un parametro desconocido, sino de estimar tal pardmetro con un
error que tratamos de minimizar atendiendo a las condiciones
especificas del problema. Se puede hablar de la verdad de usar un
estimador que es 6ptimo o que es admisible dentro de un conjunto
de dichos estimadores, pero no cabe esperar saber la verdad del
parametro con una mera estimacion del mismo basada en una
muestra de datos solamente. Si sabremos que hemos estimado bien
en las condiciones concretas optimizando el estimador, por ejemplo
exigiendo que sea “insesgado”, es decir, que el promedio de sus
probables estimaciones coincida con el parametro (o funcion
parametrica) que deseamos conocer mediante el metodo
inferencial. En realidad la insesgacion es un requisito totalmente
justificado y deseable, que las posibles estimaciones tengan por
promedio exactamente el valor verdadero que pretendemos
estimar. La minimizacion del error consiste en conseguir la minima
dispersion de las posibles estimaciones proporcionadas por una
estrategia muestral compuesta por un disefio de muestreo y un
estimador concreto que pertenece a una clase de ellos. El disefio
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muestral asigna la probabilidad de cada posible muestra y el
estimador es una funcion que depende de los datos observados en
las unidades de la muestra, y depende también de los
identificadores de las unidades seleccionadas en la muestra.

Estas son algunas de las cuestiones eticas ademas de las
recientemente estudiadas por el autor y, mas concretamente, en las
planteadas en la bioestadistica médica y en los estudios de salud
publica. Queda de manifiesto que la estadistica empleada en la
mayoria de estudios médicos y de salud publica hasta fechas
recientes adolecen de subjetivismo y se fundamentan en parte en el
idealismo, por lo que distan de ser metodologias objetivas como
seria deseable al tratar con seres humanos para no hacer falsos
testimonios sobre el conjunto de pacientes o sobre los sujetos de
los que se toman las observaciones o datos con fines estadisticos
ya sean descriptivos o inferenciales.

Dos citas biblicas que prohiben esta manera de proceder son
Exodo 20, 16 y Deuteronomio 5, 20 (Editorial DDB, 1999), en
ambos casos recogiendo la palabra de Yahvé, Dios Padre de los
cristianos. También Jesus confirmé el mandamiento de no diras
falsos testimonios, por ejemplo en Mateo 15, 19 (Editorial DDB,
1999).

Repasamos a continuacion algunos procedimientos que
considero han aportado objetividad a la estadistica, no solo como
razonamientos validos, sino sobre todo como aprovechables en la
practica sin excesivos costes.

Lo que se pretende con un andlisis estadistico objetivo es que
lo que se afirma acerca de una metodologia 0 de una estrategia de
muestreo sea cierto, y no un cimulo de aproximaciones en diversas
fases o etapas a un método que desfigurarian las cualidades reales
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de lo que realmente se hace con respecto a lo deseable teorica y
objetivamente.

Las razones de la objetividad en estadistica han sido
expuestas con detalle en este libro. En él indico que no basta con
tener una teoria razonable sino que todo el proceso de teoria y
puesta en practica debe ser correcto y sin saltos en el vacio. Debo
decir que la inferencia clasica y la inferencia bayesiana tienen
lagunas en el razonamiento o en la practica como para que
pudiéramos considerarlas objetivas en muchos casos que se ponen
como ejemplos de su potencial cientifico. Un ejemplo de estas
lagunas es que la muestra no se suele seleccionar de acuerdo a un
disefio muestral previamente definido. Un libro que explica con
algun detalle esta forma de seleccionar la muestra es el de Miras
Amor (1985).

También algunos métodos de tratamiento de los datos
observados de una variable estadistica en la estadistica descriptiva
adolecen de simplificaciones que no guardan o conservan todo el
potencial informativo de los datos originales, en especial para los
fines propuestos con el estudio estadistico.

Algunos de los primeros resultados probados sobre la
existencia de estimadores insesgados uniformemente de minima
varianza, y de estimadores uniformemente de minimo error
cuadratico medio, han sido tratados —en el contexto de poblaciones
finitas en el modelo objetivo de poblacidn finita fijada— por Ruiz
Espejo (1987c¢).

Un ejemplo es el tratamiento objetivo de la no respuesta
cuando en la muestra aparecen sujetos o unidades de las que no
podemos obtener respuesta a pesar de haber sido seleccionadas en
la muestra de acuerdo con un disefio muestral. Se han escrito libros
y muchos articulos sobre el tratamiento de la no respuesta, pero
desde los afos 40 del siglo XX no se habia resuelto el problema de
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estimar sin sesgo la varianza del estimador insesgado para no
respuesta propuesto por Hansen y Hurwitz (1946), y popularizado
en el libro de Cochran (1977), de un modo objetivo y convincente.
Este problema ha sido resuelto satisfactoriamente por Ruiz Espejo
(2011, 2013d, 2013g, 2015b) y por Thompson (2012) bajo diversos
esquemas o estrategias de muestreo.

Otro problema que ha sido resuelto satisfactoriamente desde
la perspectiva de la estadistica objetiva es el problema de inferencia
en muestreo posagrupado (Ruiz Espejo et al., 2006). También han
sido caracterizados los disefios muestrales admisibles para el
estimador Horvitz-Thompson por Ruiz Espejo (1987b). La
optimalidad del muestreo aleatorio simple con reemplazamiento en
la clase de todos los disefios ordenados posagrupados
proporcionales al tamafno, y de tamano fijo, para el estimador
media muestral, ha sido probada por Ruiz Espejo (2008).

Un problema tedrico resuelto que tiene implicaciones en la
inferencia clasica y también en la inferencia estadistica objetiva es
el de estimacion insesgada optima de los momentos poblacionales
mas importantes. La primera solucion a este problema en los
momentos centrales poblacionales de orden cuatro se debe a Ruiz
Espejo et al. (2013, 2016) y a Ruiz Espejo (2015h).

Otro problema sobre la proteccion de la intimidad en
respuesta aleatorizada con distribucion a priori objetiva, dada por
el disefio muestral, ha sido estudiado por Ruiz Espejo y Singh
(2003).

Sobre estimacion lineal 6ptima a partir de medias muestrales
independientes o incorrelacionadas se han resuelto algunos
problemas en Ruiz Espejo et al. (1995), y generalizados en Ruiz
Espejo et al. (2001).
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También hemos probado la admisibilidad de un estimador de
regresion lineal corregido insesgado sobre el estimador de
regresion lineal clasico, y justificamos la existencia de estimadores
concretos de regresion multivariante insesgados (Ruiz Espejo,
20164a, 2016¢). Y en Ruiz Espejo (2015h) proporciono estimadores
insesgados, asi como estimadores insesgados de sus varianzas en
algunos casos, a partir del estadistico media-de-razones, lo que son
unas soluciones objetivas interesantes en el caso de disponer de una
variable estadistica altamente correlacionada con la variable de
interes en estudio.

Otro estimador insesgado de la ‘“varianza del estimador
insesgado” en muestreo sistematico de doble arranque, también de
modo objetivo, ha sido proporcionado por Ruiz Espejo (2014b). Y
en Ruiz Espejo (1997f) se prueba la unicidad de la estrategia de
Zinger con varianza estimable insesgadamente.

Otros estimadores insesgados con criterios objetivos han sido
propuestos recientemente por Ruiz Espejo (2018b, 2018f, 2018j)
ya sea para la media poblacional asi como para la varianza.

Lo que he pretendido hacer ver en este resumen es que no
basta un racionalismo cualquiera en el estudio y en la investigacion
estadistica, sino que también es necesaria una vision rica y
completa de los matices que hacen que una investigacion o una
ensefianza sean realizables en la practica. Sin perder de vista que
los resultados han de exponerse de un modo correcto en el fondo,
en la forma, en lo lo6gico y en lo practico. Si ademas se hace todo
esto amablemente, creo que se ha llegado a un estado de madurez
en la ciencia estadistica.

Cualquier intuicion o racionalismo reductivo de los
problemas estadisticos que no superen todos estos elementos
bésicos de racionalidad, practicidad y de buen espiritu dejarian
incompletas las aportaciones a la ciencia, aunque rellenen muchas
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paginas con gran exposicion de férmulas o tablas complicadas,
porque los argumentos no se sostendrian ante un examen
minimamente minucioso de su verdadera utilidad para el fin que se
proponen.

Como primera cosecuencia, se puede llegar a afirmar que una
gran parte de investigaciones estadisticas, publicadas incluso en
revistas con factor de impacto estadistico ampliamente reconocido,
no alcanzan algunos de los estandares que hemos sugerido en este
articulo de exposicion para tratar los datos estadisticamente en su
descripcion o para fines inferenciales.

Como segunda consecuencia, si se pretende alcanzar una
educacion y una investigacion que pueda llamarse ciencia a todas
luces, es necesario aunar esfuerzos para proporcionar materiales
didacticos en estadistica menos idealistas, asi como promocionar a
editores de publicaciones de ciencia que tengan un curriculum
investigador acorde con los argumentos que he expuesto. Pero
mientras que los motivos editoriales se orienten méas con una vision
de negocio que de integridad en la ciencia dudo que llegue a verse
una estadistica de calidad que podamos llamar ciencia y no meras
ideas sueltas, sin conexion real y racional entre lo que
pretendidamente afirman y lo que realmente se ha hecho al hacer
tal afirmacion; es decir, un fraude cientifico en algunos o en
muchos casos.

Otra fuente de informacion son las encuestas. Hay muchas
teorias matematicas y estadisticas que darian soporte cientifico a
las investigaciones por encuestas realizadas en la sociedad, pero
para un cientifico es claro que para que cualquiera de estas teorias
puedan dar algun fruto de veracidad los datos recogidos han de ser
verdaderos y ciertos, al menos en la fase confirmatoria final. Dicho
de otro modo, seria inGtil tomar datos falsos si se pretende que la
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encuesta arroje algo de luz sobre una cuestion politica o
socioldgica.

De aqui que la persona a la que va dirigida una encuesta sea
una persona que responda la verdad o, al menos, que el dato sea
tomado de cada persona o unidad (empresa, confesion religiosa,
industria, universidad, parroquia, etc.) observada por un
encuestador sea fiel a la verdad que observa y posteriormente anota
0 registra como respuesta.

Un ejemplo seria el de un médico que lleva cuenta de las
enfermedades que se presentan en su consulta. No seria necesario
que el paciente diga la enfermedad sino que el mismo médico
consultado puede conocer la enfermedad y, en un caso extremo,
informar de que desconoce la enfermedad o el mal que le han
consultado.

En la presente seccion veremos las posibles actuaciones ante
el desarrollo de una encuesta desde un punto de vista profesional,
ético y moral.

Los estudios que conducirian a un soporte cientifico correcto
del andlisis inferencial, es decir, de lo que puede afirmarse
inductivamente de la poblacion con los datos obtenidos de una
muestra aleatoria probabilistica seleccionada de la poblacién,
requieren unas propiedades cientificas que han de ser respetadas en
el procedimiento de seleccidn de la muestra y de estimacion.

Por ejemplo, si queremos usar al final unas formulas que dan
la medida del error de muestreo aleatorio simple con
reemplazamiento de una estimacion puntual de un “parametro
poblacional” (como seria el caso de “la media poblacional de la
variable consultada” en la encuesta), hemos de cuidar que la
seleccién de personas o unidades reproduzca con evidencia la
equiprobabilidad e independencia probabilistica en las distintas
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sucesivas selecciones de personas o unidades de la poblacion para
formar parte de la muestra aleatoria simple con reemplazamiento.

De otro modo, las férmulas serian inudtiles ya que el
fundamento con el que se obtiene tedricamente la formula no se ha
cumplido en el caso concreto al que se pretende aplicar dicha
formula. Se debe respetar la independencia estadistica en las
sucesivas selecciones de unidades de la muestra, que es una
hipdtesis necesaria para la que férmula final de la varianza de la
estimacion tenga sentido, por ejemplo.

Desde un punto de vista moral no seria correcto afirmar con
el uso de tal formula que una estimacion puntual tiene determinado
error de muestreo si en realidad no se han cumplido las condiciones
para las cuales la férmula tiene sentido. Esto es lo que ocurre en la
mayor parte de las investigaciones medicas, psicologicas,
socioldgicas, economicas, etc. que he conocido: que se presentan
como cientificas unas conclusiones que moral, cientifica y
éticamente no serian de correcto recibo al no comprobar todas las
hipotesis implicitas que supone la teoria que aporta tales
estimaciones.

Del mismo modo, férmulas que se han obtenido
recientemente para sobrellevar el efecto de la no respuesta en una
muestra inicial, pudiendo estimar sin sesgo el parametro
poblacional y la varianza del estimador para ello, presuponen que
la encuesta al final obtiene todas las respuestas buscadas en un
submuestreo de no respondientes. Esto es posible suponerlo a nivel
tedrico, pero la practica es mas ilustrativa de que no sera siempre
lo que ocurra pues hay que respetar la voluntad de los encuestados.
Ademas no todo lo tedricamente pensado ni todo lo técnicamente
posible son necesariamente moralmente aceptables. Y, en caso de
dilema, el respeto a las leyes morales es una conducta superior a la
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imposicion de unas reglas cientificas que no respetan a los
encuestados.

Esto seria aplicable a los estudios tedricos que dan solucién
al problema de la estimacion insesgada con no respuesta. Mi
Intencion con estas investigaciones tedricas era proveer de un
estimador insesgado de la varianza para el estimador insesgado de
la media poblacional propuesto por autores americanos. Con ello
demostraba que si tenian los datos para estimar insesgadamente la
media poblacional, podemos disponer con la misma informacion
de estimadores insesgados de la varianza de tal estimador. Pero con
ello nunca pretendi reconocer que estas soluciones teoricas fueran
necesariamente morales o éticas, ya que su uso condiciona la
voluntad libre de los encuestados, al menos en una segunda fase de
submuestreo. Seria contradictorio e inmoral que la ciencia tedrica
sirva para no respetar a las personas y su voluntad, su conciencia
bien formada en definitiva, y su deseo y su propésito sincero de
obrar bien y evitar el mal.

Es, por tanto, lamentable el abuso del uso de formulas que
tienen su sentido en una correcta investigacion tedrica, pero cuando
son aplicadas a casos practicos que no pueden atenerse a las
condiciones supuestas en la teoria 0 no se han preservado esas
condiciones o incluso no se sabe si es asi en la practica real de la
encuesta o estudio observacional, es mejor no afirmar lo que no se
puede garantizar que sea cierto o al menos que cumpla unas
propiedades estadisticas que la practica realizada no puede
confirmar al no cumplir las condiciones requeridas para que sea asi.

La razon por la que las muestras aleatorias seleccionadas
pueden ser no simples (es decir, seleccionadas con probabilidades
iguales con reemplazamiento en extracciones independientes
sucesivas) es porque en primer lugar la mayoria de encuestas no se
seleccionan con un procedimiento correcto, por ejemplo, sin marco
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poblacional, o no sorteando con equiprobabilidad entre las
unidades para seleccionar los sucesivos encuestados, 0 no siendo
independientes las sucesivas selecciones.

En general existen otros muchos procedimientos de seleccion
de las unidades de la muestra con sus respectivos estimadores con
los que realizar las inferencias estadisticas, pero en cada caso de
estos se ha de cuidar que en la practica se respete el disefio muestral
concreto que se usa para realizar la inferencia asi como el estimador
concreto. Y todo esto no es inmediato ni cabe esperar que los datos
recibidos de cualquier modo sean una muestra aleatoria
probabilistica tal y como el disefio muestral indica o presupone.

Lo que ocurre en general en la practica es que las unidades
que colaboran voluntariamente en aportar sus datos a la encuesta,
lo hacen tras ser informados de la finalidad de la encuesta a realizar
y aceptando su consentimiento informado a colaborar
efectivamente en la toma de datos.

Algo parecido ocurre o deberia ocurrir en los &mbitos médico
y psicoldgico en los que puede experimentarse un tratamiento y
obtener asi una respuesta como consecuencia del tratamiento. En
estos casos estd regulado el consentimiento informado de los
pacientes a propuesta de los médicos especialistas.

Ademas de las cuestiones éticas que deben superar todos los
estudios experimentales con seres humanos, se afaden los
planteados por el disefio muestral y la estimacion concretas que
permitirian hacer tal inferencia inductiva.

En todos estos casos, la muestra no es probabilistica sino
intencional y/o voluntaria en la que intervienen uno o muchos
actores, por lo que en realidad depende mas de voluntades humanas
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que de un estricto azar controlado para poder hacer inferencias
cientificas segun la teoria estadistica inferencial.

Por todo ello, cuando la seleccion de la muestra no es por azar
controlado probabilisticamente de acuerdo a un disefio muestral
ordenado (o no ordenado) concreto, sino que intervienen otros
factores individuales o personales voluntarios, dicha muestra puede
tener un valor empirico pero no inferencial estadistico. La muestra
seria una seleccion de la poblacion, pero no permite hacer
inferencias con rigor cientifico, aunque aparentemente se
dispongan de todos los datos requeridos en algunas formulas para
que pudiera realizar una posible inferencia. En cualquier caso esta
inferencia no seria valida o no es garantizable en lo que pudiera
afirmar sobre la poblacion de la que se ha seleccionado la muestra
intencional o de voluntarios.

La practica moral exige la conformidad del encuestado en
participar en el estudio de la encuesta, pues es razonable respetar
la libertad de cada persona en dar unos datos personales sobre
“quién es, lo que piensa, quiere, hace o tiene” sin forzar su voluntad
en ningln momento. En este sentido, es razonable que el
encuestado no responda, o deje de responder la pregunta o las
preguntas que considere oportuno, o desista de seguir respondiendo
en cualquier momento del cuestionario. Solo asi se veran
respetados sus derechos personales en todo momento y sera libre
de cooperar oportunamente con el estudio de la encuesta si asi lo
desea.

Cooperar en responder una encuesta es un acto de libertad.
No puede imponerse la obligatoriedad de colaborar con un estudio
ajeno sin contar con el beneplacito del posible encuestado. De otro
modo los patrocinadores de la encuesta emplearian métodos
coercitivos que no respetarian la voluntad de los encuestados y
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forzarian a estos a colaborar aun estando disconformes, algo no
aceptable en una sociedad libre.

Como vemos, tanto la verdad en las respuestas como la
libertad en responder forman parte esencial de todo estudio por
encuestas, sin las cuales no seria posible realizarlas y ni siquiera se
podrian obtener unos resultados aprovechables sin esa verdad
buscada, ni seria ético obtener las respuestas forzando voluntades
en contra de su parecer para cooperar con los objetivos de la
encuesta.

“No diras falsos testimonios ni mentiras” ensefia la moral
catolica, pero como hemos advertido, si no fueran verdaderas las
respuestas la ciencia teorica relativa a la inferencia en poblaciones
finitas no valdria para nada, asi de simple y exigente. Pero aunque
la moral catolica no informe al investigador, sin ella carece de
sentido toda investigacion que no pretenda ser veraz. Por otras
razones de no menos relevancia, otros tipos de inferencia
estadistica son mas cuestionables.

Un ejemplo de ello es que cuando se supone tedricamente que
la poblacidn es infinita (caracterizada por una funcién de densidad
continua) sin serlo, como suele hacer la inferencia clasica,
bayesiana, no paramétrica, etc. implicitamente lo que se esta
diciendo es que podemos prescindir de cualquier parte finita de la
poblacién en estudio porque la posible poblacion infinita
(caracterizada por una funcion de densidad continua) no se veria
afectada por ello. Asi, si la poblacion es finita en realidad y
prescindimos o eliminamos intencionalmente todas las unidades de
la poblacion finita, la inferencia con poblacion teorica infinita no
se veria afectada pero en realidad habriamos vaciado de sentido la
inferencia estadistica pretendida.
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En realidad el mensaje que trasmite una inferencia en
poblacion infinita con funcién de densidad continua es que se
puede eliminar cualquier parte finita de la poblacion objetivo para
el propoésito inferencial, pero esta vision es erronea, como puede
verse facilmente que eliminando una parte de la poblacion la media
poblacional se ve afectada en poblaciones finitas, que son las que
tienen algin interés practico como para garantizar que las
estipulaciones del disefio muestral pueden ser llevadas a la practica
de modo controlado. Esto sin entrar a valorar queé significado puede
tener que el investigador pueda o pretenda eliminar parte de la
poblacién para hacer sus inferencias. Nada limpio como cabe
suponer, y de hecho esto se hace en muchos estudios inferenciales
de seres humanos.

Pero la consecuencia de este proceder es que se introducen
sesgos en la estimacion del parametro media poblacional, mediante
la media muestral de las “unidades no excluidas de la poblacion”,
que serian como el estrato de respuesta. Habria otro estrato de no
respuesta compuesto por las unidades de la poblacion que han sido
excluidas y que, por tanto, no podran responder. Y todo esto
supuesto que todas las unidades no excluidas respondiesen. Los
razonamientos para entender estas cosas pueden seguirse casi
directamente de la teoria de la estimacion puntual cuando se
presenta la no respuesta.

Por las razones expuestas, cabe preguntarse si es posible
compaginar la ciencia estadistica tedrica y la practica real moral.
La respuesta a simple vista parece que solo tiene una respuesta: o
se respeta la voluntad de los encuestados para participar o no en la
encuesta (en cuyo caso la ciencia estadistica tedrica seria inutil,
aunque los patrocinadores de la encuesta hicieran gala de sus
virtudes éticas o morales), o bien se obliga a los encuestados a
responder y sin falta de respuesta ni de verdad en las mismas (lo
que presupone un comportamiento legal y moral en todos los
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encuestados, algo que parece ser imposible a juzgar por los
expertos funcionarios encargados de este tipo de estudios en la
practica).

Obviamente la solucion al dilema ciencia-moral, ya que
parece que no pueden compatibilizarse simultaneamente, pasa por
la realizacion de unos censos de colaboracién legal obligatoria, y
por unas encuestas postcensales de obligada participacion por
causas justificadas o, en su defecto, de muestras empiricas no
probabilisticas que mostraran la situacion de una o varias variables
estadisticas sin pretensiones inferenciales ya que la inferencia solo
se podria llevar a efecto con muestras probabilisticas de acuerdo a
un disefio muestral como parte de una estrategia de muestreo unida
a un estimador de la funcion parameétrica a estimar.

La mayor parte de estudios por muestreo que se realizan en la
sociedad son de caracter no probabilistico ya que no disponen del
marco poblacional necesario para seleccionar la muestra de
acuerdo con un disefio muestral, y también cuando el marco
poblacional se dispone es muy frecuente no hacer uso del mismo.
Por ello la ciencia aplicable queda vacia de contenido en la practica
aungue se pretenda presentar unas conclusiones inferenciales pero
sin cuidar todos los requisitos para que fuera una inferencia
inductiva cientifica. Seria un fraude en la ciencia como resulta ser
en muchos casos.

Y es que la moral no se limita a decir la verdad y a respetar la
voluntad de los encuestados, se trata de un comportamiento de
acuerdo a la ley divina y natural, y de la que forman parte aquellos
dos requisitos como necesarios pero no suficientes para una
actuacion enteramente moral.

Como conclusidn, recomiendo que en el caso de poder llevar
a cabo una encuesta segun prescribe la teoria estadistica inferencial
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(lo cual requiere el uso de poblaciones finitas y de un marco de la
poblacion) y las condiciones éticas y morales aplicables, lo
razonable es poner en la practica todas las condiciones para que tal
teoria se respete en la practica en todas sus hipotesis y en las
conclusiones rigurosas que se deducen.

En otro caso, si la teoria estadistica no puede llevarse
cuidadosamente en la practica, lo aconsejable es describir
objetivamente la muestra empirica obtenida pero sin pretension
inferencial alguna que resultase engafiosa. De este modo se
preserva lo que consiste la ley moral natural: “haz el bien y evita el
mal”. Y también preservaria la moral cristiana en este aspecto: “no
diras falsos testimonios ni mentiras”.

Para un mayor detalle de estos razonamientos pueden
consultarse los libros indicados en las referencias.

Para concluir y para que sirva de reflexion a los lectores, os
recomiendo los siguientes textos biblicos, del Catecismo de la
Iglesia Catolica y del Cdédigo de Derecho Candnico:

Colosenses 2,8: “Mirad que nadie os esclavice mediante la
vana falacia de una filosofia, fundada en tradiciones humanas,
segun los elementos del mundo y no segun Cristo.”

12 Timoteo 6,20-21: “Timoteo, guarda el deposito. Evita las
palabrerias profanas, y también las objeciones de la falsa ciencia;
algunos que la profesaban se han apartado de la fe. La gracia con
vosotros.”

Hebreos 13,9: “No os dejéis seducir por doctrinas diversas y
extranas.”

2% Pedro 3,18: “Creced, pues, en la gracia y en el
conocimiento de nuestro Sefior y Salvador, Jesucristo. A €l la gloria
ahora y hasta el dia de la eternidad. Amén.”

465



Catecismo de la Iglesia Catolica 2295: Las investigaciones o
experimentos en el ser humano no pueden legitimar actos que en si
mismos son contrarios a la dignidad de las personas y a la ley
moral. El eventual consentimiento de los sujetos no justifica tales
actos. La experimentacion en el ser humano no es moralmente
legitima si hace correr riesgos desproporcionados o evitables a la
vida o a la integridad fisica o psiquica del sujeto. La
experimentacion en seres humanos no es conforme a la dignidad de
la persona si, por afadidura, se hace sin el consentimiento
consciente del sujeto o de quienes tienen derecho sobre él.

Codigo de Derecho Candnico: los delitos contra la vida, la
libertad y la dignidad de las personas tienen la misma categoria de
los delitos de aborto o de homicidio, o de abuso de menores, en el
Cadigo de Derecho Canonico en el afio 2021.
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Anexo |

Distintos tipos de inferencia

1. Inferencia objetiva en poblaciones finitas fijadas

Se basa en disponer de una poblacién finita conocida y de tamafio
fijo, cuyas unidades o elementos son identificables y accesibles
para poder recabar informacion de la variable de estudio en cada
unidad seleccionada en la muestra. Por tanto la poblacion debe
estar listada por las unidades y su medio de localizacion o acceso a
las mismas. Una muestra es un conjunto de unidades o una
secuencia finita de ellas (aunque haya repeticiones), seleccionadas
segun un procedimiento probabilistico de obtencion o disefio
muestral. Si una unidad esté en la muestra, debe ser observada su
variable de interés y el dato recabado es aprovechado en la fase de
estimacion. Informaciones auxiliares pueden usarse en el disefio
muestral o en el estimador o en ambos.

2. Inferencia paramétrica clasica

En la inferencia paramétrica clasica, la poblacion esta caracterizada
por una funcién de densidad, de cuantia o de distribucion, de la que
se conoce su férmula que depende de una o varias constantes
desconocidas que aparecen en la formula, y se denominan
parametros. La inferencia consiste en aproximar dichos parametros
basandose en la propia formula subjetiva y en los datos recogidos
en una muestra con determinadas especificaciones con las que se
supone ha sido obtenida.

3. Inferencia bayesiana
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En este caso la poblacion sigue un modelo subjetivo similar al
anteriormente descrito, pero los parametros no se suponen fijos
Sin0 que a su vez se supone que son variables aleatorias con una
distribucion “a priori” supuestamente conocida por el investigador.
En base a una muestra aleatoria de la poblacion, la distribucion “a
priori” de los parametros poblacionales se ve modificada o
rectificada por otra distribucion “a posteriori” de los parametros
una vez observada la supuesta muestra con aleatoriedad
probabilistica. El criterio de estimacion puntual de los parametros
puede ser por varios procedimientos destacando el método de la
méaxima verosimilitud a posteriori.

4. Inferencia no paramétrica
Es similar a la inferencia parametrica, si bien la descripcion de la
poblacién no depende de constantes desconocidas sino de
propiedades o cualidades que describen una variedad de
poblaciones que las verifican. La inferencia no paramétrica trata de
desvelar cual de ellas es méas acorde con los datos obtenidos en una
supuesta muestra aleatoria de la poblacion.

5. Inferencia de distribucion libre
Puede considerarse un caso muy particular del anterior en el que la
variedad de distribuciones poblacionales que supuestamente una de
ellas es la cierta, se amplia a todas las posibles distribuciones.

6. Inferencia con modelos superpoblacionales

Los modelos superpoblacionales parten de una poblacién finita de
tamafio fijo de modo similar al modelo de inferencia objetiva, pero
ahora cada unidad de la poblacion puede ofrecer diversas
respuestas a la misma pregunta u observacion de la variable de
interés, y que es ahora una variable aleatoria en cada unidad que
puede ser modelizado por otros tipos de inferencia como la
parametrica clasica o la bayesiana.
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Existen otros tipos de inferencia estadistica derivadas de las
anteriores, pero basicamente tienen los mismos o similares puntos
debiles que los ya indicados y por lo gue no son plenamente éticos
como ciencia aplicada a seres humanos u otras unidades de la
poblacion que afecten a seres humanos o grupos de ellos.
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Anexo |1

Muestreo aleatorio simple

El muestreo aleatorio simple es el caso mas sencillo del muestreo,
aquél en que la observacion es la que se toma de la unidad
seleccionada en la correspondiente seleccion independiente con
probabilidades iguales para cada unidad de la poblacion finita, y
para cierto tamafo de la muestra.

Basicamente la teoria que fundamenta la estimacion
insesgada de momentos poblacionales no centrales y centrales, asi
como sus varianzas puede verse en el articulo de Ruiz Espejo et al.
(2013) y revisado posteriormente por Ruiz Espejo (2015h). Dodge
y Rousson (1999) y Ruiz Espejo (1998b) fueron los que en sus
trabajos iniciales aportaron las ideas para resolver los problemas de
estimacion insesgada con muestreo aleatorio simple con
reemplazamiento.

Todos los estimadores insesgados referidos en este anexo son
ademés de minima varianza para distribucion libre por ser
Invariantes ante permutaciones en el orden de las observaciones de
la secuencia ordenada de la muestra aleatoria simple (Zacks, 1971,
p. 150).

Una fuente de numeros aleatorios con reemplazamiento para
seleccionar una muestra aleatoria simple con reemplazamiento de
identificadores de unidades de una poblacion finita puede
obtenerse en la direccion web random.org.
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