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Abstract 

In this paper we propose a model to study the learning process of one student during a course. We formulate a stochastic 

model based on the quality of the teacher’s class and the affinity of the student to understand the sessions, under the 

assumption that previous sessions have some influence in the understanding of the next sessions. The afore mentioned 

assumption implies that the process is not a Markov process. We derive some recursive expressions for the distribution 

of the number of sessions that the student comprehends. Furthermore, we study the convergence of this distribution 

and illustrate its speed of convergence through some numerical examples. Finally, we apply these results to propose a 

methodology to estimate the quality of this kind of courses. 

Keywords: stochastic model; learning; non-markovian process; quality of a course; mathematical models; learning 

processes; courses; educational quality; sessions; distribution; convergence; education; formation 

 

Resumen 

En este artículo se propone un modelo para estudiar el proceso de aprendizaje de un alumno durante un curso. Se 

estableció un modelo estocástico basado en la calidad de la clase del profesor y la afinidad del alumno para 

comprenderla, bajo el supuesto de que las clases que éste tuvo previamente influyen en su comprensión de las 

posteriores. La suposición antes mencionada implica que el proceso no es un proceso de Markov. Se obtuvieron algunas 

expresiones recursivas para la distribución del número de clases que el alumno comprende. Además, se estudió la 

convergencia de la distribución obtenida y se ilustró la velocidad de convergencia a través de algunos ejemplos 

numéricos. Finalmente, se aplicaron estos resultados para dar una estimación de la calidad de este tipo de cursos. 

Palabras clave: modelo estocástico; aprendizaje; proceso no-markoviano; calidad de un curso; modelos matemáticos; 

procesos de aprendizaje; cursos; calidad educativa; sesiones; distribución; convergencia; educación; formación 

 

 

1. Introduction  

Simple methods from physics and mathematics have been recently adopted to model, as mathematical metaphors, a 

wide range of social phenomena and social systems [3, 9, 13, 15, 16, 20]. In particular, stochastic models have been 

widely used to study learning, particularly Markov models which are a fundamental technique in the mathematical 

psychology. Markov models are discussed in virtually all the mathematical psychology textbooks (viz., [2]; [5]; [10]; 

[12]; [17]; [19]; [21]). However, to the best of our knowledge, this kind of models have not been comprehensively 

used to study the way students learn in a certain class. How student´s behavior affects how well they learn is an old 

question and has been widely studied in several contexts since people started to concern about teaching and pedagogy 

[6, 11, 14, 18]. 

In the present work we propose a model of how a student learns through a course. We assume that the course 

is presented in a number of sessions such that session j helps the student’s understanding of session 𝑗 + 1. This 

assumption implies that the given model does not rely on a Markov process (see e.g. [8]), because session j depends 

strongly on all the 𝑗 −  1 previous sessions. 

In this paper, the learning processes is modelled with a mathematical perspective, and it is organized as 

follows: A general description of the model is given in Method section. The mathematical manipulation of the model 

and some results are presented in Main results section. Afterwards, in Estimation of the quality of the course q section 

https://doi.org/10.21640/ns.v14i28.2947
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we apply this model to estimate the quality of a course and present some numerical examples. Finally, conclusions and 

future work are presented in the last section. 

 

2. Methods, techniques, and instruments 

Our base for the suggested model is the modelling of learning presented in [4], which is based on previous works by 

William K. [7], who proved the accuracy of Markov chains to gain important information on the process of learning. 

The assumption made by William K. Estes is that, given that the learning process at time n resulted in a successfully 

understood session, this will influence the result of the 𝑛 +  1-session but will be irrelevant for sessions at times further 

than 𝑛 +  1. This assumption has proven to be fine for some particular cases (see for instance [[1]]). However, if we 

consider a course with topics in mathematics, due to the natural structure of this course, the successful or unsuccessful 

learning of one session has influence not only in the next one, but it might also influence all further sessions. One easy 

example would be failing to learn sums of fractions, then learning how to solve systems of linear equations with integer 

coefficients and then moving to linear equations with fractional coefficients. In this context, student might have learned 

the way to solve systems of linear equations with integer coefficients, but they might fail at learning the same procedure 

when the coefficients are fractional. 

There are some works where independence is not assumed, for instance [4] where they use Markov chains to 

model the learning process. In this case, the transition probabilities for the associated Markov chain are not constant 

across the time, although the assumption of a future result being influenced only by the result at present time prevails. 

The following data, in figure 1, corresponds to a class taught by one of the authors of the present work. In this 

class, twenty sessions were evaluated through homework’s graded from 0 to 10. The plots correspond to 9 students 

who took this class, and we note that the values of each grade are not uniformly distributed, which would be the case 

if such values were independent. 
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Figure 1. Data obtained from homework of 9 students in 20 sessions, graded from 0 to 10. 

Figura 1. Datos obtenidos de las tareas de 9 estudiantes en 20 sesiones, evaluadas de 0 a 10. 

 

The data above show that assuming a binomial distribution for the number of topics understood by a student is not 

always realistic. However, it might be the case that dependence grows very small with the understanding of each 

session, a situation which might reflect that the student eventually had to learn all the material from previous sessions, 

which they did not understand at first. This could be the situation presented, for instance, in the plots in positions (2,1) 

and (2,2). In this case a binomial model in the long-time scenario might be accurate. 

With all the previous arguments in mind, we consider the case when the learning process has dependence not 

only on the present session, but also on every previous session. This implies that the probability of successfully learning 

the content of each session is varying over the time, according to some parameter which measures the influence that 

previously learned topics from previous sessions have in the present result. This also models the fact that students are 

accumulating knowledge across time, which helps them to understand in an easier way depending on whether or not 

they understood all or just some of the previous sessions. 
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We also assume that, however, after a sufficiently large number of successes or failures, the parameter which 

measures the influence of past topics will decrease and hence we prove that this results in an asymptotically binomial 

model for which quantities of interests can be approximated in a simple way. 

The initial assumption removes the restriction imposed by the Markov property and provides a different 

approach in the modelling of learning processes. Our model considers the following assumptions: 

 

1) The course consists in a finite number n of sessions, such that session 𝑗 helps the student´s understanding of session 

𝑗 + 1. 

2) The student’s learning process is independent of the other students. 

3) The lecturer teaches each session according to a quality parameter q which represents the quality of the sessions. 

This parameter remains constant along the course. 

4) The student either learns or not the content of each session according to a certain probability distribution 𝐹. 

5) Each time the student learns or not, the argument of 𝐹 gets modified by an addend 𝜀, which is assumed to be positive 

and fixed during the entire course and reflects how the comprehension of the content of a session influences the next 

session. Hence, we call 𝜀 the dependence parameter. 

6) We wish to avoid the situation when the student understands the last sessions of the course with probability 1, due 

to the cumulative effect of 𝜀 after some point, therefore we assume that 𝜀 is 𝑜(𝑓(𝑛)), for a properly chosen function 𝑓 

depending on the total number of sessions n. 

 

Assumption 2 implies that each student is isolated. The influence of the interaction between the students may be 

considered for future work under additional assumptions on the dependence parameter  𝜀. Nevertheless, this 

assumption applies, for instance, to situations like homeschooling, tutorials, postgraduate studies, online classes, and 

introverted students. 

In all this work, the parameter 𝑞 is used a 1 −  𝑞. The reason for this is merely technical and it means that, in 

the case of a distribution supported in (0,1), 1 − 𝑞 intuitively measures how poor the quality of sessions was, i.e., the 

poorer the quality the more difficult it will be for the student to understand the session. 

As we will see in one of our simulations, if the distribution 𝐹 is supported in the whole real line, the value of 

𝑞 might be negative meaning another scale to denote low quality sessions. 

The event in which the student understands the first session has a probability given by 𝐹(1 − 𝑞), where 𝐹 ∶= 1 − 𝐹. 

From the second session until the end of the course, if the student understood session 𝑗, they understand the 

next one with probability 𝐹𝑗+1(1 − 𝑞) ≔ 𝐹𝑗(1 − 𝑞 − 𝜀). Here 𝐹1 refers to the initial distribution 𝐹 and each 𝐹𝑗 for 𝑗 ≥

2 is constructed conditioned on the result of all the previous 𝑗 − 1 sessions. 

Similarly, if the student did not understand session j, they understand the next one with probability 

𝐹𝑗+1(1 − 𝑞) ≔ 𝐹𝑗(1 − 𝑞 + 𝜀). These changes can be visualized in figure 2.  

Thus, the dependence parameter, defined in Assumption 5, helps us to keep track on how the results of session 

𝑗 influences session 𝑗 + 1. Whenever a student understands the session 𝑗, it is a little more likely that they understand 

the next one. An analogous situation occurs if the student does not understand session 𝑗. In the following sections we 

manipulate this model to obtain some results related to the distribution of the number of sessions that the student 

understands along the course. 
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Figure 2. Outline of the model for 𝑛 = 3. 

Figura 2. Diagrama del modelo para 𝑛 = 3. 

 

 

3. Results and discussion  

We let 𝑌 (𝑗) be Bernoulli random variables defined as follows: For session 1, 𝑌(1) is Bernoulli with parameter 𝐹(1 −

𝑞) for the given initial continuous distribution 𝐹. For session 2, by the Law of Total Probability we have: 

 

ℙ[𝑌(2) = 1] = ℙ[𝑌(2) = 1|𝑌(1) = 1]𝐹(1 − 𝑞) + ℙ[𝑌(2) = 1|𝑌(1) = 0]𝐹(1 − 𝑞).           (1) 

 

Given that the student understood session 1, the probability that they understand session 2 is given by: 

 

ℙ[𝑌(2) = 1|𝑌(1) = 1] = 𝐹(1 − 𝑞 − 𝜀). 

 

Similarly, if the student did not understand session 1, the probability that they understand session 2 is: 

 

ℙ[𝑌(2) = 1|𝑌(1) = 0] = 𝐹(1 − 𝑞 + 𝜀). 

 

It follows that (1) is equivalent to: 

 

ℙ[𝑌(2) = 1] = 𝐹(1 − 𝑞 − 𝜀)𝐹(1 − 𝑞) + 𝐹(1 − 𝑞 + 𝜀)𝐹(1 − 𝑞). 

 

For the general setting, we denote by 𝐹𝑗 the probability distribution such that: 

 

𝐹𝑗(𝑥) = 𝐹𝑗−1(𝑥 − 𝜀)𝑝𝑗−1 + 𝐹𝑗−1(𝑥 + 𝜀)(1 − 𝑝𝑗 − 1), 

 

Provided that 𝐹𝑗−1(𝑥 − 𝜀) and 𝐹𝑗−1(𝑥 + 𝜀) do not equal zero or one. In the equation above, 𝑝𝑘 ≔ ℙ[𝑌(𝑘) = 1] for 

𝑘 > 1 with 𝑝1 = 𝐹(1 − 𝑞) and 𝐹1 ≔ 𝐹. Using this notation, we obtain: 
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𝑝𝑗 = 𝐹𝑗−1(1 − 𝑞 − 𝜀)𝑝𝑗−1 + 𝐹𝑗−1(1 − 𝑞 + 𝜀)(1 − 𝑝𝑗−1).           (2) 

 

Throughout the rest of this paper, we assume that 1 − 𝑞 ± 𝑛𝜀 is such that 0 < 𝐹(1 − 𝑞 ± 𝑛𝜀) < 1, for each 𝑛. In the 

following result we derive a recursive expression for the probabilities {𝑝𝑚, 1 < 𝑚 ≤ 𝑛}. 

 

Theorem 1. The general expression for {𝑝𝑚, 1 < 𝑚 ≤ 𝑛} reads: 

 

𝑝𝑚 = 𝐹1(1 − 𝑞)∏ [𝐹𝑗(1 − 𝑞 − 𝜀) − 𝐹𝑗(1 − 𝑞 + 𝜀)]𝑚−1
𝑗=1 + ∑ [𝐹𝑗(1 − 𝑞 − 𝜀) − 𝐹𝑗(1 − 𝑞 + 𝜀)]𝑚−1

𝑗=𝑖+1 .           (3) 

 

Proof. See Appendix  ∎ 

 

From this point on, we drop the notation 𝐹1 and write 𝐹 instead. 

We let 𝐵𝑛  denote the number of sessions, not necessarily consecutive, from a total of 𝑛 that the student 

understood. We are interested in the probability function of 𝐵𝑛, {ℙ[𝐵𝑛 = 𝑘],0 ≤ 𝑘 ≤ 𝑛}, for which we consider the 

following particular cases. 

 

Case 1: 𝑛 = 3 and 𝑘 = 0. 

This is the case when the student understands 0 sessions out of 3. The probability reads: 

 

ℙ[𝐵3 = 0] = 𝐹(1 − 𝑞)𝐹(1 − 𝑞 + 𝜀)𝐹(1 − 𝑞 + 2𝜀). 

 

Case 2: 𝑛 = 3 and 𝑘 = 1. 

If student understand only one session (i.e., 𝑘 = 1), the probability is the sum of the following cases.  

 

2.1. The student understands only the first session: 

 

𝐹(1 − 𝑞)𝐹(1 − 𝑞 − 𝜀)𝐹(1 − 𝑞). 

 

2.2. Student 𝑖 understands only the second session: 

 

𝐹(1 − 𝑞)𝐹(1 − 𝑞 + 𝜀)𝐹(1 − 𝑞). 

 

2.3. And student 𝑖 understands only the third session: 

 

𝐹(1 − 𝑞)𝐹(1 − 𝑞 + 𝜀)𝐹(1 − 𝑞 + 2𝜀). 

 

Note that the probabilities in cases 2.1 and 2.2 equal ℙ[𝐵2 = 0]𝐹(1 − 𝑞) and the probability of case 2.3 corresponds 

to ℙ[𝐵2 = 1]𝐹(1 − 𝑞 + 2𝜀). Hence: 

 

ℙ[𝐵3 = 1] = ℙ[𝐵2 = 0]𝐹(1 − 𝑞) + ℙ[𝐵2 = 0]𝐹(1 − 𝑞). 

 

Case 3: 𝑛 = 3 and 𝑘 = 2. If student understand two sessions (i.e., 𝑘 = 2), the probability is the sum of the following 

cases. 

 

3.1. Student 𝑖 understands the first and second sessions but not the third: 

 

𝐹(1 − 𝑞)𝐹(1 − 𝑞 − 𝜀)𝐹(1 − 𝑞 − 2𝜀). 
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3.2. Student 𝑖 understands the second and third sessions but not the first: 

 

𝐹(1 − 𝑞)𝐹(1 − 𝑞 + 𝜀)𝐹(1 − 𝑞). 

 

3.3. Student 𝑖 understands the first and third sessions but not the second: 

 

𝐹(1 − 𝑞)𝐹(1 − 𝑞 − 𝜀)𝐹(1 − 𝑞). 

 

Note that cases 2 and 3 correspond to ℙ[𝐵2 = 1]𝐹(1 − 𝑞) and the first case equals ℙ[𝐵2 = 2]𝐹(1 − 𝑞 − 2𝜀). Hence: 

 

ℙ[𝐵3 = 2] = ℙ[𝐵2 = 1]𝐹(1 − 𝑞) + 𝑃[𝐵2 = 2]𝐹(1 − 𝑞 − 2𝜀). 

 

Case 4: 𝑛 = 3 and 𝑘 = 3. 

This is the case when student 𝑖 understands all sessions. This probability is given by: 

 

ℙ[𝐵3 = 3] = 𝐹(1 − 𝑞)𝐹(1 − 𝑞 − 𝜀)𝐹(1 − 𝑞 − 2𝜀). 

 

The recursive behavior observed in the probability function of B3 is generalized in the following theorem. 

Theorem 2: Let 𝑛 ≥ 3 be an integer. The probability function of the random variable 𝐵3  satisfies the following 

relations. 

 

1. ℙ[𝐵𝑛 = 0] = ℙ[𝐵𝑛−1 = 0]𝐹(1 − 𝑞 + (𝑛 − 1)𝜀), 

2. ℙ[𝐵𝑛 = 𝑛] = ℙ[𝐵𝑛−1 = 𝑛 − 1]𝐹(1 − 𝑞 − (𝑛 − 1)𝜀), 

3. ℙ[𝐵𝑛 = 𝑘] = ℙ[𝐵𝑛−1 = 𝑘]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑘)𝜀) + ℙ[𝐵𝑛−1 = 𝑘 − 1]𝐹(1 − 𝑞 + (𝑛 − 1 − 2(𝑘 −

1))𝜀). 

 

Proof. See Appendix  ∎ 

Equations in Theorem 2 can be written as a single matrix equation. Let 𝐵𝑛
⃗⃗ ⃗⃗  ∈ 𝕄1,𝑛+1 be given by: 

 

𝐵𝑛
⃗⃗ ⃗⃗  = [ℙ[𝐵𝑛 = 0], ℙ[𝐵𝑛 = 1], ℙ[𝐵𝑛 = 2], . . . , ℙ[𝐵𝑛 = 𝑛]], 

 

And denote by ℳ𝑛 ∈ 𝕄1,𝑛+1 the matrix such that: 

 

(ℳ𝑛)𝑎,𝑏 = {

𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑎)𝜀),

𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑎)𝜀),
0,

 𝑓𝑜𝑟 𝑎 = 𝑏
𝑓𝑜𝑟 𝑎 = 𝑏 − 1
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4) 

 

Using the notation above we note that 𝐵𝑛
⃗⃗ ⃗⃗  = ℳ𝑛 ⋅ 𝐵⃗ 𝑛−1, therefore: 

 

𝐵𝑛
⃗⃗ ⃗⃗  = ∏ℳ𝑘 ⋅ 𝐵⃗ 0,𝑖

𝑛

𝑘=1

, 

 

Where: 𝐵0
⃗⃗⃗⃗  = [𝐹(1 − 𝑞), 𝐹(1 − 𝑞)]. This representation is used for some numerical examples in the figure section. 
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The explicit distribution of 𝐵𝑛  is not easy to obtain even in simple cases (such as the case when 𝐹 is a uniform 

distribution). Nevertheless, in the following result we provide a simple asymptotic expression for this distribution. 

Theorem 3: Let {𝑝𝑛(𝑘), 𝑘 = 0,1, … , 𝑛} denote the probability function of a Binomial (𝑛, 𝑝) distribution, with 𝑝 ∶=

𝐹(1 − 𝑞). Suppose 𝑛, 𝜀 are such that 𝑛2𝜀 →  0 as 𝑛 →  ∞ and 𝐹 is absolutely continuous with density 𝑓 such that 𝑓 

is continuous at 1 −  𝑞, then: 

 

lim
𝑛→∞

ℙ[𝐵𝑛 = 𝑘]

𝑝𝑛(𝑘)
= 1,         ∀𝑘 ∈ {0,1, … , 𝑛}. 

 

Proof. See Appendix  

 

Theorem 3 says that for a sufficiently large number of sessions the dependence becomes less relevant, hence the 

number of sessions that each student understands behaves like a binomial distribution in which the occurrence of 

successes is independent. The convergence referenced in Theorem 3 does not imply, in general, the convergence 

between the means of 𝐵𝑛  and the limit binomial random variable. However, in this case such convergence holds. 

 

Theorem 4:  
𝑬[𝐵𝑛]

𝒏𝐹(1−𝑞)
→ 𝟏 as 𝑛 →  ∞. 

 

Proof. See Appendix  

Three numerical examples of the result above are given in figure III (Appendix), where we note that both means, the 

simulated and the approximated one, behave similarly. On the other hand, the values of the quotient 
𝓔[𝐵𝑛]

𝒏𝐹(1−𝑞)
 are mostly 

in the interval (0.98,1.02). 

 

Estimation of the quality of the course 𝒒: It is possible to use the approximation in Theorem 4 to estimate the quality 

parameter 𝑞. This is stated and proved in the following result. 

Theorem 5: Assume that 𝐹 has a continuous inverse function 𝐹
−1

 and set 𝑞𝑛: = 1 − 𝐹
−1

(
𝑬[𝐵𝑛]

𝒏
) . Then 𝑞𝑛 → 𝑞 as 

𝑛 → ∞. 

Proof. See Appendix  

Example 1. For the data considered at the beginning of Section 2, we have 22 students taking the same course and we 

use their grades to determine whether they understood the lessons or they did not (we assume that grades equal or 

greater than 6 indicate the student understood the lesson). 

The whole exploratory data indicated that the grades of students are not identically distributed and thus, we 

approximated the value of q for each one of these students using the result of Theorem 4 and the empirical estimator 

of  𝑬[𝐵𝑛].  The development of a statistical tool to test the goodness of fit from data may be an interdisciplinary option 

for future work. These results are presented in the table below. 

 

Student 1 2 3 4 5 6 7 8 9 10 11 

𝟏 − 𝒒 9.50 9.00 10.00 9.00 9.20 0.00 10.00 9.00 10.00 10.00 9.50 

            

Student 12 13 14 15 16 17 18 19 20 21 22 

𝟏 − 𝒒 9.00 10.00 9.70 8.50 10.00 9.50 10.00 9.50 10.00 9.50 9.20 

 

The average of this estimations is 9.1. In the official instrument, made by the university, where the students grade the 

quality of the course, the same course was graded 9.6.∎ 
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By Theorem 5 we have: 

 

𝑞𝑛 ≃ 1 − 𝐹
−1

(
𝑬[𝐵𝕟]

𝒏
) ⇒ 𝑞𝑛 ≃ 𝑙𝑜𝑔 (

𝑬[𝐵𝑛]

𝒏−𝑬[𝐵𝑛]
) + 1.           (5) 

 

This estimation of 𝑞 under this model is illustrated in figure IV (Appendix) in plots (a) and (b), where we also consider 

a standard normal distribution (plots (c) and (d)). We note that the values of 𝑞 in these examples provide a criteria to 

determine if the quality of the course’ sessions has been poor or not. For instance, as we see from the perpendicular 

dashed lines, 𝑞 = 1 implies a course in which the student understood just half the sessions, which might be considered 

as low quality course. 

In figure I (Appendix)  𝑞 and simulate the exact distribution of 𝐵𝑛. Then we compare it to the approximating 

binomial distribution given in Theorem 3 for number of sessions given by 𝑛 = 10,30,60,100 (plots in blue, red, green, 

and purple respectively). The light line corresponds to the approximating binomial distribution while the dark line 

represents the simulated exact distribution. We see in these plots that the convergence to the binomial distribution is 

quite fast, and it grows faster when 𝑞 =  0.5. 

Our numerical examples show that the speed of convergence depends on the value of 𝑞, as it can be seen in 

figure II (Appendix) 𝑞 with fixed 𝑛 and compare the exact distribution of 𝐵𝑛 to the approximating binomial 

distribution. 

Another point worth mentioning is that the distributions behave symmetrically with respect to 𝑞 = 0.5. In this 

case, the convergence to the binomial distribution is faster than in the other cases. In fact, the cases when 𝑞 is nearly 0 

or 1, present a slower convergence to the binomial distribution. This may imply that the dependence is stronger when 

the quality of the class is low or high. 

 

4. Conclusions  

In this work we present a model to study the behavior of the understanding of a student along several sessions of a 

course without interaction with other students. In particular, we study the case where the dependence between sessions 

is relatively small compared to the total number of sessions, as in seminars or panoramic courses. We obtained a 

recursive expression for the distribution of the number of sessions that the student understands along the course and 

showed that when the dependence parameter is small, this distribution has a binomial approximation. The speed of 

convergence of the approximation depends on the number of sessions and the quality of them. Even though this is a 

simple model, it can be fruitfully extended to consider many more situations, some of which we list below: 

 

1) The environment we considered assumes the student has no interaction with their classmates. However, several 

studies have shown that collaborative learning provides better results for students. It would be very interesting to 

modify the model to consider this situation. 

2) We studied the case when ε is constant and relatively small compared to 𝑛, but this may not always be the case, as 

in some science classes. Therefore, it would be useful to consider the cases when ε changes according to the sessions 

themselves or according to the number of sessions previously understood. 

3) All the results obtained in this work were made for 𝑞 constant, but the value of 𝑞 can vary along the course due to 

exhaustion and motivation of the student and the teacher. 

4) It would be interesting to test the model with more real world data and develop some statistical procedures for the 

model to be fitted and validated. 

 

5. Supplementary Information 

Appendix. 
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Appendix  

Appendix A. Figures. 

 

 

(c) 

Figure I. In this figure are plotted some simulations of 𝐵𝑛  (dark line) and its approximating binomial distribution 

(light line). In all the plots, it was considered: 𝜀 = 1/𝑛2  and 𝑛 = 10 in blue; 𝑛 = 30 in red; 𝑛 = 60 in green and 

𝑛 =  100 in purple. Plot (a) is made for 𝑞 =  0.2; plot (b) is made for 𝑞 =  0.5, and plot (c) for 𝑞 =  0.8.                              

Figura I. En esta figura se grafican algunas simulaciones de 𝐵𝑛  (línea oscura) y su aproximación a una distribución 

binomial (línea clara). En todas las gráficas se consideró: 𝜀 = 1/𝑛2  y 𝑛 = 10 en azul; 𝑛 = 30 en rojo; 𝑛 = 60 en 

verde y 𝑛 =  100 in morado. La gráfica (a) está hecha con 𝑞 =  0.2; la (b) con 𝑞 =  0.5, y la (c) con 𝑞 =  0.8. 
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 (c) (d) 

Figure II. In this figure are plotted some simulations of 𝐵𝑛  (dark line) and its approximating binomial distribution 

(light line). In all the plots, it was considered: 𝜀 = 1/𝑛2  and 𝑞 =  0.1 in blue; 𝑞 =  0.3 in red; 𝑞 =  0.5 in green; 

𝑞 =  0.7 in purple and 𝑞 =  0.9 in yellow. Plot (a) is made for 𝑛 = 10; plot (b) is made for 𝑛 =  30; plot (c) is 

made for 𝑛 =  60, and plot (d) for 𝑛 = 100 

Figura II. En esta figura se grafican algunas simulaciones de 𝐵𝑛  (línea oscura) y su aproximación a una 

distribución binomial (línea clara). En todas las gráficas se consideró: 𝜀 = 1/𝑛2  y 𝑞 =  0.1 en azul; 𝑞 =  0.3 en 

rojo; 𝑞 =  0.5 en verde; 𝑞 =  0.7 in morado y 𝑞 =  0.9 en amarillo. La gráfica (a) está hecha con 𝑛 = 10; la (b) 

con 𝑛 =  30; la (c) con 𝑛 =  60, y la (d) con 𝑛 = 100. 
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 (a)               (b) 

 

 (c)                  (d) 

Figure III. It was simulated the mean of 𝐵𝑛  for 𝑛 up to 500 and it was compared with the mean of the binomial 

approximation for 𝑞 =  0.2. Similarly, the quotients were plotted 
𝑬[𝐵𝑛]

𝒏𝐹(1−𝑞)
  for the cases when 𝐹 is the uniform 

distribution (a)-(b) and the logistic distribution (c)-(d). 

Figura III. Se simuló la media de 𝐵𝑛  para n hasta 600 y se comparó con la media de la aproximación binomial para 

𝑞 =  0.2. De igual manera se graficaron los cocientes 
𝑬[𝐵𝑛]

𝒏𝐹(1−𝑞)
 para los casos en que F es la distribución uniforme 

(a)-(b) y la distribución logística (c)-(d). 
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                                                 (a)                                                                                           (b) 

 
                                                 (c)                                                                                          (d) 

 

Figure IV. In this plot it is illustrated the estimation of q using Theorem 5 for (a)-(b) logistic model and (c)-(d) 

standard normal model. Plots (b) and (d) show the behavior of q varying the values 𝐸 [𝐵𝑛] when 𝑛  =  50.  

Figura IV. En esta gráfica se ilustra la estimación de q usando el Teorema 5 para (a)-(b) una distribución logística 

y (c)-(d) una distribución normal estándar. Las gráficas (b) y (d) muestran el comportamiento de q mientras varían 

los valores de 𝐸 [𝐵𝑛] cuando 𝑛  =  50.  

 

Appendix B. Proof of the main theorems 

Proof of Theorem 1. The result holds for 𝑚 = 1 by the definition of 𝑝1. We proceed by induction, assuming that for 

an integer 𝑘 ≥ 1: 

  

𝑝𝑘 = 𝐹1(1 − 𝑞)∏[ 𝐹𝑗(1 − 𝑞 − ε) − 𝐹𝑗(1 − 𝑞 + ε)] 

𝑘−1

𝑗=1

+ ∑ 𝐹𝑖(1 − 𝑞 + ε)

𝑘−1

𝑖=1

∏ [𝐹𝑗(1 − 𝑞 − ε) − 𝐹𝑗(1 − 𝑞 + ε)].

𝑘−1

𝑗=𝑖+1

 

 

By equation (2): 

 

𝑝𝑘+1 = 𝐹𝑘(1 − 𝑞 − ε)𝑝𝑘 + 𝐹𝑘(1 − 𝑞 + ε)(1 − 𝑝𝑘) = 𝑝𝑘[ 𝐹𝑘(1 − 𝑞 − ε) − 𝐹𝑘(1 − 𝑞 + ε)] + 𝐹𝑘(1 − 𝑞 + ε). 

 

Hence, we obtain from the induction hypothesis: 

 



Mathematical modelling of student’s cumulative learning 

Nº 28, Vol. 14 (1), 2022. ISSN 2007-0705, pp. 1-23 

- 16 - 

𝑝𝑘+1 = [ 𝐹𝑘(1 − 𝑞 − ε) − 𝐹𝑘(1 − 𝑞 + ε)]𝐹1(1 − 𝑞)∏[ 𝐹𝑗(1 − 𝑞 − ε) − 𝐹𝑗(1 − 𝑞 + ε)] 

𝑘−1

𝑗=1

+ [ 𝐹𝑘(1 − 𝑞 − ε) −  𝐹𝑘(1 − 𝑞 + ε)]∑ 𝐹𝑖(1 − 𝑞 + 𝜀)

𝑘−1

𝑖=1

∏ [ 𝐹𝑗(1 − 𝑞 − ε) − 𝐹𝑗(1 − 𝑞 + ε)] 

𝑘−1

𝑗=𝑖+1

+ 𝐹𝑘(1 − 𝑞 + ε)  

= 𝐹1(1 − 𝑞)∏[𝐹𝑗(1 − 𝑞 − 𝜀) − 𝐹𝑗(1 − 𝑞 + 𝜀)]

𝑘

𝑗=1

+ ∑𝐹𝑖(1 − 𝑞 + 𝜀)

𝑘

𝑖=1

∏ [ 𝐹𝑗(1 − 𝑞 − 𝜀) − 𝐹𝑗(1 − 𝑞 + 𝜀)]

𝑘

𝑗=𝑖+1

. 

  

The result now follows ∎ 

 

Proof of Theorem 2.  

1. If the student has not understood the first 𝑛 − 1 sessions from a total of 𝑛, it follows from the construction of 

the model that the student’s parameter for understanding the 𝑛𝑡ℎ-session becomes 1 − 𝑞 + (𝑛 − 2)𝜀. Hence:  

ℙ[𝐵𝑛 = 0] = ℙ[𝐵𝑛−1 = 0, 𝑌(𝑛) = 0] = ℙ[𝑌(𝑛) = 0|𝐵𝑛−1 = 0]ℙ[𝐵𝑛−1 = 0] = 𝐹(1 − 𝑞 + (𝑛 − 1)𝜀)ℙ[𝐵𝑛−1 = 0].  

2. Let 𝐴𝑛  denote the number of sessions that the student has not understood from a total of 𝑛. Then the event 𝐵𝑛 =

𝑛 is the same as {𝐴𝑛 = 0} and hence ℙ[𝐵𝑛 = 𝑛 ] = ℙ[𝐴𝑛 = 0] Now the result in 1 yields: 

ℙ[𝐵𝑛 = 𝑛] = ℙ[𝐴𝑛−1 = 0](1 − 𝐹(1 − 𝑞 + (𝑛 − 1)𝜀)) = ℙ[𝐵𝑛−1 = 𝑛 − 1] 𝐹 (1 − 𝑞 + (𝑛 − 1)𝜀). 

3.  Let Uk(n):= {(x1,...,xn) ∈ {0,1}n : x1 + ··· + xn = k}, then: 

 ℙ[𝐵𝑛 =  𝑘] (6) 

=  ℙ[𝐵𝑛−1 =  𝑘, 𝑌 (𝑛) =  0] +  ℙ [𝐵𝑛−1 =  𝑘 − 1, 𝑌 (𝑛) =  1] 

= ∑ ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1, 𝑌(𝑛) = 0]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

+ ∑ ℙ[𝑌(1) = 𝑥1, … , 𝑌 (𝑛 − 1) = 𝑥𝑛−1, 𝑌 (𝑛) = 1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

 = ∑ ℙ[𝑌(𝑛) = 0 ∣∣ 𝑌 (1) = 𝑥1, … , 𝑌 (𝑛 − 1) = 𝑥𝑛−1 ]ℙ[𝑌(1) = 𝑥1, … , 𝑌 (𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

+ ∑ ℙ[𝑌(𝑛) = 1 ∣∣ 𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1 ]ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1)

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

= 𝑥𝑛−1] .                     (7) 
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Note that, given the configuration 𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1 in which the student understood exactly 𝑘 sessions, 

we have added 𝑘 times 𝜀 to the quality parameter 𝑞. Moreover, the maximum number of times we may add or subtract 

𝜀 in a total of 𝑛 sessions equals 𝑛 − 1, since we do not add or subtract anything in session one. Hence if the student 

understood 𝑘 of 𝑛 sessions, they did not understand 𝑛 − 𝑘 and we have subtracted 𝑛 − 1 − 𝑘 times 𝜀. This means that 

understanding session 𝑛 depends on the parameter: 

 

𝑞 + 𝑘𝜀 − (𝑛 − 1 − 𝑘)𝜀 = 𝑞 − (𝑛 − 1 − 2𝑘)𝜀. 

 

It follows that the student does not understand session 𝑛 with probability 𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑘)𝜀). Since this holds 

for any given configuration 𝑌 (1) = 𝑥1, … , 𝑌 (𝑛 − 1) = 𝑥𝑛−1 , in which the student has understood exactly 𝑘 sessions, 

we obtain: 

∑ ℙ[𝑌(𝑛) = 0 ∣∣ 𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1 ]ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

= 𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑘)𝜀) ∑ ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

= 𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑘)𝜀)ℙ[𝐵𝑛−1 = 𝑘].                                                          (8) 

Analogously: 

∑ ℙ[𝑌(𝑛) = 1 ∣∣ 𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1 ]ℙ[𝑌(1) = 𝑥1, … , 𝑌 (𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

= 𝐹(1 − 𝑞 − (𝑛 − 1 − 2(𝑘 − 1))𝜀)ℙ[ 𝐵𝑛−1 = 𝑘 − 1].      (9) 

The result follows by substituting equations (8) and (9) in equation (7). 

 

Proof of Theorem 3.  First, we prove the case when 𝑘 ∉ {0, 𝑛}. Following the arguments in the proof of Theorem 2, 

we have:  

 

ℙ[𝐵𝑛 = 𝑘] = 𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑘)𝜀) ∑ ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

 

 

+𝐹(1 − 𝑞 − (𝑛 − 1 − 2(𝑘 − 1))𝜀) ∑ ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘−1(𝑛−1)

, (10) 

 

Where: 

 

𝑈𝑘(𝑛) = {(𝑥1, … , 𝑥𝑛) ∈ {0,1}𝑛: 𝑥1 + ⋯+ 𝑥𝑛 = 𝑘}. 

 

From the hypothesis 𝑛2ε → 0, it follows that ε → 0. Hence, by the assumption of continuity of 𝐹, the following 

convergences as 𝑛 → ∞ hold:  

 

𝐹(1 − 𝑞 − (𝑛 − 1 − 2𝑘)ε) → 𝐹(1 − 𝑞) 𝑎𝑛𝑑 𝐹(1 − 𝑞 − (𝑛 − 1 − 2(𝑘 − 1))ε) → 𝐹(1 − 𝑞). 

 

Note from the matrix representation given in (4) that ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1] can be expressed as: 
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𝑝𝑛−1,𝑘 ≔ ∏𝐹
𝑣1(𝑗)

(1 − 𝑞 − 𝑢1(𝑗)ε + 𝑢0(𝑗)ε)𝐹
1−𝑣1(𝑗)[1 − 𝑞 − 𝑢1(𝑗)𝜀 + 𝑢0(𝑗)𝜀]

𝑛−1

𝑗=1

, 

 

Where:  

𝑢1(𝑗) = ∑ (−1)𝑥𝑎

𝑗

𝑎=1,𝑥𝑎=1

,  𝑢0(𝑗) = ∑ (−1)𝑥𝑎

𝑗

𝑎=1,𝑥𝑎=0

, 

 

And 𝑣1(𝑗) = 1 if student understood session 𝑗. Now we have the following bounds for 𝑝𝑛−1,𝑘: 

  

𝐹
𝑘
(1 − 𝑞 + 𝑢0(𝑗)ε)𝐹

𝑛−1−𝑘(1 − 𝑞 − 𝑢1(𝑗)ε) ≤ 𝑝𝑛−1,𝑘 ≤ 𝐹
𝑘
(1 − 𝑞 − 𝑢1(𝑗)ε)𝐹

𝑛−1−𝑘(1 − 𝑞 + 𝑢0(𝑗)ε).   (11) 

 

Since the terms with the tail 𝐹 converge to 𝐹(1 − 𝑞) and their exponents do not depend on 𝑛, we only need to prove 

that:  

 

Fn−1−k(1 − q − u1(j)ε)

Fn−1−k(1 − q)
→ 1,  n → ∞, 

 

Or equivalently: 

 

(𝑛 − 1 − 𝑘) log (
𝐹(1 − 𝑞 − 𝑢1(𝑗)ε)

𝐹(1 − 𝑞)
) → 0,  𝑛 → ∞. 

 

Using the hypothesis 𝑛2ε → 0 we may write ε = 𝑐𝑛−2−η for some 𝑐, η > 0. Applying L'Hôpital's rule we obtain: 

 

lim
𝑛→∞

𝑛 log (
𝐹(1 − 𝑞 − 𝑢1(𝑗)ε)

𝐹(1 − 𝑞)
) = 𝑐𝑢(𝑗)(2 + η) lim

𝑛→∞

𝑛−3−𝜂𝑓(1 − 𝑞 − 𝑢1(𝑗)𝑐𝑛
−2−𝜂)

(−𝑛−2)𝐹(1 − 𝑞 − 𝑢1(𝑗)𝑐𝑛
−2−𝜂)

= 0. 

 

From the limit above and (11) it follows that: 

 
𝑝𝑛−1,𝑘

𝐹
𝑘
(1 − 𝑞)𝐹𝑛−1−𝑘(1 − 𝑞)

→ 1, 𝑛 → ∞.                     (12) 

 

Now let us consider the term: 

 

∑ ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1]

(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

. 

 

Since |𝑈𝑘(𝑛 − 1)| = (𝑛−1
𝑘

), using the result in equation (12), for an arbitrary β > 0  and sufficiently large 𝑛 we have: 

 

1 − β ≤ ∑
ℙ[𝑌(1) = 𝑥1, … , 𝑌(𝑛 − 1) = 𝑥𝑛−1]

(𝑛−1
𝑘

)𝐹
𝑘
(1 − 𝑞)𝐹𝑛−1−𝑘(1 − 𝑞)(𝑥1,…,𝑥𝑛−1)∈𝑈𝑘(𝑛−1)

≤ 1 + β. 
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The result follows by letting 𝑛 → ∞ and β → 0. The result for the second term in equation (10) is obtained analogously. 

Now we proceed in a similar way to prove that ℙ[𝐵𝑛 = 0] is asymptotically equivalent to 𝑝𝑛(0). It might be easily 

checked that ℙ[𝐵𝑛 = 0] = 𝐹(1 − 𝑞)∏ 𝐹(1 − 𝑞 + 𝑗ε)𝑛−1
𝑗=1 , hence: 

 

1 = (
𝐹(1 − 𝑞)

𝐹(1 − 𝑞)
)

𝑛

≤
𝐹(1 − 𝑞)∏ 𝐹(1 − 𝑞 + 𝑗ε)𝑛−1

𝑗=1

𝐹𝑛(1 − 𝑞)
≤ (

𝐹(1 − 𝑞 + 𝑛ε)

𝐹(1 − 𝑞)
)

𝑛−1

. 

 

Using the representation ε = 𝑐𝑛−η−2 and L'Hôpital's rule again, we obtain: 

 

lim
𝑛→∞

(𝑛 − 1) log (
𝐹(1 − 𝑞 + 𝑛𝜀)

𝐹(1 − 𝑞)
) = −𝑐(𝜂 + 2) lim

𝑛→∞
(𝑛 − 1)2 𝑛−𝜂−2𝐹(1 − 𝑞 + 𝑐𝑛−𝜂−1)𝑓(1 − 𝑞 + 𝑐𝑛−𝜂−1) = 0. 

 

The proof for ℙ[𝐵𝑛 = 𝑛] is analogous. ∎ 

 

Proof of Theorem 4. We let 𝑎𝑛 = ∑ 𝑗ℙ[𝑛
𝑗=1 𝐵𝑛 = 𝑗 ] and 𝑏𝑛 = 𝑛𝐹(1 − 𝑞) and calculate the limit:  

 

lim
𝑛→∞

𝑎𝑛+1 − 𝑎𝑛

𝑏𝑛+1 − 𝑏𝑛

.                              (13) 

 

According to Stolz-Césaro Theorem, if the limit above exists, then 
𝑎𝑛

𝑏𝑛
 converges and its limit coincides with that in 

(13). 

 

First, we calculate the difference 𝑎𝑛+1 − 𝑎𝑛. It follows from the relations in Theorem 2 that:  

 

 

𝑎𝑛+1 − 𝑎𝑛 = ∑𝑗ℙ[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)𝜀)

𝑛

𝑗=1

+ ∑𝑗ℙ[𝐵𝑛 = 𝑗 − 1]𝐹(1 − 𝑞 + (𝑛 − 1 − 2(𝑗 − 1))𝜀)

𝑛

𝑗=1

+ (𝑛 + 1)ℙ[𝐵𝑛+1 = 𝑛 + 1] − ∑𝑗ℙ[𝐵𝑛 = 𝑗]

𝑛

𝑗=1

. 

By adding and subtracting 1 in the second term above and changing the index 𝑗 − 1 to 𝑗, we obtain:  
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𝑎𝑛+1 − 𝑎𝑛 = ∑𝑗ℙ[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)𝜀)

𝑛

𝑗=1

+ ∑ 𝑗ℙ[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)𝜀)

𝑛−1

𝑗=1

+ ∑𝑃[𝐵𝑛 = 𝑗 − 1]𝐹(1 − 𝑞 + (𝑛 − 1 − 2(𝑗 − 1))𝜀)

𝑛

𝑗=1

+ (𝑛 + 1)𝑃[𝐵𝑛+1 = 𝑛 + 1] − ∑𝑗𝑃[𝐵𝑛 = 𝑗]

𝑛

𝑗=1

 

 

= −𝑛𝑃[𝐵𝑛 = 𝑛]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑛)𝜀)

+ ∑ 𝑃[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)𝜀)

𝑛−1

𝑗=0

+ (𝑛 + 1)𝑃[𝐵𝑛 = 𝑛]𝐹(1 − 𝑞 − 𝑛𝜀) 

 

= −(𝑛 + 1)𝑃[𝐵𝑛 = 𝑛]𝐹(1 − 𝑞 − (𝑛 + 1)𝜀)

+ ∑𝑃[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)𝜀)

𝑛

𝑗=0

+ (𝑛 + 1)𝑃[𝐵𝑛 = 𝑛]𝐹(1 − 𝑞 − 𝑛𝜀) 

= (𝑛 + 1)𝑃[𝐵𝑛 = 𝑛] (𝐹(1 − 𝑞 − 𝑛𝜀) − 𝐹(1 − 𝑞 − (𝑛 + 1)𝜀))

+ ∑𝑃[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)𝜀)

𝑛

𝑗=0

.  (14) 

 

 

By relation 2 in Theorem 2, ℙ[𝐵𝑛 = 𝑛] tends to zero. Furthermore, using the hypothesis on ε and the density of 𝐹 we 

obtain from L'Hôpital's rule that: 

 

lim
𝑛→∞

𝐹(1 − 𝑞 − 𝑛𝜀) − 𝐹(1 − 𝑞 − (𝑛 + 1)𝜀)

(𝑛 + 1)−1
 

 

= − lim1𝑛→∞ (𝑛 + 1)2𝜀[𝑓(1 − 𝑞 − 𝑛𝜀) − 𝑓(1 − 𝑞 − (𝑛 + 1)𝜀)] 

 

= 0. 

 

It follows that the first term in the right-hand side of (14) tends to zero. On the other hand, for 0 ≤ 𝑗 ≤ 𝑛 we have: 

 

𝐹(1 − 𝑞 + (𝑛 − 1)ε) ≤ 𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)ε) ≤ 𝐹(1 − 𝑞 − (𝑛 + 1)ε). 

 

Hence, using that ∑ ℙ[𝐵𝑛 = 𝑗]𝑛
𝑗=0 = 1 we obtain: 

 

𝐹(1 − 𝑞 + (𝑛 − 1)ε) ≤ ∑𝑃[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)ε)

𝑛

𝑗=0

≤ 𝐹(1 − 𝑞 − (𝑛 + 1)ε), 
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Therefore:  

 

lim
𝑛→∞

(𝑎𝑛+1 − 𝑎𝑛) = lim
𝑛→∞

∑𝑃[𝐵𝑛 = 𝑗]𝐹(1 − 𝑞 + (𝑛 − 1 − 2𝑗)ε)

𝑛

𝑗=0

= 𝐹(1 − 𝑞). 

 

The limit above and the equality 𝑏𝑛+1 − 𝑏𝑛 = 𝐹(1 − 𝑞) yield: 

 

lim
𝑛→∞

𝑎𝑛+1 − 𝑎𝑛

𝑏𝑛+1 − 𝑏𝑛

= 1. 

 

The result now follows by Stolz-Césaro's Theorem. ∎ 

 

Proof of Theorem 5. First, we show that 
𝐸[𝐵𝑛]

𝑛
→ 𝐹(1 − 𝑞). By Theorem 4 above, for an arbitrary ε > 0 and 

sufficiently large $n$ we have: 

 

|
𝐸[𝐵𝑛]

𝑛𝐹(1 − 𝑞)
− 1| < ε ⇒ 𝐹(1 − 𝑞) |

𝐸[𝐵𝑛]

𝑛𝐹(1 − 𝑞)
− 1| < 𝐹(1 − 𝑞) ⇒ |

𝐸[𝐵𝑛]

𝑛𝐹(1 − 𝑞)
− 𝐹(1 − 𝑞)| < ε, 

 

Where in the last implication we have used that 𝐹(1 − 𝑞) < 1. Now under the assumption that 𝐹
−1

exists and it is 

continuous we obtain: 

 

1 − lim
𝑛→∞

𝐹
−1

(
𝐸[𝐵𝑛]

𝑛
) = 1 − 𝐹

−1
(𝐹(1 − 𝑞)) = 𝑞. 

∎ 

 

Appendix C. The case of the uniform distribution 

In this section we present some important quantities in the particular case when the students initial distribution for 

understanding is uniform in [0,1]. Throughout this section we assume that 𝜀 is such that [1 − 𝑞 − (𝑛 − 1)𝜀, 1 − 𝑞 +

(𝑛 − 1)𝜀] ⊆ [0,1], which we name as Hypothesis 1. 

 

Proposition C.1. Let 𝐹 be the uniform distribution over (0,1) and assume Hypothesis 1 holds. Then for 𝑖 ≤ 𝑛 we 

have: 

 

𝐹𝑖(1 − 𝑞 − 𝑚ε) = (1 + 2ε)𝑖−1 {𝑞 −
1

2
} +

1

2
+ 𝑚ε. 

 

Proof. Recall that 𝐹1 = 𝐹. The result holds for 𝑖 = 1, since: 

 

𝐹1(1 − 𝑞 − 𝑚ε) = 𝑞 + 𝑚ε. 

 

We proceed by induction, assuming that for an integer 𝑗 ≥ 1 we have: 

 

𝐹𝑗(1 − 𝑞 − 𝑚ε) = (1 + 2ε)𝑗−1 {𝑞 −
1

2
} +

1

2
+ 𝑚ε. 

 

By the Law of Total Probability and induction hypothesis: 
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𝐹𝑗+1(1 − 𝑞 − 𝑚𝜀) = 𝐹𝑗(1 − 𝑞 − (𝑚 + 1)𝜀)𝐹𝑗(1 − 𝑞) + 𝐹𝑗(1 − 𝑞 − (𝑚 − 1)𝜀) (1 − 𝐹𝑗(1 − 𝑞))

= [(1 + 2𝜀)𝑗−1 {𝑞 −
1

2
} +

1

2
+ (𝑚 + 1)𝜀] [(1 + 2𝜀)𝑗−1 {𝑞 −

1

2
} +

1

2
]

+ [(1 + 2ε)𝑗−1 {𝑞 −
1

2
} +

1

2
+ (𝑚 − 1)ε] [

1

2
− (1 + 2ε)𝑗−1 {𝑞 −

1

2
}]

=
1

2
(1 + 2ε)𝑗−1 {𝑞 −

1

2
} +

1

2
[
1

2
+ (𝑚 + 1)ε]  + [(1 + 2ε)𝑗−1 {𝑞 −

1

2
}] [

1

2
+ (𝑚 + 1)ε]

+
1

2
(1 + 2ε)𝑗−1 {𝑞 −

1

2
} +

1

2
[
1

2
+ (𝑚 − 1)ε] − [(1 + 2ε)𝑗−1 {𝑞 −

1

2
}] [

1

2
+ (𝑚 − 1)ε]

= (1 + 2ε)𝑗−1 {𝑞 −
1

2
} +

1

2
+ 𝑚ε + 2ε [(1 + 2ε)𝑗−1 {𝑞 −

1

2
}] = (1 + 2ε)𝑗 {𝑞 −

1

2
} +

1

2
+ 𝑚ε. 

 

Hence the result follows. ∎ 

 

Theorem C.1. Let 𝐹 be the uniform distribution over (0,1) and assume Hypothesis 1 holds. Then for 𝑚 ≤ 𝑛 we have: 

 

𝑝𝑚 =
1

2
+ (1 + 2ε)𝑚−1 (𝑞 −

1

2
). 

 

Proof.  For 1 ≤ 𝑗 ≤ 𝑚 − 1, it follows from Proposition C.1 that: 

 

𝐹𝑗(1 − 𝑞 − ε) − 𝐹𝑗(1 − 𝑞 + ε) = 2ε. 

 

Since 𝐹(1 − 𝑞) = 𝑞, by Theorem 1 we have: 

   

𝑝𝑚 = 𝐹1(1 − 𝑞) ∏[𝐹𝑗(1 − 𝑞 − 𝜀) − 𝐹𝑗(1 − 𝑞 + 𝜀)]

𝑚−1

𝑗=1

+ ∑ 𝐹𝑖(1 − 𝑞 + 𝜀) ∏ [𝐹𝑗(1 − 𝑞 − 𝜀) − 𝐹𝑗(1 − 𝑞 + 𝜀)]

𝑚−1

𝑗=𝑖+1

𝑚−1

𝑖=1

= 𝑞[2ε]𝑚−1 + {
1

2
− ε} ∑(2ε)𝑚−1(2ε)−𝑖

𝑚−1

𝑖=1

+ {𝑞 −
1

2
} ∑(1 + 2ε)𝑖−1[2ε]𝑚−1−𝑖

𝑚−1

𝑖=1

= [2ε]𝑚−1 [𝑞 + {
1

2
− ε} ∑(2ε)−𝑖

𝑚−1

𝑖=1

+
𝑞 −

1
2

1 + 2ε
∑ (

1 + 2ε

2ε
)
𝑖𝑚−1

𝑖=1

].                        (15) 

  

Using the identities: 

 

∑ (
1 + 2ε

2ε
)
𝑖𝑛−1

𝑖=1

= [1 + 2ε] [(
1 + 2ε

2ε
)
𝑛−1

− 1]  and ∑(2ε)−𝑖

𝑛−1

𝑖=1

= [
1

1 − 2ε
] [(

1

2ε
)
𝑛−1

− 1], 

 

The right hand of equation (15) becomes: 

  

[2ε]𝑚−1 [𝑞 + (
1

2
− ε)   [

1

1−2ε
] [(

1

2ε
)
𝑚−1

− 1] +
𝑞−

1

2

1+2ε
[1 + 2ε] [(

1+2ε

2ε
)
𝑚−1

− 1]] 

= [2ε]𝑚−1 [
1

2
(
1

2ε
)
𝑚−1

+ 𝑞 (
1 + 2ε

2ε
)
𝑚−1

−
1

2
(
1 + 2ε

2ε
)
𝑚−1

] 

= [
1

2
+ 𝑞(1 + 2ε)𝑚−1 −

1

2
(1 + 2ε)𝑚−1]. 
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Hence, we obtain: 

 

𝑝𝑚 =
1

2
+ (1 + 2𝜀)𝑚−1 (𝑞 −

1

2
), 

 

And the result follows. ∎ 

 


