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Abstract 

Introduction: The optimization of renewable energy resources is transcendental to satisfy the world energy demand and to avoid the 

adverse effects produced by the burning of fossil fuels. Therefore, there are several studies that seek to estimate the capacity of 

renewable energy sources in a geographical location. Likewise, there are several software applications that seek a balance between the 

investment and the installed capacity of an electric power generating plant. 

Objective: This work uses the results of the Random Forest algorithm to predict solar radiation from satellite images. This technique 

achieved a performance in R2 of 0.82 and in RMSE of 107.05. The purpose of this study is to evaluate the results of 2 models of 

photovoltaic systems designed for 10 different locations in the Colombian territory. Model M1 uses solar radiation data from NASA. 

The M2 model uses solar radiation data generated by Random Forest. 

Methodology: The evaluation of solar radiation from NASA and the Random Forest algorithm is based on simulations provided by 

the energy resource optimization tool Homer Pro. 

Results: The simulations of both models in Homer Pro show a difference in the capacity of the system components of between 0.0% 

and 47.31%. The difference between electric power generation ranges from 0.0% to 11.99%. Similarly, the difference between system 

costs is between 1.34% and 23.64% respectively. 

Conclusions: The solar radiation data estimated by Random Forest is constituted as an alternative to the solar radiation data provided 

by NASA, given that the differences in the capacity of system components, electric power generation and total system costs are on 

average at around 27%. 
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Resumen 

Introducción: La optimización de los recursos de energía renovable es trascendental para satisfacer la demanda energética mundial y 

para evitar los efectos adversos producidos por la quema de combustibles fósiles. Por lo tanto, existen distintos estudios que procuran 

estimar la capacidad de las fuentes de energía renovable en una ubicación geográfica. Asimismo, existen diversas aplicaciones de 

software que buscan un equilibrio entre la inversión y la capacidad instalada de una central generadora de energía eléctrica. 

Objetivo: Este trabajo utiliza los resultados del algoritmo Random Forest para predecir la radiación solar a partir de imágenes 

satelitales. Esta técnica alcanzó un desempeño en R2 de 0.82 y en RMSE de 107.05. El objeto de este estudio es evaluar los resultados 

de 2 modelos de sistemas fotovoltaicos diseñados para 10 lugares distintos del territorio colombiano. El modelo M1 utiliza datos de 

radiación solar de la NASA. El modelo M2 utiliza datos de radiación solar generados por Random Forest. 

Metodología: La evaluación de la radiación solar proveniente de la NASA y del algoritmo Random Forest está basada en las 

simulaciones proporcionadas por la herramienta de optimización de recursos energéticos Homer Pro. 

Resultados: Las simulaciones de ambos modelos en Homer Pro, arrojan una diferencia en la capacidad de los componentes del sistema 

de entre 0.0% y 47.31%. La diferencia entre la generación de energía eléctrica oscila entre 0.0% y 11.99%. De igual manera, la 

diferencia entre los costos del sistema está entre 1.34% y 23.64% respectivamente. 

Conclusiones: Los datos de radiación solar estimados por Random Forest se constituyen como una alternativa a los datos de radiación 

solar proporcionados por la NASA, dado que las diferencias en la capacidad de los componentes del sistema, la generación de energía 

eléctrica y los costos totales del sistema están en promedio, en alrededor del 27%. 

 

Palabras clave 

Microrredes eléctricas; Homer Pro; Energía renovable; Energía Solar; Sistemas fotovoltaicos. 

      

I. INTRODUCTION 

The global trend in electricity generation is related to the construction of large-scale hydroelectric power plants and the 

use of fossil fuels. In contrast, energy generation based on unconventional renewable energy sources remains insufficient, 

according to the Latin American Energy Organization (OLADE) [1]. Similarly, greenhouse gas emissions continue to 

increase, despite significant efforts being made to mitigate them [2]. 

The increasing energy demand and concern for global warming have led various governments and private organizations 

to consider energy transformation. In this regard, various renewable energy sources (small-scale hydroelectric, 

photovoltaic, solar thermal, wind, tidal, biomass, geothermal, among others) have become viable options due to being 

considered clean and not depleting their generating source [3].          

According to the CONPES document [4] in Colombia, non-conventional renewable energy sources only represent 6% 

of the energy mix, which includes small-scale hydroelectric, photovoltaic systems, wind farms, and biomass power plants 

that process bagasse. In contrast, 63.3% of the installed capacity corresponds to large and small-scale hydroelectric power 

plants, and 30.7% is thermal energy. However, both energy sources are affected by phenomena such as El Niño, climate 

change, price volatility, and eventual depletion at local and global levels [5].  

Although there are various renewable energy sources [6], the construction of power plants that enable their utilization 

depends on resource availability and electricity demand requirements. Therefore, monitoring stations exist to assess the 

potential of the source. However, the number of measurement points and available sensors is limited, which hinders the 

study of their behavior and leads researchers to build mathematical, statistical, and predictive models. 

Predictive models applied to the electricity resource [7] [8] [9] [10] help determine the behavior of available energy 

sources in a specific location. However, the sizing, operation, and performance of electric power generation systems 

require the optimization of different input variables and the characteristics inherent to energy generation to contribute to 

the efficient utilization of the energy source. Consequently, finding a balance for power generation in terms of reliability, 
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flexibility, and energy generation capacity has led to the design of various proprietary and open-source software tools that 

use optimization algorithms for the design of power generation plants. 

This work arises from the research conducted by Ordoñez Palacios et al. [11], where a Machine Learning model is 

implemented using variables obtained from satellite images to estimate solar radiation at any location on the planet. The 

data generated by the mentioned model serves as one of the sources of information for the current project, aiming to build 

a microgrid model for the Colombian case. 

In this research, the results of simulating different microgrid models designed in Homer Pro were evaluated. Each 

microgrid model was fed with data obtained from NASA and data generated by the Machine Learning model. The 

contribution of this work includes evaluating the simulation results in Homer Pro based on the two sources of solar 

radiation data. Additionally, it is possible to confirm that the data generated by the Random Forest algorithm are 

considered a valid alternative to the data provided by NASA. 

It is also important to highlight that in this work: (i) The M1 microgrid model was designed using solar radiation data 

obtained from NASA. (ii) The M2 microgrid model was designed using solar radiation data generated by the Random 

Forest algorithm. (iii) Comparisons of the results obtained from each model were performed for a 25-year project. 

This document comprises the following sections: Related Works, Materials and Methods, Results, Discussion, and 

finally, Conclusions. 

 

II. RELATED WORKS 

The research in [12] presents a review of the methods used for multi-objective optimization in hybrid power generation. 

The study considers design parameters such as the optimal configuration and location of the plant, operating costs for 

hybrid power generation, energy demand, emission reduction, total and social costs, cost-effective sizing of energy storage 

systems, and biomass system capacity. It utilizes multicriteria analysis as a tool for optimizing problems related to 

minimizing diesel fuel consumption, determining the optimal number of turbines, sizing the upper water reservoir, and 

load/discharge rates of the hydraulic pump storage system. This research employs techniques such as Neural Networks, 

Evolutionary Computing, Swarm Intelligence, and Fuzzy Systems. 

A search conducted in the GitHub source code repository yielded information about related projects that build 

algorithms for optimizing power generation. The work of OffGridEnergy [13] presents an algorithm designed in 

Objective-C for estimating the size of a photovoltaic system and energy storage capacity for an off-grid renewable energy 

system. The algorithm calculates the cost of each off-grid configuration and determines the most cost-effective system. 

On the other hand, the project designed by SiyueZoe [14] includes optimization methods for scheduling household loads 

in smart grids, aiming to manage and control all elements of the smart grid. The main objective is to increase reliability 

and economic benefits, while also considering operational and probabilistic constraints on energy availability and 

consumption. 

Other works, such as the project by jgarcia211 [15], implement a Recurrent Neural Network in Keras to forecast the 

energy consumption of a smart home. It optimizes the climatic parameters and considers the relationship between 

electrical energy consumption and the appropriate supply level. Understanding that excess supplied electricity cannot be 

stored unless it is converted into other forms of energy, generating additional costs and resources. Additionally, 

underestimating energy consumption could be detrimental, as excess demand leads to overload on the supply line, causing 

blackouts. The project by grhervas [16] aims to optimize electricity generation for the Spanish Electric Grid, adjusting 

the energy produced by different installations grouped by technology and region. 

Currently, there are various software tools that facilitate the optimization of energy generation from various sources. 

Among them, RETScreen [17] is a clean energy management system for analyzing the feasibility of energy efficiency, 

renewable energy, and cogeneration projects, as well as continuous energy performance analysis. HOMER PRO [18] is 

a software tool for optimizing the design of isolated microgrids or those connected to public distribution grids. Its 

sensitivity analysis and optimization algorithms facilitate the evaluation of the technical and economic viability of energy 

projects. 
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On the other hand, the Model for Electric Technology Assessment (META) [19] facilitates comparative evaluation of 

the economic costs of various electricity generation and delivery technologies, including conventional (thermal, 

hydroelectric, etc.) and unconventional (renewable) options, as well as emerging options such as energy storage and 

carbon capture and storage (CCS). ENPEP-BALANCE [20] is a model for optimizing the balance of energy demand with 

available resources and technologies. It is based on a decentralized decision-making process in the energy sector and can 

be adapted to different preferences of energy users and providers. 

HOMER Pro is a commercially used tool for hybrid optimization of multiple energy resources. Some studies, such as 

Ali et al. [21], Khalil et al. [22], Deshmukh and Singh [23], and Singh et al. [24], utilize the software for conducting 

techno-economic assessments of hybrid energy systems, optimizing, and designing hybrid energy systems, modeling the 

energy performance of autonomous photovoltaic systems, and computationally simulating the optimization of hybrid 

solar energy, fuel cell, and biomass energy systems, respectively. 

 

III. MATERIALS AND METHODS 

In this section, the research's guiding questions of interest, the sources of information that provided the data, how the 

data was processed, and the tools used to compare the microgrid models using data from NASA, machine learning 

algorithms, and climate monitoring stations in a specific location are formulated. 

A. Research questions 

Renewable energy sources can be transformed into electrical energy through systems designed for their utilization. 

While it is crucial to understand their behavior in a specific location using measurement instruments, mathematical or 

predictive models, it is also important to determine the optimal parameters for sizing power plants that guarantee 

reliability, flexibility, and energy generation capacity. 

Considering the diversity of energy sources available in Colombia, it is important to analyze the optimal parameters 

that power generation plants must meet to ensure their proper functioning. Therefore, it is necessary to address questions 

such as: Q1: What tools are available for optimizing energy generation? Q2: Does the solar radiation generated by machine 

learning algorithms approximate that provided by NASA? Q3: Are solar energy sources in Colombia sufficient to generate 

electrical energy to meet the power demand? These questions are addressed throughout the entire document. 

B.  Sources of Information 

In this work, a dataset from the ERA monitoring station of the Department of Environmental Management, DAGMA 

(Table 1), from the Municipality of Cali, was used. Additionally, 10 datasets were generated from satellite images from 

the years 2012, 2013, and 2014 for different regions of Colombia. The process of extracting image features is based on 

research by Ordoñez Palacios et al. [11]. Table 2 provides information about each location. Monthly average solar 

radiation data generated from predictive models and solar radiation resources from NASA were also used, as shown in 

Table 3. 

ID Station Latitude Longitude Years 
Hourly 

Records 
Variables 

1 ERA 3.44779 -76.51918 2012 - 2014 18705 

Year, Month, Day, Hour, Wind 

Speed, Wind Direction, Temperature, 

Humidity, Rainfall, and Solar 

Radiation. 

Table I. ERA weather station dataset from DAGMA 

A Jupyter notebook with Python code was used to extract variables from satellite images from the years 2012, 2013, 

and 2014. The notebook and the data used in the model are available in a GitHub repository [25]. Ten locations were 

selected in different regions of the country, and for each case, 5821 hourly records were generated. The extracted 
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characteristics include: 1. Reflectance: Represents the value of solar radiation reflected by clouds. 2. Cloudiness Index 

(nc): Related to cloud conditions, indicating clear sky, partly cloudy, or cloudy. 3. Number of Sunshine Hours (N): The 

duration in hours during which the sun has effective sunshine. 4. Extraterrestrial Solar Radiation (Hext): The value of 

electromagnetic radiation emitted by the Sun before entering the atmosphere. 

ID Location Municipality Department Latitude Longitude Population 

L1 
Block A of Bosques de 

San Joaquín 
Cali Valle del Cauca 3.3730149 -76.547825 112 

L2 San José del Guineo Villagarzón Putumayo 0.9451371 -76.6347924 90 

L3 
Santa Rosa de Juanambú 

Indigenous Reservation 
Puerto Caicedo Putumayo 0.7295021 -76.5913502 163 

L4 
Alto Lorenzo Indigenous 

Reservation 
Puerto Asís Putumayo 0.3651866 -76.5500819 101 

L5 Alto Peñol El Peñol Nariño 1.4649621 -77.4768385 237 

L6 El Nilo Caloto Cauca 3.0626769 -76.3683521 161 

L7 La Victoria Acevedo Huila 1.7886154 -75.8959628 212 

L8 San Luis del Plan San Juanito Meta 4.4706509 -73.6804890 137 

L9 Caimital Malambo Atlántico 10.8673140 -74.7494810 154 

L10 Puerto Alegría Taraira Vaupés -0.5384325 -69.6115196 56 

Table II. Information about the selected locations in Colombia 

Two microgrid models were designed for each location. Both models were fed with solar radiation and temperature 

resources. M1 Model uses solar energy data from NASA, while M2 Model uses solar energy data estimated by the 

Random Forest regression algorithm. Tables 3 and 4 present the monthly average solar radiation values from NASA and 

the predictive model, respectively. Solar radiation is represented in kWh/m2/día. 

Month L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

January 4.060 3.940 3.940 3.940 4.060 4.060 4.240 4.720 5.630 4.470 

February 4.280 3.680 3.680 3.680 4.250 4.280 4.020 4.560 5.700 4.410 

March 4.370 3.500 3.500 3.500 4.440 4.370 3.780 4.400 5.890 4.520 

April 4.210 3.630 3.630 3.630 4.280 4.210 3.780 4.060 5.510 4.380 

May 4.100 3.580 3.580 3.580 4.060 4.100 3.790 4.160 5.080 4.170 

June 4.050 3.380 3.380 3.380 4.030 4.050 3.570 4.160 5.240 3.920 

July 4.340 3.400 3.400 3.400 4.220 4.340 3.550 4.090 5.420 4.020 

August 4.310 3.630 3.630 3.630 4.210 4.310 3.730 4.150 5.360 4.540 

September 4.260 4.090 4.090 4.090 4.110 4.260 4.180 4.500 4.970 4.900 

October 3.990 4.290 4.290 4.290 4.100 3.990 4.300 4.330 4.680 4.760 

November 3.890 4.110 4.110 4.110 3.900 3.890 4.210 4.270 4.720 4.650 

December 3.820 3.930 3.930 3.930 3.840 3.820 4.180 4.430 5.040 4.460 

Annual average 4.14 3.76 3.76 3.76 4.13 4.14 3.94 4.32 5.27 4.43 

Table III. Monthly average solar energy from NASA 

Month L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 

January 3.959 3.997 3.764 3.947 3.884 3.871 3.801 3.721 3.807 3.981 

February 3.706 3.597 3.705 3.746 3.813 3.734 4.056 4.423 4.070 3.785 
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March 3.446 3.847 3.624 3.617 3.464 3.618 3.603 3.631 3.722 4.008 

April 3.669 3.834 3.812 3.697 3.677 3.769 3.818 4.031 3.773 3.725 

May 3.806 3.552 3.496 3.467 3.793 3.904 3.775 3.938 3.794 3.685 

June 3.796 3.488 3.642 3.503 3.606 3.820 3.631 3.812 3.799 3.420 

July 3.797 3.445 3.495 3.418 3.501 3.803 3.862 3.833 4.128 3.364 

August 3.980 3.910 3.898 3.897 3.908 3.804 4.035 4.017 3.597 4.063 

September 4.450 4.179 4.357 4.201 4.140 4.432 4.262 4.246 3.730 4.269 

October 4.194 4.578 4.623 4.583 4.239 4.310 4.400 4.428 3.829 4.611 

November 3.669 3.877 4.282 4.047 4.036 4.394 4.111 4.420 3.786 4.680 

December 4.062 4.121 4.530 4.119 4.048 4.459 4.572 3.683 4.249 4.342 

Annual average 3.88 3.87 3.94 3.85 3.84 3.99 3.99 4.02 3.86 3.99 

Table IV. Monthly average solar energy estimated by the Random Forest algorithm 

It is important to highlight that the monthly average solar radiation from NASA corresponds to a period of 22 years 

between June 1983 and June 2005. In contrast, the monthly average solar radiation estimated by the predictive model 

corresponds to the years 2012, 2013, and 2014. 

C. Basic parameters of the models designed in Homer Pro 

All models have a discount rate of 8%, two values for the inflation rate of 5% and 6% respectively, considering that 

the inflation rate in Colombia in 2021 was 5.62% according to La Republica [26], an annual capacity deficit of 0%, and 

a project lifespan of 25 years. 

D. Estimation of the consumer load 

The Solartex electricity consumption calculator [27] was used. This tool allows the input of the quantity of electrical 

appliances, their wattage, and the number of hours they are used per day. The calculations for the required electric load 

were estimated based on families of 4 members. Table 5 presents the data used by the calculator to estimate the average 

electric load for supplying the population of each location, considering the consumption differences between urban and 

rural areas. Table 6 presents the required electric load to supply the population of each selected location for the study. 

Id. Appliance 
Urban Sector 

Quantity 

Rural Sector 

Quantity 

Consumption 

(watts) 

Hours of 

Use 

Urban Sector 

Energy 

Rural Sector 

Energy 

1 Fridge 1 1 80 24 80 80 

2 Microwave 0.2 0 800 0.25     60           -   

3 Oven 0.4 0 1500 0.6      600           -   

4 Rice cooker 0.2 0.2 700 0.4      140 140 

5 Juicer (Blender) 1 0.9 150 0.1    150 135 

6 Extractor 0.2 0 150 0.3    30        -   

7 Dishwasher 0.1 0 650 1       65           -   

8 Kettle 0.1 0 850 0.2     85           -   

9 Light bulbs 5 4 5 5         25 20 

10 Fluorescent tube 0.5 0 18 5         9           -   

11 Hair dryer 0.7 0.1 800 0.3      560 80 

12 Washing machine 1 0.4 700 1      700 280 
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13 Dryer 0.1 0 2800 1      280           -   

14 Clothes iron 0.9 0.1 1200 0.2   1080 120 

15 Hair straightener 0.9 0.1 1200 0.1   1080 120 

16 Electric coffee maker 0.7 0 10 0.3      7           -   

17 LED TV 1.5 1.5 40 4   60 60 

18 Audio system 0.8 0.8 70 4         56 56 

19 Computer 0.4 0.1 200 4         80 20 

20 Laptop 0.6 0.2 70 4         42 14 

21 Printer 0.5 0.2 30 0.1         15            6 

22 Router 1 0.5 25 24         25 13 

23 Cell phone charger 3 3 30 2         90 90 

24 Air conditioner 0.1 0 1700 4      170           -   

25 Ceiling fan 0.2 0 600 2      120           -   

26 Floor fan 0.6 0.3 900 2      540 270 

Total Energy in 24 Hours (Watts/day) per family 7860 4050 

Table V. Estimated consumption load by the Solartex calculator 

ID Location Population 
Number of 

Families 

Consumption per 

Family (Watts/day) 

Electric Load 

(kW/day) 

L1 
Block A of Bosques de 

San Joaquín 
112 28.00 7860 220.08 

L2 San José del Guineo 90 22.50 4050 91.13 

L3 
Santa Rosa de Juanambú 

Indigenous Reservation 
163 40.75 4050 165.04 

L4 
Alto Lorenzo Indigenous 

Reservation 
101 25.25 4050 102.26 

L5 Alto Peñol 237 59.25 4050 239.96 

L6 El Nilo 161 40.25 4050 163.01 

L7 La Victoria 212 53.00 4050 214.65 

L8 San Luis del Plan 137 34.25 4050 138.71 

L9 Caimital 154 38.50 4050 155.93 

L10 Puerto Alegría 56 14.00 4050 56.70 

Table VI. Electric consumption load 

All designed models include generic photovoltaic modules to produce 1 kW of electrical energy, a lifespan of 25 years, 

and a power reduction factor of 80%, using a direct current (DC) electrical bus. Additionally, a generic Li-Ion battery 

bank was configured to support 1 kWh of electrical energy generated by the solar farm, with a lifespan of 15 years and a 

capacity of 3 kWh, considering an initial state of charge of 100% and a minimum state of charge of 20%. Furthermore, a 

DC to AC converter with a capacity of 1 kWh and an efficiency of 95% was configured. In each case, the capital 

investment, approximate replacement costs, and annual operation and maintenance (O&M) costs were considered, as 

shown in Table 7. 

 

ID Component Capacity Capital 
Replacement 

Costs 

Operation and 

Maintenance Costs 
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1 Photovoltaic Modules 1 kW $ 2000 $ 0 $ 250 

2 Battery Bank 1 kWh $ 2000 $ 1000 $ 100 

3 Converter 1 kW $ 700 $ 0 $ 0 

Table VII. Costos de la microrred 

E. Machine Learning Algorithms 

In the research conducted by Ordoñez Palacios et al. [11], satellite images were obtained and solar radiation data from 

DAGMA and the Institute of Hydrology, Meteorology, and Environmental Studies (IDEAM) were used. The images were 

processed in Python, and the generated datasets were integrated with the solar radiation data. Machine learning algorithms 

were then trained using the extracted data from the images and the solar radiation as the target variable. The predictions 

made by the models were evaluated using different metrics. 

The study employed machine learning algorithms such as Multiple Linear Regression, Support Vector Regression 

(SVR), Random Forest (RF), and Artificial Neural Networks (ANN). RandomizedSearchCV was used for hyperparameter 

tuning, and RepeatedKFold cross-validation was performed to improve the estimated performance of each model and 

prevent overfitting. 

Based on the metrics of coefficient of determination (R2) and root mean square error (RMSE), the Random Forest 

algorithm achieved the highest performance. It obtained an R2 of 0.82 and an RMSE of 107.05. On average, it provided 

5% more confidence and up to 10 points less error in predictions compared to the other evaluated algorithms. Therefore, 

this model was chosen as the base for predicting solar radiation in different geographical locations across Colombia using 

data extracted from satellite images. 

F. Model Architecture 

The model construction is based on the initial sources of information to design the microgrid, according to the tool's 

analysis requirements, the automatically generated simulations, and the results obtained from the application, classified 

according to resource optimization. 

Figure 1 illustrates the flow of data, from the information sources to the generation of optimized models of microgrids, 

encompassing the definition of the components of each model's photovoltaic system, the calculation of the electrical 

consumption load, and the conducted simulations. 

 
Fig. 1 General Architecture of the Model 
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IV. RESULTS 

In Tables 3 and 4, the differences between the monthly average solar radiation from NASA and the monthly average 

estimated by the Random Forest predictive model can be observed. Based on the simulations conducted, the optimized 

structure of the photovoltaic system to meet the electrical consumption load in each model is shown in Table 8. Table 9 

presents the results in terms of electrical generation for each model and the total system costs. Both tables include a 

percentage column representing the difference between M1 and M2 models. 

ID Location 

Photovoltaic 

modules (kW) 

Battery bank 

(kWh) 
Converter (kW) 

M1 M2 % M1 M2 % M1 M2 % 

L1 
Block A of Bosques de 

San Joaquín 
237 264 10.23 343 334 2.62 62.5 72.9 14.27 

L2 San José del Guineo 119 112 5.88 139 140 0.71 17.6 33.4 47.31 

L3 
Santa Rosa de Juanambú 

Indigenous Reservation 
195 196 0.51 288 260 9.72 42.1 59.5 29.24 

L4 
Alto Lorenzo Indigenous 

Reservation 
137 128 6.57 153 158 3.16 22.2 25.4 12.60 

L5 Alto Peñol 257 280 8.21 372 380 2.11 67.5 78.6 14.12 

L6 El Nilo 184 195 5.64 237 245 3.27 58.2 33.3 42.78 

L7 La Victoria 270 248 8.15 323 340 5.00 52.3 97.3 46.25 

L8 San Luis del Plan 153 157 2.55 200 219 8.68 44.1 29.8 32.43 

L9 Caimital 134 190 29.47 211 257 17.90 38.4 33.8 11.98 

L10 Puerto Alegría 56.6 68.1 16.89 93 93 0.00 12.4 14.3 13.29 

Table VIII. Components of the system for each model 

Table 8 presents the required capacity of the system components to supply the electrical load in the M1 and M2 models 

for each selected location. In the case of photovoltaic modules, the difference ranges from 0.51% to 29.47%. Regarding 

the battery bank capacity, the difference fluctuates between 0.0% and 17.90%. On the other hand, the converter capacity 

shows a difference ranging from 11.98% to 47.31%, respectively. 
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ID Model 

Energy 

Genertaion 

Energy 

Consumption 
Excess Energy 

Total System 

Cost 

Value % Value % Value % Value % 

L1 
M1 268.42 

4.82 
80.29 

0.00 
179.36 

7.05 
$ 632.75 

4.66 
M2 282.02 80.29 192.96 $ 663.69 

L2 
M1 122.48 

3.30 
33.24 

0.00 
85.61 

4.72 
$ 286.03 

2.12 
M2 118.44 33.24 81.57 $ 279.97 

L3 
M1 201.23 

0.13 
60.20 

0.00 
134.44 

6.76 
$ 525.03 

4.04 
M2 200.96 60.20 144.18 $ 503.80 

L4 
M1 138.85 

4.60 
37.30 

0.00 
97.48 

6.56 
$ 323.56 

2.30 
M2 132.46 37.30 91.09 $ 316.12 

L5 
M1 297.25 

1.70 
87.55 

0.02 
200.12 

2.51 
$ 686.67 

5.41 
M2 302.38 87.53 205.27 $ 725.95 

L6 
M1 213.86 

2.46 
59.48 

0.02 
147.90 

3.53 
$ 466.56 

3.78 
M2 219.26 59.47 153.31 $ 484.87 

L7 
M1 293.57 

7.29 
78.30 

0.00 
206.75 

10.37 
$ 658.78 

1.34 
M2 272.16 78.30 185.30 $ 649.98 

L8 
M1 185.00 

4.43 
50.61 

0.00 
128.89 

6.38 
$ 390.72 

4.89 
M2 176.80 50.61 120.67 $ 410.82 

L9 
M1 186.82 

4.88 
56.90 

0.04 
123.77 

7.15 
$ 373.78 

23.64 
M2 196.41 56.88 133.30 $ 489.50 

L10 
M1 66.57 

8.18 
20.68 

0.00 
43.60 

11.99 
$ 160.80 

8.92 
M2 72.50 20.68 49.54 $ 176,56 

Table IX. Electricity generation (kWh/year) and system costs 

On the other hand, Table 9 shows the differences in the results of the Homer Pro simulations in terms of electricity 

generation, consumption, and excess energy for the models designed for the 10 geographical locations across the country. 

The results for electricity generation differ between 0.13% and 8.18%. Regarding energy consumption, the difference 

ranges from 0.0% to 0.04%. As for the excess energy, the results vary between 2.51% and 11.99%. Finally, the total cost 

of the system for both models range from 1.34% to 23.64% respectively. 

 

V. DISCUSSION 

It is important to highlight that in the literature review, several studies were found that design algorithmic models to 

optimize resources in hybrid energy generation. Additionally, various software tools were found that can be used as 

alternatives to Homer Pro. However, numerous studies employ Homer Pro to conduct evaluations of hybrid energy 

systems, optimize hybrid energy systems, model the energy performance of photovoltaic systems, among other case 

studies. In this regard, the contributions of this work are valuable because, in addition to analyzing the results of the 

simulations conducted in Homer Pro, it uniquely evaluates the relevance of the solar radiation data generated by the 

Random Forest algorithm compared to the data provided by NASA. 

This research builds upon the work of Ordoñez Palacios et al. [11], in which the performance of 7 predictive models 

of solar radiation was evaluated using 4 different metrics. The best-performing model included data extracted from 
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satellite images of locations below 800 meters above sea level. The Random Forest algorithm achieved an R2 of 0.82 and 

an RMSE of 107.05. Subsequently, the aim was to design photovoltaic system models to evaluate the optimized results 

of costs and electricity generation for different locations in Colombian territory. In this regard, solar radiation provided 

by NASA and predictive models was considered. 

As can be seen in Table 3, the monthly average solar energy values from NASA for geographical points L2, L3, and 

L4 located in the Putumayo department are identical. Similarly, locations L1 and L6 located in the Valle del Cauca and 

Cauca departments, respectively, are the same. This indicates a low level of detail in the solar radiation values provided 

by NASA. In the case of the estimated solar energy data from predictive models, it is possible to notice a greater 

granularity in the information, even if the sites are within the same region. 

It is important to highlight that for the L9 site, located in Malambo, Atlántico department, the difference in the annual 

average solar radiation estimated by NASA and the Random Forest predictive model is over 1 kW/m2. This indicates that 

the machine learning model is somewhat discreet in estimating solar radiation values in regions where solar energy is 

more concentrated. 

It is important to note that the design of electric microgrids is sensitive to solar radiation resources. Therefore, 

differences in monthly average solar energy result in different outcomes for each optimized model. In this regard, 

simulations conducted by the tool indicate that, in some cases, the M2 model requires more investment; however, it 

produces a higher excess of energy compared to the M1 model. This enables the sale of surplus energy in the daily 

electricity market. 

 

VI. CONCLUSIONS 

This work compares the results obtained from the electric microgrid models designed in the Homer Pro analysis tool. 

The first model (M1) was fed with information from NASA, while the second model (M2) was fed with data estimated 

by the Random Forest algorithm. The annual average solar radiation estimated by NASA in all selected locations is 4.17 

kWh, while the annual average estimated by the predictive model is 3.92 kWh. 

In the estimation of the electricity consumption load for each location, carried out using the Solartex calculator, it was 

found that for rural areas, there is lower energy consumption per family due to the general use of fewer electrical 

appliances and less usage time for each one. 

The optimization and sizing of electric microgrids require the selection of a small population in a specific geographical 

location, an approximate electricity consumption load, and the necessary components to configure the microgrid. 

Additionally, solar modules for the photovoltaic system, battery banks, and AC to DC power converters must be 

configured. For each system component, the capital costs, replacement costs, and operation and maintenance costs must 

be defined, along with their lifespan, power, and efficiency, as applicable. 

In response to question Q1, it is worth mentioning that there are currently various software tools that facilitate the 

optimization of energy generation from different sources. Among them, RETScreen is a clean energy management system 

for the analysis of energy project feasibility. The Model for Evaluation of Electric Technology (META) enables 

comparative evaluation of the economic costs of various electricity generation and delivery technologies. ENPEP-

BALANCE is a model for optimizing the energy demand balance with available resources and technologies. Homer Pro, 

the tool used in this study, allows for the optimization of the design of isolated microgrids or those connected to public 

power distribution networks. 

Although there are differences in the results between the M1 and M2 models for each site located in different regions 

of Colombia, in most cases, and to answer question Q2, the differences in values are less than 20%. Therefore, it can be 

said that the solar radiation estimated by the Random Forest predictive model approximates the values provided by NASA. 

Even though the Caribbean Coast is a strategic region with ideal conditions for solar generation in Colombia, as stated 

in the report by Lupe Mouthón [28], the study provides a positive response to question Q3. For all selected locations in 

the research, there is a viable configuration of electric microgrids to supply the electricity consumption load, according 

to the defined population in each geographical location. 
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