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1. Introduction

A long standing, intriguing—one could without exaggeration say famous—
problem of Finsler geometry is the following:

Is every regular (y-global) Landsberg space, over a manifold of
dimension at least 3, a Berwald space?

Nobody knows for sure. There is no known example of such a Landsberg space
which is not Berwaldian, but no proof that there cannot be any. There are,
however, numerous known results of the form “ A regular Landsberg space
which has such-and-such an additional property —property P say— is a
Berwald space ”. This paper is an attempt to collect them all together in
one place; and along the way it adds a few new ones.

The body of the paper therefore consists of a succession of theorems of the
form:

Theorem. A regular Landsberg space which has property P is a Berwald
space

for a number of different properties P. If a year is quoted, it is the year of first
publication of the result: if none is given the result is likely to be new. Once
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or twice the result turns out in fact to be: a regular Landsberg space which
has property P is a Riemannian space —but of course that counts.

My main new result on the Landsberg-Berwald problem is (roughly) this:

Theorem. A complete regular Landsberg space whose Berwald scalar cur-
vature is geodesically invariant is a Berwald space. In particular, a Landsberg
space over a compact base whose Berwald scalar curvature is geodesically in-
variant is a Berwald space.

(Theorem 4 below: there is in fact an additional boundedness condition, which
I have omitted here for the sake of simplicity, but which will be explained in
context.) This is an improvement, in the sense that it involves a weakening of
the hypothesis, on the previous strongest result in this general area, which is

Theorem. A Landsberg space whose Berwald scalar curvature vanishes
is a Berwald space.

Apart from the proof of the new result there is little in the way of proof
in the main section of the paper. For published work I have simply relied on
references. Most of the new detailed argument is given in appendices: so it
is in these appendices that most of the original material in the paper is to
be found. New results, relevant to the Landsberg-Berwald problem but not
sufficiently directly to warrant inclusion in the main part of the paper, include:

Proposition. A function κ on Rn◦ which is positively-homogeneous of
degree 0 satisfies

gij
∂2κ

∂yi∂yj
= 0

if and only if it is constant.

(Proposition 2 in Appendix B.) This is similar in appearance to a result I
proved in [12], but it applies to functions positively-homogeneous degree 0
while the previous one was for functions homogeneous of degree 1.

I used the latter in [12] to prove that a weakly-Berwald Landsberg space is a
Berwald space; and I use it here to prove the following related result concerning
isometries between Minkowski spaces. (A Minkowski space induces a Rieman-
nian metric on Rn◦ : by ‘an isometry’ here I mean a diffeomorphism Rn◦ → Rn◦
which preserves the corresponding metrics, and is positively-homogeneous of
degree 1.)
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Proposition. An isometry between two Minkowski spaces of the same
dimension is linear if and only if its Jacobian determinant is constant.

(Proposition 5(2) in Appendix E; the Jacobian is to be calculated with respect
to linear coordinates.) This result seems rather important, given that from
one point of view the key issue is whether parallel translation, which is an
isometry between tangent Minkowski spaces in a Landsberg space, is linear,
which is what is required for the space to be a Berwald space. It is in effect a
new version of M. Li’s equivalence theorem for Minkowski spaces from [27].

1.1. Non-existence of unicorns Many Finsler geometers nowadays
refer to non-Berwaldian Landsberg metrics as unicorns, a usage introduced by
Bao in [6]. I have decided against following this trend, as will be clear from
my title, and I feel I should explain why.

The problem is that in calling a non-Berwaldian Landsberg metric a uni-
corn no consideration is given as to whether or not the space is regular: a
unicorn may very well fail to be y-global, and indeed Bao himself refers in [6]
to Asanov’s metrics as unicorns. Consider for example Tayebi’s 2021 paper
‘A survey on unicorns in Finsler geometry’ [46]. This turns out to be closely
focussed on results about non-regular Landsberg spaces and contains, I think
it is fair to say, very little of interest about the regular case. I wish to make
it completely clear that by contrast the present paper deals only with regu-
lar Landsberg spaces. It is for this reason that I abjure the use of the term
unicorn, and instead refer to the conjecture that all regular Landsberg spaces
are Berwald spaces as the Landsberg-Berwald conjecture, and to the problem
of resolving whether this conjecture is true or false as the Landsberg-Berwald
problem: I continue to use the terminology that I have adopted in the past,
in other words. You will find no unicorns here.

It seems to me in fact that Bao’s coinage, while witty, is not terribly apt.
Surely nobody in the 21st century thinks unicorns exist: Bao himself describes
them as mythical. So to call non-Berwaldian regular Landsberg spaces uni-
corns implies in effect that there are none, when this is tantalisingly still an
open question; whereas to call Asanov’s metrics unicorns denies their evident
existence and is simply wrong. Marco Polo, having observed on his trav-
els what he claimed were unicorns, described them in terms which makes it
clear that what he actually saw were rhinoceroses. I suggest that non-regular
non-Berwaldian Landsberg metrics would be more appropriately called rhi-
nos. Whether it is correct to call regular non-Berwaldian Landsberg metrics
unicorns, on the other hand, still waits for the resolution of the Landsberg-
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Berwald problem.
At the risk of seeming over-repetitive I state again my general insistence

on the qualification ‘regular’. I hope that I have now used the word enough to
make it unnecessary to continually repeat it in future. You will find no rhinos
here either.

1.2. Background and notation I take M to be a differentiable man-
ifold whose dimension n is at least 3. I denote by π : T ◦M → M the slit
tangent bundle of M . I shall mostly work in terms of coordinates xi on M
and corresponding fibre coordinates yi. Let F be a regular Finsler function
on T ◦M : positive, smooth, positively-homogeneous of degree 1, and strongly
convex. From another perspective, F is an assignment to each x ∈ M of a
Minkowski norm on T ◦

xM , depending smoothly on x.
I denote by I = {(x, y) ∈ T ◦M : F (x, y) = 1} the indicatrix bundle of F ,

by L = 1
2F

2 its energy Lagrangian, by

gij =
∂2L

∂yi∂yj

its fundamental tensor, by

hij = F
∂2F

∂yi∂yj

its angular metric, by

Cijk =
∂gij
∂yk

its Cartan tensor, and by Ci = gjkCijk its mean Cartan tensor.
I should perhaps pause here and elucidate what I mean by ‘tensor’ in this

context. I denote by V (T ◦M) the vertical sub-bundle of T (T ◦M), whose fibre
at (x, y) ∈ T ◦M is V(x,y)T

◦M , the vertical subspace of T(x,y)T
◦M . It is of

course a vector bundle over T ◦M . By ‘tensor’, or more properly V-tensor, I
mean a section of a tensor bundle constructed from V (T ◦M).

Note that aV-tensorK, when restricted to any fibre T ◦
xM of π : T ◦M →M ,

defines there a linear-tensor field Kx of the same type, that is, a field that
transforms tensorially in the manner specified by its type under linear trans-
formations of the canonical fibre coordinates. Conversely, an assignment to
each fibre T ◦

xM of a linear-tensor field Kx of a given type, depending smoothly
on x in an obvious sense, defines a V-tensor K on T ◦M of that type.
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The fundamental tensor, the angular metric, and the Cartan tensor are
all examples of V-tensors, of type (0, 2), (0, 2), and (0, 3) respectively, all
completely symmetric.

Any tensor field on M induces in a natural way a V-tensor on T ◦M , which
may be called its natural lift. Such a V-tensor is distinguished by the fact that
its components with respect to canonical fibre coordinates yi are independent
of y —they are the same as the components of the original tensor field with
respect to the base coordinates xi. In other words, such V-tensors are constant
on fibres.

Type (1, 0) V-tensors are simply vertical vector fields. In particular, in
accordance with the remarks in the prevous paragraph, a vector field X on
M gives rise to a type (1, 0) V-tensor or vertical vector field Xv on T ◦M , its
vertical lift, where

Xv = Xi ∂

∂yi
if X = Xi ∂

∂xi

relative to coordinates xi on M with corresponding fibre coordinates yi.
This discussion of V-tensors, which is a précis of a more extensive one in

[16], is included for completeness’ sake. In practice I shall work almost always
in terms of components. And from that perspective a V-tensor looks like,
and transforms as if it were, just an ordinary tensor of the same type: its
components however are, in general, local functions on T ◦M . Not only shall I
use components in tensorial calculations, I shall generally refer to a V-tensor
by its component representation, with indices in place, reprehensible though
this may seem to purists: it does, however, have the advantage of convenience,
especially since it distinguishes between covariant and contravariant forms. I
shall, however, from time to time refer for example to the fundamental tensor
simply as g where I judge no confusion can arise.

Though I shall mostly use component representations of V-tensors, the
vertical lift construction does give me the opportunity to express some formulae
in index-free form. So for example the fundamental tensor is determined by
the fact that g(Xv, Y v) = Xv(Y v(L)) for all vector fields X and Y on M ;
likewise the angular metric satisfies h(Xv, Y v) = FXv(Y v(F )), while for the
Cartan tensor C(Xv, Y v, Zv) = Xv(Y v(Zv(L))).

These formulae, and some others below, give just a few tastes of the index-
free alternative to the component notation adopted in this paper. For a fully
comprehensive index-free approach to these matters I recommend the text of
Szilasi et al. [44].
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I denote by Γ the geodesic spray of F , in other words the Euler-Lagrange
field of L: it is determined by the Euler-Lagrange equations Γ(Xv(L)) −
Xc(L) = 0, holding for all vector fields X on M , where Xc is the complete lift
of X to T ◦M . In coordinates

Γ = yi
∂

∂xi
− 2Γi(x, y)

∂

∂yi
,

where

2Γi = γ i
jky

jyk, γ i
jk = 1

2g
il

(
∂glk
∂xj

+
∂gjl
∂xk
−
∂gjk
∂xl

)
.

So γ i
jk looks the same as a Christoffel symbol for the Levi-Civita connection

of a Riemannian metric: however, here gij will in general depend on y. (In
fact γ i

jk is called a formal Christoffel symbol by Bao et al. in [7].)
The associated horizontal distribution on T ◦M is spanned by the local

vector fields

Hi =
∂

∂xi
− Γji

∂

∂yj
, Γji =

∂Γj

∂yi
.

A vector field X on M determines a horizontal vector field Xh on T ◦M , by

Xh = 1
2([Xv,Γ] +Xc).

The Hi are the horizontal lifts of the coordinate vector fields on M , and Xh =
XiHi.

It will sometimes be useful to denote the vertical lifts of the coordinate
vector fields on M by Vi:

Vi =
∂

∂yi
,

and Xv = XiVi.
I use the Berwald connection throughout. I point this out because this

choice is by no means universal: for example Bao et al., in [7], use the Chern,
or Chern-Rund, connection rather than the Berwald connection.

The covariant derivative operator of the Berwald connection is essentially
determined by the rules

∇XhV = [Xh, V ], ∇XvV = [Xv, V ],

where X is a vector field on M , and V , [Xh, V ], and [Xv, V ], all of which are
vertical vector fields on T ◦M , are to be interpreted as type (1, 0) V-tensors.
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The connection coefficients of the horizontal part of the Berwald connection
are Γ i

jk where

Γ i
jk =

∂Γij
∂yk

=
∂2Γi

∂yj∂yk
=
∂Γik
∂yj

= Γ i
kj .

The Riemann curvature V-tensor is most directly defined in terms of the
bracket of horizontal vector fields:

[Hi,Hj ] = −RkijVk.

Note that Rkij is positively-homogeneous of degree 1. For each fixed i and
j, RkijVk is a vertical vector field which I call the (i, j) Riemann curvature
vector. Alternatively one could define a Riemann curvature vector for each
pair of vector fields X, Y on M as

[X,Y ]h − [Xh, Y h] = RkijX
iY jVk.

The Riemann curvature is also a component part of the curvature of the
Berwald connection. In that context I must explain my notation for covariant
derivatives. I use a semi-colon for the horizontal Berwald covariant derivative,
a comma for the vertical one. Thus for example for a vector field ξi (type
(1, 0) V-tensor)

ξi;j = Hj(ξ
i) + Γ i

jkξ
k, ξi,j = Vj(ξ

i).

It is an obvious fact that vertical covariant derivatives commute; and for
this reason I shall simplify the notation by writing (for example) ξi,jk
instead of ξi,j,k.

Of course Γ is itself horizontal: Γ = yiHi. The operator of horizontal
Berwald covariant differentiation along Γ is called the dynamical covariant
derivative and denoted simply by ∇: thus for example

∇(ξi) = yjξi;j = Γ(ξi) + Γijξ
j .

On the other hand, ∆ = yiVi is the Liouville vector field. It serves also as
a vertical covariant derivative. It is frequently invoked when dealing with
quantities which are positively homogeneous: for example, the fact that F is
positively-homogeneous of degree 1 can be expressed as ∆(F ) = F .

The Riemann curvature appears in other forms as follows:

Riljk = Rijk,l , Rij = Rijky
k = Riljky

kyl,

Rijk = Riljky
l = 1

3(Rij,k −Rik,j).
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The type (1, 1) V-tensor Rij is often called the Jacobi endomorphism, because
of its role in the Jacobi equation.

The Berwald curvature, which is the other part of the curvature of the
Berwald connection, is the type (1, 3) V-tensor whose components Bi

jkl are
given by

Bi
jkl =

∂Γ i
jk

∂yl
=

∂2Γij
∂yk∂yl

=
∂3Γi

∂yj∂yk∂yl
.

It can also be thought of as defining, for each choice of the indices i, j and k,
a vertical vector field, the Berwald curvature vector Bl

ijkVl.
The mean Berwald curvature, or E-curvature, is the trace of Bl

ijk:

Eij = Bk
kij =

∂Γkki
∂yj

=
∂Γkkj
∂yi

=
∂2Γkk
∂yi∂yj

.

I call ε = gijEij the Berwald scalar curvature.
The Berwald connection is not in general g-compatible: it is however al-

ways the case that ∇(gij) = 0.
A Landsberg space is a Finsler space for which gij;k = 0, that is, for

which the fundamental tensor is constant for the horizontal Berwald covariant
derivative. In a Landsberg space, therefore, the Berwald connection is one
degree more g-compatible than is generally the case. The tensor gij;k is often
called the Landsberg tensor: so a Landsberg space is a Finsler space whose
Landsberg tensor vanishes.

In a Landsberg space

Hk(gij)− Γ l
ikglj − Γ l

jkgil = 0,

which may be solved for the connection coefficient in the usual way to give

Γ i
jk = 1

2g
il
(
Hj(glk) + Hk(gjl)− Hl(gjk)

)
.

In general, of course, Γ i
jk will depend on y: differentiating with respect to yl

is irresistible, and leads to

2Bijkl = 2gimB
m
jkl = 2gim

∂Γmjk
∂yl

= Cikl;j + Cijl;k − Cjkl;i.

Now Bijkl is always symmetric in its last three indices, Cijk;l in its first three
indices; it follows from the relation above that in a Landsberg space both Bijkl
and Cijk;l must be symmetric in all indices.
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This is in fact one of several alternative equivalent ways of stating necessary
and sufficient tensorial conditions for a Finsler space to be Landsberg, which
are established in Appendix A:

(1) yiBijkl = 0;

(2) ∇(Cijk) = 0;

(3) Bijkl is symmetric;

(4) Cijk;l is symmetric.

I note also that the following useful relations hold in a Landsberg space:

(5) 2Bijkl = Cijk;l;

(6) 2Ekl = Ck;l;

(7) Rijkl +Rjikl +RmklCijm = 0.

(I remark in passing that the last of these says that a Landsberg space has
vanishing stretch tensor — see for example [31].) I have published these results
previously in [10], and discuss them here at greater length in Appendix A.

It so happens that

1
2g
il
(
Hj(glk) + Hk(gjl)− Hl(gjk)

)
is the expression for the connection coefficient for the Chern-Rund connection
(see [7]). That is to say, in a Landsberg space the Chern-Rund connection and
the Berwald connection coincide.

A Berwald space is a Finsler space whose Berwald connection is linear. A
necessary and sufficient condition for a Finsler space to be a Berwald space is
that Bi

jkl = 0. Evidently every Berwald space is a Landsberg space.
The Landsberg condition is most naturally thought of as a condition on

the derivatives of the metric, in other words on the Cartan tensor, the Berwald
condition as a condition on the Berwald curvature: but in fact in this context
the Cartan and Berwald tensors are effectively interchangeable, since Bijkl =
1
2Cijk;l in a Landsberg space. Indeed, Cijk;l = 0 is necessary and sufficient for
a Landsberg space to be a Berwald space.

Here are two versions of the Landsberg-Berwald conjecture: the first is
entirely in terms of the Berwald tensor, the second is in terms of the Cartan
tensor:

• In any Finsler space, if Bijkl is symmetric then it vanishes.

• In any Finsler space, if Cijk;l is symmetric then it vanishes.
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These formulations of the Landsberg-Berwald conjecture seem to me to
capture the difficulty of the Landsberg-Berwald problem: it is hard to see
why the mere symmetry of a certain type-(0, 4) V-tensor can be sufficient to
ensure it vanishes.

2. Results

If one is to prove a theorem of the form

Theorem. A regular Landsberg space which has property P is a Berwald
space.

then P had better be a possible property of Berwald spaces, and the obvious
place to start is with properties P that Berwald spaces obviously have.

2.1. Projectively-Berwald Landsberg spaces

Theorem 1. (1993; [4]) A Landsberg space which is projectively equiv-
alent to a Berwald space is a Berwald space.

A Finsler space is projectively equivalent to a Berwald space if and only if
its Douglas tensor vanishes. The Douglas tensor D is given by

Di
jkl = Bi

jkl −
1

n+ 1
(Ejk,ly

i + Eklδ
i
j + Ejlδ

i
k + Ejkδ

i
l).

So Theorem 1 says that a Landsberg space whose Douglas tensor vanishes is
a Berwald space. The first published proof of this result is to be found in [4];
for later ones see [5, 10, 39, 48].

2.2. Weakly-Berwald Landsberg spaces Recall that a Finsler
space is said to be weakly Berwald if its mean Berwald curvature Eij = Bk

kij

vanishes.

Theorem 2. (2018; [12, 27]) A weakly-Berwald Landsberg space is a Berwald
space.

As was pointed out in [27], this answered a challenge set by Shen in [41]. See
also the interesting discussion by Bácsó and Yoshikawa in [5]. These authors
take, in a way, an opposite point of view to the present one: they regard
Landsberg, Douglas, and weakly-Berwald spaces as alternative generalisations
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of Berwald spaces, and investigate the relations between them. But they were
not able to resolve the question of whether a Finsler space which is both
Landsberg and weakly Berwald is a Berwald space.

At the time Theorem 2 seemed like a breakthrough: but stronger versions,
described below, have since come to light.

In fact Eij = 0 if and only if the Berwald scalar curvature ε = gijEij =
0 [12, 17, 28], so (making even less of an initial concession in the Berwald
direction):

Theorem 3. (2018) A Landsberg space whose Berwald scalar curvature
vanishes is a Berwald space.

We may equally well express these results in terms of the Cartan tensor.
In a Landsberg space Eij = 1

2Ci;j , so a Landsberg space for which Ci;j = 0
is a Berwald space by Theorem 2, and a Landsberg space for which gijCi;j =
0 = Ci;i is a Berwald space by Theorem 3.

The function

c = gij
∂2(log det g)

∂yi∂yj
= gijCi,j

on T ◦M plays an important role in the next, new, result. If the restriction of
c to the indicatrix bundle I is bounded I shall say that the Finsler space is a
c-bounded space. If the space is geodesically complete, forward or backward,
I shall simply say that it is complete.

I say that a function f on T ◦M is geodesically invariant if Γ(f) = 0. A
geodesically invariant function f is constant along geodesics, or to be more
precise, if t 7→ γ(t) is a geodesic (a curve in M such that t 7→ (γ(t), γ̇(t)) is an
integral curve of Γ), then f(γ(t), γ̇(t)) is constant.

Theorem 4. A c-bounded complete Landsberg space whose Berwald
scalar curvature is geodesically invariant is a Berwald space. In particular,
a Landsberg space over a compact base whose Berwald scalar curvature is
geodesically invariant is a Berwald space.

Proof. In a Landsberg space ∇(Ci) = 0. So by Proposition 1 of Appendix
A we have

0 = (∇Ci),j = ∇(Ci,j) + Ci;j = ∇(Ci,j) + 2Eij ,

and therefore

ε = −1
2g
ij∇(Ci,j) = −1

2∇(gijCi,j) = −1
2Γ(c).
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Consider a geodesic γ(t), parametrized by arc length so that (γ(t), γ̇(t)) ∈ I,
with (γ(0), γ̇(0)) = (x, y) ∈ I. Set

c(t) = gij(γ(t), γ̇(t))Ci,j(γ(t), γ̇(t)) = c(γ(t), γ̇(t)).

Now ε(γ(t), γ̇(t)) is constant, say ε(γ(t), γ̇(t)) = ε0 = ε(x, y). But

ċ(t) = −2ε(γ(t), γ̇(t)) = −2ε0,

so c(t) = c(0) − 2tε0. By assumption c(t) is bounded. On the other hand,
γ(t) is defined for all positive (negative) t, so c(t) can be bounded only if
ε0 = 0 = ε(x, y). This holds for all (x, y) ∈ I, and then by homogeneity ε = 0
on T ◦M . So the space is a Berwald space by Theorem 3.

The indicatrix bundle of a Finsler space over a compact base is compact,
so such a space is c-bounded; moreover, a Finsler space over a compact base
is complete.

2.3. R-quadratic Landsberg spaces A Finsler space whose Riemann
curvature tensor is independent of y, that is, for which Rijkl,m = 0, is said to
be R-quadratic —a mildly confusing terminology to my mind, but one has
to remember that it is actually the Jacobi endomorphism that is quadratic
(in y). Evidently Berwald spaces are R-quadratic. On the other hand, in
an R-quadratic Landsberg space ∇(Bijkl) = 0, as I shall show below, and so
certainly Γ(ε) = 0. So one consequence of Theorem 4 is this:

Theorem 5. An R-quadratic c-bounded complete Landsberg space is a
Berwald space. In particular, an R-quadratic Landsberg space over a compact
base is a Berwald space.

This is a small improvement on a result I proved in [10]. In fact a forward-
complete R-quadratic Finsler space for which (in an appropriate sense) Cijk
is bounded is a Landsberg space [40], and a forward-complete R-quadratic
Finsler space for which both Cijk and Cijk,l are bounded is a Berwald space.
In particular, an R-quadratic Finsler space over a compact base is a Berwald
space —there is no need to invoke the Landsberg condition.

The proof of Theorem 4 is based on the proofs of the results above
in [10], which in turn were extensions of arguments in Shen’s book [39] and
paper [40].

It is clear that there must be a stronger result than Theorem 5 coming
from Theorem 4. To obtain it I start from the fact that

∇(Bm
ijk) = −ylRmjkl,i = −Rmk,ij +Rmikj +Rmjki,
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which follows from the Bianchi identity Bm
ijk;l −Bm

ijl;k = −Rmjkl,i. Thus

∇(Eij) = −Rkk,ij +Rkikj +Rkjki

and
Γ(ε) = gij∇(Bk

ijk) = −gij(Rkk,ij − 2Rkikj).

The terms on the right-hand side are usually named after Ricci by Finsler
geometers: see for example the discussion by B. Li and Shen in [26]. I find
Finsler Ricci terminology confused and confusing, so I shall avoid using it: but
let me list the variations. First of all, the scalar Rkk —the trace of the Jacobi
endomorphism— is often called the Ricci curvature. There are at least three
alternative suggestions for a Ricci curvature tensor:

• 1
2R

k
k,ij , proposed by Akbar-Zadeh in [3];

• Rkikj , directly following the model of Riemannian geometry;

• 1
2(Rkikj + Rkjki), introduced by B. Li and Shen in [26], on the grounds
that Rkikj need not be symmetric in Finsler geometry.

Each of these has an associated Ricci curvature scalar, obtained by contract-
ing it with gij . The Ricci curvature scalars corresponding to the second and
third variants evidently coincide, but the first is in general different: in fact
gij(Rkk,ij−2Rkikj) = 0 is just the condition for all three to be equal. This holds
in a Berwald space since Rijkl is independent of y, so that

Rkk,ij = (Rkpkqy
pyq),ij = Rkikj +Rkjki,

whence clearly gij(Rkk,ij − 2Rkikj) = 0.

Theorem 6. A c-bounded complete Landsberg space for which gij(Rkk,ij−
2Rkikj) = 0 is a Berwald space. In particular, a Landsberg space over a compact
base for which gij(Rkk,ij − 2Rkikj) = 0 is a Berwald space.

2.4. Landsberg spaces of scalar curvature

Theorem 7. (1975; [38]) A Landsberg space of non-zero scalar curvature
is a Berwald space.
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In fact such a space is a Riemannian space of constant curvature, as Numata
showed in [38]. Shibata [43] showed that the result still holds if the Landsberg
condition is relaxed to vanishing stretch tensor. Matsumoto discussed both
results in [31].

In the light of Theorem 4 it is of interest to observe that the flag curvature
of a Finsler space of scalar flag curvature is constant if and only if the Berwald
scalar curvature of the space is geodesically invariant. This result was origi-
nally due to Akbar-Zadeh [3]. I discuss it from a more modern perspective in
Appendix C. So the special case of Theorem 7 in which the scalar curvature
is constant actually follows from Theorem 4, albeit with extra provisos about
c-boundedness and completeness.

2.5. The S-function of a Landsberg space I remind the reader
that the S-function of a Finsler space is defined as S = Γ(τ), where

τ = log

(√
det g

ω

)
is the distortion relative to the Busemann form ω(dx)n, a volume form on M .

Theorem 8. (2019) A Landsberg space whose S-function vanishes is a
Berwald space.

This is part of the main result of [27]. Alternatively, it is known that
Eij = 0 if and only if ε = 0 if and only if S = 0 [17], so the result follows from
Theorem 2.

The condition S = 0 can be relaxed, at the expense of introducing the
χ-vector (see Appendix D).

Theorem 9. A c-bounded complete Landsberg space for which gijχi,j = 0
is a Berwald space. In particular a c-bounded complete Landsberg space whose
χ-vector vanishes is a Berwald space. A Landsberg space over a compact base,
for which gijχi,j = 0, is a Berwald space.

Proof. We have gijχi,j = Γ(ε) (Appendix D), and so Γ(ε) = 0. The result
follows from Theorem 4.

In fact this result is just Theorem 6 in disguise (see Appendix D).
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2.6. Volume forms and Landsberg spaces The next result concerns
volume forms on T ◦M . Such a form is said to be vertically invariant if its
Lie derivative by the vertical lift of every vector field on M vanishes, and
geodesically invariant if its Lie derivative by the geodesic spray vanishes. It
is quite hard for a volume form to be vertically invariant and geodesically
invariant at the same time.

Theorem 10. (2022; [14]) A Landsberg space which admits a geodesi-
cally-invariant vertically-invariant volume form is a Berwald space.

In fact if a Landsberg space admits a geodesically-invariant vertically-
invariant volume form then that volume form must be a constant multiple
of the Busemann volume form. It must also be a scalar multiple of the metric
volume form, by a scalar factor which is geodesically invariant. The scalar fac-
tor is closely related to the distortion, which consequently must be geodesically
invariant, which is to say that the S-function vanishes.

2.7. The averaged metric of a Landsberg space One test of whe-
ther a Finsler space is a Berwald space is this: a Finsler space is a Berwald
space if and only if there is a Riemannian metric a on M such that aij;k = 0
(where the aij are to be thought of as the components of the natural lift of a to
T ◦M , and of course are independent of y, and the aij;k are the components of
its horizontal Berwald covariant derivative as defined by the Finsler structure).
This result, in slightly different form, is due to Aikou [1]; see also [16, 45].

There is a by now familiar method of obtaining a Riemannian metric on
M from a Finsler structure, namely by averaging: see for example [2, 8, 10,
11, 33, 47, 49]. There are in fact several different ways of carrying out such a
construction, described in [11]. I shall here use what it is natural to call the
averaged metric, specified below.

Set
ḡij(x) =

1

νx

∫
Bx

gij(x, y)ωx,

where g is the fundamental tensor; ωx is the metric volume form on T ◦
xM

induced by g:

ωx =
√

det g(x, y)dy1 ∧ dy2 ∧ · · · ∧ dyn =
√

det g(x, y)(dy)n;

Bx = {y ∈ T ◦
xM : F (x, y) ≤ 1} is the unit ball in T ◦

xM determined by F ;
and νx =

∫
Bx
ωx. Then (see for example [10]) for each x ∈ M (ḡij(x)) is a
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positive-definite quadratic form, that is, an Euclidean metric, on TxM , and ḡ
is a Riemannian metric on M , the averaged metric of the Finsler space.

It is shown in [10] that in a Landsberg space

1

ν

∫
B
Hk(gij)ω =

∂ḡij
∂xk

.

But also, in a Landsberg space, since gij;k = 0

Hk(gij) = Γ l
ikglj + Γ l

jkgil.

Thus
∂ḡij
∂xk

=
1

ν

∫
B

(Γ l
ikglj + Γ l

jkgil)ω.

It follows that if Γkij is independent of y, so that the space is a Berwald space,
then

∂ḡij
∂xk

= Γ l
ikḡlj + Γ l

jkḡil.

This shows, first, that ḡij;k = 0, so we can take ḡ for a in Aikou’s result; and
furthermore that the Γkij are just the Christoffel symbols of the Levi-Civita
connection of ḡ.

On the other hand, if ḡij;k = 0 then

∂ḡij
∂xk

= Γ l
ikḡlj + Γ l

jkḡil,

whence
Γ i
jk = 1

2 ḡ
il

(
∂ḡlk
∂xj

+
∂ḡjl
∂xk
− ∂ḡij
∂xl

)
by the usual method, so Γ i

jk = Γ̄ i
jk and the space is a Berwald space. So we

have the following variant of Aikou’s result [1].

Theorem 11. A Landsberg space whose averaged metric satisfies
ḡij;k = 0 is a Berwald space.

There is a formula for the Christoffel symbols Γ̄ i
jk of the averaged metric in

terms of averages of the connection coefficients of the Berwald connection, for a
Landsberg space which is not necessarily Berwald, which is worth mentioning.
Set Γijk = gilΓ

l
jk, and denote by Γijk the average of Γijk:

Γijk =
1

ν

∫
B

Γijk ω.
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Then
∂ḡij
∂xk

= Γijk + Γjik,

from which it follows that
Γ̄ i
jk = ḡilΓljk.

(I gave a slightly different version of this formula in [10].) When the space
actually is a Berwald space we have

Γ̄ i
jk = ḡilΓljk = ḡilḡlmΓmjk = Γ i

jk

as before.

2.8. Fibre isometries in a Landsberg space The fundamental ten-
sor g of a Finsler space defines on each punctured tangent space T ◦

xM a Rieman-
nian metric gx, which I call the fibre metric at x. By a fibre isometry I mean
a diffeomorphism between two fibres T ◦

x1M and T ◦
x2M , which is positively-

homogeneous of degree 1, and is an isometry of the fibre metrics gx1 and gx2 .
The same terminology applies, mutatis mutandis, to any Minkowski space.
We may of course take x1 = x2: the set of (self) fibre isometries of a single
Minkowski space forms a group.

In [51], Xu and Matveev prove the following striking and significant results.

Theorem. (Xu and Matveev) Suppose F is a Minkowski norm on Rn
with n ≥ 3, which is invariant with respect to the standard block diagonal
action of the group SO(k) × SO(n − k) with 1 ≤ k ≤ n − 1. Let G0 be
the connected isometry group for the Hessian metric g = 1

2d
2F 2 on Rn\{0}.

Then, every element Φ ∈ G0 is linear. Moreover, if F is not Euclidean, then
G0 together with its action coincides with SO(k)× SO(n− k).

The “ Hessian metric g = 1
2d

2F 2 ” is of course the fibre metric, whose
components are

gij = 1
2

∂2F 2

∂yi∂yj
;

and G0 consists of the fibre isometries of the (single) punctured vector space
Rn◦ with that fibre metric.

Corollary. (Xu and Matveev) Let (M,F ) be a Finsler manifold of
dimension n ≥ 3. Assume that for every point p ∈ M , there exist linear
coordinates in TpM such that the restriction F |TpM is invariant with respect
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to the standard block diagonal action of the group SO(k) × SO(n − k) with
1 ≤ k ≤ n− 1. Then, if the Landsberg curvature vanishes, F is Berwald.

So the conclusion is:

Theorem 12. (2022) A Landsberg space whose fibre metric on each fibre
is invariant under the linear action of the group SO(k) × SO(n − k) in the
fibre, as described in the theorem of Xu and Matveev, is a Berwald space.

The reason that this result is so significant is that, as Xu and Matveev
point out, it covers the standard test cases of Finsler geometry: (α, β) spaces
and general (α, β) spaces are examples with k = 1, (α1, α2) spaces examples
with more general k.

On the other hand, we have no reason to suppose that the fibre metrics
of Landsberg spaces in general have the required pattern of isometries,
indeed no reason to suppose that the fibre metrics of a given Landsberg
space have any non-trivial fibre isometries at all. At the other end of the
spectrum we have

Theorem 13. A c-bounded complete Landsberg space whose fibre metric
at each point admits no non-trivial fibre isometries is a Berwald space.

The key point here is that the relationship Rijkl+Rjikl+RmklCijm = 0, the
vanishing of the stretch curvature, which holds in a Landsberg space, says that
the Riemann curvature vector field RkijVk is an infinitesimal isometry of the
fibre metric in every fibre, that is to say, it satisfies Killing’s equation, which
for a vector field ξ = ξkVk is

ξk
∂gij
∂yk

+
∂ξk

∂yi
gkj +

∂ξk

∂yj
gik = 0 = ξkCijk +

∂ξk

∂yi
gkj +

∂ξk

∂yj
gik.

So if there are no infinitesimal isometries we must have Rkij = 0, and the space
is a Berwald space by Theorem 5. This again is a slight improvement on a
result I gave in [10].

If the fibre metric of a Landsberg space admits a large group of (linear)
isometries, as specified in the theorem of Xu and Matveev, then the space
is a Berwald space; while if the fibre metric of a Landsberg space admits no
isometries, of any kind, then the space is a Berwald space.
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2.9. Isometries of Landsberg spaces We now move on to isometries
of Landsberg spaces themselves, as distinct from their fibre metrics. Recall
that an isometry of a Finsler space is a diffeomorphism ψ ofM onto itself which
preserves the Finsler function, in the sense that F (ψ(x), ψ∗xy) = F (x, y) [19].
The isometries of a Finsler space form a Lie group I. A Finsler space whose
isometries act transitively on M is said to be homogeneous.

It is conjectured by Xu and Deng in [50] that any homogeneous Landsberg
space must be a Berwald space. The paper is actually mainly concerned with
showing that any Landsberg (α1, α2) space is a Berwald space. From the
point of view of the theorem of Xu and Matveev, the significant feature of
(α1, α2) spaces is the symmetry of the fibre metric. This is indeed what leads
Xu and Deng to make their conjecture, as they report in [50]. But the key
issue, it seems to me, is not whether the Landsberg space is homogeneous,
but (supposing it to have isometries) the nature of the isotropy groups. As
I show in Appendix F, the isotropy group Ix at each x ∈ M acts by linear
transformations of TxM , and is a subgroup of SO(n).

Theorem 14. A Landsberg space on which a group I of isometries acts,
such that the isotropy group Ix at each x ∈ M contains one of the groups
identified in the theorem of Xu and Mateveev, is a Berwald space.

This does not require the isometry action to be transitive on M , of course.
However, it will in general be the case that if the dimension of the orbit of x is
m then the dimension of Ix is at most 1

2m(m− 1). To achieve the case k = 1
of the theorem of Xu and Matveev, for example, we must have m = n − 1
if the action is not transitive. This is indeed possible: spherically symmetric
Finsler spaces (see [54]) provide an obvious example.

2.10. Parallel transport in Landsberg spaces One way, to my
mind indeed the most geometrically appealing way, of defining a Landsberg
space is that it is a Finsler space for which parallel transport is an isometry
between the Riemannian metrics on tangent spaces. This well-known result
was due originally to Ichijyō [24].

We also have the following familiar result, which could be regarded as the
geometrical crux of the Landsberg-Berwald problem:

Theorem 15. (1976; [23]) A Landsberg space with the property that its
fibre isometries are all linear is a Berwald space.
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M. Li, in [27] for instance, calls two Minkowski spaces which are linked
by a linear isometry equivalent. So we may rephrase this result as follows: a
Landsberg space with the property that its fibres are all pairwise equivalent
as Minkowski spaces is a Berwald space.

I have included a discussion of isometries and equivalences of Minkowski
spaces at Appendix E. I discussed at length the correspondence between results
about parallel transport and their tensorial equivalents in [16].

Geometrically appealing Ichijyō’s theorem may be —but unfortunately
it does not appear to help very much when it comes to investigating the
Landsberg-Berwald problem.

One possible further line of attack might be to consider holonomy, that
is, parallel transport around closed curves. In the case of a Landsberg space
Ichijyō’s theorem shows that holonomy transformations are fibre isometries.
There is some pretty heavyweight discussion of holonomy of Finsler spaces in
the literature, such as [18, 25, 36]. Of more immediate interest is the interpre-
tation of the vanishing of the stretch curvature as showing that the Riemann
curvature vector field is an infinitesimal isometry of the fibre metric (Subsec-
tion 2.8): the curvature vector field is a generator of holonomy transformations
after all.

2.11. Landsberg metrizability In [35] Muzsnay discusses the Lands-
berg metrizability problem: under what conditions can a given spray be the
geodesic spray of a Finsler metric of Landsberg type. He notes that in a
Landsberg space the Finsler function F is invariant under horizontal vector
fields: Hi(F ) = 0 (this is of course true for any Finsler space). Moreover, the
Landsberg condition Blijky

l = 0 amounts to Bl
ijkVl(F ) = 0. Thus in order

to find a Landsberg Finsler function whose geodesic spray is the given spray
one must find a positive regular solution to these conditions, considered as a
system of first-order partial differential equations for the function F , which
also satisfies the requirements of homogeneity and strong convexity.

From our perspective the point of interest is this. Suppose given a Finsler
space with Finsler function F . Denote by L the smallest integrable distribution
on T ◦M containing the Hi and the vertical fields Bl

ijkVl, the Berwald curvature
vector fields. Then the space is a Landsberg space if and only if the integral
manifolds of L lie in the level sets of F .

Muzsnay devotes a section of his paper to the Landsberg-Berwald prob-
lem, in which he proposes essentially that investigating the properties of the
distribution L would be a ‘promising strategy’ for tackling the problem. Un-
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fortunately this proposal has not yet led to any significant progress so far as I
am aware.

However, the fact that a necessary and sufficient condition for a Finsler
space to be a Landsberg space is that the Berwald curvature vector fields
must be tangent to the indicatrix is worth recording.

2.12. Special classes of Landsberg spaces I shall now focus on
familiar special classes of Landsberg spaces.

2.12.1. Semi-C-reducible spaces A Finsler space is said to be semi-
C-reducible if

Cijk = K(Cihjk + Cjhik + Ckhij) + LCiCjCk

for some functions K and L. (In fact some care must be taken over the
domains of definition of K and L, a matter which is discussed in detail in
[13].) A semi-C-reducible space for which L = 0 is said to be C-reducible.

Theorem 16. (1979; [32]) A Landsberg semi-C-reducible space is a
Berwald space.

For more recent discussions of this result see [13, 22].
This theorem of course subsumes the corresponding result for C-reducible

spaces, proved by Matsumoto in 1972 [29].

2.12.2. (α, β) spaces

Theorem 17. (2009) A Landsberg (α, β) space is a Berwald space.

There are by now several different proofs of this result:

• by direct calculation [42]: the necessary and sufficient condition for an
(α, β) space to be Landsberg is that the 1-form b = bidx

i is parallel with
respect to the Riemannian metric a = aijdx

i ⊗ dxj , and this is also the
condition for the space to be Berwald;

• if the 1-form b of an (α, β) space is parallel then the S-function vanishes
[9, 15], so Theorem 8 applies;

• (α, β) spaces have the SO(n−1) fibre-symmetry property of the theorem
of Xu and Matveev, as was pointed out in [53] (see also the discussion
in the Postscript to my paper [13]), so Theorem 12 applies;

• (α, β) spaces are semi-C-reducible [13, 22, 30], so Theorem 16 applies.
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2.12.3. General (α, β) spaces

Theorem 18. (2019) A Landsberg general (α, β) space is a Berwald
space.

In fact there are two kinds of general (α, β) spaces: fairly general and quite
general. This result for fairly general (α, β) spaces is proved by direct calcu-
lation by Zhou, Wang and B. Li in [55]. The result for quite general (α, β)
spaces is proved by Feng, Han and M. Li in [21], using the methods established
by M. Li in [27]. Both versions follow from Theorem 12 (the theorem of Xu
and Matveev).

2.12.4. (α1, α2) spaces

Theorem 19. (2014) A Landsberg (α1, α2) space is a Berwald space.

Xu and Deng gave the first proof, by calculation, in [50] (first posted on the
arXiv in 2014). In fact they prove two theorems:

1. The S-curvature of any Landsberg (α1, α2) metric vanishes identically.

2. Any Landsberg (α1, α2) space is a Berwald space.

They go on to say: ‘We remark here that logically Theorem (1) is a corol-
lary of Theorem (2), since any Berwald space must have vanising S-curvature.
However, our proof of the second theorem relies heavily on the techniques de-
veloped in the proof of the first one.’ From the present perspective we see
that in fact the main result follows from the vanishing of the S-function by
Theorem 8.

Theorem 19 also follows directly from Theorem 12.

2.12.5. Spherically-symmetric Finsler spaces

Theorem 20. (2014) A Landsberg spherically-symmetric Finsler space is
a Berwald space.

This is proved by direct calculation by Mo and Zhou in [34]. It also follows
from Theorem 14.

According to Elgendi [20] such a space is in fact Riemannian.
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3. Conclusion

I have to confess that I approached my task in writing this paper in the
belief that the Landsberg-Berwald conjecture is true. In the course of writing
it my confidence has been undermined somewhat. The problem, of course, is
that the positive evidence, while quite extensive, is not cumulative. I am no
clearer about how one could prove the pure Landsberg-Berwald conjecture at
the end of the process than I was at the beginning.

A. More background

In this appendix I give further tensorial results and discuss the various ways
of reformulating the Landsberg conditions. I reiterate that I always assume
regularity, and that n ≥ 3.

The relationships between second covariant derivatives are governed by the
Ricci identities: for example

(vertical) ξi,j,k − ξi,k,j = 0 ,

(mixed) ξi;j,k − ξi,k;j = Bi
jklξ

l ,

(horizontal) ξi;j;k − ξi;k;j = −Riljkξl +Rljkξ
i
,l,

the final term coming from the bracket of horizontal vector fields. Inciden-
tally, the mixed Ricci identity for covariant derivatives applied to a function
f on T ◦M is just f;i,j − f,j;i = 0, while the horizontal Ricci identity in such
circumstances gives back the original definition of Rkij .

The following tensor result is often useful.

Proposition 1. For a covariant tensor Ti1i2...ip ,

(∇(Ti1i2...ip)),j = ∇(Ti1i2...ip,j) + Ti1i2...ip;j .

Proof. I give the proof for a covector field πi: the proof of the general case
is similar, and only notationally more complicated.

I have to prove that

(∇(πi)),j = ∇(πi,j) + πi;j .

I use the mixed Ricci identity for Berwald covariant differentiation, which for
a covector πk is

πi,j;k − πi;k,j = Bl
ijkπl.
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Since ykBl
ijk = 0, on contracting with yk we get

∇(πi,j) = ykπi;k,j = (ykπi;k),j − πi;j = (∇(πi)),j − πi;j

as claimed.

It even holds that for a function φ,

(Γ(φ)),i = ∇(φ,i) + φ;i,

though the proof is rather different in this case.
One should bear it in mind that yi;j = 0 and that in general ∇(gij) = 0.
I now turn to the Landsberg conditions.
First of all, recall that it is a property of the horizontal distribution in

any Finsler space that L is horizontally constant: Hi(L) = 0. Taking two
successive vertical derivatives of this gives (with Blijk = glmB

m
jkl, as before)

gjk;i = ylBlijk.

Using Proposition 1, first with πi = yi = gijy
j , then with Tij = gij , we obtain,

in any Finsler space,

(1) yi;j = 0;

(2) gij;k = −∇(gij,k) = −∇(Cijk).

Moreover, from the mixed Ricci identity, in any Finsler space

Cijk;l = gij,k;l = gij;l,k +Bijkl +Bjikl.

Notice that

Bijkl +Bjikl = Cijk;l − gij;l,k,
Bjkil +Bkjil = Cijk;l − gjk;l,i,

Bkijl +Bikjl = Cijk;l − gki;l,j .

Adding the first and last and subtracting the second, and taking account of
symmetries, we find that

2Bijkl = Cijk;l − gij;l,k + gjk;l,i − gki;l,j .

Finally, from the Ricci identity for horizontal derivatives

gij;k;l − gij;l;k = Rijkl +Rjikl +Rmklgij,m.

The assertions about a Landsberg space made at the start of the paper follow
essentially by setting gij;k = 0. Firstly, in a Landsberg space
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(1) ylBlijk = 0;

(2) ∇(Cijk) = 0;

(3) 2Bijkl = Cijk;l;

(4) Bijkl is symmetric;

(5) Cijk;l is symmetric;

(6) Rijkl +Rjikl +RmklCijm = 0.
Conversely, if ylBlijk = 0 or ∇(Cijk) = 0 holds in a Finsler space then gjk;i = 0
and the space is a Landsberg space. If Bijkl is symmetric then ylBlijk =
ylBijkl = 0 and the space is a Landsberg space. If Cijk;l is symmetric then
∇(Cijk) = ylCijk;l = (ylCijl);k = 0 and the space is a Landsberg space. So
conditions (1), (2), (4) and (5) above are necessary and sufficient for a Finsler
space to be a Landsberg space.

B. A result about homogeneous functions

This appendix is concerned mainly with Minkowski spaces. A Minkowski
space is a punctured vector space, which I take to be Rn◦ with its standard co-
ordinates, equipped with a Minkowski norm F and corresponding fundamental
tensor gij .

Proposition 2. A function κ on Rn◦ which is positively-homogeneous of
degree 0 satisfies

gij
∂2κ

∂yi∂yj
= 0

if and only if it is constant.

Proof. Let V be the vector field on Rn◦ given by

V =

(
(det g)gijκ

∂κ

∂yj

)
∂

∂yi
.

Then V is tangent to the level hypersurfaces of F :

V i ∂F

∂yi
= (det g)κgij

∂κ

∂yj
∂F

∂yi
=

(
(det g)κ

F

)
yi
∂κ

∂yi
= 0

since κ is homogeneous of degree 0. So for any volume form Ω on Rn◦ , for any
a, b with 0 < a < b,∫

Bba

(divΩV )Ω =

∫
Bba

d(iV Ω) = 0, where Bb
a = {y : a ≤ F (y) ≤ b},
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by the Stokes-Cartan Theorem, since the (n − 1)-form iV Ω vanishes when
pulled back to any level hypersurface of F (or as one might say, the flux of
V over the boundary {F (y) = a} ∪ {F (y) = b} of Bb

a vanishes). Now with
Ω = (dy)n,

divΩV =
∂V i

∂yi
=

∂

∂yi
((det g)gij)κ

∂κ

∂yj
+ (det g)gij

(
∂κ

∂yi
∂κ

∂yj
+ κ

∂2κ

∂yi∂yj

)
= (det g)(Cig

ij − Cj)κ ∂κ
∂yj

+ (det g)gij
∂κ

∂yi
∂κ

∂yj

= (det g)gij
∂κ

∂yi
∂κ

∂yj
.

Thus ∫
Bba

(
(det g)gij

∂κ

∂yi
∂κ

∂yj

)
(dy)n = 0.

Evidently

(det g)gij
∂κ

∂yi
∂κ

∂yj
≥ 0.

If there were any point y ∈ Rn◦ at which this function took a positive value
then by choosing a and b so that y ∈ Bb

a we would ensure that∫
Bba

(
(det g)gij

∂κ

∂yi
∂κ

∂yj

)
(dy)n > 0

since the argument is never negative and would be positive on some open set
contained in Bb

a. This would contradict the fact that every such integral must
vanish. It follows that

(det g)gij
∂κ

∂yi
∂κ

∂yj
= 0,

and therefore (since det g cannot vanish)

∂κ

∂yi
= 0.

Consider, for example, the function

c = gij
∂2(log det g)

∂yi∂yj

on T ◦M , which plays an important role in Theorem 4. Clearly log det g is
positively-homogeneous of degree 0. So if c vanishes on any fibre T ◦

xM then
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log det gx is constant (that is, independent of y), and so gx is constant by De-
icke’s Theorem. It follows that if c = 0 on T ◦M then the space is Riemannian.
It is hard to resist the temptation to think of c as measuring by how much the
Finsler space diverges from being a Riemannian space.

In [12] I proved, by similar methods, a result analogous to the proposition
above for functions which are positively-homogeneous of degree 1:

Proposition 3. A function κ on Rn◦ which is positively-homogeneous of
degree 1 satisfies

gij
∂2κ

∂yi∂yj
= 0

if and only if it is linear.

C. Scalar flag curvature

A Finsler space is of scalar flag curvature κ if

Rij = κ(F 2δij − yiyj), yj = gjky
k = F

∂F

∂yj
,

equivalently if Rij = κF 2hij where Rij = gikR
k
j , and hij is the angular metric.

Here in general κ is a function on T ◦M (a function of both x and y), which is
positively-homogeneous of degree 0. In a Finsler space Rij is symmetric (see
for example [39]).

The Finslerian version of Schur’s Lemma states that for n ≥ 3, if κ is
constant on the fibres of T ◦M → M , that is, independent of y, then it must
be constant, so that the space is a space of constant curvature.

The key formula in Numata’s proof, in [38], that a Landsberg space of
non-zero scalar curvature is a Berwald space (indeed, a Riemannian space of
constant curvature) is

3∇(Bijkl) + hijKkl + hikKjl + hilKjk

− 2yi(hklκ,j + hjlκ,k + hjkκ,l + 3κCjkl) = 0,

which holds for any space of scalar flag curvature κ, where

Kjk = F 2κ,jk + yjκ,k + ykκ,j .

This formula is derived from one of the Bianchi identities for the curvatures
of the Berwald connection, namely Bm

ijk;l − Bm
ijl;k = −Rmjkl,i. In a Landsberg
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space yiBijkl = yiB
i
jkl = 0, and therefore

hklκ,j + hjlκ,k + hjkκ,l + 3κCjkl = 0.

Then provided κ 6= 0 the space is C-reducible:

Cjkl =
1

n+ 1
(hklCj + hjlCk + hjkCl),

and is therefore a Berwald space (Theorem 16, [29]). It then follows from the
original formula that

hijKkl + hikKjl + hilKjk = 0,

whence

gklKkl = 0 = gkl
∂2κ

∂yk∂yl
,

since κ is homogeneous of degree 0. So κ is fibrewise constant by Proposition
2, and constant by the Schur Lemma for Finsler spaces. Moreover Cjkl = 0
and the space is Riemannian.

It follows from the general formula for ∇(Bijkl) for a space of scalar cur-
vature that

Γ(ε) = gijgkl∇(Bijkl) = −1
3(n+ 1)gklKkl.

The following result was originally due to Akbar-Zadeh [3]. A more modern
treatment may be found in [37].

Proposition 4. A necessary and sufficient condition for a Finsler space
of scalar flag curvature to be of constant curvature is that its Berwald scalar
curvature is geodesically invariant.

Proof. Evidently if κ is constant then Γ(ε) = 0. Conversely, if Γ(ε) = 0
then gklKkl = 0, whence κ is constant, as before.

Proposition 2 here replaces a somewhat more complicated argument in [37]
which appeals to the Hopf maximum principle.

D. χ-vector

The χ-(co)vector is defined (see [26]) by

χi = Γ

(
∂S

∂yi

)
− ∂S

∂xi
= ∇(S,i)− S;i
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where S is the S-function. Then by Proposition 1

χi,j = (∇(S,i)− S;i),j = ∇(S,ij) + S,i;j − S;i,j .

Now for any function f on T ◦M , f,i;j = f;j,i (the mixed Ricci identity for
functions), and so

χi,j + χj,i = ∇(S,ij) + S,i;j − S;i,j +∇(S,ji) + S,j;i − S;j,i

= 2∇(S,ij) = 2∇(Eij).

Thus ([26, Lemma 3.2])
gijχi,j = Γ(ε).

It is also shown in [26, Lemma 3.2] that

χi,j + χj,i = Rkikj +Rkjki −Rkk,ij ,

which prompts the remark in Subsection 2.5 that Theorem 9 “ is just Theorem
6 in disguise ”.

E. Isometries of Minkowski spaces

This appendix again is concerned entirely with Minkowski spaces.
Suppose we have two Minkowski norms F and F̂ on Rn◦ . By an isometry

of the corresponding Minkowski spaces I mean a diffeomorphism φ : Rn◦ → Rn◦
which is an isometry of the Riemannian metrics g and ĝ derived from the
Minkowski norms F and F̂ . I shall also require, as part of the definition,
that φ is positively-homogeneous of degree 1, and orientation preserving. I
do not assume ab initio that φ is linear: indeed, of particular interest are
conditions for an isometry to be linear. Recall that a function f on Rn◦ which
is positively-homogeneous of degree 1 is linear if and only if

gij
∂2f

∂yi∂yj
= 0,

by Proposition 3.
The condition for φ to be an isometry is

(ĝkl ◦ φ)
∂φk

∂yi
∂φl

∂yj
= gij .
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It follows, by differentiation, that

∂gij
∂yk
−
(
∂ĝpq
∂yr

◦ φ
)
∂φp

∂yi
∂φq

∂yj
∂φr

∂yk
= (ĝpq ◦ φ)

(
∂2φp

∂yi∂yk
∂φq

∂yj
+
∂φp

∂yi
∂2φq

∂yj∂yk

)
.

The left-hand side is completely symmetric in i, j and k, so the right-hand
side must be symmetric also. So we must have

(ĝpq ◦ φ)
∂2φp

∂yi∂yk
∂φq

∂yj
= (ĝpq ◦ φ)

∂2φp

∂yi∂yj
∂φq

∂yk
.

By homogeneity it follows that

(ĝpq ◦ φ)
∂2φp

∂yi∂yj
φq = 0;

indeed the two conditions are easily seen to be equivalent. This is an additional
property that a homogeneous isometry of metrics arising from Minkowski
norms must have, as a consequence of the special nature of the metrics.

So

∂gij
∂yk

=

(
∂ĝpq
∂yr

◦ φ
)
∂φp

∂yi
∂φq

∂yj
∂φr

∂yk
+ 2(ĝpq ◦ φ)

∂2φp

∂yi∂yj
∂φq

∂yk
.

I write
∂gij
∂yk

= Cijk, gij
∂gij
∂yk

= gijCijk = Ck =
∂ log det g

∂yk

in the usual way. Thus

d(log det g) = gij
∂gij
∂yk

dyk = Ckdy
k,

where d here denotes the exterior derivative on Rn◦ , that is, with respect to
the yi alone, so that

d(log det g) = φ∗d(log det ĝ) + 2gij
∂2φp

∂yi∂yj
φ∗(ĝpqdy

q).

It follows that an isometry φ is linear if and only if d(log det g) = φ∗d(log det ĝ).
Clearly if φ is linear then d(log det g) = φ∗d(log det ĝ). Conversely, if
d(log det g) = φ∗d(log det ĝ) then

gij
∂2φp

∂yi∂yj
φ∗(ĝpqdy

q) = 0.
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But the 1-forms gijdyj , i = 1, 2, . . . , n, are linearly independent, so the 1-forms
φ∗(ĝpgdy

q), p = 1, 2, . . . , n, are linearly independent, so

gij
∂2φp

∂yi∂yj
= 0,

and φ is linear.

Proposition 5. An isometry between two Minkowski spaces of the same
dimension is linear if and only if

(1) (Ĉl ◦ φ)
∂φl

∂yk
= Ck;

equivalently,

(2) its Jacobian determinant is constant.

Proof. We know that φ is linear if and only if d(log det g) = φ∗d(log det ĝ),
that is,

(Ĉl ◦ φ)
∂φl

∂yk
= Ck.

But from the definition of an isometry, taking determinants

det g = (φ∗ det ĝ)J2,

where J = det

(
∂φi

∂yj

)
is the Jacobian determinant of φ. Thus

d(log det g) = φ∗d(log det ĝ) + 2d(log J),

and so d(log det g) = φ∗d(log det ĝ) if and only if dJ = 0, that is, if and only
if J is constant.

I emphasise that I work throughout with linear coordinates on Rn◦ : if J
is constant with respect to one linear coordinate system, it is constant with
respect to all.

Proposition 5 (1) is M. Li’s equivalence theorem of Minkowski spaces [27].
The argument above is based on the discussion of Li’s result at the end of my
paper [12].

The consequence of Proposition 5 (2) for parallel translation in Landsberg
spaces is Theorem 2: the condition for the Jacobian determinant of parallel
translation between fibres to be independent of y is just Γkki,j = 0 = Eij .
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An interesting application of Proposition 5 (2) is afforded by the Legendre
transformation ([7, Section 14.8], [51]). A Minkowski norm F on Rn◦ induces
another, its dual F ∗, on Rn∗◦ , such that F ∗(yi) = F (yi). The Legendre trans-
formation is the map φ : Rn◦ → Rn∗◦ by φi(y) = yi = gij(y)yj . It is clearly an
isometry between F and F ∗. We have

∂φi
∂yj

= gij ,

from which it is clear that φ is linear if and only if gij is constant. But the
proposition says that in this case if det g is constant then φ is linear, which
indeed is so by Deicke’s Theorem.

Notice that an isometry (linear or not) preserves norms. The condition for
φ to be an isometry is

(ĝkl ◦ φ)
∂φk

∂yi
∂φl

∂yj
= gij .

Moreover by the homogeneity assumption

yj
∂φi

∂yj
= φi.

Then

(ĝkl ◦ φ)
∂φk

∂yi
∂φl

∂yj
yiyj = gijy

iyj = 2F 2

= (ĝkl ◦ φ)φkφl = 2(F̂ ◦ φ)2.

Proposition 5 (2) specializes of course to (self) isometries of a single
Minkowski space: one might call this Deicke’s Theorem for isometries.

There is an analogous result for infinitesimal isometries, or Killing fields, of
a single Minkowski space, which is actually somewhat simpler to prove. The
vector field

ξ = ξi
∂

∂yi

on Rn◦ is an infinitesimal isometry if and only if it satisfies Killing’s equation

ξk
∂gij
∂yk

+
∂ξk

∂yi
gkj +

∂ξk

∂yj
gik = 0;

I assume that ξ is positively homogeneous of degree 0, that is, ξi is positively
homogeneous of degree 1. Then ξ is linear, so that ξi = Aijy

j for constants
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Aij , if and only if
∂ξk

∂yk
= tr

(
∂ξi

∂yj

)
is constant.

The proof goes as follows. A similar analysis of the isometry condition to that
carried out in the preliminary steps to Proposition 5 leads to the result that
ξi must satisfy

gjl
∂2ξl

∂yi∂yk
= gkl

∂2ξl

∂yi∂yj
.

Thus

gijgjl
∂2ξl

∂yi∂yk
=

∂

∂yk

(
∂ξl

∂yl

)
= gij

∂2ξl

∂yi∂yj
gkl.

Clearly if ξ is linear then the left-hand side vanishes. On the other hand, if
the left-hand side vanishes then

gij
∂2ξl

∂yi∂yj
= 0;

but then (since it is positively homogeneous of degree 1) ξl must be linear.
I now show that a linear isometry of a Minkowski space can be represented

as an orthogonal transformation relative to certain linear coordinates. For
this purpose I introduce an auxiliary Euclidean metric on Rn◦ , effectively the
averaged metric from Subsection 2.7. I denote by ω the metric volume form
on Rn◦ induced by the metric gij :

ω =
√

det g(y)dy1 ∧ dy2 ∧ · · · ∧ dyn =
√

det g(y)(dy)n.

Set
ḡij =

1

ν

∫
B
gij(y)ω

where B = {y ∈ Rn◦ : F (y) ≤ 1} is the unit ball determined by F , and
ν =

∫
B ω is its volume. Then (ḡij) is a positive-definite quadratic form, that

is, an Euclidean metric on Rn◦ . It is just the averaged metric of the Minkowski
space.

For any linear isometry φ : Rn → Rn, say φi(y) = Aijy
j , we have φ(B) = B,

and therefore ∫
φ(B)

gij ω =

∫
B
gij ω =

∫
B
φ∗(gij ω)

=

∫
B
AkiA

l
jgkl ω = AkiA

l
j

∫
B
gkl ω
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and ∫
φ(B)

ω =

∫
B
φ∗(ω) =

∫
B
ω,

so
AkiA

l
j ḡkl = ḡij ;

that is, the linear map A is orthogonal with respect to ḡ. In particular, we
may choose linear coordinates on Rn such that ḡ is the standard Euclidean
metric, and with respect to such coordinates φ is represented by an orthogonal
matrix, that is, an element of SO(n). The value of the (constant) Jacobian
determinant of a linear self isometry of a Minkowski space is 1.

F. Isometries of Finsler spaces

Any differentiable map ψ : M →M of a manifoldM to itself lifts naturally
to a differentiable map ψ̃ : TM → TM of the tangent bundle to itself, its
complete lift, where

ψ̃(x, y) = (ψ(x), ψ∗xy), with (ψ∗xy)i =
∂ψi

∂xj
(x)yj ;

note that ψ̃ acts linearly in the fibres.
According to Deng and Hou, [19], an isometry of a Finsler space is a dif-

feomorphism ψ of M onto itself for which ψ̃ preserves the Finsler function:

ψ̃∗F = F, or F (ψ(x), ψ∗xy) = F (x, y).

For any Finsler space the group of isometries I is a Lie transformation group
of M , and for each x ∈M the isotropy subgroup Ix is compact.

I shall discuss isometries of Finsler spaces, not necessarily Landsberg
spaces, in this final section, as applications of some of the ideas introduced ear-
lier; my main purpose is to establish a result that was needed for Theorem 14.
I shall assume that M is orientable, and deal only with orientation-preserving
isometries ψ. I use again the averaged metric to give a Riemannian metric
ḡ on M :

ḡij(x) =
1

νx

∫
Bx

gij(x, y)ωx

where Bx = {y ∈ T ◦
xM : F (x, y) ≤ 1} and νx =

∫
Bx
ωx.

For each x ∈M , ψ∗x : TxM → Tψ(x)M is an isomorphism of vector spaces,
and its restriction to T ◦

xM is an isometric map between the fibre metrics gx
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and gψ(x). In fact

gkl(ψ(x), ψ∗xy)
∂ψk

∂xi
(x)

∂ψl

∂xj
(x) = gij(x, y).

In particular, if ψ ∈ Ix then the restriction of ψ∗x to T ◦
xM is an isometry

of gx.
A Finslerian isometry ψ maps unit balls to unit balls: Bψ(x) =

ψ∗x(Bx), which is to say, z ∈ Bψ(x) ⊂ Tψ(x)M if and only z = ψ∗xy where
y ∈ Bx ⊂ TxM .

I now show that if ψ is an isometry of the Finsler space then it is an
isometry of the averaged metric ḡ: that is to say

(ḡkl ◦ ψ)
∂ψk

∂xl
∂ψl

∂xj
= ḡij .

(A similar result, obtained however using the so-called Binet-Legendre metric
on M rather than the averaged metric, is to be found in [33].) Firstly, since
ψ∗x is a fibre isometry we have

νψ(x) =

∫
Bψ(x)

ωψ(x) =

∫
ψ∗x(Bx)

ωψ(x) =

∫
Bx

(ψ∗x)∗(ωψ(x)) =

∫
Bx

ωx = νx.

Furthermore

ḡkl(ψ(x))
∂ψk

∂xl
(x)

∂ψl

∂xj
(x) =

(∫
Bψ(x)

gkl(ψ(x), z)ωψ(x)

)
∂ψk

∂xl
(x)

∂ψl

∂xj
(x)

=

∫
Bψ(x)

gkl(ψ(x), z)
∂ψk

∂xl
(x)

∂ψl

∂xj
(x)ωψ(x)

=

∫
ψ∗x(Bx)

gkl(ψ(x), z)
∂ψk

∂xl
(x)

∂ψl

∂xj
(x)ωψ(x)

=

∫
Bx

gij(x, y)ωx = ḡij(x),

using the fact that z ∈ Bψ(x) if and only z = ψ∗xy where y ∈ Bx.
The group I of orientation-preserving isometries of a Finsler space with

Finsler function F is therefore contained in the Lie group of isometries of the
Riemannian space with metric ḡ.
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Consider the isotropy group Ix of a point x ∈M , that is, the subgroup of
I consisting of those ψ ∈ I such that ψ(x) = x. An element of it defines a
linear isomorphism Ψx of T ◦

xM :

Ψx(y)i =
∂ψi

∂xj
(x)yj ,

which is an isometry of gx.
Now Ψx is also an isometry of ḡx. We may choose coordinates (xi) on M

which are orthonormal with respect to ḡx, that is, such that ḡkl(x) = δkl. With
respect to such coordinates, and the corresponding natural fibre coordinates,
the matrix (∂ψi/∂xj(x)) is orthogonal: in other words, Ix is a subgroup of
SO(n). This result is assumed in the statement of Theorem 14.

The elements of Ix leave the Minkowski norm Fx invariant, and they map
the Minkowskian unit sphere to itself, as well as mapping the Euclidean unit
sphere to itself. Moreover, det g(x) is invariant under the action of Ix. If Ix
acts transitively, on either unit sphere and therefore on both of them, then
det g(x) is constant over T ◦

xM , and so by Deicke’s Theorem gij(x) itself is
constant over T ◦

xM . Thus if Ix acts transitively on the unit spheres then the
Minkowski space is actually Euclidean, and g(x) and ḡ(x) coincide. If Ix acts
transitively on unit spheres for all x ∈M then g = ḡ, and the Finsler space is
actually Riemannian. This extends a result of Wang of 1947, which is discussed
in Chapter VIII §4 of Yano’s classic text on the Lie derivative [52].
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