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Abstract : For any Boolean space X and a discrete almost distributive lattice D, it is proved that the
set C(X,D) of all continuous mappings of X into D, when D is equipped with the discrete topology,
is an almost Boolean algebra under pointwise operations. Conversely, it is proved that any almost
Boolean algebra is a homomorphic image of C(X,D) for a suitable Boolean space X and a discrete
almost distributive lattice D.
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1. Introduction

After the notion of Boolean algebra came to light, several generalizations
have come up in which the lattice theoretic generalizations like distributive
lattices, implicative lattices, post algebras, pseudo-complemented distributive
lattices, stone lattices, relatively complemented lattices, etc. The notion of an
almost distributive lattice (ADL) was introduced by Swamy and Rao [5]. An
ADL (A,∧,∨, 0) is an algebra of type (2, 2, 0) which satisfies all the axioms
of a distributive lattice with 0, except the commutativity of the operations ∧,
∨ and the right distributivity of ∨ over ∧. In fact, these three conditions are
equivalent to each other in any ADL. The concept of an almost Boolean algebra
(ABA) is introduced by Swamy and Rao [5] which is an ADL (A,∧,∨, 0) with
a maximal element satisfying the condition that, for any x ∈ A, there exists
y ∈ A such that x ∧ y = 0 and x ∨ y is maximal.

It is well known that, every Boolean algebra is isomorphic to an algebra
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of the form C(X, 2). In this paper, we prove that an ADL A with a maximal
element is an ABA if and only if it is homomorphic image of C(X,D), the
ADL of continuous mappings of a Boolean space X into a discrete ADL D,
where D is equipped with the discrete topology.

2. Preliminaries

In this section, we collect certain definitions and properties of ADLs from
[1, 2, 3, 4, 5] that are required in the main text of this paper.

Definition 2.1. An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an
almost distributive lattice (abbreviated as ADL) if it satisfies the following
identities:

(1) 0 ∧ a = 0;

(2) a ∨ 0 = a;

(3) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c);
(4) (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c);
(5) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c);
(6) (a ∨ b) ∧ b = b.

Example 2.2. Every non-empty set A can be regarded as an ADL as
follows. Let a0 ∈ X. Define the binary operations ∨,∧ on X by

a ∨ b =

{
a if a 6= a0,

b if a = a0;
a ∧ b =

{
b if a 6= a0,

a0 if a = a0.

Then (A,∨,∧, a0) is an ADL (where a0 is the zero element).

Definition 2.3. Let (A,∧,∨, 0) be an ADL. For any a and b ∈ A, define

a ≤ b if a = a ∧ b (equivalently a ∨ b = b).

Then ≤ is a partial order on A.

Theorem 2.4. If (A,∨,∧, 0) is an ADL, for any a, b, c ∈ A, we have the
following:

(1) a ∨ b = a⇔ a ∧ b = b;
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(2) a ∨ b = b⇔ a ∧ b = a;

(3) ∧ is associative in A;

(4) a ∧ b ∧ c = b ∧ a ∧ c;
(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c;
(6) a ∧ b = 0⇔ b ∧ a = 0;

(7) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c);
(8) a ∧ (a ∨ b) = a, (a ∧ b) ∨ b = b and a ∨ (b ∧ a) = a;

(9) a ≤ a ∨ b and a ∧ b ≤ b;
(10) a ∧ a = a and a ∨ a = a;

(11) 0 ∨ a = a and a ∧ 0 = 0;

(12) If a ≤ c, b ≤ c then a ∧ b = b ∧ a and a ∨ b = b ∨ a;
(13) a ∨ b = b ∨ a whenever a ∧ b = 0;

(14) a ∨ b = (a ∨ b) ∨ a.

Definition 2.5. A homomorphism between ADL (A,∨,∧, 0) into an ADL
A′, we mean, a mapping f : A→ A′ satisfying the following:

(1) f(a ∨ b) = f(a) ∨ f(b);
(2) f(a ∧ b) = f(a) ∧ f(b);
(3) f(0) = 0.

A nonempty subset I of an ADL A is called an ideal of A if x ∨ y ∈ I and
x ∧ a ∈ I whenever x, y ∈ I and a ∈ A. For any X ⊆ A, the ideal generated
by X is

(X] =

{( n∨
i=1

ai

)
∧ x : ai ∈ X, x ∈ A, n ∈ Z+

}
.

If X = {x}, then we write (x] for (X] and this is called a principal ideal
generated by x. The set of all principal ideals of A is a distributive lattice.
A proper ideal P of A is called prime if for any x, y ∈ A, x ∧ y ∈ P then
x ∈ P or y ∈ P . For any x, y ∈ A with x ≤ y, [x, y] = {t ∈ A : x ≤ t ≤ y}
is a bounded distributive lattice with respect to the operations induced from
those on A. An element m is maximal in (A,≤) if and only if m ∧ x = x
for all x ∈ A. An ADL A is said to be discrete if every nonzero element
is maximal. The ADL given in the example 2.2 is a discrete ADL. For any
X ⊆ A, X∗ =

{
a ∈ A : x ∧ a = 0, ∀x ∈ X

}
is an ideal of A and X∗ is called

the annihilator of X.
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Lemma 2.6. Let A be an ADL and I is an ideal of A. Then, for any
a, b ∈ A, we have the following:

(1) (a] =
{
a ∧ x : x ∈ A

}
;

(2) a ∈ (b]⇔ b ∧ a = a;

(3) a ∧ b ∈ I ⇔ b ∧ a ∈ I;
(4) (a] ∩ (b] = (a ∧ b] = (b ∧ a];
(5) (a] ∨ (b] = (a ∨ b] = (b ∨ a];
(6) (a] = A⇐⇒ a is maximal.

Lemma 2.7. Let A be an ADL and x, y ∈ A. Then the following state-
ments hold:

(1) {x ∨ y}∗ = {x}∗ ∩ {y}∗;
(2) {x ∧ y}∗ = {y ∧ x}∗;
(3) {x}∗∗∗ = {x}∗;
(4) x ≤ y ⇒ {y}∗ ⊆ {x}∗;
(5) {x ∧ y}∗∗ = {x}∗∗ ∩ {y}∗∗.

Definition 2.8. An ADL (A,∧,∨, 0) is said to be relatively complemented
if every interval in A is a Boolean algebra.

Theorem 2.9. Let A be an ADL. Then the following are equivalent to
each other:

(1) for any a, b ∈ A there exists x ∈ A such that a∧x = 0 and a∨x = a∨ b;
(2) for any a ≤ b in A, [a, b] is a complemented lattice;

(3) for any a ∈ A, [0, a] is complemented lattice.

Definition 2.10. A nontrivial ADL A is called an almost Boolean algebra
(ABA) if it has a maximal element and satisfies one, and hence all of the
equivalent conditions given in Theorem 2.9.

Theorem 2.11. Let A be an ADL with a maximal element. Then the
following are equivalent to each other:

(1) A is an almost Boolean algebra;
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(2) for any a ∈ A, there exists b ∈ A such that a∧b = 0 and a∨b is maximal;

(3) [0,m] is a Boolean algebra for all maximal elements m;

(4) there exists a maximal element m such that [0,m] is a Boolean algebra.

Theorem 2.12. Let A be an ADL and m and n be maximal elements in
A. Then the lattices [0,m] and [0, n] are isomorphic to each other. Moreover,
the Boolean algebras [0,m] and [0, n] are isomorphic when A is almost Boolean
algebra.

Theorem 2.13. Let (A,∧,∨, 0) be an ABA. Then for any a and b in A
there exists a unique x ∈ A such that a ∧ x = 0 and a ∨ x = a ∨ b.

Definition 2.14. A nontrivial ADL A is called dense if a ∧ b 6= 0 for all
a 6= 0 and b 6= 0 (equivalently, {a}∗ = {0}, for any 0 6= a ∈ A).

3. C(X,D)

The set of all continuous mappings of a topological space X into a topo-
logical space Y is denoted by C(X,Y ). It can be easily proved that, the
set C(X,D) is an ADL under the point-wise operations, where D is an ADL
equipped with the discrete topology. Further, if m is a maximal element in
D, then the constant map m is a maximal element in the ADL C(X,D), and
conversely, if f is a maximal element in C(X,D) then for any x ∈ X, f(x)
is maximal element in D. In the following we consider a special case when
X is a Boolean space (that is; compact, Hausdorff and totally disconnected
space) and D is a non-trivial discrete ADL, and prove that C(X,D) and its
homomorphic image are ABA’s. First we start with the following.

Theorem 3.1. Let A be an ADL with maximal element and

D =
{
x ∈ A : {x}∗ = {0}

}
∪
{
0
}
.

Then D is a dense sub-ADL of A containing all maximal elements of A. More-
over, if A is an ABA, then D is discrete.

Proof. By (1) of Lemma 2.7, x ∨ y ∈ D, for any x and y ∈ D. Also,
x ∧ y ∈ D; for, z ∈ {x ∧ y}∗ ⇒ x ∧ y ∧ z = 0 ⇒ y ∧ z ∈ {x}∗ = {0} ⇒
y ∧ z = 0⇒ z ∈ {y}∗ = {0} ⇒ z = 0. Thus D is a sub-ADL of A. And, if m
is a maximal element in A and m ∧ x = 0 implies x = 0. Therefore m ∈ D.
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Further, let 0 6= a ∈ D. Then {a}∗ = {0}. Since A is an ABA, there exists
b ∈ A such that a ∧ b = 0 and a ∨ b is maximal. It follows that b = 0. Now,
a ∨ b = a ∨ 0 = a which is maximal. Thus D is discrete.

Theorem 3.2. Let A and B be are ADL’s and B is a homomorphic image
of A. If A is an ABA, then so is B.

Proof. Let f : A → B be a epimorphism. Then, it can be easily verified
that, for any maximal element m in A, f(m) is a maximal element in B.
Suppose that A is an ABA. Let y ∈ B. Then f(x) = y for some x ∈ A. Since
A is an ABA, there exists x′ ∈ A such that x ∧ x′ = 0 and x ∨ x′ is maximal
in A. Now,

f(x) ∧ f(x′) = f(x ∧ x′) = f(0) = 0,

f(x) ∨ f(x′) = f(x ∨ x′) which is maximal.

Thus B is also an ABA.

Theorem 3.3. Let X be a Boolean space and D be a discrete ADL
equipped with discrete topology. Then the ADL C(X,D) of all continuous
mappings of X into D is an ABA under point-wise operations. And, hence
any homomorphic image of C(X,D) is an ABA.

Proof. Let f ∈ C(X,D) and fix a maximal element m in D.
Define g : X → D by

g(x) =

{
m if f(x) = 0,

0 if f(x) 6= 0.

Since D is a discrete space and f is continuous, it follows that f−1(D − {0})
is a clopen (closed and open) set in X and it implies that g is continuous and
hence g ∈ C(X,D). It is clear that f ∧ g = 0, the zero element in C(X,D).
Further, (f ∨ g)(x) = f(x) ∨ g(x).

f(x) = 0 ⇒ g(x) = m

⇒ f(x) ∨ g(x) = 0 ∨m = m = m(x)

⇒ f ∨ g = m, maximal in C(X,D),

and
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f(x) 6= 0 ⇒ g(x) = 0

⇒ f(x) is maximal (since D is discrete)

⇒ f(x) ∨ g(x) = f(x)

⇒ (f ∨ g)(x) = f(x)

⇒ f ∨ g = f, maximal in C(X,D).

Thus C(X,D) is an ABA.

Next we shall prove a converse of Theorem 3.3 and it is a characterization
of ABA’s. Before going to the main theorem, let us recall from [5] that, for
any almost Boolean algebra (ABA) A, Spec(A) denotes the space of all prime
ideals of A together with the hull-kernal topology for which {Xa : a ∈ A} is
a base, where Xa = {P ∈ Spec(A) : a /∈ P} and that Spec(A) is a Boolean
space.

Theorem 3.4. Any ABA is a homomorphic image of C(X,D) for a suit-
able Boolean space X and a discrete ADL D.

Proof. Let A be an ABA and X the Boolean space Spec(A). Let D be the
set of all dense elements of A together with 0; that is,

D =
{
x ∈ A : {x}∗ = {0}

}
∪ {0}.

Then, by Theorem 3.1, D is a discrete ADL. Now, define α : C(X,D) → A
as follows. Let f ∈ C(X,D). As X is compact and f is continuous, f(X)
is a compact subset of the discrete space D. So that f(X) is finite, say
{d1, d2, . . . , dn}. Also, for each 1 ≤ i ≤ n, f−1({di}) is a clopen subset of
X and hence f−1({di}) = Xai for some ai ∈ A. Now, it can be easily seen
that

n⋃
i=1

Xai = X n∨
i=1

ai
= X

and
Xai ∩Xaj = Xai∧aj = ∅ for i 6= j.

So ai ∧ aj = 0 for i 6= j. Now define

α(f) =
n∨

i=1

(ai ∧ di).
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Since (ai ∧ di) ∧ (aj ∧ dj) = (ai ∧ aj) ∧ (di ∧ dj) = 0 and by (13) of Theorem

2.4, we get
n∨

i=1
(ai ∧ di) is l.u.b.{ai ∧ di : 1 ≤ i ≤ n}. So that α is well-

defined. We shall prove that α is an epimorphism. Let f, g ∈ C(X,D) and
let f(X) = {d1, d2, . . . , dn}, g(X) = {e1, e2, . . . , em}, f−1({di}) = Xai and

g−1({ej}) = Xbj for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then α(f) =
n∨

i=1
(ai ∧ di) and

α(g) =
m∨
j=1

(bj ∧ ej). Now we can easily verified that

(f ∧ g)(X) = {di ∧ ej : 1 ≤ i ≤ n, 1 ≤ j ≤ m},
(f ∨ g)(X) = {di ∨ ej : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

(f ∧ g)−1
(
{di ∧ ej}

)
= Xai∧bj ,

(f ∨ g)−1
(
{di ∨ ej}

)
= Xai∨bj .

Implies, α is a homomorphism of ABA’s. Finally, to prove α is onto, let x ∈ A.
Then there exists y ∈ A such that x ∧ y = 0 and x ∨ y is maximal, say m.
Define g : X → D by

g(P ) =

{
m if P ∈ Xx,

0 if P ∈ X −Xx = Xy.

Since Xx is clopen, g is continuous so that g ∈ C(X,D). Further,

g(X) = {m, 0}, g−1({m}) = Xx and g−1({0}) = Xy.

Now α(g) = (x ∧ m) ∨ (y ∧ 0) = (x ∧ m) ∨ 0 = x ∧ m = x ∧ (x ∨ y) = x.
Therefore α is onto. Thus α is an epimorphism of C(X,D) onto A.
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