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Abstract : In this paper, we investigate a new class of unbounded linear operators, that is, the

unbounded generalized B-Fredholm operators in Banach space. More explicitly, we provide a char-
acterization of this class of operators and some of its basic properties on a Banach space. Moreover,

we study the generalized B-Fredholm spectrum and we prove a perturbation result of an unbounded

generalized B-Fredholm operator under a commuting power finite-rank operator.
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1. Introduction

Let C(X) denotes the set of all closed linear operators defined from a
Banach space X to X. For A ∈ C(X) and for each integer n ∈ N, the domain
D(An), the kernel N (An) and the range R(An) of the power operator An are
defined, respectively, by

D(An) =
{
x ∈ X : x,Ax, . . . , An−1x ∈ D(A)

}
,

N (An) =
{
x ∈ D(An) : Anx = 0

}
and

R(An) =
{
y ∈ X : Anx = y for x ∈ D(An)

}
.

If n = 0, one has

A0 = I, D(A0) = X, N (A0) = 0, R(A0) = X,

where I is the identity operator defined from X to X. For all n ≥ 1, we have
An(x) = AAn−1(x), where x ∈ D(An). We clearly have:

D(An+1) ⊆ D(An),
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for all n ∈ N. Let σ(A) (resp. ρ(A)) denote the usual spectrum (resp. the
resolvent set) of A.

For A ∈ C(X) and n ∈ N, let An : R(An) → R(An) be the restriction of
the operator A to R(An) into R(An). The domain D(An), the kernel N (An)
and the range R(An) of An are defined respectively by

D(An) = D(A) ∩R(An),

N (An) = N (A) ∩R(An),

R(An) = R(An+1).

The class of B-Fredholm operators was first introduced by M. Berkani in [2]
in the case of bounded operators acting on a Banach space. This notion of op-
erators was generalized by Berkani and Castro-González in [4] to unbounded
operators in Hilbert space. Recently, this class of operators was extended
and studied by O. Garćıa et al. in [12] to generalized bounded B-Fredholm
operators acting on a Banach space. Here, in this paper, we will consider un-
bounded generalized B-Fredholm operators defined on a Banach space. Our
work, in this paper, extend some results obtained in [12] to the case of un-
bounded operators. After an introductory section, we recall in section 2 a
list of well known definitions which are must be required, in this paper. We
know that, J.P. Labrousse proved in [6] two decomposition theorems of closed
quasi-Fredholm operators on a Hilbert space. As mentioned in [6, p. 206],
these theorems are still true in the case of Banach spaces if, the subspaces
N (A)∩R(Ad) and R(A) +N (Ad), where d = dis(A), are closed and comple-
mented. Using this result, we characterize in Theorem 3.1 a closed generalized
B-Fredholm operator as a direct sum of a closed operator of Saphar type and
a nilpotent one. Besides, we show in Theorem 3.2 an important result says
that, if A is a closed generalized B-Fredholm operator with a non empty re-
solvent set, then there exists an integer n ∈ N such that R(An) is closed and
such that the restriction operator An is of Saphar type. In Proposition 3.1,
we show that if A is a closed generalized B-Fredholm operator densely defined
on a Banach space, then its adjoint operator is also a generalized B-Fredholm
operator. Based on Theorem 3.1, we prove in Proposition 4.1 that the gener-
alized B-Fredholm spectrum of a closed operator A defined from X to X is a
closed subset of the complex plane C. Next, we characterize in Proposition 4.2
the generalized B-Fredholm spectrum of a closed linear operator A in terms of
the corresponding spectrum of its bounded inverse. The end of section 4 con-
tains a perturbation result of an unbounded generalized B-Fredholm operator
under a commuting power finite-rank operator.
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2. Preliminaries

In this section, we collect a list of well known definitions which are relevant
to the development of this paper.

First, we give the following algebraic result which must be required:

Lemma 2.1. ([1]) Let A be a linear operator defined on a vector space.
Then, the following conditions are equivalent:

(1) for all s ∈ N, N (A) ⊆ R(As),

(2) for all n ∈ N, N (An) ⊆ R(A),

(3) for all s, n ∈ N, N (An) ⊆ R(As),

(4) for all s, n ∈ N, N (An) = As(N (An+s)).

In the following, we define the classes of semi-regular operators and the
operators of Saphar type, which are the key tool for the study of unbounded
generalized B-Fredholm operators. It is well known that, these classes of
operators were been studied by several authors, we can see for instance the
works of [9, 13, 14] and elsewhere.

Definition 2.1. An operator A ∈ C(X) is said to be semi-regular if,R(A)
is closed and it verifies one of the equivalent conditions of Lemma 2.1.

Definition 2.2. An operator A ∈ C(X) is said to be of Saphar type if it
is semi-regular, and R(A) and N (A) are complemented subspaces of X.

Remark 2.1. We see that a Fredholm operator A ∈ C(X), that is,
dim(N (A)) <∞ and codim (R(A)) <∞ is an operator of Saphar type.

Next, we introduce an important class of linear operators which have a
close link to unbounded generalized B-Fredholm operators, that is, the quasi-
Fredholm operators. It is well known that, this notion of operators was first
discovered by J.P. Labrousse in the famous paper [6] as a generalization of
Fredholm operators on a Hilbert space, and it was also studied by [1, 2, 10, 11]
and others.

Definition 2.3. ([6]) The degree of stable iteration, dis(A), of the oper-
ator A is defined as

dis(A) = inf(4(A)),

where, 4(A) :=
{
n ∈ N : ∀m ∈ N,m ≥ n⇒

(
ran(An)∩N (A)

)
⊂

(
ran(Am)∩

N (A)
)}

. If 4(A) = ∅, then dis(A) =∞.
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Definition 2.4. An operator A ∈ C(X) is said to be a quasi-Fredholm of
degree d ∈ N if, the following three conditions are fulfilled:

(i) dis(A) = d,

(ii) R(An) is a closed subspace of X for each n ≥ d,

(iii) N (Ad) +R(A) is a closed subspace of X.

In the sequel, the set of quasi-Fredholm operators of degree d is denoted
by QF (d).

Remark 2.2. Note that Definition 2.4 is equivalent to the definitions given
in the case of bounded operators in [10, 12]. In the case of Hilbert space, it is
equivalent to the definition given in [6].

The following definition is due to J.T. Marti in [8].

Definition 2.5. ([8]) Let X be a Banach space, A : D(A) ⊂ X → X
and T : D(T ) ⊂ X → X two linear operators. We say that A commutes with
T and we denote AT = TA, if

(i) D(A) ⊂ D(T ).

(ii) Tx ∈ D(A) whenever x ∈ D(A).

(iii) AT = TA on {x ∈ D(A) : Ax ∈ D(T )}.

Lemma 2.2. ([3]) Let A and T be two closed linear operators on a Banach
space X such that AT = TA. Then,

(λI −A)−1(λI − T )−1 = (λI − T )−1(λI −A)−1

for each λ ∈ ρ(A) ∩ ρ(T ).

3. Properties of unbounded generalized B-Fredholm operators

It is well known that, the class of B-Fredholm operators was first intro-
duced by M. Berkani in [2] in the bounded case in Banach space, and it was
generalized by Berkani and Castro-González in [4] to unbounded operators
in Hilbert space. Newly, this notion of operators was extended by Garćıa et
al. in [12] to generalized B-Fredholm operators, in the case of bounded linear
operators defined on a Banach space. In this section, we shall study this
theory in the case of unbounded operators defined from X to X. In order to
give our main results in this section, we recall the following definition inspired
from [5].
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Definition 3.1. ([5]) Let A ∈ C(X). The operator A is called B-
Fredholm if there exists an integer d ∈ N such that A ∈ QF (d), and such
that dim(N (A) ∩R(Ad)) <∞ and codim[N (Ad) +R(A)] <∞.

Definition 3.2. Let A ∈ C(X). The operator A is called generalized B-
Fredholm if there exists an integer d ∈ N such that A ∈ QF (d), N (A)∩R(Ad)
and N (Ad) +R(A) are complemented subspaces of X.

The set of generalized B-Fredholm operators defined from X to X is
denoted by Φg

B(X).

Remark 3.1. (i) As a finite dimension or codimension subspace on a
Banach space is complemented, it follows from Definition 3.1 that each B-
Fredholm operator is a generalized B-Fredholm one.

(ii) Since a nilpotent operator is a B-Fredholm one, then it is a generalized
B-Fredholm operator.

In [6, Theorem 3.2.1], Labrousse proved a decomposition theorem for closed
quasi-Fredholm operators in Hilbert space. This theorem remains true in the
case of Banach space if the subspaces N (A) ∩ R(Ad) and N (Ad) + R(A),
where d = dis(A), are closed and complemented in this space, as shown in [6,
p. 206]. Based on this decomposition theorem, we establish the following char-
acterization result of unbounded generalized B-Fredholm operators defined
from X to X.

Theorem 3.1. Let A ∈ C(X) be such that ρ(A) 6= ∅. Then, A is a
generalized B-Fredholm operator with d = dis(A) if and only if there exist
two closed invariant subspaces V and W of X such that:

(i) X = V ⊕ W , A(D(A) ∩ V ) ⊆ V , A(W ) ⊆ W , W ⊆ N (Ad) and
W * N (Ad−1);

(ii) A0 = A/V is a closed operator of Saphar type defined on V to V ;

(iii) A1 = A/W is a nilpotent operator of degree d.

Proof. Suppose that A is a generalized B-Fredholm operator with d =
dis(A), that is, A ∈ QF (d), N (A) ∩ R(A)d and R(A) + N (Ad) are com-
plemented subspaces of X. From [6, Theorem 3.2.1] there exist two closed
subspaces V and W such that the conditions (i) and (iii) of the present theo-
rem are satisfied and the operator A0 = A/V is a closed semi-regular operator
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defined on V to V . Let us prove that the operator A0 is of Saphar type. Using
equations (3.2.22) and (3.2.23) of the proof of [6, Theorem 3.2.1], we get

R(A) +N (Ad) = R(A0)⊕W (3.1)

,N (A0) = N (A) ∩ V = N (A) ∩R(A)d. (3.2)

Since the subspace N (A) ∩R(A)d is complemented in X, then there exists a
closed subspace M of X such that X = (N (A) ∩ R(A)d) ⊕M . Hence from
equality (3.2) we obtain that

V = N (A0)⊕ (M ∩ V ).

On the other hand, since the subspace R(A) +N (Ad) is complemented in X,
then there exists a closed subspace S of X such that X = [R(A)+N (Ad)]⊕S.
Consider the linear projection PV : X → V onto V along W . Then, using
equality (3.1), we get PV (X) = V = R(A0)⊕PV (S), which shows that R(A0)
is complemented in V . Consequently, the operator A0 is being of Saphar type.

Conversely, assume that there exist two closed subspaces V and W satis-
fying conditions (i), (ii) and (iii) of the present theorem.

We have Ad(V ∩ D(Ad)) ⊆ A(V ∩ D(A)) ⊆ V and Ad(W ∩ D(Ad) ⊆
A(W ∩D(A)) ⊆W . Let n ≥ d, then R(An) = R(An

/V ). Since ρ(A) 6= ∅, then

ρ(A/V ) 6= ∅ and the fact that A/V is a semi-regular operator, this show from
[9, Proposition 3.5] that An

/V is a semi-regular operator and so it has a closed
range, for all n ≥ d. Thus,

N (A) ∩R(Ad) = N (A) ∩R(Ad
/V )

= N (A) ∩R(Ad) ∩ V = N (A/V ) ∩R(Ad).

Or the operator A/V is semi-regular, because it is of Saphar type, which
gives from Lemma 2.1 that N (A/V ) ⊆ R(An

/V ), for every n ∈ N. So, we

get N (A/V ) ∩ R(Ad
/V ) = N (A/V ) and therefore N (A/V ) = N (A) ∩ R(Ad).

We have

R(A) +N (Ad) = R(A/V ) +R(A/W ) +N (Ad
/V ) +N (Ad

/W )

= R(A/V ) +N (Ad
/V ) +R(A/W )⊕W.

Since the operatorAd
/V is semi-regular, then from Lemma 2.1 we getN (Ad

/V ) ⊆
R(A/V ), which entails that R(A/V ) +N (Ad

/V ) = R(A/V ). Therefore, R(A) +
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N (Ad) = R(A/V )⊕W . Since the operator A0 = A/V is of Saphar type, then
there exist two closed subspaces L and M such that

N (A0)⊕ L = V, (3.3)

R(A0)⊕M = V. (3.4)

Using equality (3.4), we get X = W ⊕ V = W ⊕ R(A0) ⊕M = (R(A) +
N (Ad)) ⊕M . From the Neubauer Lemma [6, Proposition 2.1.1], this means
that R(A) + N (Ad) is a closed subspace of X and so A ∈ QF (d). From
equality (3.3), we obtain that X = W⊕V = W⊕N (A0)⊕L = N (A0)⊕W⊕L
and therefore we get (N (A)∩R(Ad)) and (R(A)+N (Ad)) are complemented
subspaces of X.

Theorem 3.2. Let A ∈ C(X) be such that ρ(A) 6= ∅. If A is a generalized
B-Fredholm operator, then there exists an integer n ∈ N such that R(An) is
closed and such that the operator An is of Saphar type.

Proof. Assume that A is a generalized B-Fredholm operator, and let d =
dis(A). Then R(Ad) is closed. Consider the operator Ad : R(Ad) → R(Ad).
If A is a generalized B-Fredholm operator, then N (A) ∩ R(Ad) and R(A) +
N (Ad) are complemented subspaces in X and therefore there exist two closed
subspaces L and M such that

X = [N (A) ∩R(Ad)]⊕ L, (3.5)

X = [R(A) +N (Ad)]⊕M. (3.6)

Hence, using equality (3.5), we get R(Ad) = N (Ad) ⊕ (L ∩ R(Ad)), which
means that N (Ad) is a complemented subspace. We have R(Ad) = R(Ad+1)
is a closed subspace, because A is a quasi-Fredholm of degree d. Now, it
remains to show that R(Ad) is complemented. Since ρ(A) 6= ∅, from [7,
Lemma 1.1], we have X = D(Ad) +R(A). Then, we get

Ad(X) = Ad(D(Ad) +R(A))

⊆ Ad(D(Ad)) +Ad(R(A)) ⊆ Ad(D(Ad)) = R(Ad).

Thus, we get R(Ad) = Ad(X) and from equality (3.6) we have

R(Ad) = Ad(X) = Ad(R(A) +N (Ad))⊕Ad(M) = R(Ad+1)⊕Ad(M).

From the Neubauer Lemma [6, Proposition 2.1.1] we obtain that Ad(M) is a
closed subspace. Therefore, we obtain that R(Ad) is complemented. Accord-
ingly, the operator Ad is of Saphar type.
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We notice that if A ∈ C(X) is a densely defined linear operator, then the
adjoint operator A∗ exists, belongs to C(X∗) and is a densely defined linear
operator, where X∗ is the dual space of X. If M is a subspace of X, then by
M⊥ we denote the annihilator of M as a subspace of X∗. Clearly, M⊥ is a
closed subspace of X∗.

Proposition 3.1. Let A ∈ C(X) be densely defined. If A is a generalized
B-Fredholm operator, then A∗ is a generalized B-Fredholm operator.

Proof. If A is a generalized B-Fredholm operator, then it is a quasi-
Fredholm of degree d ∈ N. Then, it follows from [6, Proposition 3.3.5] that
A∗ ∈ QF (d). Hence, we get

R(A) +N (Ad) =
[
N (A∗) ∩R(A∗)d

]⊥
,

R(A∗) +N (A∗)d =
[
N (A) ∩R(A)d

]⊥
.

Since N (A)∩R(Ad) and N (Ad) +R(A) are complemented in X, then we get
N (A∗) ∩ R(A∗)d and R(A∗) +N (A∗)d are complemented in X∗. This prove
that A∗ is a generalized B-Fredholm operator.

4. Generalized B-Fredholm spectrum

In this section, we define and we study an essential spectrum related to the
class of unbounded generalized B-Fredholm operators named the generalized
B-Fredholm spectrum, which is defined as follows:

Definition 4.1. Let A ∈ C(X). The generalized B-Fredholm spectrum
of A is defined by:

σgbf (A) :=
{
λ ∈ C : A− λI /∈ Φg

B(X)
}

and the generalized B-Fredholm set of A is defined by

ρgbf (A) = C\σgbf (A).

Proposition 4.1. Let A ∈ C(X) be such that ρ(A) 6= ∅. Then, the
generalized B-Fredholm spectrum σgbf (A) of A is a closed subset of C
contained in the usual spectrum σ(A) of A.
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Proof. If λ /∈ σ(A) then A− λI is invertible and therefore A− λI is a B-
Fredholm operator. Hence from Remark 3.1 we get λ /∈ σgbf (A). If α /∈ σgbf (A),
then A − αI is a generalized B-Fredholm operator. Set S = A − αI. By
Theorem 3.1, there exist two closed subspaces M and N invariant under A of
X such that X = M ⊕N and S = S/M ⊕ S/N , where S/M is of type Saphar
and S/N is a nilpotent operator. Since S/M is of Saphar type, then from [14,
Theorem 2] there exists an open disc D(0, ε) centered at 0 such that S/M −λI
is of Saphar type, for all λ ∈ D(0, ε)\{0}. As S/N is a nilpotent operator,
then we get S/N − λI is invertible, for all λ 6= 0. Then, using Theorem 3.1,
we get S − λI is a generalized B-Fredholm operator, for all λ ∈ D(α, ε)\{α}.
So ρgbf (A) is open in C or equivalently σgbf (A) is a closed subset of C.

Remark 4.1. Note that, the generalized B-Fredholm spectrum can be
empty. For example, if A is a nilpotent operator, then σbf (A) = ∅ and since
σgbf (A) ⊆ σbf (A), then we get σgbf (A) = ∅, where σbf (A) = {λ ∈ C, A− λI is
not B-Fredholm}, is the B-Fredholm spectrum.

Proposition 4.2. Let A ∈ C(X) be a closed invertible operator with a
dense domain. Then,

σgbf (A) =
{
λ−1 : λ ∈ σgbf (A−1)\{0}

}
.

Proof. Using the relations proved in [5, Proposition 3.3 and Proposition
3.4], we obtain that A− λI is a generalized B-Fredholm operator if and only
if A−1 − λ−1I is also, for all λ 6= 0.

Corollary 4.1. Let A, T ∈ C(X) be two closed invertible operators with
a dense domain and such that AT = TA. If the bounded operator A−1−T−1

is of power finite-rank, then

A− λI is generalized
B-Fredholm

⇒ T − λI is quasi-Fredholm,
for all λ 6= 0.

Proof. Let λ 6= 0. If the operator A− λI is generalized B-Fredholm, then
from Proposition 4.2 we have the same also for the bounded operator A−1 −
λ−1I. Since A−1 − T−1 is of power finite-rank operator, then it follows from
[12, Theorem 3.1] and Lemma 2.2 that, T−1−λ−1I = T−1−λ−1I−A−1 +A−1

is a bounded quasi-Fredholm operator, and therefore from [5, Theorem 3.6]
the operator T − λI is also quasi-Fredholm.
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Corollary 4.2. Let A, T ∈ C(X) be two closed invertible operators with
a dense domain and such that AT = TA. If the bounded operator A−1−T−1

is nilpotent, then

A− λI is generalized
B-Fredholm

⇒ T − λI is quasi-Fredholm,
for all λ 6= 0.
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opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (2) (1980),
161 – 258.

[7] D.C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math.
Ann. 184 (1970), 197 – 214.

[8] J.T. Marti, Operational calculus for two commuting closed operators, Com-
ment. Math. Helv. 43 (1968), 87 – 97.
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[11] O. Garćıa, D. Causil, J. Sanabria, C. Carpintero, New decompo-
sitions for the classes of quasi-Fredholm and semi B-Weyl operators, Linear
Multilinear Algebra 68 (4) (2020), 750 – 763.
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