

EXTRACTA MATHEMATICAE Vol. **39**, Num. 1 (2024), 37–46

# **Unbounded generalized B-Fredholm operators**

M. BOUDHIEF

Department of Mathematics, Faculty of Sciences of Sfax BP 1171, 3000, Sfax, Tunisia

#### boudhiafmon 198@gmail.com

Received December 29, 2023 Accepted February 1, 2024 Presented by P. Aiena

*Abstract*: In this paper, we investigate a new class of unbounded linear operators, that is, the unbounded generalized B-Fredholm operators in Banach space. More explicitly, we provide a characterization of this class of operators and some of its basic properties on a Banach space. Moreover, we study the generalized B-Fredholm spectrum and we prove a perturbation result of an unbounded generalized B-Fredholm operator under a commuting power finite-rank operator.

*Key words*: Unbounded generalized B-Fredholm operators, operator of Saphar type, generalized B-Fredholm spectrum, quasi-Fredholm operator.

MSC (2020): 47A10, 47A55, 47B01.

# 1. INTRODUCTION

Let  $\mathcal{C}(X)$  denotes the set of all closed linear operators defined from a Banach space X to X. For  $A \in \mathcal{C}(X)$  and for each integer  $n \in \mathbb{N}$ , the domain  $\mathcal{D}(A^n)$ , the kernel  $\mathcal{N}(A^n)$  and the range  $\mathcal{R}(A^n)$  of the power operator  $A^n$  are defined, respectively, by

$$\mathcal{D}(A^n) = \left\{ x \in X : x, Ax, \dots, A^{n-1}x \in \mathcal{D}(A) \right\},\$$
$$\mathcal{N}(A^n) = \left\{ x \in \mathcal{D}(A^n) : A^n x = 0 \right\}$$

and

$$\mathcal{R}(A^n) = \left\{ y \in X : A^n x = y \text{ for } x \in \mathcal{D}(A^n) \right\}.$$

If n = 0, one has

$$A^0 = I, \quad D(A^0) = X, \quad \mathcal{N}(A^0) = 0, \quad \mathcal{R}(A^0) = X,$$

where I is the identity operator defined from X to X. For all  $n \ge 1$ , we have  $A^n(x) = AA^{n-1}(x)$ , where  $x \in \mathcal{D}(A^n)$ . We clearly have:

$$\mathcal{D}(A^{n+1}) \subseteq \mathcal{D}(A^n),$$

ISSN: 0213-8743 (print), 2605-5686 (online) © The author(s) - Released under a Creative Commons Attribution License (CC BY-NC 4.0)



 $(1) \subseteq \mathcal{D}(1),$ 

for all  $n \in \mathbb{N}$ . Let  $\sigma(A)$  (resp.  $\rho(A)$ ) denote the usual spectrum (resp. the resolvent set) of A.

For  $A \in \mathcal{C}(X)$  and  $n \in \mathbb{N}$ , let  $A_n : \mathcal{R}(A^n) \to \mathcal{R}(A^n)$  be the restriction of the operator A to  $\mathcal{R}(A^n)$  into  $\mathcal{R}(A^n)$ . The domain  $\mathcal{D}(A_n)$ , the kernel  $\mathcal{N}(A_n)$ and the range  $\mathcal{R}(A_n)$  of  $A_n$  are defined respectively by

$$\mathcal{D}(A_n) = \mathcal{D}(A) \cap \mathcal{R}(A^n),$$
$$\mathcal{N}(A_n) = \mathcal{N}(A) \cap \mathcal{R}(A^n),$$
$$\mathcal{R}(A_n) = \mathcal{R}(A^{n+1}).$$

The class of B-Fredholm operators was first introduced by M. Berkani in [2] in the case of bounded operators acting on a Banach space. This notion of operators was generalized by Berkani and Castro-González in [4] to unbounded operators in Hilbert space. Recently, this class of operators was extended and studied by O. García et al. in [12] to generalized bounded B-Fredholm operators acting on a Banach space. Here, in this paper, we will consider unbounded generalized B-Fredholm operators defined on a Banach space. Our work, in this paper, extend some results obtained in [12] to the case of unbounded operators. After an introductory section, we recall in section 2 a list of well known definitions which are must be required, in this paper. We know that, J.P. Labrousse proved in [6] two decomposition theorems of closed quasi-Fredholm operators on a Hilbert space. As mentioned in [6, p. 206], these theorems are still true in the case of Banach spaces if, the subspaces  $\mathcal{N}(A) \cap \mathcal{R}(A^d)$  and  $\mathcal{R}(A) + \mathcal{N}(A^d)$ , where  $d = \operatorname{dis}(A)$ , are closed and complemented. Using this result, we characterize in Theorem 3.1 a closed generalized B-Fredholm operator as a direct sum of a closed operator of Saphar type and a nilpotent one. Besides, we show in Theorem 3.2 an important result says that, if A is a closed generalized B-Fredholm operator with a non empty resolvent set, then there exists an integer  $n \in \mathbb{N}$  such that  $\mathcal{R}(A^n)$  is closed and such that the restriction operator  $A_n$  is of Saphar type. In Proposition 3.1, we show that if A is a closed generalized B-Fredholm operator densely defined on a Banach space, then its adjoint operator is also a generalized B-Fredholm operator. Based on Theorem 3.1, we prove in Proposition 4.1 that the generalized B-Fredholm spectrum of a closed operator A defined from X to X is a closed subset of the complex plane  $\mathbb{C}$ . Next, we characterize in Proposition 4.2 the generalized B-Fredholm spectrum of a closed linear operator A in terms of the corresponding spectrum of its bounded inverse. The end of section 4 contains a perturbation result of an unbounded generalized B-Fredholm operator under a commuting power finite-rank operator.

## 2. Preliminaries

In this section, we collect a list of well known definitions which are relevant to the development of this paper.

First, we give the following algebraic result which must be required:

LEMMA 2.1. ([1]) Let A be a linear operator defined on a vector space. Then, the following conditions are equivalent:

- (1) for all  $s \in \mathbb{N}$ ,  $\mathcal{N}(A) \subseteq \mathcal{R}(A^s)$ ,
- (2) for all  $n \in \mathbb{N}$ ,  $\mathcal{N}(A^n) \subseteq \mathcal{R}(A)$ ,
- (3) for all  $s, n \in \mathbb{N}$ ,  $\mathcal{N}(A^n) \subseteq \mathcal{R}(A^s)$ ,
- (4) for all  $s, n \in \mathbb{N}$ ,  $\mathcal{N}(A^n) = A^s(\mathcal{N}(A^{n+s}))$ .

In the following, we define the classes of semi-regular operators and the operators of Saphar type, which are the key tool for the study of unbounded generalized B-Fredholm operators. It is well known that, these classes of operators were been studied by several authors, we can see for instance the works of [9, 13, 14] and elsewhere.

DEFINITION 2.1. An operator  $A \in \mathcal{C}(X)$  is said to be semi-regular if,  $\mathcal{R}(A)$  is closed and it verifies one of the equivalent conditions of Lemma 2.1.

DEFINITION 2.2. An operator  $A \in \mathcal{C}(X)$  is said to be of Saphar type if it is semi-regular, and  $\mathcal{R}(A)$  and  $\mathcal{N}(A)$  are complemented subspaces of X.

Remark 2.1. We see that a Fredholm operator  $A \in \mathcal{C}(X)$ , that is,  $\dim(\mathcal{N}(A)) < \infty$  and  $\operatorname{codim}(\mathcal{R}(A)) < \infty$  is an operator of Saphar type.

Next, we introduce an important class of linear operators which have a close link to unbounded generalized B-Fredholm operators, that is, the quasi-Fredholm operators. It is well known that, this notion of operators was first discovered by J.P. Labrousse in the famous paper [6] as a generalization of Fredholm operators on a Hilbert space, and it was also studied by [1, 2, 10, 11] and others.

DEFINITION 2.3. ([6]) The degree of stable iteration, dis(A), of the operator A is defined as

$$\operatorname{dis}(A) = \inf(\triangle(A)),$$

where,  $\triangle(A) := \{n \in \mathbb{N} : \forall m \in \mathbb{N}, m \ge n \Rightarrow (\operatorname{ran}(A^n) \cap \mathcal{N}(A)) \subset (\operatorname{ran}(A^m) \cap \mathcal{N}(A))\}$ . If  $\triangle(A) = \emptyset$ , then dis $(A) = \infty$ .

DEFINITION 2.4. An operator  $A \in \mathcal{C}(X)$  is said to be a quasi-Fredholm of degree  $d \in \mathbb{N}$  if, the following three conditions are fulfilled:

- (i)  $\operatorname{dis}(A) = d$ ,
- (ii)  $R(A^n)$  is a closed subspace of X for each  $n \ge d$ ,
- (iii)  $\mathcal{N}(A^d) + \mathcal{R}(A)$  is a closed subspace of X.

In the sequel, the set of quasi-Fredholm operators of degree d is denoted by QF(d).

Remark 2.2. Note that Definition 2.4 is equivalent to the definitions given in the case of bounded operators in [10, 12]. In the case of Hilbert space, it is equivalent to the definition given in [6].

The following definition is due to J.T. Marti in [8].

DEFINITION 2.5. ([8]) Let X be a Banach space,  $A : D(A) \subset X \to X$ and  $T : D(T) \subset X \to X$  two linear operators. We say that A commutes with T and we denote AT = TA, if

- (i)  $D(A) \subset D(T)$ .
- (ii)  $Tx \in D(A)$  whenever  $x \in D(A)$ .
- (iii) AT = TA on  $\{x \in D(A) : Ax \in D(T)\}$ .

LEMMA 2.2. ([3]) Let A and T be two closed linear operators on a Banach space X such that AT = TA. Then,

$$(\lambda I - A)^{-1}(\lambda I - T)^{-1} = (\lambda I - T)^{-1}(\lambda I - A)^{-1}$$

for each  $\lambda \in \rho(A) \cap \rho(T)$ .

#### 3. PROPERTIES OF UNBOUNDED GENERALIZED B-FREDHOLM OPERATORS

It is well known that, the class of B-Fredholm operators was first introduced by M. Berkani in [2] in the bounded case in Banach space, and it was generalized by Berkani and Castro-González in [4] to unbounded operators in Hilbert space. Newly, this notion of operators was extended by García et al. in [12] to generalized B-Fredholm operators, in the case of bounded linear operators defined on a Banach space. In this section, we shall study this theory in the case of unbounded operators defined from X to X. In order to give our main results in this section, we recall the following definition inspired from [5]. DEFINITION 3.1. ([5]) Let  $A \in \mathcal{C}(X)$ . The operator A is called B-Fredholm if there exists an integer  $d \in \mathbb{N}$  such that  $A \in QF(d)$ , and such that  $\dim(\mathcal{N}(A) \cap \mathcal{R}(A^d)) < \infty$  and  $\operatorname{codim}[\mathcal{N}(A^d) + \mathcal{R}(A)] < \infty$ .

DEFINITION 3.2. Let  $A \in \mathcal{C}(X)$ . The operator A is called generalized B-Fredholm if there exists an integer  $d \in \mathbb{N}$  such that  $A \in QF(d), \mathcal{N}(A) \cap \mathcal{R}(A^d)$ and  $\mathcal{N}(A^d) + \mathcal{R}(A)$  are complemented subspaces of X.

The set of generalized B-Fredholm operators defined from X to X is denoted by  $\Phi_B^g(X)$ .

*Remark* 3.1. (i) As a finite dimension or codimension subspace on a Banach space is complemented, it follows from Definition 3.1 that each B-Fredholm operator is a generalized B-Fredholm one.

(ii) Since a nilpotent operator is a B-Fredholm one, then it is a generalized B-Fredholm operator.

In [6, Theorem 3.2.1], Labrousse proved a decomposition theorem for closed quasi-Fredholm operators in Hilbert space. This theorem remains true in the case of Banach space if the subspaces  $\mathcal{N}(A) \cap \mathcal{R}(A^d)$  and  $\mathcal{N}(A^d) + \mathcal{R}(A)$ , where  $d = \operatorname{dis}(A)$ , are closed and complemented in this space, as shown in [6, p. 206]. Based on this decomposition theorem, we establish the following characterization result of unbounded generalized B-Fredholm operators defined from X to X.

THEOREM 3.1. Let  $A \in \mathcal{C}(X)$  be such that  $\rho(A) \neq \emptyset$ . Then, A is a generalized B-Fredholm operator with  $d = \operatorname{dis}(A)$  if and only if there exist two closed invariant subspaces V and W of X such that:

- (i)  $X = V \oplus W$ ,  $A(D(A) \cap V) \subseteq V$ ,  $A(W) \subseteq W$ ,  $W \subseteq \mathcal{N}(A^d)$  and  $W \notin \mathcal{N}(A^{d-1})$ ;
- (ii)  $A_0 = A_{/V}$  is a closed operator of Saphar type defined on V to V;
- (iii)  $A_1 = A_{/W}$  is a nilpotent operator of degree d.

*Proof.* Suppose that A is a generalized B-Fredholm operator with  $d = \operatorname{dis}(A)$ , that is,  $A \in QF(d)$ ,  $\mathcal{N}(A) \cap \mathcal{R}(A)^d$  and  $\mathcal{R}(A) + \mathcal{N}(A^d)$  are complemented subspaces of X. From [6, Theorem 3.2.1] there exist two closed subspaces V and W such that the conditions (i) and (iii) of the present theorem are satisfied and the operator  $A_0 = A_{V}$  is a closed semi-regular operator

defined on V to V. Let us prove that the operator  $A_0$  is of Saphar type. Using equations (3.2.22) and (3.2.23) of the proof of [6, Theorem 3.2.1], we get

$$\mathcal{R}(A) + \mathcal{N}(A^d) = \mathcal{R}(A_0) \oplus W \tag{3.1}$$

$$\mathcal{N}(A_0) = \mathcal{N}(A) \cap V = \mathcal{N}(A) \cap \mathcal{R}(A)^d.$$
(3.2)

Since the subspace  $\mathcal{N}(A) \cap \mathcal{R}(A)^d$  is complemented in X, then there exists a closed subspace M of X such that  $X = (\mathcal{N}(A) \cap \mathcal{R}(A)^d) \oplus M$ . Hence from equality (3.2) we obtain that

$$V = \mathcal{N}(A_0) \oplus (M \cap V).$$

On the other hand, since the subspace  $\mathcal{R}(A) + \mathcal{N}(A^d)$  is complemented in X, then there exists a closed subspace S of X such that  $X = [\mathcal{R}(A) + \mathcal{N}(A^d)] \oplus S$ . Consider the linear projection  $P_V : X \to V$  onto V along W. Then, using equality (3.1), we get  $P_V(X) = V = \mathcal{R}(A_0) \oplus P_V(S)$ , which shows that  $\mathcal{R}(A_0)$ is complemented in V. Consequently, the operator  $A_0$  is being of Saphar type.

Conversely, assume that there exist two closed subspaces V and W satisfying conditions (i), (ii) and (iii) of the present theorem.

We have  $A^d(V \cap D(A^d)) \subseteq A(V \cap D(A)) \subseteq V$  and  $A^d(W \cap D(A^d) \subseteq A(W \cap D(A)) \subseteq W$ . Let  $n \geq d$ , then  $\mathcal{R}(A^n) = \mathcal{R}(A^n_{/V})$ . Since  $\rho(A) \neq \emptyset$ , then  $\rho(A_{/V}) \neq \emptyset$  and the fact that  $A_{/V}$  is a semi-regular operator, this show from [9, Proposition 3.5] that  $A^n_{/V}$  is a semi-regular operator and so it has a closed range, for all  $n \geq d$ . Thus,

$$\mathcal{N}(A) \cap \mathcal{R}(A^d) = \mathcal{N}(A) \cap \mathcal{R}(A^d_{/V})$$
$$= \mathcal{N}(A) \cap \mathcal{R}(A^d) \cap V = \mathcal{N}(A_{/V}) \cap \mathcal{R}(A^d).$$

Or the operator  $A_{/V}$  is semi-regular, because it is of Saphar type, which gives from Lemma 2.1 that  $\mathcal{N}(A_{/V}) \subseteq \mathcal{R}(A_{/V}^n)$ , for every  $n \in \mathbb{N}$ . So, we get  $\mathcal{N}(A_{/V}) \cap \mathcal{R}(A_{/V}^d) = \mathcal{N}(A_{/V})$  and therefore  $\mathcal{N}(A_{/V}) = \mathcal{N}(A) \cap \mathcal{R}(A^d)$ . We have

$$\mathcal{R}(A) + \mathcal{N}(A^d) = \mathcal{R}(A_{/V}) + \mathcal{R}(A_{/W}) + \mathcal{N}(A^d_{/V}) + \mathcal{N}(A^d_{/W})$$
$$= \mathcal{R}(A_{/V}) + \mathcal{N}(A^d_{/V}) + \mathcal{R}(A_{/W}) \oplus W.$$

Since the operator  $A_{/V}^d$  is semi-regular, then from Lemma 2.1 we get  $\mathcal{N}(A_{/V}^d) \subseteq \mathcal{R}(A_{/V})$ , which entails that  $\mathcal{R}(A_{/V}) + \mathcal{N}(A_{/V}^d) = \mathcal{R}(A_{/V})$ . Therefore,  $\mathcal{R}(A) + \mathcal{N}(A_{/V}^d) = \mathcal{R}(A_{/V})$ .

 $\mathcal{N}(A^d) = \mathcal{R}(A_{/V}) \oplus W$ . Since the operator  $A_0 = A_{/V}$  is of Saphar type, then there exist two closed subspaces L and M such that

$$\mathcal{N}(A_0) \oplus L = V, \tag{3.3}$$

$$\mathcal{R}(A_0) \oplus M = V. \tag{3.4}$$

Using equality (3.4), we get  $X = W \oplus V = W \oplus \mathcal{R}(A_0) \oplus M = (\mathcal{R}(A) + \mathcal{N}(A^d)) \oplus M$ . From the Neubauer Lemma [6, Proposition 2.1.1], this means that  $\mathcal{R}(A) + \mathcal{N}(A^d)$  is a closed subspace of X and so  $A \in QF(d)$ . From equality (3.3), we obtain that  $X = W \oplus V = W \oplus \mathcal{N}(A_0) \oplus L = \mathcal{N}(A_0) \oplus W \oplus L$  and therefore we get  $(\mathcal{N}(A) \cap \mathcal{R}(A^d))$  and  $(\mathcal{R}(A) + \mathcal{N}(A^d))$  are complemented subspaces of X.

THEOREM 3.2. Let  $A \in \mathcal{C}(X)$  be such that  $\rho(A) \neq \emptyset$ . If A is a generalized B-Fredholm operator, then there exists an integer  $n \in \mathbb{N}$  such that  $\mathcal{R}(A^n)$  is closed and such that the operator  $A_n$  is of Saphar type.

*Proof.* Assume that A is a generalized B-Fredholm operator, and let  $d = \operatorname{dis}(A)$ . Then  $\mathcal{R}(A^d)$  is closed. Consider the operator  $A_d : \mathcal{R}(A^d) \to \mathcal{R}(A^d)$ . If A is a generalized B-Fredholm operator, then  $\mathcal{N}(A) \cap \mathcal{R}(A^d)$  and  $\mathcal{R}(A) + \mathcal{N}(A^d)$  are complemented subspaces in X and therefore there exist two closed subspaces L and M such that

$$X = [\mathcal{N}(A) \cap \mathcal{R}(A^d)] \oplus L, \tag{3.5}$$

$$X = [\mathcal{R}(A) + \mathcal{N}(A^d)] \oplus M.$$
(3.6)

Hence, using equality (3.5), we get  $\mathcal{R}(A^d) = \mathcal{N}(A_d) \oplus (L \cap \mathcal{R}(A^d))$ , which means that  $\mathcal{N}(A_d)$  is a complemented subspace. We have  $\mathcal{R}(A_d) = \mathcal{R}(A^{d+1})$ is a closed subspace, because A is a quasi-Fredholm of degree d. Now, it remains to show that  $\mathcal{R}(A_d)$  is complemented. Since  $\rho(A) \neq \emptyset$ , from [7, Lemma 1.1], we have  $X = \mathcal{D}(A^d) + \mathcal{R}(A)$ . Then, we get

$$A^{d}(X) = A^{d}(\mathcal{D}(A^{d}) + \mathcal{R}(A))$$
$$\subseteq A^{d}(\mathcal{D}(A^{d})) + A^{d}(\mathcal{R}(A)) \subseteq A^{d}(\mathcal{D}(A^{d})) = \mathcal{R}(A^{d}).$$

Thus, we get  $\mathcal{R}(A^d) = A^d(X)$  and from equality (3.6) we have

$$\mathcal{R}(A^d) = A^d(X) = A^d(\mathcal{R}(A) + \mathcal{N}(A^d)) \oplus A^d(M) = \mathcal{R}(A^{d+1}) \oplus A^d(M).$$

From the Neubauer Lemma [6, Proposition 2.1.1] we obtain that  $A^d(M)$  is a closed subspace. Therefore, we obtain that  $\mathcal{R}(A_d)$  is complemented. Accordingly, the operator  $A_d$  is of Saphar type.

## M. BOUDHIEF

We notice that if  $A \in \mathcal{C}(X)$  is a densely defined linear operator, then the adjoint operator  $A^*$  exists, belongs to  $\mathcal{C}(X^*)$  and is a densely defined linear operator, where  $X^*$  is the dual space of X. If M is a subspace of X, then by  $M^{\perp}$  we denote the annihilator of M as a subspace of  $X^*$ . Clearly,  $M^{\perp}$  is a closed subspace of  $X^*$ .

PROPOSITION 3.1. Let  $A \in \mathcal{C}(X)$  be densely defined. If A is a generalized B-Fredholm operator, then  $A^*$  is a generalized B-Fredholm operator.

*Proof.* If A is a generalized B-Fredholm operator, then it is a quasi-Fredholm of degree  $d \in \mathbb{N}$ . Then, it follows from [6, Proposition 3.3.5] that  $A^* \in QF(d)$ . Hence, we get

$$\mathcal{R}(A) + \mathcal{N}(A^d) = \left[\mathcal{N}(A^*) \cap \mathcal{R}(A^*)^d\right]^{\perp},$$
$$\mathcal{R}(A^*) + \mathcal{N}(A^*)^d = \left[\mathcal{N}(A) \cap \mathcal{R}(A)^d\right]^{\perp}.$$

Since  $\mathcal{N}(A) \cap \mathcal{R}(A^d)$  and  $\mathcal{N}(A^d) + \mathcal{R}(A)$  are complemented in X, then we get  $\mathcal{N}(A^*) \cap \mathcal{R}(A^*)^d$  and  $\mathcal{R}(A^*) + \mathcal{N}(A^*)^d$  are complemented in  $X^*$ . This prove that  $A^*$  is a generalized B-Fredholm operator.

# 4. Generalized B-Fredholm spectrum

In this section, we define and we study an essential spectrum related to the class of unbounded generalized B-Fredholm operators named the generalized B-Fredholm spectrum, which is defined as follows:

DEFINITION 4.1. Let  $A \in \mathcal{C}(X)$ . The generalized B-Fredholm spectrum of A is defined by:

$$\sigma_{hf}^g(A) := \left\{ \lambda \in \mathbb{C} : A - \lambda I \notin \Phi_B^g(X) \right\}$$

and the generalized B-Fredholm set of A is defined by

$$\rho^g_{bf}(A) = \mathbb{C} \backslash \sigma^g_{bf}(A).$$

PROPOSITION 4.1. Let  $A \in \mathcal{C}(X)$  be such that  $\rho(A) \neq \emptyset$ . Then, the generalized B-Fredholm spectrum  $\sigma_{bf}^g(A)$  of A is a closed subset of  $\mathbb{C}$  contained in the usual spectrum  $\sigma(A)$  of A.

Proof. If  $\lambda \notin \sigma(A)$  then  $A - \lambda I$  is invertible and therefore  $A - \lambda I$  is a B-Fredholm operator. Hence from Remark 3.1 we get  $\lambda \notin \sigma_{bf}^g(A)$ . If  $\alpha \notin \sigma_{bf}^g(A)$ , then  $A - \alpha I$  is a generalized B-Fredholm operator. Set  $S = A - \alpha I$ . By Theorem 3.1, there exist two closed subspaces M and N invariant under A of X such that  $X = M \oplus N$  and  $S = S_{/M} \oplus S_{/N}$ , where  $S_{/M}$  is of type Saphar and  $S_{/N}$  is a nilpotent operator. Since  $S_{/M}$  is of Saphar type, then from [14, Theorem 2] there exists an open disc  $D(0, \varepsilon)$  centered at 0 such that  $S_{/M} - \lambda I$ is of Saphar type, for all  $\lambda \in D(0, \varepsilon) \setminus \{0\}$ . As  $S_{/N}$  is a nilpotent operator, then we get  $S_{/N} - \lambda I$  is invertible, for all  $\lambda \neq 0$ . Then, using Theorem 3.1, we get  $S - \lambda I$  is a generalized B-Fredholm operator, for all  $\lambda \in D(\alpha, \varepsilon) \setminus \{\alpha\}$ . So  $\rho_{bf}^g(A)$  is open in  $\mathbb{C}$  or equivalently  $\sigma_{bf}^g(A)$  is a closed subset of  $\mathbb{C}$ .

Remark 4.1. Note that, the generalized B-Fredholm spectrum can be empty. For example, if A is a nilpotent operator, then  $\sigma_{bf}(A) = \emptyset$  and since  $\sigma_{bf}^g(A) \subseteq \sigma_{bf}(A)$ , then we get  $\sigma_{bf}^g(A) = \emptyset$ , where  $\sigma_{bf}(A) = \{\lambda \in \mathbb{C}, A - \lambda I \text{ is} \text{ not B-Fredholm}\}$ , is the B-Fredholm spectrum.

PROPOSITION 4.2. Let  $A \in \mathcal{C}(X)$  be a closed invertible operator with a dense domain. Then,

$$\sigma_{bf}^g(A) = \left\{ \lambda^{-1} : \lambda \in \sigma_{bf}^g(A^{-1}) \setminus \{0\} \right\}.$$

*Proof.* Using the relations proved in [5, Proposition 3.3 and Proposition 3.4], we obtain that  $A - \lambda I$  is a generalized B-Fredholm operator if and only if  $A^{-1} - \lambda^{-1}I$  is also, for all  $\lambda \neq 0$ .

COROLLARY 4.1. Let  $A, T \in \mathcal{C}(X)$  be two closed invertible operators with a dense domain and such that AT = TA. If the bounded operator  $A^{-1} - T^{-1}$ is of power finite-rank, then

 $\begin{array}{cc} A - \lambda I \text{ is generalized} \\ B - Fredholm \end{array} \Rightarrow \begin{array}{cc} T - \lambda I \text{ is quasi-Fredholm,} \\ \text{for all } \lambda \neq 0. \end{array}$ 

*Proof.* Let  $\lambda \neq 0$ . If the operator  $A - \lambda I$  is generalized B-Fredholm, then from Proposition 4.2 we have the same also for the bounded operator  $A^{-1} - \lambda^{-1}I$ . Since  $A^{-1} - T^{-1}$  is of power finite-rank operator, then it follows from [12, Theorem 3.1] and Lemma 2.2 that,  $T^{-1} - \lambda^{-1}I = T^{-1} - \lambda^{-1}I - A^{-1} + A^{-1}$ is a bounded quasi-Fredholm operator, and therefore from [5, Theorem 3.6] the operator  $T - \lambda I$  is also quasi-Fredholm. ■

## M. BOUDHIEF

COROLLARY 4.2. Let  $A, T \in \mathcal{C}(X)$  be two closed invertible operators with a dense domain and such that AT = TA. If the bounded operator  $A^{-1} - T^{-1}$ is nilpotent, then

 $\begin{array}{cc} A - \lambda I \text{ is generalized} \\ B - Fredholm \end{array} \Rightarrow \begin{array}{cc} T - \lambda I \text{ is quasi-Fredholm,} \\ \text{for all } \lambda \neq 0. \end{array}$ 

## References

- [1] P. AIENA, "Fredholm and local spectral theory, with applications to multipliers", Kluwer Academic Publishers, Dordrecht, 2004.
- [2] M. BERKANI, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), 244–249.
- [3] M. BERKANI, M. BOUDHIEF, N. MOALLA, Stability of essential B-spectra of unbounded linear operators and applications, *Afr. Mat.* 29 (2018), 1189– 1202.
- [4] M. BERKANI, N. CASTRO-GONZÁLEZ, Unbounded B-Fredholm operators on Hilbert spaces, Proc. Edinb. Math. Soc. (2) 51 (2) (2008), 285–296.
- [5] M. BERKANI, N. MOALLA, B-Fredholm properties of closed invertible operators, *Mediterr. J. Math.* 13 (2016), 4175-4185.
- [6] J.P. LABROUSSE, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, *Rend. Circ. Mat. Palermo (2)* **29**(2) (1980), 161–258.
- [7] D.C. LAY, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1970), 197–214.
- [8] J.T. MARTI, Operational calculus for two commuting closed operators, Comment. Math. Helv. 43 (1968), 87–97.
- [9] M. MBEKHTA, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69–105.
- [10] M. MBEKHTA, V. MULLER, On the axiomatic theory of the spectrum. II, Studia Math. 119 (2) (1996), 129–147.
- [11] O. GARCÍA, D. CAUSIL, J. SANABRIA, C. CARPINTERO, New decompositions for the classes of quasi-Fredholm and semi B-Weyl operators, *Linear Multilinear Algebra* 68 (4) (2020), 750–763.
- [12] O. GARCÍA, O. FERRER, C. CARPINTERO, J. SANABRIA, On generalized semi B-Fredholm operators, *Rend. Circ. Mat. Palermo (2)* 72 (2023), 1729– 1737.
- [13] P. SAPHAR, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384.
- [14] C. SCHMOEGER, On operators of Saphar type, Portugal. Math. 51 (1994), 617-628.