
 

 

 

  

GEOMETALLURGICAL SIMULATION OF THE 

WORK INDEX IN A PORPHYRY COPPER DEPOSIT 

USING GEOSTATISTICAL TECHNIQUES 

 

 

 
 
 

SIMULACIÓN GEOMETALÚRGICA DEL ÍNDICE DE TRABAJO 

EN UN DEPÓSITO PÓRFIDO CUPRÍFERO UTILIZANDO 

TÉCNICAS GEOESTADÍSTICAS 
 
 
 
 
 
 
 
 

 
 

 

Ramos Armijos Nelson Jesus 
Universidad Nacional Mayor de San Marcos, Perú 

 

Calderón Celis Marilú 
Universidad Nacional Mayor de San Marcos, Perú 

 
 



pág. 807 

DOI: https://doi.org/10.37811/cl_rcm.v8i3.11288 

Geometallurgical Simulation of the Work Index in a Porphyry Copper 

Deposit Using Geostatistical Techniques 

 

Nelson Jesus Ramos Armijos1 

nramos_5215@hotmail.com 

nelson.ramos1@unmsm.edu.pe  

https://orcid.org/0000-0001-9188-6422 

Unidad de Posgrado  

Facultad de Ingeniería Geológica 

Minera, Metalúrgica y Geográfica 

Universidad Nacional Mayor de San Marcos 

Lima – Perú 

 

 

Calderón-Celis Marilú 

jcalderond2@unmsm.edu.pe 

https://orcid.org/0000-0002-1374-9307 

Unidad de Posgrado  

Facultad de Ingeniería Geológica 

Minera, Metalúrgica y Geográfica 

Universidad Nacional Mayor de San Marcos 

Lima – Perú 

 

 

ABSTRACT 

The spatial variability in the geometallurgical attributes of the deposits is a crucial parameter from the 

exploration stage, which conditions and influences the mineral processing. Consequently, the objective 

of this research is to elaborate the geometallurgical simulation of the Bond Work Index for a porphyry 

copper deposit. For this purpose, information of primary and response attributes corresponding to ore 

zones, lithologies and BWi contained in 1,449 samples of exploratory drill holes were used. An 

exploratory data analysis of this information was carried out, and geometallurgical units were defined 

based on the geological and processing knowledge that validates the behavior of each one of them 

within the deposit; then Sequential Gaussian Simulation was applied, running 100 realizations in each 

GMU, those that best reproduce the statistics of the original samples were chosen. The results show that 

the lithology of the deposit controls the BWi variability and according to the rock competence the ore 

zones are classified from the softest to the hardest in oxides, mixed and sulfides. 
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Simulación Geometalúrgica del Índice de Trabajo en un Depósito Pórfido 

Cuprífero Utilizando Técnicas Geoestadísticas 

 

RESUMEN 

La variabilidad espacial en los atributos geometalúrgicos de los depósitos es un parámetro crucial desde 

la etapa de exploración, lo cual condiciona e influye en el procesamiento mineral. En consecuencia, el 

objetivo de esta investigación es elaborar la simulación geometalúrgica del Índice de Trabajo de Bond 

para un depósito pórfido cuprífero. Para esto se utilizó información de atributos primarios y de respuesta 

correspondientes a zonas minerales, litologías y de BWi contenidos en 1,449 muestras de sondajes 

exploratorios. Se realizó el análisis exploratorio de datos de dicha información y se definieron unidades 

geometalúrgicas fundamentándose en el conocimiento geológico y de procesamiento que valida el 

comportamiento de cada una de ellas dentro del depósito; luego se aplicó Simulación Secuencial 

Gaussiana, ejecutando 100 realizaciones en cada UGM y se eligieron aquellas que reproducen mejor 

las estadísticas de las muestras originales. Los resultados muestran que la litología del depósito controla 

la variabilidad del BWi y de acuerdo a la competencia de la roca las zonas mineralizadas se clasifican 

desde la más blanda a la más dura en óxidos, mixtos y sulfuros. 
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INTRODUCTION 

Currently, the exploratory stage of deposits faces challenges associated with geometallurgical 

uncertainty (Lishchuk et al., 2020; Mwanga et al., 2015) which impacts mineral processing (Dominy et 

al., 2018). In this context, response attributes influence the resource value because up to 70 % of the 

total energy consumption is used in comminution (Mohammadi et al. 2021); therefore, this impacts 

porphyry copper deposits characterized by high lithology hardness (Bilal, 2017). In this regard, the 

Bond Work Index “BWi” is frequently used for the calculation of the energy requirement (Aras et al., 

2019); consequently, it is essential to evaluate its spatial variability within the deposit, however, its 

limited information in early stages of mining (Garrido et al., 2020)  and high cost of metallurgical tests 

(Ranjbar et al., 2021) hinder its characterization. 

In this sense Harbort et al. (2011) performed geometallurgical modeling for a porphyry copper-gold 

deposit located in Peru. Nghipulile et al. (2023) studied the effect of mineralogy on the milling of copper 

oxides and sulfides in a deposit located in Namibia. Harbort et al. (2013) applied geometallurgy to 

estimate comminution attributes in porphyry copper deposits. 

Therefore, the objective of this work is to elaborate the geometallurgical simulation of the Bond Work 

Index, by incorporating primary and response attributes of a porphyry copper deposit, using 

geostatistical techniques. 

Geometallurgy 

Geometallurgy incorporates geological, metallurgical, mine planning information to improve decision 

making in mining projects (Mu & Salas, 2023), for which it makes use of primary and response variables  

(Castro et al., 2022), and predictive spatial models (Castillo et al., 2022). 

A geometallurgical variable is defined as any attribute of the rock that positively or negatively affects 

the value of a mineral deposit and is classified into primary and response variables (Coward et al., 

2009). Primary variables are intrinsic to the rock, directly measured and are used to predict metallurgical 

response and are additive, e.g., ore grade, lithologies, mineralized zones (Morales et al., 2019). 

Whereas, response variables are rock attributes that describe the response to a processes or energy 

application (Morales et al., 2019), they are non-additive and the characterization of their spatial 
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variability is elaborated by geostatistical simulation (Hosseini & Asghari, 2015), e.g., Bond Work 

Index, throughput, reagent consumption, processing capacity, recovery. 

The Bond Work Index is a variable which represents a measure of an ore´s resistance to grinding and it 

represents the energy (kWh/t) required to reduce the material of one short ton from a theoretically 

infinite feed size to size at which 80 percent of material passes through sieve with square aperture of  

100 micrometers in size (Todorovic et al., 2017). Bilal (2017) classifies BWi values according to rock 

competence into soft (7-9), medium (9-14), hard (14-20), and very hard (>20). 

On the other hand, the geometallurgical model is a 3D space that is typically synthesized from early-

stage small-scale samples to predict the process response based on the location of samples in a deposit 

(Lishchuk et al., 2020). 

Geostatistical simulation 

It is a technique that allows obtaining realizations that reproduce the statistics and spatial variability of 

the original data (Narciso et al., 2019) achieving an unsmoothed representation of reality (Abzalov, 

2016). In the study of geometallurgical variables Sequential Gaussian Simulation "SGS" is used 

(Hosseini & Asghari, 2015), which requires normal distribution in the samples. The simulated value 

𝑍𝑆𝐺𝑆
∗  is determined by Equation 1 (Abzalov, 2016). 

𝑍𝑆𝐺𝑆
∗ = 𝑍𝑆𝐾

∗ + 𝜎𝐾(𝑈)  ( 1 ) 

Where 𝑍𝑆𝐺𝑆
∗  is SGS simulated value, 𝑍𝑆𝐾

∗  is Simple Kriging “SK” estimate, 𝜎𝐾 is standard deviation of 

the Kriging estimate and 𝑈 is a random normal function. It should be noted that Sequential Gaussian 

Simulation is applied to normal random functions, however, geometallurgical variables are generally 

not symmetrically distributed (Adeli, 2018), therefore, their gaussian anamorphosis must be performed 

beforehand. The Simple Kriging is used to calculate the conditional cumulative distribution function 

for SGS, which requires knowing the mean value (𝑚̅) of the variable under study, expressed through 

Equation 2 (Abzalov, 2016). 

𝑍𝑆𝐾
∗ (𝑥) =∑[𝜆𝑖

𝑆𝐾𝑍(𝑥𝑖)] + 𝑚̅ (1 −∑𝜆𝑖
𝑆𝐾

𝑖

)

𝑖

 ( 2 ) 

Where 𝜆𝑖
𝑆𝐾 are the SK weights assigned to each sample 𝑍(𝑥𝑖). SGS involves modeling variograms to 

establish directions of anisotropy and model performance is evaluated by cross-validation (Ekolle et al., 
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2022), ensuring that the correlation coefficient in its scatter plot between predicted and actual values is 

close to 1 and that its error histogram tends to symmetric behavior (Rossi & Deutsch, 2014). 

METHODOLOGY 

Type and design of research 

This is an applied and non-experimental research in which the variables have not been deliberately 

manipulated, that is to say, the phenomenon has been observed in its natural context (Hernández-

Sampieri & Mendoza, 2018). The design is cross-sectional correlational. In addition, considering the 

type of data, the approach of this study is quantitative and qualitative. 

Unit of analysis and study population 

The unit of analysis is a porphyry copper deposit and the study population consist sixty-one exploratory 

drill holes. 

Size and selection of the sample 

The sample size is 1,449 data points for Bond Work Index, ore zones and lithologies. 

Data collection techniques 

The data were collected in formats established worldwide for the elaboration of the geometallurgical 

simulation. According to Rossi & Deutsch (2014), the information should be systematized in: Header, 

Survey, Assays, Lithology, Minzone. 

Analysis and interpretation of information 

The geological and block model for the mineral deposit was developed in RecMin software. Exploratory 

data analysis, definition of geometallurgical units “GMUs”, sample visualization and results were 

performed in Jupyter Notebook. Whereas, the simulation was carried out in SGeMS software. 

RESULTS  

Geology of the study area 

The mineral deposit is a porphyry copper located in Peru, for confidentiality, the coordinates have been 

modified. Its mineralization (Figure 1a) is formed by three zones: the highest zone of oxides which is 

underlain by a mixed zone and below this the primary sulfides zone; while the lithological model 

(Figure 1b) is composed of intrusive and extrusive igneous rocks. 
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Exploratory data analysis 

Figure 2 shows the spatial distribution of the BWi samples. Their overall statistics (Figure 3) indicate 

that there are 1,449 data points with mean 17.07, standard deviation (Std) 2.35, minimum value 12.13. 

The first, second, and third quartile (Q) is 15.66, 16.40, 18.80 and its maximum value is equal to 21.99. 

The skewness factor (Skew) is 0.27 and kurtosis (Kurt) -0.65; therefore, the distribution of its histogram 

has a platykurtic behavior (Figure 3). 

Figure 1. Visualization of BWi samples. a) Three-dimensional. b) Plan view 

 

 

Figure 2. Histogram and samples statistics of BWi 

 

Sample statistics (Figure 4) by ore zones show that oxides and mixed contain the most data, while 

sulfides contain the least. In addition, the mean BWi in each zone is well differentiated (Table 1 and 

Figure 5). 
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Figure 3. Visualization of BWi samples by ore zones. a) Three-dimensional. b) Plan view 

 

Table 1. BWi statistics by ore zones 

Ore Zones # Samples Mean Std Min Q1 Q2 Q3 Max 

Oxides 741 15.42 1.25 12.13 15.38 15.76 16.28 17.35 

Mixed 473 17.77 1.51 14.76 16.21 18.35 18.88 20.20 

Sulfides 235 20.90 0.57 19.58 20.45 20.78 21.47 21.99 

 

Figure 4. a) Histogram of BWi by ore zones. b) BWi sample mean plot 

 

Statistics for BWi samples in lithologies (Figure 6) indicate that breccia and granite rock types are the 

least competent, while andesite, biotite granodiorite and granodiorite are the hardest. (Table 2 and 

Figure 7). 
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Figure 5. Visualization of BWi samples by lithologies. a) Three-dimensional. b) Plan view 

 

Table 2. BWi statistics by lithologies 

Lithologies # Samples Mean Std Min Q1 Q2 Q3 Max 

Andesite (L1) 407 17.31 1.85 15.00 15.67 16.20 18.66 20.95 

Biotite Granodiorite (L2) 347 18.05 2.13 15.20 15.85 18.41 19.80 21.99 

Breccia (L3) 282 14.59 1.50 12.13 13.00 15.12 15.80 17.83 

Granite (L4) 45 14.83 1.44 13.00 13.60 13.90 16.47 16.75 

Granodiorite (L5) 368 18.07 2.11 15.45 16.40 16.73 19.95 21.93 

 

Figure 6. a) Histogram of BWi by lithologies. b) BWi sample mean plot 

 

 

Definition of geometallurgical units 

To develop the BWi simulation, geometallurgical units "GMUs" of the deposit were considered, so that 

each GMu is a 3D spatial section of a mine body with similar geological and metallurgical 

characteristics. 

Since each mineralized zone has a different distribution in the response variable (Figure 8a), samples 

from different ore zone will not be considered to define GMUs. Furthermore, as specified  

in Figures 8b, 8c and 8d, lithology controls the distribution of BWi in the ore deposit; therefore, 

considering the number of mineralized zones and lithologies there could be thirteen GMUs. However, 
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when verifying the rock types present per mineral zone there can be up to thirteen GMUs and among 

these five GMUs (Table 3) have been defined taking into account the similarity in the behavior of the 

BWi. 

Figure 7. Violin plots. a) Ore zones. b) Oxides – Lithologies. c) Mixed – Lithologies. 

d) Sulfides – Lithologies 

 

 

Table 3. BWi statistics by GMUs 

GMUs 
Ore 

Zones 
Lithologies # Samples Mean Std Min Q1 Q2 Q3 Max 

GMU 1 
Oxides 

L1, L2, L5 584 16.01 0.45 15.00 15.67 15.90 16.40 17.35 

GMU 2 L3, L4 157 13.19 0.54 12.13 12.86 13.05 13.57 15.26 

GMU 3 
Mixed 

L1, L2, L5 303 18.79 0.64 17.40 18.40 18.70 19.31 20.20 

GMU 4 L3, L4 170 15.95 0.62 14.76 15.50 15.81 16.34 17.83 

GMU 5 Sulfides L1, L2, L5 235 20.90 0.57 19.58 20.45 20.78 21.47 21.99 

 

Geometallurgical simulation of BWi 

Preliminary gaussian anamorphosis was performed on the BWi data shown in Table 3, to obtain a 

symmetrical distribution in the samples (Table 4 and Figure 9). 
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Table 4. Statistics of BWi transformed into gaussian variable 

GMUs # Samples Mean Std Min Q1 Q2 Q3 Max 

GMU 1 584 0 1 -2.927 -0.665 0.011 0.676 2.927 

GMU 2 157 0 1 -2.493 -0.665 0 0.665 2.493 

GMU 3 303 0 1 -2.717 -0.664 0.016 0.669 2.717 

GMU 4 170 0 1 -2.521 -0.634 0 0.665 2.521 

GMU 5 235 0 1 -2.633 -0.648 0 0.674 2.633 

 

Figure 8. Histograms of original and transformed samples to gaussian variable by GMUs 

 
Note: BWi_ T (BWi transformed) 

 

Exponential-type variograms were modeled in each GMU (Table 5 and Figure 10) to identify the spatial 

continuity and directions of anisotropy (major axis, semimajor axis and minor axis) that will form the 

search ellipsoid. In addition, a leave-one-out type cross-validation (Figure 11) of the modeled 

variograms was performed, that is to say, each known sample is successively removed from the dataset 

and a new value is predicted by Simple Kriging at that location using the other samples, indicating the 

difference between the actual and predicted value to what extent the data value fits the neighborhood 

of the nearby samples. Subsequently, the BWi simulation was performed on the block model developed 

for the GMUs (Figure 12). 
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Table 5. Parameters for modeled variograms 

GMUs 

Major Axis Semimajor Axis Minor Axis 

Azimuth 

(°) 

Dip 

(°) 

Range 

(m) 

Sill 

 

Azimuth  

(°) 

Dip  

(°) 

Range  

(m) 

Sill 

 

Azimuth 

(°) 

Dip 

 (°) 

Range  

(m) 

Sill 

 

GMU 1 67.5 0 250 0.9 157.5 0 200 0.9 0 -90 150 0.9 

GMU 2 135 0 230 1.1 45 0 200 1.1 0 -90 150 1.1 

GMU 3 22.5 0 290 1 112.5 0 180 1 0 -90 160 1 

GMU 4 0 0 230 1 90 0 170 1 0 -90 120 1 

GMU 5 67.5 0 260 1 157.5 0 225 1 0 -90 135 1 

 

Figure 9. Modeled variograms (MV) by GMUs 

 
Note: S (Sill), R (Range) 
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Figure 10. Histogram of errors and scatter plot between true values and predicted values by GMUs 

 

 

Figure 11. Geometallurgical block model 

 
Note: The size of each block is 10 meters 

 

Sequential Gaussian Simulation was applied to elaborate BWi realizations using its data        transformed 

to a normal distribution with a mean of 0 and variance of 1. The number of realizations for BWi in each 

GMU was 100 as recommended by Bai & Tahmasebi (2022); then the  values were brought to their 

initial units through inverse anamorphosis and finally, the optimal simulations were defined, 
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considering those that best reproduce the mean and histogram of the original samples. The results 

obtained are shown in Table 6 and Figures 13 and 14. 

Table 6. Statistics for original samples and optimal realizations by GMUs 

Description # Samples Mean Std Min Q1 Q2 Q3 Max 

GMU 1 584 16.01 0.45 15.00 15.67 15.90 16.40 17.35 

Realization #72 21,224 16.01 0.45 15.00 15.66 15.87 16.39 17.35 

GMU 2 157 13.19 0.54 12.13 12.86 13.05 13.57 15.26 

Realization #25 11,247 13.20 0.57 12.13 12.87 13.06 13.58 15.26 

GMU 3 303 18.79 0.64 17.40 18.40 18.70 19.31 20.20 

Realization #18 16,276 18.80 0.63 17.40 18.41 18.70 19.33 20.20 

GMU 4 170 15.95 0.62 14.76 15.50 15.81 16.34 17.83 

Realization #63 13,024 15.95 0.57 14.76 15.53 15.87 16.30 17.83 

GMU 5 235 20.90 0.57 19.58 20.45 20.78 21.47 21.99 

Realization #99 6,710 20.89 0.62 19.58 20.38 20.75 21.50 21.99 

 

 

Figure 12. Mean plots for BWi realizations and histograms of optimal realizations 

 
Note: Sky blue color indicates mean of original samples in each GMU 
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Figure 13. Spatial (left) and 2D (right) visualization of optimal realizations for GMUs 

 

  



pág. 821 

DISCUSSION 

The application of Sequential Gaussian Simulation shows results in accordance with the reality of the 

phenomenon, since the statistics and spatial variability of the original BWi samples are better 

reproduced; in this sense, the degree of uncertainty is significantly reduced. 

Likewise, through the findings found in this research it is established that the mineralized zones in the 

porphyry copper deposit studied in terms of hardness, the primary sulfide zone is the most competent, 

followed by mixed and finally oxides; which is related to the works developed by Harbort et al. (2013), 

Harbort et al. (2011) and Nghipulile et al. (2023) ; however, in each study, there is a variation in the 

values for BWi due to the  specific characteristics of deposits (Figure 15). 

Figure 14. BWi values determined for different porphyry copper deposits by ore zones 

 

 

CONCLUSIONS 

Through the research carried out, it was determined that the lithology of the porphyry copper deposit 

studied is a geometallurgical attribute that influences and controls the variability related to comminution 

in each ore zone. 
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According to the results obtained and considering the competence of the mineralized zones by way of 

BWi, these are classified from the softest to the hardest in oxides, mixed and sulfides. 

By means of the simulation elaborated in GMUs, it has been possible to obtain multiple realizations of 

the BWi and evaluate its variability, adequately representing the proportion of high and low values, the 

spatial complexity of the deposit and the continuity of the geometallurgical variable three-

dimensionally. 
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