

Intern. Journal of Profess. Bus. Review. |Miami, v. 9 | n. 5| p. 01-22 | e04662 | 2024.

1

INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE

STUDY USING THE ENVIRONMENT CODE-FIRST FRAMEWORK

Daniel Adorno GomesA, Pedro MestreB, Carlos SerôdioC

ARTICLE INFO ABSTRACT
Objective: The purpose of this paper is to present a case study on how a recently

proposed reproducibility framework named Environment Code-First (ECF) based on

the Infrastructure-as-Code approach can improve the implementation and

reproduction of computing environments by reducing complexity and manual

intervention.

Methodology: The study compares the manual way of implementing a pipeline and

the automated method proposed by the ECF framework, showing real metrics

regarding time consumption, efforts, manual intervention, and platform agnosticism.

It details the steps needed to implement the computational environment of a

bioinformatics pipeline named MetaWorks from the perspective of the scientist who

owns the research work. Also, we present the steps taken to recreate the environment

from the point of view of one who wants to reproduce the published results of a

research work.

Findings and Conclusion: The results demonstrate considerable benefits in adopting

the ECF framework, particularly in maintaining the same applicational behavior

across different machines. Such empirical evidence underscores the significance of

reducing manual intervention, as it ensures the consistent recreation of the

environment as many times as needed, especially by non-original researchers.

Originality/Value: Verifying published findings in bioinformatics through

independent validation is challenging, mainly when accounting for differences in

software and hardware to recreate computational environments. Reproducing a

computational environment that closely mimics the original proves intricate and

demands a significant investment of time. This study contributes to educate and assist

researchers in enhancing the reproducibility of their work by creating self-contained

computational environments that are highly reproducible, isolated, portable, and

platform-agnostic.

Doi: https://doi.org/10.26668/businessreview/2024.v9i5.4662

Article history:

Received: February, 13th 2024

Accepted: May, 03rd 2024

Keywords:

Infrastructure-as-Code;

Reproducibility;

Virtualization;

Containerization;

Open Science.

A Master in Network Telecommunication Management. University of Trás-os-Montes and Alto Douro. Vila Real,

Vila Real, Portugal. E-mail: adornogomes@.gmail.com Orcid: https://orcid.org/0000-0002-1306-6733
B PhD in Electrical & Electronic Engineering. University of Trás-os-Montes and Alto Douro and Centre for the

Research and Technology of Agro-Environmental and Biological Sciences. Vila Real, Vila Real, Portugal.

E-mail: pmestre@utad.pt Orcid: https://orcid.org/0000-0002-0445-7935
C PhD in Electrical & Electronic Engineering. University of Trás-os-Montes and Alto Douro. Vila Real, Vila Real,

Portugal, and Centro Algoritmi - University of Minho, Guimarães, Braga, Portugal.

E-mail: cserodio@utad.pt Orcid: https://orcid.org/0000-0003-4632-9664

mailto:adornogomes@.gmail.com
https://orcid.org/0000-0002-1306-6733
mailto:pmestre@utad.pt
https://orcid.org/0000-0002-0445-7935
mailto:cserodio@utad.pt
https://orcid.org/0000-0003-4632-9664

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

2

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

AUMENTANDO A REPRODUTIBILIDADE DE TRABALHOS DE PESQUISA CIENTÍFICA: UM

ESTUDO DE CASO UTILIZANDO O FRAMEWORK ENVIRONMENT CODE-FIRST

RESUMO

Objetivo: O objetivo deste artigo é apresentar um estudo de caso sobre como um framework de reprodutibilidade

proposto recentemente, denominado Environment Code-First (ECF) e baseado na abordagem Infraestrutura-como-

Código, pode melhorar a implementação e reprodução de ambientes computacionais, reduzindo a complexidade e

a intervenção manual.

Metodologia: O estudo compara a forma manual de implementação de um pipeline e o método automatizado

proposto pelo framework ECF, mostrando métricas reais quanto ao consumo de tempo, esforços, intervenção manual

e agnosticismo da plataforma. São detalhadas as etapas necessárias para implementar o ambiente computacional de

um pipeline de bioinformática denominado MetaWorks na perspectiva do cientista proprietário do trabalho de

pesquisa. Além disso, apresentamos os passos necessários para recriar o ambiente do ponto-de-vista de quem deseja

reproduzir os resultados publicados de um trabalho de pesquisa, ou seja, dos cientistas não-originais.

Resultados e Discussão: Os resultados demonstram benefícios consideráveis na adoção do framework ECF,

particularmente na manutenção do mesmo comportamento aplicacional em diferentes máquinas. Tais evidências

empíricas ressaltam a importância da redução da intervenção manual, pois garantem a recriação consistente do

ambiente quantas vezes forem necessárias, especialmente por pesquisadores não-originais.

Originalidade/Valor: Verificar as descobertas publicadas em bioinformática por meio de validação independente

é um desafio, principalmente quando se leva em conta diferenças em software e hardware para recriar ambientes

computacionais. Reproduzir um ambiente computacional que se assemelhe de perto com o original é complexo e

exige um investimento significativo de tempo. Este estudo contribui para educar e auxiliar os pesquisadores a

melhorarem a reprodutibilidade de seus trabalhos, criando ambientes computacionais independentes que são

altamente reprodutíveis, isolados, portáteis e independentes de plataforma.

Keywords: Infraestrutura-Como-Código, Reprodutibilidade, Virtualização, Containerização, Ciência Aberta.

AUMENTAR LA REPRODUCIBILIDAD DEL TRABAJO DE INVESTIGACIÓN CIENTÍFICA: UN

ESTUDIO DE CASO UTILIZANDO EL FRAMEWORK ENVIRONMENT CODE-FIRST

RESUMEN

Objetivo: El objetivo de este artículo es presentar un estudio de caso sobre cómo un framework de

reproducibilidad propuesto recientemente, llamado Environment Code-First (ECF) y basado en el enfoque

Infraestructura-como-código, puede mejorar la implementación y reproducción de entornos informáticos,

reduciendo la complejidad, e intervención manual.

Metodología: El estudio compara la forma manual de implementar el pipeline y el método automatizado propuesto

por el framework ECF, mostrando métricas reales en cuanto a consumo de tiempo, esfuerzos, intervención manual

y agnosticismo de la plataforma. Además, detalla los pasos necesarios para implementar el entorno computacional

de un pipeline bioinformático llamado MetaWorks desde la perspectiva del científico propietario del trabajo de

investigación. Además, presentamos los pasos dados para recrear el entorno desde el punto de vista de alguien que

quiere reproducir los resultados publicados de un trabajo de investigación.

Resultados y Discusión: El estudio compara la forma manual de implementar un pipeline y el método

automatizado propuesto por el framework ECF, mostrando métricas reales en cuanto a consumo de tiempo,

energía, intervención manual y agnosticismo de la plataforma. Los pasos necesarios para implementar el entorno

computacional de un pipeline bioinformático llamado MetaWorks se detallan desde la perspectiva del científico

propietario del trabajo de investigación. Además, presentamos los pasos necesarios para recrear el entorno desde

el punto de vista de quienes deseen reproducir los resultados publicados de trabajos de investigación, es decir, de

científicos no originales.

Originalidad/Valor: Verificar los descubrimientos publicados en bioinformática mediante validación

independiente es un desafío, especialmente cuando se tienen en cuenta las diferencias en el software y el hardware

para recrear entornos informáticos. Reproducir un entorno informático que se parezca mucho al original es

complejo y requiere una importante inversión de tiempo. Este estudio contribuye a educar y ayudar a los

investigadores a mejorar la reproducibilidad de su trabajo mediante la creación de entornos informáticos

independientes que sean altamente reproducibles, aislados, portátiles e independientes de la plataforma.

Palabras clave: Infraestructura-Como-Código, Reproducibilidad, Virtualización, Contenerización, Ciencia

Abierta.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

3

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

1 INTRODUCTION

The use of computation is essential for modern scientific research. Simulators, for

example, play a crucial role in various fields such as chemistry, physics, biology, and numerous

other domains, enabling silico experimentation. Simulations offer significant advantages in

terms of cost and speed compared to conducting experiments on actual molecules, for example.

In numerous endeavors, computational resources are valuable and essential, particularly when

the volume of data surpasses human capacity for timely processing (Coveney et al., 2021; de

Bayser et al., 2015).

However, the more science depends on computational means, the more the need to

create scientific works that are more easily reproducible increases, mainly, from the point of

view of one that is trying to recreate the final results published by others. Also, a mounting

apprehension has emerged within the scientific community regarding unverifiable results that

lack reproducibility (Reinecke et al., 2022). Currently, specialists consider this dependency to

be one of the primary factors contributing to the crisis of scientific reproducibility. Figure 1

illustrates a noticeable surge in interest regarding the reproducibility crisis in science, primarily

over the past five years. The chart, sourced from the Web of Science, exhibits the number of

research works related to this subject published in the last decade.

Figure 1

Number of Web of Science publications that contain in the title, abstract, or keywords one of

the following terms: "reproducibility crisis", "scientific crisis", "science in crisis", "crisis in

science", "replication crisis", "replicability crisis". The search was executed considering the

period from 2013 and 2022.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

4

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

A growing consensus underscores the significance of reproducing research findings to

enhance comprehension of conveyed concepts and facilitate their continual advancement

(Cacho & Taghva, 2018).

Computational reproducibility is essential to validate the credibility of scientific papers

and their results. The ability to revisit and reproduce past experiments plays a vital role in the

scientific method. Scientists depend on effectively handling experiment-related data to interpret

outcomes, maintain adherence to accepted protocols, and verify findings (Liu & Salganik,

2019). In education, reproducibility holds immense value, as the swift advancement of scientific

knowledge increases the amount of information students need to comprehend. By repeating

experiments, students can learn by scrutinizing the origin details of the original investigation,

reassessing its inquiries, and expanding upon the results obtained in the initial study (Cacho &

Taghva, 2020).

Reproducibility depends on open data, code, and extensive documentation that will

permit to recreate of the entire software development environment (Barba & Thiruvathukal,

2017). However, regarding the environment, the most important item is the documentation.

Rebuilding the same computational environment in which the original experiment was

conducted is a challenging and time-consuming task, when documentation is available. The

absence of the documentation makes the reproducibility of a research work almost impossible.

Other important issues that can be highlighted are the differences in software and hardware

platforms and lack of the correct version of dependencies (e.g., libraries, packages, third-party

software) or even its absence (Grüning et al., 2019).

The use of researchers made their personal computers when installing and configuring

the environment, and the practice of provisioning the resources manually, are factors

contributing to and aggravating the scenario of irreproducibility (Segal & Morris, 2012), most

of the time producing heterogeneous environments.

In the software industry various environments are commonly used during the development

of systems information namely development, testing, staging and production. According to the

Twelve-Factor App methodology, one best practice in software engineering is to keep the different

environments where the application will be developed and run as similar as possible regarding the

technical aspects. This similarity between the environments ensures applications have the same

behavior in any of them generating always the same results (Wiggins, 2017). Essentially, the

techniques used to provisioning homogeneous environments must be identical (Humble & Farley,

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

5

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

2010). This best practice also must be applied for scientific applications, mainly when considering

the reproducibility of research works by non-original researchers.

Nowadays, especially for researchers starting their research works using their machines

alone or in small teams, the Linux containers technology is one of the essential reproducible tools

helping provision more homogeneous computational environments (Marwick, 2017; Wiebels &

Moreau, 2021). This technology allows all dependencies of the computational application, such

as libraries, packages, compilers, interpreters, databases, and their respective versions, to be

specified and configured programmatically so that the environment is reproduced exactly as

specified. However, this technology only allows us to programmatically specify the dependencies

that support the scientific application, in other words, the applicational environment. Therefore,

the infrastructure necessary to support the containerized environment (e.g., container engine)

must be installed and configured manually. Manual intervention leads researchers to face issues

when provisioning their environments, mainly in non-Linux platforms such as Microsoft

Windows and Apple MacOS (Docker, 2024a; Docker, 2024b; Docker, 2024c).

The infrastructure-as-code approach has been used to address this kind of solution to

provisioning the entire computational environment, infrastructure and containerized application,

programmatically as source code through tools such as Terraform, vagrant, Ansible, Chef, and

Puppet. Defining the entire environment as code permit us to produce more homogeneous

computational environments reducing the level of manual intervention to a minimal and,

consequently, to increase the reproducibility of the research work. Besides of these factors,

treating the environment as a software system provides us the possibility to store and versioning

it in a code repository (e.g., Github or Gitlab), to test it improving its quality, reproducing an

identical, consistent and reliable environment every time, as many times as needed.

In this paper, the authors present a case study of implementing the computational

environment of a bioinformatics pipeline named MetaWorks (Porter & Hajibabaei, 2022)

following the Environment Code-First (ECF) framework (Gomes et al., 2022). Currently,

MetaWorks is limited by running only on Linux platforms and its implementation requires a

high level of manual intervention. The use case presents details on how to follow the

framework. It demonstrates how the ECF framework can enhance the reproducibility and

transparency of scientific research, making the computational environment readily available. It

reduces the obstacles for others to effortlessly replicate published experiments across multiple

platforms with minimal manual intervention, eliminating the need to speculate about the

processes followed by the original authors.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

6

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

2 THEORETICAL BASIS AND RESEARCH OVERVIEW

2.1 THE METAWORKS PIPELINE

Metaworks (Porter & Hajibabaei, 2022) is a versatile bioinformatics pipeline designed to

process demultiplexed Illumina paired-end reads such as SeqPrep (St John, 2016), CutAdapt

(Martin, 2011), VSEARCH (Edgar, 2016), and the RDP Classifier (Wang et al., 2007). It uses

Conda (Conda, 2024) package manager to control the programs and the dependencies that compose

the environment and Snakemake (Snakemake, 2024) workflow manager to automate pipelines and

utilize computational resources efficiently. It is free and open-source software licensed under

GPLv3. The third-party software packages used to it are open-source as well. The source code is

available on Github (MetaWorks, 2024a). The software comes with a small set of raw data, and the

step-by-step tutorial (MetaWorks, 2024b) can guide new users on gain experience.

It was designed to be more reproducible, automatizing the creation of the pipelines, and

more scalable, permitting improved performance by increasing the processing power, for

example, moving from a PC to the cloud. However, a high level of manual intervention is

necessary when installing and configuring it. Another limitation of the pipeline, according to

the official documentation, is the fact that MetaWorks runs at the command line only on the

Linux-64 platform.

2.2 THE ENVIRONMENT CODE-FIRST FRAMEWORK

The Environment Code-First framework (ECF) has its foundation on the Infra-structure-

as-Code (IaC) approach (Gomes et al., 2019; Morris, 2020), and its main goal is to guide

researchers on implementing self-contained computational environments more reproducible,

isolated, portable, and independent of any platform of software and hardware. The

environments are programmatically defined as source code, permitting them to be treated as

software systems and recreated as often as needed.

The framework's objective is to steer the creation of an environment that embodies the

following characteristics:

a) independence from specific hardware and software platforms, irrespective of operating

systems;

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

7

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

b) versatility to operate on-premise, whether on personal computers, robust servers, or

even within cloud setups;

c) full programmable provisioning, eliminating manual installations and configurations.

Source code resides in a repository (e.g., Github or GitLab);

d) dynamic software resource management, enabling swift addition or removal directly

from the environment's source code.

The framework comprises two components. The initial component outlines the

architecture of the computational environment, while the second part offers a systematic guide

delineating the researcher's step-by-step procedure for establishing and upholding the

infrastructure.

2.2.1 The Environment Code-First Architecture

The primary objective of the architecture established by the ECF is to establish a

consistent environment that remains unaffected by the hardware and software platforms

employed by researchers.

The ECF introduces an architecture comprising two modules, designed to ensure

consistent computational environments when replicating research endeavors. The first module,

known as the Container Module (CM), is a Linux container encompassing all the necessary

software, libraries, and packages necessary to develop and run a scientific application. The

second module, referred to as the Virtual Machine Module (VMM), includes a hypervisor (e.g.,

Oracle Virtualbox, VMware), a lightweight virtual machine based on a Linux distribution, and

a container engine (e.g., Docker, Podman). During the development phase, these modules are

developed independently. However, in the execution phase, the CM operates within the VMM,

overlaying the container engine layer. In essence, the CM functions as an additional layer of

the VMM. As depicted in Figure 2, the green layers represent the physical machine and its

installed operating system, while the other layers enclosed by dotted lines constitute the

architecture specified by the ECF framework.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

8

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Figure 2

The ECF architecture.

Source: Extracted from (Gomes et al., 2022).

Provisioning of both modules must be carried out programmatically using Infra-structure-

as-Code (IaC) resources. Setting up the computational environment in alignment with the ECF

architecture guarantees that the container consistently runs always on the same operating system,

irrespective of the software platform used by researchers on their physical machines.

2.2.2 The Environment Code-First Guidance

The primary aim of ECF guidance is to assist researchers in implementing the two

modules specified within the ECF architecture: the CM and the VMM. The CM takes

precedence as it constitutes one of the four layers within the VMM. For both modules, the

framework delineates a structured series of steps for researchers to follow, ensuring the

successful implementation of each.

The initial stage in establishing a computational environment involves constructing the

Container Module (CM) by executing the following steps:

a) requirements identification;

b) development of the CM source code;

c) source code storage;

d) container image generation;

e) container image storage.

During the requirements identification step, researchers are tasked with pinpointing all

the necessary software, libraries, and packages for developing and running the scientific

application. The first imperative requirement in this phase is the specification of the container

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

9

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

engine. Determining the container engine is a prerequisite that precedes all other requirements,

as it dictates the source code structure that researchers will create to define installations and

configurations for environment creation. This source code must adhere to the patterns and

syntax prescribed by the chosen engine. Other requirements may vary depending on the specific

needs of each experiment's environment. The source code files must comprehensively

encompass all instructions and explanations to document the commands and configurations. To

facilitate this process, the ECF framework offers a form model comprising questions designed

around standard software components used in scientific environments. Researchers must

respond to these questions while analyzing the prerequisites for constructing the CM. The

subsequent phase involves crafting the source code for the container image, utilizing the

identified requirements. Once the container image's source code has been written, it should be

securely stored within a version control system, such as Github or Gitlab. Moving forward, the

source code must be compiled to produce the image that underpins the development and

execution of the scientific application. Additionally, comprehensive testing of the image is

imperative. The final stride entails storing the image in a container repository like Docker Hub.

Having the CM concluded, it is necessary to implement the Virtual Machine Module

(VMM). For this, the framework defines the following steps:

a) requirements identification;

b) development of the VMM source code;

c) source code storage.

The VMM consists of four fundamental layers: the hypervisor, the virtual machine,

the container engine, and the CM itself. This predefined structure obviates the need for adding

or removing layers. During the requirements identification stage, researchers are responsible

for specifying the hypervisor supporting the virtual machine, determining its memory and

CPU allocation, and selecting the operating system for installation. The container engine is

already established at this stage, and the CM is ready for deployment. The remaining

decisions relate to the Infrastructure-as-Code (IaC) tools the researcher intends to employ for

VMM development. Additionally, the ECF provides a structured questionnaire to facilitate

researchers' effective navigation through this phase. With all the information necessary to

create the VMM, researchers should start developing the source code. The source code must

handle the hypervisor installation on the physical machine, as well as the setup of the virtual

machine containing both the container engine and the CM. Thorough documentation outlining

the VMM steps should be integrated into the source code files. While the source code

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

10

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

generated in this phase should be stored in a version control system, keeping the virtual

machine image is unnecessary. This image's purpose is solely to launch a container image

representing the scientific environment, making it suitable for local storage facilitating its

convenient destruction and recreation. During initialization, the VMM should check for

updates to the CM in the image repository. If a newer version is available, it should be

downloaded before instantiation.

3 MATERIAL AND METHODS

In this section, we describe our experience in recreating a computational environment

for the bioinformatic pipeline named MetaWorks presented by Porter and Hajibabaei in (Porter

& Hajibabaei, 2022). The first part of our experiment implements the computational

environment of the MetaWorks pipeline following the original documentation provided by the

authors (MetaWorks, 2024b). The second part implements the MetaWorks environment

following the ECF framework’s architecture and guidelines. This part of the experiment

explores two points of view. The first analyzes the implementation from the point of view of

the owner of the research, and the second from the point of view of those who want to reproduce

the results published by third parties. The source code produced during our experiment is

available in (Gomes, 2024).

Our experiment was performed using three different physical machines using different

operating systems to measure the independence of platforms. The machine one (M1) is a PC

notebook configured with Ubuntu Linux v22.04 64-bit operating system, an Intel(R) Core(TM)

i7-5500U CPU @ 2.40GHz processor, 16 GB of RAM and a hard disk 512 GB SSD. The

machine two (M2) is a PC notebook configured with Microsoft Windows 10 Home Edition 64-

bit operating system, an Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz processor, 16 GB of

RAM and a hard disk 512 GB SSD. The last one, machine three (M3), is a PC notebook

configured with Fedora Linux v36 64-bit operating system, an Intel(R) Core(TM) i7-6500U

CPU @ 2.50GHz processor, 16 GB of RAM and a hard disk 512 GB SSD. It is essential to

highlight that the M1 PC’s operating system is a Debian-based Linux distribution, Ubuntu, and

the M3 PC is Redhat-based, Fedora.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

11

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

3.1 IMPLEMENTING THE ORIGINAL METAWORKS ENVIRONMENT

As mentioned earlier, all the steps needed to install, configure and test the MetaWorks

environment must be executed manually.

The official tutorial of installation and configuration defines the following steps that

have to be executed by a researcher when provisioning the environment:

a) install MetaWorks;

b) install and initialize Conda;

c) activate the MetaWorks environment;

d) install a custom-trained classifier;

e) install ORFfinder.

Also, the tutorial provides a step to test the pipeline and certify the environment was

correctly configured. If the test is performed with success a final output file named results.csv

is generated, and it can be analyzed by importing it into R, for example, for bootstrap support

filtering, pivot table creation, and normalization.

On M1 PC, the steps were successfully executed, and it was necessary 91 minutes to

perform the entire procedure. Regarding the test step, it was performed in 23 minutes. On M3

PC, the installation and configuration were successfully performed in 97 minutes, and the test

step was completed in 21 minutes. On M2 PC it was not possible to install the MetaWorks

because the pipeline is only available for Linux platform.

3.2 IMPLEMENTING THE METAWORKS ENVIRONMENT BY FOLLOWING THE ECF

FRAMEWORK

This topic of the experiment has two parts. The first part presents the provisioning of

the MetaWorks computational environment following the guidelines defined by the ECF

framework (Gomes et al., 2022). It shows which steps are needed to create an environment, in

a programmatic way, that will support the development and execution of a scientific

application. The result must be a self-contained infrastructure, self-documented, that can be

stored in a source control and easily reproducible. It consists of the work performed by the

owner of the research. The second part presents a point of view from someone who wants to

reproduce the environment exactly as the research owner developed it. According to the ECF

framework’s guidelines, it must occur simply, with minimal effort and manual intervention.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

12

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

As shown in the Figure 3, to create the environment from the research owner point of

view it was used the M1 PC notebook. The M2 and M3 PC notebooks were used to reproduce

the same environment from the point of view of non-original researchers.

Figure 3

Graphical representation of the experiment.

Our experiment demonstrates a situation where the entire computational environment,

composed by infrastructure and applicational environment, is totally based on source code

being stored in a Github repository. In this way, we decided to do not use prebuilt container

images. The container images are generated automatically, during the installation and

configuration of the environment.

3.2.1 The Research Owner Point of View

We started to build the Container Module (CM) by following the steps described earlier.

During the analysis step, approximately 60 minutes were dedicated to reviewing and

completing the form containing the environmental requirements, with many of them already

outlined in (Porter & Hajibabaei, 2022).

Table 1 displays the form containing the questions and answers utilized in the creation

of the container module (CM) for the MetaWorks environment.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

13

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Tabela 1

MetaWorks’ Container Module form.

Question Answer Version

Which container engine will be

used?
Docker and dependencies 24.0.2

Which will be the base image

of the containers?
Ubuntu Linux 22.04

Which libraries, packages and

third-party software have to be

installed?

Miniconda and dependencies 3

wget 1.19.4-1ubuntu2.2

libuv1 1.18.0-3

libdw1 0.170-0.4ubuntu0.1

unzip 6.0-21ubuntu1.2

libnghttp2-14 1.30.0-1ubuntu1

Is it necessary to perform any

configuration?

Yes. It is necessary to change the $PATH

environment variable using the command:

export PATH="/root/miniconda3/bin:$PATH"

N/A

Is it necessary to copy any files

into the container? Which

files?

Yes. It is necessary to copy the following file to

root directory: Runme.sh
N/A

As we defined Docker as the container engine to be used in the CM, we started to write

the Dockerfile specifying the installation and configuration of all the software, libraries,

packages, and dependencies that would compose the environment, according to the

specification shown in Table 1. Also, we used the Dockerfile to document the parts of the

environment that were being installed and configured inside the container module (CM). It took

around 125 minutes to create the code and the documentation of the CM. The developed source

code was stored in a Github repository.

The subsequent step involved creating a container image from the Dockerfile

definitions. Docker completed this task in 35 minutes. To validate the MetaWorks applicational

environment we instantiated a container from the generated image, and ran a test based on the

official documentation, the same described in the previous topic. All the steps of this process

took around 24 minutes.

In total, when considering all phases of CM development, achieving a successful

outcome required approximately 244 minutes as shown in Table 2.

Tabela 2

Steps to create the Container Module (CM).

Step Time stent in minutes

Analyzis of the container module’s requirements 60

Development and storage of the Dockerfile in a Github repository 125

Container image generation by Docker 35

Tests to validate the environment 24

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

14

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Once the container module (CM) was functioning correctly, our attention turned to the

virtual machine module (VMM), where we followed the VMM guide. To begin, we conducted

an assessment of the essential prerequisites needed to build a virtual machine capable of

supporting the MetaWorks. Regarding the operating system, we decided to use the same as

the CM to maintain compatibility as outlined in Table 3. To perform this analysis we took

around 40 minutes.

Table 3

MetaWorks’ Virtual Machine Module form.

Question Answer Version

Which hypervisor will be used? Oracle Virtualbox 7.0.10

How much memory will be allocated for the

virtual machine?
11 GB N/A

How much CPUs will be dedicated to the

virtual machine?
1 CPU N/A

Which operating system will be installed on

the virtual machine?
Ubuntu Linux 22.04

Which container engine will support the

containers?
Docker 24.0.2

Which IaC tools will be used to automate the

provisioning of the environment?

Vagrant and dependencies 2.3.7

Ansible and dependencies 2.12.2

Other resources
Shell-scripts Linux (main script) N/A

Shell-scripts Windows (main script) N/A

The initial step involved implementing a main script responsible for launching the

MetaWorks environment. Since our objective was to conduct tests on both Linux and MS-

Windows machines, we needed to develop this primary script to accommodate both operating

systems. The script's functionality encompasses several checks and actions. Initially, it verifies

whether Virtualbox is installed on the PC; if not, the hypervisor is downloaded and installed on

the machine. Subsequently, it checks for the presence of Vagrant and Ansible, initiating their

installation if they are absent. Following this, the script proceeds to provision a virtual machine

configured with Ubuntu Linux. To enable Vagrant to create the virtual machine as per our

specifications, we defined the necessary configurations and installations within a file named

Vagrantfile. Within this file, we specified the allocation of RAM and the number of CPUs for

the virtual machine, described in Table 3. Additionally, we requested the installation of the

Docker engine using Ansible. Once the virtual machine is up and running, the script handles

the downloading of the container module (CM) from the Docker Hub, if necessary, and initiates

the launch of a container encapsulating the MetaWorks environment.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

15

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Coding all components that make up the VMM, including Linux and MS-Windows

scripts and configuration files for Vagrant and Ansible, required approximately 295 minutes to

complete. In this phase, the scripts had to undergo individual and combined testing, which

consumed about 315 minutes. This testing duration encompasses the assessments conducted

with the CM and the VMM working in tandem. When factoring in the time required for

implementing both modules, the CM and VMM, the total time expended amounted to 894

minutes. It is essential to highlight that all the source code developed to create both modules

were stored in a Github repository.

3.2.2 The Point of View From Non-Original Researchers

This part of the experiment exposes the point of view of a scientist who wants to

reproduce the results of research published by others. According to the ECF framework

specification, the environment must be provisioned with minimal effort and manual

intervention as possible, in this case, by running only one script. Actually, this is the

consolidation of all the work developed by the owner of the research that was described

previously. This test was performed on the M2 and M3 PCs.

The operation was initiated by downloading the main script from the repository on

both machines, for MS Windows on the M2 PC and Linux on the M3 PC. This script is the

only file requiring manual intervention by a researcher seeking to replicate the environment.

Running this script on the two PCs seamlessly and successfully provisioned the MetaWorks

environment.

This entire process consumed 65 minutes on the M2 PC and 57 minutes on the M3 PC,

considering a scenario where all the software necessary to establish the infrastructure of the

environment, such as Virtualbox, Ansible, and Vagrant, had to be downloaded from the

internet. Also, as mentioned before, we opted to generate the Container Module (CM) during

the provisioning of the environment consuming, in average, around 30 minutes.

After provisioning the environment automatically, the manual test suggested in the

official documentation of MetaWorks was performed on both machines to certify that it was

working correctly. On M2 PC, the test ran in 22 minutes and, on M3 PC, in 21 minutes.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

16

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

3.2.3 The output validation

As mentioned earlier, the official documentation of the MetaWorks pipeline provides a

guide that permits us to validate if the provisioned environment is working properly. When the

test is executed with success a file named results.csv is created (MetaWorks, 2024b).

Our experiment successfully performed the test in all environments provisioned

manually and automatically. The same results.csv file was generated with 129 KB of size in all

tests. Also, the content of the files was compared programmatically through a script developed

in Python. No differences were found between them.

Having the same output in the environments provisioned by following the ECF

framework and those installed and configured according to the official documentation

validates our proposal and demonstrates that the MetaWorks pipeline based on the ECF

framework is trustable.

3.2.4 Technical aspects of the proposed method

With the container module (CM) and the virtual machine module (VMM) adequately

implemented, the MetaWorks computational environment can be provisioned as many times as

needed only by running a script with minimal manual intervention. The environment can be

provisioned on many computers as necessary, and it will always be the same independently if

it is being created by a research team member or by a third person. Having the same

environment, the results produced by the scientific application will also be the same.

The virtual machine module (VMM) creates a standard layer that guarantees the

homogeneity necessary to run the container module (CM) on the same operating system

independently of the platform. Our experiment represents it by the Oracle Virtualbox 7.0.10

running a lightweight virtual machine with Ubuntu Linux 22.04 and the Docker engine 24.0.6

within it. The main script, developed for MS Windows and Linux platforms, uses Vagrant and

Ansible to programmatically install and configure this layer, corresponding to the

infrastructure. Figure 4 details the homogeneous environment provisioned on the three

machines used in the experiment, each using a different operating system.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

17

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Figure 4

MetaWorks pipeline environment provisioned on the three machines used in the experiment by

following the ECF framework.

We can observe in Figure 4 that the Docker container that encapsulates the MetaWorks

applicational environment will run on the same operating system in every machine where the

environment is provisioned. Also, the ECF framework guarantees that the same infrastructure will

support the entire environment, namely the hypervisor, operating system, and container engine.

4 RESULTS AND DISCUSSION

The primary objective of the ECF framework is to improve reproducibility through the

Infrastructure-as-Code (IaC) approach, assisting original researchers in creating a

computational environment that can be easily reproduced by them and other researchers.

Naturally, to improve reproducibility and develop mechanisms that enable the efficient

recreation of computational environments, it will be imperative for the researchers responsible

for provisioning to invest significant effort in acquiring the knowledge and skills required for

working with IaC tools.

The presented discussion should be considered from both of the previously mentioned

perspectives: one from the original researcher creating the environment through programmatic

methods, and the other from the researcher tasked with reproducing it. The comparison between

provisioning methods, one based on the official MetaWorks documentation and the other based

on the ECF framework, took into account the following parameters: time consumption, efforts,

manual intervention, and platform agnosticism.

By adhering to the method described in (MetaWorks, 2024b), our environment

provisioning process averaged 94 minutes. Considering the test to verify the proper functioning

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

18

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

of the environment the average is 116 minutes. The level of manual intervention is high,

requiring that all stages of installation and configuration of the environment be carried out

manually. Anyone needing to recreate the MetaWorks computing environment always will

perform the same steps in a manual way. Be it the owner of the research, a member of the

research team, or even someone who wants to reproduce published results by others. Despite

the rich and detailed documentation, manual execution of the instructions may result in errors,

incorrect configurations, or even a different environment than expected increasing the risk to

generate different results from the original.

By following the ECF framework from the point of view of the original researcher, it

was necessary approximately sixteen hours to build the entire computational environment that

supports the MetaWorks using the M1 PC. It is essential to highlight that it was designed to

assist those directly involved in research development and anyone who wants only to run an

application and verify published results. From this second point of view, the effort necessary

would be simply downloading and executing only one script to run a non-interactively

installation and to get the computational environment ready to use. For this, we used exclusively

the M2 and M3 PCs achieving, on average, 61 minutes only to provisioning the environment

automatically. Considering the test executed after provisioning it, the average is 82.5 minutes.

Regarding platform-agnosticism, the original MetaWorks is limited to running on Linux

operating systems. In our experience, it could be provisioned only in two of three available

machines because one has MS-Windows as the operating system. On the other hand, the

MetaWorks environment based on the ECF framework could be provisioned on all machines.

The ECF framework opens new possibilities, extending the MetaWorks to run on any platform

that supports the hypervisor of the VMM, in this case, the Oracle Virtualbox. Besides Linux

and MS-Windows, the pipeline could be provisioned on these operating systems: Mac OS X

and Solaris. Another advantage of creating the environment by programmatic means is the

possibility to create and destroy at any time, recreating it as often as needed.

The documentation stands as another advantageous aspect of employing the ECF

framework for MetaWorks environment development. Utilizing the Infrastructure as Code

(IaC) approach, all environment components are defined through code. Consequently, we

meticulously detailed and elucidated the environment, installations, and configurations within

the source-code files we generated for Vagrant, Docker, Ansible, and the shell scripts. This

documentation serves as a critical guide not only for those aiming to reproduce the environment

but also for anyone seeking to comprehend the intricacies of its development process.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

19

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

5 CONCLUSION

In Porter and Hajibabaei (2022), the authors present a flexible pipeline called

MetaWorks that supports the bioinformatic processing of multiple popular markers such as

rRNA genes, spacers, and protein-coding genes. To enhance the reproducibility, scalability,

and shareability of the workflows, MetaWorks employs the Conda package manager for

seamless program and dependency acquisition, along with the Snakemake workflow manager

to automate pipelines and optimize computational resource utilization. As mentioned in the

paper, the instructions on how to install and configure the pipeline are provided in an online

documentation (MetaWorks, 2024b). Besides the MetaWorks encapsulates all the software,

libraries, and packages necessary to create the computational environment for different types

of bioinformatic pipelines, its installation and configuration process involves a high level of

manual intervention.

In the illustrated case study, we demonstrated how to enhance the MetaWorks

bioinformatic pipeline provisioning its computational environment by following the

guidelines of the ECF framework. In fact, the ECF framework demonstrated its practical

ability to programmatically establish a comprehensive computational environment with

minimal researcher intervention required for its replication. The results clearly attest to its

advantages, particularly in maintaining consistent environment behavior across the three

machines employed in our experiment. Such empirical evidence underscores the significance

of reducing manual intervention, as it ensures the consistent recreation of the environment

for numerous iterations.

Indeed, we cannot solely highlight the advantages of the ECF framework because its

adoption has associated costs. First and foremost, it's crucial to underscore the time

commitment that original researchers must allocate to programming the various components of

the environment. As previously mentioned, given our substantial expertise in the programming

languages and tools utilized in the experiment and our familiarity with the Infrastructure-as-

Code (IaC) approach, it took approximately fifteen hours to develop and thoroughly test the

source code. However, it's worth noting that the development and testing phases can be more

demanding when researchers do not possess an IT background. This leads to the second most

significant cost: the time and effort required to gain proficiency in programming languages, IaC

tools, and software engineering practices.

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

20

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

We strongly advocate the adoption of open-source software for researchers seeking to

adhere to ECF guidelines when establishing their computational environments. These open-

source tools align with the principles of open science and benefit from extensive user

communities, expediting the learning curve and offering robust technical support. Furthermore,

we recommend using established and widely accepted tools within the scientific community,

such as Docker, Virtualbox, and Python. These mature tools exhibit fewer technical challenges

than newer alternatives, and their abundance of documentation and active forums ensure

comprehensive guidance for newcomers.

One noteworthy aspect of the ECF framework that we emphasize is its valuable

educational potential in shaping the next generation of researchers. Facilitating the creation of

transparent and reproducible research adds value and enriches the scientific community. As part

of our future endeavors, we propose expanding the implementation of computational

environments across various scientific domains to enhance further and refine the ECF

framework.

REFERENCES

Barba, L. A., & Thiruvathukal, G. K. (2017). Reproducible Research for Computing in Science

Engineering. Computing in Science Engineering, 19(6), 85–87.

Cacho, J. R. F., & Taghva, K. (2018). Reproducible research in document analysis and

recognition. In Information Technology-New Generations (pp. 389–395). Springer.

Cacho, J. R. F., & Taghva, K. (2020). The State of Reproducible Research. In Computer

Science, 17th International Conference on Information Technology – New Generations

(ITNG 2020), Advances in Intelligent Systems and Computing (Vol. 1134, pp. 519-524).

Springer.

Conda. (2024). Conda’s official website. Retrieved from https://docs.conda.io/en/latest

Coveney, P. V., Groen, D., & Hoekstra, A. G. (2021). Reliability and reproducibility in

computational science: implementing validation, verification and uncertainty

quantification in silico. Philosophical Transactions of the Royal Society A, 379, 1-5.

https://doi.org/10.1098/rsta.2020.0409

de Bayser, M., Azevedo, L. G., & Cerqueira, R. (2015). ResearchOps: The case for DevOps in

scientific applications. In 2015 IFIP/IEEE International Symposium on Integrated Network

Management (IM) (pp. 1398–1404). IEEE.

Docker. (2024a). Troubleshoot topics for Docker Desktop. Retrieved from https://docs.docker.

com/desktop/troubleshoot/topics/

https://doi.org/10.1098/rsta.2020.0409
https://docs.docker.com/desktop/troubleshoot/topics/
https://docs.docker.com/desktop/troubleshoot/topics/

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

21

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Docker. (2024b). Workarounds for common problems. Retrieved from https://docs.docker.

com/desktop/troubleshoot/workarounds/

Docker. (2024c). Known issues. Retrieved from https://docs.docker.com/desktop/troubleshoot/

known-issues/

Edgar, R. C. (2016). UNOISE2: improved error-correction for Illumina 16S and ITS amplicon

sequencing. bioRxiv. https://doi.org/10.1101/081257

Gomes, D. A., Mestre, P., & Serôdio, C. (2019). Infrastructure-as-Code for Scientific

Computing Environments. In CENTRIC 2019: The Twelfth International Conference on

Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

(pp. 7-10).

Gomes, D. A., Mestre, P., & Serôdio, C. (2022). Environment Code-First Framework:

Provisioning Scientific Computational Environments Using the Infrastructure-as-Code

Approach. International Journal on Advances in Software, 15(1 & 2), 1-13.

Gomes, D. A. (2024). Metaworks based on ECF Framework [Github repository]. Retrieved

from https://github.com/adornogomes/MetaWorks_Based_On_ECF_Framework

Grüning, B. A., Lampa, S., Vaudel, M., & Blankenberg, D. (2019). Software engineering for

scientific big data analysis. Gigascience, 8(5). https://doi.org/10.1093/gigascience/giz054

Humble, J., & Farley, D. (2010). Continuous delivery: reliable software releases through build,

test, and deployment automation. Pearson Education.

Liu, D. M., & Salganik, M. J. (2019). Successes and Struggles with Computational

Reproducibility: Lessons from the Fragile Families Challenge. Socius, 5, 1-21.

https://doi.org/10.1177/2378023119849803

Marwick, B. (2017). Computational Reproducibility in Archaeological Research: Basic

Principles and a Case Study of Their Implementation. Journal of Archaeological Method

and Theory, 24, 424–450. https://doi.org/10.1007/s10816-015-9272-9

Martin, M. (2011). CutAdapt removes adapter sequences from high-throughput sequencing

reads. EMBnet journal, 17, 10.

MetaWorks. (2024a). MetaWorks’ official page on Github. Retrieved from https://github.com/

terrimporter/MetaWorks

MetaWorks. (2024b). MetaWorks’ official implementation tutorial. Retrieved from

https://terrimporter.github.io/MetaWorksSite/tutorial

Morris, K. (2020). Infrastructure as Code: Dynamic Systems for the Cloud Age (2nd ed.).

O’Reilly Media, Inc.

Porter, T. M., & Hajibabaei, M. (2022). MetaWorks: A flexible, scalable bioinformatic pipeline

for high-throughput multi-marker biodiversity assessments. PLoS ONE, 17(9), 1-11.

https://doi.org/10.1371/journal.pone.0274260

https://docs.docker.com/desktop/troubleshoot/workarounds/
https://docs.docker.com/desktop/troubleshoot/workarounds/
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://docs.docker.com/desktop/troubleshoot/known-issues/
https://doi.org/10.1101/081257
https://github.com/adornogomes/MetaWorks_Based_On_ECF_Framework
https://doi.org/10.1093/gigascience/giz054
https://doi.org/10.1177/2378023119849803
https://doi.org/10.1007/s10816-015-9272-9
https://github.com/terrimporter/MetaWorks
https://github.com/terrimporter/MetaWorks
https://terrimporter.github.io/MetaWorksSite/tutorial
https://doi.org/10.1371/journal.pone.0274260

Intern. Journal of Profess. Bus. Review. | Miami, v. 9 | n. 5 | p. 01-22 | e04662 | 2024

22

Gomes, D. A., Mestre, P., & Serôdio, C. (2024)
INCREASING THE REPRODUCIBILITY OF SCIENTIFIC RESEARCH WORKS: A CASE STUDY USING THE

ENVIRONMENT CODE-FIRST FRAMEWORK

Reinecke, R., Trautmann, T., Wagener, T., & Schüler, K. (2022). The critical need to foster

computational reproducibility. Environmental Research Letters, 17. https://doi.org/10.

1088/1748-9326/ac5cf8

Segal, J., & Morris, C. (2012). Developing Software for a Scientific Community: Some

Challenges and Solutions. In J. Leng & W. Sharrock (Eds.). Handbook of Research on

Computational Science and Engineering: Theory and Practice (pp. 177-196). IGI Global.

https://doi.org/10.4018/978-1-61350-116-0.ch008

Snakemake. (2024). Snakemake’s official website. Retrieved from https://snakemake.github.io

St John, J. (2016). SeqPrep’s official page on Github. Retrieved from https://github.com/

jstjohn/SeqPrep/releases

Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naive Bayesian Classifier for

Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Applied and

Environmental Microbiology, 73, 5261–5267. https://doi.org/10.1128/AEM.00062-07

Wiebels, K., & Moreau, D. (2021). Leveraging containers for reproducible psychological

research. Advances in Methods and Practices in Psychological Science, 4(2), Article

25152459211017853. https://doi.org/10.1177/25152459211017853

Wiggins, A. (2017). The Twelve-Factor App Official Website. Retrieved from http://12factor.net

https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.4018/978-1-61350-116-0.ch008
https://snakemake.github.io/
https://github.com/jstjohn/SeqPrep/releases
https://github.com/jstjohn/SeqPrep/releases
https://doi.org/10.1128/AEM.00062-07
https://doi.org/10.1177/25152459211017853
http://12factor.net/

